WO2020155899A1 - 相变散热装置 - Google Patents

相变散热装置 Download PDF

Info

Publication number
WO2020155899A1
WO2020155899A1 PCT/CN2019/125968 CN2019125968W WO2020155899A1 WO 2020155899 A1 WO2020155899 A1 WO 2020155899A1 CN 2019125968 W CN2019125968 W CN 2019125968W WO 2020155899 A1 WO2020155899 A1 WO 2020155899A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
condensation
phase change
evaporation
condensing
Prior art date
Application number
PCT/CN2019/125968
Other languages
English (en)
French (fr)
Inventor
李纯
胡广帆
姚春红
马秋成
Original Assignee
株洲智热技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲智热技术有限公司 filed Critical 株洲智热技术有限公司
Priority to JP2021544782A priority Critical patent/JP7413387B2/ja
Priority to EP19913347.1A priority patent/EP3907455B1/en
Priority to US17/426,402 priority patent/US20220107137A1/en
Publication of WO2020155899A1 publication Critical patent/WO2020155899A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes

Definitions

  • the invention belongs to the technical field of phase change heat dissipation devices, and particularly relates to a phase change heat dissipation device with high heat flux density.
  • the existing heat dissipation device a plurality of curved heat pipes are arranged in the substrate, and the shapes of these heat pipes are different.
  • the existing heat sink mainly has the following problems and defects.
  • the heat transfer limit of the heat pipe is limited.
  • the existing 45mm ⁇ 69mm CPU up to 3-4 heat pipes with a diameter of ⁇ 6 can be placed.
  • the heat pipe technology has been very sophisticated and mature, even if the capillary limit of the heat pipe can only reach The capillary limit of a single ⁇ 6 heat pipe is 40W. Therefore, the existing heat pipe heat dissipation device cannot meet the heat dissipation requirement of a CPU with a heat flux density greater than 600 J/(m 2 ⁇ s).
  • the increase in the heat dissipation air volume has a very limited improvement in the thermal resistance of the heat sink.
  • the thermal resistance of the traditional heat pipe heat sink is lower than 0.016K/W, and the surface temperature of the CPU reaches 62°C or more under the condition of 30°C of the ambient temperature.
  • the heat pipe is usually a copper pipe, and the deionized water phase change is used to achieve uniform temperature in the heat pipe. Due to the limitation of the layout of the heat pipes, it is impossible to fully realize the uniform temperature of the substrate surface contacted by the CPU, nor can it realize the uniform temperature of the aluminum tiles directly in contact with the cooling air. The heat is finally transferred to the cooling air through the aluminum fin, and the performance improvement of the traditional heat pipe to the heat sink is limited.
  • the shell material of the existing heat pipes is mostly red copper, and the substrate material is mostly aluminum alloy, and the gap between the heat pipe and the substrate after forming is filled with low-temperature tin brazing or cementing.
  • the disadvantages of low-temperature tin-lead soldering include: the overall surface treatment of the heat sink must be nickel-plated or copper-plated before soldering. Soldering and surface treatment lead to high costs and pollution to the environment; soldering is difficult to ensure heat pipes and aluminum alloys The plane of the substrate is well-filled without local voids. Because the heat pipe is placed under the power device, the heat flux density is large, and the void will cause a local temperature rise of the CPU and cause device loss.
  • the present invention provides a phase change heat dissipation device to improve heat transfer efficiency and promote rapid heat dissipation.
  • phase change heat dissipation device of the present invention is as follows:
  • a phase change heat dissipation device includes a phase change component with a phase change heat medium inside, wherein the phase change component includes an evaporation part and a condensation part, the evaporation part has an evaporation cavity inside, and the condensation part has a condensation cavity inside ,
  • the evaporation cavity is in communication with the condensation cavity
  • the heat source is in direct contact with the evaporation cavity
  • the phase-change heat medium in the evaporation cavity can absorb heat from the heat source and move to the condensation cavity
  • the condensation cavity radiates outward Heat to cool the heat source.
  • the evaporation cavity is a flat, curved or polyhedral cavity, which is adapted to the shape of the heat source to increase the contact area between the heat source and the evaporation cavity.
  • the evaporation cavity is a thin-walled cavity
  • the working pressure inside the evaporation cavity is positive pressure
  • the contact surface between the evaporation cavity and the heat source can be elastically deformed to improve the contact effect between the heat source and the evaporation cavity.
  • condensation cavity is directly connected to the evaporation cavity or connected to the evaporation cavity through a connecting pipe.
  • the condensation part includes a plurality of condensation branch plates, and the condensation cavity is a correspondingly arranged planar cavity inside the condensation branch plate; or the condensation part includes a plurality of condensation branch pipes, and the condensation cavity corresponds to the inside of the condensation branch pipe.
  • the condensing part includes a plurality of condensing conical tubes, and the condensing cavity is a conical cavity correspondingly arranged inside the condensing conical tube.
  • a plurality of fins, bumps or fins are arranged inside the evaporation part and/or the condensation part to improve the pressure bearing capacity.
  • the evaporation part is provided with a mounting frame, and the heat source is connected to the evaporation part through the mounting frame.
  • the condensing part may further include a condensing top plate with a planar condensing cavity or a curved condensing cavity inside the condensing top plate, the condensing cavity inside the condensing top plate and the condensing branch plate, the condensing branch pipe or the condensing cone
  • the condensing chamber is connected.
  • condensation fin is connected to the condensation part.
  • the condensing fins are connected to the outer surface of the condensing support plate by brazing, and the condensing cavity radiates heat outward through the condensing fins to cool the heat source.
  • phase change component is in direct contact with the heat source, no need to add a transitional heat conducting plate, and the temperature difference between the heat source and the phase change component is small.
  • the evaporation part of the phase change component is adapted to the shape of the heat source: when the heat source is a flat structure, the evaporation cavity is a flat thin-walled cavity structure; when the heat source is a curved structure, the evaporation cavity is a curved thin-walled cavity Structure: When the heat source can be in contact with the phase change heat dissipation device on multiple sides, the evaporation cavity is a polyhedral thin-walled cavity structure. The purpose is to achieve the largest contact area between the heating source and the phase-change heat sink, thereby achieving the smallest temperature difference between the phase-change heating medium and the heat source inside the evaporation cavity.
  • the phase change component is a three-dimensional heat dissipation structure. After the phase change heat medium is vaporized, it can quickly diffuse to any low temperature part of the phase change component (the phase change heat medium at the low temperature part condenses and low pressure occurs), so that the temperature of the phase change component is uniform , High heat transfer efficiency and uniform heat transfer.
  • phase change heat dissipation device of the present invention does not require surface treatment processes such as copper plating and nickel plating.
  • the phase change structure and cooling fins of the heat dissipation device are directly brazed and welded together at high temperature, and the heat source (such as power device CPU ) Contact with the phase change heat sink and then fill the gaps by low-temperature soldering to avoid gaps, so that the heat transfer limit of the phase change heat sink of the present invention is significantly improved (far greater than 200W).
  • phase change heat dissipation device of the present invention can be applied to heat dissipation of power electronic devices such as chips, resistors, capacitors, inductors, storage media, light sources, and battery packs.
  • Figure 1a is a perspective view of a first embodiment of a phase change heat dissipation device of the present invention
  • Figure 1b is a cross-sectional view of the phase change heat sink in Figure 1a;
  • FIG. 2 is a perspective view of the second embodiment of the phase change heat sink of the present invention.
  • Fig. 3a is a perspective view of the third embodiment of the phase change heat dissipation device of the present invention.
  • Figure 3b is a cross-sectional view of the phase change heat dissipation device in Figure 3a;
  • Fig. 4a is a perspective view of a fourth embodiment of a phase change heat sink of the present invention.
  • Figure 4b is a cross-sectional view of the phase change heat dissipation device in Figure 4a;
  • FIGS 5-6 show schematic diagrams of the flow of the phase change heat medium of the present invention in the phase change assembly
  • FIG. 7a is a perspective view of Embodiment 5 of a phase change heat dissipation device of the present invention, in which the evaporating part and the condensing part are separately arranged and communicated by pipelines, the evaporating part has a hollow rectangular cavity, and the condensing part includes a plurality of condensing support plates;
  • Figure 7b is a cross-sectional view of the phase-change heat sink in Figure 7a;
  • Figure 8a is a perspective view of the sixth embodiment of the phase change heat dissipation device of the present invention, in which the evaporating part and the condensing part are separately arranged and communicated by pipelines, the evaporating part is a hollow rectangular cavity, the condensing part includes a plurality of condensation branch pipes, and the condensation branch pipe has multiple Cylindrical cavity
  • Figure 8b is a cross-sectional view of the phase change heat dissipation device in Figure 8a;
  • Figure 9a is a front view of a seventh embodiment of a phase change heat dissipation device of the present invention, in which a plurality of condensing support plates are connected;
  • Figure 9b is a cross-sectional view of the phase change heat dissipation device in Figure 9a, in which a plurality of condensing support plates communicate with each other through a condensing top plate;
  • Fig. 9c is a perspective view of the phase change device in Fig. 9a, in which the evaporation part is a curved structure, and the heat source is wrapped by the evaporation part of the phase change heat sink.
  • Embodiment 8 of a phase change heat sink of the present invention is a cross-sectional view of Embodiment 8 of a phase change heat sink of the present invention.
  • Fig. 10b is a perspective view of the phase change heat dissipation device in Fig. 10a.
  • phase change heat dissipation device of the present invention will be described in further detail below in conjunction with the accompanying drawings.
  • Heat transfer limit The maximum heat flux density of the phase change heat sink (including heat pipe) is related to the size, shape, phase change heat medium and working temperature. Commonly used heat pipes have capillary limit, carrying limit, boiling limit, sound speed limit, and viscosity The limit is the heat transfer limit, and the minimum limit value determines the heat transfer capacity of the heat pipe.
  • Thermal conductivity It is defined as taking two parallel planes with a distance of 1 meter and an area of 1 square meter perpendicular to the direction of heat conduction inside the object. If the temperature difference between the two planes is 1K, conduction from one plane to the other within 1 second heat on a predetermined plane thermal conductivity of the material that, in watts -1 ⁇ meter per Kelvin -1 (w ⁇ m -1 ⁇ K -1).
  • Thermal resistance It is defined as the ratio between the temperature difference between the two ends of the object and the power of the heat source when heat is transferred to the object, in units of Kelvin per watt (K/W) or Celsius per watt (°C/W).
  • the phase change heat dissipation device 10 of the present invention includes an evaporation part 11, a condensation part 12, and a phase change heat medium 20 arranged in the evaporation part 11 or the condensation part 12.
  • the evaporation part 11 and the condensation part 12 Together to form a three-dimensional heat exchange structure.
  • the working pressure inside the phase change heat dissipation device 10 is greater than 0.15 MPa and is in a positive pressure state, and the outer wall surface of the evaporation part is in direct contact with the heat source.
  • the evaporating part 11 and the condensing part 12 can be directly connected together (shown in Figures 1a-6), and the evaporating part 11 and the condensing part 12 can also be a split structure connected together by pipelines (as shown in Figure 7a-figure Shown in 8b).
  • the shape of the above-mentioned evaporation part 11 matches the shape of the heat source, and the evaporation cavity can be a flat, curved or polyhedral thin-walled cavity to increase the contact area between the heat source and the outer wall of the evaporation part, and the evaporation
  • the portion 11 and the heat source have at least one suitable contact surface, so that the two are in close contact, so that the temperature difference of the phase-change heat medium in direct contact between the heat source and the inner wall of the evaporation cavity is reduced (as shown in Figures 9a-10b).
  • the evaporation part of the phase change component of the present invention is compatible with the shape of the heat source.
  • the evaporation cavity is a planar thin-walled cavity structure;
  • the evaporation cavity is a curved surface Thin-walled cavity structure;
  • the heat source can contact the phase change heat dissipation device on multiple sides, the evaporation cavity is a polyhedral thin-walled cavity structure.
  • the purpose is to achieve the largest contact area between the heating source and the phase-change heat sink, thereby achieving the smallest temperature difference between the phase-change heat medium and the heat source inside the evaporation cavity.
  • the evaporation part of the phase change component is in close contact with the heat source.
  • the inside of the evaporation chamber is not in the negative or slightly positive pressure of the traditional phase change device, but in a positive pressure state.
  • the working pressure inside the evaporation chamber continues As the temperature rises, the contact surface between the evaporation cavity and the heating source is a thin-walled structure.
  • the phase change component can fully contact the heating source, the combination is closer, and the heat transfer effect is good.
  • the heat flow density of the heating source When it is large, the vaporization of the phase-change heat medium can realize the rapid diffusion of heat in the evaporation part of the phase-change component, and the overall temperature difference of the evaporation part is small.
  • the phase change heat dissipation device 10 of the present invention includes a phase change component.
  • the phase change component is a closed structure with a cavity inside.
  • the internal cavity of the phase change component is a fully connected structure, and the phase change heat medium 20 can circulate in the entire internal cavity of the phase change component.
  • the phase change assembly has an evaporation part 11 and a condensation part 12.
  • the evaporation part 11 has an evaporation cavity inside, and the condensation part 12 has a condensation cavity inside.
  • the evaporation cavity of the evaporation part 11 communicates with the condensation cavity of the condensation part 12, the evaporation cavity and the condensation cavity.
  • the condensing part 12 is connected with the condensing fin to form the internal cavity of the phase change component.
  • the phase-change heat medium 20 in the evaporation cavity absorbs the heat of the heat source 30 and then evaporates and evaporates to flow into the condensation cavity for cooling and liquefaction, and the condensation cavity radiates heat outward through the condensation fins. Therefore, the phase change heat dissipation device 10 can transfer the heat of the heat source 30 to the air or other gaseous cooling medium, so as to achieve the effect of heat dissipation and cooling of the heat source.
  • the evaporation part 11 of the above-mentioned phase change assembly is a flat plate-like body or a curved plate-like body with a cavity inside, the evaporation part 11 has a flat evaporation cavity or a curved evaporation cavity inside, and a flat cavity or a curved surface inside the evaporation part 11 The shaped cavity is communicated with the condensation cavity inside the condensation portion 12.
  • the condensation part 12 includes a plurality of condensation support plates with cavities inside, the inside of the condensation support plate is a flat condensation cavity, and the plurality of condensation support plates are connected to the evaporating part 11, the flat condensation cavity and the evaporation part inside the condensation support plate 11
  • the inner flat or curved evaporation chambers are connected.
  • the above-mentioned multiple condensation support plates are preferably arranged in parallel in a row, the condensation support plates are vertically connected to the evaporator 11, the outside of the condensation support plates are connected with condensation fins, and the heat in the condensation support plates is radiated to the outside through the condensation fins.
  • the condensing part 12 further includes a condensing top plate 121.
  • the condensing top plate 121 has a planar condensing cavity or a curved condensing cavity inside.
  • the condensing cavity inside the condensing top plate 121 communicates with the condensing cavity inside the condensing support plate.
  • the condensation part 12 has a comb shape as a whole.
  • the phase-change heat medium 20 absorbs heat in the evaporation cavity of the evaporator 11, and dissipates heat through the condensation support plate of the condensation portion 12 and the condensation top plate 121.
  • the phase change heat medium 20 absorbs heat in the evaporation cavity and the condensation support plate of the evaporator 11
  • the condensing cavity in the condensing top plate 121 circulates to dissipate heat from the heat source 30.
  • the condensation top plate 121 may be integrally formed with the condensation support plate.
  • the evaporating part 11 and the condensing part 12 of the phase change component are also preferably integrally formed.
  • the condensation branch plate in the condensation portion 12 adopts other forms, that is, the condensation portion 12 includes a plurality of cylindrical condensation branch pipes, and the condensation cavity corresponds to the inside of the condensation branch pipe. Cylindrical cavity set.
  • the condensing portion 12 may further include a plurality of condensing conical tubes, and the condensing cavity is a conical cavity correspondingly arranged inside the condensing conical tube.
  • the condensing support plate, condensing branch pipe or condensing cone can be selected according to the structural requirements.
  • the above-mentioned evaporation part 11 is in direct contact with the heat source 30, that is, the surface of the evaporation part 11 (the outer surface of the evaporation chamber) is in direct contact with the heat source 30, and the surface of the evaporation part 11 directly replaces the substrate of the existing heat sink to enhance the heat source 30 and the heat transfer efficiency of the evaporation part 11.
  • the evaporation part 11 is preferably a flat plate-shaped body with a cavity inside, one side of the evaporation part 11 has a contact heat absorption surface, the heat source 30 has a flat heat source surface, and the contact heat absorption surface of the evaporation part 11 is in contact with the heat source 30 Heat source surface contact setting.
  • the above-mentioned evaporation part can also be provided with a mounting frame to install the heat source and the phase change heat sink together.
  • the mounting frame can fixedly connect the heat source and the evaporating part to avoid plastic deformation of the evaporating part caused by an increase in the internal pressure of the evaporation chamber.
  • the area of the heat source surface of the heat source 30 is smaller than the contact area of the heat absorption surface of the phase change component evaporation part 11, and the internal phase change heat medium 20 can quickly transfer heat from the heat source 30 in two-dimensional directions through the phase change flow, ensuring The temperature in the evaporation chamber of the phase change component is uniform.
  • the vaporized phase-change heat medium 20 enters the condensing support plate and flows in a third direction, which is perpendicular to the evaporation portion 11 of the planar plate-shaped body, that is, perpendicular to the two-dimensional heat dissipation direction inside the evaporation portion 11.
  • phase-change heat medium 20 in the phase-change assembly absorbs the heat of the heat source 30 and then flows inside the evaporator 11
  • the evaporation cavity diffuses along a two-dimensional plane, and then the phase-change heat medium 20 vaporizes and flows into the condensation support plate of the condensation portion 12 perpendicular to the evaporation portion 11, and then flows into the condensation top plate 121, the condensation support plate and the condensation top plate 121
  • Condensing fins are connected to the outer surface of the, and the heat carried by the phase-change heat medium 20 in the condensing support plate and the condensing top plate 121 is diffused outward through the condensing fins, so as to obtain more favorable heat dissipation effect and performance.
  • the condensation cavity of the condensation portion 12 is not directly connected to the evaporation portion 11, and the condensation cavity of the condensation portion 12 is connected to the evaporation portion 11 through a pipeline to It is convenient for the evaporation part 11 and the condensation part 12 to be rationally arranged according to the internal system structure of the heat source 30.
  • Figures 7a and 7b show a condensation part with a condensation branch plate
  • Figures 8a and 8b show a condensation part with a condensation branch pipe.
  • the condensing part and the evaporating part are connected by pipelines, the condensing part and the evaporating part can be arranged flexibly respectively.
  • the condensing part 12 can be placed horizontally or vertically, and the structure and placement direction can be changed according to the needs of the system structure design where the heat source is located.
  • the heat of the heat source is directly transferred to the phase-change heat medium 20 through the thin wall of the evaporator 11, and the phase-change heat medium 20 absorbs heat and undergoes a phase change, so that there is generated between the evaporator 11 and the condenser 12 in the phase change heat sink 10
  • the pressure difference drives the phase-change heat medium 20 to flow to the condensing section 12. After the phase-change heat medium is condensed in the condensing section 12, it returns to the evaporation section 11 by gravity or capillary force to form a circulation.
  • the shape of the evaporation portion 11 matches the shape of the heat source, and the evaporation cavity can be a flat, curved, or polyhedral thin-walled cavity.
  • the evaporation part 11 and the heat source have at least one contact surface suitable for connection, so that the two are in close contact, so that the heat source and the inner wall of the evaporation chamber directly contact the phase change The temperature difference of the heat exchange medium is reduced.
  • the evaporation part 11 shown in Figs. 9a, 9b, and 9c is a cylindrical tank, and the evaporation part shown in Figs. 10a, 10b is a square cylindrical tank.
  • the heat source 30 can be directly installed in the evaporation part 11 of the phase change component.
  • the heat source 30 and the evaporation part 11 have multiple contact heat exchange surfaces.
  • the evaporating part 11 and the condensing part 12 of the phase change assembly are in communication, the evaporating part 11 at one end of the phase change assembly is directly connected to the condensing part 12 at the other end of the phase change assembly, and the phase change heat medium 20 inside the phase change assembly is evaporating And during the condensation process, it can realize the horizontal and vertical three-dimensional diffusion of heat from one end of the phase change component to the other end of the phase change component, improving the internal cavity of the entire phase change component, especially the temperature uniformity of the condensation cavity in the condensation part 12 .
  • a plurality of fins, bumps or fins are provided inside the evaporation portion 11 and/or the condensation portion 12 to improve the pressure bearing capacity.
  • phase change components and cooling fins mentioned above can be made of copper or aluminum materials.
  • the phase change components and cooling fins are both made of copper or aluminum materials.
  • the phase change components and cooling fins are preferably connected by brazing to reduce the phase.
  • the contact thermal resistance between the component and the cooling fin is changed, thereby reducing the temperature difference between the cooling fin and the heat source 30.
  • the gap can be filled by low-temperature soldering to avoid gaps.
  • the cooling fins and the outer wall of the condensing support plate are welded together to increase the pressure bearing capacity of the condensing support plate.
  • the internal working pressure of the condensing part 12 and the evaporating part 11 will increase. If it increases to more than 1MPa, the cooling
  • the interweaving structure formed by welding the fins and the condensing support plate can ensure that the condensing part 12 can withstand the strength required for work, and the condensing part 12 will not be deformed, so that the radiator can work normally.
  • phase change heat dissipation device of the present invention can be applied to power electronic devices such as chips, resistors, capacitors, inductors, storage media, light sources, and battery packs for heat dissipation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

本发明公开了一种相变散热装置,包括内部设置有相变换热介质的相变组件,其中,所述相变组件包括蒸发部和冷凝部,蒸发部的内部具有蒸发腔,冷凝部的内部具有冷凝腔,所述蒸发腔与所述冷凝腔连通,发热源与蒸发腔直接接触,所述蒸发腔中的相变换热介质可吸收发热源的热量并向所述冷凝腔移动,冷凝腔向外散发热量,以对发热源进行冷却。本发明的相变散热装置中,相变组件与发热源直接接触,无需增加过渡的导热板,蒸发部与发热源的外形相适应,相变组件能够充分与发热源接触,传热面积大,发热源和相变换热介质的温差最小。

Description

相变散热装置 技术领域
本发明属于相变散热装置技术领域,尤其涉及一种高热流密度的相变散热装置。
背景技术
随着互联网和物联网等软件计算的发展,要求电脑、笔记本和服务器等的信息处理速度越来越快,信息存贮量越来越大。CPU和内存的功率损耗越来越大,要求散热装置的热流密度越来越高。此外,随着CPU和内存的功率密度越来越大,散热装置的热流密度也越来越高,传统的热管受到热管内径尺寸、相变换热介质等限制,传热能力无法满足CPU和内存技术发展的要求。
传统铜水热管散热装置和普通翅片散热装置无法满足散热要求,只能采用更高热流密度的3D相变散热装置或液冷散热装置。液冷散热装置需要液冷装置和外置的热交换器等外围设备,成本高且维护复杂。CPU的直接制造商都在寻求散热技术的突破,部分开始尝试液冷散热装置,但考虑到液冷散热装置需要液冷源、分液器、快换接头等复杂的内部配套设备,以及外部复杂的外围换热设备,以及液冷泄漏风险对运行设备安全性的影响,迟迟未被推广。
现有的散热装置,基板中设置多根弯曲的热管,这些热管的形状各异。现有的散热装置主要存在以下的问题和缺陷。
首先,热管的传热极限的限制,对于现有45mm×69mm的CPU,最多能放置3-4根直径φ6的热管,热管的工艺已经非常精良和成熟,即使这样热管的毛细极限也只能达到单支φ6热管单支毛细极限40W。因此,现有热管散热装置无法满足热流密度大于600J/(m 2·s)的CPU的散热的要求。与此同时,散热风量的增加对散热装置的热阻提升非常有限,随着风量的增加,铝翅片的底部和顶部温差会增加,实际散热装置的有效面积会减少,散热装置的换热热阻降低非常有限。因此传统的热管散热装置热阻很低于0.016K/W,在环境温度的30℃条件下,CPU的表面温度达到62℃以上。
其次,热管通常为铜管,利用去离子水相变实现热管管内的均温。受到热管的布局限制,既无法完全实现CPU接触的基板面的均温,也无法实现和冷却空气直接接触的铝瓷片的均温。热量最终是通过铝翅片换热给冷却空气,传统热管对散热装置的性能提升有限。
最后,现有热管的外壳材料多为紫铜,基板材料多为铝合金,采用低温锡钎焊或胶结填充热管和基板成形之后的缝隙。低温锡铅焊的缺点包括:在焊前必须对散热装置进行整体的镀镍或镀铜等表面处理,焊接和表面处理导致成本高,且对环境存在污染;锡焊很难保证热管和铝合金基板平面填充完好,不出现局部空隙,而因热管设置在功率器件下方,热流密度大,空隙会导致CPU出现局部温升高,而导致器件损耗。
发明内容
为解决上述现有技术中的问题,本发明提供了一种相变散热装置,以提高热量传递效率,促进热量快速扩散。
为实现上述目的,本发明的相变散热装置的具体技术方案如下:
一种相变散热装置,包括内部设置有相变换热介质的相变组件,其中,所述相变组件包括蒸发部和冷凝部,蒸发部的内部具有蒸发腔,冷凝部的内部具有冷凝腔,所述蒸发腔与所述冷凝腔连通,发热源与蒸发腔直接接触,所述蒸发腔中的相变换热介质可吸收发热源的热量并向所述冷凝腔移动,冷凝腔向外散发热量,以对发热源进行冷却。
进一步,所述蒸发腔为平面状、曲面状或多面体状的腔体,与发热源的形状相适配,以增大发热源与蒸发腔的接触面积。
进一步,所述蒸发腔为薄壁腔体,蒸发腔内部的工作压力为正压,蒸发腔与发热源的接触面可发生弹性形变,以提高发热源与蒸发腔的接触效果。
进一步,所述冷凝腔与蒸发腔直接相连或通过连接管路与蒸发腔相连。
进一步,所述冷凝部包括多个冷凝支板,所述冷凝腔为冷凝支板内部对应设置的平面状空腔;或者所述冷凝部包括多个冷凝支管,所述冷凝腔为冷凝支管内部对应设置的圆柱形空腔;或者所述冷凝部包括多个冷凝锥形管, 所述冷凝腔为冷凝锥形管内部对应设置的圆锥形空腔。
进一步,所述蒸发部和/或所述冷凝部内部设置有多个肋片、凸点或翅片,以提高承压能力。
进一步,蒸发部设置有安装架,发热源通过安装架与蒸发部连接。
进一步,所述冷凝部还可包括冷凝顶板,所述冷凝顶板内部具有平面状冷凝腔或曲面状冷凝腔,冷凝顶板内部的所述冷凝腔与冷凝支板、冷凝支管或冷凝锥形管内部的冷凝腔相连通。
进一步,还包括冷凝翅片,冷凝翅片与冷凝部相连。
进一步,冷凝翅片通过钎焊方式连接在冷凝支板的外表面,冷凝腔通过冷凝翅片向外散发热量以对发热源进行冷却。
本发明的相变散热装置具有以下优点:
1)相变组件与发热源直接接触,无需增加过渡的导热板,发热源和相变组件的温差小。
2)相变组件的蒸发部与发热源的外形相适应:当热源为平面结构时,蒸发腔为平面状薄壁空腔结构;当热源为曲面状结构时,蒸发腔为曲面薄壁空腔结构;当发热源可以与相变散热装置多面接触时,蒸发腔为多面体薄壁空腔结构。其目的实现发热源和相变散热装置接触面积最大,从而实现蒸发腔内部的相变换热介质和热源温差最小。
3)相变组件的蒸发部与发热源的接触,蒸发腔内部非传统相变装置的负压或微正压,而是正压状态。随着发热源的热流密度增加,蒸发腔内部的工作压力持续升高,蒸发腔和发热源接触面为薄壁结构,随着蒸发腔内部的压力升高,相变组件能够充分与发热源接触,结合更紧密,传热效果好,当发热源的热流密度大时,相变换热介质的汽化可以实现相变组件蒸发部的热量快速扩散,蒸发部整体温差小。
4)相变组件为三维散热结构,相变换热介质汽化后,可以快速扩散到相变组件的任何低温部位(低温部位相变换热介质冷凝,出现低压),使得相变组件的温度均匀,传热效率高且传热均匀。
此外,本发明的相变散热装置的制造不需要经过镀铜和镀镍等表面处理 工艺,散热装置的相变结构和冷却翅片直接采用高温钎焊焊接成一体,发热源(如功率器件CPU)和相变散热装置接触再通过低温锡焊填补缝隙,避免产生间隙,使得本发明的相变散热装置的传热极限显著提高(远大于200W)。
本发明的相变散热装置可应用于芯片、电阻、电容、电感、贮存介质、光源、电池包等电力电子器件散热。
附图说明
图1a为本发明相变散热装置实施例一的透视图;
图1b为图1a中相变散热装置的剖面图;
图2为本发明相变散热装置实施例二的透视图;
图3a为本发明相变散热装置实施例三的透视图;
图3b为图3a中相变散热装置的剖面图;
图4a为本发明相变散热装置实施例四的透视图;
图4b为图4a中相变散热装置的剖面图;
图5-6示出了本发明相变换热介质在相变组件中流动的示意图;
图7a为本发明相变散热装置实施例五的透视图,其中蒸发部和冷凝部分离设置并通过管路连通,蒸发部具有空心矩形腔,冷凝部包括多个冷凝支板;
图7b为图7a中相变散热装置的剖面图;
图8a为本发明相变散热装置实施例六的透视图,其中蒸发部和冷凝部分离设置并通过管路连通,蒸发部为空心矩形腔,冷凝部包括多个冷凝支管,冷凝支管具有多个圆柱形空腔;
图8b为图8a中相变散热装置的剖面图;
图9a为本发明相变散热装置实施例七的正视图,其中多个冷凝支板连通;
图9b为图9a中相变散热装置的剖面图,其中多个冷凝支板通过冷凝顶板相互连通;
图9c为图9a中相变装置的透视图,其中蒸发部为曲面结构,发热源被相变散热装置蒸发部包裹。
图10a为本发明相变散热装置实施例八的剖面图;
图10b为图10a中相变散热装置的透视图。
具体实施方式
为了更好地了解本发明的目的、结构及功能,下面结合附图,对本发明的相变散热装置做进一步详细的描述。
在本发明中,相关的术语定义如下:
热流密度:单位时间内通过单位面积传递的热量称为热流密度,q=Q/(S*t)——Q为热量,t为时间,S为截面面积,热流密度的单位:J/(m 2·s)。
传热极限:相变散热装置(包含热管)最大传递的热流密度与尺寸、形状、相变换热介质以及工作温度等有关,常用的热管存在毛细极限、携带极限、沸腾极限、声速极限、黏度极限等传热极限,且由最小的极限值决定热管的传热能力。
热导率:定义为在物体内部垂直于导热方向取两个相距1米,面积为1平方米的平行平面,若两个平面的温度相差1K,则在1秒内从一个平面传导至另一个平面的热量就规定为该物质的热导率,单位为瓦特·米 -1·开 -1(W·m -1·K -1)。
热阻:定义为当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值,单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。
如图1a-10b所示,本发明的相变散热装置10包括蒸发部11、冷凝部12和设置在蒸发部11或冷凝部12内的相变换热介质20,蒸发部11、冷凝部12共同形成三维换热结构。相变散热装置10处于工作状态时,相变散热装置10内部的工作压力大于0.15MPa,处于正压状态,蒸发部的外壁面与发热源直接接触。
上述蒸发部11和冷凝部12可以直接连接在一起(图1a-图6所示), 上述蒸发部11和冷凝部12也可以为通过管路连接在一起的分体式结构(如图7a-图8b所示)。此外,上述蒸发部11的形状和发热源的形状相适配,蒸发腔可以是平面状、曲面状或多面体状的薄壁腔体,以增大发热源和蒸发部外壁面的接触面积,蒸发部11与发热源具有适宜的至少一个接触面,使得两者接触紧密,从而发热源和蒸发腔内壁直接接触的相变换热介质温差减小(如图9a-10b所示)。
由此,本发明中相变组件的蒸发部与发热源的外形相适应,当热源为平面结构时,蒸发腔为平面状薄壁空腔结构;当热源为曲面状结构时,蒸发腔为曲面薄壁空腔结构;当发热源可以与相变散热装置多面接触时,蒸发腔为多面体薄壁空腔结构。其目的为实现发热源和相变散热装置的接触面积最大,从而实现蒸发腔内部的相变换热介质和热源温差最小。
相变组件的蒸发部与发热源紧密接触,蒸发腔内部非传统相变装置的负压或微正压,而是正压状态,随着发热源的热流密度增加,蒸发腔内部的工作压力持续升高,蒸发腔和发热源接触面为薄壁结构,随着蒸发腔内部的压力升高,相变组件能够充分与发热源接触,结合更紧密,传热效果好,当发热源的热流密度大时,相变换热介质的汽化可以实现相变组件蒸发部的热量快速扩散,蒸发部整体温差小。
如图1a-1b所示,为本发明的第一实施例,本发明的相变散热装置10包括相变组件,相变组件为内部具有空腔的封闭结构,相变组件内部装有相变换热介质20,相变组件的内部空腔为全连通结构,相变换热介质20可在相变组件的整个内部空腔中循环流动。
相变组件具有蒸发部11和冷凝部12,蒸发部11的内部具有蒸发腔,冷凝部12的内部具有冷凝腔,蒸发部11的蒸发腔与冷凝部12的冷凝腔连通,蒸发腔和冷凝腔组成相变组件的内部空腔,冷凝部12与冷凝翅片相连。蒸发腔中的相变换热介质20吸收发热源30的热量后汽化蒸发流动到冷凝腔中冷却液化,冷凝腔通过冷凝翅片向外散发热量。由此,相变散热装置10可将发热源30的热量传递到空气或其它气态的冷却介质中,以达到对发热源进行散热冷却的效果。
上述相变组件的蒸发部11为内部具有空腔的平面板状体或曲面板状 体,蒸发部11内部具有平面状蒸发腔或曲面状蒸发腔,蒸发部11内部的平面状空腔或曲面状空腔与冷凝部12内部的冷凝腔相连通。
冷凝部12包括多个内部具有空腔的冷凝支板,冷凝支板的内部为平面状冷凝腔,多个冷凝支板连接在蒸发部11上,冷凝支板内部的平面状冷凝腔与蒸发部11内部的平面状蒸发腔或曲面状蒸发腔相连通。上述多个冷凝支板优选成排平行设置,冷凝支板与蒸发部11垂直连接,冷凝支板的外侧连接有冷凝翅片,冷凝支板中的热量通过冷凝翅片向外界散发。
进一步,如图2所示,冷凝部12还包括冷凝顶板121,冷凝顶板121内部具有平面状冷凝腔或曲面状冷凝腔,冷凝顶板121内部的冷凝腔与冷凝支板内部的冷凝腔相连通,冷凝部12整体呈梳子形。相变换热介质20在蒸发部11的蒸发腔中吸热,通过冷凝部12的冷凝支板和冷凝顶板121进行散热,相变换热介质20在蒸发部11的蒸发腔与冷凝支板和冷凝顶板121中的冷凝腔进行循环流动,以对发热源30进行散热。冷凝顶板121可与冷凝支板一体成型。相变组件的蒸发部11和冷凝部12也优选为一体成型结构。
如图3a-3b所示,本实施例中,冷凝部12中的冷凝支板采用其他形式,也即所述冷凝部12包括多个圆柱形的冷凝支管,所述冷凝腔为冷凝支管内部对应设置的圆柱形空腔。如图4a-4b所示,所述冷凝部12还可以包括多个冷凝锥形管,所述冷凝腔为冷凝锥形管内部对应设置的圆锥形空腔。实际使用时,可根据结构需要选用冷凝支板、冷凝支管或者冷凝锥形管。
上述蒸发部11与发热源30直接接触,也即蒸发部11的表面(蒸发腔的外表面)与发热源30直接接触,蒸发部11的表面直接代替现有散热装置的基板,以提升发热源30与蒸发部11的热传递效率。蒸发部11优选为内部具有空腔的平面板状体,蒸发部11的一侧具有接触吸热面,发热源30具有平面状的热源面,蒸发部11的接触吸热面与发热源30的热源面接触设置。
上述蒸发部还可设置安装架,以将发热源与相变散热装置安装在一起,安装架可将发热源和蒸发部固定连接,避免蒸发腔内部压力增加而导致蒸发部的塑性形变。
上述发热源30的热源面的面积小于相变组件蒸发部11的接触吸热面的面积,内部相变换热介质20通过相变流动可将热量从发热源30沿二维方向 快速传递,确保相变组件蒸发腔中的温度均匀。汽化的相变换热介质20进入冷凝支板中沿第三方向流动,该第三方向垂直于平面板状体的蒸发部11,也即与蒸发部11内部的二维散热方向垂直。
如图5-6所示,示出了相变换热介质20在相变组件中的循环流动情况,蒸发部11的相变换热介质20吸收发热源30的热量后在蒸发部11的内部蒸发腔中沿二维平面扩散,接着相变换热介质20汽化流动到垂直于蒸发部11的冷凝部12的冷凝支板中,并接着流动进入冷凝顶板121中,冷凝支板和冷凝顶板121的外表连接有冷凝翅片,冷凝支板和冷凝顶板121中相变换热介质20携带的热量通过冷凝翅片向外扩散,从而获得更有利的散热效果和性能。
如图7a、7b、8a、8b所示,在这些实施例中,所述冷凝部12的冷凝腔不直接与蒸发部11相连,冷凝部12的冷凝腔通过管路与蒸发部11相连,以方便蒸发部11和冷凝部12根据发热源30的内部系统结构进行合理布置。图7a、7b示出了具有冷凝支板的冷凝部,图8a、8b示出了具有冷凝支管的冷凝部。
在图7a-8b所示的实施例中,由于冷凝部与蒸发部通过管路连接,从而可对冷凝部和蒸发部分别进行灵活布置。例如冷凝部12可以水平放置或垂直放置,根据发热源所在系统结构设计的需要,变换结构和放置方向。发热源的热量通过蒸发部11的薄壁直接传递给相变换热介质20,相变换热介质20吸热发生相变使得相变散热装置10内的蒸发部11和冷凝部12之间产生压力差,从而驱动相变换热介质20向冷凝部12流动,相变换热介质在冷凝部12冷凝后,通过重力或毛细力返回蒸发部11,形成循环。
如图9a、9b、9c、10a、10b所示,在这些实施例中,蒸发部11的形状和发热源的形状相适配,蒸发腔可以是平面状、曲面状或多面体状的薄壁腔体,以增大发热源和蒸发部外壁面的接触面积,蒸发部11与发热源具有适宜配合连接的至少一个接触面,使得两者接触紧密,从而发热源和蒸发腔内壁直接接触的相变换热介质温差减小。
图9a、9b、9c所示的蒸发部11呈圆柱形槽体,图10a、10b所示的蒸发部呈方柱形槽体,发热源30可直接安装在相变部件的蒸发部11内,发热 源30与蒸发部11具有多个接触换热面。
由此,相变组件的蒸发部11和冷凝部12连通,相变组件一端的蒸发部11与相变组件另一端的冷凝部12直接连通,相变组件内部的相变换热介质20在蒸发和冷凝过程中,可实现热量从相变组件一端向相变组件另一端的水平向、竖向三维立体扩散,提升整个相变组件内部空腔,尤其是冷凝部12中冷凝腔的温度均匀性。
进一步,上述蒸发部11和/或所述冷凝部12内部设置有多个肋片、凸点或翅片以提高承压能力。
上述相变组件和冷却翅片可由铜或铝材料制成,例如相变组件和冷却翅片均由铜或者铝材料制成,相变组件和冷却翅片优选采用钎焊方式连接,以降低相变组件和冷却翅片的接触热阻,从而减少冷却翅片和发热源30之间的温差。发热源30(如功率器件CPU)和相变散热装置10(如蒸发部11)接触连接设置后可通过低温锡焊填补缝隙,避免产生间隙。
冷却翅片和冷凝支板的外壁焊接在一起,增加了冷凝支板的承压能力,在散热器工作时,冷凝部12和蒸发部11的内部工作压力会增加,如增加到1MPa以上,冷却翅片和冷凝支板焊接形成的交织结构能保证冷凝部12承受工作所需的强度,冷凝部12不出现变形,保证散热器正常工作。
本发明的相变散热装置可应用到芯片、电阻、电容、电感、贮存介质、光源、电池包等电力电子器件中进行散热。
可以理解,本发明是通过一些实施例进行描述的,本领域技术人员知悉的,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明所保护的范围内。

Claims (10)

  1. 一种相变散热装置,包括内部设置有相变换热介质的相变组件,其特征在于,所述相变组件包括蒸发部和冷凝部,蒸发部的内部具有蒸发腔,冷凝部的内部具有冷凝腔,所述蒸发腔与所述冷凝腔连通,发热源与蒸发腔直接接触,所述蒸发腔中的相变换热介质可吸收发热源的热量并向所述冷凝腔移动,冷凝腔向外散发热量,以对发热源进行冷却。
  2. 根据权利要求1所述的相变散热装置,其特征在于,所述蒸发腔为平面状、曲面状或多面体状的腔体,与发热源的形状相适配,以增大发热源与蒸发腔的接触面积。
  3. 根据权利要求1所述的相变散热装置,其特征在于,所述蒸发腔为薄壁腔体,蒸发腔内部的工作压力为正压,蒸发腔与发热源的接触面可发生弹性形变,以提高发热源与蒸发腔的接触效果。
  4. 根据权利要求1所述的相变散热装置,其特征在于,所述冷凝腔与蒸发腔直接相连或通过连接管路与蒸发腔相连。
  5. 根据权利要求1-4中任一项所述的相变散热装置,其特征在于,所述冷凝部包括多个冷凝支板,所述冷凝腔为冷凝支板内部对应设置的平面状空腔;或者所述冷凝部包括多个冷凝支管,所述冷凝腔为冷凝支管内部对应设置的圆柱形空腔;或者所述冷凝部包括多个冷凝锥形管,所述冷凝腔为冷凝锥形管内部对应设置的圆锥形空腔。
  6. 根据权利要求5所述的相变散热装置,其特征在于,所述蒸发部和/或所述冷凝部内部设置有多个肋片、凸点或翅片,以提高承压能力。
  7. 根据权利要求5所述的相变散热装置,其特征在于,蒸发部设置有安装架,发热源通过安装架与蒸发部连接。
  8. 根据权利要求5所述的相变散热装置,其特征在于,所述冷凝部还可包括冷凝顶板,所述冷凝顶板内部具有平面状冷凝腔或曲面状冷凝腔,冷凝顶板内部的所述冷凝腔与冷凝支板、冷凝支管或冷凝锥形管内部的冷凝腔相连通。
  9. 根据权利要求5所述的相变散热装置,其特征在于,还包括冷凝翅 片,冷凝翅片与冷凝部相连。
  10. 根据权利要求9所述的相变散热装置,其特征在于,冷凝翅片通过钎焊方式连接在冷凝支板的外表面,冷凝腔通过冷凝翅片向外散发热量以对发热源进行冷却。
PCT/CN2019/125968 2019-01-29 2019-12-17 相变散热装置 WO2020155899A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021544782A JP7413387B2 (ja) 2019-01-29 2019-12-17 相転移放熱装置
EP19913347.1A EP3907455B1 (en) 2019-01-29 2019-12-17 Phase-change heat dissipation device
US17/426,402 US20220107137A1 (en) 2019-01-29 2019-12-17 Phase-change heat dissipation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910086904.3A CN109612315A (zh) 2019-01-29 2019-01-29 相变散热装置
CN201910086904.3 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020155899A1 true WO2020155899A1 (zh) 2020-08-06

Family

ID=66019117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125968 WO2020155899A1 (zh) 2019-01-29 2019-12-17 相变散热装置

Country Status (6)

Country Link
US (1) US20220107137A1 (zh)
EP (1) EP3907455B1 (zh)
JP (1) JP7413387B2 (zh)
CN (1) CN109612315A (zh)
TW (2) TWM597382U (zh)
WO (1) WO2020155899A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109612315A (zh) * 2019-01-29 2019-04-12 株洲智热技术有限公司 相变散热装置
CN109612314A (zh) * 2019-01-29 2019-04-12 株洲智热技术有限公司 相变散热装置
CN110473850A (zh) * 2019-09-10 2019-11-19 南方科技大学 一种散热结构和散热系统
CN110517997A (zh) * 2019-09-23 2019-11-29 常州常发制冷科技有限公司 电子元器件冷却装置
CN113038787B (zh) * 2020-12-22 2022-10-18 中科可控信息产业有限公司 相变散热结构及散热装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564322A (zh) * 2004-04-07 2005-01-12 李建民 曲面热管散热器及其应用方法
CN2720631Y (zh) * 2003-11-25 2005-08-24 陈德荣 一种翅片热管散热器
CN1869574A (zh) * 2006-06-23 2006-11-29 石桂菊 散热芯及散热器
US20070025085A1 (en) * 2005-07-29 2007-02-01 Hon Hai Precision Industry Co., Ltd. Heat sink
CN102506600A (zh) * 2011-09-20 2012-06-20 华北电力大学 冷凝端扩展型一体化平板热管
CN202485512U (zh) * 2012-03-22 2012-10-10 中国科学院工程热物理研究所 一种槽道式蒸汽腔型热管散热器
CN102792119A (zh) * 2010-03-29 2012-11-21 富士通株式会社 环型热管
CN202799543U (zh) * 2012-09-17 2013-03-13 夏侯南希 一种阵列冷端平面热管
CN206131833U (zh) * 2016-11-01 2017-04-26 东莞市德铫实业有限公司 一种新型热管散热器
CN107782189A (zh) * 2017-09-27 2018-03-09 北京空间飞行器总体设计部 耐正压、大功率平板蒸发器及其加工方法以及基于该蒸发器的平板环路热管
CN109612314A (zh) * 2019-01-29 2019-04-12 株洲智热技术有限公司 相变散热装置
CN109612315A (zh) * 2019-01-29 2019-04-12 株洲智热技术有限公司 相变散热装置
CN209745070U (zh) * 2019-01-29 2019-12-06 株洲智热技术有限公司 相变散热装置
CN209877718U (zh) * 2019-01-29 2019-12-31 株洲智热技术有限公司 相变散热装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417457A (en) * 1987-07-10 1989-01-20 Fujitsu Ltd Cooling fin
US6005772A (en) * 1997-05-20 1999-12-21 Denso Corporation Cooling apparatus for high-temperature medium by boiling and condensing refrigerant
SG64996A1 (en) * 1997-07-08 1999-05-25 Dso National Laborataries A heat sink
US6237223B1 (en) * 1999-05-06 2001-05-29 Chip Coolers, Inc. Method of forming a phase change heat sink
TW452117U (en) * 1999-11-24 2001-08-21 Ke Yau Lin Soft, expandable and retractable film-type heating tube
JP3918502B2 (ja) 2001-10-25 2007-05-23 株式会社デンソー 沸騰冷却装置
DE10333877A1 (de) * 2003-07-25 2005-02-24 Sdk-Technik Gmbh Kühlvorrichtung, insbesondere zur Kühlung von Bauelementen der Leistungselektronik mittels eines Wärmeübertragungskreislaufes
TW200821528A (en) * 2006-11-08 2008-05-16 Jun-Guang Luo Phase-transformation heat dissipation device with heat dissipation chamber
CN101471538A (zh) * 2007-12-29 2009-07-01 北京中视中科光电技术有限公司 相变散热装置
CN203934263U (zh) 2014-07-04 2014-11-05 讯凯国际股份有限公司 具有毛细构件的散热装置
CN104713395B (zh) * 2015-02-11 2017-01-04 上海卫星装备研究所 高耐压性平板热管及其加工方法
TWI582342B (zh) * 2015-06-05 2017-05-11 錦鑫光電股份有限公司 相變化散熱裝置及燈具
US20170314870A1 (en) * 2016-04-30 2017-11-02 Taiwan Microloops Corp. Heat dissipating structure and water-cooling heat dissipating apparatus including the structure
CN206772105U (zh) * 2017-01-23 2017-12-19 中车大连机车研究所有限公司 一种复合吸液芯式异形热管散热器
CN107917554A (zh) * 2017-11-28 2018-04-17 中国科学院理化技术研究所 平板热管扩展式冷凝装置
CN108110370B (zh) * 2017-12-13 2020-08-11 哈尔滨理工大学 一种动力电池箱冷却结构及其控制方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2720631Y (zh) * 2003-11-25 2005-08-24 陈德荣 一种翅片热管散热器
CN1564322A (zh) * 2004-04-07 2005-01-12 李建民 曲面热管散热器及其应用方法
US20070025085A1 (en) * 2005-07-29 2007-02-01 Hon Hai Precision Industry Co., Ltd. Heat sink
CN1869574A (zh) * 2006-06-23 2006-11-29 石桂菊 散热芯及散热器
CN102792119A (zh) * 2010-03-29 2012-11-21 富士通株式会社 环型热管
CN102506600A (zh) * 2011-09-20 2012-06-20 华北电力大学 冷凝端扩展型一体化平板热管
CN202485512U (zh) * 2012-03-22 2012-10-10 中国科学院工程热物理研究所 一种槽道式蒸汽腔型热管散热器
CN202799543U (zh) * 2012-09-17 2013-03-13 夏侯南希 一种阵列冷端平面热管
CN206131833U (zh) * 2016-11-01 2017-04-26 东莞市德铫实业有限公司 一种新型热管散热器
CN107782189A (zh) * 2017-09-27 2018-03-09 北京空间飞行器总体设计部 耐正压、大功率平板蒸发器及其加工方法以及基于该蒸发器的平板环路热管
CN109612314A (zh) * 2019-01-29 2019-04-12 株洲智热技术有限公司 相变散热装置
CN109612315A (zh) * 2019-01-29 2019-04-12 株洲智热技术有限公司 相变散热装置
CN209745070U (zh) * 2019-01-29 2019-12-06 株洲智热技术有限公司 相变散热装置
CN209877718U (zh) * 2019-01-29 2019-12-31 株洲智热技术有限公司 相变散热装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3907455A4 *

Also Published As

Publication number Publication date
US20220107137A1 (en) 2022-04-07
EP3907455A1 (en) 2021-11-10
TWI801696B (zh) 2023-05-11
EP3907455C0 (en) 2023-12-06
JP7413387B2 (ja) 2024-01-15
EP3907455A4 (en) 2022-02-16
TWM597382U (zh) 2020-06-21
TW202028675A (zh) 2020-08-01
CN109612315A (zh) 2019-04-12
EP3907455B1 (en) 2023-12-06
JP2022518854A (ja) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2020155899A1 (zh) 相变散热装置
TWI818134B (zh) 相變散熱裝置
US7262966B2 (en) Heat sink modules for light and thin electronic equipment
WO2017148050A1 (zh) 用于数据中心机柜的冷却装置、机柜和冷却系统
CN209877718U (zh) 相变散热装置
CN207881290U (zh) 平板热管扩展式冷凝装置
CN209745070U (zh) 相变散热装置
CN112736046B (zh) 一种集成芯片散热装置及其散热方法
CN210014476U (zh) 一种散热器、空调室外机和空调器
CN210014478U (zh) 一种散热器、空调室外机和空调器
WO2020135311A1 (zh) 散热装置及方法
CN210014477U (zh) 一种散热器、空调室外机和空调器
CN210014475U (zh) 一种散热器、空调室外机和空调器
CN106993393B (zh) 一种散热设备及终端
CN108419416A (zh) 一种igbt用的高散热量热管散热器
CN104850197A (zh) 带有复合底板的重力热管式芯片散热器
WO2024001278A1 (zh) 散热装置、散热系统、电子设备及散热装置的制备方法
CN217721817U (zh) 一种散热装置
CN215117437U (zh) 一种散热器及其热管散热结构
JP2550162B2 (ja) 沸騰冷却装置
CN220818677U (zh) 一种散热器
CN219761758U (zh) 两相流lts散热器
CN211456983U (zh) 电力电子功率单元
CN210320526U (zh) 一种空调
CN207704390U (zh) 一种电脑主机的散热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019913347

Country of ref document: EP

Effective date: 20210830

ENP Entry into the national phase

Ref document number: 2019913347

Country of ref document: EP

Effective date: 20210802