WO2020154884A1 - 元件拾取装置及其制备方法、使用方法 - Google Patents

元件拾取装置及其制备方法、使用方法 Download PDF

Info

Publication number
WO2020154884A1
WO2020154884A1 PCT/CN2019/073643 CN2019073643W WO2020154884A1 WO 2020154884 A1 WO2020154884 A1 WO 2020154884A1 CN 2019073643 W CN2019073643 W CN 2019073643W WO 2020154884 A1 WO2020154884 A1 WO 2020154884A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
opening
electrode
flow channel
component
Prior art date
Application number
PCT/CN2019/073643
Other languages
English (en)
French (fr)
Inventor
刘英伟
曹占锋
狄沐昕
王珂
梁志伟
顾仁权
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201980000090.5A priority Critical patent/CN109891569B/zh
Priority to PCT/CN2019/073643 priority patent/WO2020154884A1/zh
Priority to US16/758,074 priority patent/US11728202B2/en
Publication of WO2020154884A1 publication Critical patent/WO2020154884A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • Y10T156/1168Gripping and pulling work apart during delaminating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means

Definitions

  • the embodiments of the present disclosure relate to the field of display technology, and in particular, to a component pick-up device and its preparation method and use method.
  • Micro Light Emitting Diode (Micro-LED) display technology has the advantages of both Liquid Crystal Display (LCD) and Organic Light Emitting Diode (OLED), and it overcomes the lifetime of OLED display blue OLED Short question.
  • Micro-LED can be applied to displays ranging from Augmented Reality (AR) or Virtual Reality (VR) displays to large billboards and movie screen displays. At the same time, Micro-LED display technology is also suitable for flexible wearable devices.
  • the embodiments of the present disclosure provide a component pick-up device and its preparation method and use method.
  • a component pickup device in an aspect of the present disclosure, there is provided a component pickup device.
  • the component pick-up device includes: a first substrate and a second substrate that are opposed to each other; and a spacer located between the first substrate and the second substrate, wherein the spacers are spaced apart from each other to define a liquid A flow channel; and a component pickup part, which includes an opening located in the second substrate and communicating with the flow channel.
  • At least the orthographic projection of the portion of the opening adjacent to the first substrate on the first substrate is located within the orthographic projection of the flow channel on the first substrate.
  • the cross-sectional shape of the opening perpendicular to the plane where the second substrate is located is rectangular.
  • the opening includes a first part and a second part communicating with each other.
  • the first part is located on a side of the second substrate facing the first substrate
  • the second part is located on a side of the second substrate facing away from the first substrate.
  • the first section of the first part on a plane parallel to the first substrate is not less than the second section of the second part on a plane parallel to the first substrate. section.
  • the first section of the first part on a plane parallel to the first substrate is not greater than the second section of the second part on a plane parallel to the first substrate. section.
  • the size of the first section of the first portion on a plane parallel to the first substrate is inversely proportional to the distance from the first section to the first substrate.
  • the size of the second cross section of the second part on a plane parallel to the first substrate is proportional to the distance from the second cross section to the first substrate.
  • the opening further includes a third part located between the first part and the second part.
  • the third section of the third part on a plane parallel to the first substrate is not larger than the first section and the second section.
  • the opening includes a first opening and a second opening that are spaced apart.
  • the component pickup device further includes: a first electrode located on the side of the first substrate facing the second substrate; a first hydrophobic layer located on the first electrode facing the And a second hydrophobic layer located on the side of the second substrate facing the first substrate.
  • the orthographic projection of the second hydrophobic layer on the first substrate and the orthographic projection of the portion of the opening adjacent to the first substrate on the first substrate do not overlap.
  • the first electrode includes a plurality of first sub-electrodes.
  • the plurality of first sub-electrodes are spaced apart from each other along the extending direction of the flow channel.
  • the element pickup device further includes a second electrode located between the second substrate and the second hydrophobic layer.
  • the orthographic projection of the second electrode on the first substrate is located within the orthographic projection of the second hydrophobic layer on the first substrate.
  • the element pickup device further includes: a thin film transistor located between the first substrate and the first electrode; a first thin film transistor located between the thin film transistor and the first electrode A dielectric layer, wherein the orthographic projection of the thin film transistor on the first substrate overlaps the orthographic projection of the first electrode on the first substrate; and the first electrode and the first hydrophobic layer Between the second dielectric layer.
  • the component picking device further includes a suction device communicating with the flow channel.
  • the spacer includes a hydrophobic material.
  • a method of preparing the component pickup device as described above.
  • the method includes: providing a first substrate; providing a second substrate; forming a spacer on the first substrate or the second substrate, the spacers being spaced apart from each other; and forming an element pickup part on the second substrate ,
  • the element pick-up part is formed to include an opening in the second substrate; and the first substrate and the second substrate are joined so that the spacer is located between the first substrate and the second substrate A flow channel for fluid is defined between the substrates, wherein the opening is in communication with the flow channel.
  • At least the orthographic projection of the portion of the opening adjacent to the first substrate on the first substrate is located within the orthographic projection of the flow channel on the first substrate.
  • providing the first substrate includes: forming a first electrode on the first substrate, and forming a first hydrophobic layer on the first substrate and the first electrode.
  • Providing the second substrate includes: forming a second hydrophobic layer on the second substrate. The first substrate and the second substrate are joined so that the first hydrophobic layer and the second hydrophobic layer are opposed to each other. After the bonding, the orthographic projection of the second hydrophobic layer on the first substrate and the orthographic projection of the portion of the opening adjacent to the first substrate on the first substrate do not overlap.
  • the first electrodes are formed to be spaced apart from each other along the extending direction of the flow channel.
  • providing the second substrate further includes forming a second electrode on the second substrate before forming the second hydrophobic layer.
  • the orthographic projection of the second electrode on the second substrate is located within the orthographic projection of the second hydrophobic layer on the second substrate.
  • a method of using the component pickup device as described above includes: introducing a droplet into the flow channel; moving the droplet along the flow channel to the opening to adsorb the element to be picked up by the droplet; and causing the droplet to follow the The flow channel moves away from the opening to desorb the element.
  • moving the droplet to the opening along the flow channel includes applying a first pressure to the droplet. Moving the droplet along the flow channel away from the opening includes applying a second pressure to the droplet.
  • the component pickup device further includes a first electrode located on the side of the first substrate facing the second substrate, and located on the side of the first electrode facing the second substrate The first hydrophobic layer and the second hydrophobic layer on the side of the second substrate facing the first substrate.
  • the method of use includes: applying a first voltage to the first electrode, moving the droplet along the flow channel to the opening to adsorb the element to be picked up by the droplet; and applying a first voltage to the first electrode.
  • An electrode applies a second voltage to move the droplet along the flow channel away from the opening to desorb the element.
  • the component pick-up device further includes a second electrode located between the second substrate and the second hydrophobic layer. Applying a first voltage to the first electrode to move the droplet along the flow channel to the opening to adsorb the element to be picked up by the droplet further includes: applying the first voltage to the The second electrode applies a third voltage different from the first voltage. Moving the droplet along the flow channel away from the opening to desorb the element further includes: applying a fourth voltage different from the second voltage to the second electrode when the second voltage is applied .
  • the surface of the element is subjected to a hydrophilic treatment.
  • the method of performing hydrophilic treatment on the surface of the element includes performing oxygen plasma treatment on the surface of the element or coating the surface of the element with a surfactant.
  • the surfactant includes sodium lauryl sulfate, polyethylene glycol, polyvinyl alcohol, or polymethacrylic acid.
  • the element includes a miniature light emitting diode chip.
  • FIG. 1 shows a schematic diagram of a cross-sectional structure of a component pickup device according to an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of a cross-sectional structure of an opening of a component pickup part according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of a cross-sectional structure of an opening of a component pickup part according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of a cross-sectional structure of an opening of a component pickup part according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of a cross-sectional structure of an opening of a component pickup part according to an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of a cross-sectional structure of an opening of a component pickup part according to an embodiment of the present disclosure
  • FIG. 7a and 7b show schematic diagrams of the cross-sectional structure of the opening of the component pickup portion according to an embodiment of the present disclosure
  • FIG. 8 shows a schematic diagram of a cross-sectional structure of a component pickup device according to an embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of a cross-sectional structure of a component pickup device according to an embodiment of the present disclosure.
  • FIG. 10 shows a flowchart of a method of manufacturing a component pickup device according to an embodiment of the present disclosure
  • FIG. 11 shows a schematic structural diagram of a method for preparing a spacer according to an embodiment of the present disclosure
  • FIG. 12 shows a schematic structural diagram of a method for preparing a component pickup part according to an embodiment of the present disclosure
  • FIG. 13 shows a schematic structural diagram of a method for bonding a first substrate and a second substrate according to an embodiment of the present disclosure
  • FIG. 14 shows a schematic structural diagram of a method for providing a first substrate according to an embodiment of the present disclosure
  • FIG. 15 shows a schematic structural diagram of a method for providing a second substrate according to an embodiment of the present disclosure
  • FIG. 16 shows a schematic structural diagram of a method for bonding a first substrate and a second substrate according to an embodiment of the present disclosure
  • FIG. 17 shows a schematic structural diagram of a method for providing a second substrate according to an embodiment of the present disclosure
  • FIG. 18 shows a flowchart of a method of using the component pickup device according to an embodiment of the present disclosure
  • 19 to 21 show schematic structural diagrams of a method of using a component pick-up device according to an embodiment of the present disclosure.
  • 22a to 24b show schematic structural diagrams of a method of using a component picking device according to an embodiment of the present disclosure.
  • Micro-LED technology is a technology in which millions of micron-level ( ⁇ 100um) Micro-LED (for example, RGB Micro-LEDs) chips are mounted on the drive backplane through mass transfer technology. Each Micro-LED can be individually driven to emit light. Since Micro-LED is made of inorganic luminescent materials, Micro-LED overcomes the shortcomings of screens using organic light-emitting elements such as burn-in and short life. In addition, Micro-LED has the advantages of fast response speed, high contrast, high color saturation, ultra-high resolution, simple structure, and light and thin bending.
  • the mass transfer technology that is, how to transfer a large number of micron-sized Micro-LED chips to the driver backplane.
  • the adsorption force of Micro-LED chips is generally divided into: charge attraction, magnetic attraction, adhesion, intermolecular force, etc.
  • charge attraction magnetic attraction
  • adhesion adhesion
  • intermolecular force intermolecular force
  • the present disclosure provides an element pick-up device and a preparation method and a use method thereof, which can transfer Micro-LED chips by using physical force. Specifically, the chip can be transferred by the surface tension of the liquid drop, so that the influence of static electricity on the chip can be prevented, the chip can be continuously transferred, and the pick-up and drop-off of the chip can be accurately controlled.
  • FIG. 1 shows a schematic diagram of a cross-sectional structure of a component pickup device according to an embodiment of the present disclosure.
  • the component pickup device 100 includes: a first substrate 1 and a second substrate 2, a spacer 3 and a component pickup portion 4 which are arranged opposite to each other.
  • the spacer 3 is located between the first substrate 1 and the second substrate 2.
  • the partitions 3 are spaced apart from each other to define a flow channel 5 for liquid (not shown).
  • the component pickup part 4 includes an opening 41 located in the second substrate 2 and communicating with the flow channel 5.
  • the component pickup part 4 can absorb the component to be picked up by the surface tension of the liquid, thereby realizing the transfer of the chip.
  • At least the orthographic projection of the portion of the opening 41 adjacent to the first substrate 1 on the first substrate 1 is located within the orthographic projection of the flow channel 5 on the first substrate 1.
  • the cross-sectional shape of the opening 41 along the plane perpendicular to the plane where the second substrate 2 is located may be rectangular.
  • FIG. 2 shows a schematic diagram of a cross-sectional structure of an opening of a component pickup part according to an embodiment of the present disclosure.
  • the opening 41 may include a first opening 410 and a second opening 420 arranged at intervals. It should be noted that the detailed description of the first opening 410 and the second opening 420 is similar to the above description about the opening 41, and will not be repeated here.
  • the opening 41 may include a first part 411 and a second part 412 communicating with each other.
  • the first part 411 is located on the side of the second substrate 2 facing the first substrate 1.
  • the second portion 412 is located on the side of the second substrate 2 away from the first substrate 1.
  • FIG. 3 shows a schematic diagram of a cross-sectional structure of an opening of a component pickup part according to an embodiment of the present disclosure.
  • the first section S1 of the first portion 411 of the opening 41 in a plane parallel to the first substrate 1 is not smaller than that of the second portion 412 of the opening 41 in parallel to the first substrate 1.
  • the second section S2 on the plane.
  • the size of the first section S1 is inversely proportional to the distance D1 from the first section S1 to the first substrate 1. For example, as the distance D1 is smaller, the size of the first cross section S1 is larger.
  • the size of the cross section here may refer to the area of the cross section, for example.
  • FIG. 4 shows a schematic diagram of a cross-sectional structure of an opening of a component pickup part according to an embodiment of the present disclosure.
  • the first section S1 of the first part 411 of the opening 41 on the plane parallel to the first substrate 1 is not greater than the second section S2 of the second part 412 on the plane parallel to the first substrate 1 .
  • the size of the first section S1 does not change with the distance D1 from the first section S1 to the first substrate 1
  • the size of the second section S2 does not change with the distance D2 from the second section S2 to the first substrate 1. Change and change. For example, when the distance D1 is smaller or larger, the size of the first section S1 does not change.
  • the size of the cross section here may refer to the area of the cross section, for example.
  • FIG. 5 shows a schematic diagram of a cross-sectional structure of the opening of the component pickup part according to an embodiment of the present disclosure.
  • the opening 41 further includes a third part 413 located between the first part 411 and the second part 412.
  • the third section S3 of the third portion 413 on a plane parallel to the first substrate 1 is not larger than the first section S1 and the second section S2.
  • the second section S2 in FIG. 4 is not smaller than the first section S1
  • the second section S2 in FIG. 5 is not smaller than the first section S1 and the third section S3.
  • FIG. 6 shows a schematic diagram of a cross-sectional structure of the opening of the component pickup part according to an embodiment of the present disclosure.
  • the size of the first section S1 of the first portion 411 of the opening 41 on a plane parallel to the first substrate 1 is inversely proportional to the distance D1 from the first section S1 to the first substrate 1.
  • the size of the second section S2 of the second portion 412 of the opening 41 on a plane parallel to the first substrate 1 is proportional to the distance D2 from the second section S2 to the first substrate 1. For example, when the distance D1 is smaller, the size of the first section S1 is larger; when the distance D2 is smaller, the size of the second section S2 is smaller.
  • the opening 41 in FIG. 6 further includes a third part 413 located between the first part 411 and the second part 412.
  • the third section S3 of the third portion 413 on a plane parallel to the first substrate 1 is not larger than the first section S1 and the second section S2.
  • the portion of the second cross-section S2 that faces away from the first substrate 1 has a larger cross-sectional size, which helps to form a larger water film, so that the adsorption area is increased and the adsorption of the components The force is increased, so components can be picked up more efficiently.
  • the opening 41 may have one or more of the opening structures in FIGS. 1 to 6 or a combination thereof, which is not specifically limited in the present disclosure.
  • the opening 41 may be located in the laminated structure 28, as shown in FIGS. 7a and 7b.
  • the laminated structure 28 may include a second substrate 2 and a hydrophobic layer 8 on the second substrate 2 (as described later with reference to FIG. 8).
  • the opening 41 may include a first opening portion 411 (hereinafter referred to as a first portion 411), a second opening portion 412 (hereinafter referred to as a second portion 422), and a third opening portion 413 (hereinafter referred to as For the third part 413).
  • the first part 411 is located in the hydrophobic layer 8.
  • the second portion 412 is located on the side of the second substrate 2 facing away from the first substrate 1.
  • the third portion 413 is located on the side of the second substrate 2 facing the first substrate 1.
  • the first section S1 of the first part 411 of the opening 41 in a plane parallel to the first substrate 1 is not greater than that of the second part 412 in a plane parallel to the first substrate 1 On the second section S2.
  • the first section S1 of the first portion 411 of the opening 41 on a plane parallel to the first substrate 1 is equal to the third section S3 of the third portion 413 on a plane parallel to the first substrate 1.
  • the first section S1 of the first part 411 of the opening 41 in a plane parallel to the first substrate 1 is not greater than that of the second part 412 in a plane parallel to the first substrate 1 On the second section S2.
  • the third section S3 of the third portion 413 of the opening 41 on a plane parallel to the first substrate 1 is not greater than the first section S1 of the first portion 411 on a plane parallel to the first substrate 1.
  • the size of the first section S1 does not change as the distance D1 from the first section S1 to the first substrate 1 changes.
  • the size of the second cross section S2 does not change as the distance D2 from the second cross section S2 to the first substrate 1 changes.
  • the size of the third section S3 does not change as the distance D3 from the third section S3 to the first substrate 1 changes. For example, when the distance D1 is smaller or larger, the size of the first section S1 does not change.
  • the size of the cross section here may refer to the area of the cross section, for example.
  • FIGS. 7a and 7b only show schematic diagrams of the cross-sectional structure of two types of openings 41 in the laminate, which should not be regarded as a limitation of the present disclosure. Those skilled in the art can adopt any one or a combination of the opening structures described above with reference to FIGS. 1 to 6 as needed.
  • the component picking device 100 further includes a suction device (not shown) communicating with the flow channel 5, so that the The pressure causes liquid (not shown) to move in the flow channel 5.
  • FIG. 8 shows a schematic cross-sectional structure diagram of a component picking device according to an embodiment of the present disclosure.
  • the component pick-up device 100 further includes: a first electrode 6 located on the side of the first substrate 1 facing the second substrate 2; and a first hydrophobic layer 7 located on the first electrode 6 facing the second substrate 2. And the second hydrophobic layer 8, which is located on the side of the second substrate 2 facing the first substrate 1.
  • the orthographic projection of the second hydrophobic layer 8 on the first substrate 1 and the orthographic projection of the portion of the opening 41 adjacent to the first substrate 1 on the first substrate 1 do not overlap.
  • the opening 41 shown in FIG. 8 is located in the laminated structure, that is, in the laminated structure formed by the second hydrophobic layer 8 and the second substrate 2.
  • the opening 41 reference may be made to the above description of Fig. 5, which will not be repeated here.
  • the first electrode 6 includes a plurality of first sub-electrodes 61.
  • the plurality of first sub-electrodes 61 are spaced apart from each other along the extending direction of the flow channel.
  • the extending direction of the flow channel is, for example, a direction perpendicular to the paper surface in FIG. 8.
  • the element pickup device 100 further includes: a thin film transistor 9 located between the first substrate and the first electrode 6; and a thin film transistor 9 located between the thin film transistor 9 and the first electrode 6.
  • the orthographic projection of the thin film transistor 9 on the first substrate 1 overlaps the orthographic projection of the first electrode 6 on the first substrate 1.
  • the thin film transistor 9 may include a gate, a gate insulating layer, a dielectric layer, an active layer, Source and drain electrodes, etc.
  • the voltage applied to the first electrode 6 is controlled by the thin film transistor 9, and precise control of the liquid can be achieved through the electrowetting effect.
  • FIG. 9 shows a schematic cross-sectional structure diagram of a component picking device according to an embodiment of the present disclosure.
  • the component pickup device 100 further includes a second electrode 12 located between the second substrate 2 and the second hydrophobic layer 8.
  • the orthographic projection of the second electrode 12 on the first substrate 1 is within the orthographic projection of the second hydrophobic layer 8 on the first substrate 1.
  • the spacer 5 may include a hydrophobic material.
  • the hydrophobic material may include Teflon, for example.
  • the materials of the first substrate 1 and the second substrate 2 may include, for example, glass, plastic, silicon, polyimide, and the like.
  • the first dielectric layer 10 may be used as a planarization layer, for example.
  • the material of the planarization layer may include resin, for example.
  • the material of the second dielectric layer 11 may include, for example, silicon dioxide (SiO 2 , whose relative dielectric constant is 2.7), silicon nitride (Si 3 N 4 , whose relative dielectric constant is 7.8). ), barium strontium carbonate ((BaSr)TiO 3 , BST, its relative dielectric constant is 200-300), parylene (Parylene, its relative dielectric constant is 3.15), trifluoroethylene binary copolymer ( Poly (vinylidene fluoride chlorotrifluoroethylene), P (VDF-TrFE), with a relative dielectric constant of 7.6-11.6) or polyimide (PI).
  • silicon dioxide SiO 2 , whose relative dielectric constant is 2.7
  • silicon nitride Si 3 N 4
  • barium strontium carbonate (BaSr)TiO 3 , BST, its relative dielectric constant is 200-300)
  • parylene Parylene, its relative dielectric constant is 3.15
  • FIG. 10 shows a flowchart of a method of manufacturing a component pickup device according to an embodiment of the present disclosure. As shown in FIG. 10, the preparation method includes steps S101 to S105.
  • step S101 the first substrate 1 is provided, and in step S102, the second substrate 2 is provided.
  • This article does not specifically limit the sequence of step S101 and step S102, or the two steps can be performed simultaneously.
  • step S103 the spacer 3 is formed. specifically. In the embodiment of the present disclosure, the spacer 3 may be formed on the first substrate 1 or the second substrate 2.
  • FIG. 11 shows a schematic structural diagram of a method for preparing a spacer according to an embodiment of the present disclosure.
  • the spacer 3 is formed on the second substrate 2.
  • the spacers 3 are spaced apart from each other.
  • a spacer material layer may be formed on the second substrate 2 and then the spacer material layer may be patterned to form the spacer 3.
  • FIG. 11 only shows a schematic diagram of forming the spacer 3 on the second substrate 2.
  • the spacer 3 can also be formed on the first substrate 1. Those skilled in the art can choose according to their needs. This disclosure does not specifically limit this. The detailed description of the spacer 3 is as described above, and will not be repeated here.
  • step S104 a component pickup part is formed. Specifically, a component pickup part is formed on the second substrate.
  • FIG. 12 shows a schematic structural view of a method for preparing a component pickup part according to an embodiment of the present disclosure.
  • a laser etching method is used to etch the position on the second substrate 2 where the component pickup portion is to be formed to form the component pickup portion 4.
  • the component pickup part 4 is formed to include an opening 41 in the second substrate 2.
  • step S105 the first substrate and the second substrate are bonded.
  • FIG. 13 shows a schematic structural diagram of a method for bonding a first substrate and a second substrate according to an embodiment of the present disclosure.
  • the first substrate 1 and the second substrate 2 are joined so that the spacer 3 is located between the first substrate 1 and the second substrate 2 to define a flow channel 5 for fluid.
  • the opening 41 may communicate with the flow channel 5.
  • a component pickup device is formed.
  • At least the orthographic projection of the portion of the opening 41 adjacent to the first substrate 1 on the first substrate 1 is located within the orthographic projection of the flow channel 5 on the first substrate 1.
  • providing the first substrate 1 may include: forming a first electrode 6 on the first substrate 1; and 1 and the first electrode 6 are formed with a first hydrophobic layer 7.
  • the first electrode 6 may include a plurality of first sub-electrodes 61.
  • the plurality of first sub-electrodes 61 are spaced apart from each other along the extending direction of the flow channel.
  • the extending direction of the flow channel is, for example, a direction perpendicular to the paper surface in FIG. 14.
  • forming the plurality of first sub-electrodes 61 includes: depositing a conductive layer including a conductive material such as metal on the first substrate 1; and patterning the conductive layer to form the plurality of first sub-electrodes 61.
  • providing the first substrate 1 further includes: forming a thin film transistor 9 on the first substrate 1; forming a first dielectric layer 10 covering the thin film transistor 9; Vias are formed on the layer 10 (not shown in FIG. 14).
  • the first electrode 6 is connected to the thin film transistor 9 via the via hole.
  • providing the first substrate 1 further includes forming a second dielectric layer 11 to cover the first dielectric layer 10 and the first electrode 6.
  • step S102 in the embodiment of the present disclosure, in step S102, as shown in FIG. 15, providing the second substrate 2 further includes forming a second hydrophobic layer 8 on the second substrate 2.
  • the opening 41 is located in the second hydrophobic layer 8 and the second substrate 2. Therefore, the step of laser etching the second substrate 2 is performed after the second hydrophobic layer 8 is formed.
  • step S105 referring to FIG. 16, the first substrate 1 and the second substrate 2 are joined so that the first hydrophobic layer 7 and the second hydrophobic layer 8 are opposed to each other.
  • the orthographic projection of the second hydrophobic layer 8 on the first substrate 1 and the orthographic projection of the portion of the opening 41 adjacent to the first substrate 1 on the first substrate 1 do not overlap.
  • the opening 41 reference may be made to the above description of FIG. 5, which will not be repeated here.
  • step S102 before forming the second hydrophobic layer 8, providing the second substrate 2 further includes forming the second electrode 12 on the second substrate 2.
  • the orthographic projection of the second electrode 12 on the second substrate 2 is within the orthographic projection of the second hydrophobic layer 8 on the second substrate 2.
  • FIG. 18 shows a flowchart of a method of using the component pickup device according to an embodiment of the present disclosure. As shown in Figure 18, the method of use includes steps S801-S803.
  • FIGS. 19 to 21 show schematic diagrams of a method of using the component pickup device according to an embodiment of the present disclosure. It should be noted that FIGS. 19 to 21 are top views of the component picking device according to the embodiment of the present disclosure, which are only schematic and cannot be regarded as a limitation of the present disclosure. In addition, in FIGS. 19 to 21, X represents the direction in which the droplet 13 moves toward the opening 41, and Y represents the direction in which the droplet 13 moves away from the opening 41.
  • step S801 the liquid droplet 13 is introduced into the flow channel 5.
  • the droplet 13 may be water, for example.
  • step S802 the droplet 13 is moved to the opening 41 along the flow channel 5 to adsorb the component to be picked up by the droplet 13.
  • step S803 the liquid droplet 13 is moved away from the opening 41 along the flow channel 5 to desorb the element.
  • the element may include, for example, a miniature light emitting diode chip.
  • FIGS. 22a and 22b show schematic diagrams of moving components using the component picking device shown in FIG. 1. It should be noted that FIGS. 22a and 22b are cross-sectional views taken along a plane perpendicular to the cross-section of FIG. 1.
  • a suction device (not shown) is used to apply the first pressure F1 to the droplet 13 to move the droplet 13 to the opening 41 to adsorb the component 14 to be picked up.
  • the first pressure F1 may be greater than the pressure in the space where the flow channel is located or greater than the pressure in the external space communicated with the opening 41.
  • the water film 15 formed by the droplets 13 adsorbs the component 14 to be picked up. More specifically, the component 14 to be picked up is adsorbed by the surface tension of the water film 15. It can be understood that the water film 15 is formed on the side of the opening 41 away from the first substrate 1 due to the surface tension of the liquid after the droplet 13 moves to the opening 41.
  • a suction device is used to apply a second pressure F2 to the droplet 13 to move the droplet 13 away from the opening 41 to desorb the element 14, for example, to transfer the element 14 to a device such as an array backplane.
  • the direction of the second pressure F2 is not consistent with the direction of the first pressure F1, wherein the direction of the second pressure F2 may be opposite to the direction of the first pressure F1.
  • the second pressure F2 is applied to move the droplet 13 away from the opening 41, reducing the contact area of the droplet 13 with the surface of the element 14, thereby reducing the effect of the surface tension of the droplet 13, and finally making the droplet 13 It is separated from the element 14, thereby completing the transfer of the element 14, for example, a micro light emitting diode chip.
  • FIGS. 23a and 23b show schematic diagrams of moving components using the component picking device shown in FIG. 8. It should be noted that FIGS. 23a and 23b are cross-sectional views taken along a plane perpendicular to the cross-section of FIG. 8.
  • a first voltage is applied to the first electrode 6 to move the droplet 13 along the flow channel 5 to the opening 41 to adsorb the component 14 to be picked up by the droplet 13.
  • Applying the first voltage to the first electrode 6 includes: sequentially applying the first voltage to the first sub-electrodes 61 along the direction toward the opening 41.
  • a second voltage is applied to the first electrode 6 to move the droplet 13 along the flow channel 5 away from the opening 41 to desorb the element 14.
  • Applying the second voltage to the first electrode 6 includes: sequentially applying the second voltage to the first sub-electrodes 61 along a direction away from the opening 41.
  • the droplet 13 in FIG. 23c represents the droplet shape without the first voltage applied
  • the droplet 13' represents the droplet shape when the first voltage is applied.
  • the first voltage is sequentially applied to the first sub-electrode 61 along the direction toward the opening 41.
  • the contact angle between the layers 7 changes. Specifically, the contact angle changes from ⁇ to ⁇ '. That is, the contact angle becomes smaller. As a result, the droplets are moved toward the opening.
  • FIGS. 24a and 24b show schematic diagrams of moving components using the component picking device shown in FIG. 9. It should be noted that FIGS. 24a and 24b are cross-sectional views taken along a plane perpendicular to the cross-section of FIG. 9.
  • the component pickup device further includes a second electrode 12 located between the second substrate 2 and the second hydrophobic layer 8.
  • the second electrode 12 may be grounded.
  • a third voltage different from the first voltage is applied to the second electrode 8 when the first voltage is applied to the first electrode 6, so that the droplet 13 moves along the flow channel 5 to the opening 41
  • the component 14 to be picked up is absorbed by the droplet 13.
  • the surface of the component 14 is subjected to hydrophilic treatment before the component 14 is picked up, so that the component 14 to be picked up can be adsorbed by the surface tension of the droplet 13.
  • the method of performing hydrophilic treatment on the surface of the element 14 includes performing oxygen plasma treatment on the surface of the element 14 or coating the surface of the element 14 with a surfactant.
  • oxygen plasma treatment is performed on the surface of the element 14 to form hydroxyl groups on the surface of the element.
  • the surfactant includes sodium dodecyl sulfate (SDS, the molecular formula is CH 3 (CH 2 ) 11 OSO 3 Na), polyethylene glycol (Polyethylene Glycol, PEG), polyvinyl alcohol (Polyvinyl Alcohol, PVA) or Polymethacrylic Acid (PMAA).
  • SDS sodium dodecyl sulfate
  • PEG polyethylene glycol
  • PVA polyvinyl alcohol
  • PMAA Polymethacrylic Acid
  • the component pick-up device provided by the embodiment of the present disclosure and the preparation method and use method thereof can obtain the following benefits: use physical tension to transfer the component to prevent the adverse effect of static electricity on the component; adopt digital microfluidic technology (ie, use the implementation of the present disclosure
  • the first electrode or the first electrode and the second electrode technology in the example) transfer element, use droplet consumption and consumption are small, so that the element can be continuously transferred; and the thin film transistor array is used as the switch of the driving electrode, which can be accurately controlled The behavior of the droplets, thereby precisely controlling the picking and dropping of components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Micromachines (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种元件拾取装置及其制备方法、使用方法。所述元件拾取装置(100)包括:相对设置的第一基板(1)和第二基板(2);间隔部(3),其位于第一基板(1)与第二基板(2)之间,其中间隔部(3)彼此间隔以限定用于液体的流动通道(5);以及元件拾取部(4),其包括位于第二基板(2)中且与流动通道(5)连通的开口(41)。

Description

元件拾取装置及其制备方法、使用方法 技术领域
本公开的实施例涉及显示技术领域,尤其涉及一种元件拾取装置及其制备方法、使用方法。
背景技术
微发光二极管(Micro Light Emitting Diode,Micro-LED)显示技术同时具备液晶显示器(Liquid Crystal Display,LCD)和有机发光二极管(Organic Light Emitting Diode,OLED)的优点,而且其克服了OLED显示蓝光OLED寿命短的问题。Micro-LED可以应用于小到增强现实(Augmented Reality,AR)或虚拟现实(Virtual Reality,VR)显示,大到广告牌、电影银幕显示,同时Micro-LED显示技术也适用于柔性可穿戴设备。
发明内容
本公开的实施例提供了一种元件拾取装置及其制备方法、使用方法。
在本公开的一方面,提供了一种元件拾取装置。所述元件拾取装置包括:相对设置的第一基板和第二基板;间隔部,其位于所述第一基板与所述第二基板之间,其中所述间隔部彼此间隔以限定用于液体的流动通道;以及元件拾取部,其包括位于所述第二基板中且与所述流动通道连通的开口。
在本公开的实施例中,至少所述开口的邻近所述第一基板的部分在所述第一基板上的正投影位于所述流动通道在所述第一基板上的正投影内。
在本公开的实施例中,所述开口沿垂直于所述第二基板所在平面的截面形状为矩形。
在本公开的实施例中,所述开口包括相互连通的第一部分和第二部分。所述第一部分位于所述第二基板的朝向所述第一基板的一侧,所述第二部 分位于所述第二基板背离所述第一基板的一侧。
在本公开的实施例中,所述第一部分在平行于所述第一基板所在的平面上的第一截面不小于所述第二部分在平行于所述第一基板所在的平面上的第二截面。
在本公开的实施例中,所述第一部分在平行于所述第一基板所在的平面上的第一截面不大于所述第二部分在平行于所述第一基板所在的平面上的第二截面。
在本公开的实施例中,所述第一部分在平行于所述第一基板所在的平面上的第一截面的大小与所述第一截面到所述第一基板的距离呈反比。所述第二部分在平行于所述第一基板所在的平面上的第二截面的大小与所述第二截面到所述第一基板的距离呈正比。
在本公开的实施例中,所述开口还包括位于所述第一部分与所述第二部分之间的第三部分。所述第三部分在平行于所述第一基板所在的平面上的第三截面不大于所述第一截面和所述第二截面。
在本公开的实施例中,所述开口包括间隔设置的第一开口和第二开口。
在本公开的实施例中,所述元件拾取装置还包括:第一电极,位于所述第一基板面向所述第二基板的一侧;第一疏水层,位于所述第一电极面向所述第二基板的一侧;以及第二疏水层,位于所述第二基板面向所述第一基板的一侧。所述第二疏水层在所述第一基板上的正投影与所述开口的邻近所述第一基板的部分在所述第一基板上的正投影不重叠。
在本公开的实施例中,所述第一电极包括多个第一子电极。所述多个第一子电极沿所述流动通道的延伸方向彼此间隔地设置。
在本公开的实施例中,所述元件拾取装置还包括第二电极,其位于所述第二基板与所述第二疏水层之间。所述第二电极在所述第一基板上的正投影位于所述第二疏水层在所述第一基板上的正投影内。
在本公开的实施例中,所述元件拾取装置还包括:位于所述第一基板与所述第一电极之间的薄膜晶体管;位于所述薄膜晶体管与所述第一电极 之间的第一介质层,其中所述薄膜晶体管在所述第一基板上的正投影与所述第一电极在所述第一基板上的正投影重叠;以及位于所述第一电极与所述第一疏水层之间的第二介质层。
在本公开的实施例中,所述元件拾取装置还包括与所述流动通道连通的抽吸装置。
在本公开的实施例中,所述间隔部包括疏水材料。
在本公开的一方面,提供了一种制备如上所述的元件拾取装置的方法。所述方法包括:提供第一基板;提供第二基板;在所述第一基板或所述第二基板上形成间隔部,所述间隔部彼此间隔;在所述第二基板上形成元件拾取部,所述元件拾取部被形成为包括位于所述第二基板中的开口;以及接合所述第一基板和所述第二基板以使所述间隔部位于所述第一基板与所述第二基板之间以限定用于流体的流动通道,其中所述开口与所述流动通道连通。
在本公开的实施例中,至少所述开口的邻近所述第一基板的部分在所述第一基板上的正投影位于所述流动通道在所述第一基板上的正投影内。
在本公开的实施例中,提供所述第一基板包括:在所述第一基板上形成第一电极,以及在所述第一基板和所述第一电极上形成第一疏水层。提供所述第二基板包括:在所述第二基板上形成第二疏水层。接合所述第一基板和所述第二基板以使所述第一疏水层与所述第二疏水层彼此相对。在所述接合之后,所述第二疏水层在所述第一基板上的正投影与所述开口的邻近所述第一基板的部分在所述第一基板上的正投影不重叠。
在本公开的实施例中,所述第一电极被形成为沿所述流动通道的延伸方向彼此间隔地设置。
在本公开的实施例中,提供所述第二基板还包括在形成所述第二疏水层之前在所述第二基板上形成第二电极。所述第二电极在所述第二基板上的正投影位于所述第二疏水层在所述第二基板上的正投影内。
根据本公开的一方面,提供了一种根据如上所述的元件拾取装置的使 用方法。所述方法包括:将液滴导入所述流动通道;使所述液滴沿着所述流动通道移动至所述开口以通过所述液滴吸附待拾取的元件;以及使所述液滴沿所述流动通道移动离开所述开口以解吸附所述元件。
在本公开的实施例中,使所述液滴沿着所述流动通道移动至所述开口包括对所述液滴施加第一压力。使所述液滴沿所述流动通道移动离开所述开口包括对所述液滴施加第二压力。
在本公开的实施例中,所述元件拾取装置还包括位于所述第一基板面向所述第二基板的一侧的第一电极、位于所述第一电极面向所述第二基板的一侧的第一疏水层以及位于所述第二基板面向所述第一基板的一侧的第二疏水层。所述使用方法包括:对所述第一电极施加第一电压,使所述液滴沿着所述流动通道移动至所述开口以通过所述液滴吸附待拾取的元件;以及对所述第一电极施加第二电压,使所述液滴沿所述流动通道移动离开所述开口以解吸附所述元件。
在本公开的实施例中,所述元件拾取装置还包括位于所述第二基板与所述第二疏水层之间的第二电极。对所述第一电极施加第一电压,使所述液滴沿着所述流动通道移动至所述开口以通过所述液滴吸附待拾取的元件还包括:在施加所述第一电压时对所述第二电极施加与所述第一电压不同的第三电压。使所述液滴沿所述流动通道移动离开所述开口以解吸附所述元件还包括:在施加所述第二电压时对所述第二电极施加与所述第二电压不同的第四电压。
在本公开的实施例中,在拾取所述元件之前,对所述元件的表面进行亲水处理。
在本公开的实施例中,对所述元件的表面进行亲水处理的方法包括对所述元件的表面进行氧气等离子体处理或在所述元件的表面涂覆表面活性剂。
在本公开的实施例中,所述表面活性剂包括十二烷基硫酸钠、聚乙二醇、聚乙烯醇或聚甲基丙烯酸。
在本公开的实施例中,所述元件包括微型发光二极管芯片。
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本申请的各个方面可以单独或者与一个或多个其他方面组合实施。还应当理解,本文中的描述和特定实施例旨在仅说明的目的并不旨在限制本申请的范围。
附图说明
本文中描述的附图用于仅对所选择的实施例的说明的目的,并不是所有可能的实施方式,并且不旨在限制本申请的范围,其中:
图1示出了根据本公开的实施例的元件拾取装置的横截面结构的示意图;
图2示出了根据本公开的实施例的元件拾取部的开口的横截面结构示意图;
图3示出了根据本公开的实施例的元件拾取部的开口的横截面结构示意图;
图4示出了根据本公开的实施例的元件拾取部的开口的横截面结构示意图;
图5示出了根据本公开的实施例的元件拾取部的开口的横截面结构示意图;
图6示出了根据本公开的实施例的元件拾取部的开口的横截面结构示意图;
图7a和7b示出了根据本公开的实施例的元件拾取部的开口的横截面结构示意图;
图8示出了根据本公开的实施例的元件拾取装置的横截面结构示意图;
图9示出了根据本公开的实施例的元件拾取装置的横截面结构示意图;
图10示出了制备根据本公开的实施例的元件拾取装置的方法的流程图;
图11示出了根据本公开的实施例的制备间隔部的方法的结构示意图;
图12示出了根据本公开的实施例的制备元件拾取部的方法的结构示意图;
图13示出了根据本公开的实施例的接合第一基板和第二基板的方法的结构示意图;
图14示出了根据本公开的实施例的提供第一基板的方法的结构示意图;
图15示出了根据本公开的实施例的提供第二基板的方法的结构示意图;
图16示出了根据本公开的实施例的接合第一基板和第二基板的方法的结构示意图;
图17示出了根据本公开的实施例的提供第二基板的方法的结构示意图;
图18示出了根据本公开的实施例的元件拾取装置的使用方法的流程图;
图19至图21示出了根据本公开的实施例的元件拾取装置的使用方法的结构示意图;以及
图22a至图24b示出了根据本公开的实施例的元件拾取装置的使用方法的结构示意图。
贯穿这些附图的各个视图,相应的参考编号指示相应的部件或特征。
具体实施方式
首先,需要说明的是,除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,措辞“包含”和“包括” 将解释为包含在内而不是独占性地。同样地,术语“包括”和“或”应当解释为包括在内的,除非本文中另有说明。在本文中使用术语“实例”之处,特别是当其位于一组术语之后时,所述“实例”仅仅是示例性的和阐述性的,且不应当被认为是独占性的或广泛性的。
另外,还需要说明的是,当介绍本申请的元素及其实施例时,冠词“一”、“一个”、“该”和“所述”旨在表示存在一个或者多个要素;除非另有说明,“多个”的含义是两个或两个以上;用语“包含”、“包括”、“含有”和“具有”旨在包括性的并且表示可以存在除所列要素之外的另外的要素;术语“第一”、“第二”、“第三”等仅用于描述的目的,而不能理解为指示或暗示相对重要性及形成顺序。
此外,在附图中,为了清楚起见夸大了各层的厚度及区域。应当理解的是,当提到层、区域、或组件在别的部分“上”时,指其直接位于别的部分上,或者也可能有别的组件介于其间。相反,当某个组件被提到“直接”位于别的组件上时,指并无别的组件介于其间。
本公开中描绘的流程图仅仅是一个例子。在不脱离本公开精神的情况下,可以存在该流程图或其中描述的步骤的很多变型。例如,所述步骤可以以不同的顺序进行,或者可以添加、删除或者修改步骤。这些变型都被认为是所要求保护的方面的一部分。
现将参照附图更全面地描述示例性的实施例。
Micro-LED技术是通过巨量转移技术将数以百万计的微米级别(<100um)的的Micro-LED(例如,RGB Micro-LEDs)芯片安装到驱动背板上的一种技术。每个Micro-LED能够被单独驱动发光。由于Micro-LED采用无机发光材料制作,因此Micro-LED克服了采用有机发光元件的屏幕会出现的诸如烧屏以及寿命短等的缺点。另外,Micro-LED具有响应速度快、高对比度、高色彩饱和度、能够实现超高解析度、结构简单、能够实现轻薄弯曲等优点。
目前,限制Micro-LED技术发展的关键技术之一为巨量转移技术,即 如何将大量的微米尺寸的Micro-LED芯片转移到驱动背板上。按照吸附原理,Micro-LED芯片的吸附作用力一般分为:电荷吸引力、磁吸引力、粘附力、分子间作用力等。然而,仍然存在对改进的巨量转移技术的需求。
本公开提供了一种元件拾取装置及其制备方法、使用方法,能够利用物理作用力转移Micro-LED芯片。具体地,可以通过液滴的表面张力转移芯片,从而能够防止静电对芯片的影响、实现持续转移芯片以及精确地控制芯片的拾取和放下。
图1示出了根据本公开的实施例的元件拾取装置的横截面结构的示意图。如图1所示,元件拾取装置100包括:相对设置的第一基板1和第二基板2、间隔部3和元件拾取部4。间隔部3位于第一基板1与第二基板2之间。间隔部3彼此间隔以限定用于液体(未示出)的流动通道5。元件拾取部4包括位于第二基板2中且与流动通道5连通的开口41。在本公开的实施例中,元件拾取部4能够通过借助液体的表面张力吸附待拾取的元件,从而实现芯片的转移。
在本公开的实施例中,至少开口41的邻近第一基板1的部分在第一基板1上的正投影位于流动通道5在第一基板1上的正投影内。由此,在进行元件拾取时,能够较好地控制流动通道5中的液体在开口41背离第一基板1的部分形成的液膜的量,从而更有效地拾取元件。
在本公开的实施例中,如图1所示,开口41沿垂直于第二基板2所在平面的截面形状可以为矩形。
图2示出了根据本公开的实施例的元件拾取部的开口的横截面结构示意图。如图2所示,开口41可以包括间隔设置的第一开口410和第二开口420。应注意,第一开口410和第二开口420的详细描述与如上关于开口41的描述类似,在此不再赘述。
根据本公开的实施例,开口41可以包括相互连通的第一部分411和第二部分412。第一部分411位于第二基板2的朝向第一基板1的一侧。第二部分412位于第二基板2背离第一基板1的一侧。通过使第二部分的大 小适合于接收待拾取的元件,可以有效防止元件被拾取后发生晃动,避免引起其他潜在问题。
图3示出了根据本公开的实施例的元件拾取部的开口的横截面结构示意图。如图3所示,在一些实施例中,开口41的第一部分411在平行于第一基板1所在的平面上的第一截面S1不小于开口41的第二部分412在平行于第一基板1所在的平面上的第二截面S2。在一些实施例中,第一截面S1的大小与第一截面S1到第一基板1的距离D1呈反比。例如,当距离D1越小时,第一截面S1的大小越大。需要说明的是,这里的截面大小可以例如指截面的面积。
图4示出了根据本公开的实施例的元件拾取部的开口的横截面结构示意图。如图4所示,开口41的第一部分411在平行于第一基板1所在的平面上的第一截面S1不大于第二部分412在平行于第一基板1所在的平面上的第二截面S2。在一些实施例中,第一截面S1的大小不随着第一截面S1到第一基板1的距离D1变化而变化,第二截面S2的大小不随着第二截面S2到第一基板1的距离D2变化而变化。例如,当距离D1越小或越大时,第一截面S1的大小不变。需要说明的是,这里的截面大小可以例如指截面的面积。
图5示出了根据本公开的实施例的元件拾取部的开口的横截面结构示意图。如图5所示,在图4的基础上,开口41还包括位于第一部分411与第二部分412之间的第三部分413。第三部分413在平行于第一基板1所在的平面上的第三截面S3不大于第一截面S1和第二截面S2。
需要说明的是,图4中的第二截面S2不小于第一截面S1,图5中的第二截面S2不小于第一截面S1和第三截面S3。
图6示出了根据本公开的实施例的元件拾取部的开口的横截面结构示意图。如图6所示,开口41的第一部分411在平行于第一基板1所在的平面上的第一截面S1的大小与第一截面S1到第一基板1的距离D1呈反比。开口41的第二部分412在平行于第一基板1所在的平面上的第二截面S2 的大小与第二截面S2到第一基板1的距离D2呈正比。例如,当距离D1越小时,第一截面S1的大小越大;当距离D2越小时,第二截面S2的大小越小。
此外,图6中的开口41还包括位于第一部分411与第二部分412之间的第三部分413。第三部分413在平行于第一基板1所在的平面上的第三截面S3不大于第一截面S1和第二截面S2。
应注意,图4至6中,第二截面S2背离第一基板1的部分具有较大横截面尺寸有助于形成面积较大的水膜,以使吸附面积增大,从而使对元件的吸附力增大,因此能够更有效地拾取元件。
需要说明的是,在开口41包括多个开口的情况下,开口41可以具有图1至图6中的开口结构中的一者或多者或其组合,本公开在此不作具体限定。
根据本公开的实施例,开口41可以位于叠层结构28中,如图7a和7b所示。
在图7a和图7b中,叠层结构28可以包括第二基板2和位于第二基板2上的疏水层8(如稍后参考图8所描述的)。在该实施例中,开口41可以包括相互连通的第一开口部分411(下文称为第一部分411)、第二开口部分412(下文称为第二部分422)以及第三开口部分413(下文称为第三部分413)。在本公开的实施例中,第一部分411位于疏水层8中。第二部分412位于第二基板2中背离第一基板1的一侧。第三部分413位于第二基板2中朝向第一基板1的一侧。
在一些实施例中,如图7a所示,开口41的第一部分411在平行于第一基板1所在的平面上的第一截面S1不大于第二部分412在平行于第一基板1所在的平面上的第二截面S2。开口41的第一部分411在平行于第一基板1所在的平面上的第一截面S1等于第三部分413在平行于第一基板1所在的平面上的第三截面S3。
在一些实施例中,如图7b所示,开口41的第一部分411在平行于第 一基板1所在的平面上的第一截面S1不大于第二部分412在平行于第一基板1所在的平面上的第二截面S2。开口41的第三部分413在平行于第一基板1所在的平面上的第三截面S3不大于第一部分411在平行于第一基板1所在的平面上的第一截面S1。
此外,在图7a和图7b中,第一截面S1的大小不随着第一截面S1到第一基板1的距离D1变化而变化。第二截面S2的大小不随着第二截面S2到第一基板1的距离D2变化而变化。第三截面S3的大小不随着第三截面S3到第一基板1的距离D3变化而变化。例如,当距离D1越小或越大时,第一截面S1的大小不变。需要说明的是,这里的截面大小可以例如指截面的面积。
关于叠层结构中的开口41的其他实施例的详细描述类似于如上参考图1至6对开口41的描述,在此不再赘述。此外,需要说明的是,图7a和7b仅示出了叠层中的两种开口41的横截面结构示意图,其不应视为是对本公开的限定。本领域的技术人员可以根据需要采用与如上参考图1至6描述的开口结构中的任一种或组合。
在本公开的实施例中,在图1所示的元件拾取装置100的基础上,元件拾取装置100还包括与流动通道5连通的抽吸装置(未示出),从而通过抽吸装置施加的压力使液体(未示出)在流动通道5中移动。
根据本公开的实施例,在一些实施例中,图8示出了根据本公开的实施例的元件拾取装置的横截面结构示意图。
如图8所示,元件拾取装置100还包括:第一电极6,其位于第一基板1面向第二基板2的一侧;第一疏水层7,其位于第一电极6面向第二基板2的一侧;以及第二疏水层8,其位于第二基板2面向第一基板1的一侧。第二疏水层8在第一基板1上的正投影与开口41的邻近第一基板1的部分在第一基板1上的正投影不重叠。
需要说明的是,图8所示的开口41位于叠层结构中,即,位于第二疏水层8和第二基板2构成的叠层结构中。关于开口41的描述,可以参考如 上对图5的描述,在此不再赘述。
在本公开的实施例中,第一电极6包括多个第一子电极61。多个第一子电极61沿流动通道的延伸方向彼此间隔地设置。该流动通道的延伸方向例如在图8中为垂直于纸面的方向。
在本公开的实施例中,如图8所示,元件拾取装置100还包括:位于第一基板与1第一电极6之间的薄膜晶体管9;位于薄膜晶体管9与第一电极6之间的第一介质层10;以及位于第一电极6与第一疏水层7之间的第二介质层11。薄膜晶体管9在第一基板1上的正投影与第一电极6在第一基板1上的正投影重叠。
在本公开的实施例中,虽然在图8中未详细示出薄膜晶体管9的具体组成部分,但是,可以理解,薄膜晶体管9可以包括栅极、栅极绝缘层、介质层、有源层、源漏电极等。在本文中,通过薄膜晶体管9控制施加到第一电极6的电压,经由电润湿效应可以实现对液体的精确化控制。
根据本公开的实施例,在一些实施例中,图9示出了根据本公开的实施例的元件拾取装置的横截面结构示意图。图9与图8的区别在于,元件拾取装置100还包括位于第二基板2与第二疏水层8之间第二电极12。第二电极12在第一基板1上的正投影位于第二疏水层8在第一基板1上的正投影内。
在本公开的实施例中,间隔部5可以包括疏水材料。作为示例,疏水材料例如可以包括特氟龙。
在本公开的实施例中,第一基板1和第二基板2的材料例如可以包括玻璃、塑料、硅、聚酰亚胺等。
在本公开的实施例中,第一介质层10例如可以用作平坦化层。该平坦化层的材料例如可以包括树脂。
在本公开的实施例中,第二介质层11的材料例如可以包括二氧化硅(SiO 2,其相对介电常数为2.7)、氮化硅(Si 3N 4,其相对介电常数为7.8)、碳酸钡锶((BaSr)TiO 3,BST,其相对介电常数为200-300)、聚对二甲苯 (Parylene,其相对介电常数为3.15)、三氟乙烯的二元共聚物(Poly(vinylidene fluoride chlorotrifluoroethylene),P(VDF-TrFE),其相对介电常数为7.6-11.6)或聚酰亚胺(PI)。
在本公开的实施例中,还提供了一种制备如上所述的元件拾取装置的方法。图10示出了制备根据本公开的实施例的元件拾取装置的方法的流程图。如图10所示,该制备方法包括步骤S101至S105。
接下来,将参考图10至图17描述该制备方法。
在步骤S101中,提供第一基板1,以及在步骤S102中,提供第二基板2。本文对步骤S101和步骤S102的先后顺序不作具体限定,或者该两个步骤可以同时进行。
在步骤S103中,形成间隔部3。具体地。在本公开的实施例中,可以在第一基板1或第二基板2上形成间隔部3。
更具体地,图11示出了根据本公开的实施例的制备间隔部的方法的结构示意图。如图11所示,在第二基板2上形成间隔部3。间隔部3彼此间隔。具体地,可以在第二基板2上形成间隔部材料层,然后图案化该间隔部材料层以形成间隔部3。
需要注意的是,图11仅示出了在第二基板2上形成间隔部3的示意图,然而,也可以在第一基板1上形成间隔部3,本领域的技术人员可以根据需要来选择,本公开对此不作具体限定。关于间隔部3的详细描述如上所述,在此不再赘述。
在步骤S104中,形成元件拾取部。具体地,在第二基板上形成元件拾取部。
更具体地,图12示出了根据本公开的实施例的制备元件拾取部的方法的结构示意图。如图12所示,例如使用激光刻蚀方法在第二基板2上要形成元件拾取部的位置进行刻蚀,以形成元件拾取部4。该元件拾取部4被形成为包括位于第二基板2中的开口41。
在步骤S105中,接合第一基板和第二基板。
具体地,图13示出了根据本公开的实施例的接合第一基板和第二基板的方法的结构示意图。如图12所示,接合第一基板1和第二基板2以使间隔部3位于第一基板1与第二基板2之间以限定用于流体的流动通道5。在本公开的实施例中,开口41可以与流动通道5连通。由此,形成元件拾取装置。
在本公开的实施例中,至少开口41的邻近第一基板1的部分在第一基板1上的正投影位于流动通道5在第一基板1上的正投影内。
在一些实施例中,在本公开的实施例中,在步骤S101中,如图14所示,提供第一基板1可以包括:在第一基板1上形成第一电极6;以及在第一基板1和第一电极6上形成第一疏水层7。
在本公开的实施例中,第一电极6可以包括多个第一子电极61。多个第一子电极61沿流动通道的延伸方向彼此间隔地设置。该流动通道的延伸方向例如在图14中为垂直于纸面的方向。
在本公开的实施例中,形成多个第一子电极61包括:在第一基板1上沉积包括诸如金属等的导电材料的导电层;以及图案化该导电层以形成多个第一子电极61。
另外,参考图14,在形成第一电极6之前,提供第一基板1还包括:在第一基板1上形成薄膜晶体管9;形成覆盖薄膜晶体管9的第一介质层10;以及在第一介质层10上形成过孔(图14中未示出)。第一电极6经由该过孔连接到薄膜晶体管9。
此外,参考图14,在形成第一电极6之后以及在形成第一疏水层7之前,提供第一基板1还包括形成第二介质层11以覆盖第一介质层10和第一电极6。
在一些实施例中,在本公开的实施例中,在步骤S102中,如图15所示,提供第二基板2还包括在第二基板2上形成第二疏水层8。
需要说明的是,在该实施例中,开口41位于第二疏水层8和第二基板2中。因此,对第二基板2进行激光刻蚀的步骤在形成第二疏水层8之后 进行。
在本公开的实施例中,在步骤S105中,参考图16,接合第一基板1和第二基板2以使第一疏水层7与第二疏水层8彼此相对。此外,在该接合之后,第二疏水层8在第一基板1上的正投影与开口41的邻近第一基板1的部分在第一基板1上的正投影不重叠。关于开口41的描述,可以参考如上对图5的描述,在此不再赘述。
根据本公开的实施例,在步骤S102中,如图17所示,在形成第二疏水层8之前,提供第二基板2还包括在第二基板2上形成第二电极12。第二电极12在第二基板2上的正投影位于第二疏水层8在第二基板2上的正投影内。
应注意,关于该实施例中的各组成部分的详细描述,可以参考如上对拾取装置的描述,在此不再赘述。
在本公开的实施例中,还提供了一种如上所述的元件拾取装置的使用方法。图18示出了根据本公开的实施例的元件拾取装置的使用方法的流程图。如图18所示,该使用方法包括步骤S801-S803。
图19至图21示出了根据本公开的实施例的元件拾取装置的使用方法的示意图。需要说明的是,图19至21为根据本公开的实施例的元件拾取装置的俯视图,其仅为示意性地,不能视为对本公开的限定。另外,在图19至图21中,X表示液滴13朝向开口41移动的方向,以及Y表示液滴13离开开口41移动的方向。
参考图19,在步骤S801中,将液滴13导入流动通道5。
在本公开的实施例中,液滴13例如可以是水。
参考图20,在步骤S802中,使液滴13沿着流动通道5移动至开口41以通过液滴13吸附待拾取的元件。
参考图21,在步骤S803中,使液滴13沿流动通道5移动离开开口41以解吸附元件。
在本公开的实施例中,元件例如可以包括微型发光二极管芯片。
根据本公开的实施例,图22a和图22b示出了使用图1所示的元件拾取装置移动元件的示意图。需要说明的是,图22a和图22b为沿垂直于图1的截面的平面截取的截面图。
在该实施例中,参考图22a,使用抽吸装置(未示出)对液滴13施加第一压力F1以使液滴13移动至开口41,以吸附待拾取的元件14。该第一压力F1可以大于流动通道所在空间中的压力或者大于开口41所连通的外部空间中的压力。例如,通过液滴13形成的水膜15吸附待拾取的元件14。更具体地,通过水膜15的表面张力吸附待拾取的元件14。可以理解,水膜15是液滴13移动至开口41处后由于液体表面张力而在开口41背离第一基板1的一侧形成的。
参考图22b,使用抽吸装置对液滴13施加第二压力F2以使液滴13移动离开开口41,以解吸附元件14,例如以便将元件14转移至例如阵列背板的装置上。该第二压力F2与第一压力F1的方向不一致,其中,第二压力F2可以与第一压力F1的方向相反。
具体地,施加第二压力F2以使液滴13移动离开开口41,减小液滴13与元件14的表面的接触面积,从而减小了液滴13的表面张力的作用,最终使液滴13与元件14分离,由此完成元件14,例如,微型发光二极管芯片的转移。
根据本公开的实施例,图23a和图23b示出了使用图8所示的元件拾取装置移动元件的示意图。需要说明的是,图23a和图23b为沿垂直于图8的截面的平面截取的截面图。
在该实施例中,参考图23a,对第一电极6施加第一电压,使液滴13沿着流动通道5移动至开口41以通过液滴13吸附待拾取的元件14。对第一电极6施加第一电压包括:沿着朝向开口41的方向,依次对第一子电极61施加第一电压。
参考23b,对第一电极6施加第二电压,使液滴13沿流动通道5移动离开开口41以解吸附元件14。对第一电极6施加第二电压包括:沿着离 开开口41的方向,依次对第一子电极61施加第二电压。
在该实施例中,参考图23c描述液滴13移动的原理。需要说明的是,图23c中的液滴13表示未施加第一电压的液滴形状,以及液滴13’表示施加了第一电压时的液滴形状。当需要使液滴13朝向开口41移动时,沿着朝向开口41的方向依次对第一子电极61施加第一电压。例如,当对第一子电极61’施加第一电压时,在液滴13的表面张力和液滴13内部的压力差的作用下,即,在电润湿作用下,液滴与第一疏水层7之间的接触角发生变化。具体地,接触角由θ变成θ’。也就是,接触角变小了。由此,使液滴朝向开口移动。
关于是液滴13沿着背离开口41的方向的移动的原理与上述类似,在此不再赘述。
根据本公开的实施例,图24a和图24b示出了使用图9所示的元件拾取装置移动元件的示意图。需要说明的是,图24a和图24b为沿垂直于图9的截面的平面截取的截面图。
在该实施例中,元件拾取装置还包括位于第二基板2与第二疏水层8之间的第二电极12。可选地,第二电极12可以接地。
在该实施例中,参考图24a,在对第一电极6施加第一电压时对第二电极8施加与第一电压不同的第三电压,使液滴13沿着流动通道5移动至开口41以通过液滴13吸附待拾取的元件14。
参考图24b,在对第一电极6施加第二电压时对第二电极12施加与第二电压不同的第四电压以解吸附元件14。
关于是液滴13移动的原理与如上关于图23c描述的类似,在此不再赘述。
在本公开的实施例中,在拾取元件14之前,对元件14的表面进行亲水处理,从而能够通过液滴13的表面张力吸附待拾取的元件14。
在本公开的实施例中,对元件14的表面进行亲水处理的方法包括对元件14的表面进行氧气等离子体处理或在元件14的表面涂覆表面活性剂。
具体地,对元件14的表面进行氧气等离子体处理,以在元件表面形成羟基。
作为示例,表面活性剂包括十二烷基硫酸钠(Sodium Dodecyl Sulfate,SDS,分子式为CH 3(CH 2) 11OSO 3Na)、聚乙二醇(Polyethylene Glycol,PEG)、聚乙烯醇(Polyvinyl Alcohol,PVA)或聚甲基丙烯酸(Polymethacrylic Acid,PMAA)。
本公开的实施例提供的元件拾取装置及其制备方法、使用方法能够获得以下益处:利用物理张力转移元件,防止静电对元件的不良影响;采用数字微流控技术(即,使用本公开的实施例中的第一电极或第一电极和第二电极的技术)转移元件,使用液滴的消耗和用量很少,从而可以持续转移元件;以及采用薄膜晶体管阵列作为驱动电极的开关,可以精确控制液滴的行为,从而精确控制元件的拾取和放下。
以上为了说明和描述的目的提供了实施例的前述描述。其并不旨在是穷举的或者限制本申请。特定实施例的各个元件或特征通常不限于特定的实施例,但是,在合适的情况下,这些元件和特征是可互换的并且可用在所选择的实施例中,即使没有具体示出或描述。同样也可以以许多方式来改变。这种改变不能被认为脱离了本申请,并且所有这些修改都包含在本申请的范围内。

Claims (28)

  1. 一种元件拾取装置,包括:
    相对设置的第一基板和第二基板;
    间隔部,其位于所述第一基板与所述第二基板之间,其中所述间隔部彼此间隔以限定用于液体的流动通道;以及
    元件拾取部,其包括位于所述第二基板中且与所述流动通道连通的开口。
  2. 根据权利要求1所述的元件拾取装置,其中,至少所述开口的邻近所述第一基板的部分在所述第一基板上的正投影位于所述流动通道在所述第一基板上的正投影内。
  3. 根据权利要求2所述的元件拾取装置,其中,所述开口沿垂直于所述第二基板所在平面的截面形状为矩形。
  4. 根据权利要求2所述的元件拾取装置,其中,所述开口包括相互连通的第一部分和第二部分,所述第一部分位于所述第二基板的朝向所述第一基板的一侧,所述第二部分位于所述第二基板背离所述第一基板的一侧。
  5. 根据权利要求4所述的元件拾取装置,其中,所述第一部分在平行于所述第一基板所在的平面上的第一截面不小于所述第二部分在平行于所述第一基板所在的平面上的第二截面。
  6. 根据权利要求4所述的元件拾取装置,其中,所述第一部分在平行于所述第一基板所在的平面上的第一截面不大于所述第二部分在平行于所述第一基板所在的平面上的第二截面。
  7. 根据权利要求4所述的元件拾取装置,其中,所述第一部分在平行于所述第一基板所在的平面上的第一截面的大小与所述第一截面到所述第一基板的距离呈反比,
    所述第二部分在平行于所述第一基板所在的平面上的第二截面的大小与所述第二截面到所述第一基板的距离呈正比。
  8. 根据权利要求5所述的元件拾取装置,其中,所述开口还包括位于所述第一部分与所述第二部分之间的第三部分,
    所述第三部分在平行于所述第一基板所在的平面上的第三截面不大于所述第一截面和所述第二截面。
  9. 根据权利要求2所述的元件拾取装置,其中,
    所述开口包括间隔设置的第一开口和第二开口。
  10. 根据权利要求1所述的元件拾取装置,还包括:
    第一电极,位于所述第一基板面向所述第二基板的一侧;
    第一疏水层,位于所述第一电极面向所述第二基板的一侧;以及
    第二疏水层,位于所述第二基板面向所述第一基板的一侧,
    其中,所述第二疏水层在所述第一基板上的正投影与所述开口的邻近所述第一基板的部分在所述第一基板上的正投影不重叠。
  11. 根据权利要求10所述的元件拾取装置,其中,所述第一电极包括多个第一子电极,所述多个第一子电极沿所述流动通道的延伸方向彼此间隔地设置。
  12. 根据权利要求11所述的元件拾取装置,还包括第二电极,其位于所述第二基板与所述第二疏水层之间,
    其中,所述第二电极在所述第一基板上的正投影位于所述第二疏水层在所述第一基板上的正投影内。
  13. 根据权利要求10所述的元件拾取装置,还包括:
    位于所述第一基板与所述第一电极之间的薄膜晶体管;
    位于所述薄膜晶体管与所述第一电极之间的第一介质层,其中所述薄膜晶体管在所述第一基板上的正投影与所述第一电极在所述第一基板上的正投影重叠;以及
    位于所述第一电极与所述第一疏水层之间的第二介质层。
  14. 根据权利要求1所述的元件拾取装置,还包括与所述流动通道连通的抽吸装置。
  15. 根据权利要求1所述的元件拾取装置,其中,所述间隔部包括疏水材料。
  16. 一种制备权利要求1至15中任一项所述的元件拾取装置的方法,包括:
    提供第一基板;
    提供第二基板;
    在所述第一基板或所述第二基板上形成间隔部,所述间隔部彼此间隔;
    在所述第二基板上形成元件拾取部,所述元件拾取部被形成为包括位于所述第二基板中的开口;以及
    接合所述第一基板和所述第二基板以使所述间隔部位于所述第一基板与所述第二基板之间以限定用于流体的流动通道,
    其中,所述开口与所述流动通道连通。
  17. 根据权利要求16所述的方法,其中,至少所述开口的邻近所述第一基板的部分在所述第一基板上的正投影位于所述流动通道在所述第一基板上的正投影内。
  18. 根据权利要求17所述的方法,其中,
    提供所述第一基板包括:
    在所述第一基板上形成第一电极,以及
    在所述第一基板和所述第一电极上形成第一疏水层,
    提供所述第二基板包括:
    在所述第二基板上形成第二疏水层,
    其中,接合所述第一基板和所述第二基板以使所述第一疏水层与所述第二疏水层彼此相对,
    其中,在所述接合之后,所述第二疏水层在所述第一基板上的正投影与所述开口的邻近所述第一基板的部分在所述第一基板上的正投影不重叠。
  19. 根据权利要求18所述的方法,其中,所述第一电极被形成为沿所述流动通道的延伸方向彼此间隔地设置。
  20. 根据权利要求18所述的方法,其中,提供所述第二基板还包括在 形成所述第二疏水层之前在所述第二基板上形成第二电极,
    所述第二电极在所述第二基板上的正投影位于所述第二疏水层在所述第二基板上的正投影内。
  21. 一种根据权利要求1至15中的任一项所述的元件拾取装置的使用方法,包括:
    将液滴导入所述流动通道;
    使所述液滴沿着所述流动通道移动至所述开口以通过所述液滴吸附待拾取的元件;以及
    使所述液滴沿所述流动通道移动离开所述开口以解吸附所述元件。
  22. 根据权利要求21所述的元件拾取装置的使用方法,其中,
    使所述液滴沿着所述流动通道移动至所述开口包括对所述液滴施加第一压力;以及
    使所述液滴沿所述流动通道移动离开所述开口包括对所述液滴施加第二压力。
  23. 根据权利要求21所述的元件拾取装置的使用方法,其中,所述元件拾取装置还包括位于所述第一基板面向所述第二基板的一侧的第一电极、位于所述第一电极面向所述第二基板的一侧的第一疏水层以及位于所述第二基板面向所述第一基板的一侧的第二疏水层,所述方法包括:
    对所述第一电极施加第一电压,使所述液滴沿着所述流动通道移动至所述开口以通过所述液滴吸附待拾取的元件;以及
    对所述第一电极施加第二电压,使所述液滴沿所述流动通道移动离开所述开口以解吸附所述元件。
  24. 根据权利要求23所述的方法,其中,所述元件拾取装置还包括位于所述第二基板与所述第二疏水层之间的第二电极,
    其中对所述第一电极施加第一电压,使所述液滴沿着所述流动通道移动至所述开口以通过所述液滴吸附待拾取的元件还包括:
    在施加所述第一电压时对所述第二电极施加与所述第一电压不同的第 三电压,
    使所述液滴沿所述流动通道移动离开所述开口以解吸附所述元件还包括:
    在施加所述第二电压时对所述第二电极施加与所述第二电压不同的第四电压。
  25. 根据权利要求21所述的方法,其中,在拾取所述元件之前,对所述元件的表面进行亲水处理。
  26. 根据权利要求25所述的方法,其中,对所述元件的表面进行亲水处理的方法包括对所述元件的表面进行氧气等离子体处理或在所述元件的表面涂覆表面活性剂。
  27. 根据权利要求26所述的方法,其中,所述表面活性剂包括十二烷基硫酸钠、聚乙二醇、聚乙烯醇或聚甲基丙烯酸。
  28. 根据权利要求21所述的方法,其中,所述元件包括微型发光二极管芯片。
PCT/CN2019/073643 2019-01-29 2019-01-29 元件拾取装置及其制备方法、使用方法 WO2020154884A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980000090.5A CN109891569B (zh) 2019-01-29 2019-01-29 元件拾取装置及其制备方法、使用方法
PCT/CN2019/073643 WO2020154884A1 (zh) 2019-01-29 2019-01-29 元件拾取装置及其制备方法、使用方法
US16/758,074 US11728202B2 (en) 2019-01-29 2019-01-29 Element pickup device, method for manufacturing the same and method for using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073643 WO2020154884A1 (zh) 2019-01-29 2019-01-29 元件拾取装置及其制备方法、使用方法

Publications (1)

Publication Number Publication Date
WO2020154884A1 true WO2020154884A1 (zh) 2020-08-06

Family

ID=66938486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073643 WO2020154884A1 (zh) 2019-01-29 2019-01-29 元件拾取装置及其制备方法、使用方法

Country Status (3)

Country Link
US (1) US11728202B2 (zh)
CN (1) CN109891569B (zh)
WO (1) WO2020154884A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891569B (zh) * 2019-01-29 2024-04-02 京东方科技集团股份有限公司 元件拾取装置及其制备方法、使用方法
CN110854057B (zh) * 2019-11-14 2022-07-12 京东方科技集团股份有限公司 一种转移基板及其制作方法、转移方法
CN111341710B (zh) * 2020-03-12 2022-12-06 Tcl华星光电技术有限公司 Led芯片转移系统及led芯片的转移方法
CN112599031A (zh) * 2020-12-11 2021-04-02 江西慧光微电子有限公司 微型led板的制备方法及显示面板和电子装置
CN112466800B (zh) * 2021-01-25 2024-02-09 武汉大学 一种电润湿转印头、转印头阵列及微led巨量转移的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308377A (zh) * 2009-03-05 2012-01-04 株式会社新川 半导体芯片的拾取装置及拾取方法
CN103357584A (zh) * 2013-07-05 2013-10-23 深圳市矽电半导体设备有限公司 一种双焊臂拾取机构及一种芯片分选机
JP2015035548A (ja) * 2013-08-09 2015-02-19 株式会社日立ハイテクインスツルメンツ コレット及びダイボンダ
US20150214088A1 (en) * 2010-08-31 2015-07-30 Tokyo Electron Limited Pickup method and pickup device
CN105789127A (zh) * 2015-01-14 2016-07-20 英飞凌科技奥地利有限公司 脆化装置,拾取系统和拾取芯片的方法
CN108461439A (zh) * 2018-04-20 2018-08-28 同辉电子科技股份有限公司 一种Micro-LED芯片的制备及转移方法
CN109891569A (zh) * 2019-01-29 2019-06-14 京东方科技集团股份有限公司 元件拾取装置及其制备方法、使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808642B2 (ja) * 2006-02-02 2011-11-02 パナソニック株式会社 電子部品の実装方法および電子部品の実装装置
US7640654B2 (en) * 2006-02-02 2010-01-05 Panasonic Corporation Electronic component transporting method
TWI359456B (en) * 2006-12-15 2012-03-01 Lam Res Ag Device and method for wet treating plate-like arti
KR20110072275A (ko) * 2009-12-22 2011-06-29 삼성전자주식회사 미세 유체 소자 및 그 제조방법
JP2015135835A (ja) * 2012-03-23 2015-07-27 日本碍子株式会社 部品の位置合わせ装置
JP2016112498A (ja) * 2014-12-15 2016-06-23 パナソニックIpマネジメント株式会社 液滴駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308377A (zh) * 2009-03-05 2012-01-04 株式会社新川 半导体芯片的拾取装置及拾取方法
US20150214088A1 (en) * 2010-08-31 2015-07-30 Tokyo Electron Limited Pickup method and pickup device
CN103357584A (zh) * 2013-07-05 2013-10-23 深圳市矽电半导体设备有限公司 一种双焊臂拾取机构及一种芯片分选机
JP2015035548A (ja) * 2013-08-09 2015-02-19 株式会社日立ハイテクインスツルメンツ コレット及びダイボンダ
CN105789127A (zh) * 2015-01-14 2016-07-20 英飞凌科技奥地利有限公司 脆化装置,拾取系统和拾取芯片的方法
CN108461439A (zh) * 2018-04-20 2018-08-28 同辉电子科技股份有限公司 一种Micro-LED芯片的制备及转移方法
CN109891569A (zh) * 2019-01-29 2019-06-14 京东方科技集团股份有限公司 元件拾取装置及其制备方法、使用方法

Also Published As

Publication number Publication date
CN109891569B (zh) 2024-04-02
US11728202B2 (en) 2023-08-15
CN109891569A (zh) 2019-06-14
US20210217646A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
WO2020154884A1 (zh) 元件拾取装置及其制备方法、使用方法
US10643879B2 (en) Transfer head for transferring micro element and transferring method of micro element
JP4615510B2 (ja) 液晶表示装置用カラーフィルター基板及びその製造方法
US11631601B2 (en) Transfer head for transferring micro element and transferring method of micro element
TWI235865B (en) Wiring structure, display apparatus, and active device substrate
JP2007219510A (ja) ディスプレイ装置
JP2005300972A (ja) 表示装置の製造方法及び基板貼り合わせ装置
US20210305073A1 (en) Transfer structure and manufacturing method thereof, transfer device and manufacturing method thereof
US20110274840A1 (en) Apparatus and method of fabricating thin film pattern
JP3835449B2 (ja) 液滴塗布方法と液滴塗布装置及びデバイス並びに電子機器
KR100801623B1 (ko) 표시장치의 제조방법과 이에 사용되는 표시장치의 제조장치및 이에 의하여 제조된 표시장치
KR101678670B1 (ko) 박막트랜지스터 및 어레이 박막트랜지스터의 제조방법
WO2014205925A1 (zh) 封装基板、oled显示面板及其制造方法和显示装置
JP2009166410A5 (zh)
CN105449122B (zh) 用于制造显示设备的装置和使用其制造显示设备的方法
JP2006065021A (ja) アクティブマトリクス基板の製造方法、アクティブマトリクス基板、電気光学装置並びに電子機器
JP7450366B2 (ja) 基板保持装置、基板処理装置、基板保持方法、反転方法、成膜方法、電子デバイスの製造方法
CN110068922B (zh) 干涉调制显示面板及其制作方法、显示装置、显示方法
JP2014043074A (ja) 印刷用版およびそれを用いた印刷方法
US20230086168A1 (en) Channel member and liquid ejection head
KR101362147B1 (ko) 유기 박막 패턴의 제조방법 및 이를 이용한유기전계발광표시장치의 제조방법
JP2010102892A (ja) 有機el表示パネルの製造方法および装置
KR20080054711A (ko) 잉크젯 방식을 이용한 액정 디스플레이용 스페이서의제조방법
JP4747882B2 (ja) 表面処理方法、液滴吐出ヘッドの製造方法及び液滴吐出装置の製造方法
JP2018124326A (ja) 空間光変調装置及び空間光変調装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914007

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19914007

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)