WO2020155230A1 - 一种判定主轴实时热变形姿态的方法 - Google Patents

一种判定主轴实时热变形姿态的方法 Download PDF

Info

Publication number
WO2020155230A1
WO2020155230A1 PCT/CN2019/075715 CN2019075715W WO2020155230A1 WO 2020155230 A1 WO2020155230 A1 WO 2020155230A1 CN 2019075715 W CN2019075715 W CN 2019075715W WO 2020155230 A1 WO2020155230 A1 WO 2020155230A1
Authority
WO
WIPO (PCT)
Prior art keywords
spindle
thermal
displacement sensor
temperature
real
Prior art date
Application number
PCT/CN2019/075715
Other languages
English (en)
French (fr)
Inventor
刘阔
刘海波
韩灵生
甘涌泉
韩伟
李特
王永青
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/603,467 priority Critical patent/US20200311321A1/en
Publication of WO2020155230A1 publication Critical patent/WO2020155230A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/007Arrangements for observing, indicating or measuring on machine tools for managing machine functions not concerning the tool
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/16Investigating or analyzing materials by the use of thermal means by investigating thermal coefficient of expansion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Definitions

  • the invention belongs to the technical field of error testing of numerical control machine tools, and specifically is a method for determining the real-time thermal deformation posture of a spindle.
  • thermal deformation is one of the main factors affecting machining accuracy. Since the main shaft generates a large amount of heat during operation, its thermal deformation is also large.
  • the thermal deformation of the spindle will not only cause axial thermal elongation errors, but also radial thermal drift errors and thermal tilt errors. These errors will not only affect the relative position of the tool and the workpiece, but also affect the relative posture of the tool and the workpiece.
  • the detection of the thermal deformation of the spindle helps to understand the machining accuracy of the machine tool, reduces the scrap rate and provides a data basis for the analysis and control of the thermal deformation of the spindle, so it is very necessary.
  • scholars have conducted a lot of research on the detection method of the thermal deformation of the spindle.
  • the problem with the current spindle thermal error detection is that although the spindle thermal error detection method based on the displacement sensor can detect the spindle thermal drift error and thermal tilt error, it can only be detected in the no-load state, which is different from the actual machining. difference. Although the workpiece-based spindle thermal error detection method is tested under actual machining conditions, it can only detect the axial thermal drift error of the spindle, and cannot obtain the spindle thermal deformation posture. It can be seen that none of the current spindle thermal error detection methods can realize real-time monitoring of the thermal deformation posture of the spindle under the machining state of the machine tool.
  • the present invention provides a method for determining the thermal deformation posture of the main shaft in real time, so as to realize the real-time monitoring of the thermal deformation posture of the main shaft in the actual machining process.
  • a method to determine the real-time thermal deformation attitude of the spindle Firstly, the temperature sensor and the displacement sensor are used to test the temperature of the upper and lower surfaces of the spindle and the radial thermal error of the spindle when the spindle is running; then, the upper and lower surfaces of the spindle are calculated according to the radial thermal error of the spindle And establish a model of the thermal change and the upper and lower surface temperature of the spindle box; finally, based on the model, determine the real-time thermal deformation attitude of the spindle based on the real-time collected temperature of the upper and lower surface of the spindle box; the specific steps are as follows:
  • the first temperature sensor 1 is arranged on the upper surface of the spindle box 2, and the second temperature sensor 3 is arranged on the lower surface of the spindle box 2; the inspection bar 4 is fixed on the spindle through a tool holder interface; the first displacement sensor 6 and the second displacement sensor 5 is arranged on the side of the inspection rod 4, where the second displacement sensor 5 is close to the nose of the spindle;
  • the test process is as follows: First, the spindle runs at the speed R (not higher than the maximum spindle speed) for M hours (for example, 4 hours) for heating, and then the spindle stops rotating and cools down for N hours (for example, 3 hours); in this process, a certain cycle (E.g. 10 seconds) Collect data from the first temperature sensor 1, the second temperature sensor 3, the first displacement sensor 6 and the second displacement sensor 5;
  • the second step is to establish a model of the amount of heat change and the temperature of the upper and lower surface of the headstock
  • the distance from the upper surface to the lower surface of the spindle box 2 is A 1
  • the distance from the lower surface of the spindle box 2 to the second displacement sensor 5 is A 2
  • the distance from the second displacement sensor 5 to the first displacement sensor 6 is A 3 ;
  • the thermal deformation attitude of the spindle is calculated according to formula (25), that is, the radial thermal error of the spindle E thermal and the thermal tilt error In this way, the real-time thermal deformation attitude of the spindle is determined:
  • Figure 5(b) shows the predicted thermal tilt error of the spindle.
  • the second step is to establish a model of the amount of heat change and the temperature of the upper and lower surface of the headstock
  • the data collected by the first temperature sensor (1) is t 1
  • the data collected by the second temperature sensor (3) is t 2
  • the data collected by the first displacement sensor (6) is p 1
  • the second displacement sensor (5) The collected data is p 2 .
  • formula (1) obtained in t 1 increments ⁇ t 1
  • t 2 increments ⁇ t 2
  • ⁇ p increments of p 1 and p 2 is an increment ⁇ p 2.
  • ⁇ p 1 and 2 ⁇ p curve is shown in Fig.
  • the distance from the top surface to the bottom surface of the headstock (2) is 210mm
  • the distance from the bottom surface of the headstock (2) to the second displacement sensor (5) is 280mm
  • the second displacement sensor (5) to the first displacement sensor (6) The distance is 76.2mm.
  • the upper surface heat change e upper and the lower surface heat change e lower of the headstock (2) are calculated based on equations (2) to (12).
  • the coefficients a 1 , a 2 , b 1 and b 2 are calculated as 5.76, 0.37, 4.85 and -0.08, respectively, by applying the least square method.

Abstract

一种判定主轴实时热变形姿态的方法,先分别应用温度传感器(1,3)和位移传感器(5,6)测试主轴运行时主轴箱(2)上下表面的温度和主轴径向热误差;然后根据主轴径向热误差计算主轴箱上下表面的热变化量,并建立热变化量与主轴箱上下表面温度的模型;最后根据实时采集的主轴箱上下表面温度判定主轴实时热变形姿态。该方法可实现加工过程中主轴热变形姿态的实时监测。

Description

一种判定主轴实时热变形姿态的方法 技术领域
本发明属于数控机床误差测试技术领域,具体为一种判定主轴实时热变形姿态的方法。
背景技术
在数控机床的加工过程中,热变形是影响加工精度的主要因素之一。由于主轴在运行过程中发热量较大,因此其热变形也较大。主轴的热变形不仅会引起轴向热伸长误差,还会引起径向的热漂移误差和热倾斜误差。这些误差不仅会影响刀具与工件的相对位置,还会影响刀具与工件的相对姿态。对主轴热变形的检测有助于了解机床的加工精度,降低废品率以及为主轴热变形的分析和控制提供数据基础,因此是十分必要的。目前已有学者对主轴热变形的检测方法进行了大量研究。
目前数控机床主轴热误差检测主要分为两类:
(1)基于位移传感器的主轴热误差检测:使用激光、电容、电涡流等类型的位移传感器检测主轴运行过程中的轴向热伸长误差和径向的热漂移误差。在专利《机床主轴热误差监测系统》,专利号:CN201410064187.1中应用激光位移传感器检测主轴热误差;在专利《模拟工况载荷条件下机床主轴热误差测试试验方法》,专利号:CN201010292286.7中应用电涡流传感器检测主轴热误差。
(2)基于工件的主轴热误差检测:利用工件的加工特征估计主轴热误差。在专利《基于铣削小孔的数控机床切削热误差测试和评价方法》,专利号:CN201310562312.7中,在立方体工件上表面加工一组小孔,根据孔径和孔深检测主轴热误差。
可以看出,目前主轴热误差检测的问题在于:基于位移传感器的主轴热误 差检测方法虽然可以检测出主轴热漂移误差和热倾斜误差,但是只能在空载状态下进行检测,与实际加工存在差别。基于工件的主轴热误差检测方法虽然在实际加工工况下进行测试,但只能检测主轴轴向热漂移误差,无法得出主轴热变形姿态。可以看出,目前的主轴热误差检测方法均无法在机床加工状态下实现对主轴热变形姿态的实时监测。
发明内容
本发明针对现有检测方法无法在机床加工状态下对主轴热变形姿态实时监测的现状,提供一种判定主轴实时热变形姿态的方法,实现在实际加工过程中主轴热变形姿态的实时监测。
本发明的技术方案:
一种判定主轴实时热变形姿态的方法,首先,分别应用温度传感器和位移传感器测试主轴运行时主轴箱上下表面的温度和主轴径向热误差;然后,根据主轴径向热误差计算主轴箱上下表面的热变化量,并建立热变化量与主轴箱上下表面温度的模型;最后,基于该模型,根据实时采集的主轴箱上下表面温度判定主轴实时热变形姿态;具体步骤如下:
第一步,温度和热误差测试
第一温度传感器1布置在主轴箱2的上表面,第二温度传感器3布置在主轴箱2的下表面;检棒4通过刀柄接口固定在主轴上;第一位移传感器6和第二位移传感器5布置在检棒4侧面,其中第二位移传感器5靠近主轴鼻端;
测试过程为:首先主轴以转速R(不高于主轴最高转速)持续运行M小时(如4小时)进行升温,之后主轴停止转动降温N小时(如3小时);在此过程中,以一定周期(如10秒)采集第一温度传感器1、第二温度传感器3、第一位移传感器6和第二位移传感器5的数据;
第二步,建立热变化量与主轴箱上下表面温度的模型
设第一温度传感器1采集的数据为t 1,第二温度传感器3采集的数据为t 2,第一位移传感器6采集的数据为p 1,第二位移传感器5采集的数据为p 2;按照式(1)得出t 1的增量△t 1、t 2的增量△t 2、p 1的增量△p 1和p 2的增量△p 2
Figure PCTCN2019075715-appb-000001
设主轴箱2上表面到下表面的距离为A 1,主轴箱2下表面到第二位移传感器5的距离为A 2,第二位移传感器5到第一位移传感器6的距离为A 3
(1)计算主轴箱上下表面的热膨胀量
根据主轴结构及数据△p 1和△p 2,基于以下方法计算主轴箱2上表面热变化量e upper和下表面热变化量e lower
设中间变量α和β的计算公式为:
Figure PCTCN2019075715-appb-000002
根据当前时刻α、β、△p 1和△p 2的关系,分为以下情况计算当前时刻的主轴箱上下表面的热变化量;
a)当△p 1(i)≥0,△p 2(i)≥0,△p 1(i)>△p 2(i),β(i)≤A 2时:
Figure PCTCN2019075715-appb-000003
b)当△p 1(i)≥0,△p 2(i)≥0,△p 1(i)>△p 2(i),β(i)>A 2,β(i)≤(A 1+A 2)时:
Figure PCTCN2019075715-appb-000004
c)当△p 1(i)≥0,△p 2(i)≥0,△p 1(i)>△p 2(i),β(i)>(A 1+A 2)时:
Figure PCTCN2019075715-appb-000005
d)当△p 1(i)≥0,△p 2(i)≥0,△p 1(i)≤△p 2(i)时:
Figure PCTCN2019075715-appb-000006
e)当△p 1(i)>0,△p 2(i)<0时:
Figure PCTCN2019075715-appb-000007
f)当△p 1(i)<0,△p 2(i)>0时:
Figure PCTCN2019075715-appb-000008
g)当△p 1(i)<0,△p 2(i)<0,△p 1(i)≥△p 2(i)时:
Figure PCTCN2019075715-appb-000009
h)当△p 1(i)<0,△p 2(i)<0,△p 1(i)<△p 2(i),β(i)>(A 1+A 2)时:
Figure PCTCN2019075715-appb-000010
i)当△p 1(i)<0,△p 2(i)<0,△p 1(i)<△p 2(i),β(i)<(A 1+A 2),β(i)>A 2时:
Figure PCTCN2019075715-appb-000011
j)当△p 1(i)<0,△p 2(i)<0,△p 1(i)<△p 2(i),β(i)≤A 2时:
Figure PCTCN2019075715-appb-000012
(2)建立主轴箱上下表面热变化量与温度的模型
主轴箱上下表面热变化量与上下表面温度的关系模型如式(13)所示:
Figure PCTCN2019075715-appb-000013
式中a 1、a 2、b 1和b 2为系数;
应用最小二乘法,根据数据e upper、e lower、△t 1和△t 2计算得出a 1、a 2、b 1和b 2
第三步,主轴实时热变形姿态的判定
主轴运行过程中,以一定周期(如10秒)采集第一温度传感器1和第二温度传感器3的数据;基于式(13),根据当前时刻的温度数据计算主轴箱上下表面热变化量e upper和e lower;按照如下方法,在不使用位移传感器的情况下判定当前时刻主轴热变形姿态;
设中间变量γ的计算如式(14)所示:
Figure PCTCN2019075715-appb-000014
根据当前时刻e upper、e lower和γ的关系,按以下情况分别计算当前时刻的主轴在第一位移传感器6和第二位移传感器5位置的径向热误差△p c1和△p c2
a)当e upper(i)≥0、e lower(i)≥0,e upper(i)≥e lower(i),γ(i)≤A 2时:
Figure PCTCN2019075715-appb-000015
b)当e upper(i)>0、e lower(i)<0时:
Figure PCTCN2019075715-appb-000016
c)当e upper(i)<0、e lower(i)<0,e upper(i)≥e lower(i)时:
Figure PCTCN2019075715-appb-000017
d)当e upper(i)<0、e lower(i)<0,e upper(i)<e lower(i),γ(i)>(A 2+A 3)时:
Figure PCTCN2019075715-appb-000018
e)当e upper(i)≥0、e lower(i)≥0,e upper(i)>e lower(i),γ(i)≤(A 2+A 3),γ(i)>A 2时:
Figure PCTCN2019075715-appb-000019
f)当e upper(i)<0、e lower(i)<0,e upper(i)<e lower(i),γ(i)≤(A 2+A 3),γ(i)>A 2时:
Figure PCTCN2019075715-appb-000020
g)当e upper(i)≥0、e lower(i)≥0,e upper(i)>e lower(i),γ(i)>(A 2+A 3)时:
Figure PCTCN2019075715-appb-000021
h)当e upper(i)≥0、e lower(i)≥0,e upper(i)≤e lower(i)时:
Figure PCTCN2019075715-appb-000022
i)当e upper(i)<0、e lower(i)>0时:
Figure PCTCN2019075715-appb-000023
j)当e upper(i)<0、e lower(i)<0,e upper(i)≤e lower(i),γ(i)≤A 2时:
Figure PCTCN2019075715-appb-000024
根据△p c1和△p c2,按照式(25)计算主轴的热变形姿态,即主轴径向热误差E thermal和热倾斜误差
Figure PCTCN2019075715-appb-000025
这样,即判定出主轴的实时热变形姿态:
Figure PCTCN2019075715-appb-000026
本发明的有益效果为:本发明可实现加工过程中主轴热变形姿态的实时监测。目前尚无加工过程中主轴热变形姿态的实时监测方法。本发明可实现在机床加工过程中对主轴热变形姿态的实时监测,以此判断主轴当前状态能否满足工件加工精度要求,避免加工精度超差,提高产品合格率。该实时监测方法还可以为主轴热变形机理分析、建模和补偿提供依据。
附图说明
图1为温度传感器布置及主轴热变形姿态测试示意图。
图2为主轴实时热变形姿态判定流程图。
图3为第一和第二温度传感器采集的温度。
图4为第一和第二位移传感器采集的位移。
图5(a)为预测的主轴径向热误差。
图5(b)为预测的主轴热倾斜误差。
图中:1第一温度传感器;2主轴箱;3第二温度传感器;4检棒;5第二位移传感器;6第一位移传感器。
具体实施方式
为了使本发明的目的、技术方案和优点更加清晰明了,下面结合附图对本 发明作详细说明。
以某型三轴立式加工中心为例,详细说明本发明的实施方式。该加工中心主轴最高转速15000r/min,主轴电机与主轴采用联轴器连接,主轴不带冷却装置。
第一步,温度和热误差测试
第一温度传感器(1)布置在主轴箱(2)的上表面,第二温度传感器(3)布置在主轴箱(2)的下表面。检棒(4)通过刀柄接口固定在主轴上。第一位移传感器(6)和第二位移传感器(5)布置在检棒侧面,其中第二位移传感器(5)靠近主轴鼻端。具体布置方式如图1所示。
测试过程为:首先主轴以转速8000r/min持续运行4小时进行升温,之后主轴静止降温3小时。在此过程中,以10s周期采集第一温度传感器(1)、第二温度传感器(3)、第一位移传感器(6)和第二位移传感器(5)的数据。
第二步,建立热变化量与主轴箱上下表面温度的模型
设第一温度传感器(1)采集的数据为t 1,第二温度传感器(3)采集的数据为t 2,第一位移传感器(6)采集的数据为p 1,第二位移传感器(5)采集的数据为p 2。按照式(1)得出t 1的增量△t 1、t 2的增量△t 2、p 1的增量△p 1和p 2的增量△p 2。△t 1和△t 2的曲线如图3所示,△p 1和△p 2的曲线如图4所示。
主轴箱(2)上表面到下表面的距离为210mm,主轴箱(2)下表面到第二位移传感器(5)的距离为280mm,第二位移传感器(5)到第一位移传感器(6)的距离为76.2mm。
根据主轴结构及数据△p 1和△p 2,基于式(2)~式(12)计算主轴箱(2)上表面热变化量e upper和下表面热变化量e lower。基于式(13),应用最小二乘法计算出系数a 1、a 2、b 1和b 2分别为5.76、0.37、4.85和-0.08。
第三步,主轴实时热变形姿态的判定
令主轴以10000r/min持续运行4小时升温,之后静止降温3小时。主轴运行过程中,以10s的周期实时采集第一温度传感器(1)和第二温度传感器(3)的数值。基于式(13),根据当前时刻的温度数据计算主轴箱上下表面热变化量e upper和e lower
根据式(14)~式(25)计算出当前时刻的主轴热变形姿态,即主轴热漂移误差(如图5(a)所示)和热倾斜误差(如图5(b)所示),从而实现对主轴实时热变形姿态的判定。

Claims (1)

  1. 一种判定主轴实时热变形姿态的方法,首先,分别应用温度传感器和位移传感器测试主轴运行时主轴箱上下表面的温度和主轴径向热误差;然后,根据主轴径向热误差计算主轴箱上下表面的热变化量,并建立热变化量与主轴箱上下表面温度的模型;最后,基于该模型,根据实时采集的主轴箱上下表面温度判定主轴实时热变形姿态;其特征在于,步骤如下:
    第一步,温度和热误差测试
    第一温度传感器(1)布置在主轴箱(2)的上表面,第二温度传感器(3)布置在主轴箱(2)的下表面;检棒(4)通过刀柄接口固定在主轴上;第一位移传感器(6)和第二位移传感器(5)布置在检棒(4)侧面,其中第二位移传感器(5)靠近主轴鼻端;
    测试过程为:首先主轴以转速R持续运行M小时进行升温,转速R不高于主轴最高转速,之后主轴停止转动降温N小时;在此过程中,以一定周期采集第一温度传感器(1)、第二温度传感器(3)、第一位移传感器(6)和第二位移传感器(5)的数据;
    第二步,建立热变化量与主轴箱上下表面温度的模型
    设第一温度传感器(1)采集的数据为t 1,第二温度传感器(3)采集的数据为t 2,第一位移传感器(6)采集的数据为p 1,第二位移传感器(5)采集的数据为p 2;按照式(1)得出t 1的增量△t 1、t 2的增量△t 2、p 1的增量△p 1和p 2的增量△p 2
    Figure PCTCN2019075715-appb-100001
    设主轴箱(2)上表面到下表面的距离为A 1,主轴箱(2)下表面到第二位移传感器(5)的距离为A 2,第二位移传感器(5)到第一位移传感器(6)的距 离为A 3
    (1)计算主轴箱上下表面的热膨胀量
    根据主轴结构及数据△p 1和△p 2,基于以下方法计算主轴箱(2)上表面热变化量e upper和下表面热变化量e lower
    设中间变量α和β的计算公式为:
    Figure PCTCN2019075715-appb-100002
    根据当前时刻α、β、△p 1和△p 2的关系,分为以下情况计算当前时刻的主轴箱上下表面的热变化量;
    a)当△p 1(i)≥0,△p 2(i)≥0,△p 1(i)>△p 2(i),β(i)≤A 2时:
    Figure PCTCN2019075715-appb-100003
    b)当△p 1(i)≥0,△p 2(i)≥0,△p 1(i)>△p 2(i),β(i)>A 2,β(i)≤(A 1+A 2)时:
    Figure PCTCN2019075715-appb-100004
    c)当△p 1(i)≥0,△p 2(i)≥0,△p 1(i)>△p 2(i),β(i)>(A 1+A 2)时:
    Figure PCTCN2019075715-appb-100005
    d)当△p 1(i)≥0,△p 2(i)≥0,△p 1(i)≤△p 2(i)时:
    Figure PCTCN2019075715-appb-100006
    e)当△p 1(i)>0,△p 2(i)<0时:
    Figure PCTCN2019075715-appb-100007
    f)当△p 1(i)<0,△p 2(i)>0时:
    Figure PCTCN2019075715-appb-100008
    g)当△p 1(i)<0,△p 2(i)<0,△p 1(i)≥△p 2(i)时:
    Figure PCTCN2019075715-appb-100009
    h)当△p 1(i)<0,△p 2(i)<0,△p 1(i)<△p 2(i),β(i)>(A 1+A 2)时:
    Figure PCTCN2019075715-appb-100010
    i)当△p 1(i)<0,△p 2(i)<0,△p 1(i)<△p 2(i),β(i)<(A 1+A 2),β(i)>A 2时:
    Figure PCTCN2019075715-appb-100011
    j)当△p 1(i)<0,△p 2(i)<0,△p 1(i)<△p 2(i),β(i)≤A 2时:
    Figure PCTCN2019075715-appb-100012
    (2)建立主轴箱上下表面热变化量与温度的模型
    主轴箱上下表面热变化量与上下表面温度的关系模型如式(13)所示:
    Figure PCTCN2019075715-appb-100013
    式中a 1、a 2、b 1和b 2为系数;
    应用最小二乘法,根据数据e upper、e lower、△t 1和△t 2计算得出a 1、a 2、b 1和b 2
    第三步,主轴实时热变形姿态的判定
    主轴运行过程中,以一定周期(如10秒)采集第一温度传感器1和第二温度传感器3的数据;基于式(13),根据当前时刻的温度数据计算主轴箱上下表面热变化量e upper和e lower;按照如下方法,在不使用位移传感器的情况下判定当前时刻主轴热变形姿态;
    设中间变量γ的计算如式(14)所示:
    Figure PCTCN2019075715-appb-100014
    根据当前时刻e upper、e lower和γ的关系,按以下情况分别计算当前时刻的主轴在第一位移传感器(6)和第二位移传感器(5)位置的径向热误差△p c1和△p c2
    a)当e upper(i)≥0、e lower(i)≥0,e upper(i)≥e lower(i),γ(i)≤A 2时:
    Figure PCTCN2019075715-appb-100015
    b)当e upper(i)>0、e lower(i)<0时:
    Figure PCTCN2019075715-appb-100016
    c)当e upper(i)<0、e lower(i)<0,e upper(i)≥e lower(i)时:
    Figure PCTCN2019075715-appb-100017
    d)当e upper(i)<0、e lower(i)<0,e upper(i)<e lower(i),γ(i)>(A 2+A 3)时:
    Figure PCTCN2019075715-appb-100018
    e)当e upper(i)≥0、e lower(i)≥0,e upper(i)>e lower(i),γ(i)≤(A 2+A 3),γ(i)>A 2时:
    Figure PCTCN2019075715-appb-100019
    f)当e upper(i)<0、e lower(i)<0,e upper(i)<e lower(i),γ(i)≤(A 2+A 3),γ(i)>A 2时:
    Figure PCTCN2019075715-appb-100020
    g)当e upper(i)≥0、e lower(i)≥0,e upper(i)>e lower(i),γ(i)>(A 2+A 3)时:
    Figure PCTCN2019075715-appb-100021
    h)当e upper(i)≥0、e lower(i)≥0,e upper(i)≤e lower(i)时:
    Figure PCTCN2019075715-appb-100022
    i)当e upper(i)<0、e lower(i)>0时:
    Figure PCTCN2019075715-appb-100023
    j)当e upper(i)<0、e lower(i)<0,e upper(i)≤e lower(i),γ(i)≤A 2时:
    Figure PCTCN2019075715-appb-100024
    根据△p c1和△p c2,按照式(25)计算主轴的热变形姿态,即主轴径向热误差E thermal和热倾斜误差
    Figure PCTCN2019075715-appb-100025
    这样,即判定出主轴的实时热变形姿态:
    Figure PCTCN2019075715-appb-100026
PCT/CN2019/075715 2019-01-31 2019-02-21 一种判定主轴实时热变形姿态的方法 WO2020155230A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/603,467 US20200311321A1 (en) 2019-01-31 2019-02-21 Method for determining real-time thermal deformation attitude of spindle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910100942.XA CN109623493B (zh) 2019-01-31 2019-01-31 一种判定主轴实时热变形姿态的方法
CN201910100942.X 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020155230A1 true WO2020155230A1 (zh) 2020-08-06

Family

ID=66064580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075715 WO2020155230A1 (zh) 2019-01-31 2019-02-21 一种判定主轴实时热变形姿态的方法

Country Status (3)

Country Link
US (1) US20200311321A1 (zh)
CN (1) CN109623493B (zh)
WO (1) WO2020155230A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114594726A (zh) * 2022-02-17 2022-06-07 成都飞机工业(集团)有限责任公司 一种数控机床主轴热伸长量检测方法及电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289554A (zh) * 2020-03-16 2020-06-16 大连理工大学 一种模拟内喷式冷却主轴热变形的装置
CN113094942A (zh) * 2021-03-05 2021-07-09 西安交通大学 一种考虑重力和热影响的机床几何精度主动设计方法
CN113051686B (zh) * 2021-04-01 2023-03-10 重庆大学 倾斜工作条件下的主轴系统热-结构耦合特性模型创建方法及热误差模型建模方法
CN113126566B (zh) * 2021-06-18 2021-08-24 四川大学 一种数控机床主轴轴向热误差物理建模方法
CN113515089B (zh) * 2021-06-18 2023-01-20 汉涘姆(上海)精密机械有限公司 一种五轴联动叉式摆头温度补偿的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104901A (ja) * 1997-10-01 1999-04-20 Okuma Corp 心押台の補正装置
CN101290266A (zh) * 2008-06-17 2008-10-22 上海理工大学 数控机床热误差补偿温度测点位置的确定方法
CN101628396A (zh) * 2009-06-01 2010-01-20 上海理工大学 磨床砂轮主轴热误差测量方法
JP2010120150A (ja) * 2008-11-22 2010-06-03 Mori Seiki Co Ltd 工作機械の熱変形補正のための推定方法
CN102759900A (zh) * 2012-06-29 2012-10-31 上海三一精机有限公司 一种机床主轴热误差的测试系统及测试方法
CN104197887A (zh) * 2014-06-19 2014-12-10 绍兴绍力机电科技有限公司 空气主轴倾斜误差测量装置及测量方法
CN104227503A (zh) * 2014-09-14 2014-12-24 沈机集团昆明机床股份有限公司 用于数控机床镗轴热伸长变形误差实时在线检测与补偿装置
CN107942934A (zh) * 2017-11-06 2018-04-20 大连理工大学 一种卧式数控车床的主轴径向热漂移误差建模及补偿方法
CN108857574A (zh) * 2018-07-05 2018-11-23 大连理工大学 数控机床主轴的“热误差-温度”环的应用方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266194A (ja) * 1994-03-30 1995-10-17 Hitachi Seiki Co Ltd 工具刃先位置計測補正装置
JP2002297678A (ja) * 2001-03-30 2002-10-11 Fujitsu Nagano Systems Engineering Ltd Voxelモデルの座標決定処理方法,座標決定処理プログラムおよび座標決定処理プログラム記録媒体
JP2013255982A (ja) * 2012-06-14 2013-12-26 Murata Machinery Ltd 工作機械とその熱変形の補正方法
CN103801988A (zh) * 2014-02-25 2014-05-21 南通大学 机床主轴热误差监测系统
CN105081879B (zh) * 2015-08-27 2017-04-12 成都飞机工业(集团)有限责任公司 一种数控机床主轴的故障诊断与预测的方法
CN105181319A (zh) * 2015-09-29 2015-12-23 爱佩仪中测(成都)精密仪器有限公司 一种主轴动态误差及热变形分析仪
JP6842146B2 (ja) * 2016-08-18 2021-03-17 中村留精密工業株式会社 工作機械の加工誤差の補正方法
CN108363870B (zh) * 2018-02-11 2021-05-25 宁波大学 一种基于深度学习的数控机床主轴热误差建模方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104901A (ja) * 1997-10-01 1999-04-20 Okuma Corp 心押台の補正装置
CN101290266A (zh) * 2008-06-17 2008-10-22 上海理工大学 数控机床热误差补偿温度测点位置的确定方法
JP2010120150A (ja) * 2008-11-22 2010-06-03 Mori Seiki Co Ltd 工作機械の熱変形補正のための推定方法
CN101628396A (zh) * 2009-06-01 2010-01-20 上海理工大学 磨床砂轮主轴热误差测量方法
CN102759900A (zh) * 2012-06-29 2012-10-31 上海三一精机有限公司 一种机床主轴热误差的测试系统及测试方法
CN104197887A (zh) * 2014-06-19 2014-12-10 绍兴绍力机电科技有限公司 空气主轴倾斜误差测量装置及测量方法
CN104227503A (zh) * 2014-09-14 2014-12-24 沈机集团昆明机床股份有限公司 用于数控机床镗轴热伸长变形误差实时在线检测与补偿装置
CN107942934A (zh) * 2017-11-06 2018-04-20 大连理工大学 一种卧式数控车床的主轴径向热漂移误差建模及补偿方法
CN108857574A (zh) * 2018-07-05 2018-11-23 大连理工大学 数控机床主轴的“热误差-温度”环的应用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114594726A (zh) * 2022-02-17 2022-06-07 成都飞机工业(集团)有限责任公司 一种数控机床主轴热伸长量检测方法及电子设备

Also Published As

Publication number Publication date
US20200311321A1 (en) 2020-10-01
CN109623493A (zh) 2019-04-16
CN109623493B (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2020155230A1 (zh) 一种判定主轴实时热变形姿态的方法
WO2019084948A1 (zh) 一种卧式数控车床的主轴径向热漂移误差建模及补偿方法
TWI650625B (zh) 刀具磨耗檢測裝置、其檢測方法及刀具磨耗補償方法
US11294353B2 (en) Spindle thermal error compensation method insensitive to cooling system disturbance
CN102854841B (zh) 一种曲面零件的形位误差原位补偿加工方法
WO2020155229A1 (zh) 一种进给轴热误差自适应补偿方法
CN108857574B (zh) 数控机床主轴的“热误差-温度”环的应用方法
Costes et al. Surface roughness prediction in milling based on tool displacements
CN105397560A (zh) 一种干切数控滚齿机床及工件热变形误差补偿方法
CN114019903B (zh) 一种数控机床主轴精度自愈方法
Liu et al. Comprehensive thermal growth compensation method of spindle and servo axis error on a vertical drilling center
Liu et al. A novel comprehensive thermal error modeling method by using the workpiece inspection data from production line for CNC machine tool
Yao et al. Dynamic temperature gradient and unfalsified control approach for machine tool thermal error compensation
US20220100168A1 (en) System for controlling machining of a part
Yang et al. Testing, variable selecting and modeling of thermal errors on an INDEX-G200 turning center
CN108919746B (zh) 一种转摆台的热误差测试与分析方法
Zhu et al. Multi-variable driving thermal energy control model of dry hobbing machine tool
Tahvilian et al. Force model for impact cutting grinding with a flexible robotic tool holder
CN108646670B (zh) 一种数控机床部件温度实时预测方法
Griffin et al. Tool wear monitoring and replacement for tubesheet drilling
Zhang et al. Inspection and compensation of spindle thermal extension based on machine vision
Wei et al. Thermal errors classification compensation without sensor for CNC machine tools
WO2020155226A1 (zh) 基于热误差和温升加权的丝杠预紧量确定方法
Fan et al. Experimental study on the effect of coolant on the thermal characteristics of gear grinding machine under load
CN117518982B (zh) 一种提高机床加工精度的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912907

Country of ref document: EP

Kind code of ref document: A1