WO2020149350A1 - 密閉電池 - Google Patents

密閉電池 Download PDF

Info

Publication number
WO2020149350A1
WO2020149350A1 PCT/JP2020/001197 JP2020001197W WO2020149350A1 WO 2020149350 A1 WO2020149350 A1 WO 2020149350A1 JP 2020001197 W JP2020001197 W JP 2020001197W WO 2020149350 A1 WO2020149350 A1 WO 2020149350A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery case
valve portion
valve
sealing body
battery
Prior art date
Application number
PCT/JP2020/001197
Other languages
English (en)
French (fr)
Inventor
政幹 吉田
仰 奥谷
嵩広 野上
曉 高野
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP20741058.0A priority Critical patent/EP3913701B1/en
Priority to US17/418,956 priority patent/US11699834B2/en
Priority to JP2020566468A priority patent/JP7410886B2/ja
Priority to CN202080009399.3A priority patent/CN113302786B/zh
Publication of WO2020149350A1 publication Critical patent/WO2020149350A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/164Lids or covers characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a sealed battery.
  • Patent Document 1 discloses a cylindrical sealed battery including a sealing body made of a metal plate having a convex downward convex shape inside a battery case. Patent Document 1 describes that when a battery abnormality occurs, the sealing body is inverted and the welded portion between the sealing body and the current collecting portion is broken, whereby current is cut off and safety is secured.
  • a sealed battery includes a battery case including a bottomed cylindrical outer can, and a sealing body that closes an opening of the outer can, and a gasket disposed between the outer can and the sealing body. And an electrode body including an electrode lead and housed in the battery case.
  • the sealing body includes a metal plate, and the metal plate has an annular thin portion and a convex shape inside the battery case, and the internal pressure of the battery case reaches a predetermined reversal pressure R.
  • the gasket is provided with an elastically deformable portion that comes into contact with the inner surface of the valve portion and urges the valve portion to the outside of the battery case.
  • FIG. 1 is a sectional view of the sealed battery according to the first embodiment.
  • FIG. 2 is a plan view of the gasket according to the first embodiment.
  • FIG. 3 is a sectional view taken along the line AA in FIG.
  • FIG. 4 is a cross-sectional view of the sealing body and the gasket according to the first embodiment,
  • FIG. 4(a) is a diagram showing a state before the valve portion is reversed, and
  • FIG. 4(b) is a valve portion.
  • FIG. 5 is a plan view of the gasket according to the second embodiment.
  • FIG. 6 is a sectional view taken along line BB in FIG.
  • FIG. 7 is a cross-sectional view of the sealing body and the gasket according to the second embodiment,
  • FIG. 7A is a diagram showing a state before the valve portion is reversed, and
  • FIG. 7B is a valve portion. It is a figure which shows the mode after inversion and vent. It is a figure which shows the modification of 2nd Em
  • a cylindrical battery in which the spirally wound electrode body 14 is housed in a cylindrical battery case 15 is illustrated, but the battery includes a rectangular battery case. It may be a rectangular battery. Further, the electrode body may be a laminated type in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated with a separator interposed therebetween.
  • the side of the battery case 15 close to the sealing body 17 is described as “upper” and the bottom side of the outer can 16 is described as “lower”.
  • FIG. 1 is a sectional view of the sealed battery 10 according to the first embodiment.
  • the sealed battery 10 includes a battery case 15 including an outer can 16 having a cylindrical shape with a bottom, and a sealing body 17 that closes an opening of the outer can 16, a space between the outer can 16 and the sealing body 17. And a gasket 40 disposed in the battery case and an electrode body 14 including an electrode lead and housed in a battery case 15.
  • An electrolyte is stored in the battery case 15.
  • the electrode body 14 includes a positive electrode 11, a negative electrode 12, and a separator 13 interposed between the positive electrode 11 and the negative electrode 12, and has a winding structure in which the positive electrode 11 and the negative electrode 12 are wound via the separator 13. .
  • the electrolyte may be either an aqueous electrolyte or a non-aqueous electrolyte.
  • An example of a suitable sealed battery 10 is a non-aqueous electrolyte secondary battery such as a lithium ion battery using a non-aqueous electrolyte.
  • the non-aqueous electrolyte contains, for example, a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent esters, ethers, nitrites, amides, and a mixed solvent of two or more of these are used.
  • the electrode body 14 includes a long positive electrode 11, a long negative electrode 12, two long separators 13, a positive electrode lead 20 bonded to the positive electrode 11, and a negative electrode bonded to the negative electrode 12. And a lead 21.
  • the negative electrode 12 is formed to have a size slightly larger than that of the positive electrode 11 in order to suppress the precipitation of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the lateral direction (vertical direction).
  • the two separators 13 are formed to have a size that is at least one size larger than the positive electrode 11, and are arranged so as to sandwich the positive electrode 11, for example.
  • the positive electrode 11 is obtained by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive material, a binder and the like on a positive electrode core, drying the coating film, and then compressing the positive electrode mixture layer to form a positive electrode core. It can be produced by forming on both sides of.
  • a lithium-transition metal composite oxide for example, is used as the positive electrode active material.
  • the metal elements contained in the lithium-transition metal composite oxide include Ni, Co, Mn, Al, B, Mg, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Zr, Nb, In, Sn. , Ta, W and the like.
  • a suitable lithium transition metal composite oxide is a lithium metal composite oxide containing at least one of Ni, Co and Mn. Specific examples include a composite oxide containing Ni, Co and Mn, and a composite oxide containing Ni, Co and Al.
  • the negative electrode 12 has a negative electrode core and a negative electrode mixture layer provided on both surfaces of the negative electrode core.
  • a foil of a metal such as copper or a copper alloy that is stable in the potential range of the negative electrode 12, a film in which the metal is arranged on the surface layer, and the like can be used.
  • the negative electrode mixture layer contains a negative electrode active material and a binder such as styrene-butadiene rubber (SBR).
  • SBR styrene-butadiene rubber
  • the negative electrode 12 is obtained by applying a negative electrode mixture slurry containing a negative electrode active material, a binder, and the like on the negative electrode core, drying the coating film, and then compressing the negative electrode mixture layer on both surfaces of the negative electrode core. It can be produced by forming.
  • Insulating plates 18 and 19 are arranged above and below the electrode body 14, respectively.
  • the positive electrode lead 20 attached to the positive electrode 11 extends to the sealing body 17 side through the through hole of the insulating plate 18, and the negative electrode lead 21 attached to the negative electrode 12 passes through the outside of the insulating plate 19. And extends to the bottom side of the outer can 16.
  • the positive electrode lead 20 is connected to the inner surface of the sealing body 17 facing the inside of the battery case 15 by welding or the like, and the sealing body 17 serves as a positive electrode external terminal.
  • the negative electrode lead 21 is connected to the inner surface of the bottom of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode external terminal.
  • the outer can 16 is a bottomed cylindrical metal container.
  • a gasket 40 is provided between the outer can 16 and the sealing body 17 to seal the internal space of the battery case 15.
  • the outer can 16 has a grooved portion 22 for supporting the sealing body 17, which is formed on the side surface portion by, for example, a spinning process from the outside of the side surface portion.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the outer can 16, and the upper surface thereof supports the sealing body 17.
  • the metal plate forming the sealing body 17 has a thin portion 34 formed in an annular shape.
  • the metal plate has a valve portion 30 surrounded by the thin portion 34 and an annular portion 31 located outside the thin portion 34 and connected to the positive electrode lead 20. That is, the valve portion 30 and the annular portion 31 are separated by the thin portion 34.
  • the thin portion 34 is a portion that is thinner than the valve portion 30 and the annular portion 31, and is easily broken when the abnormality occurs in the battery and the internal pressure of the battery case 15 rises, preferentially over the other portions. It is a department.
  • the sealing body 17 is fixed to the outer can 16 via the gasket 40 by the annular portion 31 being sandwiched by the upper end portion of the outer can 16 and the grooved portion 22.
  • the valve portion 30 has a convex shape (downward convex shape) inside the battery case 15, and when the internal pressure of the battery case 15 reaches a predetermined reversal pressure R, the valve portion 30 is convex outside (upward convex shape). Invert so that Then, the thin portion 34 is configured to be broken at the same time when the valve portion 30 is reversed (see FIG. 4).
  • the sealing body 17 is designed such that the thin wall portion 34 is broken by utilizing the reversal of the valve portion 30, and the elastic deformation portion provided on the gasket 40 causes the valve portion 30 to move outside the battery case 15. Since it is urged (upward), it helps to completely disconnect the valve portion 30 from the annular portion 31. This surely interrupts the current path.
  • the sealing body 17 is preferably composed of a single metal plate including the valve portion 30 and the annular portion 31 which are divided by the thin portion 34.
  • the metal plate having the valve portion 30 and the annular portion 31 constitutes the top plate of the sealing body 17.
  • an external lead (not shown) connected to an external device is connected to the valve portion 30 by welding or the like, and a positive electrode lead 20 connected to the positive electrode 11 of the electrode body 14 is welded or the like to the annular portion 31.
  • the electrode lead connected to the annular portion 31 is not limited to the positive electrode lead 20, and the negative electrode lead 21 may be connected to the annular portion 31.
  • the sealing body 17 serves as a negative electrode external terminal.
  • the sealing body 17 is manufactured, for example, by using a single metal plate, forming an annular thin portion 34 on the metal plate, and press-working so as to be convex inside the battery case 15.
  • An example of a suitable metal plate is an aluminum alloy plate containing aluminum as a main component.
  • the thickness of the metal plate is not particularly limited, but as an example, the portion other than the thin portion 34 is 0.3 mm to 2 mm.
  • the thickness of the thin portion 34 is, for example, 10% to 50% of the thickness of the valve portion 30.
  • the valve portion 30 and the annular portion 31 may have the same thickness or different thicknesses.
  • the thin portion 34 is composed of, for example, an annular groove.
  • the thickness of the thin portion 34 can be adjusted by changing the depth of the groove.
  • the groove may be formed on the outer surface of the sealing body 17, but is preferably formed on the inner surface of the sealing body 17.
  • the groove (thin portion 34) is preferably formed in a circular shape without corners, and particularly preferably formed in a substantially perfect circular shape.
  • substantially perfect circle means a perfect circle shape and a shape recognized as a substantially perfect circle.
  • the shape of the thin wall portion 34 is not limited to the groove shape, and the thickness of the thin wall portion 34 may be set so that the thin wall portion 34 can act as an easily breakable portion.
  • the thickness of the thin portion 34 can be set so that the thickness of the metal plate continuously decreases from the valve portion 30 to the thin portion 34.
  • the planar view shape of the valve portion 30 and the annular portion 31 is determined by the planar view shape of the thin portion 34.
  • the valve portion 30, which is a portion surrounded by the thin portion 34, preferably has a substantially circular shape in plan view. In this case, it becomes easy to completely break the thin portion 34 over the entire length.
  • the annular portion 31 existing outside the valve portion 30 is preferably formed in an annular shape in plan view having a substantially constant inner diameter and outer diameter.
  • the area ratio between the valve portion 30 and the annular portion 31 is not particularly limited, and the area of the valve portion 30 may be larger or smaller than the area of the annular portion 31.
  • the valve portion 30 has a convex downward convex shape inside the battery case 15 in a normal use state in which the internal pressure of the battery case 15 is lower than the reversal pressure R. That is, the valve portion 30 is recessed inside the battery case 15 when viewed from the outside of the battery case 15. It is preferable that the valve portion 30 bulges toward the electrode body 14 side in a range where it does not contact the electrode body 14.
  • the valve portion 30 is inverted so as to have an upward convex shape that is convex outside the battery case 15. That is, the valve portion 30 has a structure that can be deformed from a downward convex shape to an upward convex shape.
  • the valve portion 30 may have any shape as long as it can be inverted from the downward convex shape to the upward convex shape by the internal pressure of the battery case 15, and the entire valve portion 30 may be curved in a dome shape.
  • An example of a suitable valve portion 30 includes a flat bottom portion 32 that is most bulged toward the electrode body 14 side, and an annular inclined portion 33 formed around the bottom portion 32.
  • the inclined portion 33 is formed so as to have a constant gradient from the bottom portion 32 toward the annular portion 31, and a bent portion exists at the boundary between the bottom portion 32 and the inclined portion 33.
  • the bottom portion 32 is formed substantially parallel to the annular portion 31, and is arranged substantially parallel to the bottom portion of the outer can 16.
  • the bottom portion 32 has a substantially circular shape in plan view.
  • the inclined portion 33 is formed in an annular shape in plan view so as to surround the bottom portion 32.
  • the thin portion 34 is formed at the boundary position between the inverted portion Z1 that is a portion that is inverted from the downward convex shape to the upward convex shape and the non-inverted portion Z2 that is not inverted. It has a formed structure. In this case, the entire portion in which the downward convex shape that bulges toward the electrode body 14 side is formed is the inverted portion Z1.
  • the metal plate may have a structure in which the inverted portion Z1 (downwardly convex portion) is formed beyond the range of the valve portion 30, that is, over the annular portion 31 located outside the thin portion 34. .. In this case, the thin portion 34 is formed on the sloped portion away from the upper end of the downward convex shape, and the valve portion 30 and a part of the annular portion 31 are inverted to the upward convex shape.
  • the reversing pressure R is smaller than the first vent pressure V1 that breaks the thin wall portion 34 in the shape before reversing the valve portion 30, and the thin wall portion 34 in the shape after reversing the valve portion 30 is formed.
  • the second vent pressure V2 to be broken is set to be not less than V2.
  • the conditions of V2 ⁇ R ⁇ V1 are, for example, the thickness of the valve portion 30 and the thin portion 34, the formation position of the thin portion 34, the shape of the valve portion 30, the degree of bulging of the reversal portion Z1, the constituent material of the sealing body 17, and the like. It can be realized by controlling. Specifically, when the thickness of the valve portion 30 (reversing portion Z1) is reduced, the valve portion 30 tends to be reversed, and the reversal pressure R tends to decrease. Further, when the thickness of the thin portion 34 is reduced, both the vent pressures V1 and V2 tend to decrease.
  • FIG. 2 is a plan view of the gasket 40
  • FIG. 3 is a sectional view taken along the line AA in FIG.
  • FIG. 4 is a cross-sectional view of the sealing body 17 and the gasket 40
  • FIG. 4A is a diagram showing a state before the valve portion 30 is reversed
  • FIG. 4B is a valve portion 30 of the sealing body 17.
  • FIG. 6 is a diagram showing a state after inversion and venting.
  • the gasket 40 includes a disc-shaped bottom portion 41 that abuts on the inner surface (lower surface) of the sealing body 17, and a sidewall portion 42 that is formed in an annular shape along the outer peripheral edge of the bottom portion 41. It is a bottomed cylindrical resin member including and.
  • the side wall portion 42 is interposed between the outer can 16 and the sealing body 17, insulates both members, closes a gap between both members, and seals the inside of the battery case 15.
  • An opening 43 is formed in the bottom portion 41.
  • the opening portion 43 functions as a vent hole, and is formed in a portion of the central portion of the bottom portion 41 in the radial direction that vertically overlaps with the valve portion 30 of the sealing body 17.
  • the opening 43 is also a hole for passing the positive electrode lead 20.
  • the gasket 40 is provided with a protrusion 44 as an elastically deformable portion that abuts the inner surface of the valve portion 30 and biases the valve portion 30 to the outside of the battery case 15.
  • the protrusion 44 is folded so as to be in contact with the inner surface of the valve portion 30, and is formed to protrude toward the outside of the battery case 15 when the valve portion 30 is inverted.
  • the protrusion 44 is arranged in a state of being pressed by the valve portion 30 having a downward convex shape. Therefore, a pressing force acts on the valve portion 30 from the protrusion 44 toward the outside (upward) of the battery case 15. In this way, the protrusion 44 is arranged in a state in which the valve portion 30 is biased.
  • the protrusion 44 is elastically deformed and returns to its original shape when the valve portion 30 is inverted and deformed so as to be convex upward so that the pressing force from the valve portion 30 stops acting.
  • the protrusion 44 stands upright substantially perpendicular to the surface direction of the bottom portion 41.
  • the protrusion 44 largely protrudes upward and extends along the thickness direction of the bottom portion 41.
  • the protrusion 44 supports the reversal of the valve portion 30 by its biasing force. Further, since the protrusion 44 largely protrudes upward, the gap between the separated valve portion 30 and the annular portion 31 is maintained, and the possibility of re-conduction of the current path can be reduced.
  • a plurality of protrusions 44 be formed.
  • a plurality of protrusions 44 are formed in a portion that abuts the inner surface of the valve portion 30 and can press the valve portion 30 upward when the battery is normally used.
  • the plurality of protrusions 44 are formed on the peripheral edge of the opening 43.
  • Each of the protrusions 44 extends from the peripheral edge of the opening 43 toward the center of the opening 43 and is bent in the same direction as the side wall 42 midway.
  • the protrusion 44 extending from the peripheral portion of the opening 43 is formed in a substantially L-shaped cross section.
  • the plurality of protrusions 44 are formed, for example, at substantially equal intervals along the circumferential direction of the bottom portion 41.
  • four protrusions 44 are arranged at equal intervals along the peripheral edge of the opening 43, and the four protrusions 44 are arranged in the radial direction of the bottom portion 41.
  • Each of the protrusions 44 has the same shape and size as each other, extends to the vicinity of the center of the opening 43 in a range where they do not contact each other, and is formed in a substantially cross shape in a plan view.
  • the number of the protrusions 44 is not particularly limited, but it is preferably 2 to 21 and more preferably 3 to 8.
  • the protrusion 44 can be bent along the surface direction of the bottom portion 41 from the original shape which is in a state of standing substantially perpendicular to the bottom portion 41. Then, the protrusion 44 has a restoring force that returns from the state of being folded along the surface direction of the bottom portion 41 to the original shape.
  • the protrusion 44 is pressed against the inner surface of the valve portion 30 and folded when the battery is assembled.
  • the protrusion 44 is preferably folded so that the tip end faces the root side.
  • the gasket 40 is made of, for example, a resin material having flexibility that enables elastic deformation of the protrusions 44 and having excellent airtightness, insulation, chemical resistance, heat resistance, and the like.
  • the shape of the protrusion 44 is not particularly limited, but an example of a suitable shape is a substantially rectangular shape.
  • the height H of the protrusion 44 (the length from the upper surface of the bottom portion 41 to the tip of the protrusion 44) is such that the gap between the valve portion 30 and the annular portion 31 can be maintained when the valve portion 30 is separated from the annular portion 31. Is preferably 1 mm to 5 mm, for example.
  • a tapered surface may be formed at the tip of the protrusion 44 so as to gradually decrease in height H from the outer side to the inner side of the bottom portion 41 in the radial direction. Further, a similar tapered surface may be formed on the bent portion of the protrusion 44. By forming the tapered surface in the bent portion of the protrusion 44, the protrusion 44 can be easily folded.
  • valve portion 30 when the internal pressure of the battery case 15 rises and exceeds a predetermined threshold value (reversal pressure R), the valve portion 30 is inverted so as to be convex upward.
  • a predetermined threshold value reversal pressure R
  • the plurality of protrusions 44 that have been folded in contact with the inner surface of the valve portion 30 return to the original shape that extends upward, and project toward the space created by the inversion of the valve portion 30.
  • the sealing body 17 is designed such that the valve portion 30 is completely separated from the annular portion 31 by utilizing the reversal of the valve portion 30 when the thin portion 34 is broken. Further, the protrusion 44 extends upward, so that the valve portion 30 is more reliably separated from the annular portion 31.
  • the structure of the sealing body 17 is simple, it is easy to completely separate the valve portion 30 to which the external lead is connected from the annular portion 31 to which the electrode lead is connected.
  • the current path can be cut off more reliably. Further, since the plurality of protrusions 44 protruding upward prevent contact between the separated valve portion 30 and the annular portion 31, re-conduction of the current path is highly suppressed.
  • 5 is a plan view of the gasket 50 according to the second embodiment
  • FIG. 6 is a sectional view taken along the line BB in FIG.
  • FIG. 7 is a cross-sectional view of the sealing body 17 and the gasket 50
  • FIG. 7A is a diagram showing a state before the valve portion 30 is reversed
  • FIG. 7B is a valve portion of the sealing body 17. It is a figure which shows the mode after 30 inversion and venting.
  • the gasket 50 includes a disk-shaped bottom portion 51 that abuts on the inner surface of the sealing body 17, and a side wall portion 52 that is formed in an annular shape along the outer peripheral edge of the bottom portion 51.
  • the gasket 40 is common to the gasket 40 of the first embodiment in that it is a cylindrical resin member having a bottom.
  • the bottom portion 51 has an opening portion 53 that functions as a vent hole and an insertion hole for the electrode lead.
  • the side wall portion 52 is interposed between the outer can 16 and the sealing body 17, insulates both members, closes a gap between both members, and seals the inside of the battery case 15.
  • the gasket 50 is provided with a convex portion 54 as an elastically deformable portion that abuts the inner surface of the valve portion 30 and biases the valve portion 30 to the outside of the battery case 15.
  • the convex portion 54 is formed so as to come into contact with the inner surface of the valve portion 30 and be pushed into the inside of the battery case 15 and bulge toward the outside of the battery case 15 when the valve portion 30 is inverted.
  • the convex portion 54 is arranged in a state of being pressed by the valve portion 30 having a downward convex shape. Therefore, like the protrusion 44 of the gasket 40, a pressing force acts on the valve portion 30 from the protrusion 54 toward the outside of the battery case 15.
  • the convex portion 54 is arranged in a state in which the valve portion 30 is biased.
  • the convex portion 54 is formed in a dome shape that is convex upward and elastically deforms in the vertical direction.
  • the convex portion 54 is pressed down from above by the valve portion 30 in a normal use state of the battery, but when the valve portion 30 is reversed and the pressing force is no longer applied, the convex portion 54 elastically deforms and returns to the original dome shape.
  • the convex portion 54 is formed by a bridge portion 55, which extends in the radial direction of the bottom portion 51, extends from the peripheral edge of the opening 53, and extends in the radial direction of the bottom 51 from one peripheral edge to the other peripheral edge.
  • the bridge portion 55 intersects at the central portion in the radial direction of the bottom portion 51 and is formed in a substantially cross shape in plan view.
  • the convex portion 54 has an upward convex shape in which the radial center portion of the bottom portion 51 where the bridge portion 55 intersects is most bulged.
  • the opening 53 and the convex portion 54 are formed in a portion that vertically overlaps with the valve portion 30 in the radial center portion of the bottom portion 51.
  • the gasket 50 is preferably arranged such that the maximum bulging portion of the convex portion 54 contacts the center of the bottom portion of the valve portion 30.
  • the number and shape of the bridge portions 55 are not particularly limited. Further, the bridge portion 55 may have a spring structure, and a coiled spring structure or an opening may be formed at the intersection of the bridge portion 55.
  • FIG. 8 is a plan view showing a gasket 60 which is a modified example of the second embodiment.
  • the gasket 60 is a bottomed cylindrical resin member including a disc-shaped bottom portion 61 that comes into contact with the inner surface of the valve portion 30, and a side wall portion 62 formed in an annular shape along the outer peripheral edge of the bottom portion 61. Therefore, it is common to the gaskets 40 and 50.
  • a convex portion 64 is provided as an elastically deformable portion on the gasket 60, and an opening portion 63 is formed on the bottom portion 61.
  • the convex portion 64 is formed in a dome shape that is convex upward by the bridge portion 65 extending from the peripheral portion of the opening 63.
  • the bridge portion 65 is formed in a spiral shape so as to gather from a plurality of locations on the peripheral portion of the opening portion 63 to the radial center portion of the bottom portion 61.
  • the convex portion 64 has an upward convex shape in which the radial center portion of the bottom portion 61 where the bridge portion 65 intersects is most bulged.
  • the bridge portion 65 may form a spring structure, and a coiled spring structure or an opening may be formed at the intersection of the bridge portion 65.
  • the inversion of the valve portion 30 is supported by the convex portions 54 and 64, and it is easy to completely separate the valve portion 30 from the annular portion 31. Further, the convex portions 54 and 64 that bulge upward prevent contact between the separated valve portion 30 and the annular portion 31. Therefore, according to the sealed battery including the gaskets 50 and 60, it is easy to interrupt the current path when an abnormality occurs, and re-conduction of the once interrupted current path is highly suppressed.
  • a large number of needle-shaped protrusions may be provided upright instead of the protrusions 44 and the protrusions 54.
  • the needle-shaped protrusion is an elastically deformable portion that is pressed by the valve portion 30 and bends from the root, and returns to its original shape when the valve portion 30 is inverted.
  • an elastically deformable member such as a foam or a porous body may be attached to the upper surface of the gasket.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本開示は、電池に異常が発生して電池ケースの内圧が上昇したときに、電池の電流経路をより確実に遮断することを目的とする。実施形態の一例である密閉電池は、有底筒状の外装缶、及び外装缶の開口部を塞ぐ封口体を含む電池ケースと、外装缶と封口体の間に配置されたガスケットと、電極リードを含み、電池ケース内に収容された電極体とを備える。封口体は金属板を含み、金属板は、環状に形成された薄肉部と、電池ケースの内側に凸の形状を有する弁部と、電極リードが接続される環状部とを有する。ガスケットには、弁部の内面に当接して弁部を電池ケースの外側に付勢する弾性変形部が設けられている。

Description

密閉電池
 本開示は、密閉電池に関する。
 従来、有底筒状の外装缶、及び外装缶の開口部を塞ぐ封口体を含む電池ケースを備えた密閉電池が広く知られている。例えば、特許文献1には、電池ケースの内側に凸の下凸形状を有する金属板で構成された封口体を備える円筒形の密閉電池が開示されている。特許文献1には、電池の異常発生時に封口体が反転して封口体と集電部の溶接部が破断することで、電流が遮断され安全性が確保される、と記載されている。
特開2008-269904号公報
 特許文献1に開示されるように、封口体には電流遮断機構(CID)が設けられているが、電池の異常発生時において電流遮断機構により電池の電流経路を確実に遮断することは重要な課題である。
 本開示の一態様である密閉電池は、有底筒状の外装缶、及び前記外装缶の開口部を塞ぐ封口体を含む電池ケースと、前記外装缶と前記封口体の間に配置されたガスケットと、電極リードを含み、前記電池ケース内に収容された電極体とを備える。前記封口体は金属板を含み、前記金属板は、環状に形成された薄肉部と、前記電池ケースの内側に凸の形状を有し、前記電池ケースの内圧が所定の反転圧Rに達したときに当該ケースの外側に凸となるように反転する、前記薄肉部に囲まれた弁部と、前記薄肉部の外側に位置し、前記電極リードが接続される環状部とを有する。前記ガスケットには、前記弁部の内面に当接して前記弁部を前記電池ケースの外側に付勢する弾性変形部が設けられている。
 本開示の一態様である密閉電池によれば、電池に異常が発生して電池ケースの内圧が上昇したときに、電池の電流経路をより確実に遮断することができる。また、電流経路が遮断された状態を維持することが容易であり、電流経路の再導通を高度に抑制できる。
図1は、第1の実施形態である密閉電池の断面図である。 図2は、第1の実施形態であるガスケットの平面図である。 図3は、図2中のAA線断面図である。 図4は、第1の実施形態である封口体及びガスケットの断面図であってあり、図4(a)は弁部の反転前の様子を示す図であり、図4(b)は弁部の反転及びベント後の様子を示す図である。 図5は、第2の実施形態であるガスケットの平面図である。 図6は、図5中のBB線断面図である。 図7は、第2の実施形態である封口体及びガスケットの断面図であってあり、図7(a)は弁部の反転前の様子を示す図であり、図7(b)は弁部の反転及びベント後の様子を示す図である。 第2の実施形態の変形例を示す図である。
 以下、本開示の実施形態の一例について詳細に説明する。以下では、本開示に係る密閉電池の実施形態の一例として、巻回型の電極体14が円筒形状の電池ケース15に収容された円筒形電池を例示するが、電池は角形の電池ケースを備えた角形電池であってもよい。また、電極体は、複数の正極と複数の負極がセパレータを介して交互に積層されてなる積層型であってもよい。本明細書では、説明の便宜上、電池ケース15の封口体17側を「上」、外装缶16の底部側を「下」として説明する。
 以下、図1~図4を参照しながら、本開示に係る密閉電池の第1の実施形態について詳説する。図1は、第1の実施形態である密閉電池10の断面図である。図1に例示するように、密閉電池10は、有底筒状の外装缶16、及び外装缶16の開口部を塞ぐ封口体17を含む電池ケース15と、外装缶16と封口体17の間に配置されたガスケット40と、電極リードを含み、電池ケース15内に収容された電極体14とを備える。また、電池ケース15内には電解質が収容されている。電極体14は、正極11と、負極12と、正極11及び負極12の間に介在するセパレータ13とを含み、正極11と負極12がセパレータ13を介して巻回されてなる巻回構造を有する。
 電解質は、水系電解質、非水電解質のいずれであってもよい。好適な密閉電池10の一例は、非水電解質を用いた、リチウムイオン電池等の非水電解質二次電池である。非水電解質は、例えば非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、エステル類、エーテル類、ニトリル類、アミド類、及びこれらの2種以上の混合溶媒等が用いられる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。なお、非水電解質は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。電解質塩には、LiPF等のリチウム塩が使用される。
 電極体14は、長尺状の正極11と、長尺状の負極12と、長尺状の2枚のセパレータ13と、正極11に接合された正極リード20と、負極12に接合された負極リード21とを有する。負極12は、リチウムの析出を抑制するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11より長手方向及び短手方向(上下方向)に長く形成される。2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。
 正極11は、正極芯体と、正極芯体の両面に設けられた正極合材層とを有する。正極芯体には、アルミニウム、アルミニウム合金など正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、正極活物質、アセチレンブラック等の導電材、及びポリフッ化ビニリデン(PVdF)等の結着材を含む。正極11は、正極芯体上に正極活物質、導電材、及び結着材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合材層を正極芯体の両面に形成することにより作製できる。
 正極活物質には、例えばリチウム遷移金属複合酸化物が用いられる。リチウム遷移金属複合酸化物に含有される金属元素としては、Ni、Co、Mn、Al、B、Mg、Ti、V、Cr、Fe、Cu、Zn、Ga、Sr、Zr、Nb、In、Sn、Ta、W等が挙げられる。好適なリチウム遷移金属複合酸化物の一例は、Ni、Co、Mnの少なくとも1種を含有するリチウム金属複合酸化物である。具体例としては、Ni、Co、Mnを含有する複合酸化物、Ni、Co、Alを含有する複合酸化物が挙げられる。
 負極12は、負極芯体と、負極芯体の両面に設けられた負極合材層とを有する。負極芯体には、銅、銅合金など負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質、及びスチレンブタジエンゴム(SBR)等の結着材を含む。負極12は、負極芯体上に負極活物質、及び結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合材層を負極芯体の両面に形成することにより作製できる。
 負極活物質には、例えば鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛などの黒鉛が用いられる。負極活物質には、Si、Sn等のリチウムと合金化する金属、当該金属を含有する合金、当該金属を含有する化合物等が用いられてもよく、これらが黒鉛と併用されてもよい。当該化合物の具体例としては、SiO(0.5≦x≦1.6)で表されるケイ素化合物が挙げられる。
 電極体14の上下には、絶縁板18,19がそれぞれ配置される。図1に示す例では、正極11に取り付けられた正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極リード21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極リード20は、封口体17の電池ケース15の内側を向いた内面に溶接等で接続され、封口体17が正極外部端子となる。負極リード21は、外装缶16の底部内面に溶接等で接続され、外装缶16が負極外部端子となる。
 外装缶16は、有底円筒形状の金属製容器である。外装缶16と封口体17との間にはガスケット40が設けられ、電池ケース15の内部空間が密閉される。外装缶16は、例えば側面部の外側からのスピニング加工により側面部に形成された、封口体17を支持する溝入部22を有する。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。
 外装缶16の上端部は、電池ケース15の内側に折り曲げられ封口体17の周縁部に加締められている。外装缶16の開口部は平面視円形状であり、同様に、封口体17も平面視円形状である。封口体17は、複数の部材で構成されてもよいが、好ましくは1枚の金属板で構成される。
 封口体17を構成する金属板は、環状に形成された薄肉部34を有する。また、金属板は、薄肉部34に囲まれた弁部30と、薄肉部34の外側に位置し、正極リード20が接続される環状部31とを有する。即ち、弁部30と環状部31は、薄肉部34によって区分けされている。薄肉部34は、弁部30及び環状部31よりも厚みが薄い部分であって、電池に異常が発生して電池ケース15の内圧が上昇したときに他の部分より優先的に破断する易破断部である。封口体17は、外装缶16の上端部及び溝入部22によって環状部31が挟持されることで、ガスケット40を介して外装缶16に固定される。
 弁部30は、電池ケース15の内側に凸の形状(下凸形状)を有し、電池ケース15の内圧が所定の反転圧Rに達したときに当該ケースの外側に凸(上凸形状)となるように反転する。そして、弁部30の反転と同時に薄肉部34が破断するように構成されている(図4参照)。詳しくは後述するが、封口体17は、弁部30の反転を利用して薄肉部34が破断する設計であり、またガスケット40に設けられた弾性変形部が弁部30を電池ケース15の外側(上方)に付勢するため、環状部31から弁部30を完全に切り離すための一助となる。これにより、電流経路が確実に遮断される。
 封口体17は、上述のように、薄肉部34によって区分けされた弁部30及び環状部31を含む1枚の金属板によって構成されることが好ましい。本実施形態では、弁部30及び環状部31を有する金属板が封口体17の天板を構成している。この場合、弁部30には外部装置に接続される外部リード(図示せず)が溶接等で接続され、環状部31には電極体14の正極11に接続される正極リード20が溶接等で接続される。なお、環状部31に接続される電極リードは正極リード20に限定されず、負極リード21が環状部31に接続されてもよい。この場合、封口体17が負極外部端子となる。
 封口体17は、例えば1枚の金属板を用いて、当該金属板に環状の薄肉部34を形成し、電池ケース15の内側に凸となるようにプレス加工することで製造される。好適な金属板の一例は、アルミニウムを主成分とするアルミニウム合金板である。金属板の厚みは特に限定されないが、一例としては、薄肉部34以外の部分で0.3mm~2mmである。薄肉部34の厚みは、例えば弁部30の厚みの10%~50%である。弁部30と環状部31の厚みは、同じであってもよく、異なっていてもよい。
 薄肉部34は、例えば環状の溝で構成される。薄肉部34の厚みは、溝の深さを変更することで調整できる。溝は、封口体17の外面に形成されてもよいが、好ましくは封口体17の内面に形成される。溝(薄肉部34)は、角のない円形状に形成されることが好ましく、略真円状に形成されることが特に好ましい。ここで、「略真円状」とは、真円形状及び実質的に真円と認められる形状を意味する。なお、薄肉部34の形状は溝状に限定されず、易破断部として作用できる程度に薄肉部34の厚みが設定されていればよい。例えば、弁部30から薄肉部34にかけて金属板の厚みが連続的に減少するように薄肉部34の厚みを設定することができる。
 弁部30及び環状部31は、上述の通り、薄肉部34(溝)によって区切られるため、弁部30及び環状部31の平面視形状は薄肉部34の平面視形状によって決定される。薄肉部34に囲まれた部分である弁部30は、平面視略真円形状を有することが好ましい。この場合、薄肉部34を全長にわたって完全に破断させることが容易になる。弁部30の外側に存在する環状部31は、略一定の内径及び外径を有する平面視円環状に形成されることが好ましい。弁部30と環状部31の面積比は特に限定されず、弁部30の面積は環状部31の面積より大きくてもよく、小さくてもよい。
 弁部30は、電池ケース15の内圧が反転圧Rより低い通常の使用状態において、電池ケース15の内側に凸の下凸形状を有する。即ち、弁部30は、電池ケース15の外側から見ると、電池ケース15の内側に凹んでいる。弁部30は、電極体14と接触しない範囲で、電極体14側に膨出していることが好ましい。また、弁部30は、電池ケース15の内圧が反転圧Rに達したときに、電池ケース15の外側に凸の上凸形状となるように反転する。即ち、弁部30は、下凸形状から上凸形状に変形可能な構造を有する。
 弁部30の形状は、電池ケース15の内圧によって下凸形状から上凸形状に反転可能な形状であればよく、弁部30の全体がドーム状に湾曲した形状であってもよい。好適な弁部30の一例は、電極体14側に最も膨出した平坦な底部32と、底部32の周囲に形成された環状の傾斜部33とを含む。傾斜部33は底部32から環状部31に向けて一定の勾配を有するように形成され、底部32と傾斜部33の境界部に屈曲部が存在する。底部32は、環状部31と略平行に形成され、外装缶16の底部と略平行に配置される。底部32は、平面視略真円形状を有する。傾斜部33は、底部32を囲むように平面視円環状に形成される。
 図4に示すように、封口体17(金属板)は、下凸形状から上凸形状に反転する部分である反転部Z1と、反転しない非反転部Z2との境界位置に、薄肉部34が形成された構造を有する。この場合、電極体14側に膨出する下凸形状が形成された部分の全体が反転部Z1である。また、金属板は、弁部30の範囲を超えて、即ち薄肉部34の外側に位置する環状部31にわたって、反転部Z1(下凸形状部)が形成された構造を有していてもよい。この場合、下凸形状の上端から離れた傾斜部に薄肉部34が形成され、弁部30と共に環状部31の一部も上凸形状に反転する。
 金属板(反転部Z1)は、反転圧Rが、弁部30の反転前の形状において薄肉部34を破断させる第1ベント圧V1より小さく、弁部30の反転後の形状において薄肉部34を破断させる第2ベント圧V2以上となるように構成されることが好ましい。R<V1となるように設計することで、弁部30の反転前における薄肉部34の破断が抑制される。反転圧Rと第1ベント圧V1の差を大きくするほど、弁部30の反転前における薄肉部34の破断を防止し易くなる。また、V2≦Rとなるように設計することで、薄肉部34が弁部30の反転と同時に破断し易くなる。
 V2≦R<V1の条件は、例えば弁部30及び薄肉部34の厚み、薄肉部34の形成位置、弁部30の形状、反転部Z1の膨出の程度、封口体17の構成材料などを制御することで実現できる。具体的には、弁部30(反転部Z1)の厚みを減少させると、弁部30が反転し易くなり反転圧Rが下がる傾向にある。また、薄肉部34の厚みを減少させると、ベント圧V1,V2はいずれも下がる傾向にある。電池ケース15の内圧が上昇したときに、反転前の下凸形状の弁部30から薄肉部34には専ら剪断応力が作用し、反転後の上凸形状の弁部30から薄肉部34には剪断応力に加えて引張応力が作用する。このため、薄肉部34の厚みをどのように変化させても、V2<V1の条件が成立する。
 以下、図2~図4をさらに参照しながら、ガスケット40について詳説する。図2はガスケット40の平面図、図3は図2中のAA線断面図である。図4は封口体17及びガスケット40の断面図であってあり、図4(a)は弁部30の反転前の様子を示す図であり、図4(b)は封口体17の弁部30が反転及びベント後の様子を示す図である。
 図2~図4に例示するように、ガスケット40は、封口体17の内面(下面)に当接する円板状の底部41と、底部41の外周縁に沿って環状に形成された側壁部42とを含む有底円筒状の樹脂製部材である。側壁部42は、外装缶16と封口体17の間に介在し、両部材を絶縁すると共に、両部材の隙間を塞いで電池ケース15内を密閉する。底部41には、開口部43が形成されている。開口部43は、通気孔として機能し、底部41の径方向中央部において封口体17の弁部30と上下方向に重なる部分に形成される。また、開口部43は、正極リード20を通すための孔でもある。
 ガスケット40には、弁部30の内面に当接して弁部30を電池ケース15の外側に付勢する弾性変形部として、突起44が設けられている。突起44は、弁部30の内面に当接した状態で折りたたまれ、弁部30が反転するときに電池ケース15の外側に向かって突出するように形成されている。突起44は、下凸形状を有する弁部30によって押圧された状態で配置されている。このため、電池ケース15の外側(上方)に向かって突起44から弁部30に押圧力が作用する。このように、突起44が弁部30を付勢した状態で配置されている。
 突起44は、弁部30が反転して上方に凸となるように変形することで弁部30からの押圧力が作用しなくなると、弾性変形して元の形状に戻る。突起44は、ガスケット40が電池に組み込まれる前において、底部41の面方向に対して略垂直に立設している。突起44は、上方に大きく突出し、底部41の厚み方向に沿って伸びている。突起44は、その付勢力により弁部30の反転をサポートする。また、突起44が上方に大きく突出することで、切り離された弁部30と環状部31の隙間が維持され、電流経路の再導通が発生する可能性を低減できる。
 突起44は、複数形成されることが好ましい。突起44は、電池の通常の使用状態において、弁部30の内面に当接して弁部30を上方に押圧可能な部分に複数形成される。本実施形態では、複数の突起44が開口部43の周縁部に形成されている。各突起44は、開口部43の周縁部から開口部43の中心方向に延出し、途中で側壁部42と同じ方向に折れ曲がっている。開口部43の周縁部から延出した突起44は、断面略L字状に形成されている。
 複数の突起44は、例えば底部41の円周方向に沿って略等間隔で形成される。図2に示す例では、4個の突起44が開口部43の周縁部に沿って等間隔に配置され、また4個の突起44は底部41の径方向に並んでいる。各突起44は、互いに同じ形状、寸法を有し、互いに接触しない範囲で開口部43の中心近傍まで延出して、平面視略十字状に形成されている。突起44の数は特に限定されないが、好ましくは2個~21個であり、より好ましくは3個~8個である。
 突起44は、上述のように、底部41に対して略垂直に立ち上がった状態である元の形状から、底部41の面方向に沿うように折り曲げ可能である。そして、突起44は、底部41の面方向に沿うように折りたたまれた状態から元の形状に戻る復元力を有する。突起44は、電池の組み立て時に弁部30の内面に押されて折りたたまれる。突起44は、先端が根元側を向くように折りたたまれることが好ましい。ガスケット40は、例えば突起44の弾性変形を可能とする可撓性を有し、かつ気密性、絶縁性、耐薬品性、耐熱性等に優れた樹脂材料で構成される。
 突起44の形状は特に限定されないが、好適な形状の一例は略矩形形状である。突起44の高さH(底部41の上面から突起44の先端までの長さ)は、弁部30が環状部31から切り離されたときに弁部30と環状部31の隙間が維持できる長さとすることが好ましく、例えば1mm~5mmである。突起44の先端部には、底部41の径方向外側から内側に向かって次第に高さHが低くなるように傾斜したテーパ面が形成されていてもよい。また、突起44の屈曲部にも、同様のテーパ面が形成されていてもよい。突起44の屈曲部にテーパ面を形成することで、突起44の折りたたみが容易になる。
 図4(b)に例示するように、電池ケース15の内圧が上昇して所定の閾値(反転圧R)を超えると、弁部30が上方に凸となるように反転する。このとき、弁部30の内面に当接する状態で折りたたまれていた複数の突起44が上方に向かって伸びる元の形状に戻り、弁部30の反転により生じる空間に向かって突出する。封口体17は、薄肉部34が破断する際に弁部30の反転を利用して弁部30が環状部31から完全に切り離されるように設計されている。さらに、突起44が上方に向かって伸びることで、弁部30が環状部31からより確実に切り離される。
 密閉電池10によれば、封口体17の構造が単純でありながら、外部リードが接続される弁部30を、電極リードが接続される環状部31から完全に切り離すことが容易であり、電池の電流経路をより確実に遮断できる。また、上方に突出した複数の突起44が、切り離された弁部30と環状部31の接触を防止するため、電流経路の再導通が高度に抑制される。
 以下、図5~図8を参照しながら、本開示に係る密閉電池の第2の実施形態について詳説する。図5は第2の実施形態であるガスケット50の平面図、図6は図5中のBB線断面図である。図7は、封口体17及びガスケット50の断面図であってあり、図7(a)は弁部30の反転前の様子を示す図であり、図7(b)は封口体17の弁部30が反転及びベント後の様子を示す図である。
 なお、第2の実施形態では、ガスケットの構造のみが第1の実施形態と相違し、その他については第1の実施形態と同様の構造を適用できる。以下では、第1の実施形態との相違点を主に説明し、重複する説明を省略する。
 図5~図7に例示するように、ガスケット50は、封口体17の内面に当接する円板状の底部51と、底部51の外周縁に沿って環状に形成された側壁部52とを含む有底円筒状の樹脂製部材である点で、第1の実施形態のガスケット40と共通する。底部51には、通気孔及び電極リードの挿通孔として機能する開口部53が形成されている。側壁部52は、外装缶16と封口体17の間に介在し、両部材を絶縁すると共に、両部材の隙間を塞いで電池ケース15内を密閉する。
 ガスケット50には、弁部30の内面に当接して弁部30を電池ケース15の外側に付勢する弾性変形部として、凸部54が設けられている。凸部54は、弁部30の内面に当接して電池ケース15の内側に押し込まれ、弁部30が反転するときに電池ケース15の外側に向かって膨出するように形成されている。凸部54は、下凸形状を有する弁部30によって押圧された状態で配置されている。このため、ガスケット40の突起44と同様に、電池ケース15の外側に向かって凸部54から弁部30に押圧力が作用する。このように、凸部54が弁部30を付勢した状態で配置されている。
 凸部54は、上方に凸のドーム状に形成され、上下方向に弾性変形する。凸部54は、電池の通常の使用状態では弁部30によって上から押え付けられているが、弁部30が反転して当該押圧力が作用しなくなると、弾性変形して元のドーム状に戻る。凸部54は、開口部53の周縁部から延出し、周縁部の一方から他方にわたって底部51の径方向に延びる、平面視帯状のブリッジ部55によって形成されている。ブリッジ部55は、底部51の径方向中央部で交差し、平面視略十字状に形成される。凸部54は、ブリッジ部55が交差する底部51の径方向中央部が最も膨出した上凸形状を有する。
 開口部53及び凸部54は、底部51の径方向中央部において弁部30と上下方向に重なる部分に形成される。ガスケット50は、凸部54の最大膨出部が、弁部30の底部中央に当接するように配置されることが好ましい。なお、ブリッジ部55の数、形状等は特に限定されない。また、ブリッジ部55はバネ構造を形成してもよく、ブリッジ部55の交差部分にコイル状のバネ構造や開口部を形成してもよい。
 図8は、第2の実施形態の変形例であるガスケット60を示す平面図である。ガスケット60は、弁部30の内面に当接する円板状の底部61と、底部61の外周縁に沿って環状に形成された側壁部62とを含む有底円筒状の樹脂製部材である点で、ガスケット40,50と共通する。ガスケット60には弾性変形部として凸部64が設けられ、底部61には開口部63が形成されている。
 凸部64は、ガスケット50の凸部54と同様に、開口部63の周縁部から延出するブリッジ部65によって、上方に凸のドーム状に形成されている。ブリッジ部65は、開口部63の周縁部の複数箇所から底部61の径方向中央部に集まるように渦巻き状に形成される。凸部64は、ブリッジ部65が交差する底部61の径方向中央部が最も膨出した上凸形状を有する。ブリッジ部65はバネ構造を形成してもよく、ブリッジ部65の交差部分にコイル状のバネ構造や開口部を形成してもよい。
 ガスケット50,60を用いた場合も、凸部54,64によって弁部30の反転がサポートされ、弁部30を環状部31から完全に切り離すことが容易である。また、上方に膨出した凸部54,64によって、切り離された弁部30と環状部31の接触が防止される。したがって、ガスケット50,60を備える密閉電池によれば、異常発生時における電流経路の遮断が容易であり、一旦遮断された電流経路の再導通が高度に抑制される。
 なお、上述の実施形態は本開示の目的を損なわない範囲で適宜設計変更できる。例えば、弁部の内面に当接するガスケットの上面には、突起44や凸部54の代わりに、針状の突起が多数立設していてもよい。針状の突起は、弁部30に押圧されて根元から折れ曲がり、弁部30が反転するときに元の形状に戻る弾性変形部である。また、発泡体、多孔質体等の弾性変形部材がガスケットの上面に貼着されていてもよい。
 10 密閉電池、11 正極、12 負極、13 セパレータ、14 電極体、15 電池ケース、16 外装缶、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 溝入部、30 弁部、31 環状部、32 底部、33 傾斜部、34 薄肉部、40,50,60 ガスケット、41,51,61 底部、42,52,62 側壁部、43,53,63 開口部、44 突起、54,64 凸部、55,65 ブリッジ部、Z1 反転部、Z2 非反転部

Claims (5)

  1.  有底筒状の外装缶、及び前記外装缶の開口部を塞ぐ封口体を含む電池ケースと、
     前記外装缶と前記封口体の間に配置されたガスケットと、
     電極リードを含み、前記電池ケース内に収容された電極体と、
     を備える密閉電池であって、
     前記封口体は金属板を含み、
     前記金属板は、
     環状に形成された薄肉部と、
     前記電池ケースの内側に凸の形状を有し、前記電池ケースの内圧が所定の反転圧Rに達したときに当該ケースの外側に凸となるように反転する、前記薄肉部に囲まれた弁部と、
     前記薄肉部の外側に位置し、前記電極リードが接続される環状部と、
     を有し、
     前記ガスケットには、前記弁部の内面に当接して前記弁部を前記電池ケースの外側に付勢する弾性変形部が設けられている、密閉電池。
  2.  前記弾性変形部は、前記弁部の内面に当接した状態で折りたたまれた突起であり、
     前記突起は、前記弁部が反転するときに前記電池ケースの外側に向かって突出するように形成されている、請求項1に記載の密閉電池。
  3.  前記ガスケットは、開口部を有し、
     前記突起は、前記開口部の周縁部に複数形成されている、請求項2に記載の密閉電池。
  4.  前記弾性変形部は、前記弁部の内面に当接して前記電池ケースの内側に押し込まれた凸部であり、
     前記凸部は、前記弁部が反転するときに前記電池ケースの外側に向かって膨出するように形成されている、請求項1に記載の密閉電池。
  5.  前記金属板は、前記反転圧Rが、前記弁部の反転前の形状において前記薄肉部を破断させる第1ベント圧V1より小さく(R<V1)、前記弁部の反転後の形状において前記薄肉部を破断させる第2ベント圧V2以上(V2≦R)となるように構成されている、請求項1~4のいずれか1項に記載の密閉電池。
PCT/JP2020/001197 2019-01-18 2020-01-16 密閉電池 WO2020149350A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20741058.0A EP3913701B1 (en) 2019-01-18 2020-01-16 Sealed battery
US17/418,956 US11699834B2 (en) 2019-01-18 2020-01-16 Sealed battery
JP2020566468A JP7410886B2 (ja) 2019-01-18 2020-01-16 密閉電池
CN202080009399.3A CN113302786B (zh) 2019-01-18 2020-01-16 密闭电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-006677 2019-01-18
JP2019006677 2019-01-18

Publications (1)

Publication Number Publication Date
WO2020149350A1 true WO2020149350A1 (ja) 2020-07-23

Family

ID=71613654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001197 WO2020149350A1 (ja) 2019-01-18 2020-01-16 密閉電池

Country Status (5)

Country Link
US (1) US11699834B2 (ja)
EP (1) EP3913701B1 (ja)
JP (1) JP7410886B2 (ja)
CN (1) CN113302786B (ja)
WO (1) WO2020149350A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675510A (zh) * 2021-08-17 2021-11-19 厦门海辰新能源科技有限公司 电芯的端部连接结构、电芯、动力电池
CN114868305A (zh) * 2019-12-18 2022-08-05 三洋电机株式会社 圆筒形电池
EP4312301A2 (en) 2021-01-19 2024-01-31 Lg Energy Solution, Ltd. Battery, and battery pack and vehicle including the same
WO2024062916A1 (ja) * 2022-09-20 2024-03-28 株式会社村田製作所 二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905365A4 (en) * 2018-12-28 2022-03-02 SANYO Electric Co., Ltd. SEALED BATTERY
KR20230106935A (ko) * 2022-01-07 2023-07-14 삼성에스디아이 주식회사 이차 전지
SE2251009A1 (en) * 2022-08-31 2023-09-18 Northvolt Ab Cylindrical secondary cell lid comprising a vent feature

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149433A (ja) * 2005-11-25 2007-06-14 Fdk Energy Co Ltd 密閉型電池
JP2008269904A (ja) 2007-04-19 2008-11-06 Hitachi Vehicle Energy Ltd 二次電池
WO2017164000A1 (ja) * 2016-03-25 2017-09-28 三洋電機株式会社 円筒形電池
JP2018525793A (ja) * 2015-08-24 2018-09-06 テスラ,インコーポレイテッド 電気化学セルのガスケットおよびダイアフラム
JP2019029306A (ja) * 2017-08-03 2019-02-21 トヨタ自動車株式会社 密閉型電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511698B2 (ja) * 1994-11-29 2004-03-29 宇部興産株式会社 密閉型非水二次電池
JP3853460B2 (ja) * 1997-04-02 2006-12-06 松下電器産業株式会社 密閉型電池用防爆封口板およびその製造方法
JPH11111264A (ja) * 1997-10-01 1999-04-23 Toray Ind Inc 密閉型電池
EP0977290A4 (en) * 1997-12-18 2006-10-04 Matsushita Electric Ind Co Ltd DEVICE FOR CLOSING THE OPENINGS OF A CLOSED BATTERY
JP2005190837A (ja) * 2003-12-25 2005-07-14 Yuasa Corp 密閉型蓄電池
JP2009110808A (ja) * 2007-10-30 2009-05-21 Sanyo Electric Co Ltd 密閉型電池
JP5454870B2 (ja) * 2009-05-22 2014-03-26 トヨタ自動車株式会社 密閉型電池
KR101097255B1 (ko) * 2009-11-30 2011-12-21 삼성에스디아이 주식회사 이차 전지
FR2977379B1 (fr) * 2011-07-01 2013-06-28 Accumulateurs Fixes Dispositif de securite pour accumulateur etanche
KR101667966B1 (ko) * 2013-09-27 2016-10-20 주식회사 엘지화학 캡 조립체 및 이를 포함하는 이차 전지
US10403872B2 (en) * 2015-03-27 2019-09-03 Sanyo Electric Co., Ltd. Cylindrical batteries
CN107408664B (zh) * 2015-03-27 2020-11-27 三洋电机株式会社 圆筒形电池及其制造方法
JP6477334B2 (ja) * 2015-07-30 2019-03-06 三洋電機株式会社 円筒形電池
JP6661485B2 (ja) * 2015-09-16 2020-03-11 パナソニック株式会社 非水電解質二次電池
KR102250181B1 (ko) * 2016-07-06 2021-05-07 주식회사 엘지화학 캡 조립체 및 이를 이용한 이차 전지
EP3905365A4 (en) 2018-12-28 2022-03-02 SANYO Electric Co., Ltd. SEALED BATTERY

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149433A (ja) * 2005-11-25 2007-06-14 Fdk Energy Co Ltd 密閉型電池
JP2008269904A (ja) 2007-04-19 2008-11-06 Hitachi Vehicle Energy Ltd 二次電池
JP2018525793A (ja) * 2015-08-24 2018-09-06 テスラ,インコーポレイテッド 電気化学セルのガスケットおよびダイアフラム
WO2017164000A1 (ja) * 2016-03-25 2017-09-28 三洋電機株式会社 円筒形電池
JP2019029306A (ja) * 2017-08-03 2019-02-21 トヨタ自動車株式会社 密閉型電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114868305A (zh) * 2019-12-18 2022-08-05 三洋电机株式会社 圆筒形电池
EP4312301A2 (en) 2021-01-19 2024-01-31 Lg Energy Solution, Ltd. Battery, and battery pack and vehicle including the same
CN113675510A (zh) * 2021-08-17 2021-11-19 厦门海辰新能源科技有限公司 电芯的端部连接结构、电芯、动力电池
CN113675510B (zh) * 2021-08-17 2023-01-24 厦门海辰储能科技股份有限公司 电芯的端部连接结构、电芯、动力电池
WO2024062916A1 (ja) * 2022-09-20 2024-03-28 株式会社村田製作所 二次電池

Also Published As

Publication number Publication date
JP7410886B2 (ja) 2024-01-10
US11699834B2 (en) 2023-07-11
EP3913701A1 (en) 2021-11-24
JPWO2020149350A1 (ja) 2021-11-25
EP3913701B1 (en) 2023-08-16
EP3913701A4 (en) 2022-03-30
CN113302786A (zh) 2021-08-24
US20220115756A1 (en) 2022-04-14
CN113302786B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2020149350A1 (ja) 密閉電池
JP7379380B2 (ja) 密閉電池
JP6112338B2 (ja) 二次電池
TWI289370B (en) Safety valve for cell
JP6008200B2 (ja) 二次電池
US11303002B2 (en) Secondary battery
US9887397B2 (en) Battery case and battery
CN113767510A (zh) 圆筒形电池
JP6906193B2 (ja) 電池
WO2020129479A1 (ja) 密閉電池
WO2020129480A1 (ja) 密閉電池
US20230114471A1 (en) Cylindrical battery
WO2023167010A1 (ja) 円筒形電池
WO2021182080A1 (ja) 密閉電池
US20230090756A1 (en) Cylindrical battery
WO2023210590A1 (ja) 円筒形電池
US20240039096A1 (en) Gasket and cylindrical battery
WO2023189792A1 (ja) 円筒形電池
JPH09199104A (ja) 密閉型電池用防爆封口板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566468

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020741058

Country of ref document: EP

Effective date: 20210818