WO2020155630A1 - 一种力控精密加工设备 - Google Patents

一种力控精密加工设备 Download PDF

Info

Publication number
WO2020155630A1
WO2020155630A1 PCT/CN2019/105241 CN2019105241W WO2020155630A1 WO 2020155630 A1 WO2020155630 A1 WO 2020155630A1 CN 2019105241 W CN2019105241 W CN 2019105241W WO 2020155630 A1 WO2020155630 A1 WO 2020155630A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
machining
manipulator
torque sensor
control system
Prior art date
Application number
PCT/CN2019/105241
Other languages
English (en)
French (fr)
Inventor
李俊
谢银辉
Original Assignee
泉州装备制造研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泉州装备制造研究所 filed Critical 泉州装备制造研究所
Publication of WO2020155630A1 publication Critical patent/WO2020155630A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool

Definitions

  • the invention relates to a mechanical processing equipment, in particular to a force-controlled precision processing equipment.
  • the Chinese invention patent application with publication number CN105184007A discloses a method for predicting the surface error of milling machining based on a dynamic workpiece-clamping system, which improves the machining accuracy of parts by predicting, but it is only suitable for parts with weak rigidity Processing, the scope of application is relatively narrow.
  • the purpose of the present invention is to provide a force-controlled precision processing equipment with relatively high production efficiency, relatively good product consistency and relatively wide application range.
  • a force-controlled precision processing equipment including a control system, a manipulator, a processing assembly installed at the end of the manipulator, a workbench beside the manipulator, and a clamping device set on the workbench, the processing assembly including A torque sensor installed on the end of the manipulator, a fixed seat directly or indirectly fixedly connected to the detection end of the torque sensor, an electric spindle fixedly connected to the fixed seat, and an output fixedly connected to the electric spindle
  • the rotating shaft on the end and the conductive slip ring sleeved on the rotating shaft, the end of the rotating shaft away from the electric spindle is provided with a flexible bag, the flexible bag is filled with electrorheological fluid, and the conductive slip ring A positive connection and a negative connection are connected to the ring.
  • One ends of the positive connection and the negative connection are respectively located on both sides of the inner cavity of the flexible bag and are immersed in the electrorheological fluid.
  • the manipulator, the The clamping device, the torque sensor and the electric spindle are respectively connected in communication with the control system.
  • the processing assembly further comprises a mounting flange and a connecting flange, the torque sensor is fixedly connected to the end of the manipulator by a fixed connection on the mounting flange, and the fixing seat is fixedly connected to the end of the manipulator. Connected to the connecting flange and indirectly fixedly connected to the detection end of the torque sensor.
  • the manipulator is a multi-joint tandem manipulator
  • the torque sensor is a six-dimensional force sensor
  • the flexible bag is a flexible rubber bag.
  • the processing assembly further includes a frequency converter and a voltage regulator respectively connected in communication with the control system, and the electric spindle realizes an indirect communication connection with the control system by connecting with the frequency converter ,
  • the voltage regulator is electrically connected with the conductive slip ring.
  • the clamping device includes a clamp for clamping a workpiece and a rotating motor for driving the clamp to rotate.
  • the present invention has the following beneficial effects:
  • the torque sensor detects the processing force between the processing component and the workpiece, and the control system uses force/position control methods to process the actual processing according to the processing force.
  • the force is converted into a fine adjustment of the position of the end of the manipulator, so that the manipulator can make feedback adjustments to realize real-time control of the machining force between the machining component and the workpiece, so that the machining force during the machining process remains constant, while ensuring the surface accuracy of the workpiece
  • the processing efficiency is greatly improved, the production efficiency is relatively high, the product consistency is relatively good, and the scope of application is relatively wide.
  • the electric spindle has the characteristics of high speed and high power, which can provide high-speed rotation power to the processing components, so that the processing components can ensure the processing efficiency and realize the precision processing of high-performance difficult-to-process materials.
  • Figure 1 is a schematic diagram of the structure of the force control precision processing equipment of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the processing assembly of the present invention.
  • Figure 3 is a schematic view of the cut-away structure of the processing component of the present invention.
  • Figure 4 is a schematic diagram of the working principle of the force-controlled precision processing equipment of the present invention.
  • the force-controlled precision processing equipment includes a control system (not shown in the figure), a manipulator 10, a processing component 20 installed at the end of the manipulator 10, and a work station beside the manipulator 10
  • the manipulator 10 is a six-handed manipulator that can be purchased directly from the market. Shaft tandem manipulator.
  • the processing assembly 20 includes a torque sensor 21 installed on the end of the manipulator 10, a fixed seat 22 directly or indirectly fixedly connected to the detection end of the torque sensor 21, an electric spindle 23 fixedly connected to the fixed seat 22, and an electric spindle fixedly connected to the electric spindle
  • the rotating shaft 24 on the output end of 23 and the conductive slip ring 25 sleeved on the rotating shaft 24.
  • the processing assembly 20 further includes a mounting flange 26 and a connecting flange 27, and a torque sensor 21
  • the fixed connection with the end of the manipulator 10 is achieved by fixed connection on the mounting flange 26, so that the connection is relatively firm, and the fixing base 22 is fixedly connected to the connecting flange 27 to achieve indirect fixed connection to the detection end of the torque sensor 21.
  • the fixing seat 22 is connected to the connecting flange 27, it is better to connect the side of the fixing seat 22 to the connecting flange 27, so that the center of the processing assembly 20 can be close to the mounting flange 26, which helps The overall length of the processing assembly 20 is reduced to ensure the rigidity of the manipulator 10 during processing.
  • the torque sensor 21 is preferably a six-dimensional force sensor that can be purchased directly from the market
  • the electric spindle 23 is preferably an electric spindle that can be purchased directly from the market.
  • the electric spindle 23 has a high speed.
  • the characteristic of high power can provide the processing assembly 20 with high-speed rotation power, so that the processing assembly 20 can realize the precision processing of high-performance difficult-to-process materials while ensuring the processing efficiency.
  • the rotating shaft 24 is coaxially arranged with the electric spindle 23, and the end of the rotating shaft 24 away from the electric spindle 23 is provided with a flexible bag 28, and the flexible bag 28 is preferably a flexible rubber bag.
  • the flexible bag 28 is filled with an electrorheological fluid 29.
  • the electrorheological fluid 29 is a suspension mainly formed by micron-sized particles suspended in an insulator. Under the action of an external electric field, the electrorheological fluid 29 can perform rapid, reversible, and Controllable changes, the specific composition and ratio of the electrorheological fluid 29 are the same as those of the conventional electrorheological fluid, which are not the focus of this embodiment, and will not be detailed here.
  • the processing component 20 further includes a frequency converter (not shown in the figure) that is connected to the control system in communication, and the electric spindle 23 is connected to the frequency converter to realize indirect communication connection with the control system.
  • the frequency converter controls the rotation of the electric spindle 23, and then drives the flexible bag 28 to rotate to realize the processing of the workpiece.
  • the conductive slip ring 25 is connected with a positive electrode connection and a negative connection connection.
  • the ends of the positive connection and the negative connection connection away from the conductive slip ring 25 are respectively located on both sides of the inner cavity of the flexible bag 28, and are immersed in the electrorheological fluid 29.
  • the processing assembly 20 further includes a voltage regulator (not shown in the figure) communicatively connected with the control system, and the voltage regulator is electrically connected with the conductive slip ring 25.
  • the voltage regulator communicatively connected with the control system, and the voltage regulator is electrically connected with the conductive slip ring 25.
  • the voltage of the electric field in the flexible bag 28 is changed by the voltage regulator, and the state of the electrorheological body 29 is changed.
  • the electrorheological body 29 is in a solid state, and the rigidity of the flexible bag 28 becomes larger.
  • the electrorheological fluid 29 When the electric field voltage becomes smaller, the electrorheological fluid 29 is in a liquid state, and the rigidity of the flexible bag 29 becomes smaller.
  • the conductive slip ring 25 used in this embodiment is a conventional conductive slip ring, which is mainly used in unrestricted continuous rotation, and its connection with the positive and negative connections is also conventional, and the current transformer 29 The required voltage is transmitted to the positive connection and the negative connection via the conductive slip ring 25, which makes the state of the electrorheological fluid 29 change.
  • the flexible bag 28 functions as the electrorheological element 29 with different stiffness changes, ensuring the flexibility of the processing components Variety.
  • the clamping device 40 includes a clamp 41 for clamping a workpiece and a rotating motor 42 for driving the clamp 41 to rotate.
  • the clamp 41 is a conventional workpiece clamp, which is not the focus of this embodiment, and will not be detailed here.
  • the manipulator 10, the rotating motor 42 of the clamping device 40, the torque sensor 21 and the electric spindle 23 are respectively connected to the control system, that is, the manipulator 10, the rotating motor 42 of the clamping device 40, the torque sensor 21 and the electric spindle 23 work The timing is controlled by the control system.
  • the stiffness of the electrorheological body 29 can be changed through a voltage regulator according to actual machining requirements to adapt to different The processing of the workpiece, and the manipulator 10 drives the processing assembly 20 to move and position according to the required posture to process the workpiece; the rotating power of the flexible bag 28 as a processing tool is provided by the electric spindle 23, and the speed of the electric spindle 23 is controlled by a frequency converter , When the flexible bag 28 comes into contact with the workpiece, a processing force will be generated.
  • the torque sensor 21 can transmit the measured real-time processing force value to the control system, and the control system will process the measured value of the processing force (the specific processing method is conventional Method), through the force/position control method, the actual machining force is converted into the fine adjustment amount of the end of the manipulator 10, and transmitted to the manipulator 10, and the machining assembly 20 is driven to make feedback adjustments to realize the machining force between the machining assembly 20 and the workpiece.
  • Real-time control keeps the machining force constant during the machining process and completes the precision machining of the workpiece.
  • the force-controlled precision processing equipment of this embodiment can change the stiffness of the processing assembly 20 through a voltage regulator according to the material, processing method, and processing accuracy of the workpiece.
  • the regulator can be adjusted accordingly to process
  • the rigidity of the assembly 20 is increased.
  • the pressure regulator is adjusted to reduce the rigidity of the processing assembly 20, and the movement of the manipulator 10 and the rotation speed of the processing assembly 20 are controlled to realize the rough machining of the workpiece. , Semi-finishing and finishing, to meet the accuracy requirements of the workpiece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种力控精密加工设备,包括控制系统、机械手(10)、加工组件(20)、工作台(30)以及装夹装置(40),所述加工组件(20)包括力矩传感器(21)、固定座(22)、电主轴(23)、转动轴(24)以及导电滑环(25),所述转动轴(24)的一端设置有柔性袋(28),所述柔性袋(28)内填充有电流变体(29),所述导电滑环(25)上连接有正极接线和负极接线。通过在加工组件中设置力矩传感器和电流变体,在加工过程中,根据力矩传感器检测加工组件与工件之间的加工力,控制系统将实际加工力转化为机械手末端的位置微调量,以便机械手做出反馈调节,实现对加工组件与工件之间的加工力进行实时控制,使加工过程中的加工力保持恒定,在保证工件表面精度的同时大幅提升加工效率,生产效率相对较高、产品一致性相对较好且适用范围相对较广。

Description

一种力控精密加工设备 技术领域
本发明涉及一种机械加工设备,尤其是一种力控精密加工设备。
背景技术
随着工业化进程的发展,生产自动化水平的提高,自动化加工的在机械加工中的应用越来越广泛,然而,对于精密度要求相对较高的于钛合金、石英玻璃等高性能零件,自动化加工通常难以满足其精度要求,目前国内制造企业主要仍然是采用手工的方式来完成精密度要求相对较高的高性能零件的加工,生产效率相对较低,产品的一致性相对较差。
公布号为CN105184007A的中国发明专利申请公开的一种基于动态工件-装夹系统的铣削加工表面误差预测方法,通过进行预判的方式来提高零件的加工精度,但其仅适用于弱刚度零件的加工,适用范围相对较窄。
有鉴于此,本申请人对精密加工设备进行了深入的研究,遂有本案产生。
发明内容
本发明的目的在于提供一种生产效率相对较高、产品一致性相对较好且适用范围相对较广的力控精密加工设备。
为了实现上述目的,本发明采用如下技术方案:
一种力控精密加工设备,包括控制系统、机械手、安装在所述机械手末端的加工组件、位于所述机械手旁的工作台以及设置在所述工作台上的装夹装置,所述加工组件包括安装在所述机械手末端上的力矩传感器、直接或间接固定连接在所述力矩传感器的检测端上的固定座、固定连接在所述固定座上的电主轴、固定连接在所述电主轴的输出端上的转动轴以及套设在所述转动轴上的导电滑环,所述转动轴远离所述电主轴的一端设置有 柔性袋,所述柔性袋内填充有电流变体,所述导电滑环上连接有正极接线和负极接线,所述正极接线和所述负极接线的一端分别位于所述柔性袋的内腔的两侧,并浸泡在所述电流变体中,所述机械手、所述装夹装置、所述力矩传感器和所述电主轴分别与所述控制系统通讯连接。
作为本发明的一种改进,所述加工组件还包括安装法兰和连接法兰,所述力矩传感器通过固定连接在所述安装法兰上与所述机械手末端固定连接,所述固定座通过固定连接在所述连接法兰上间接固定连接在所述力矩传感器的检测端上。
作为本发明的一种改进,所述机械手为多关节串联机械手,所述力矩传感器为六维力传感器,所述柔性袋为柔性橡胶袋。
作为本发明的一种改进,所述加工组件还包括分别与所述控制系统通讯连接的变频器和调压器,所述电主轴通过与所述变频器连接实现间接与所述控制系统通讯连接,所述调压器与所述导电滑环电连接。
作为本发明的一种改进,所述装夹装置包括用于夹持工件的夹具和用于驱动所述夹具转动的旋转电机。
采用上述技术方案,本发明具有以下有益效果:
1、通过在加工组件中设置力矩传感器和电流变体,在加工过程中,根据力矩传感器检测加工组件与工件之间的加工力,控制系统根据该加工力采用力/位控制等方法将实际加工力转化为机械手末端的位置微调量,以便加机械手做出反馈调节,实现对加工组件与工件之间的加工力进行实时控制,使加工过程中的加工力保持恒定,在保证工件表面精度的同时大幅提升加工效率,生产效率相对较高、产品一致性相对较好且适用范围相对较广。
2、和普通电机相比,电主轴具有高转速、功率大的特点,能够给加工组件提供高速旋转的动力,使加工组件在保证加工效率的同时,实现高性能难加工材料的精密加工。
附图说明
图1为本发明的力控精密加工设备的结构示意图;
图2为本发明的加工组件的结构示意图;
图3为本发明的加工组件的剖切结构示意图;
图4为本发明的力控精密加工设备的工作原理示意图。
图中对应标示如下:
10-机械手;               20-加工组件;
21-力矩传感器;           22-固定座;
23-电主轴;               24-转动轴;
25-导电滑环;             26-安装法兰;
27-连接法兰;             28-柔性袋;
29-电流变体;             30-工作台;
40-装夹装置;             41-夹具;
42-旋转电机。
具体实施方式
下面结合附图和具体实施例对发明做进一步的说明:
如图1-图3所示,本实施例提供的力控精密加工设备,包括控制系统(图中未示出)、机械手10、安装在机械手10末端的加工组件20、位于机械手10旁的工作台30以及设置在工作台30上的装夹装置40,其中,机械手10可以采用常规的机械手,例如采用多关节串联机械手,在本实施例中,机械手10为可从市场上直接购买获得的六轴串联机械手。
加工组件20包括安装在机械手10末端上的力矩传感器21、直接或间接固定连接在力矩传感器21的检测端上的固定座22、固定连接在固定座22上的电主轴23、固定连接在电主轴23的输出端上的转动轴24以及套设在转动轴24上的导电滑环25,优选的,在本实施例中,加工组件20还包括安装法兰26和连接法兰27,力矩传感器21通过固定连接在安装法兰26上实现与机械手10末端的固定连接,这样连接较为牢固,固定座22通过固定连接在连接法兰27上实现间接固定连接在力矩传感器21的检测端上, 需要说明的是,固定座22在与连接法兰27进行连接时,最好是将固定座22的侧面连接在连接法兰27上,这样可使得加工组件20的中心靠近安装法兰26,有助于减少加工组件20的总体长度,保证加工过程中机械手10的刚度。此外,力矩传感器21最好为可从市场上直接购买获得的六维力传感器,电主轴23最好为可从市场上直接购买获得的电主轴,和普通电机相比,电主轴23具有高转速、功率大的特点,能够给加工组件20提供高速旋转的动力,使加工组件20在保证加工效率的同时,实现高性能难加工材料的精密加工。
转动轴24与电主轴23同轴布置,且转动轴24远离电主轴23的一端设置有柔性袋28,柔性袋28最好为柔性橡胶袋。柔性袋28内填充有电流变体29,电流变体29是主要由微米尺寸颗粒悬浮于绝缘体中形成的悬浮液,在外电场作用下,电流变体29可以在液态和固态之间作快速、可逆、可控的变化,具体的电流变体29的成分及其配比与常规的电流变体相同,并非本实施例的重点,此处不再详述。优选的,在本实施例中,加工组件20还包括与控制系统通讯连接的变频器(图中未示出),电主轴23通过与变频器连接实现间接与控制系统通讯连接,这样,可通过变频器控制电主轴23的旋转,进而带动柔性袋28转动实现对工件的加工。
导电滑环25上连接有正极接线和负极接线,正极接线和负极接线远离导电滑环25的一端分别位于柔性袋28的内腔的两侧,并浸泡在电流变体29中,优选的,在本实施例中,加工组件20还包括与控制系统通讯连接的调压器(图中未示出),调压器与导电滑环25电连接。这样,通过调压器改变柔性袋28内的电场的电压大小,使电流变体29的状态发生变化,当电场电压变大时,电流变体29为固体状态,柔性袋28的刚度变大,当电场电压变小时,电流变体29为液体状态,柔性袋29刚度变小。需要说明的是,本实施例中使用的导电滑环25为常规的导电滑环,主要应用于无限制的连续旋转中,其与正极接线和负极接线的连接方式也是常规的,电流变体29所需的电压经导电滑环25传输到正极接线和负极接线上,使得电流变体29的状态产生变化,柔性袋28起到适应不同刚度变化的电流变体 29的作用,保证加工组件的柔性变化。
装夹装置40包括用于夹持工件的夹具41和用于驱动夹具41转动的旋转电机42,其中夹具41为常规的工件夹具,并非本实施例的重点,此处不再详述。此外,机械手10、装夹装置40的旋转电机42、力矩传感器21和电主轴23分别与控制系统通讯连接,即机械手10、装夹装置40的旋转电机42、力矩传感器21和电主轴23的工作时序受控制系统控制。
如图4所示,并结合图1-图3所示,本实施例的力控精密加工设备在使用时,可根据实际的加工要求,通过调压器改变电流变体29的刚度,适应不同工件的加工,并由机械手10驱动加工组件20按照需要的姿态运动定位,对工件进行加工;作为加工工具的柔性袋28的旋转动力由电主轴23提供,电主轴23的转速使用变频器进行控制,柔性袋28与工件发生接触时,会产生加工力,力矩传感器21可将测量到的实时加工力数值传送给控制系统,控制系统将加工力的测量值进行处理(具体的处理方式为常规的方式),通过力/位控制方法将实际加工力转化为机械手10末端的位置微调量,并传送给机械手10,驱动加工组件20做出反馈调节,实现加工组件20与工件之间的加工力进行实时控制,使加工过程中的加工力保持恒定,完成工件的精密加工。
本实施例的力控精密加工设备可以根据工件的材料、加工方式及加工精度等要求通过调压器改变加工组件20的刚度,对于平面及需要高去除量的工件,对应调节调压器使加工组件20的刚度变大,对于曲面及微去除量的工件,对应调节调压器使加工组件20的刚度变小,并通过控制机械手10的运动及加工组件20的转速,实现对工件的粗加工、半精加工和精加工,达到工件所需的精度要求。
上面结合附图对本发明做了详细的说明,但是本发明的实施方式并不仅限于上述实施方式,本领域技术人员根据现有技术可以对本发明做出各种变形,例如将上述实施例中的多关节串联机械手变更为多关节并联机械手等,这些都属于本发明的保护范围。

Claims (5)

  1. 一种力控精密加工设备,其特征在于,包括控制系统、机械手、安装在所述机械手末端的加工组件、位于所述机械手旁的工作台以及设置在所述工作台上的装夹装置,所述加工组件包括安装在所述机械手末端上的力矩传感器、直接或间接固定连接在所述力矩传感器的检测端上的固定座、固定连接在所述固定座上的电主轴、固定连接在所述电主轴的输出端上的转动轴以及套设在所述转动轴上的导电滑环,所述转动轴远离所述电主轴的一端设置有柔性袋,所述柔性袋内填充有电流变体,所述导电滑环上连接有正极接线和负极接线,所述正极接线和所述负极接线的一端分别位于所述柔性袋的内腔的两侧,并浸泡在所述电流变体中,所述机械手、所述装夹装置、所述力矩传感器和所述电主轴分别与所述控制系统通讯连接。
  2. 如权利要求1所述的力控精密加工设备,其特征在于,所述加工组件还包括安装法兰和连接法兰,所述力矩传感器通过固定连接在所述安装法兰上与所述机械手末端固定连接,所述固定座通过固定连接在所述连接法兰上间接固定连接在所述力矩传感器的检测端上。
  3. 如权利要求1所述的力控精密加工设备,其特征在于,所述机械手为多关节串联机械手,所述力矩传感器为六维力传感器,所述柔性袋为柔性橡胶袋。
  4. 如权利要求1所述的力控精密加工设备,其特征在于,所述加工组件还包括分别与所述控制系统通讯连接的变频器和调压器,所述电主轴通过与所述变频器连接实现间接与所述控制系统通讯连接,所述调压器与所述导电滑环电连接。
  5. 如权利要求1-4中任一权利要求所述的力控精密加工设备,其特征在于,所述装夹装置包括用于夹持工件的夹具和用于驱动所述夹具转动的旋转电机。
PCT/CN2019/105241 2019-01-31 2019-09-11 一种力控精密加工设备 WO2020155630A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910099510.1 2019-01-31
CN201910099510.1A CN109773587A (zh) 2019-01-31 2019-01-31 一种力控精密加工设备

Publications (1)

Publication Number Publication Date
WO2020155630A1 true WO2020155630A1 (zh) 2020-08-06

Family

ID=66502983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105241 WO2020155630A1 (zh) 2019-01-31 2019-09-11 一种力控精密加工设备

Country Status (2)

Country Link
CN (1) CN109773587A (zh)
WO (1) WO2020155630A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109773587A (zh) * 2019-01-31 2019-05-21 泉州装备制造研究所 一种力控精密加工设备
US20240066714A1 (en) * 2021-02-01 2024-02-29 Abb Schweiz Ag Assembly and apparatus for machining mechanical part

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0911114A (ja) * 1995-06-23 1997-01-14 Fujikura Ltd 面仕上げ処理方法
CN102765012A (zh) * 2012-03-23 2012-11-07 中国科学院光电技术研究所 基于电流变液的柔性可控气囊抛光工具
CN103056759A (zh) * 2012-12-24 2013-04-24 中国科学院自动化研究所 一种基于传感器反馈的机器人磨削系统
CN103551925A (zh) * 2013-09-13 2014-02-05 北京理工大学 一种叶片电极正负交替式电流变抛光装置
CN108907905A (zh) * 2018-08-07 2018-11-30 武汉理工大学 一种用于汽车轮毂铸造模具的机器人打磨抛光方法及装置
CN109047449A (zh) * 2018-09-10 2018-12-21 耿攀 一种冲压模具用缓冲冲头
CN109773587A (zh) * 2019-01-31 2019-05-21 泉州装备制造研究所 一种力控精密加工设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0911114A (ja) * 1995-06-23 1997-01-14 Fujikura Ltd 面仕上げ処理方法
CN102765012A (zh) * 2012-03-23 2012-11-07 中国科学院光电技术研究所 基于电流变液的柔性可控气囊抛光工具
CN103056759A (zh) * 2012-12-24 2013-04-24 中国科学院自动化研究所 一种基于传感器反馈的机器人磨削系统
CN103551925A (zh) * 2013-09-13 2014-02-05 北京理工大学 一种叶片电极正负交替式电流变抛光装置
CN108907905A (zh) * 2018-08-07 2018-11-30 武汉理工大学 一种用于汽车轮毂铸造模具的机器人打磨抛光方法及装置
CN109047449A (zh) * 2018-09-10 2018-12-21 耿攀 一种冲压模具用缓冲冲头
CN109773587A (zh) * 2019-01-31 2019-05-21 泉州装备制造研究所 一种力控精密加工设备

Also Published As

Publication number Publication date
CN109773587A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN206254004U (zh) 一种机器人柔性打磨系统
WO2020155630A1 (zh) 一种力控精密加工设备
CN105500148A (zh) 一种大型曲面磨削自适应打磨装置
CN105904297B (zh) 一种用于机器人末端的柔性打磨直磨机装置
CN110103114B (zh) 大型复杂曲面的三自由度自适应柔性磨抛装置及机器人
CN108436688A (zh) 一种安装在机器人末端的砂带打磨工具
CN213615619U (zh) 一种具有电磁流变双效应的抛光装置
CN112847128A (zh) 一种基于六轴机器人的焊缝打磨装置
CN109397081A (zh) 一种自动恒力浮动打磨头
CN201863118U (zh) 一种柔轴研磨装置
CN211277897U (zh) 一种柔性恒力研磨抛光机构
CN205414837U (zh) 一种内圆弧面超声滚压工具头
CN112338689A (zh) 一种全自动打磨机器人的控制系统
CN108723527B (zh) 一种超声辅助电火花磨削装置及其磨削方法
CN209755193U (zh) 一种吊装行走协作机器人
CN214817735U (zh) 一种机加用具有调节机构的自动夹持器
CN209941090U (zh) 一种基于关节臂的激光熔覆加工机床
CN210819546U (zh) 一种工业机器人夹持装置
CN114102276A (zh) 一种超声辅助加工高剪低压磨削装置及方法
CN210650139U (zh) 一种锥孔研磨装置
CN208068290U (zh) 一种工厂用机器人手臂
CN210173548U (zh) 一种全圆周吊装行走协作机器人
CN106956168A (zh) 一种回转体工件表面研抛的材料去除控制方法
CN219504513U (zh) 一种超声辅助elid内圆磨削夹具
CN215356852U (zh) 一种新型机械材料加工用焊接设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914024

Country of ref document: EP

Kind code of ref document: A1