WO2020155144A1 - 一种分子筛催化剂及其制备方法和应用 - Google Patents

一种分子筛催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2020155144A1
WO2020155144A1 PCT/CN2019/074590 CN2019074590W WO2020155144A1 WO 2020155144 A1 WO2020155144 A1 WO 2020155144A1 CN 2019074590 W CN2019074590 W CN 2019074590W WO 2020155144 A1 WO2020155144 A1 WO 2020155144A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
hours
sieve catalyst
dimethyl ether
treatment
Prior art date
Application number
PCT/CN2019/074590
Other languages
English (en)
French (fr)
Inventor
刘红超
刘世平
朱文良
刘中民
马现刚
刘勇
周子乔
倪友明
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2019/074590 priority Critical patent/WO2020155144A1/zh
Priority to EA202192169A priority patent/EA202192169A1/ru
Priority to EP19913504.7A priority patent/EP3919166A4/en
Priority to US17/426,979 priority patent/US12036538B2/en
Publication of WO2020155144A1 publication Critical patent/WO2020155144A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/37Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by reaction of ethers with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/38Base treatment

Definitions

  • the application relates to a molecular sieve catalyst and its preparation method and application, belonging to the field of catalysis.
  • ethanol has good miscibility. It can be blended into gasoline as a blending component to partially replace gasoline, increase the octane number and oxygen content of gasoline, and effectively promote the full combustion of gasoline. Reduce carbon monoxide and hydrocarbon emissions in automobile exhaust.
  • ethanol can make my country's vehicle fuel present a diversified structure. At present, China mainly uses grain, especially corn, to develop fuel ethanol. It has become the third largest fuel ethanol producer and consumer after Brazil and the United States. However, according to China’s national conditions, there are many disadvantages in ethanol production using grain as raw material. Factors, the future development of fuel ethanol in China will be more non-food routes.
  • the process route of coal-to-ethanol is mainly divided into two types: one is the direct production of ethanol from syngas, but a precious metal rhodium catalyst is required, the catalyst cost is high and the output of rhodium is limited; the second is the hydrogenation of synthesis gas to ethanol,
  • the synthesis gas is first subjected to methanol liquid phase carbonylation to produce acetic acid, and then hydrogenated to synthesize ethanol.
  • the process of this route is mature, but the equipment requires special alloys that resist corrosion, and the cost is relatively high.
  • US patent US20070238897A1 discloses molecular sieves with an eight-membered ring channel structure, such as MOR, FER, and OFF as ether carbonylation catalysts, and the size of the eight-membered ring channels is greater than 0.25 ⁇ 0.36nm. Mordenite is used as a catalyst, 165 Under the conditions of °C and 1MPa, a space-time yield of 0.163-MeOAc(g-Cat.h) -1 was obtained.
  • Patent WO2008132450A1 reports that copper and silver modified MOR catalysts have significantly better performance than unmodified MOR catalysts under hydrogen atmosphere at 250-350°C.
  • CN102950018A discloses data on the carbonylation reaction of dimethyl ether on the rare earth ZSM-35/MOR eutectic molecular sieve. The results show that the activity and stability of the eutectic molecular sieve is significantly better than that when ZSM-35 is used alone, and the stability is significantly better than when the MOR catalyst is used alone.
  • CN101613274A uses pyridine organic amines to modify the mordenite molecular sieve catalyst, and finds that the modification of the molecular sieve can greatly improve the stability of the catalyst.
  • the conversion rate of dimethyl ether is 10-60%, the selectivity of methyl acetate is greater than 99%, and the catalyst activity remains stable after 48 hours of reaction.
  • the above-mentioned documents disclose a large number of research results of dimethyl ether carbonylation, and the catalysts are mainly concentrated in MOR, FER, etc. with an eight-membered ring structure. In the publicly reported results, the catalyst runs stably for less than 100 hours and is extremely easy to deactivate, and the relevant results cannot meet the needs of industrial production.
  • a molecular sieve catalyst which has high activity and stable performance, and can meet the requirements of industrial production.
  • This application provides a catalyst for carbonylation of dimethyl ether to produce methyl acetate, a preparation method and application thereof.
  • the catalyst is Na-MOR molecular sieve (sodium-type mordenite molecular sieve), exchanged with tetraalkylammonium chloride and its derivatives, treated with acid and/or steam, and then exchanged with ammonium chloride and/or ammonium nitrate.
  • Got. Pass dimethyl ether and carbon monoxide-containing raw material gas through a reactor equipped with a catalyst containing acidic molecular sieve through selective control of active sites.
  • the reaction temperature is 150 ⁇ 280°C
  • the reaction pressure is 0.5 ⁇ 25.0MPa
  • the dimethyl ether space velocity is 0.2 ⁇ 4h. Under -1 conditions, the reaction produces methyl acetate.
  • the invention provides a catalyst with high activity and stable performance, which can meet the requirements of industrial production.
  • the molecular sieve catalyst is characterized in that the molecular sieve catalyst contains a modified Na-MOR molecular sieve;
  • the modification includes: organic ammonium salt exchange, dealumination treatment and ammonium ion exchange.
  • the dealumination treatment is selective dealumination (directed dealumination of molecular sieves).
  • the modified Na-MOR molecular sieve is the active component.
  • roasting is performed after the ammonium ion exchange.
  • the modification includes: sequential organic ammonium salt exchange, dealumination treatment and ammonium ion exchange.
  • the modification includes: organic ammonium salt exchange, acid and/or water vapor treatment, and ammonium ion exchange in sequence.
  • the modification includes: organic ammonium salt exchange, acid treatment, steam treatment and ammonium ion exchange in sequence.
  • the organic ammonium salt is selected from at least one of alkyl ammonium chloride salts and alkyl ammonium nitrate salts.
  • the molecular sieve catalyst is a modified Na-MOR molecular sieve.
  • the organic ammonium salt exchange is an alkyl halide ammonium salt exchange.
  • the molecular sieve catalyst is a modified Na-MOR molecular sieve
  • the modification is through alkylammonium chloride salt exchange, acid and/or steam treatment, and ammonium nitrate exchange.
  • the modification includes sequentially undergoing alkylammonium chloride salt exchange, acid and/or steam treatment, and ammonium nitrate exchange.
  • the modification is followed by alkylammonium chloride salt exchange, acid treatment, steam treatment, and ammonium nitrate exchange.
  • the alkyl ammonium halide salt is selected from at least one of the compounds having the chemical formula shown in Formula I:
  • R 1 , R 2 , and R 3 are independently selected from one of C 1 to C 10 alkyl groups
  • R 4 is selected from one of C 1 ⁇ C 10 alkyl groups and C 6 ⁇ C 10 aryl groups;
  • X is selected from at least one of F, Cl, Br or I.
  • X is selected from one of F, Cl, Br or I.
  • R 1 , R 2 , and R 3 are independently selected from one of C 1 to C 6 alkyl groups.
  • R 1 , R 2 , and R 3 are independently selected from one of C 1 to C 4 alkyl groups.
  • R 1 , R 2 , and R 3 are the same.
  • R 1 , R 2 , and R 3 are not the same.
  • R 4 is selected from one of C 6 -C 8 aryl groups.
  • R 4 is selected from one of C 6 -C 8 alkyl substituted benzenes.
  • the alkyl ammonium halide salt is an alkyl ammonium chloride salt.
  • R 1 , R 2 , and R 3 in formula I are independently selected from CH 3 -, CH 3 CH 2 -, CH 3 (CH 2 ) n CH 2 -, (CH 3 ) 2 CH-, (CH 3 ) Any one of 2 CHCH 2 -, CH 3 CH 2 (CH 3 )CH-;
  • R 4 is CH 3 -, CH 3 -, CH 3 CH 2 -, CH 3 (CH 2 ) m CH 2 -, (CH 3 ) 2 CH-, (CH 3 ) 2 CHCH 2 -, CH 3 CH 2 ( CH 3 ) any one of CH-, C 6 H 5 -, CH 3 C 6 H 4 -, (CH 3 ) 2 C 6 H 3 -, C 6 H 5 CH 2 -;
  • n and m are independently selected from 1, 2, 3, or 4.
  • the atomic ratio of silicon to aluminum of the Na-MOR molecular sieve is 6-50.
  • the upper limit of the silicon to aluminum ratio of the Na-MOR molecular sieve is selected from 6.5, 10, 15, 20, 30, 40, or 50; the lower limit is selected from 6, 6.5, 10, 15, 20, 30, or 40.
  • the dealumination treatment includes at least one of high-temperature roasting treatment and acid treatment.
  • the high-temperature roasting treatment is roasting in an atmosphere with a water vapor concentration of 0-100%.
  • the atmosphere with a water vapor concentration of 0-100% includes a mixed atmosphere of water vapor, atmosphere A, water vapor, and atmosphere A;
  • the atmosphere A is selected from at least one of air, nitrogen, and argon.
  • the catalyst for the carbonylation of dimethyl ether to produce methyl acetate is followed by (R 1 )(R 2 )(R 3 )(R 4 )NCl(alkyl) from a sample containing Na-MOR molecular sieve
  • the H-MOR molecular sieve prepared by ammonium chloride salt) exchange, acid and/or steam treatment is the active component, which can provide a new catalyst system for the production of methyl acetate from dimethyl ether.
  • the catalyst is a catalyst prepared by (R 1 )(R 2 )(R 3 )(R 4 )NCl (alkyl ammonium chloride salt) exchange, acid and/or steam treatment.
  • a method for preparing the molecular sieve catalyst described in any one of the above comprises: subjecting the Na-MOR molecular sieve to organic ammonium salt exchange, dealumination treatment, ammonium ion exchange, and roasting to obtain The molecular sieve catalyst.
  • the preparation method of the molecular sieve catalyst includes:
  • the precursor IV is calcined to obtain the molecular sieve catalyst.
  • the conditions for the organic ammonium salt exchange in step (1) are: Na-MOR molecular sieve is exchanged in an organic ammonium salt solution at 20-100° C. for 1-10 hours.
  • the upper limit of the temperature of the organic ammonium salt exchange treatment is selected from 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, or 100°C; the lower limit is selected from 20°C, 30°C, 40°C. °C, 50°C, 60°C, 70°C, 80°C or 90°C.
  • the upper limit of the time of the organic ammonium salt exchange treatment is selected from 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours or 10 hours.
  • the concentration of the organic ammonium salt solution is 0.05-1 mol/L.
  • the volume ratio of the Na-MOR molecular sieve to the organic ammonium salt solution is 1:1 to 1:15 (g/ml).
  • the solid-liquid ratio of the organic ammonium salt exchange is 1 g: 2-15 ml.
  • the upper limit of the concentration of the organic ammonium salt solution is selected from 0.08mol/L, 0.1mol/L, 0.3mol/L, 0.5mol/L, 0.8mol/L or 1mol/L; the lower limit is selected from 0.05mol/L L, 0.08mol/L, 0.1mol/L, 0.3mol/L, 0.5mol/L or 0.8mol/L.
  • the number of exchanges of the organic ammonium salt is 2-8 times;
  • the conditions of the organic ammonium salt exchange are: 30-80°C exchange treatment for 2-6 hours.
  • the step (1) includes: exchange the sample containing Na-MOR with an organic ammonium salt solution at 20-100° C. for 1-10 hours, washing, filtering, and drying the product; repeating the above steps 2-8 times.
  • the acid used in the acid treatment in step (2) is selected from at least one of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, oxalic acid, and citric acid.
  • condition of the acid treatment in step (2) is: treatment in an acid solution at 30-100° C. for 1-10 hours.
  • the concentration of the acidic solution is 0.05 to 1.5 mol/L.
  • the upper limit of the acid treatment temperature is selected from 40°C, 50°C, 60°C, 80°C, or 100°C; the lower limit is selected from 30°C, 40°C, 50°C, 60°C, or 80°C.
  • the upper limit of the acid treatment time is selected from 2 hours, 3 hours, 5 hours, 8 hours or 10 hours; the lower limit is selected from 1 hour, 2 hours, 3 hours, 5 hours or 8 hours.
  • the number of acid treatments is 2-10 times;
  • the conditions of the acid treatment are: treatment in an acid solution at 30-80°C for 2-8 hours.
  • the step (2) includes: treating the sample obtained in step (1) with an acidic solution at 30-100° C. for 1-10 hours, washing, filtering, and drying the product; repeating the above steps 2-10 times.
  • the conditions for the high-temperature roasting treatment in step (3) are: in an atmosphere with a water vapor concentration of 0-100%, treatment at 300-800°C for 1-10 hours.
  • the upper limit of the concentration of water vapor in the high-temperature roasting atmosphere is selected from 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100%; the lower limit is selected From 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%.
  • the upper limit of the temperature of the high-temperature roasting treatment is selected from 350°C, 400°C, 450°C, 500°C, 550°C, 600°C, 650°C, 700°C, 750°C, or 800°C; the lower limit is selected from 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, 600°C, 650°C, 700°C or 750°C.
  • the upper limit of the time of the high-temperature roasting treatment is selected from 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours or 10 hours; the lower limit is selected from 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours or 9 hours.
  • the conditions for the high-temperature roasting treatment are: in an atmosphere with a water vapor concentration of 0-100%, treatment at 350-750°C for 2-6 hours.
  • the step (3) includes: treating the sample obtained in step (2) in an atmosphere with a water vapor concentration of 0-100% at 300-800°C for 1-10 hours.
  • the conditions for the ammonium ion exchange in step (4) are: 20-100° C. exchange treatment for 1-10 hours.
  • the upper limit of the ammonium ion exchange temperature is selected from 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C or 100°C; the lower limit is selected from 20°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C or 90°C.
  • the upper limit of the ammonium ion exchange time is selected from 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours or 10 hours; the lower limit is selected from 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours or 9 hours.
  • the number of ammonium ion exchanges is 2 to 5 times;
  • the conditions of the ammonium ion exchange are 30-90°C exchange treatment for 2-6 hours;
  • the ammonium ion exchange is performed in a solution containing ammonium ions; the ammonium ion-containing solution is selected from at least one of ammonium nitrate solution, ammonium chloride solution, ammonium sulfate solution, and ammonium acetate solution.
  • the step (4) includes: exchange the sample obtained in step (3) in a solution containing ammonium ions at 20 to 100°C for 1 to 10 hours, washing, filtering, and drying the product; repeating the above steps 2 to 5 times .
  • the firing conditions described in step (5) are: air atmosphere, firing at 300-800°C for 2-8 hours.
  • the upper limit of the firing temperature is selected from 350°C, 400°C, 450°C, 500°C, 550°C, 600°C, 650°C, 700°C, 750°C, or 800°C; the lower limit is selected from 300°C, 350°C , 400°C, 450°C, 500°C, 550°C, 600°C, 650°C, 700°C or 750°C.
  • the upper limit of the roasting time is selected from 3 hours, 4 hours, 5 hours, 6 hours, 7 hours or 8 hours; the lower limit is selected from 2 hours, 3 hours, 4 hours, 5 hours, 6 hours or 7 hours .
  • the firing conditions are: air atmosphere, firing at 400-750°C for 4-6 hours.
  • the step (5) includes: calcining the sample obtained in step (4) in air at 300-800° C. for 2-8 hours to prepare a catalyst.
  • the preparation method of the molecular sieve catalyst includes:
  • Precursor II is treated at 300-800°C for 1-10 hours under an atmosphere with a water vapor concentration of 0-100% to obtain precursor III;
  • the precursor IV is calcined in air at 300-800°C for 2-8 hours to prepare the molecular sieve catalyst.
  • the preparation method of the molecular sieve catalyst includes:
  • step (S2) Treat the sample obtained in step (S1) with an acid solution at 30-100°C for 1-10 hours, wash, filter, and dry the product; repeat the above steps 2-10 times;
  • step (S3) Treat the sample obtained in step (S2) in a steam atmosphere at 300-800°C for 1-10 hours;
  • step (S4) Exchange the sample obtained in step (S3) in an aqueous solution of ammonium nitrate at 20-100°C for 1-10 hours, washing, filtering and drying the product; repeat the above steps 2-5 times;
  • step (S5) The sample obtained in step (S4) is calcined in air at 300-800°C for 2-8 hours to prepare a catalyst.
  • At least one of the molecular sieve catalyst described in any one of the above and the molecular sieve catalyst prepared according to the method described in any one of the above is provided as a catalyst for the carbonylation of dimethyl ether to produce methyl acetate. application.
  • a method for carbonylation of dimethyl ether to produce methyl acetate which is characterized in that it comprises: passing dimethyl ether and carbon monoxide-containing feed gas into a reactor carrying a catalyst bed; React with catalyst to produce methyl acetate;
  • the catalyst is selected from at least one of the molecular sieve catalyst described in any one of the above and the molecular sieve catalyst prepared according to the method described in any one of the above.
  • the conditions of the reaction are:
  • the reaction temperature is 150 ⁇ 280°C
  • the reaction pressure is 0.5 ⁇ 25.0MPa
  • the mass space velocity of the dimethyl ether feed is 0.05 ⁇ 5h -1 ;
  • the molar ratio of carbon monoxide to dimethyl ether is 0.1:1 to 30:1.
  • the upper limit of the reaction temperature is selected from 160°C, 170°C, 180°C, 200°C, 210°C, 220°C, 230°C, 240°C, 250°C, 260°C, 270°C or 280°C; the lower limit is chosen from 150°C, 160°C, 170°C, 180°C, 200°C, 210°C, 220°C, 230°C, 240°C, 250°C, 260°C or 270°C.
  • the upper limit of the reaction pressure is selected from 1 MPa, 2 MPa, 5 MPa, 6 MPa, 8 MPa, 10 MPa, 12 MPa, 15 MPa, 18 MPa, 20 MPa, or 25 MPa;
  • the lower limit is selected from 0.5 MPa, 1 MPa, 2 MPa, 5 MPa, 6 MPa, 8 MPa, 10 MPa , 12MPa, 15MPa, 18MPa or 20MPa.
  • the dimethyl ether feed WHSV selected 0.1h -1, 0.2h -1, 0.25h -1 , 0.35h -1, 0.5h -1, 1h -1, 1.2h -1, 1.5h -1, 2h -1, 2.5h -1 , 4h -1, 4.5h -1 or 5h -1; lower limit is selected from 0.05h -1, 0.1h -1, 0.2h -1 , 0.25h -1, 0.35h -1 , 0.5h -1 , 1h -1 , 1.2h -1 , 1.5h -1 , 2h -1 , 2.5h -1 , 4h -1 or 4.5h -1 .
  • the upper limit of the molar ratio of carbon monoxide and dimethyl ether is selected from 0.2:1, 0.5:1, 1:1, 2:1, 4:1, 6:1, 8:1, 12:1, 15 :1, 18:1, 20:1, 25:1 or 30:1; the lower limit is selected from 0.1:1, 0.2:1, 0.5:1, 1:1, 2:1, 4:1, 6:1 8:1, 12:1, 15:1, 18:1, 20:1 or 25:1.
  • the conditions of the reaction are:
  • the reaction temperature is 160 ⁇ 280°C
  • the reaction force is 0.5 ⁇ 20.0MPa
  • the mass space velocity of the dimethyl ether feed is 0.2 ⁇ 4.0h -1 ;
  • the molar ratio of carbon monoxide and dimethyl ether is 0.1:1-20:1.
  • the conditions of the reaction are:
  • the reaction temperature is 170 ⁇ 260°C
  • the reaction pressure is 1.0 ⁇ 15.0MPa
  • the mass space velocity of the dimethyl ether feed is 0.1 ⁇ 4.0h -1 ;
  • the molar ratio of carbon monoxide and dimethyl ether is 0.2:1-15:1.
  • the conditions of the reaction are:
  • the reaction temperature is 160-280° C.
  • the reaction pressure is 0.5-20.0 MPa
  • the dimethyl ether feed mass space velocity is 0.05-5 h -1
  • the molar ratio of carbon monoxide and dimethyl ether is 0.1:1-20:1.
  • the volume content of carbon monoxide in the raw material gas containing carbon monoxide is 15-100%.
  • the carbon monoxide-containing raw material gas further includes inert gas.
  • the inert gas is selected from at least one of inert gas, hydrogen, nitrogen, carbon dioxide, methane, and ethane.
  • the raw material gas containing carbon monoxide further includes at least one of hydrogen, nitrogen, helium, argon, carbon dioxide, methane, and ethane.
  • the volume content of other gases (excluding carbon monoxide) in the raw material gas containing carbon monoxide is 0-85%.
  • the reactor is a fixed bed reactor.
  • the method for producing methyl acetate by carbonylation of dimethyl ether has a selectivity of methyl acetate in the product obtained by greater than 90%.
  • the method for producing methyl acetate by carbonylation of dimethyl ether has a selectivity of greater than 98% for methyl acetate in the product.
  • the method for producing methyl acetate by carbonylation of dimethyl ether obtains a high space-time yield of methyl acetate in the product, which can reach ⁇ 1 gMAc/(gcat.h).
  • C 1 to C 10 “C 6 to C 10”, etc. all refer to the number of carbon atoms contained in the group.
  • aryl refers to a group formed by the loss of any hydrogen atom on the molecule of an aromatic hydrocarbon compound.
  • alkyl refers to a group formed by the loss of any hydrogen atom on the molecule of an alkane compound.
  • the present invention provides a catalyst for the one-step production of methyl acetate with dimethyl ether.
  • the catalyst has high activity, high space-time yield of methyl acetate, good stability, and a catalyst life of over 8000 hours, which has extremely strong industrial application value.
  • the present invention provides a catalyst preparation method, which can realize the directional elimination and protection of acid sites of the catalyst, and provides a new method for the preparation of molecular sieve catalysts.
  • the catalyst of the present invention is applied in the reaction of dimethyl ether carbonylation to produce methyl acetate, which not only can ensure high product yield and long life, but also has a wide adjustable range of reaction process conditions, making the present invention universal and extremely versatile. Wide range of industrial applications.
  • the raw materials in the examples of this application are all purchased through commercial channels, among which Na-MOR is purchased from Nankai Catalyst Factory.
  • the reacted gas is introduced into the online chromatograph via the heated pipeline for online analysis.
  • the chromatograph is Agilent 7890A, equipped with PLOT Q capillary column and TDX-1 packed column.
  • the outlet of PLOT-Q capillary column is connected to FID detector, and the outlet of TDX-1 packed column is connected to TCD detector.
  • the conversion rate of dimethyl ether the conversion rate of carbon monoxide and the selectivity of methyl acetate are calculated by:
  • the conversion rate of dimethyl ether and the selectivity of methyl acetate are calculated based on the number of carbon moles of dimethyl ether:
  • Methyl acetate selectivity (2/3) ⁇ (moles of methyl acetate carbon in the product) ⁇ [(moles of dimethyl ether carbon in the feed gas)-(moles of dimethyl ether carbon in the product)] ⁇ (100 %)
  • Carbon monoxide conversion rate [(CO moles before reaction)-(CO moles after reaction)] ⁇ (CO moles before reaction) ⁇ (100%)
  • the catalyst for carbonylation of dimethyl ether to produce methyl acetate is a catalyst containing a modified Na-MOR molecular sieve as an active component.
  • the modified Na-MOR molecular sieve is exchanged with (R 1 )(R 2 )(R 3 )(R 4 )NCl (alkyl ammonium chloride salt), acid and/or Prepared by steam treatment and ammonium nitrate exchange.
  • the atomic ratio of silicon to aluminum in the Na-MOR molecular sieve is 6-50.
  • R 1 , R 2 , and R 3 are CH 3 -, CH 3 CH 2 -, CH 3 (CH 2 ) n CH 2- (where 0 ⁇ n ⁇ 4), (CH 3 ) 2 CH-, (CH 3 ) 2 CHCH 2 -, CH 3 CH 2 (CH 3 )CH- R 4 is CH 3 -, CH 3 -, CH 3 CH 2 -, CH 3 (CH 2 ) n CH 2- (where 0 ⁇ n ⁇ 4), (CH 3 ) 2 CH-, (CH 3 ) 2 CHCH 2 -, CH 3 CH 2 (CH 3 )CH-, C 6 H 5 -, CH 3 C 6 H 4 -, (CH 3 ) 2 C 6 H 3 -, C 6 H 5 CH Any of 2 -.
  • the (R 1 )(R 2 )(R 3 )(R 4 )NCl salt is preferably tetramethylammonium chloride, tetraethylammonium chloride, tetrapropylammonium chloride, One or any of ethyl trimethyl ammonium chloride, diethyl dimethyl ammonium chloride, triethyl methyl ammonium chloride, phenyl trimethyl ammonium chloride, and benzyl trimethyl ammonium chloride A mixture of several.
  • the method for preparing the catalyst for carbonylation of dimethyl ether to produce methyl acetate is characterized in that it comprises the following steps:
  • step b) Treat the sample obtained in step a) with an acid solution at 30-100°C for 1-10 hours, wash, filter, and dry the product; repeat the above steps 2-10 times;
  • step b) Treat the sample obtained in step b) for 1-10 hours at 300-800°C in a steam atmosphere;
  • step d) Exchange the sample obtained in step c) in an aqueous solution of ammonium nitrate at 20-100°C for 1-10 hours, wash, filter, and dry the product; repeat the above steps 2-5 times;
  • step d) calcining the sample obtained in step d) at 300-800°C for 2-8 hours in air to prepare a catalyst.
  • the concentration of the salt solution in step a) is 0.05-1 mol/L.
  • the exchange temperature in the step a) is 30-80°C, and the time is 2-6 hours.
  • the acid solution in step b) is one or more of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, oxalic acid, and citric acid.
  • the temperature of the acid treatment in step b) is 30-80° C. and the time is 2-8 hours.
  • the treatment is carried out in a steam atmosphere at 350-750°C for 2-6 hours.
  • the exchange treatment temperature is 30 to 90° C. and the time is 2 to 6 hours.
  • the sample obtained in step e) is calcined in air at 400-750° C. for 4-6 hours.
  • the method for producing methyl acetate by carbonylation of dimethyl ether includes: passing dimethyl ether and a raw material containing carbon monoxide through a reactor, and the catalyst described in any one of the above, according to any one of the above
  • the method described in the item produces methyl acetate by the carbonylation of dimethyl ether.
  • the reaction temperature is 150 ⁇ 280°C
  • the reaction pressure is 0.5 ⁇ 25.0MPa
  • the mass space velocity of dimethyl ether is 0.2 ⁇ 4h -1 to produce methyl acetate.
  • the molar ratio of dimethyl ether to carbon monoxide is 0.1:1-30:1.
  • the carbonylation reaction is performed at a temperature of 160-280°C, a pressure of 0.5-20.0 MPa, a dimethyl ether feed mass space velocity of 0.05-5 h -1 , and a molar ratio of carbon monoxide to dimethyl ether It is carried out at 0.1:1 ⁇ 20:1.
  • the reaction temperature is 170 to 260°C
  • the pressure is 1.0 to 15.0 MPa
  • the mass space velocity of the dimethyl ether feed is 0.1 to 4.0 h -1
  • the molar ratio of carbon monoxide to dimethyl ether is 0.2 :1 ⁇ 15:1.
  • the carbon monoxide-containing feed gas may contain any one or more of hydrogen, nitrogen, helium, argon, carbon dioxide, methane and ethane in addition to carbon monoxide; preferably, based on The total volume of the raw material gas containing carbon monoxide, the volume content of carbon monoxide is 15-100%, and the volume of any one or more of other gases such as hydrogen, nitrogen, helium, argon, carbon dioxide, methane and ethane. The content is 0-85%.
  • the oxalic acid was replaced by hydrochloric acid, nitric acid, sulfuric acid, acetic acid, citric acid, and the above-mentioned acid in an equimolar mixture.
  • the other conditions were the same as in Example 1.
  • the catalysts 13#, 14#, 15#, 16 were prepared in sequence #, 17#, 18#.
  • the dry air atmosphere was replaced with an air atmosphere with a water vapor concentration of 10%, an air atmosphere with a water vapor concentration of 40%, and an atmosphere with a water vapor concentration of 100%.
  • the other conditions were the same as in Example 1, and the catalyst 19 was prepared in sequence. #, 20#, 21#.
  • the processing temperatures are 350°C, 500°C, 600°C, 750°C, 800°C, 300°C, and other conditions are the same as in Example 1.
  • Na-MOR is treated in phenyltrimethylammonium chloride aqueous solution, it is separately subjected to the following procedures (1) oxalic acid aqueous solution; (2) roasting treatment in dry air; (3) in the water vapor concentration of 10%
  • the conditions of the air atmosphere treatment were the same as those of the corresponding procedure in Example 1, and then the treatment was carried out with an aqueous solution of ammonium nitrate, and the conditions were also the same as those of the corresponding procedure in Example 1, to prepare catalyst 28#, 29#, and 30#.
  • the treatment temperature of the phenyltrimethylammonium chloride solution was changed to 20°C, 60°C, and 100°C, and other conditions were the same as in Example 1, and catalysts 36#, 37#, and 38# were prepared in sequence.
  • the treatment time of the phenyltrimethylammonium chloride solution was changed to 1 hour, 2 hours, 6 hours, and 10 hours, and the other conditions were the same as in Example 1.
  • the catalysts 39#, 40#, 41#, 42 were prepared in sequence #.
  • the temperature of the acid treatment was changed to 30°C, 80°C, and 100°C, and other conditions were the same as in Example 1, and catalysts 45#, 46#, and 47# were prepared in sequence.
  • the acid treatment time was changed to 1 hour, 2 hours, 8 hours, and 10 hours. Other conditions were the same as in Example 1. Catalysts 48#, 49#, 50#, 51# were prepared in sequence.
  • the treatment time in the dry air atmosphere was changed to 1 hour, 2 hours, 6 hours, and 10 hours, and other conditions were kept the same as in Example 1, and catalysts 54#, 55#, 56#, and 57# were sequentially prepared.
  • the treatment temperature of the aqueous ammonium nitrate solution was changed to 20°C, 30°C, 90°C, and 100°C, and other conditions were kept the same as in Example 1, and catalysts 58#, 59#, 60#, and 61# were sequentially prepared.
  • the treatment time of the aqueous ammonium nitrate solution was changed to 1 hour, 2 hours, 6 hours, and 10 hours.
  • the other conditions were the same as in Example 1, and catalysts 62#, 63#, 64#, and 65# were sequentially prepared.
  • the calcination time was changed to 2 hours, 6 hours, and 8 hours, and other conditions were the same as in Example 1, and catalysts 66#, 67#, and 68# were prepared in sequence.
  • the calcination temperature was changed to 300°C, 400°C, 750°C, and 800°C, and other conditions were kept the same as in Example 1.
  • Catalysts 69#, 70#, 71#, 72# were prepared in sequence.
  • ammonium nitrate aqueous solution was replaced with an ammonium chloride aqueous solution, an ammonium sulfate aqueous solution, and an ammonium acetate aqueous solution.
  • Other conditions were the same as in Example 1, and catalysts 73#, 74#, and 75# were prepared in sequence.
  • the catalyst used is sample #1, 10g of catalyst is put into a fixed bed reactor with an inner diameter of 28 mm, the temperature is raised to 550°C at 5°C/min under a nitrogen atmosphere, and the temperature is kept for 4 hours, and then the reaction temperature is lowered to the reaction temperature in a nitrogen atmosphere.
  • the pressure of the reaction system was increased to 5 MPa with CO.
  • the reaction raw materials are passed through the catalyst bed from top to bottom.
  • the dimethyl ether feed mass space velocity is 1.50h -1 ;
  • the molar ratio of carbon monoxide to dimethyl ether is 1:1, the carbon monoxide feed gas does not contain other gases, and the reaction temperatures are 170°C, 200°C, and 230°C, respectively , 240°C and 260°C.
  • Table 2 The results of the catalytic reaction running for 100 hours are shown in Table 2.
  • the catalyst used was 1# sample, the reaction pressure was 1, 6, 10, and 15 MPa, and the reaction temperature was 220° C., and other conditions were the same as in Example 16.
  • the reaction results are shown in Table 3.
  • the catalyst used was sample # 1, the feed mass space velocity of dimethyl ether were 0.35h -1, 1h -1, 2.5h -1 and 4h -1, reaction temperature was 200 °C, other conditions were same as in Example 15. When the reaction was run for 100 hours, the reaction results are shown in Table 4.
  • the catalyst used is 1# sample, the dimethyl ether feed mass space velocity is 1.5h -1 , and the molar ratio of carbon monoxide and dimethyl ether are 0.2:1, 0.5:1, 2:1, 4:1, 8:1, respectively At 12:1, the reaction temperature is 210°C, and other conditions are the same as in Example 16. When the reaction was run for 100 hours, the reaction results are shown in Table 5.
  • the catalyst used is the 23# sample, the dimethyl ether feed mass space velocity is 0.5h -1 , the carbon monoxide feed gas contains inactive gas, the molar ratio of the feed gas containing carbon monoxide to dimethyl ether is 4:1, and the reaction temperature At 225°C, other conditions are the same as in Example 16.
  • the reaction results are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

提供一种分子筛催化剂及其制备方法和应用。所述分子筛催化剂含有改性的Na-MOR分子筛;所述改性包括:经有机铵盐交换、脱铝处理和铵离子交换。所述方法获得的催化剂,用于二甲醚一步生产乙酸甲酯活性高且性能稳定,能够满足工业生产的需求。

Description

一种分子筛催化剂及其制备方法和应用 技术领域
本申请涉及一种分子筛催化剂及其制备方法和应用,属于催化领域。
背景技术
随着现代工业的迅速发展,能源供需矛盾日趋突出。我国作为能源消费大国,同时又是能源短缺大国,迫切需要寻找可替代能源。乙醇作为一种清洁能源,具有很好的互溶性,可以作为调合组分掺混到汽油中,部分地替代汽油,并提高汽油的辛烷值及含氧量,有效促进汽油的充分燃烧,减少汽车尾气中一氧化碳、烃类的排放量。乙醇作为车用燃料的部分替代品,可使我国的车用燃料呈现多元化的结构特征。目前我国主要以粮食,尤其是玉米为原料发展燃料乙醇,已成为仅次于巴西、美国的第三大燃料乙醇生产和消费国,但根据我国国情,以粮食为原料进行乙醇生产存在诸多的不利因素,未来我国燃料乙醇发展更多的是非粮食路线。
从煤炭资源出发,经合成气生产乙醇是我国新型煤化工产业发展的一个重要方向,具有广阔的市场前景。这对煤炭资源清洁利用,缓解石油资源紧缺的矛盾,提高我国能源安全,具有重要的战略意义和深远影响。目前,煤制乙醇的工艺路线主要分为两种:一是合成气直接制乙醇,但需贵金属铑催化剂,催化剂的成本较高并且铑的产量有限;二是合成气经醋酸加氢制乙醇,合成气先经甲醇液相羰基化制乙酸,进而加氢合成乙醇。此路线工艺成熟,但设备需要抗腐蚀的特种合金,成本较高。
美国专利US20070238897A1披露了以具有八元环孔道结构的分子筛,比如MOR、FER和OFF作为醚类羰基化催化剂,且八元环孔道的尺寸要大于0.25×0.36nm,在以丝光沸石为催化剂、165℃、1MPa的条件下,获得了0.163-MeOAc(g-Cat.h) -1的时空收率。专利WO2008132450A1报道了铜、银修饰MOR催化剂,在氢气气氛、250-350℃条件下,其性能明显优于未修饰的MOR催化剂。CN102950018A披露了二甲醚在稀土ZSM-35/MOR共晶分子筛上羰基化反应上的数据。其结果显示共晶分子筛在活性和稳定性方面明显优于单独使用ZSM-35时的活性和稳定性,稳定性明显优于单独使用MOR催化剂时的稳定性。
CN101613274A利用吡啶类有机胺改性丝光沸石分子筛催化剂,发现分子筛的改性可以大幅度提高催化剂的稳定性。二甲醚的转化率10-60%,乙酸甲酯选择性大于 99%,并在反应48小时后催化剂活性保持稳定。上述文献公开了大量二甲醚羰基化研究结果,其催化剂主要集中在具有八元环结构的MOR、FER等。在公开报道的结果中催化剂稳定运行小于100小时,极易失活,并且相关结果不能够满足工业生产的需求。
发明内容
根据本申请的一个方面,提供了一种分子筛催化剂,该分子筛催化剂活性高且性能稳定,能够满足工业生产的需求。
本申请提供一种二甲醚羰基化生产乙酸甲酯催化剂、其制备方法及其应用。催化剂是Na-MOR分子筛(钠型的丝光沸石分子筛)用四烷基氯化铵及其衍生物交换处理并经酸和/或水蒸气处理后,再用氯化铵和/或硝酸铵交换制得。将二甲醚与含有一氧化碳的原料气通过装有含通过选择性调控活性位酸性分子筛催化剂的反应器,在反应温度150~280℃,反应压力0.5~25.0MPa,二甲醚空速0.2~4h -1条件下反应生产乙酸甲酯。本发明提供了催化剂活性高且性能稳定,能够满足工业生产的需求。
所述分子筛催化剂,其特征在于,所述分子筛催化剂含有改性的Na-MOR分子筛;
所述改性包括:经有机铵盐交换、脱铝处理和铵离子交换。
可选地,所述脱铝处理为选择性脱铝(分子筛的定向脱铝)。
可选地,所述改性的Na-MOR分子筛为活性组分。
可选地,所述铵离子交换后进行焙烧。
可选地,所述改性包括:依次经过有机铵盐交换、脱铝处理和铵离子交换。
可选地,所述改性包括:依次经过有机铵盐交换、酸和/或水蒸气处理和铵离子交换。
可选地,所述改性包括:依次经过有机铵盐交换、酸处理、水蒸气处理和铵离子交换。
可选地,所述有机铵盐选自烷基氯化铵盐、烷基硝酸铵盐中的至少一种。
可选地,所述分子筛催化剂为改性的Na-MOR分子筛。
可选地,所述有机铵盐交换为烷基卤化铵盐交换。
可选地,所述分子筛催化剂为改性的Na-MOR分子筛;
所述改性为经烷基氯化铵盐交换,酸和/或水蒸气处理,硝酸铵交换。
可选地,所述改性为依次经过烷基氯化铵盐交换,酸和/或水蒸气处理,硝酸铵交换。
可选地,所述改性依次为烷基氯化铵盐交换,酸处理,水蒸气处理,硝酸铵交换。
可选地,所述烷基卤化铵盐选自具有式I所示的化学式的化合物的中的至少一种:
Figure PCTCN2019074590-appb-000001
其中,R 1,R 2,R 3独立地选自C 1~C 10的烷基中的一种;
R 4选自C 1~C 10的烷基、C 6~C 10的芳基中的一种;
X选自F、Cl、Br或I中的至少一种。
可选地,X选自F、Cl、Br或I中的一种。
可选地,R 1,R 2,R 3独立地选自C 1~C 6的烷基中的一种。
可选地,R 1,R 2,R 3独立地选自C 1~C 4的烷基中的一种。
可选地,R 1,R 2,R 3相同。
可选地,R 1,R 2,R 3不相同。
可选地,R 4选自C 6~C 8的芳基中的一种。
可选地,R 4选自C 6~C 8的烷基取代苯中的一种。
可选地,所述烷基卤化铵盐为烷基氯化铵盐。
可选地,式I中R 1,R 2,R 3独立地选自CH 3-、CH 3CH 2-、CH 3(CH 2) nCH 2-、(CH 3) 2CH-、(CH 3) 2CHCH 2-、CH 3CH 2(CH 3)CH-中的任意一种;
R 4为CH 3-、CH 3-、CH 3CH 2-、CH 3(CH 2) mCH 2-、(CH 3) 2CH-、(CH 3) 2CHCH 2-、CH 3CH 2(CH 3)CH-、C 6H 5-、CH 3C 6H 4-、(CH 3) 2C 6H 3-、C 6H 5CH 2-中的任意一种;
其中,n和m独立地选自1、2、3或4。
可选地,所述Na-MOR分子筛的硅铝原子比为6~50。
可选地,所述Na-MOR分子筛的硅铝比的上限选自6.5、10、15、20、30、40或50;下限选自6、6.5、10、15、20、30或40。
可选地,所述脱铝处理包括高温焙烧处理、酸处理中的至少一种。
可选地,所述高温焙烧处理为在水蒸汽浓度为0~100%的气氛下进行焙烧。
可选地,所述水蒸汽浓度为0~100%的气氛包括水蒸汽、气氛A、水蒸汽和气氛A的混合气氛;
其中,气氛A选自空气、氮气、氩气中的至少一种。
作为其中一种具体的实施方式,二甲醚羰基化生产乙酸甲酯催化剂,由含有 Na-MOR分子筛的样品先后经(R 1)(R 2)(R 3)(R 4)NCl(烷基氯化铵盐)交换、酸和/或水蒸气处理制备的H-MOR分子筛为活性组分,可以提供一种二甲醚生产乙酸甲酯的新催化剂体系。
可选地,所述催化剂为经(R 1)(R 2)(R 3)(R 4)NCl(烷基氯化铵盐)交换、酸和/或水蒸气处理制备的催化剂。
本申请的又一方面,提供了上述任一项所述的分子筛催化剂的制备方法,其特征在于,包括:将Na-MOR分子筛经有机铵盐交换、脱铝处理、铵离子交换,焙烧,得到所述分子筛催化剂。
可选地,所述分子筛催化剂的制备方法包括:
(1)将Na-MOR分子筛经过有机铵盐交换,得到前驱体I;
(2)将前驱体I进行酸处理,得到前驱体II;
(3)将前驱体II进行高温焙烧处理,得到前驱体III;
(4)将前驱体III进行铵离子交换,得到前驱体IV;
(5)将前驱体IV焙烧,得到所述分子筛催化剂。
可选地,步骤(1)中所述有机铵盐交换的条件为:将Na-MOR分子筛在有机铵盐溶液中,20~100℃交换处理1~10小时。
可选地,所述有机铵盐交换处理的温度上限选自30℃、40℃、50℃、60℃、70℃、80℃、90℃或100℃;下限选自20℃、30℃、40℃、50℃、60℃、70℃、80℃或90℃。
可选地,所述有机铵盐交换处理的时间上限选自2小时、3小时、4小时、5小时、6小时、7小时、8小时、9小时或10小时。
可选地,所述有机铵盐溶液的浓度为0.05~1mol/L。
可选地,所述Na-MOR分子筛与所述有机铵盐溶液体的体积比为1:1~1:15(g/ml)。
可选地,所述有机铵盐交换的固液比为1g:2~15ml。
可选地,所述有机铵盐溶液的浓度上限选自0.08mol/L、0.1mol/L、0.3mol/L、0.5mol/L、0.8mol/L或1mol/L;下限选自0.05mol/L、0.08mol/L、0.1mol/L、0.3mol/L、0.5mol/L或0.8mol/L。
可选地,所述有机铵盐交换的次数为2~8次;
所述有机铵盐交换的条件为:30~80℃交换处理2~6小时。
可选地,所述步骤(1)包括:将含有Na-MOR样品用有机铵盐溶液在20~100℃ 交换处理1~10小时,产物洗涤、过滤、干燥;重复上述步骤2-8次。
可选地,步骤(2)中所述酸处理采用的酸选自盐酸、硝酸、硫酸、乙酸、乙二酸、柠檬酸中的至少一种。
可选地,步骤(2)中所述酸处理的条件为:酸性溶液中30~100℃处理1~10小时。
可选地,所述酸性溶液的浓度为0.05~1.5mol/L。
可选地,所述酸处理的温度上限选自40℃、50℃、60℃、80℃或100℃;下限选自30℃、40℃、50℃、60℃或80℃。
可选地,所述酸处理的时间上限选自2小时、3小时、5小时、8小时或10小时;下限选自1小时、2小时、3小时、5小时或8小时。
可选地,所述酸处理的次数为2~10次;
所述酸处理的条件为:酸性溶液中30~80℃处理2~8小时。
可选地,所述步骤(2)包括:将步骤(1)所得样品用酸性溶液在30~100℃处理1~10小时,产物洗涤、过滤、干燥;重复上述步骤2-10次。
可选地,步骤(3)中所述高温焙烧处理的条件为:水蒸汽浓度为0~100%的气氛下,300~800℃条件下处理1~10小时。
可选地,所述高温焙烧的气氛中水蒸气的浓度上限选自10%、20%、30%、40%、50%、60%、70%、80%、90%或100%;下限选自0%、10%、20%、30%、40%、50%、60%、70%、80%或90%。
可选地,所述高温焙烧处理的温度上限选自350℃、400℃、450℃、500℃、550℃、600℃、650℃、700℃、750℃或800℃;下限选自300℃、350℃、400℃、450℃、500℃、550℃、600℃、650℃、700℃或750℃。
可选地,所述高温焙烧处理的时间上限选自2小时、3小时、4小时、5小时、6小时、7小时、8小时、9小时或10小时;下限选自1小时、2小时、3小时、4小时、5小时、6小时、7小时、8小时或9小时。
可选地,所述高温焙烧处理的条件为:水蒸汽浓度为0~100%的气氛下,350~750℃条件下处理2~6小时。
可选地,所述步骤(3)包括:将步骤(2)所得样品在水蒸汽浓度为0~100%的气氛下、300~800℃条件下处理1~10小时。
可选地,步骤(4)中铵离子交换的条件为:20~100℃交换处理1~10小时。
可选地,所述铵离子交换的温度上限选自30℃、40℃、50℃、60℃、70℃、80℃、 90℃或100℃;下限选自20℃、30℃、40℃、50℃、60℃、70℃、80℃或90℃。
可选地,所述铵离子交换的时间上限选自2小时、3小时、4小时、5小时、6小时、7小时、8小时、9小时或10小时;下限选自1小时、2小时、3小时、4小时、5小时、6小时、7小时、8小时或9小时。
可选地,所述铵离子交换的次数为2~5次;
所述铵离子交换的条件为30~90℃交换处理2~6小时;
所述铵离子交换在含铵离子的溶液中进行;所述含铵离子溶液选自硝酸铵溶液、氯化铵溶液、硫酸铵溶液、乙酸铵溶液中的至少一种。
可选地,所述步骤(4)包括:将步骤(3)所得样品在含铵离子溶液在20~100℃交换处理1~10小时,产物洗涤、过滤、干燥;重复上述步骤2~5次。
可选地,步骤(5)中所述的焙烧的条件为:空气气氛,300~800℃条件下焙烧2~8小时。
可选地,所述焙烧的温度上限选自350℃、400℃、450℃、500℃、550℃、600℃、650℃、700℃、750℃或800℃;下限选自300℃、350℃、400℃、450℃、500℃、550℃、600℃、650℃、700℃或750℃。
可选地,所述焙烧的时间上限选自3小时、4小时、5小时、6小时、7小时或8小时;下限选自2小时、3小时、4小时、5小时、6小时或7小时。
可选地,所述焙烧的条件为:空气气氛,400~750℃条件下焙烧4~6小时。
可选地,所述步骤(5)包括:将步骤(4)所得样品在空气、300~800℃条件下焙烧2~8小时,制备得到催化剂。
可选地,所述分子筛催化剂的制备方法包括:
a)将含有Na-MOR分子筛的固体用含有烷基卤化铵盐的溶液在20~100℃交换1~10小时,交换次数为2~8次,得到前驱体I;
b)将前驱体I用酸性溶液在30~100℃处理1~10小时,处理次数为2~10次,得到前驱体II;
c)将前驱体II在水蒸汽浓度为0~100%的气氛下,300~800℃条件下处理1~10小时,得到前驱体III;
d)将前驱体III在硝酸铵水溶液中20~100℃交换处理1~10小时,交换次数为2~5次,得到前驱体IV;
e)将前驱体IV在空气、300~800℃条件下焙烧2~8小时,制备得到所述分子筛催 化剂。
作为其中一种具体的实施方式,所述分子筛催化剂的制备方法包括:
(S1)将含有Na-MOR样品用(R 1)(R 2)(R 3)(R 4)NCl盐溶液在20~100℃交换处理1~10小时,产物洗涤、过滤、干燥;重复上述步骤2~8次;
(S2)将步骤(S1)所得样品用酸性溶液在30~100℃处理1~10小时,产物洗涤、过滤、干燥;重复上述步骤2~10次;
(S3)将步骤(S2)所得样品在水蒸汽气氛、300~800℃条件下处理1~10小时;
(S4)将步骤(S3)所得样品在硝酸铵水溶液在20~100℃交换处理1~10小时,产物洗涤、过滤、干燥;重复上述步骤2~5次;
(S5)将步骤(S4)所得样品在空气、300~800℃条件下焙烧2~8小时,制备得到催化剂。
本申请的另一方面,提供了上述任一项所述的分子筛催化剂、根据上述任一项所述的方法制备得到的分子筛催化剂中的至少一种作为二甲醚羰基化生产乙酸甲酯催化剂的应用。
本申请的又一方面,提供了一种二甲醚羰基化生产乙酸甲酯的方法,其特征在于,包括:将二甲醚和含有一氧化碳的原料气通入载有催化剂床层的反应器,与催化剂接触反应,生产乙酸甲酯;
其中,所述催化剂选自上述任一项所述的分子筛催化剂、根据上述任一项所述的方法制备得到的分子筛催化剂中的至少一种。
本领域技术人员可根据实际需要,选择原料气中二甲醚、一氧化碳的比例、反应温度、反应压力以及空速等操作条件。
本领域技术人员可根据实际生产需要,选择合适的反应器。
可选地,所述反应的条件为:
反应温度150~280℃,反应压力0.5~25.0MPa,二甲醚进料质量空速为0.05~5h -1
一氧化碳与二甲醚的摩尔比例为0.1:1~30:1。
可选地,所述反应温度上限选自160℃、170℃、180℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃或280℃;下限选自150℃、160℃、170℃、180℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃或270℃。
可选地,所述反应压力上限选自1MPa、2MPa、5MPa、6MPa、8MPa、10MPa、 12MPa、15MPa、18MPa、20MPa或25MPa;下限选自0.5MPa、1MPa、2MPa、5MPa、6MPa、8MPa、10MPa、12MPa、15MPa、18MPa或20MPa。
可选地,所述二甲醚进料质量空速选自0.1h -1、0.2h -1、0.25h -1、0.35h -1、0.5h -1、1h -1、1.2h -1、1.5h -1、2h -1、2.5h -1、4h -1、4.5h -1或5h -1;下限选自0.05h -1、0.1h -1、0.2h -1、0.25h -1、0.35h -1、0.5h -1、1h -1、1.2h -1、1.5h -1、2h -1、2.5h -1、4h -1或4.5h -1
可选地,所述一氧化碳和二甲醚的摩尔比上限选自0.2:1、0.5:1、1:1、2:1、4:1、6:1、8:1、12:1、15:1、18:1、20:1、25:1或30:1;下限选自0.1:1、0.2:1、0.5:1、1:1、2:1、4:1、6:1、8:1、12:1、15:1、18:1、20:1或25:1。
可选地,所述反应的条件为:
反应温度为160~280℃,反应力为0.5~20.0MPa,二甲醚进料质量空速为0.2~4.0h -1
一氧化碳和二甲醚的摩尔比为0.1:1~20:1。
可选地,所述反应的条件为:
反应温度为170~260℃,反应压力为1.0~15.0MPa,二甲醚进料质量空速为0.1~4.0h -1
一氧化碳和二甲醚的摩尔比为0.2:1~15:1。
可选地,所述反应的条件为:
反应温度为160~280℃,反应压力为0.5~20.0MPa,二甲醚进料质量空速为0.05~5h -1,一氧化碳和二甲醚的摩尔比为0.1:1~20:1。
可选地,所述含有一氧化碳的原料气中一氧化碳的体积含量为15~100%。
可选地,所述含一氧化碳的原料气中还包括非活性气体。
可选地,所述非活性气体选自惰性气体、氢气、氮气、二氧化碳、甲烷、乙烷中的至少一种。
可选地,所述含有一氧化碳的原料气还包括氢气、氮气、氦气、氩气、二氧化碳、甲烷、乙烷中的至少一种。
可选地,所述含有一氧化碳的原料气中其他气体(除去一氧化碳)的体积含量为0~85%。
可选地,所述反应器为固定床反应器。
可选地,所述二甲醚羰基化生产乙酸甲酯的方法获得产物中乙酸甲酯的选择性大于90%。
可选地,所述二甲醚羰基化生产乙酸甲酯的方法获得产物中乙酸甲酯的选择性大 于98%。
可选地,所述二甲醚羰基化生产乙酸甲酯的方法获得产物中乙酸甲酯时空产率高,可达到≥1gMAc/(gcat.h)。
本申请中,“C 1~C 10”,“C 6~C 10”等均指基团中所包含的碳原子数。
本申请中,“芳基”,是指由芳香烃化合物分子上失去任意一个氢原子所形成的基团。
本申请中,“烷基”,是指由烷烃化合物分子上失去任意一个氢原子所形成的基团。
本申请能产生的有益效果包括:
1)本发明提供了一种二甲醚一步生产乙酸甲酯催化剂,该催化剂活性高,乙酸甲酯时空产率高,稳定性好,催化剂寿命在8000小时以上,具有极强的工业应用价值。
2)本发明提供了一种催化剂制备方法,该方法在可以使催化剂实现酸性位的定向消除与保护,为分子筛催化剂的制备提供了一个新的方法。
3)本发明的催化剂应用于二甲醚羰基化生产乙酸甲酯反应中,不仅可以保证高产品收率以及长寿命,而且反应工艺条件可调范围广,使得本发明具有普适性,具有极广的工业应用范围。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买,其中Na-MOR购自南开催化剂厂。
本申请的实施例中分析方法如下:
反应后的气体经过被加热的管线导入在线色谱仪进行在线分析。色谱仪为Agilent7890A,配备PLOT Q毛细柱和TDX-1填充柱,PLOT-Q毛细柱出口接FID检测器,TDX-1填充柱出口接TCD检测器。
本申请的实施例中转化率、选择性计算如下:
本申请的实施例中,二甲醚转化率、一氧化碳转化率以及乙酸甲酯选择性的计算通过:
实施例中,二甲醚的转化率和乙酸甲酯的选择性都基于二甲醚的碳摩尔数进行计 算:
二甲醚转化率=[(原料气中二甲醚碳摩尔数)-(产物中二甲醚碳摩尔数)]÷(原料气中二甲醚碳摩尔数)×(100%)
乙酸甲酯选择性=(2/3)×(产物中乙酸甲酯碳摩尔数)÷[(原料气中二甲醚碳摩尔数)-(产物中二甲醚碳摩尔数)]×(100%)
一氧化碳转化率=[(反应前的CO摩尔数)-(反应后的CO摩尔数)]÷(反应前的CO摩尔数)×(100%)
根据本申请的一种实施方式,所述二甲醚羰基化生产乙酸甲酯催化剂,为含有改性的Na-MOR分子筛为活性组分的催化剂。
作为其中一种实施方式,所述改性的Na-MOR分子筛为先后经(R 1)(R 2)(R 3)(R 4)NCl(烷基氯化铵盐)交换、酸和/或水蒸气处理,硝酸铵交换制得。
作为其中一种实施方式,所述的Na-MOR分子筛硅铝原子比为6~50。
作为其中一种实施方式,所述(R 1)(R 2)(R 3)(R 4)NCl(烷基氯化铵)盐中R 1、R 2、R 3为CH 3-、CH 3CH 2-、CH 3(CH 2) nCH 2-(其中0≦n≦4)、(CH 3) 2CH-、(CH 3) 2CHCH 2-、CH 3CH 2(CH 3)CH-中的任意一种;R 4为CH 3-、CH 3-、CH 3CH 2-、CH 3(CH 2) nCH 2-(其中0≦n≦4)、(CH 3) 2CH-、(CH 3) 2CHCH 2-、CH 3CH 2(CH 3)CH-、C 6H 5-、CH 3C 6H 4-、(CH 3) 2C 6H 3-、C 6H 5CH 2-中的任意一种。
作为其中一种实施方式,所述(R 1)(R 2)(R 3)(R 4)NCl盐优选为四甲基氯化铵、四乙基氯化铵、四丙基氯化铵、乙基三甲基氯化铵、二乙基二甲基氯化铵、三乙基甲基氯化铵、苯基三甲基氯化铵、苄基三甲基氯化铵中一种或任意几种的混合。
作为其中一种实施方式,制备所述二甲醚羰基化生产乙酸甲酯催化剂的方法,其特征在于,包括以下步骤:
a)将含有Na-MOR样品用(R 1)(R 2)(R 3)(R 4)NCl盐溶液在20~100℃交换处理1~10小时,产物洗涤、过滤、干燥;重复上述步骤2-8次;
b)将步骤a)所得样品用酸性溶液在30~100℃处理1~10小时,产物洗涤、过滤、干燥;重复上述步骤2-10次;
c)将步骤b)所得样品在水蒸汽气氛、300~800℃条件下处理1~10小时;
d)将步骤c)所得样品在硝酸铵水溶液在20~100℃交换处理1~10小时,产物洗涤、过滤、干燥;重复上述步骤2-5次;
e)将步骤d)所得样品在空气、300~800℃条件下焙烧2-8小时,制备得到催化剂。
作为其中一种实施方式,所述步骤a)盐溶液的浓度为0.05~1mol/L。
作为其中一种实施方式,所述步骤a)中交换温度为30~80℃,时间2~6小时。
作为其中一种实施方式,所述步骤b)中酸溶液为盐酸、硝酸、硫酸、乙酸、乙二酸、柠檬酸中的一种或多种。
作为其中一种实施方式,所述步骤b)中酸处理的温度为30~80℃、时间2~8小时。
作为其中一种实施方式,所述步骤c)中在水蒸汽气氛、350~750℃条件下处理2~6小时。
作为其中一种实施方式,所述步骤d)中在交换处理温度30~90℃、时间2~6小时。
作为其中一种实施方式,所述步骤e)中所得样品在空气、400~750℃条件下焙烧4-6小时。
作为其中一种实施方式,所述二甲醚羰基化生产乙酸甲酯的方法,包括:将二甲醚与含有一氧化碳的原料气通反应器,与上述任意一项所述催化剂、根据上述任一项所述方法制备得到二甲醚羰基化生产乙酸甲酯接触,在反应温度150~280℃,反应压力0.5~25.0MPa,二甲醚质量空速0.2~4h -1条件下反应生产乙酸甲酯;
所述原料气中,二甲醚与一氧化碳的摩尔比例为0.1:1~30:1。
作为其中一种实施方式,所述羰基化反应在温度为160~280℃,压力为0.5~20.0MPa,二甲醚进料质量空速为0.05~5h -1,一氧化碳和二甲醚的摩尔比为0.1:1~20:1下进行。
作为其中一种实施方式,所述反应温度为170~260℃,压力为1.0~15.0MPa,二甲醚进料质量空速为0.1~4.0h -1并且一氧化碳和二甲醚的摩尔比为0.2:1~15:1。
作为其中一种实施方式,所述含一氧化碳的原料气包含一氧化碳外还可以含有氢气、氮气、氦气、氩气、二氧化碳、甲烷和乙烷中的任意一种或几种;优选地,基于所述含一氧化碳的原料气的总体积,一氧化碳的体积含量为15~100%,其他气体如氢气、氮气、氦气、氩气、二氧化碳、甲烷和乙烷中的任意一种或几种混合的体积含量为0~85%。
实施例1
将100克Na-MOR(Si/Al=15)分子筛放入1000ml浓度为0.5mol/L的苯基三甲基氯化铵水溶液中在80℃处理4小时,过滤洗涤,干燥后重复上述苯基三甲基氯化铵 交换处理过程5次;然后将制得样品放入1000ml溶度为0.5mol/L乙二酸水溶液中,在60℃处理3小时,过滤洗涤,经干燥后重复上述酸处理过程3次;制备的到样品在干燥空气气氛下气氛、650℃处理4小时;再将经高温处理所得样品用500ml浓度为1mol/L的硝酸铵水溶液在70℃处理4小时,经洗涤干燥后重复硝酸铵溶液交换处理步骤3次;将前述制得样品在空气气氛下550℃焙烧4小时制得催化剂1#。
实施例2
将苯基三甲基氯化铵分别换成四甲基氯化铵、四乙基氯化铵、四丙基氯化铵、乙基三甲基氯化铵、二乙基二甲基氯化铵、三乙基甲基氯化铵、苄基三甲基氯化铵以及上述氯化铵盐等质量混合;所有制备程序和实施例1保持一致,依次制得催化剂2#、3#、4#、5#、6#、7#、8#。
实施例3
将苯基三甲基氯化铵溶度分别换成0.05mol/L、0.1mol/L、0.3mol/L、1mol/L,所有制备程序和实施例1保持一致,依次制得催化剂9#、10#、11#、12#。
实施例4
将乙二酸分别换成盐酸、硝酸、硫酸、乙酸、柠檬酸以及上述酸等摩尔混合的混合酸,其他条件和实施例1保持一致,依次制得催化剂13#、14#、15#、16#、17#、18#。
实施例5
将干燥空气气氛分别换成水蒸汽浓度为10%的空气气氛、水蒸汽浓度为40%的空气气氛、水蒸汽浓度为100%的气氛,其他条件和实施例1保持一致,依次制得催化剂19#、20#、21#。
实施例6
将干燥空气气氛换为水蒸汽浓度为20%的空气气氛时,处理温度分别为350℃、500℃、600℃、750℃、800℃、300℃,其他条件和实施例1保持一致,依次制得催化剂22#、23#、24#、25#、26#、27#。
实施例7
Na-MOR经苯基三甲基氯化铵水溶液中处理后,单独经下列程序(1)乙二酸水溶 液处理;(2)在干燥空气焙烧处理;(3)在水蒸汽浓度为10%的空气气氛处理,条件和实施例1中相应程序条件一致,然后在用硝酸铵水溶液处理,条件也和实施例1中相应程序条件一致,制得催化剂28#、29#、30#。
实施例8
将Na-MOR的硅铝原子摩尔比分别更换为6.5、10、20、30、50时,其他条件和实施例1保持一致,依次制得催化剂31#、32#、33#、34#、35#。
实施例9
将苯基三甲基氯化铵溶液的处理温度更换为20℃、60℃、100℃,其他条件和实施例1保持一致,依次制得催化剂36#、37#、38#。
将苯基三甲基氯化铵溶液的处理时间更换为1小时、2小时、6小时、10小时,其他条件和实施例1保持一致,依次制得催化剂39#、40#、41#、42#。
将苯基三甲基氯化铵溶液的处理次数更换为2次、8次,其他条件和实施例1保持一致,依次制得催化剂43#、44#。
实施例10
将酸处理的温度更换为30℃、80℃、100℃,其他条件和实施例1保持一致,依次制得催化剂45#、46#、47#。
将酸处理的时间更换为1小时、2小时、8小时、10小时,其他条件和实施例1保持一致,依次制得催化剂48#、49#、50#、51#。
将酸处理的次数更换为2次、10次,其他条件和实施例1保持一致,依次制得催化剂52#、53#。
实施例11
将在干燥空气气氛下处理的时间更换为1小时、2小时、6小时、10小时,其他条件和实施例1保持一致,依次制得催化剂54#、55#、56#、57#。
实施例12
将硝酸铵水溶液处理的温度更换为20℃、30℃、90℃、100℃,其他条件和实施例1保持一致,依次制得催化剂58#、59#、60#、61#。
将硝酸铵水溶液处理的时间更换为1小时、2小时、6小时、10小时,其他条件 和实施例1保持一致,依次制得催化剂62#、63#、64#、65#。
实施例13
将焙烧的时间更换为2小时、6小时、8小时,其他条件和实施例1保持一致,依次制得催化剂66#、67#、68#。
将焙烧的温度更换为300℃、400℃、750℃、800℃,其他条件和实施例1保持一致,依次制得催化剂69#、70#、71#、72#。
实施例14
将硝酸铵水溶液分别替换为氯化铵水溶液、硫酸铵水溶液、乙酸铵水溶液,其他条件和实施例1保持一致,依次制得催化剂73#、74#、75#。
实施例15
上述催化剂按照以下条件考察性能。
将10g催化剂装入内径为28毫米的固定床反应器内,氮气气氛下以5℃/min升温到550℃,保持4小时,然后在氮气氛下降至反应温度220℃,用CO将反应系统的压力提升至5MPa。将反应原料自上而下通过催化剂床层。其中,二甲醚进料质量空速为1.50h -1;一氧化碳和二甲醚的摩尔比为2:1,一氧化碳的原料气不含有其他气体,反应温度为220℃的条件下,催化反应运行100小时,反应结果见表1。
表1 不同催化剂二甲醚羰基化催化剂评价结果
Figure PCTCN2019074590-appb-000002
Figure PCTCN2019074590-appb-000003
Figure PCTCN2019074590-appb-000004
通过系统的催化剂性能评价,可以发现通过该技术方案的实施,可以有选择的消除反应副反应活性,在不使用时吡啶预吸附中毒的条件下获得高活性和高稳定性的催化剂。
实施例16
在不同反应温度下二甲醚羰基化反应结果
使用的催化剂为1#样品,将10g催化剂装入内径为28毫米的固定床反应器内,氮气气氛下以5℃/min升温到550℃,保持4小时,然后在氮气氛下降至反应温度,用CO将反应系统的压力提升至5MPa。将反应原料自上而下通过催化剂床层。其中,二甲醚进料质量空速为1.50h -1;一氧化碳和二甲醚的摩尔比为1:1,一氧化碳的原料气不含有其他气体,反应温度分别为170℃、200℃、230℃、240℃和260℃。催化反应运行100小时的结果见表2。
表2 反应温度不同时的反应结果
反应器入口温度(℃) 170 200 230 240 260
二甲醚转化率(%) 15.7 42.1 76.0 87.8 95.8
CO转化率(%) 15.7 42.1 76.0 87.8 95.8
乙酸甲酯选择性(%) 97.8 99.7 99.5 99.1 96.3
其他物质选择性(%) 2.2 0.3 0.5 0.9 3.7
实施例17
在不同反应压力下二甲醚羰基化反应结果
使用的催化剂为1#样品,反应压力分别为1、6、10和15MPa,反应温度为220℃,其它条件同实施例16。在反应运行100小时时,反应结果见表3。
表3 反应压力不同时的反应结果
反应压力(MPa) 1 6 10 15
二甲醚转化率(%) 18.3 59.3 62.8 72.3
CO转化率(%) 18.3 59.3 62.8 72.3
乙酸甲酯选择性(%) 98.7 99.9 99.9 99.9
其他物质选择性(%) 1.3 0.1 0.1 0.1
实施例18
在不同二甲醚空速下二甲醚羰基化反应结果
使用的催化剂为1#样品,二甲醚进料质量空速分别为0.35h -1、1h -1、2.5h -1和4h -1,反应温度为200℃,其它条件同实施例15。在反应运行100小时时,反应结果见表4。
表4 二甲醚空速不同时的反应结果
二甲醚进料空速(h -1) 0.35 1 2.5 4
二甲醚转化率(%) 92.5 63.39 25.26 14.8
CO转化率(%) 92.5 63.39 25.26 14.8
乙酸甲酯选择性(%) 99.9 99.8 99.2 98.7
其他物质选择性(%) 0.1 0.2 0.8 1.3
实施例19
在不同一氧化碳和二甲醚摩尔比下二甲醚羰基化反应结果
使用的催化剂为1#样品,二甲醚进料质量空速为1.5h -1,一氧化碳和二甲醚摩尔比分别为0.2:1、0.5:1、2:1、4:1、8:1、12:1时,反应温度为210℃,其它条件同实施例16。在反应运行100小时时,反应结果见表5。
表5 二甲醚和一氧化碳气体体积比不同时的反应结果
一氧化碳/二甲醚摩尔比 12:1 8:1 4:1 2:1 0.5:1 0.2:1
一氧化碳转化率(%) 8.13 10.7 18.45 32.9 90.6 97.5
二甲醚转化率(%) 97.5 85.6 73.8 65.8 45.32 19.5
乙酸甲酯选择性(%) 97.8 98.1 99.5 99.4 99.3 99.3
实施例20
在含一氧化碳的原料气含有惰性气体下二甲醚羰基化反应结果
使用的催化剂为23#样品,二甲醚进料质量空速为0.5h -1,一氧化碳原料气中含有非活性气体,含有一氧化碳的原料气和二甲醚的摩尔比为4:1,反应温度为225℃时,其它条件同实施例16。在反应运行4000小时时,反应结果见表6。
表6 含一氧化碳的原料气含有惰性气体时的反应结果
Figure PCTCN2019074590-appb-000005
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (27)

  1. 一种分子筛催化剂,其特征在于,所述分子筛催化剂含有改性的Na-MOR分子筛;
    所述改性包括:经有机铵盐交换、脱铝处理和铵离子交换。
  2. 根据权利要求1所述的分子筛催化剂,其特征在于,所述有机铵盐交换为烷基卤化铵盐交换。
  3. 根据权利要求2所述的分子筛催化剂,其特征在于,所述烷基卤化铵盐选自具有式I所示的化学式的化合物的中的至少一种:
    Figure PCTCN2019074590-appb-100001
    其中,R 1,R 2,R 3独立地选自C 1~C 10的烷基中的一种;
    R 4选自C 1~C 10的烷基、C 6~C 10的芳基中的一种;
    X选自F、Cl、Br或I中的至少一种。
  4. 根据权利要求3所述的分子筛催化剂,其特征在于,式I中R 1,R 2,R 3独立地选自CH 3-、CH 3CH 2-、CH 3(CH 2) nCH 2-、(CH 3) 2CH-、(CH 3) 2CHCH 2-、CH 3CH 2(CH 3)CH-中的任意一种;
    R 4为CH 3-、CH 3-、CH 3CH 2-、CH 3(CH 2) mCH 2-、(CH 3) 2CH-、(CH 3) 2CHCH 2-、CH 3CH 2(CH 3)CH-、C 6H 5-、CH 3C 6H 4-、(CH 3) 2C 6H 3-、C 6H 5CH 2-中的任意一种;
    其中,n和m独立地选自1、2、3或4。
  5. 根据权利要求1所述的分子筛催化剂,其特征在于,所述Na-MOR分子筛的硅铝原子比为6~50。
  6. 根据权利要求1所述的分子筛催化剂,其特征在于,所述脱铝处理包括高温焙烧处理、酸处理中的至少一种。
  7. 权利要求1至6任一项所述的分子筛催化剂的制备方法,其特征在于,包括:将Na-MOR分子筛经有机铵盐交换、脱铝处理、铵离子交换,焙烧,得到所述分子筛催化剂。
  8. 根据权利要求7所述的分子筛催化剂的制备方法,其特征在于,所述分子筛催化剂的制备方法包括:
    (1)将Na-MOR分子筛经过有机铵盐交换,得到前驱体I;
    (2)将前驱体I进行酸处理,得到前驱体II;
    (3)将前驱体II进行高温焙烧处理,得到前驱体III;
    (4)将前驱体III进行铵离子交换,得到前驱体IV;
    (5)将前驱体IV焙烧,得到所述分子筛催化剂。
  9. 根据权利要求8所述的分子筛催化剂的制备方法,其特征在于,步骤(1)中所述有机铵盐交换的条件为:将Na-MOR分子筛在有机铵盐溶液中,20~100℃交换处理1~10小时。
  10. 根据权利要求9所述的分子筛催化剂的制备方法,其特征在于,所述有机铵盐溶液的浓度为0.05~1mol/L。
  11. 根据权利要求9所述的分子筛催化剂的制备方法,其特征在于,所述有机铵盐交换的次数为2~8次;
    所述有机铵盐交换的条件为:30~80℃交换处理2~6小时。
  12. 根据权利要求8所述的分子筛催化剂的制备方法,其特征在于,步骤(2)中所述酸处理采用的酸选自盐酸、硝酸、硫酸、乙酸、乙二酸、柠檬酸中的至少一种;
    步骤(2)中所述酸处理的条件为:酸性溶液中30~100℃处理1~10小时。
  13. 根据权利要求12所述的分子筛催化剂的制备方法,其特征在于,所述酸处理的次数为2~10次;
    所述酸处理的条件为:酸性溶液中30~80℃处理2~8小时。
  14. 根据权利要求8所述的分子筛催化剂的制备方法,其特征在于,步骤(3)中所述高温焙烧处理的条件为:水蒸汽浓度为0~100%的气氛下,300~800℃条件下处理1~10小时。
  15. 根据权利要求14所述的分子筛催化剂的制备方法,其特征在于,所述高温焙烧处理的条件为:水蒸汽浓度为0~100%的气氛下,350~750℃条件下处理2~6小时。
  16. 根据权利要求8所述的分子筛催化剂的制备方法,其特征在于,步骤(4)中铵离子交换的条件为:20~100℃交换处理1~10小时。
  17. 根据权利要求16所述的分子筛催化剂的制备方法,其特征在于,所述铵离子交换的次数为2~5次;
    所述铵离子交换的条件为30~90℃交换处理2~6小时;
    所述铵离子交换在含铵离子的溶液中进行;所述含铵离子溶液选自硝酸铵溶液、氯化铵溶液、硫酸铵溶液、乙酸铵溶液的至少一种。
  18. 根据权利要求8所述的分子筛催化剂的制备方法,其特征在于,步骤(5)中所述的焙烧的条件为:空气气氛,300~800℃条件下焙烧2~8小时。
  19. 根据权利要求18所述的分子筛催化剂的制备方法,其特征在于,所述焙烧的条件为:空气气氛,400~750℃条件下焙烧4~6小时。
  20. 根据权利要求8所述的分子筛催化剂的制备方法,其特征在于,所述分子筛催化剂的制备方法包括:
    a)将含有Na-MOR分子筛的固体用含有烷基卤化铵盐的溶液在20~100℃交换1~10小时,交换次数为2~8次,得到前驱体I;
    b)将前驱体I用酸性溶液在30~100℃处理1~10小时,处理次数为2~10次,得到前驱体II;
    c)将前驱体II在水蒸汽浓度为0~100%的气氛下,300~800℃条件下处理1~10小时,得到前驱体III;
    d)将前驱体III在硝酸铵水溶液中20~100℃交换处理1~10小时,处理次数为2~5次,得到前驱体IV;
    e)将前驱体IV在空气、300~800℃条件下焙烧2~8小时,制备得到所述分子筛催化剂。
  21. 权利要求1至6任一项所述的分子筛催化剂、根据权利要求7至20任一项所述的方法制备得到的分子筛催化剂中的至少一种作为二甲醚羰基化生产乙酸甲酯催化剂的应用。
  22. 一种二甲醚羰基化生产乙酸甲酯的方法,其特征在于,包括:将二甲醚和含有一氧化碳的原料气通入载有催化剂床层的反应器,与催化剂接触反应,生产乙酸甲酯;
    其中,所述催化剂选自权利要求1至6任一项所述的分子筛催化剂、根据权利要求7至20任一项所述的方法制备得到的分子筛催化剂中的至少一种。
  23. 根据权利要求22所述的二甲醚羰基化生产乙酸甲酯的方法,其特征在于,所述反应的条件为:
    反应温度150~280℃,反应压力0.5~25.0MPa,二甲醚进料质量空速为0.05~5h -1
    一氧化碳与二甲醚的摩尔比例为0.1:1~30:1。
  24. 根据权利要求23所述的二甲醚羰基化生产乙酸甲酯的方法,其特征在于,所述反应的条件为:
    反应温度为160~280℃,反应力为0.5~20.0MPa,二甲醚进料质量空速为0.2~4.0h -1
    一氧化碳和二甲醚的摩尔比为0.1:1~20:1。
  25. 根据权利要求23所述的二甲醚羰基化生产乙酸甲酯的方法,其特征在于,所述反应的条件为:
    反应温度为170~260℃,反应压力为1.0~15.0MPa,二甲醚进料质量空速为0.1~4.0h -1
    一氧化碳和二甲醚的摩尔比为0.2:1~15:1。
  26. 根据权利要求22所述的二甲醚羰基化生产乙酸甲酯的方法,其特征在于,所述含有一氧化碳的原料气中一氧化碳的体积含量为15~100%。
  27. 根据权利要求26所述的二甲醚羰基化生产乙酸甲酯的方法,其特征在于,所述含有一氧化碳的原料气还包括氢气、氮气、氦气、氩气、二氧化碳、甲烷、乙烷中的至少一种。
PCT/CN2019/074590 2019-02-02 2019-02-02 一种分子筛催化剂及其制备方法和应用 WO2020155144A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/074590 WO2020155144A1 (zh) 2019-02-02 2019-02-02 一种分子筛催化剂及其制备方法和应用
EA202192169A EA202192169A1 (ru) 2019-02-02 2019-02-02 Молекулярно-ситовый катализатор, способ его получения и его применение
EP19913504.7A EP3919166A4 (en) 2019-02-02 2019-02-02 MOLECULAR SIEVE CATALYST, METHOD OF PRODUCTION THEREOF AND APPLICATION THEREOF
US17/426,979 US12036538B2 (en) 2019-02-02 Molecular sieve catalyst, preparation method therefor, and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074590 WO2020155144A1 (zh) 2019-02-02 2019-02-02 一种分子筛催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020155144A1 true WO2020155144A1 (zh) 2020-08-06

Family

ID=71840790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074590 WO2020155144A1 (zh) 2019-02-02 2019-02-02 一种分子筛催化剂及其制备方法和应用

Country Status (3)

Country Link
EP (1) EP3919166A4 (zh)
EA (1) EA202192169A1 (zh)
WO (1) WO2020155144A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070238897A1 (en) 2005-05-05 2007-10-11 The Regents Of The University Of California Process for carbonylation of alkyl ethers
WO2008132450A1 (en) 2007-04-26 2008-11-06 Bp Chemicals Limited Process for the carbonylation of dimethyl ether
CN101613274A (zh) 2008-06-25 2009-12-30 中国科学院大连化学物理研究所 一种二甲醚羰基化制备乙酸甲酯的方法
CN101722034A (zh) * 2008-10-28 2010-06-09 中国石油化工股份有限公司 丝光沸石/zsm-5核壳型分子筛材料的制备方法
CN102950018A (zh) 2011-08-26 2013-03-06 中国科学院大连化学物理研究所 用于二甲醚羰基化合成乙酸甲酯的催化剂及其制备方法
CN103121686A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 Mor/bea核壳分子筛的制备方法
US20180311654A1 (en) * 2017-04-28 2018-11-01 Research & Business Foundation Sungkyunkwan University Zeolite-based compound having high crystallinity, method for producing the same, and method for producing methyl acetate using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2174713A1 (en) * 2008-10-13 2010-04-14 BP Chemicals Limited Dealumination process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070238897A1 (en) 2005-05-05 2007-10-11 The Regents Of The University Of California Process for carbonylation of alkyl ethers
WO2008132450A1 (en) 2007-04-26 2008-11-06 Bp Chemicals Limited Process for the carbonylation of dimethyl ether
CN101613274A (zh) 2008-06-25 2009-12-30 中国科学院大连化学物理研究所 一种二甲醚羰基化制备乙酸甲酯的方法
CN101722034A (zh) * 2008-10-28 2010-06-09 中国石油化工股份有限公司 丝光沸石/zsm-5核壳型分子筛材料的制备方法
CN102950018A (zh) 2011-08-26 2013-03-06 中国科学院大连化学物理研究所 用于二甲醚羰基化合成乙酸甲酯的催化剂及其制备方法
CN103121686A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 Mor/bea核壳分子筛的制备方法
US20180311654A1 (en) * 2017-04-28 2018-11-01 Research & Business Foundation Sungkyunkwan University Zeolite-based compound having high crystallinity, method for producing the same, and method for producing methyl acetate using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919166A4

Also Published As

Publication number Publication date
EP3919166A4 (en) 2022-01-19
US20220097032A1 (en) 2022-03-31
EA202192169A1 (ru) 2022-02-01
EP3919166A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
Xu et al. Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides
WO2017012246A1 (zh) 一种乙酸甲酯的生产方法
WO2020155143A1 (zh) 一种二甲醚羰基化生产乙酸甲酯的方法
CN107304367B (zh) 一种汽油、航空煤油或柴油范围内的支链烷烃的制备方法
CN111514926B (zh) 一种分子筛催化剂及其制备方法和应用
JP2012509952A (ja) 軽質オレフィンを最大化するための、炭化水素流の接触分解法
TW201016641A (en) Process for production of olefin, and production apparatus for same
WO2015058636A1 (zh) 一种甲烷直接转化制芳烃的方法
JP4334540B2 (ja) 液化石油ガスの製造方法
CN111233615A (zh) 降冰片烯基四元环航天燃料及其非均相光催环化制备方法和用途
CN111792994B (zh) 二甲醚羰基化生产乙酸甲酯的方法
CN101920199B (zh) 改性硅胶为载体费托合成钴基催化剂及其制备方法
CN102211036B (zh) 一种改性分子筛催化剂和其前体及其制备方法
WO2017012244A1 (zh) 一种低级脂肪羧酸烷基酯的生产方法
KR102295224B1 (ko) 메탄의 탈수소방향족화 반응용 촉매 및 이을 이용한 방향족화 화합물의 제조방법
CN111517955A (zh) 一种二甲醚羰基化生产乙酸甲酯的方法
CN101279281B (zh) 甲醇转化制丙烯的高稳定性分子筛催化剂及其制备方法
WO2020155144A1 (zh) 一种分子筛催化剂及其制备方法和应用
CN112694907B (zh) 一种甲烷制备烃类化合物的方法
CN114054079B (zh) 一种乙醇脱氢制备乙醛催化剂的制备方法与应用
CN114054023B (zh) 一种合金单原子催化剂的制备方法和应用
CN115106122A (zh) 一种分子筛催化剂的制备方法及应用
US12036538B2 (en) Molecular sieve catalyst, preparation method therefor, and application thereof
CN111790452B (zh) 一种甲醇羰基化催化剂及其制备方法、应用
WO2021092794A1 (zh) 一种二甲醚羰基化生产乙酸甲酯的催化剂、其制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019913504

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019913504

Country of ref document: EP

Effective date: 20210902

WWE Wipo information: entry into national phase

Ref document number: 521422690

Country of ref document: SA