WO2020149300A1 - 食材冷凍システムおよび冷凍食材の製造方法 - Google Patents

食材冷凍システムおよび冷凍食材の製造方法 Download PDF

Info

Publication number
WO2020149300A1
WO2020149300A1 PCT/JP2020/001062 JP2020001062W WO2020149300A1 WO 2020149300 A1 WO2020149300 A1 WO 2020149300A1 JP 2020001062 W JP2020001062 W JP 2020001062W WO 2020149300 A1 WO2020149300 A1 WO 2020149300A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
food
freezing
cooling
heating
Prior art date
Application number
PCT/JP2020/001062
Other languages
English (en)
French (fr)
Inventor
幾生 太田
善之 太田
Original Assignee
ケレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケレス株式会社 filed Critical ケレス株式会社
Priority to EP20741721.3A priority Critical patent/EP3912478A4/en
Priority to US17/422,894 priority patent/US11751580B2/en
Priority to AU2020209582A priority patent/AU2020209582A1/en
Priority to CA3126380A priority patent/CA3126380A1/en
Priority to CN202080014761.6A priority patent/CN113811196A/zh
Priority to KR1020217025210A priority patent/KR20210141926A/ko
Priority to JP2020541813A priority patent/JP6952378B2/ja
Priority to SG11202107694RA priority patent/SG11202107694RA/en
Publication of WO2020149300A1 publication Critical patent/WO2020149300A1/ja
Priority to JP2021152167A priority patent/JP2022008439A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/361Freezing; Subsequent thawing; Cooling the materials being transported through or in the apparatus, with or without shaping, e.g. in form of powder, granules, or flakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/06Freezing; Subsequent thawing; Cooling
    • A23B4/062Freezing; Subsequent thawing; Cooling the materials being transported through or in the apparatus with or without shaping, e.g. in the form of powder, granules or flakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/04Freezing; Subsequent thawing; Cooling
    • A23B7/0408Freezing; Subsequent thawing; Cooling the material being transported through or in the apparatus with or without shaping, e.g. in the form of powder, granules or flakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/06Blanching
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • F25D13/06Stationary devices, e.g. cold-rooms with conveyors carrying articles to be cooled through the cooling space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • F25D13/06Stationary devices, e.g. cold-rooms with conveyors carrying articles to be cooled through the cooling space
    • F25D13/067Stationary devices, e.g. cold-rooms with conveyors carrying articles to be cooled through the cooling space with circulation of gaseous cooling fluid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/20Freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices

Definitions

  • the present invention relates to a food freezing system and a frozen food manufacturing method.
  • the present inventors have invented a food processing system in which heating and cooling in an intermediate temperature range are integrated (see, for example, Patent Document 1).
  • This integrated food processing system can remove the lye without destroying the cells of the food by heating in the intermediate temperature range, deactivate the enzyme in the food and prevent the aging change of the food, and Microbial killing for hygiene can be achieved.
  • Microbial killing for hygiene can be achieved.
  • by cooling the food material to a chilled zone (about 2° C.) in the subsequent rapid cooling the effect of sterilization by heating can be maintained. As a result, it is possible to provide a sterilized food material having an excellent texture and taste and having excellent storage stability.
  • the present inventors have developed a new food refrigeration system that reduces water separation after thawing frozen food.
  • the foodstuff can be cooled to about -60°C to about -90°C, preferably -60°C to 89°C in a short time (for example, within about 6 minutes).
  • frozen foods that have been cooled to a temperature below ⁇ 60° C. in a short period of time have less destruction of cells and tissues after thawing, and the outflow of liquid (water separation) from food materials can be suppressed.
  • the foodstuff freezing system of the present invention includes at least two freezing areas, and is capable of freezing foodstuffs efficiently and in a state where tissue destruction of foodstuffs is reduced.
  • the food product refrigeration system of the present invention is also a simple one that requires only simple steps, and can efficiently and efficiently prepare food products without spoiling the flavor or appearance of the food products without using special chemicals or expensive equipment. It can also have the advantage that it can be stored for long periods.
  • the food sterilized by the integrated food processing system as described in Japanese Patent No. 6010240 is frozen because the food is sterilized by another method and is in a better condition than the food whose condition has already been impaired.
  • the influence of cell destruction, oozing of juice (drip), and quality deterioration due to this phenomenon is noticeable in food materials. Therefore, freezing by the freezing system of the present invention is preferable for freezing food materials that have been sterilized in the integrated food material processing system.
  • the present invention provides, for example, the following.
  • a food freezing system for freezing food The food freezing system, A freezing unit for freezing the food, A transport unit for transporting the food material to the two or more freezing units, The food freezing system, wherein the freezing section is configured to be cooled by cold air of about ⁇ 60° C. to about ⁇ 90° C.
  • (Item 2) Item 2. The refrigeration system according to Item 1, wherein the refrigeration unit is configured to blow cold air of ⁇ 60° C. to ⁇ 89° C.
  • a precooling unit for cooling the food Before freezing the food, a precooling unit for cooling the food is further provided, Item 3.
  • the pre-cooling unit includes at least a first pre-cooling unit and a second pre-cooling unit in the order in which the food is conveyed, and the first pre-cooling unit and the second pre-cooling unit are configured to be cooled by cold air having different temperatures.
  • the pre-cooling unit includes at least a first pre-cooling unit, a second pre-cooling unit, and a third pre-cooling unit in the order in which the food is conveyed, and the first pre-cooling unit and the second pre-cooling unit are cooled with cold air having different temperatures, Item 4.
  • (Item 7) The refrigeration system according to any one of Items 4 to 6, wherein the first pre-cooling unit is configured to be cooled with cold air of about ⁇ 25° C. to about ⁇ 45° C.
  • (Item 8) 8. The refrigeration system according to any one of Items 4 to 7, wherein the second pre-cooling unit is configured to be cooled with cold air of about ⁇ 60° C. to about ⁇ 90° C.
  • (Item 10) 10. The food material freezing system according to any one of items 4 to 9, wherein the food material freezing system further includes at least one air curtain generation mechanism for generating an air curtain between adjacent pre-cooling units.
  • the freezing unit is provided with a plurality of air outlets for blowing cold air toward the transport unit along the transport direction of the transport unit, and the direction of the air blow ports is opposite to the transport direction of the transport unit.
  • the refrigeration system according to any one of Items 1 to 10, which is configured to.
  • the upper blower port is provided so as to be inclined with respect to a direction orthogonal to the transport direction of the transport unit, Item 15.
  • (Item 18) A food processing system, (1) A heating unit including a heating mechanism that indirectly heats food ingredients, (2) The food material freezing system according to any one of Items 1 to 6, The food processing system, wherein the transfer section transfers the food through the heating unit and the food freezing system.
  • the heating mechanism exists only below the transport unit and is configured to discharge a heat-mediating substance downward, and the heating unit is configured to send air in a direction other than the transport unit.
  • Item 18 The foodstuff processing system according to item 18, which is provided with a blower mechanism.
  • (Item 21) A method for producing a frozen foodstuff, which comprises a processing step of freezing the foodstuff using the foodstuff freezing system according to any one of Items 1 to 17 or the foodstuff processing system according to any one of Items 18 to 20.
  • Item 22 The production method according to Item 21, wherein the food material is cut vegetables.
  • a food product freezing system in which water separation after thawing is reduced as compared with a conventional frozen food product, and a method for producing a frozen food product using the food product freezing system.
  • FIG. 1 shows an example of the configuration of the food material freezing system of the present invention.
  • FIG. 2 shows another example of the configuration of the food product refrigeration system of the present invention.
  • FIG. 3 shows an example of a food processing system in which a food pretreatment (sterilization) unit and a food freezing system are combined.
  • FIG. 4 shows an example of the configuration of the heating unit in the food pretreatment (sterilization) unit.
  • FIG. 5 shows an example of the flow of the method for producing food material of the present invention.
  • FIG. 6 shows a configuration in which the first freezing unit includes a first precooling unit (first chamber), a second precooling unit (second chamber), and a third precooling unit (third chamber).
  • FIG. 1 shows an example of the configuration of the food material freezing system of the present invention.
  • FIG. 2 shows another example of the configuration of the food product refrigeration system of the present invention.
  • FIG. 3 shows an example of a food processing system in which a food pretreatment (sterilization) unit and a food freezing
  • FIG. 7 shows a configuration in which the first freezing unit includes a first pre-cooling unit (first chamber), a second pre-cooling unit (second chamber) and a third pre-cooling unit (third chamber).
  • the first chamber and the second pre-cooling unit (second chamber) and the second pre-cooling unit (second chamber) and the third pre-cooling unit (third chamber) are partitioned by an air curtain.
  • the partition between the freezing part and the second freezing part is separated by a partition wall.
  • FIG. 8 is a diagram showing an example of a configuration in which the air blowing port of the air blowing mechanism is provided in each of the upper portion and the lower portion with respect to the food material passing through the conveying unit
  • FIG. 8A is a front view and FIG. FIG.
  • FIG. 9 is a top view showing an example of a configuration in which the air blowing port of the air blowing mechanism is provided in each of the upper portion and the lower portion with respect to the food material passing through the conveying section.
  • FIG. 9(b) shows a partially enlarged view of FIG. 9(a).
  • FIG. 10 is a top view which shows another example of the structure with which the ventilation opening of a ventilation mechanism is provided in each upper part and lower part with respect to the foodstuff which passes a conveyance part.
  • 11A and 11B are views showing an example of a configuration in which a blower port of a blower mechanism is provided in a lower portion with respect to a food material that passes through a transport unit.
  • FIG. 11A is a front view and FIG. A top view is shown.
  • Figure 4 shows a 500X photomicrograph of untreated raw broccoli. The 500 times micrograph of broccoli after pre-processing in a food pre-processing (sterilization) part (FIG. 4) is shown.
  • FIG. 12B shows a 500 ⁇ micrograph of broccoli obtained by thawing the tissue shown in FIG. 12B after freezing at ⁇ 60° C. for 5 minutes.
  • Fig. 12B shows a 500X micrograph of broccoli obtained by freezing the tissue shown in Fig. 12B at -35°C to -45°C for 15 to 20 minutes and then thawing it.
  • “Ingredients” refer to arbitrary objects that humans can eat. Ingredients that have not been processed by heating above 90°C are called "fresh ingredients”.
  • the “intermediate temperature range” refers to temperatures between 45°C and 90°C.
  • “Indirect heating” means an object to be heated from the supply part in the movement direction of the heat mediator when the heat mediator such as steam is heated by contacting the object to be heated. It means to release the heat mediator from the supply part so as to change it before reaching.
  • Direct heating means an object to be heated from the supply part in the movement direction of the heat mediator when the heat mediator such as steam is heated by contacting the object to be heated. It means to release the heat mediator from the supply part so as not to change it until it reaches.
  • Direct cooling means sending cool air toward an object to be cooled by a fan or other blowing mechanism.
  • Indirect cooling means cooling without using a fan or other blowing mechanism other than the cooling mechanism, or sending cool air without directing it to the object to be cooled even when the cool air is sent by the blowing mechanism.
  • Near the transport section means within 30 cm from the transport section.
  • Steam means a gas containing water droplets.
  • Standardization means that the number of general viable bacteria is 10 5 cfu/g (mL) or less by the standard agar plate culture method immediately after the food processing, and E. coli is negative (10 cfu/g(mL c) by the BGLG medium method). less than mL)).
  • Integrated means that systems and elements are physically continuous with each other via a transport path.
  • Downward means a direction that forms an angle of 0° to 90° with the vertical downward direction.
  • Quick freezing refers to freezing in which the central temperature of the target foodstuff is reduced to ⁇ 5° C. or lower in about 5 minutes.
  • the foodstuff freezing system of the present invention is configured to cool (freeze) foodstuffs to about -60°C to about -90°C, preferably -60°C to 89°C in a short time (for example, within about 6 minutes). ing.
  • the food freezing system of the present invention may be one that freezes in one freezing unit, or one that includes two or more freezing units including a pre-cooling unit and a freezing unit. It is particularly preferable to provide a pre-cooling unit for food materials having a large processing volume.
  • FIG. 1 shows an example of the configuration of the food material refrigeration system of the present invention.
  • the food material freezing system 1 of the present invention includes two freezing parts, a first freezing part 100A on the input side and a second freezing part 100B on the exit side, and a transfer part 200. ..
  • the freezing unit 100A on the charging unit side corresponds to the pre-cooling unit.
  • the number of refrigerating units is 2, but the present invention is not limited to this.
  • the number of refrigerating sections may be one (that is, the pre-cooling section is not included), and may be any integer of 2 or more.
  • a refrigeration system including three refrigeration units and four refrigeration units is also within the scope of the present invention.
  • the temperature inside the second freezing unit 100B is lower than the temperature in the first freezing unit 100A. In one embodiment, the temperature of the cold air for freezing in the 2nd freezing part 100B is lower than the temperature of the cold air for freezing in 1st freezing part 100A. In one embodiment, for example, the temperature of the cold air of the first freezing unit 100A is about ⁇ 25° C. to ⁇ 40° C., and the temperature of the cold air of the second freezing unit 100B is about ⁇ 55 to about ⁇ 60° C.
  • freezing the foodstuff to a temperature of ⁇ 60° C. or lower is sufficient for deactivating the enzyme in the foodstuff and is preferable for maintaining the quality of the foodstuff after thawing.
  • the freezing temperature of the food is higher than -90°C because the change in the tissue structure of the food is suppressed (for example, if the food is frozen below -90°C, the structure of the food is twisted). Changes can occur).
  • the plurality of freezing units may be configured to freeze the food material in stages so that the food material is frozen at a lower temperature as the food material is transported on the transportation unit 200.
  • stepwise freezing it is possible to avoid a rapid change in the surface temperature of the foodstuff due to freezing, and thus it is possible to freeze the foodstuff with energy efficiency.
  • the first refrigerant of the first freezing section 100A is different from the second refrigerant of the second freezing section 100B.
  • Both the first refrigerant and the second refrigerant are general refrigerants that can be used in this field, but the second refrigerant may have better temperature conversion efficiency than the first refrigerant.
  • the foodstuffs are continuously moved in the refrigeration section and discharged without being retained in one place by the carrying section.
  • the time for which the food material passes through the refrigeration system 1 is about 6 minutes or less, preferably about 5 to about 6 minutes, more preferably about 5 minutes. In this way, by freezing rapidly without taking time, it is possible to suppress the expansion of the water contained in the food due to freezing, which in turn results in the water separation (ingredient outflow) of the food during thawing, and the resulting deterioration in quality. It is possible to prevent
  • the time for which the food passes through the refrigeration system 1 can be appropriately adjusted by those skilled in the art depending on the thermal conductivity of the food and the size of the food. When the freezing by the freezing system 1 is completed, the temperature to the center of the foodstuff may be about -5°C.
  • a refrigeration system including at least two refrigeration units including a pre-cooling unit may be preferable, but as described below, in the present invention, a reduction in heat exchange efficiency is avoided even in a refrigeration system including a single refrigeration unit.
  • the present invention is not limited to refrigeration systems that include at least two or more refrigeration units.
  • the food freezing system 1 includes a transport unit 200 that transports food through the first freezing unit 100A and the outlet-side second freezing unit 100B.
  • the configuration of the transport unit 200 is not particularly limited as long as it has a function of continuously moving food materials.
  • Freezing while moving foodstuffs can be advantageous for uniform processing of a large amount of foodstuffs at a uniform temperature. For example, if the food is processed while it is stationary, the processing temperature will vary due to the uneven temperature in the space where the food is processed. It is possible to eliminate the difference between foods due to uneven temperature.
  • the transport unit 200 preferably transports foodstuffs at a constant speed through the first freezing unit 100A and the second freezing unit 100B. Further, in an embodiment, the transport unit 200 has an adjusting mechanism that adjusts the constant speed thereof. The adjustment mechanism may be capable of automatically adjusting a constant speed, adjusting the speed to a manually set speed, or both. Accordingly, the transport unit 200 can be configured to transport the food so that the food passes through the inside of the first freezing unit 100A and/or the second freezing unit 100B for a desired time. is there. In one embodiment, the transport unit 200 is preferably a belt conveyor. In one embodiment, the transport unit 200 has a through hole. For example, the transport unit 200 having the through holes may be a mesh belt conveyor or the like.
  • the number of the transport units 200 may be plural, and by arranging the plurality of transport units 200 in parallel, it is possible to increase the amount of food material to be processed per time and improve the processing capacity of the system of the present invention.
  • the food may be conveyed by directly placing the food on the conveyor 200 or by conveying a container containing the food by the conveyor 200.
  • a breathable container is preferably used.
  • the breathable container is, for example, a container having a through hole on the bottom surface and/or the side surface.
  • the container can be, for example, a container including a breathable mesh member on the bottom surface and/or the side surface.
  • the food material transportation speed is adjusted so that the time it takes for the food material to pass through the freezing section is about 6 minutes (preferably about 5 minutes) or less. If some error occurs due to the mass of the food material and the heat transmittance of the food material, adjusting the cooling temperature of the first-stage freezing unit (for example, the first freezing unit) reduces the processing time for passing through the freezing unit. It can be adjusted not to exceed 6 minutes (preferably about 5 minutes).
  • the freezing length is from about 6 m to about 12 mm and the refrigeration process time is from about 2 minutes to about 6 minutes, so the transport speed is from about 1 m to about 6 m per minute. It can be set freely within the range. However, the above range is merely a specific example, and the present invention is not limited to this.
  • the optimum transport speed can be determined according to the type and size of the food so that the core temperature of the food is reduced to an appropriate temperature with an appropriate time gradient.
  • the foodstuffs are continuously moved by the transport unit 200 to the loading unit, the first freezing unit 100A, the first freezing unit 100A, and the unloading unit in this order.
  • a belt conveyor is preferable as the transport unit 200.
  • the speed of the transport unit 200 is appropriate in connection with the size of each piece of food placed in the input unit, the shape of the food, the freezing conditions of the first freezing unit 100A, and the freezing conditions of the second freezing unit 100B. It can be automatically adjusted to the value.
  • the foodstuffs that have been initially frozen in the first cooling unit 100A are different from the first-stage freezing conditions in general freezing, and the foodstuffs have already been processed to a core temperature of -3°C to -3.5°C.
  • the foodstuff whose core temperature has already reached ⁇ 3° C. to ⁇ 3.5° C. with the cool air of ⁇ 60° C. in the second cooling unit 100B which cools at a lower temperature, about 5 It is possible to suppress the expansion rate of water present in the cell membrane without destroying the cell membrane of the food material within the minute.
  • the shape of the freezing part of the present invention is typically an elongated type in which the food is conveyed in the horizontal direction, but the shape is not limited to this.
  • it may be a vertical movement type in which the first cooling unit and the second cooling unit are vertically arranged.
  • the foodstuffs may be vertically moved vertically in series, or may be vertically moved in parallel in a spiral shape, for example.
  • the distance from the inlet to the outlet is about 6 meters, and the distance between the first cooling unit and the second cooling unit is about 3 meters each.
  • Can be The transport path can move the foodstuffs through each cooling section in about 2.5 minutes.
  • a third cooling unit may be added if the central temperature does not reach -5°C due to the nature and amount of the food materials and the treatment in the two cooling units for about 5 to 6 minutes.
  • the third cooling unit may be substantially the same distance as the first cooling unit and the second cooling unit.
  • the first cooling unit to the third cooling unit are each about 3 m
  • the cold air in the first cooling unit is about ⁇ 20° C. to ⁇ 45° C.
  • the cold air in the second cooling unit is about ⁇ 60° C.
  • the cold air in the third cooling section may be about -80°C.
  • the passage time of the entire cooling system may be about 5 to 6 minutes.
  • the distance from the inlet to the outlet is about 9m (each freezing part is about 4.5m), about 12m (each freezing part is about 6m), etc. Even in these cases, the processing is completed in about 2.5 minutes to 3 minutes in each freezing section, and about 5 to 6 minutes in total.
  • the food material refrigeration system of the present invention is a freezing unit for pre-cooling (for example, the freezing unit in FIG. 1) closer to the charging unit side than the freezing unit for the main freezing (for example, the freezing unit 100B in FIG. 1). 100A, also referred to herein as a "pre-cooling section").
  • the precooling unit of the present invention may further include, in order from the charging unit side, a first precooling unit and a second precooling unit having different cooling temperatures.
  • the cooling temperature in the first precooling unit and the second precooling unit may be higher in the first precooling unit or higher in the second precooling unit, but preferably the first precooling unit cools. The temperature is high.
  • the cooling temperature in the first pre-cooling section may be about -20°C to -45°C, preferably about -35°C to about -45°C.
  • the cooling temperature in the first pre-cooling section is about ⁇ 35° C. to about ⁇ 45° C., the cooling of the foodstuff does not proceed rapidly, so that the foodstuff does not adhere to the conveyor belt. It is preferable as the cooling temperature.
  • the cooling temperature in the second precooling section of the present invention is about -55 to about -60°C, about -60°C to about -90°C, about -60°C to about -80°C, about -60°C to about -70°C. , ⁇ 60° C. to ⁇ 89° C., ⁇ 60° C. to ⁇ 70° C., about ⁇ 60° C., ⁇ 60° C., etc.
  • the cooling temperature in the second pre-cooling section is preferably about ⁇ 60° C. to about ⁇ 90° C. or ⁇ 60° C. to ⁇ 89° C., more preferably ⁇ 60° C.
  • the pre-cooling unit of the present invention may include a first pre-cooling unit (first chamber), a second pre-cooling unit (second chamber) and a third pre-cooling unit (third chamber) in order from the charging port side. (FIG. 6A).
  • the first pre-cooling unit and the second pre-cooling unit are cooled at different temperatures, and the specific temperatures are as described above.
  • the cooling temperature in the third pre-cooling unit is different from that of the adjacent second pre-cooling unit, and may be higher than the second pre-cooling unit or lower than the second pre-cooling unit.
  • the cooling temperature in the third precooling section is higher than the cooling temperature in the second precooling section, about -20°C to -45°C, preferably about -35°C to about -45°C. (FIG. 6B).
  • the cooling temperatures of the first pre-cooling unit and the third pre-cooling unit may be the same or different.
  • the precooling unit of the present invention includes at least a first precooling unit, a second precooling unit, and a third precooling unit, and the cooling temperature of the first precooling unit and the third precooling unit is the second precooling unit. Higher than the cooling temperature. In this way, by lowering the cooling temperature once and then raising it again in the pre-cooling stage, it is possible to increase the freezing efficiency for foods and make the freezing effect uniform for foods.
  • the pre-cooling section of the present invention comprises a first pre-cooling section for cooling the foodstuff at about -35°C to about -45°C, a second pre-cooling section for cooling the foodstuff at about -60°C, and about -35°C. And a third pre-cooling unit that cools the food material at a temperature between 0°C and about -45°C.
  • Partition wall or air curtain Between the freezing part and the freezing part (for example, between the first freezing part 100A and the second freezing part 100B), or the first precooling part, the second precooling part, and the third precooling part in the precooling part (100A).
  • the spaces may be separated by partition walls or air curtains.
  • an air curtain may separate the refrigeration sections of the refrigeration system of the present invention (Fig. 2).
  • the food material refrigeration system 1 further includes an air curtain generation mechanism 300 for generating an air curtain.
  • the air curtain mutually separates the two adjacent freezing sections so as to prevent the respective refrigerants in the two adjacent freezing sections (for example, the first freezing section 100A and the second freezing section 100B) from mixing with each other. It is possible to shield.
  • the air curtain generation mechanism 300 of the present invention may be one that blows air in a substantially vertical direction from a blower port provided in the upper part and/or the lower part of the freezing part. With such a mechanism, the air is distributed in the left and right directions by the convection of the blown air, so that a virtual shielding wall can be formed.
  • the blowing angle from the blowing port provided in the upper part and/or the lower part of the freezing part is adjusted so that the direction of the blowing is opposite to the traveling direction of the food. obtain.
  • the blowing angle of the lower blower opening may be set to be greater than the blowing angle of the upper blower opening with respect to the traveling direction of the food, and the upper and lower blower openings may be blown simultaneously.
  • the air blown from the air blower is directed in the opposite direction to the walking of the food, so that the air staying in the first freezing section, which has a higher temperature than the air staying in the second freezing section, goes in the opposite direction.
  • the flowing air prevents the air from flowing into the second freezing unit, and as a result, it is possible to suppress changes in the heat of residence of the first freezing unit and the second freezing unit.
  • the temperature around the air curtain of the first cooling part is lower than that near the inlet, and the temperature around the air curtain of the second cooling part is higher than that near the outlet, so that the surroundings of the air curtain.
  • a temperature gradient is formed in the first cooling part and the second cooling part.
  • the food freezing system 1 may include the air curtain generation mechanism 300 in at least one of the plurality of inter-freezing sections, and may include a partition in the other areas.
  • a partition wall is provided between the pre-cooling unit (first freezing unit) 100A and the second freezing unit, and the first pre-cooling unit (first chamber) and the second pre-cooling unit (second chamber) in the pre-cooling unit. ), and/or between the second pre-cooling section (second chamber) and the third pre-cooling section (third chamber) may be partitioned by an air curtain (FIG. 7).
  • the freezing units 100A and 100B may each include a blower mechanism.
  • the air blowing mechanism any of those used for air blowers and air conditioners such as sirocco fans, turbo fans, airfoil fans, and cross flow fans can be used.
  • the blower mechanism includes a blower port that blows the wind blown from the blower or the air conditioner into the freezing unit.
  • the configuration of the blower mechanism is not particularly limited with respect to the number, position, direction, etc.
  • the blower mechanism may be above the freezing unit, below the freezing unit, or at the side of the freezing unit. Further, it may be provided at a plurality of locations on the upper portion, the lower portion and the side portion of the freezing portion, or at another position.
  • the number, position, direction, etc., of the blower ports of the blower mechanism in the refrigeration unit are not particularly limited.
  • the blower port may be on the upper part of the transfer part, on the lower part of the transfer part, on the side part of the transfer part, or on the upper, lower and side parts of the transfer part. It may be located at another location or at another location.
  • the blowing port of the blowing mechanism in the refrigeration unit may blow the food toward the foodstuff or may not face the foodstuff.
  • the intensity of air blown by the air blower mechanism is not limited as long as the food can be sufficiently cooled, and may be constant or may be changed.
  • the refrigeration unit has a refrigeration mechanism beside the refrigeration unit, and a blower mechanism (fan) is provided above the refrigeration unit.
  • the food is cooled by directing cold air to the food.
  • a blower port of a blower mechanism for example, a fan provided in the freezing unit blows air toward the food material. This allows the food to be quickly frozen.
  • a blower port of the blower mechanism is provided at each of the upper portion and the lower portion with respect to the food material conveyed by the conveying unit.
  • the direction of the blower port is a direction facing the transport direction of the transport unit.
  • the direction of the blower opening is inclined at an angle in the range of more than about 0° and less than about 90° in a direction facing the transport direction of the transport unit with the vertical direction being 0°.
  • the inclination angle may be any angle as long as it does not hinder the progress of the food material conveyed on the conveyor unit. It is more preferably inclined at an angle of about 3° to about 30°, particularly preferably about 3° to about 18° (angles ⁇ 1, ⁇ 2 shown in FIG. 8). By setting the inclination angle within this range, it is possible to efficiently cool the foodstuff while maintaining the smooth conveyance of the foodstuff.
  • the inclination angle of the upper blower opening and the inclination angle of the lower blower opening are the same, but the present invention is not limited to this.
  • the inclination angles of the upper blower opening and the lower blower opening may be different.
  • the blower port of the blower mechanism is provided so as to be inclined with respect to the direction orthogonal to the transport direction of the transport unit, and the direction of the blower port provided on the upper side and the blower port provided on the lower side are provided. Can be provided so as to intersect with. More preferably, the direction of the blower port is about 3° to about 30°, and particularly preferably about 3° to about 24°, with 0° as the direction orthogonal to the conveying direction (angle ⁇ 1 shown in FIG. 9B). , ⁇ 2).
  • the direction of the wind supplied to the food is a small random air flow near the skin of the food. Can be generated.
  • the effect of stirring the air in the freezing section is improved, and the food can be cooled more efficiently and uniformly.
  • the inclination angle of the upper blower opening and the inclination angle of the lower blower opening are the same, but the present invention is not limited to this.
  • the inclination angle of the upper blower opening and the inclination angle of the lower blower opening may be different. Further, as shown in FIG.
  • the plurality of air outlets provided in the upper part or the lower part along the carrying direction are always inclined in the same direction with respect to the direction orthogonal to the carrying direction of the carrying part.
  • the directions of inclining may be changed.
  • FIGS. 8 and 9 are particularly suitable for cooling large foods such as blocks.
  • the present invention is not limited to this.
  • it may be applied to small food materials such as granules.
  • a blower port of a blower mechanism is provided in a lower portion with respect to the food material conveyed by the conveying section.
  • the embodiment shown in FIG. 11 is particularly suitable for cooling food materials such as granules, each of which is small. In this way, by blowing air toward the foodstuffs only from the air outlet provided in the lower part of the conveying unit, the foodstuffs can be lifted upward by the wind, and as a result, the foodstuffs and the conveying belt that are cooled further can be It is possible to reduce the adhesion.
  • the direction of the blower port is preferably the direction facing the transport direction of the transport unit.
  • the direction of the blower opening is provided parallel to the direction orthogonal to the carrying direction of the carrying section.
  • the present invention is not limited to this.
  • the direction of the blower port may be inclined with respect to the direction orthogonal to the carrying direction of the carrying section.
  • the freezing section 100A and/or 100B comprises a sensor.
  • the sensor quantifies and transmits information about the condition inside the freezer.
  • the information regarding the state in the freezing unit may be transmitted to the management unit, or may be transmitted to another part of the system (for example, the transport unit 200).
  • Examples of the sensor include a temperature sensor and a humidity sensor.
  • the position of the sensor is not limited, but it is preferable that the position of the sensor is arranged in the vicinity of the transport unit 200 that penetrates the freezing unit, so that the temperature of the food to be cooled can be accurately measured, which may be advantageous for the control of the system. ..
  • Each of the refrigeration units 100A and 100B may be, for example, an air quick chiller or a liquid quick chiller, but is preferably an air quick chiller.
  • a typical example of a liquid quick chiller is cooling with liquid nitrogen, but this has a constant temperature and it is difficult to set the initial temperature.
  • FIG. 3 shows an example of a food processing system in which a food pretreatment (sterilization) unit for preprocessing food according to the present invention and a food freezing system are combined.
  • the food pretreatment (sterilization) unit 400 includes a heating unit 410 having a heating mechanism for heating the food and a cooling mechanism for cooling the food heated by the heating unit 410.
  • the cooling unit 420 and the transport unit 430 that transports the heated foodstuff to the foodstuff refrigeration system 1 through the heating unit 410 and the cooling unit 420 are provided. Note that, in FIG.
  • the foodstuff pretreatment (sterilization) unit 400 and the foodstuff refrigeration system 1 are shown at the same time for convenience, but the foodstuff pretreatment (sterilization) unit 400 and the foodstuff refrigeration system 1 are physically separated and independent. It may be a system, or may be a continuous system that shares a transport unit.
  • the pretreatment (sterilization) unit 400 includes a heating unit 410 including a heating mechanism 411 that heats the food material.
  • the configurations of the heating unit 410 and the heating mechanism 411 are not limited as long as the food can be heated to a desired temperature.
  • the transport unit 430 penetrates the heating unit 410, and the food is heated while the food is transported in the heating unit 410 by the transport unit 430. It is desirable that the food material is quickly heated to a desired temperature and then stably maintained at the desired temperature.
  • any heating unit such as a general one used for cooking food or a constant temperature bath having a humidifying function can be used as long as the temperature can be adjusted.
  • the shape of the heating unit 410 is preferably a tunnel type or a box shape along the food conveying direction, but the shape is not limited thereto.
  • the pretreatment (sterilization) unit 400 can quickly heat the food to an intermediate temperature range and maintain it stably. Heating in the intermediate temperature range removes lye and/or destroys cells and tissues of foodstuffs and/or enzymes (eg, glycolytic enzymes such as pectinase or cellulase, oxidases such as glucose oxynase, etc.). Can be inactivated and/or sterilized. On the other hand, heating above 100° C. (heating with boiling water or fire) destroys the cells of the food material, which causes the umami component to flow out from the cells, which is not preferable in the present invention.
  • enzymes eg, glycolytic enzymes such as pectinase or cellulase, oxidases such as glucose oxynase, etc.
  • the heating mechanism 411 preferably heats the food by releasing heat into the heating unit 410.
  • the heat may be mediated by a hot substance capable of warming the foodstuff by contacting the foodstuff. Due to the heat released inside the heating unit 410, the temperature inside the heating unit 410 rises and heating can be performed.
  • the heating unit 410 indirectly heats the food.
  • direct heating the heat mediator that comes into contact with the food directly contacts the food from the supply part. It is difficult to maintain a stable heating temperature for foodstuffs because it has a large temperature difference.
  • indirect heating the temperature difference between the heat mediators that come into contact with the food is small, so that the temperature at which the food is heated can be stably maintained.
  • heat at a constant temperature for example, steam at 98° C.
  • the supply is intermittently performed, thereby heating at a constant temperature. It is easy and does not require a complicated mechanism for finely controlling the temperature of the heat mediator.
  • the heat mediator when the heat mediator is intermittently supplied, the heat having a relatively high temperature, which is in direct contact with the food material, is supplied during the supply and during the stop of the supply. There may be a large difference in the heating temperature of the food material when the mediator is present and when it is not present, and uniform heating of the food material may not be achieved.
  • the heating unit 410 indirectly heats the food. It is difficult to control heating in the intermediate temperature range. Specifically, if the heating is excessive, the cells of the food material are destroyed to impair the taste and texture, and if the heating is insufficient, the sterilization and the removal of the lye become insufficient. Therefore, the present inventors do not directly heat the food, but uniformly control the temperature of the region in the heating unit through which the food passes, resulting in uniform heating of the food. The temperature control was achieved.
  • a substance having a higher temperature has a lower density and moves relatively upward, but by releasing a substance that carries a heat downward, it is possible to cause convection of the substance that carries a heat.
  • the temperature in the heating section can be stably maintained within a certain range.
  • the heating unit 410 further includes a blower mechanism (for example, a fan). With this fan, convection in the vicinity of the food can be constantly generated, and the temperature at which the food comes into contact can be kept constant.
  • the air blowing mechanism in the heating unit 410 preferably sends the air in a direction other than the transportation unit 430, instead of sending the air toward the transportation unit 430. This is because, as in the case of indirect heating, the control of the intermediate temperature zone in the vicinity of the transport unit 430 is promoted by not directly applying the wind to the food.
  • the temperature may be difficult to stabilize near the bottom surface or the top surface inside the heating unit 410. Therefore, if the transport unit 430 penetrating the inside of the heating unit 410 is configured to pass through an intermediate portion between the upper surface and the bottom surface of the heating unit 410, a region where the temperature is likely to be unstable is avoided and stable. It is possible to uniformly heat the food material in the temperature range.
  • the heating mechanism 411 can heat the food material to about 45 to about 90°C, preferably about 50°C to about 85°C, more preferably about 60°C to about 75°C.
  • the temperature to be heated by the heating mechanism 411 in the pretreatment (sterilization) unit 400 varies depending on the food material and the application, and can be appropriately determined by those skilled in the art.
  • the heating of the food material can be confirmed by measuring the core temperature.
  • the temperature of the heat released by the heating mechanism 411 may be any temperature as long as it can achieve the intended heating of the food, but typically, the temperature of the heat released is It can be 98°C.
  • the heating mechanism 411 may be any mechanism capable of achieving heating of food in the intermediate temperature range, and includes, but is not limited to, a steam supply unit, a micro mist supply unit, and a cluster air supply unit. ..
  • the heat mediator can be steam and the warming mechanism 411 can be a steam supply.
  • the heating mechanism 411 may be heated by using a heat mediator containing water droplets having a smaller particle size such as micro mist or cluster air.
  • the heating mechanism 411 can heat the food material by ejecting a heat mediator such as steam. In one embodiment, the heating mechanism 411 warms the food material by ejecting a 98° C. heat mediator. As described above, the heating mechanism 411 is configured such that the ejected heat mediator heat mediator indirectly heats the food material. As an example of such a configuration, as shown in FIG. 4, a configuration in which the heating mechanism 411 is provided in the lower portion of the transport unit 430 and the ejection port of the heat mediator is directed downward can be mentioned. , But is not limited to this.
  • the heating mechanism 411 does not continuously eject the heat medium substance, but rather ejects the heat medium substance at intervals so as to eject the heat medium substance intermittently.
  • the spout can be opened and closed. In a further embodiment, opening and closing of the spout is controlled by external input or automatically.
  • the heating unit 410 includes a sensor.
  • the sensor may be a temperature sensor or a humidity sensor.
  • the sensor quantifies and transmits information regarding the internal state of the heating unit 410.
  • the information regarding the internal state of the heating unit 410 may be transmitted to the management unit, or another part of the system (for example, the transport unit 430, the heating unit 410, the cooling unit 420, the first freezing unit 100A). , The second freezing unit 100B, or the transport unit 200).
  • the position of the sensor is not limited, it may be preferably arranged in the vicinity of the transport unit 430 penetrating the heating unit 410.
  • the sensor is within about 30 cm, preferably about 15 cm, from transport 430.
  • the temperature sensor drives the heating mechanism 411 intermittently. For example, when the measured value of the temperature sensor provided in the vicinity of the transport unit 430 reaches a specified temperature, the cover of the ejection hole for the heat medium substance such as steam is closed, the discharge of the heat medium substance is stopped, and the temperature is lowered.
  • the temperature in the heating unit 410 can be kept constant by ejecting the heat mediator again and mixing the air in the heating unit with the heat mediator at an appropriate ratio.
  • the heating mechanism 411 is a steam supply unit
  • the internal temperature and/or humidity values detected by the above-mentioned sensor are also measured.
  • a boiler, a water pipe, a power source, etc. attached to the outside of the heating mechanism 411 can be automatically controlled to automatically control the temperature and discharge amount of steam.
  • the time during which the food is kept in the heating part is 1 to 8 minutes, preferably 1 to 3 minutes. This time is appropriately adjusted depending on the thermal conductivity of the food material and the size of the cut food material.
  • the surface of the foodstuff may be sterilized as a result of being exposed to the internal temperature for such a time.
  • the heating unit 410 is configured so that a heat mediator such as steam can convect.
  • a heat mediator such as steam can convect.
  • the degree of heating of the food material during the heating step can be made uniform.
  • the amount of the heat mediator with which the foodstuff comes into contact can be increased per hour, and the foodstuff can be quickly brought to a desired temperature without using a high temperature.
  • the bottom of the warming section 410 may be shaped to cause convection of heat mediators such as steam.
  • heat mediators such as steam.
  • An example of such a shape is, but not limited to, a boat shape in which the edge of the bottom is processed to be slanted as shown in FIG. 4.
  • Convection of the heat mediator is caused by vertical convection at the inlet and outlet of the heating unit 410 so that cold outside air enters the heating unit 410 and/or the heating unit 410 is warm. It may function as an air curtain, so to speak, that blocks the leakage of the heat mediator.
  • the heat mediator for example, steam
  • the convection that occurs in a temperature range around 70° C. is slow, and the heat mediator is positively convected. It may be desirable to use a mechanism that allows.
  • the heating unit 410 preferably has a blower mechanism as a mechanism to positively convect the heat mediator.
  • the blowing mechanism may promote convection of the heat mediator in the heating unit 410.
  • any air blower such as a sirocco fan, a turbo fan, an airfoil fan, a cross flow fan, or an air conditioner can be used.
  • the configuration of the blower mechanism is not particularly limited with respect to the number, position, direction, etc.
  • the blower mechanism may be provided above the heating unit 410, may be provided at the side of the heating unit 410, may be provided at both of them, or may be provided at another position. In one embodiment, the direction in which the blower blows air may or may not be toward the foodstuff.
  • the blowing mechanism of the heating unit 410 blows air in a direction other than the food.
  • the intensity of the air blown by the air blowing mechanism is not limited as long as the heat mediator can be sufficiently convected, and may be constant or may be changed.
  • the number of attached blower mechanisms (preferably fans) and the blower capacity can be appropriately adjusted in consideration of the capacity of the heating unit 410, the type and processing amount of the foodstuff, the conveyance speed of the foodstuff, and the like.
  • the temperature and humidity inside the heating unit 410 are detected at any time by the sensors attached to the respective internal parts, and the temperature of the fan is made uniform within the heating unit 410.
  • the number of rotations and the amount of blown air may be adjusted.
  • the heating unit 410 is not sealed. This is because when the heating unit 410 is sealed, the cells of the food material may be destroyed by the pressure of the air expanded by heat.
  • the opening portions provided at the inlet and the outlet may serve as a pressure valve, and the convection of the heat transfer medium may serve as an air curtain.
  • the heating mechanism 411 in the heating unit 410 may be single or plural. In one embodiment, the heating mechanism 411 includes at least two heating mechanisms along the transport direction of the transport unit. In one embodiment, the heating mechanism 411 is a pipe provided with a jet of a heat mediator such as steam. This pipe may be plural. The amount of heat emitted by the plurality of heating mechanisms may be different. In one embodiment, the heating mechanism near the inlet of the heating unit 410 releases a larger amount of heat than the heating mechanism 411 near the outlet of the heating unit 410. In one embodiment, the heating unit 410 includes at least two heating mechanisms along the transport direction of the transport unit, and the heating mechanism near the inlet of the warming unit 410 is near the outlet of the heating unit 410.
  • the pipe of the heating mechanism 411 is a plurality of pipes having different diameters.
  • the diameter of the pipe near the inlet is larger than the diameter of the pipe near the outlet.
  • the temperature of the low temperature input to the heating unit 410 is reduced.
  • the heating of the foodstuff to a predetermined temperature is promoted more and can be maintained at the predetermined temperature after reaching the predetermined temperature, thereby ensuring a longer processing time of the foodstuff at the intended predetermined temperature. be able to.
  • the ejection holes of the plurality of pipes may each be provided with an on-off valve and controlled individually.
  • the heating unit 410 is a steam warmer. In some embodiments, the heating unit 410 is a steamer that extends along the food conveying direction, and the heating mechanism 411 includes a plurality of small holes provided in the inner wall of the steamer as a heat transfer medium in the steamer. Emits (including but not limited to steam, micromist, or cluster air).
  • the heating unit 410 is a part for heating the foodstuff in a humid atmosphere at 45° C. to 90° C. for 1 to 8 minutes, and preferably. Is a steamer extending along the transport direction.
  • the transport unit 430 penetrates the inside of the heating unit 410.
  • the feeding unit and the heating unit 410 are continuous.
  • the food processing system 10 is in operation, the food is continuously loaded into the heating unit 410 opened by the transport unit 430. In the process in which the food passes through the inside of the heating unit 410, the temperature of the food rises from the surface, and then the temperature of the central part also rises to 45°C to 90°C. Lasts 1-8 minutes.
  • the internal temperature of the heating unit 410 is adjusted according to the type of food material. For example, in the case of heating a large piece of food material that does not pass heat well, the temperature is adjusted to a relatively high temperature range. For example, when heating a small food piece that passes heat well, the temperature is adjusted to a relatively low temperature range.
  • the internal temperature of the heating section 410 is maintained at 45°C to 90°C, preferably 50°C to 85°C, more preferably 60°C to 80°C.
  • the food is kept in the heating section 410 for 1 to 8 minutes, preferably 1 to 3 minutes. This time can be appropriately adjusted depending on the thermal conductivity of the food material and the size of the cut food material.
  • the temperature of the food rises from the surface, and then the temperature of the central part also rises to 45°C to 90°C. It lasts for 1-8 minutes, preferably 1-3 minutes. If the internal temperature of the heating section 410 is lower than 45° C., it is not preferable because improvement of the taste of the food and reduction of the final cooking time cannot be expected. When the internal temperature of the heating unit 410 exceeds 95° C., the food is cooked, boiled, fried, steamed, or otherwise subjected to normal heating and the flavor of the fresh food is lost, which is not preferable.
  • the heating unit 410 is preferably a steamer that heats foodstuffs by generating a heat mediator such as mist vapor inside.
  • the shape of the heating portion is preferably an elongated shape along the carrying direction.
  • a large number of small holes provided on the inner wall of the steamer discharges the heat mediator into the steamer to uniformly heat the surface of the continuously moving food material.
  • a boiler, a water pipe, a power supply, a temperature sensor, a humidity sensor, etc. are attached to such a steamer for humidification and heating.
  • the temperature and humidity inside the steamer are set to optimum values according to the type and size of food. Humidity and release amount of the heat mediator are automatically adjusted based on the set values and automatically measured values of humidity and temperature inside the steamer. In order to perform this automatic adjustment in a short time, a blower fan provided in the adjusting unit is also used.
  • the part (exit) where the food leaves the heating section 410 is also opened when the food processing system 10 is operating, as is the entrance of the heating section 410.
  • the foodstuffs continuously move in the heating unit 410 without staying and are discharged from the heating unit 410 to the cooling unit 420.
  • the food processing system 10 includes a cooling unit 420 including a cooling mechanism for cooling food.
  • the configurations of the cooling unit 420 and the cooling mechanism are not limited as long as the inside of the cooling unit 420 can be maintained at a desired temperature.
  • the cooling unit 420 is not limited, but the inside thereof is -10°C to -40°C, -10°C to -35°C, -10°C to -30°C, -10°C to -25°C, -10°C. C. to -20.degree. C., -10.degree. C. to -15.degree. C. or higher can be maintained.
  • the cooling unit 420 may include a blower mechanism.
  • the air blowing mechanism any of those used for air blowers and air conditioners such as sirocco fans, turbo fans, airfoil fans, and cross flow fans can be used.
  • the configuration of the blower mechanism is not particularly limited with respect to the number, position, direction, etc.
  • the blower mechanism may be on the cooling unit 420, on the side of the cooling unit 420, on both, or in another position.
  • the direction in which the blower mechanism blows air in the cooling unit 420 may or may not be toward the food material.
  • the intensity of the air blown by the air blower mechanism is not limited as long as the food can be sufficiently cooled, and may be constant or may be changed.
  • the cooling unit 420 has a cooling mechanism beside the cooling unit 420 and an air blowing mechanism (fan) at the upper portion.
  • the cooling unit 420 directly cools the food material.
  • a blower mechanism for example, a fan provided in the cooling unit 420 blows air toward the food material. This enables the food to be cooled quickly. This is advantageous in the present invention.
  • the food sterilized by heating in the heating unit 410 has a risk of reattachment of microorganisms at a temperature of around 24°C to 37°C, but the temperature is rapidly lowered by direct cooling. This is because the time spent in the temperature zone is shortened.
  • the cooling unit 420 includes a sensor.
  • the sensor quantifies and transmits information regarding the internal state of the cooling unit 420.
  • Information regarding the internal state of the cooling unit 420 may be transmitted to the management unit, or another part of the system (for example, the transport unit 430, the heating unit 410, the first freezing unit 100A, the second freezing unit). It may be transmitted to the unit 100B or the transport unit 200).
  • the sensor include a temperature sensor and a humidity sensor.
  • the position of the sensor is not limited, it is preferably arranged in the vicinity of the transport unit 430 penetrating the cooling unit 420 so that the temperature of the food to be cooled can be accurately measured, which is advantageous for the control of the system. obtain.
  • the cooling unit 420 may be, for example, a commonly used refrigerator or freezer, and may be a tunnel freezer or the like in shape.
  • the cooling unit 420 is a unit for cooling the food material that has been heated by the heating unit 410 at a temperature of ⁇ 10 to ⁇ 40° C. for 2 to 8 minutes.
  • the foodstuff does not stay and continuously moves in the cooling unit 420 and is discharged.
  • the entire cooling unit 420 be covered with a cooling device whose temperature can be easily adjusted.
  • a tunnel freezer for example, is used as such a cooling device.
  • the shape of the cooling unit 420 is preferably an elongated shape along the food conveyance direction. A so-called tunnel freezer is preferable as the cooling unit 420.
  • the temperature in the cooling section 420 is maintained at -10 to -40°C, preferably -10 to -20°C.
  • the time during which the food is kept in the cooling unit 420 is 2 to 8 minutes, preferably 2 to 5 minutes, more preferably 2 to 4 minutes. This time can be appropriately adjusted depending on the thermal conductivity of the food material and the size of the cut food material.
  • the temperature from the surface of the food to the central part is lowered to 5°C to -40°C, preferably 2°C to -20°C.
  • a processed food for cold storage (so-called refrigerated food, including “chilled food”) is produced in the cooling unit 420 of the food pretreatment (sterilization) unit 400 of the food processing system 10, at the outlet of the cooling unit 420.
  • the temperature of the cooling unit 420 is appropriately adjusted so that the central temperature of the food is about 5°C or lower, preferably about 1°C to about 4°C, more preferably about 2°C.
  • the foodstuff pretreatment (sterilization) unit 400 of the foodstuff processing system 10 includes a transport unit 430 that transports foodstuffs through the heating unit 410 and the cooling unit 420.
  • the configuration of the transport unit 430 is not particularly limited as long as it has a function of continuously moving food materials.
  • Performing heating and/or cooling and/or freezing while moving foodstuffs can be advantageous for uniformly processing a large amount of foodstuffs at a uniform temperature. For example, if the food is processed while it is stationary, the processing temperature will vary due to the uneven temperature in the space where the food is processed. It is possible to eliminate the difference between foods due to uneven temperature.
  • the conveying unit 430 preferably conveys the food material through the heating unit 410 and the cooling unit 420 at a constant speed.
  • the transport unit 430 has an adjusting mechanism that adjusts the constant speed thereof.
  • the adjustment mechanism may be capable of automatically adjusting a constant speed, adjusting the speed to a manually set speed, or both.
  • the transport unit 430 can be configured to transport the food so that the food passes through the inside of the heating unit 410 for a desired time, and the food can pass through the inside of the cooling unit 420 as desired. It can be configured to convey the foodstuff so that it passes through for a period of time.
  • the transport unit 430 is preferably a belt conveyor.
  • the transport unit 430 has a through hole.
  • the transport unit 430 having the through holes may be a mesh belt conveyor or the like.
  • a plurality of transport units 430 may be provided, and by arranging the plurality of transport units 430 in parallel, it is possible to increase the amount of food processed per unit time and improve the processing capacity of the system of the present invention.
  • the food may be conveyed by directly placing the food on the conveying unit 430, or by conveying the container containing the food by the conveying unit 430.
  • a breathable container is preferably used.
  • the breathable container is, for example, a container having a through hole on the bottom surface and/or the side surface.
  • This container can be, for example, a container including a breathable mesh member on the bottom surface and/or the side surface.
  • the food conveyance speed can be set freely within the range of several meters to several tens of meters per minute. Optimum transport speed according to the type and size of food so that the core temperature of the food rises to an appropriate temperature and the food reaches the outlet of the heating unit 410 when the temperature is maintained for an appropriate time. Can be determined. Further, the transport unit 430 may transport the food material through the cooling unit 420 at the transport speed. In this case, preferably, the cooling temperature or the blower mechanism of the cooling unit is adjusted according to the time at which the food passes through the cooling unit 420 at the transport speed.
  • the foodstuffs are continuously moved by the transport unit 430 to the input unit, the heating unit 410, the cooling unit 420, and the unloading unit in this order.
  • a belt conveyor is preferable as the transport unit 430.
  • the speed of the transport unit 430 is automatically adjusted to an appropriate value in cooperation with the size of each piece of food placed in the input unit, the shape of the food, the heating condition of the heating unit 410, and the cooling condition of the cooling unit 420. Can be done.
  • the foodstuff processing system 10 of the present invention includes a conveyor 200 that conveys foodstuffs through a freezing unit 100A and a freezing unit 100B after a foodstuff pretreatment (sterilization) unit 400.
  • the transport unit 200 may have a configuration similar to that of the transport unit 430.
  • the transport unit 200 may be configured to be connected to the transport unit 430, or may be separated from the transport unit 430.
  • the transport unit 430 such as a belt conveyor and the transport unit 200 can be used as a starting point for the washed and cut food material feeding unit, a loading port for the food heating unit 410, the inside of the heating unit 410, and the heating unit 410.
  • the end of the cooling unit to be connected, the end of the other cooling unit 420, the end of the freezing unit 100A connected to the cooling unit 420, the inside of the freezing unit 100A, the inside of the freezing unit 100B, the end of the other freezing unit 100B.
  • the heating unit 410, the cooling unit 420, the freezing unit 100A, and the freezing unit 100B are laid in a line through the outlet of the freezing unit 100B, the process from washing/cutting of food to sterilization/freezing is integrated.
  • the foodstuffs can be performed in process and is efficient.
  • the foodstuffs continuously move inside the heating unit 410 or the freezing unit 100B and do not stay.
  • a certain amount of foodstuff can be processed and/or sterilized and/or frozen per unit time, which enables stable and efficient foodstuff processing and/or continuous sterilization and/or frozen processing.
  • the food freezing system 1 and/or the food processing system 10 may include a management unit.
  • the management unit can receive the information transmitted from each component of the food freezing system 1 and/or the food additive system 10, and/or provide each component of the food freezing system 1 with information for control. Can be sent.
  • the management unit can monitor the internal conditions of the first freezing unit 100A and/or the second freezing unit 100B and/or the heating unit 410 and/or the cooling unit 420 by the management unit, and controlling these components, It is possible to prevent the processing conditions from becoming different from the expected conditions (for example, a temperature different from the expected conditions).
  • the management unit may be integrated with the food material refrigeration system 1 and/or the food material addition system 10, or may be provided at a remote portion.
  • the management unit displays the received information or the information calculated from the information to the worker, and the information for control of the foodstuff refrigeration system 1 and/or the foodstuff addition system 10 is displayed according to the operator's input. Send to each component.
  • the management unit uses the received information or the information calculated from the information to automatically transmit information for control to each component of the foodstuff refrigeration system 1 and/or the foodstuff addition system 10. ..
  • the food freezing system 1 and/or the food adding system 10 includes a management unit
  • the conditions of each part for example, the first Internal temperature of the freezing part 100A, the second internal temperature of the freezing part 100B, the internal temperature of the heating part 410, the internal humidity, the amount of water passing, the amount of release of heat mediators such as steam, and the internal temperature of the cooling part 420. It is sent to the management unit outside the device.
  • the management department can monitor each data with a monitor.
  • the computer of the management unit calculates and evaluates the gap between the optimum value registered in advance and the actual measurement value input momentarily, and automatically displays a warning and adjusts each condition.
  • the food freezing system 1 and/or the food adding system 10 can be continuously operated for 24 hours by allocating a small number of personnel near the apparatus and in the management unit. Since the food freezing system 1 and/or the food adding system 10 can be operated without requiring a skilled person, a large amount of homogeneous products can be manufactured regardless of the installation location of the system.
  • FIG. 5 shows an example of the flow of the manufacturing method of the food material of the present invention. Hereinafter, each step shown in FIG. 5 will be described.
  • Step S001 Pretreatment Step
  • the foodstuff is pretreated.
  • the pretreatment step includes a step of washing the food material and/or a step of cutting the food material.
  • general methods for washing and cutting vegetables, fruits, fish and meats can be used without limitation.
  • the food provided to the heating unit 410 of the food freezing system may be washed and/or cut. Note that step S001 may be omitted.
  • non-edible parts such as skins, seeds and bones are removed from the food material and washed with water to have a shape suitable for the food material and an appropriate size. Cut the ingredients. When using a relatively small food material, use it for the next step without cutting. When the food material is vegetables, it can be cut into a shape similar to that of cut vegetables, for example. It is not necessary to cut cherry tomatoes and strawberries just by washing them with water. In the case of radish and carrot, you can also cut it into regular shapes, such as shredded, striped, ginkgo.
  • a washing device that uses a shower or a water tank and a cutting device that uses a cutter, grinder, sieve, etc. are usually used.
  • a washing device and a cutting device which are commonly used in processing facilities for vegetables, fruits, mushrooms, fish and meat can be used.
  • Step S002 Heating Step Step S002 and the next step S003 are performed by the pretreatment (sterilization) unit 400.
  • step S002 the ingredients are heated.
  • the step of heating the foodstuff may be a step of indirectly heating the foodstuff.
  • the food is heated while passing through the heating unit 410, for example, for 1 to 8 minutes, preferably 1 to 3 minutes.
  • the heating time can be changed by adjusting the speed of the transport unit.
  • the heating process can take various combinations of heating time and temperature.
  • root vegetables are warmed at 75-90°C for 3-7 minutes.
  • the leaves are warmed at 60-75°C for 1-3 minutes.
  • the vegetables are warmed at 45-75°C for 1-3 minutes.
  • the animal food product is warmed at 75-90°C for 3-8 minutes.
  • the heating step includes the end of the heating unit 410 in which the washed and cut food material is kept at a predetermined constant temperature in the range of 45°C to 90°C. And then the convection is generated by a fan optionally installed inside the steam warmer, thereby blowing the food to the surface of the food while heating the food inside the heating unit 410 for 1 minute to 8 minutes.
  • the temperature of the food material is increased by transporting it for a minute.
  • the food material can be heated without being exposed to the outside air.
  • Step S003 Cooling Step In step S003, the food material is cooled.
  • the step of cooling the food material is a step of directly cooling the food material.
  • the cooling unit 420 includes an air blowing mechanism, and the heated air is rapidly cooled by applying cold air to the food using the air blowing mechanism. This makes it possible to maintain the surface and the inside of the food material in a state where bacterial growth is suppressed.
  • the bacteria pass through a temperature zone (for example, about 20 to 40° C.) in which they easily grow, so it is desirable to quickly cool the foodstuff, for example, to a chilled zone (for example, about 2° C.). ..
  • the food material is cooled while passing through the cooling unit 420 (for example, about 2 to 8 minutes, preferably about 2 to 5 minutes, more preferably about 2 to 4 minutes).
  • the cooling time is adjusted by changing the length of the cooling unit 420 according to the conveyance speed set for adjusting the heating time of the heating process, or the food material is sufficiently adjusted.
  • the temperature of the cooling unit 420 or the blowing strength of the blowing mechanism can be set so that the cooling air is cooled.
  • the cooling time can be varied by adjusting the speed of the transport.
  • the temperature inside the cooling unit 420 may be, but is not limited to, about ⁇ 10° C. to about ⁇ 40° C., about ⁇ 10° C. to about ⁇ 35° C., about ⁇ 10° C. to about ⁇ 30° C. .. Also, without being bound by theory, if the temperature of the food material at the end of the cooling step exceeds about 10°C, there is a risk that bacteria may grow during the subsequent work.
  • the temperature of the food material immediately after the cooling step is not limited, but is preferably about 5°C or lower, more preferably about 1°C to about 4°C, and more preferably about 2°C.
  • the amount of time the foodstuff is in the cooling section 420 is about 2 to about 8 minutes, preferably about 2 to about 5 minutes, and more preferably about 2 to about 4 minutes.
  • the cooling time is appropriately adjusted depending on the thermal conductivity of the food material and the size of the cut food material.
  • the temperature from the surface of the foodstuff to the center is reduced to about 5°C to about -40°C, preferably about 2°C to about -20°C.
  • the cooling process includes an end of the cooling unit 420 that is kept at a predetermined temperature, the internal temperature of which is in the range of about ⁇ 10° C. to about ⁇ 40° C., without exposing the food material that has undergone the heating process to the outside air.
  • a predetermined temperature the internal temperature of which is in the range of about ⁇ 10° C. to about ⁇ 40° C.
  • the cooling step is not always essential, and the heating step in the intermediate temperature zone may be followed immediately by the freezing step.
  • Step S004 Freezing Step Step S004 is performed in the food material freezing system 1.
  • step S004 the ingredients are frozen rapidly (in about 5 to about 6 minutes).
  • the step of freezing the food material is a step of directly freezing the food material.
  • the freezing unit includes a blower mechanism, and the cooled foodstuff is quickly frozen by applying cold air to the foodstuff using the blower mechanism.
  • the surface and the inside of the cooled food material can be stored for a long period of time while maintaining the state in which bacterial growth is suppressed.
  • the food material is rapidly passed through the first freezing section 100A and the second freezing section 100B (eg, about 6 minutes or less, preferably about 4 to about 6 minutes, more preferably about 5 to about 6 minutes). Frozen.
  • the freezing unit 100A and the freezing unit 100A are set according to the transport speed set for adjusting the heating time of the heating step and the transport speed set for adjusting the cooling time of the cooling step.
  • the freezing time is adjusted by changing the length of the freezing unit 100B, respectively, or the temperature of the first freezing unit 100A and the second freezing unit 100B or the ventilation mechanism of the second freezing unit 100B is adjusted so that the food can be rapidly frozen sufficiently.
  • the blast intensity can be set.
  • the freezing time can be varied by adjusting the speed of the transport.
  • foodstuffs can be frozen under various freezing conditions.
  • the freezing conditions include, for example, the shape, size (length), number, internal temperature, blast intensity of the blast mechanism, blast direction of the blast mechanism, and air curtain of the first chill section 100A and the second chill section 100B. It is related to the presence or absence of a generation mechanism (or the number of air curtain generation mechanisms), the blast intensity of the air curtain generation mechanism, the type of food, the size of the food, the thermal conductivity of the food, and the water content of the food.
  • the present invention relates to a freezing technique for freezing a food material having a cell membrane without breaking the cell membrane.
  • the raw material of ingredients in which the cell membrane is not destroyed (“raw” vegetables, seafood, meats just collected) and the ingredient processed without destroying the cell membrane as shown in FIG.
  • the treatment for destroying the cell membrane is, for example, heat sterilization treatment by blanching.
  • Blanching is a heat sterilization treatment of fruits and vegetables using hot water or high temperature steam, and since the treatment temperature is in the temperature zone that destroys the cell membrane, the cell membrane is destroyed by the previous treatment of freezing. .. Therefore, even if the processing for securing the cell membrane can be performed by the food material refrigeration system of the present invention in the freezing processing stage, the significance of the effect is greatly impaired.
  • the freezing condition may be changed depending on each process before the freezing process (for example, according to the heating condition in the heating process and/or the cooling condition in the cooling process).
  • foodstuffs can be frozen under standardized freezing conditions regardless of the type of foodstuffs. As a result, it is possible to save the trouble of changing the refrigerating conditions and to efficiently perform the refrigerating process in time.
  • the foodstuff may be frozen under different freezing conditions for each type of foodstuff. As a result, it is possible to adopt a freezing method that matches the type of food material, and it is possible to provide a frozen food material of higher quality than under the case of uniform freezing conditions.
  • the foodstuffs are not subjected to chemical treatment with a treatment agent such as a water retaining material or a thickener, and physical treatments such as compression and pressing are performed.
  • a treatment agent such as a water retaining material or a thickener
  • physical treatments such as compression and pressing are performed.
  • the food is simply processed under various conditions.
  • this heating process improves the quality of the foodstuff.
  • the enzymes contained in fruits and vegetables are deactivated, and self-degradation/self-decomposition of food materials is suppressed.
  • the foodstuff pretreatment (sterilization) unit 400 suppresses the outflow of foodstuff contents and the drying of foods, resulting in a good yield from foodstuff raw materials to final processed foods.
  • the processed foods obtained at the carry-out section of the food material pretreatment (sterilization) unit 400 are the yields from food material raw materials to final processed foods. It has been empirically revealed that the value is improved by 10% or more.
  • the texture of the fresh food does not deteriorate, and the hardness and softness peculiar to the fresh food are maintained.
  • miscellaneous components so-called lye
  • lye a processed vegetable having a fresh taste, which has both the texture of the raw vegetable and the rich taste.
  • Such processed vegetables have a quality that is neither conventional cut vegetables nor cut full pieces.
  • the ingredients are rich in flavors and aromas such as seafood and mushrooms, the flavors and aromas of the ingredients become richer and the smooth texture of fresh ingredients is maintained.
  • the food material pretreatment (sterilization) unit 400 is processed to rapidly maintain such excellent food materials under the above-mentioned various freezing conditions, and thereby, It is possible to maintain the excellent state for a long period of time without deteriorating the above excellent state. As a result, the amount of foodstuffs to be disposed of can be significantly reduced, and consumers can eat foodstuffs in better condition at lower cost.
  • the present inventor confirmed that when the food material is frozen without pretreatment (45° C. to 90° C.) in the intermediate temperature range, cell membrane destruction may occur even if it is rapidly frozen. did.
  • pretreatment 45° C. to 90° C.
  • the cell membrane of the food material is changed to have resistance to heat. It is thought that it was done.
  • the average nutrient content of the foods after thawing is 40% or less after thawing due to the destruction of cell tissue during freezing and thawing.
  • the freezing technique of the present invention by using the freezing technique of the present invention, the components and nutrients originally possessed by the foodstuff are maintained as they are without destroying the cell membrane even after thawing, and therefore it can be considered that the food stock is improved by 60%. While facing the problem of food crisis these days, the present invention can also provide a solution to such food crisis.
  • Foodstuffs for the refrigeration system of the present invention can be, for example, cut vegetables and cut fruits.
  • preferred food ingredients for the refrigeration system of the present invention include broccoli, cauliflower, spinach, carrots, potatoes, lotus root, cabbage, Chinese cabbage, vegetables such as M tomato, fruits such as pineapple, mango and apple, chicken, pork. , Meat such as beef, and seafood such as crab, shrimp, and scallop.
  • foods that have been processed such as boiled, baked, boiled, and foods that have been subjected to a heat pretreatment such as blanching (excluding the pretreatment (sterilization) part of the present invention) have already had cells.
  • the preferable state of the foodstuff for the refrigeration system of the present invention is the foodstuff that has been treated in the pretreatment (sterilization) part of the present invention (foodstuff in which cells are not destroyed), or boiled, bake, boiled, etc. It is a food that has not been processed.
  • the cell membrane is not destroyed by the treatment in the intermediate temperature range as described above, and the benefit of the freezing treatment of the present invention can be enjoyed.
  • Example 1 Vegetables (broccoli, cauliflower, spinach, carrot, etc.) were cut into a predetermined size, and then pretreated by the food material pretreatment (sterilization) unit (FIG. 4) of the present invention.
  • the cut vegetables subjected to these pretreatments were frozen using the food material freezing system of the present invention and those frozen by the conventional freezing method, and the states when thawed were compared. The results of the comparison are shown in Table 1.
  • the vegetables processed by the food material freezing system of the present invention did not have water separation (component outflow) when thawed and maintained the texture and taste such as the texture of the vegetables before freezing. ..
  • water separation occurred when the vegetables were thawed, and the texture and taste were deteriorated.
  • Freezing with liquid nitrogen is considered to cause damage to the cell membrane because the processing temperature (about -196°C) is so low that the relationship between the contraction of the fibers of the food material and the expansion of water cannot be obtained.
  • freezing such as a freezer and IGF
  • it takes a long time about 10 minutes or more to bring the central temperature of the food to ⁇ 5° C., so the temperature of the food surface and the core of the food are different, and the cell membrane is different. It is not possible to suppress the increase of the frozen mass in the inside.
  • the cell membrane in the core of the food material was severely damaged with respect to the surface of the food material, causing water separation (outflow of components) during thawing.
  • Example 2 At the Okayama Industrial Test Center, the thinly sliced foodstuffs of the broccoli cells that have undergone various treatments are lined up in parallel, one drop of the dyeing solution is added to the foodstuffs, and the lid is covered with a transparent glass plate for observation under a microscope. did.
  • FIG. 12A a 500 ⁇ photomicrograph of untreated raw broccoli is shown in FIG. 12A. It can be seen that the cell tissue remains firmly without being destroyed.
  • FIG. 12B shows a 500 ⁇ photomicrograph of broccoli after pretreatment (about 88° C.) in the intermediate temperature zone in the food pretreatment (sterilization) part (FIG. 4) of the present invention. It was confirmed from the shape of the cell membrane that the cell tissue was not destroyed and remained.
  • FIG. 12C shows a 500 ⁇ micrograph of broccoli that was thawed after freezing the tissue shown in FIG. 12B at ⁇ 60° C. for 5 minutes (a mode in which cold air was blown out randomly from the air outlet). Surprisingly, it could be confirmed from the shape of the cell membrane that the cell tissues remained without being destroyed.
  • FIG. 12D shows a 500 ⁇ micrograph of broccoli which was obtained by freezing the tissue shown in FIG. 12B at ⁇ 35° C. to ⁇ 45° C. for 15 to 20 minutes and then thawing it. Unlike FIG. 12C, it can be seen that only the cells in the fiber direction are not destroyed and the others are destroyed.
  • the present invention is useful as a food refrigeration system in which water separation after thawing is reduced as compared with conventional frozen foods, and a method for producing frozen foods using the food refrigeration system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Abstract

従来の冷凍と比較して、冷凍食材の解凍後の離水が減少される新規の冷凍システム、および冷凍食材の製造方法を提供することを課題とする。本発明は、前記食材を冷凍するため2つ以上の冷凍部と、前記食材を前記2つ以上の冷凍部に搬送するための搬送部とを備え、前記2つ以上の冷凍部は、前記搬送部上で搬送されるにつれてより低い温度で冷凍されるように、前記食材を段階的に冷凍するように構成されている、食材冷凍システムを提供することにより上記課題を解決する。

Description

食材冷凍システムおよび冷凍食材の製造方法
 本発明は、食材冷凍システム、および、冷凍食材の製造方法に関する。
 本発明者らは、中間温度帯での加温と冷却とを一体型とした食材加工システムを発明した(例えば、特許文献1を参照)。この一体型食材加工システムは、中間温度帯での加温により、食材の細胞を破壊することなく灰汁を抜くことができ、食材内の酵素を失活させて食材の熟成変化を防ぎ、かつ食品衛生管理のための微生物死滅を達成することができる。さらに、その後の速やかな冷却において食材をチルド帯(約2℃)まで冷却することにより、加温による殺菌の効果を維持することができる。これにより、優れた食感および味質を有し、保存性に優れた殺菌済みの食材を提供することができる。
 また、近年、長期保存の可能な冷凍食材の需要が高まっている。
特許第6010240号公報
 しかしながら、冷凍食材は、解凍後に食材内の液体の流出(離水)が生じる。この離水により、食味や食感が損なわれ、食材の栄養分も流出してしまう。したがって、本発明は、従来の冷凍と比較して、冷凍食材の解凍後の離水が減少される新規の冷凍システム、および冷凍食材の製造方法を提供することを課題とする。
 本発明者らは、上記の課題に鑑みて鋭意研究を重ねた結果、冷凍食材の解凍後の離水が減少される新規の食材冷凍システムを開発した。本発明の食材冷凍システムでは、短時間(例えば、約6分以内)で約-60℃~約-90℃まで、好ましくは-60℃~89℃まで食材を冷却し得る。このように短期間に-60℃を下回る温度まで冷却された冷凍食品は、解凍後に細胞や組織の破壊が少なく、食材からの液体の流出(離水)が抑制され得る。
 1つの局面においては、本発明の食材冷凍システムは、少なくとも2つの冷凍領域を備え、食材を効率的に、かつ食材の組織破壊を低減した状態で食材を冷凍することが可能である。
 本発明の食材冷凍システムはまた、簡単な工程だけを必要とするシンプルなものであり、特別な薬剤や高価な設備を用いることなく、効率的に、食材の風味や外観を損ねることなく食材を長期保存可能にすることができるという利点も有し得る。
 特許第6010240号公報に記載されたような一体型食材加工システムによって殺菌された食材は、他の方法で殺菌され、既に状態が損なわれている食材よりも優れた状態であるが故に、冷凍することによる細胞破壊、汁の浸み出し(ドリップ)、品質低下の影響が、食材に顕著に表れる。そのため、本発明の冷凍システムによる冷凍は、一体型食材加工システムにおいて殺菌処理された食材の冷凍に好ましい。
 本発明は、例えば、以下を提供する。
 (項目1)
 食材を冷凍するための食材冷凍システムであって、
 前記食材冷凍システムは、
 前記食材を冷凍するための冷凍部と、
 前記食材を前記2つ以上の冷凍部に搬送するための搬送部と
 を備え、
 前記冷凍部は、約-60℃~約-90℃の冷風で冷却されるように構成されている、食材冷凍システム。
 (項目2)
 前記冷凍部は、-60℃~-89℃の冷風が送風されるように構成されている、項目1に記載の冷凍システム。
 (項目3)
 前記食材を冷凍する前に、食材を冷却する予冷部をさらに備え、
 前記搬送路は、前記予定部、次いで前記冷凍部という順に前記食材を搬送する、項目1または2に記載の冷凍システム。
 (項目4)
 前記予冷部は、前記食材の搬送順に、第1予冷部および第2予冷部を少なくとも含み、前記第1予冷部と前記第2予冷部とは異なる温度の冷風で冷却されるように構成されている、項目3に記載の冷凍システム。
 (項目5)
 前記予冷部は、前記食材の搬送順に、第1予冷部、第2予冷部および第3予冷部を少なくとも含み、前記第1予冷部と前記第2予冷部とは異なる温度の冷風で冷却され、前記第2予冷部と前記第3予冷部とは異なる温度の冷風で冷却されるように構成されている、項目3に記載の冷凍システム。
 (項目6)
 前記第3予冷部は約-25℃~約-45℃の冷風で冷却されるように構成されている、項目5に記載の冷凍システム。
 (項目7)
 前記第1予冷部は約-25℃~約-45℃の冷風で冷却されるように構成されている、項目4~6のいずれか一項に記載の冷凍システム。
 (項目8)
 前記第2予冷部は約-60℃~約-90℃の冷風で冷却されるように構成されている、項目4~7のいずれか一項に記載の冷凍システム。
 (項目9)
 前記第2予冷部における冷風は、前記第1予冷部および前記第3予冷部における冷風よりも温度が低い、項目5に記載の冷凍システム。
 (項目10)
 前記食材冷凍システムは、隣接する予冷部の間にエアーカーテンを生成するための少なくとも1つのエアーカーテン生成機構をさらに備える、項目4~9のいずれか一項に記載の食材冷凍システム。
 (項目11)
 前記冷凍部は、冷風を前記搬送部に向かって送風する送風口を前記搬送部の搬送方向に沿って複数備え、前記送風口の向きは、前記搬送部の搬送方向に対抗する向きとなるように構成されている、項目1~10のいずれか一項に記載の冷凍システム。
 (項目12)
 前記送風口の向きは、前記搬送部の搬送方向に対向し、約30°~約60°の角度で傾斜している、項目11に記載の食材冷凍システム。
 (項目13)
 前記送風口は、前記搬送部の下部に設けられる、項目11または12に記載の食材冷凍システム。
 (項目14)
 前記送風口は、前記搬送部の下部と上部との両方に設けられる、項目13に記載の食材冷凍システム。
 (項目15)
 前記上部の送風口は、前記搬送部の前記搬送方向に直交する方向に対して傾斜するように設けられ、
 前記下部の送風口は、前記上部の送風口の傾斜と交差するように設けられる、項目14に記載の食材冷凍システム。
 (項目16)
送風口の傾斜する向きは、前記搬送部の前記搬送方向に沿って交互に変更するように構成されている、項目15の記載の食材冷凍システム。
 (項目17)
 前記搬送部は、前記食材が前記食材冷凍システムに入ってから前記冷凍部を約6分以内に通過するように、前記食材を搬送するように構成されている、項目1~16のいずれか一項に記載の食材冷凍システム。
 (項目18)
食材加工システムであって、
(1)食材を間接的に加温する加温機構を備える加温部と、
(2)項目1~6のいずれか一項に記載の食材冷凍システムと、
を備え、前記搬送部は前記加温部と前記食材冷凍システムとを通って前記食材を搬送する、食材加工システム。
 (項目19)
 前記加温機構は、前記搬送部の下方にのみ存在し、熱を媒介する物質を下向きに放出するように構成され、前記加温部は、前記搬送部ではない方向に風を送るように構成されている送風機構を備える、項目18に記載の食材加工システム。
 (項目20)
 前記加温部は前記搬送部近傍に温度センサーを備え、前記温度センサーによって前記加温機構が間欠的に駆動される、項目19に記載の食材加工システム。
 (項目21)
 項目1~17のいずれか一項に記載の食材冷凍システム、または項目18~20のいずれか一項に記載の食材加工システムを用いて食材を冷凍する加工工程を含む、冷凍食材の製造方法。
 (項目22)
 前記食材がカット野菜である、項目21に記載の製造方法。
 本発明によれば、従来の冷凍食材と比較して解凍後の離水が減少された食材冷凍システム、およびその食材冷凍システムを用いた冷凍食材の製造方法が提供される。
図1は、本発明の食材冷凍システムの構成の一例を示す。 図2は、本発明の食材冷凍システムの構成の他の一例を示す。 図3は、食材の前処理(殺菌)部と食材冷凍システムとが組み合わされた、食材加工システムの一例を示す。 図4は、食材の前処理(殺菌)部における加温部の構成の一例を示す。 図5は、本発明の食材の製造方法のフローの一例を示す。 図6は、第1の冷凍部が第1予冷部(第1室)、第2予冷部(第2室)および第3予冷部(第3室)を備える構成を示す。 図7は、第1の冷凍部が第1予冷部(第1室)、第2予冷部(第2室)および第3予冷部(第3室)を備える構成において、第1予冷部(第1室)と第2予冷部(第2室)との間および第2予冷部(第2室)と第3予冷部(第3室)との間がエアーカーテンで仕切られており、第1の冷凍部と第2の冷凍部との間が隔壁で仕切られている構成を示す。 図8は、送風機構の送風口が搬送部を通過する食材に対して上部および下部それぞれに設けられている構成の一例を示す図であって、図8(a)は正面図、図8(b)は、図8(a)の一部拡大図を示す。 図9は、送風機構の送風口が搬送部を通過する食材に対して上部および下部それぞれに設けられている構成の一例を示す上面図であって、図9(a)は、上面図、図9(b)は、図9(a)の一部拡大図を示す。 図10は、送風機構の送風口が搬送部を通過する食材に対して上部および下部それぞれに設けられている構成の別の一例を示す上面図を示す。 図11は、送風機構の送風口が搬送部を通過する食材に対して下部に設けられている構成の一例を示す図であって、図11(a)は正面図、図11(b)は上面図を示す。 未処理の生のブロッコリーの500倍顕微鏡写真を示す。 食材前処理(殺菌)部(図4)で前処理を行ったあとのブロッコリーの500倍顕微鏡写真を示す。 図12Bに示す組織を-60℃5分で冷凍したのちに解凍したブロッコリーの500倍顕微鏡写真を示す。 図12Bに示す組織を-35℃~-45℃で15分~20分かけて冷凍したのちに解凍したブロッコリーの500倍顕微鏡写真を示す。
 以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及されない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及されない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解される意味と同じ意味を有する。矛盾する場合、(定義を含めて)本明細書の記載が優先される。
 以下、本明細書において用いられる用語を定義する。
 「食材」とは、人間が食することができる任意の物体をいう。約90℃以上の加熱による加工を受けていない食材を特に「生鮮食材」という。
 「約」とは、後に続く数値の±10%の範囲内をいう。
 「中間温度帯」とは、45℃~90℃の温度をいう。
 「間接的な加温」とは、蒸気などの熱媒介物質を加温される対象物に接触させることで加温する際に、熱媒介物質の運動方向を供給部から加温される対象物に到達するまでの間に変化させるように、供給部から熱媒介物質を放出することをいう。
 「直接的な加温」とは、蒸気などの熱媒介物質を加温される対象物に接触させることで加温する際に、熱媒介物質の運動方向を供給部から加温される対象物に到達するまでの間に変化させないように、供給部から熱媒介物質を放出することをいう。
 「直接的な冷却」とは、ファンなどの送風機構によって、冷却される対象物に向けて冷気を送ることをいう。
 「間接的な冷却」とは、冷却機構以外のファンなどの送風機構を用いずに冷却を行うか、または送風機構によって冷気を送る場合にも冷却される対象物に向けずに冷気を送ることをいう。
 「搬送部近傍」とは、搬送部から約30cm以内であることをいう。
 「蒸気」とは、水滴を含む気体をいう。
 「殺菌」とは、食材加工処理の直後に、一般生菌数は標準寒天平板培養法による検査で10cfu/g(mL)以下、大腸菌はBGLG培地法による検査で陰性(10cfu/g(mL)未満)であることをいう。
 「一体型」とは、搬送路を介してシステムや要素同士が物理的に連続していることをいう。
 「下向き」とは、鉛直下方向に対して0°~90°の角をなす方向をいう。
 「急速冷凍」とは、約5分間で対象となる食材の中心温度を-5℃以下にするような冷凍をいう。
 以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。また、本発明の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
 なお、本明細書全体を通して、同一の構成要素には同一の参照数字を使用している。
 (冷凍システム)
 本発明の食材冷凍システムは、短時間(例えば、約6分以内)で約-60℃~約-90℃まで、好ましくは-60℃~89℃まで食材を冷却(冷凍)するように構成されている。本発明の食材冷凍システムは、1つの冷凍部において冷凍するものであってもよいし、予冷部と冷凍部とを含む、二つ以上の冷凍部を備えるものであってもよい。処理容積が大きな食材は予冷部を設けることが特に好ましい。
 図1は、本発明の食材冷凍システムの構成の一例を示す。
 図1に示される例では、本発明の食材冷凍システム1は、投入部側の第1の冷凍部100Aおよび出口側の第2の冷凍部100Bという2つの冷凍部と、搬送部200とを備える。投入部側の冷凍部100Aが予冷部に対応する。なお、図1に示される例では、冷凍部の数は2であるが、本発明はこれに限定されない。冷凍部の数は、1つ(すなわち、予冷部を含まない)であり得るし、2以上の任意の整数でもあり得る。例えば3つの冷凍部や4つの冷凍部を備える冷凍システムも、本発明の範囲内である。
 1つの実施形態において、第2の冷凍部100B内部の温度は、第1の冷凍部100Aの温度よりも低い。1つの実施形態において、第2の冷凍部100Bにおける冷凍のための冷風の温度は、第1の冷凍部100Aにおける冷凍のための冷風の温度よりも低い。ある実施形態では、例えば、第1の冷凍部100Aの冷風の温度は、約-25℃~-40℃であり、第2の冷凍部100Bの冷風の温度は、約-55~約-60℃、約-60℃~約-90℃、約-60℃~約-80℃、約-60℃~約-70℃、-60℃~-89℃、-60℃~-70℃、約-60℃、-60℃などであり得る。理論に拘束されることを意図しないが、-60℃以下の温度に食材を冷凍すると、食材内の酵素の失活が十分であり、解凍後の食材の品質保持のために好ましい。また、食材の冷凍温度が-90℃より高い温度であると、食材の組織構造の変化が抑制されるため、好ましい(例えば、食材を-90℃以下に冷凍すると食材の組織がねじれるような構造変化が起こり得る)。
 このように、複数の冷凍部によって複数段階の冷凍工程を経るようにすることが可能である。また、複数の冷凍部は、食材が搬送部200上で搬送されるにつれてより低い温度で冷凍されるように食材を段階的に冷凍するように構成されることが可能である。このような段階的な冷凍を行うことにより、冷凍による食材の表面温度の急激な変化を避けることが可能であり、ひいては、エネルギー効率良く食材を冷凍することが可能である。
 好ましい実施形態では、第1の冷凍部100Aの第1の冷媒は、第2の冷凍部100Bの第2の冷媒とは異なる。第1の冷媒および第2の冷媒ともに当該分野で利用可能な一般的な冷媒であるが、第2の冷媒は、第1の冷媒と比較して温度変換効率の良いものであり得る。
 本発明の冷凍システムにおいては、搬送部により食材は一箇所に滞留することなく、連続的に冷凍部内を移動して排出される。食材が冷凍システム1を通過する時間は、約6分以下、好ましくは約5~約6分、さらに好ましくは約5分である。このように、時間をかけずに急速に冷凍することにより、食材に含まれる水分の凍結による膨張を抑制することができ、ひいては、解凍時の食材の離水(成分流出)、およびそれによる品質低下を防止することが可能である。なお、食材が冷凍システム1を通過する時間は、食材の熱伝導性や食材のサイズによって、当業者によって適切に調節され得る。冷凍システム1による冷凍が完了した際には、食材の中心部までの温度は、約-5℃であり得る。
 上記のように、約6分以下、例えば約5分間で食材の中心温度を-5℃にするためには、単一の冷凍部での処理では、周辺空間の温度が阻害要因となり、熱交換効率が著しく低下してしまい、また、余剰空間を冷却させる無駄とリスクが生じ、効率的ではないことがある。したがって、予冷部を含む、少なくとも2つ以上の冷凍部を備える冷凍システムが好ましくあり得るが、後述のとおり、本発明においては単一の冷凍部を備える冷凍システムにおいても熱交換効率の低下を回避し得るので、本発明は少なくとも2つ以上の冷凍部を備える冷凍システムには限定されない。
 (搬送部)
 食材冷凍システム1は、第1の冷凍部100Aおよび出口側の第2の冷凍部100Bを通って食材を搬送する搬送部200を備える。搬送部200の構成としては、食材を連続的に移動させる機能を有していれば、特に制限はされない。
 食材を移動させながら冷凍を行うことは、大量の食材を均一な温度で画一的に加工するのに有利であり得る。例えば、食材が静止した状態で加工すると、加工を行う空間内の温度のムラによってそれぞれの加工温度に差が生じるが、食材の搬送方向に沿って食材を移動させながら加工することによって空間内の温度のムラによる食材ごとの差を無くすことができる。
 搬送部200は、好ましくは、一定の速度で、第1の冷凍部100Aおよび第2の冷凍部100Bを通って食材を搬送する。また、ある実施形態において、搬送部200は、その一定の速度を調節する調節機構を有する。調節機構は、自動で一定の速度を調節することができてもよく、手動で設定された速度に速度を調節することができてもよく、または、その両方が可能であってよい。これにより、搬送部200は、食材が第1の冷凍部100Aおよび/または第2の冷凍部100B内部を所望の時間の間通過するように、食材を搬送するように構成されることが可能である。ある実施形態において、搬送部200は、好ましくは、ベルトコンベアである。ある実施形態において、搬送部200は、貫通孔を有する。例えば、貫通孔を有する搬送部200は網目状のベルトコンベアなどであってよい。搬送部200は、複数であってよく、複数の搬送部200を並列させることによって、時間あたりに処理する食材の量を増加させ、本発明のシステムの処理能力を向上させることができる。食材の搬送は、食材を搬送部200に直接載せて行ってもよいし、食材を入れた容器を搬送部200によって搬送することによって行ってもよい。この場合、好ましくは、通気性のある容器が用いられる。通気性のある容器は、例えば、底面および/または側面に貫通孔を有する容器である。この容器は、例えば、底面および/または側面に、通気性のある網目状の部材を含む容器であり得る。搬送部200および/または容器に、貫通孔および/または網目状の部材を含めることによって、食材ごとに熱を均等に作用させることができる。
 食材の搬送速度は、食材が冷凍部を通過する時間が約6分(好ましくは約5分)以下になるように調整される。また、食材の質量、食材の熱透過率によって多少の誤差が生じる場合は初段の冷凍部(例えば、第1の冷凍部)の冷却温度を調整することによって、冷凍部を通過する処理時間が約6分(好ましくは約5分)を超えないように調整し得る。一部の実施形態において、冷凍部の長さは約6m~約12mmであって冷凍処理時間は約2分~約6分であるので、搬送速度は毎分約1m~約6mであり、上記範囲内で自在に設定可能である。しかし、上記範囲はあくまで具体例に過ぎず、本発明はこれに限定されない。食材の芯温が適切な時間勾配で適切な温度に低下するように、食材の種類や大きさに応じた最適な搬送速度が決定され得る。
 一部の実施形態では、食材は搬送部200によって、投入部、第1の冷凍部100A、第1の冷凍部100A、搬出部に、この順で連続的に移動する。搬送部200としてはベルトコンベアが好ましい。搬送部200の速度は、投入部に置かれる食材の各片の大きさ、食材の形状、第1の冷凍部100Aの冷凍条件、第2の冷凍部100Bの冷凍条件と連繋して、適切な値に自動調節され得る。
 第1の冷却部100Aで初期冷凍をした食材は、一般的な冷凍における初段の冷凍条件とは相違し、すでに食材の中心温度が-3℃~-3.5℃に処理されている。このようにすでに中心温度が-3℃~-3.5℃になった食材を、さらに低温で冷却処理を行う第2の冷却部100Bで例えば-60℃の冷風で処理することによって、約5分内で食材の細胞膜を破壊せず、細胞膜内に在る水分の膨張率を抑制することができる。
 本発明の冷凍部の形状は、食材の搬送方向が水平移動型の長形が代表的であるが、これに限定されない。例えば、第1の冷却部と第2の冷却部とが上下に存在する垂直移動型であってもよい。垂直移動型においては、食材を直列で上下に垂直移動させてもよいし、例えば螺旋状のようにして並列で垂直移動させてもよい。
 代表的な実施形態において、水平型の食材冷凍システムにおいて、投入口から出口までの距離は約6メートルほどであり、第1の冷却部と第2の冷却部との距離はそれぞれ約3メートルずつであり得る。搬送路は各冷却部を約2.5分で通過するように食材を移動させ得る。
 食材の性質や量に起因して、2つの冷却部での約5~6分間での処理によっては中心温度が-5℃に到達しない場合には、第3の冷却部を追加し得る。第3の冷却部も、第1の冷却部および第2の冷却部と距離はほぼ同様であり得る。例えば、第1の冷却部~第3の冷却部はそれぞれ約3mほどであり、第1の冷却部における冷風は約-20℃~-45℃、第2の冷却部における冷風は約-60℃、第3の冷却部における冷風は約-80℃であり得る。ここで、第3の冷却部を追加しても、冷却システム全体の通過時間は約5分~6分であり得る。
 また、冷凍する食材の数量が多い場合には、投入口から出口までの距離は約9m(各冷凍部は約4.5mずつ)、約12m(各冷凍部は約6mずつ)などであってもよく、これらの場合にも各冷凍部の通過時間はそれぞれ約2.5分~3分、全体として約5~6分で処理を完了する。
 (予冷部)
 好ましい実施形態において、本発明の食材冷凍システムは、本冷凍のための冷凍部(例えば、図1の冷凍部100B)より投入部側に、予冷のための冷凍部(例えば、図1の冷凍部100A、本明細書中では「予冷部」ともいう。)を備え得る。好ましい実施形態において、本発明の予冷部はさらに、投入部側から順に、冷却温度の異なる第1予冷部と第2予冷部とを含み得る。第1予冷部および第2予冷部における冷却温度は、第1予冷部の方が高くてもよいし、第2予冷部の方が高くてもよいが、好ましくは第1予冷部の方が冷却温度は高い。このように第1予冷部における冷却温度を高くしておくと、食材の搬送用のベルトへの付着を防ぐことができる。食材を急激に冷却すると、食材が搬送用ベルトへ付着し、食材が破損してしまうことになる。好ましい実施形態において、第1予冷部における冷却温度は、約-20℃~-45℃であり、好ましくは約-35℃~約-45℃であり得る。第1予冷部における冷却温度が約-35℃~約-45℃程度である場合には、食材の冷却が急速には進まないため食材が搬送ベルトに付着することがなく、第1予冷部の冷却温度として好ましい。
 本発明の第2予冷部における冷却温度は、約-55~約-60℃、約-60℃~約-90℃、約-60℃~約-80℃、約-60℃~約-70℃、-60℃~-89℃、-60℃~-70℃、約-60℃、-60℃などであり得る。第2予冷部における冷却温度は、好ましくは、約-60℃~約-90℃または-60℃~-89℃であり、より好ましくは-60℃である。
 好ましい実施形態において、本発明の予冷部は、投入口側から順に、第1予冷部(第1室)、第2予冷部(第2室)および第3予冷部(第3室)を含み得る(図6(a))。第1予冷部と第2予冷部とはそれぞれ異なる温度で冷却され、具体的な温度などは上述のとおりである。第3予冷部における冷却温度は、隣接する第2予冷部とは異なる温度であり、第2予冷部より高い温度であってもよいし、第2予冷部より低い温度であってもよい。好ましくは、第3予冷部における冷却温度は、第2予冷部の冷却温度よりも高い温度であり、約-20℃~-45℃であり、好ましくは約-35℃~約-45℃であり得る(図6(b))。第1予冷部と第3予冷部の冷却温度は同じであってもよいし、異なっていてもよい。理論に拘束されることを意図しないが、このように第3予冷部の冷却温度を第2予冷部と変えることにより、食材の冷却が効率的に行われ得る。
 特に好ましい実施形態においては、本発明の予冷部は、第1予冷部、第2予冷部、および第3予冷部を少なくとも備え、第1予冷部および第3予冷部の冷却温度は第2予冷部の冷却温度よりも高い。このように、予冷段階において冷却温度をいったん下げてから再度上げることにより、食材に対する冷凍効率を上げ、冷凍効果を食材に対して均一にすることができる。好ましい実施形態において、本発明の予冷部は、約-35℃~約-45℃で食材を冷却する第1予冷部と、約-60℃で食材を冷却する第2予冷部と、約-35℃~約-45℃で食材を冷却する第3予冷部とを備える。
 (隔壁またはエアーカーテン)
 冷凍部と冷凍部との間(例えば、第1の冷凍部100Aと第2の冷凍部100Bとの間)や、予冷部(100A)における第1予冷部、第2予冷部、第3予冷部の間は、隔壁で区切られてもよいし、エアーカーテンで区切られてもよい。好ましい実施形態においては、本発明の冷凍システムにおける冷凍部間は、エアーカーテンで区切られ得る(図2)。図2に示される例では、食材冷凍システム1は、エアーカーテンを生成するためのエアーカーテン生成機構300をさらに備えている。エアーカーテンは、隣接する2つの冷凍部(例えば、第1の冷凍部100Aおよび第2の冷凍部100B)内のそれぞれの冷媒が入り混じることを妨げるように、隣接する2つの冷凍部を相互に遮蔽することが可能である。
 本発明のエアーカーテン生成機構300は、冷凍部の上部および/または下部に設けた送風口から略垂直方向に空気を送風するものであり得る。このような機構によって、送風された空気の対流によって空気が左右方向に振り分けられることで、仮想的な遮蔽壁を形成し得る。
 本発明のエアーカーテン生成機構300は、好ましくは、冷凍部の上部および/または下部に設けた送風口からの吹き出し角度を、送風の向きが食材の進行方向とは逆向きとなるように調整され得る。このようにすることによって、送風された空気が搬送部によって冷凍部を通過中の食材に衝突することで生じる空気の対流の乱れなどを抑制することが可能となり、その結果、第1の冷凍工程における熱条件を第2の冷凍工程への介在を抑制することが可能となる。さらに、下部の送風口の吹き出し角度を上部の送風口の吹き出し角度よりも食材の進行方向に対して角度を設けるとともに、上部および下部の送風口から同時に送風するように構成され得る。このように送風口からの送風が食材の進行歩行とは逆向きにすることにより、第2の冷凍部に滞留する空気よりも高い温度である第1の冷凍部に滞留する空気が逆向きに流れる送風によって第2の冷凍部に流入することが妨げられることになり、その結果、第1の冷凍部および第2の冷凍部それぞれの滞留熱の変化を抑制することが可能となる。
 また、冷却部間をエアーカーテンで区切る場合、第1の冷却部のエアーカーテン周辺では投入口近辺より温度が下がり、第2の冷却部のエアーカーテン周辺では出口近辺より温度が上がり、エアーカーテン周辺において第1の冷却部および第2の冷却部において温度の傾斜が形成される。これによって、第1の冷却部から第2の冷却部に食材が移動するにつれて、スムーズに冷却温度が移行し、食材の細胞へのダメージがさらに軽減され得る。さらに、熱は質量を有さないので対流による遮断が可能であり、既存の冷凍装置の改造やエアーカーテン生成機構の位置の調整が簡単に低コストで可能である。
 なお、冷凍部が3つ以上ある場合には、食材冷凍システム1は、複数の冷凍部間領域のうちの少なくとも1つにおいてエアーカーテン生成機構300を備え、他においては隔壁を備えてもよい。好ましい実施形態において、予冷部(第1の冷凍部)100Aと第2の冷凍部との間は隔壁であり、予冷部における第1予冷部(第1室)と第2予冷部(第2室)との間、および/または第2予冷部(第2室)と第3予冷部(第3室)との間はエアーカーテンで仕切られていてもよい(図7)。
 (送風機構)
 冷凍部100Aおよび100Bは、それぞれ送風機構を備えていてもよい。送風機構としては、シロッコファン、ターボファン、翼形ファン、横流ファンなどの送風機や空調機に用いられるものであればいずれも使用することができる。また、送風機構は、送風機や空調機から送られる風を冷凍部内に送風する送風口を備える。送風機構の構成は、その数、位置、方向などについて特に限定されるものではない。送風機構は、冷凍部の上部にあってもよく、冷凍部の下部にあってもよく、また冷凍部の側部にあってもよい。また冷凍部の上部、下部および側部の複数の箇所にあってもよく、さらに別の位置にあってもよい。冷凍部において送風機構の送風口は、その数、位置、方向などについて特に限定されるものではない。送風口は、搬送部の上部にあってもよく、搬送部の下部にあってもよく、また搬送部の側部にあってもよい、また、搬送部の上部、下部および側部の複数の箇所にあってもよく、さらに別の位置にあってもよい。冷凍部において送風機構の送風口が送風する方向は、食材に向かう方向であってもよいし、食材に向かう方向でなくてもよい。送風機構による送風の強度は、十分に食材を冷却することができれば限定されず、一定であっても、変化させることができてもよい。例えば、ある実施形態においては、冷凍部の側方に冷凍機構があり、上部に送風機構(ファン)がある。
 好ましくは、冷凍部においては、食材に冷風を直接的に向けることによって食材を冷却する。具体的には、冷凍部に備えられた送風機構(例えば、ファン)の送風口が食材に向けて送風する。これによって、食材の速やかな冷凍が可能になる。
 1つの実施形態において、図8に示すように、送風機構の送風口が搬送部によって搬送される食材に対して上部及び下部それぞれに設けられる。このようにすることで効率的に食材を冷却することが可能となる。また、好ましくは、送風口の向きは、搬送部の搬送方向に対向する向きである。このようにすることで、送風口から送風される風が搬送部によって搬送される食材に勢いよく当たるため、効率的に食材を冷却することが可能となる。さらに好ましくは、送風口の向きは、鉛直方向の向きを0°として前記搬送部の搬送方向に対向する向きに、約0°を超えて約90°未満の範囲の角度で傾斜している。傾斜角度は、搬送部上で搬送される食材の進行の障害とならない範囲で任意の角度であり得る。さらに好ましくは約3°~約30°、特に好ましくは約3°~約18°の角度(図8に示す角度α1、α2)で傾斜している。この範囲の傾斜角度にすることによって、食材がスムーズに搬送することを維持しつつ、食材を効率的に冷却することを可能とする。なお、図8に示す実施形態においては、上部の送風口の傾斜角度と下部の送風口の傾斜角度とが同じであるが、本発明はこれに限定されない。上部の送風口の傾斜角度と下部の送風口とがそれぞれ異なる傾斜角度であってもよい。
 また、図9に示すように、送風機構の送風口が搬送部の搬送方向に直交する方向に対して傾斜するように設けられ、かつ上部に設けた送風口の向きと下部に設けた送風口の向きとが交差するように設け得る。さらに好ましくは、送風口の向きは、搬送方向に直交する向きを0°として約3°~約30°、特に好ましくは約3°~約24°の角度(図9(b)に示す角度β1、β2)で傾斜している。
 このように、上部の送風口の向きと下部の送風口の向きとを所定の傾斜角度で交差するように設けることにより、食材に供給される風の向きが食材の表皮付近で小さなランダムな気流を発生させることが可能となる。その結果、冷凍部内の空気の攪拌効果が向上し、より効率的にかつ均一に食材を冷却することが可能となる。なお、図9に示す実施形態においては、上部の送風口の傾斜角度と下部の送風口の傾斜角度が同じであるが、本発明はこれに限定されない。例えば、上部の送風口の傾斜角度と下部の送風口とがそれぞれ異なる傾斜角度であってもよい。また、図9(a)に示すように、搬送方向に沿って複数設けられた上部または下部に設ける送風口の搬送部の搬送方向に直交する方向に対して傾斜する向きが、常に同じ向きであってもよいし、図10に示すように、交互に傾斜する向きを変更させてもよい。このように交互に傾斜する向きを変更することにより、より効果的に冷凍部内の空気の攪拌効果が向上し、より効率的にかつ均一に食材を冷却することが可能となる。
 また、図8、9に示す実施形態は、特にブロック状などの大きな食材を冷却するのに適している。しかしながら、本発明はこれに限定されない。例えば、粒状などの小さい食材に対して適用してもよい。
 また、別の実施形態において、図11に示すように、送風機構の送風口が搬送部によって搬送される食材に対して下部に設けられる。図11に示す実施形態は、特に粒状など一つ一つが小さい食材を冷却するのに適している。このように、搬送部の下部に設けられた送風口からのみ食材に向けて送風することにより、食材がその風によって上方に舞い上がることが可能となり、その結果、より冷却される食材と搬送ベルトとの接着を低減することが可能となる。また、図8と同様に、好ましくは、送風口の向きは、搬送部の搬送方向に対向する向きである。このようにすることで、送風口から送風される風が搬送部によって搬送される食材に勢いよく当たるため、効率的に食材を冷却することが可能となる。また、図11(b)に示すように、この実施形態において、送風口の向きは、搬送部の搬送方向に直交する方向に平行に設けられる。しかし、本発明はこれに限定されない。例えば、図9に示すように、送風口の向きを搬送部の搬送方向に直交する方向に対して傾斜させてもよい。
 (その他)
 ある実施形態において、冷凍部100Aおよび/または100Bは、センサーを備える。センサーは、冷凍部内の状態に関する情報を定量化し、送信する。冷凍部内の状態に関する情報は、管理部に送信されてもよいし、または、システムの別の部分(例えば、搬送部200)に送信されてもよい。センサーとしては、温度センサー、湿度センサーが挙げられる。センサーの位置は、限定されないが、好ましくは、冷凍部を貫通する搬送部200の近傍に配置すれば、冷却される食材の温度を正確に測定することができ、システムの制御にとって有利であり得る。
 冷凍部100Aおよび100Bはそれぞれ、例えば、空気急速冷凍機または液体急速冷凍機であってもよいが、好ましくは空気急速冷凍機であり得る。液体急速冷凍機の代表例は液体窒素による冷却であるが、これは温度が一定であり初期温度の設定が難しい。液体窒素による冷却のためには処理能力を制限して多段構成にすることも可能であるが、コストの観点から空気急速冷凍機が好ましくあり得る。
 食材は、食材冷凍システムに投入される前に、洗浄、殺菌などの前処理が施され得る。殺菌などの前処理は、ブランチングなど一般的に用いられる前処理方法であり得る。図3は、本発明の食材の前処理を行う食材前処理(殺菌)部と食材冷凍システムとが組み合わされた食材加工システムの一例を示す。図3に示すように、食材前処理(殺菌)部400は、食材を加温する加温機構を備える加温部410と、加温部410によって加温された食材を冷却する冷却機構を備える冷却部420と、加温部410および冷却部420を通ってその加温された食材を食材冷凍システム1へと搬送する搬送部430とを備える。なお、図3では便宜上、食材前処理(殺菌)部400と食材冷凍システム1とを同時に示したが、食材前処理(殺菌)部400と食材冷凍システム1とは物理的に隔離された独立のシステムであってもよいし、搬送部を共有する連続するシステムであってもよい。
 (加温部)
 図4に示すように、前処理(殺菌)部400は、食材を加温する加温機構411を備える加温部410を備える。加温部410および加温機構411は、食材を所望の温度に加温することができれば、その構成は限定されない。加温部410内を搬送部430が貫通し、加温部410内を食材が搬送部430によって搬送される間に食材が加温される。食材は、所望の温度に速やかに加温され、その後所望の温度に安定的に保たれることが望ましい。加温部410としては、食品の調理に用いられている一般的なもの、加湿機能を有する恒温槽など、温度調節できるものであれば、いかなるものも使用することができる。様々な食材に対応するためには、加温部410の形状は食材の搬送方向に沿ったトンネル型あるいは箱型のものが好ましいが、これらに限定されない。
 好ましくは、前処理(殺菌)部400は、食材を中間温度帯に速やかに加温し、安定的に維持することができる。中間温度帯での加温は、食材の細胞や組織を破壊することなく、灰汁を除去し、および/または酵素(例えば、ペクチナーゼまたはセルラーゼなどの糖質分解酵素、グルコースオキシナーゼなどの酸化酵素などが挙げられるが、これらに限定されない)を失活させ、および/または殺菌を行うことができる。他方で、100℃を超えるような加温(沸騰水や火を用いる加熱)は食材の細胞を破壊し、それによって旨味成分が細胞から流出してしまうので、本発明においては好ましくない。
 加温機構411は、好ましくは、熱を加温部410内に放出することによって、食材を加温する。1つの実施形態においては、熱は、食材と接触することによって食材を加温することができる高温の物質によって媒介され得る。加温部410の内部に放出された熱によって、加温部410内の温度が上昇し、加温を行うことができる。
 代表的な実施形態において、加温部410は、食材を間接的に加温する。直接的な加温の場合には、食材に接触する熱媒介物質が供給部から食材に直接的に接触する相対的に温度の高い熱媒介物質と加温部内で対流している相対的に温度の低い熱媒介物質とに別れ、その温度差が激しく、食材を加温する温度を安定的に維持することが難しい。それに比べて「間接的」な加温を行う場合には食材に接触する熱媒介物質の温度差が小さいため、食材を加温する温度を安定に維持することができる。また、間接的な加温であれば、例えば、一定の温度の熱(例えば、98℃の蒸気)を供給しながら、その供給を間欠的にすることによって、一定の温度での加温をすることが容易であり、熱媒介物質の温度を細かく制御ための複雑な機構が必要とならない。結果的に、コストの削減も達成され得る。他方、直接的な加温では、熱媒介物質を間欠的に供給する場合、供給している間と供給を停止している間とで、食材に直接的に接触する相対的に温度の高い熱媒介物質が存在するときと存在しない時で食材の加温の温度に大きな差が生じてしまい、食材の均一な加温が達成できないことがある。
 好ましい実施形態において、加温部410は、食材を間接的に加温する。中間温度帯での加温は制御が難しい。具体的には、加温が過剰になれば食材の細胞を破壊してしまって食味や食感が損なわれ、加温が不足すれば殺菌および灰汁の除去が不十分になる。そのため、本発明者らは、食材を直接的に加温するのではなく、加温部の中の食材が通過する領域の温度を均一に制御することによって、結果的に食材の均一な加温温度制御を達成した。
 例えば、原則的に温度の高い物質は密度が低くなり相対的に上へと移動するが、熱を媒介する物質を下向きに放出することにより、熱を媒介する物質の対流を引き起こすことができ、加温部内の温度を一定の範囲内に安定に保つことができる。
 好ましい実施形態においては、加温部410はさらに送風機構(例えば、ファン)を備える。このファンにより、食材付近の対流を常に発生させ、食材の接する温度を一定に保つことができる。加温部410における送風機構は、好ましくは、搬送部430に向けて風を送るのではなく、搬送部430ではない方向に風を送る。間接的な加温と同様に、風を食材に直接当てないことにより、搬送部430近傍での中間温度帯の制御を促進するためである。
 さらに、加温部410内の底面や上面の付近では、温度が安定しにくい可能性がある。したがって、加温部410内を貫通する搬送部430を、加温部410の上面と底面との間の中間部を通過するように構成すれば、温度が不安定になりやすい領域を避け、安定した温度の領域において均一に食材を加温することができる。
 加温機構411は、食材を、約45~約90℃、好ましくは約50℃~約85℃、より好ましくは約60℃~約75℃に加温することができる。ただし、前処理(殺菌)部400において加温機構411によって加温する温度は食材や用途によって異なり、当業者が適切に決定することができる。なお、食材の加温は芯温を測定することによって確認され得る。
 加温機構411によって放出される熱の温度は、意図される食材の加温を達成できるものであればどのような温度であってもよいが、代表的には、放出される熱の温度は98℃であり得る。
 加温機構411は、中間温度帯での食材の加温を達成し得る任意の機構であってよく、蒸気供給部、マイクロミスト供給部、クラスターエアー供給部などが挙げられるが、これらに限定されない。
 1つの実施形態において、熱媒介物質は蒸気であり、加温機構411は蒸気供給部であり得る。ただし、蒸気を用いて加温を行うと食材の表面に水滴が付着する場合がある。そのような水滴の付着を避けることが好ましい場合には、加温機構411は、マイクロミストまたはクラスターエアーのようなより小さな粒子径の水滴を含む熱媒介物質を用いて加温してもよい。
 図4に示すように、ある実施形態では、加温機構411は蒸気などの熱媒介物質を噴出させることによって食材を加温し得る。ある実施形態においては、加温機構411は98℃の熱媒介物質を噴出させることによって食材を加温する。上記のとおり、加温機構411は、噴出させた熱媒介物質熱媒介物質が間接的に食材を加温するように構成される。このような構成の一例は、図4に示されるように、加温機構411が搬送部430の下部に備えられ、かつ、熱媒介物質の噴出孔が下方に向けられている構成が挙げられるが、これに限定されない。好ましくは、加温機構411は、熱媒介物質を継続的に噴出させるのではなく、噴出に間隔を設け、間欠的に噴出させる。ある実施形態において、噴出孔は、開閉することができる。さらなる実施形態では、噴出孔の開閉は、外部からの入力により、または自動で制御される。
 ある実施形態において、加温部410は、センサーを備える。例えば、センサーとしては、温度センサー、湿度センサーが挙げられる。センサーは、加温部410の内部の状態に関する情報を定量化し、送信する。加温部410の内部の状態に関する情報は、管理部に送信されてもよく、または、システムの別の部分(例えば、搬送部430、加温部410、冷却部420、第1の冷凍部100A、第2の冷凍部100B、または搬送部200)に送信されてもよい。センサーの位置は、限定されないが、好ましくは、加温部410を貫通する搬送部430の近傍に配置され得る。食材前処理(殺菌)部400においては、食材が通過する領域の温度を均一に保つことが重要であるから、搬送部430近傍の温度の測定値に従って加温機構411を制御することが有利であり得る。ある実施形態においては、加温部410内において、センサーは、搬送部430から約30cm以内、好ましくは約15cmの距離に存在する。
 ある実施形態においては、温度センサーによって加温機構411が間欠的に駆動される。例えば、搬送部430の近傍に設けられた温度センサーの測定値が規定の温度に達した際に蒸気などの熱媒介物質の噴出孔の蓋が閉まって熱媒介物質の排出が止まり、温度が下がれば再び熱媒介物質を噴出して、適切な割合で加温部内の空気と熱媒介物質との混合を行う事で加温部410内の温度を一定に保つことができる。
 加温機構411が蒸気供給部である場合、蒸気供給部の運転時には、内部温度を所定の温度域に維持するために、上述のセンサーで検出された内部の温度および/または湿度の値をもとに、加温機構411の外部に付随するボイラーや通水管、電源等を自動制御して、蒸気の温度と放出量が自動制御され得る。食材が加温部内にある時間は1分~8分、好ましくは1分~3分である。この時間は食材の熱伝導性とカットされた食材の大きさによって、適当に調節される。食材の表面は、上記内部温度にこのような時間で晒された結果、殺菌され得る。
 好ましくは、加温部410は、蒸気などの熱媒介物質が対流することができるように構成される。熱媒介物質が対流することによって、加温部410全体にわたっては温度にムラが存在したとしても、加温工程の間の食材の加温の程度を均一なものとすることができる。また、時間当たりに食材が接触する熱媒介物質の量を増加させることができ、高い温度を用いずに食材を速やかに所望の温度にすることができる。
 ある実施形態において、加温部410の底部は、蒸気などの熱媒介物質の対流を起こさせるような形状であり得る。そのような形状の一例は、図4に示されるような底部の縁が斜めになるように加工された舟形であるが、これに限定されない。熱媒介物質の対流は、加温部410への搬入口、搬出口において、上下方向に対流することによって、加温部410内に冷たい外気が侵入することおよび/または加温部410内から温かい熱媒介物質が漏出するのを遮断する、いわばエアーカーテンとしての機能を有し得る。
 熱媒介物質(例えば、蒸気)は、90℃を超える高温であれば自ずから対流が発生するが、例えば、70℃前後の温度帯では発生する対流が緩やかであり、熱媒介物質を積極的に対流させる機構を用いることが望ましい場合がある。
 この熱媒介物質を積極的に対流させる機構として、加温部410は、好ましくは送風機構を有する。送風機構は加温部410内の熱媒介物質の対流を促進することができる。送風機構としては、シロッコファン、ターボファン、翼形ファン、横流ファンなどの送風機や空調機に用いられるものであればいずれも使用することができる。送風機構の構成は、その数、位置、方向などについて特に限定されるものではない。送風機構は、加温部410の上部にあってもよく、加温部410の側部にあってもよく、その両方にあってもよく、さらに別の位置にあってもよい。ある実施形態においては、送風機構が送風する方向は、食材に向かう方向であっても、食材に向かう方向でなくてもよい。好ましい実施形態においては、加温部410における送風機構が送風する方向は、食材に向かう方向ではない。送風機構による送風の強度は、十分に熱媒介物質を対流させることができれば限定されず、一定であっても、変化させることができてもよい。送風機構(好ましくはファン)の取り付け数、送風能力は加温部410の容量、食材の種類と処理量、食材の搬送速度などを勘案して適宜調節され得る。加温機構411の運転時には、内部の各部に取り付けられたセンサーによって加温部410内の温度と湿度とを随時検出し、加温部410内で温度と湿度とが均一となるようにファンの回転数と送風量を調節してもよい。
 ある実施形態において、加温部410は密閉されない。加温部410が密閉されると、熱で膨張した空気の圧力によって食材の細胞が破壊され得るからである。この場合、投入口、排出口に設けられた開放部が圧力弁の役割を果たし、熱媒介物質の対流がエアーカーテンの役割を果たし得る。
 加温部410における加温機構411は単一であっても複数であってもよい。ある実施形態では、加温機構411は、搬送部の搬送方向に沿って少なくとも2つの加温機構を含む。ある実施形態において、加温機構411は、蒸気などの熱媒介物質の噴出孔を備えたパイプである。このパイプは、複数であってよい。複数の加温機構の放出する熱量の大きさは異なってもよい。ある実施形態では、加温部410の入口に近い加温機構は、加温部410の出口に近い加温機構411よりも大きな熱量を放出する。ある実施形態では、加温部410は、搬送部の搬送方向に沿って少なくとも2つの加温機構を含み、加温部410の入口に近い加温機構は、加温部410の出口に近い加温機構よりも大量の熱媒介物質を放出することができる。ある実施形態では、加温機構411のパイプは、口径の異なる複数のパイプである。好ましくは、投入口に近いパイプの口径が、排出口に近いパイプの口径よりも大きい。そのような、加温部410の入り口に近い加温機構が、加温部410の出口に近い加温機構よりも大きな熱量を放出する構成によれば、加温部410に投入された低温の食材の所定の温度への加温がより促進され、所定の温度に到達した後はその所定の温度で維持され得、それによって、意図した所定の温度での食材の処理時間がより長く確保することができる。ある実施形態では、複数のパイプの噴出孔は、それぞれ開閉弁を備え、個々に制御され得る。
 一部の実施形態において、加温部410は、スチーム加温器である。一部の実施形態において、加温部410は、食材の搬送方向に沿って延長する蒸器であり、加温機構411は蒸器の内部壁に設けられた多数の小孔から蒸器内に熱媒介物質(蒸気、マイクロミスト、またはクラスターエアーなどが挙げられるが、これらに限定されない)を放出する。
 食材前処理(殺菌)部400のある実施形態においては、加温部410は、例えば、食材を45℃~90℃での湿潤雰囲気下で1~8分間加温するための部位であり、好ましくは搬送方向に沿って延長する蒸器である。加温部410の内部を搬送部430が貫通する。ある実施形態では、食材加工システム10において投入部と加温部410とは連続している。ある実施形態では、食材加工システム10の運転時には、搬送部430によって開口した加温部410に食材が連続的に搬入される。食材が加温部410の内部を通過する過程で、食材の温度は表面から上昇し、続いて中心部の温度も45℃~90℃に上昇し、表面から中心部まで加温された状態が1~8分間持続する。
 一部の実施形態では、加温部410の内部温度は食材の種類に応じて調節される.例えば、熱通りの悪い大型の食材片を加温する場合には比較的高温域に調整される。例えば、熱通りの良い小型の食材片を加温する場合には比較的低温域に調整される。加温部410の内部温度は45℃~90℃、好ましくは50℃~85℃、より好ましくは60℃~80℃に保たれる。食材が加温部410内にある時間は1~8分、好ましくは1分~3分である。この時間は食材の熱伝導性と、切り分けられた食材の大きさによって、適切に調節され得る。食材が加温部410の内部を通過する過程で、食材の温度は表面から上昇し、続いて中心部の温度も45℃~90℃に上昇し、表面から中心部まで加温された状態が1~8分間、好ましくは1~3分間持続する。加温部410の内部温度が45℃よりも低いと、食材の味覚向上、最終調理時間の短縮が期待できず、好ましくない。加温部410の内部温度が95℃を超えると、食材に煮る、焼く、揚げる、蒸すなどの通常の加熱調理が施された状態となって、新鮮な食材の風味が失われ、好ましくない。
 ある実施形態では、加温部410は、好ましくは、内部に霧状の蒸気などの熱媒介物質を発生して食材を加温する蒸器である。加温部の形状はこの搬送方向に沿った長形が好ましい。このような蒸器の内部壁に設けられた多数の小孔から蒸器内に熱媒介物質を放出し、連続移動する食材表面を均一に加温する。加湿と加温のために、このような蒸器にはボイラーや通水管、電源、温度センサー、湿度センサー等が付随する。蒸器内部の温度と湿度は、食材の種類と大きさによって最適値に設定される。熱媒介物質の湿度と放出量は、蒸器内部の湿度と温度の設定値と自動計測値に基づき、自動的に調整される。この自動調整を短時間で行うために、調整部に設けられた送風ファンも用いられる。
 食材が加温部410を出る部分(出口)も、加温部410の入口と同様に、食材加工システム10の運転時には開口している。食材は滞留することなく連続的に加温部410内を移動して、加温部410から冷却部420に排出される。
 (冷却部)
 食材加工システム10は、食材を冷却する冷却機構を備える冷却部420を備える。冷却部420および冷却機構は、冷却部420内部を所望の温度に保つことができれば、その構成は限定されない。
 冷却部420は、限定されるものではないが、その内部を-10℃~-40℃、-10℃~-35℃、-10℃~-30℃、-10℃~-25℃、-10℃~-20℃、-10℃~-15℃またはそれより高い温度に保つことができる。
 冷却部420は、送風機構を備えていてもよい。送風機構としては、シロッコファン、ターボファン、翼形ファン、横流ファンなどの送風機や空調機に用いられるものであればいずれも使用することができる。送風機構の構成は、その数、位置、方向などについて特に限定されるものではない。送風機構は、冷却部420の上部にあってもよく、冷却部420の側部にあってもよく、その両方にあってもよく、さらに別の位置にあってもよい。冷却部420において送風機構が送風する方向は、食材に向かう方向であってもよいし、食材に向かう方向でなくてもよい。送風機構による送風の強度は、十分に食材を冷却することができれば限定されず、一定であっても、変化させることができてもよい。例えば、ある実施形態においては、冷却部420の側方に冷却機構があり、上部に送風機構(ファン)がある。
 好ましくは、冷却部420は、直接的に食材を冷却する。具体的には、冷却部420に備えられた送風機構(例えば、ファン)が食材に向けて送風する。これによって、食材の速やかな冷却が可能になる。これは、本発明において有利である。加温部410での加温によって殺菌された食材には、24℃~37℃付近の温度において再度微生物の付着のリスクがあるが、直接的な冷却によって温度低下が速やかに行われるため、この温度帯に留まる時間が短縮されるからである。
 ある実施形態において、冷却部420は、センサーを備える。センサーは、冷却部420の内部の状態に関する情報を定量化し、送信する。冷却部420の内部の状態に関する情報は、管理部に送信されてもよく、または、システムの別の部分(例えば、搬送部430、加温部410、第1の冷凍部100A、第2の冷凍部100B、または搬送部200)に送信されてもよい。センサーとしては、温度センサー、湿度センサーが挙げられる。センサーの位置は、限定されないが、好ましくは、冷却部420を貫通する搬送部430の近傍に配置すれば、冷却される食材の温度を正確に測定することができ、システムの制御にとって有利であり得る。
 冷却部420は、例えば、一般的に用いられる冷凍機、フリーザーであってよく、形状としてトンネルフリーザーなどであってよい。
 ある実施形態において、冷却部420は、加温部410で加温処理を終えた食材を-10~-40℃の温度下で2~8分間冷却するための部位である。食材は滞留することなく、連続的に冷却部420内を移動して排出される。冷却部420で食材を急速に冷却するためには、冷却部420全体を温度調節が容易な冷却装置で覆う構造が好ましい。このような冷却装置としては、例えばトンネルフリーザーが用いられる。冷却部420の形状は食材の搬送方向に沿った長形が好ましい。このような冷却部420としていわゆるトンネルフリーザーが好ましい。冷却部420内の温度は、-10~-40℃、好ましくは-10~-20℃に保たれる。食材が冷却部420の中にある時間は、2~8分、好ましくは2~5分、さらに好ましくは2~4分である。この時間は、食材の熱伝導性と、切り分けられた食材の大きさとによって、適当に調節され得る。食材が冷却部420を出る時には、食材の表面から中心部までの温度は、5℃~-40℃、好ましくは2℃~-20℃に低下している。
 食材加工システム10の食材前処理(殺菌)部400における冷却部420において冷蔵保管用の加工食品(いわゆる冷蔵食品。「チルド食品」を含む。)を製造する場合には、冷却部420の出口で食品の中心温度が約5℃以下、好ましくは約1℃~約4℃、より好ましくは約2℃となるように冷却部420の温度を適宜調節する。
 (搬送部)
 食材加工システム10の食材前処理(殺菌)部400は、加温部410および冷却部420を通って食材を搬送する搬送部430を備える。搬送部430の構成としては、食材を連続的に移動させる機能を有していれば、特に制限はされない。
 加温および/または冷却および/または冷凍を食材を移動させながら行うことは、大量の食材を均一な温度で画一的に加工するのに有利であり得る。例えば、食材が静止した状態で加工すると、加工を行う空間内の温度のムラによってそれぞれの加工温度に差が生じるが、食材の搬送方向に沿って食材を移動させながら加工することによって空間内の温度のムラによる食材ごとの差を無くすことができる。
 搬送部430は、好ましくは、一定の速度で、加温部410および冷却部420を通って食材を搬送する。また、ある実施形態において、搬送部430は、その一定の速度を調節する調節機構を有する。調節機構は、自動で一定の速度を調節することができてもよく、手動で設定された速度に速度を調節することができてもよく、または、その両方が可能であってよい。これにより、搬送部430は、食材が加温部410内部を所望の時間の間通過するように、食材を搬送するように構成されることが可能であり、食材が冷却部420内部を所望の時間の間通過するように、食材を搬送するように構成されることが可能である。ある実施形態において、搬送部430は、好ましくは、ベルトコンベアである。ある実施形態において、搬送部430は、貫通孔を有する。例えば、貫通孔を有する搬送部430は網目状のベルトコンベアなどであってよい。搬送部430は、複数であってよく、複数の搬送部430を並列させることによって、時間あたりに処理する食材の量を増加させ、本発明のシステムの処理能力を向上させることができる。食材の搬送は、食材を搬送部430に直接載せて行ってもよいし、食材を入れた容器を搬送部430によって搬送することによって行ってもよい。この場合、好ましくは、通気性のある容器が用いられる。通気性のある容器は、例えば、底面および/または側面に貫通孔を有する容器である。この容器は、例えば、底面および/または側面に、通気性のある網目状の部材を含む容器であり得る。搬送部430および/または容器に、貫通孔および/または網目状の部材を含めることによって、食材を均一な温度帯を通過させるだけでなく、食材ごとに熱を均等に作用させることができる。
 食材の搬送速度は毎分数メートル~数十メートルの範囲で自在に設定できる。食材の芯温が適切な温度に上昇し、その温度が適切な時間維持された時点で食材が加温部410の出口に到達するように、食材の種類や大きさに応じた最適な搬送速度が決定され得る。また、搬送部430は、当該搬送速度で、冷却部420を通って食材を搬送してもよい。この場合、好ましくは、当該搬送速度によって冷却部420を食材が通過する時間に応じて、冷却温度、または冷却部の送風機構が調節される。
 一部の実施形態では、食材は搬送部430によって、投入部、加温部410、冷却部420、搬出部に、この順で連続的に移動する。搬送部430としてはベルトコンベアが好ましい。搬送部430の速度は、投入部に置かれる食材の各片の大きさ、食材の形状、加温部410の加温条件、冷却部420の冷却条件と連繋して、適切な値に自動調節され得る。
 本発明の食材加工システム10は、食材前処理(殺菌)部400の後で冷凍部100Aおよび冷凍部100Bを通って食材を搬送する搬送部200を備える。搬送部200は、搬送部430の構成と同様の構成を有し得る。搬送部200は、搬送部430に連結されているように構成されていてもよいし、搬送部430と離間していてもよい。
 例えば、ベルトコンベアなどの搬送部430および搬送部200を、洗浄・カットされた食材の投入部を始点に、食材の加温部410への搬入口、加温部410内部、加温部410に連結する冷却部の端部、もう一方の冷却部420の端部、冷却部420に連結する冷凍部100Aの端部、冷凍部100A内部、冷凍部100B内部、もう一方の冷凍部100Bの端部、冷凍部100Bの排出口まで、加温部410と冷却部420と冷凍部100Aと冷凍部100Bとを貫通するライン状に敷設すると、食材の洗浄・カットから殺菌処理・冷凍処理までを一体型プロセスで実行することができ、効率が良い。このような一体型プロセスでは、食材は加温部410ないし冷凍部100Bの内部を連続移動し、滞留することがない。その結果、単位時間あたりに一定量の食材を加工および/または殺菌処理および/または冷凍することができ、安定的で効率のよい食材加工および/または連続殺菌および/または冷凍加工が可能となる。
 (管理部)
 食材冷凍システム1および/または食材加工システム10は、管理部を備えていてもよい。管理部は、食材冷凍システム1および/または食材加システム10の各構成要素から送信された情報を受信することができ、および/または、食材冷凍システム1の各構成要素に制御のための情報を送信することができる。管理部により、第1の冷凍部100Aおよび/または第2の冷凍部100Bおよび/または加温部410および/または冷却部420の内部の条件を監視し、これらの構成要素を制御することで、加工条件が想定と異なる条件(例えば、想定と異なる温度)になることを防ぐことができる。
 管理部は、食材冷凍システム1および/または食材加システム10と一体となっていてもよいし、離れた部分に設けることもできる。ある実施形態では、管理部は、受信した情報またはその情報から算出した情報を作業者に表示し、作業者の入力に従って、制御のための情報を食材冷凍システム1および/または食材加システム10の各構成要素に送信する。ある実施形態では、管理部は、受信した情報またはその情報から算出した情報を利用して、自動で制御のための情報を食材冷凍システム1および/または食材加システム10の各構成要素に送信する。
 食材冷凍システム1および/または食材加システム10が管理部を備える実施形態においては、例えば、食材冷凍システム1および/または食材加システム10の運転時に、好ましくは、各部位の条件(例えば、第1の冷凍部100Aの内部温度、第2の冷凍部100Bの内部温度、加温部410の内部温度、内部湿度、通水量、蒸気などの熱媒介物質放出量、冷却部420の内部温度など)が装置外部の管理部に送られる。管理部ではモニターなどで各データを監視できる。管理部のコンピュータで、予め登録された最適値と時々刻々入力される実測値との隔たりが算出、評価され、警告表示や各条件の調整などが自動的に行われる。したがって、装置付近と管理部に少数の人員を配置すれば、食材冷凍システム1および/または食材加システム10を24時間連続運転することができる。食材冷凍システム1および/または食材加システム10は熟練者を要さず運転できるため、システムの設置場所を問わず、均質な製品を大量に製造することができる。
 図5は、本発明の食材の製造方法のフローの一例を示す。以下、図5に示される各ステップを説明する。
 ステップS001:前処理工程
 ステップS001では、食材の前処理が行われる。前処理工程は、食材を洗浄する工程、および/または、食材を切断する工程を含む。食材の洗浄およびカットには、野菜、果物、魚、肉類の洗浄およびカットの一般的な方法を制限なく用いることができる。このように、食材冷凍システムの加温部410に提供される食材は、洗浄および/または切断されたものであり得る。なお、ステップS001は省略されてもよい。
 ある実施形態では、前処理工程において、比較的大きい食材を用いる場合には、食材から皮、種、骨などの非可食部分を取り除き、水洗いして、食材に応じた形状で、適度な大きさに食材をカットする。比較的小さい食材を用いる場合には、切らずに次の工程に用いる。食材が野菜の場合には、例えば、カット野菜と同様な形状にカットすることができる。ミニトマトやいちごは水洗いするだけでカットする必要は無い。大根やニンジンの場合には、千切り、短冊切り、いちょう切りのような、規則的な形状にカットすることもできる。もやしやきのこ、ベビーリ一フのような小型の野菜の場合は、非可食部分を取り除くことは好ましいが、小さくカットする必要は無い。洗浄と切り分けの順序、回数に、特に制限は無い。前処理工程の終了後に、ほこりや汚れ、非可食部分が完全に取り除かれ、食材に応じた適当な形状と大きさが完成されていれば、上記順序と回数には制限が無い。経済性や鮮度保持のためには、できるだけ短い時間で洗浄と切り分けを行うことが望ましい。
 前処理工程には、通常は、シャワーや水槽を用いた洗浄装置と、カッター、グラインダー、篩などを用いた切り分け装置とを用いる。これらの装置は、野菜、果物、きのこ類、魚、肉の加工設備で通常用いられている洗浄装置と切断装置を用いることができる。
 ステップS002:加温工程
 ステップS002と次のステップS003とは、前処理(殺菌)部400にて行われる。
 ステップS002では、食材が加温される。食材を加温する工程は、食材を間接的に加温する工程であり得る。食材は、加温部410を通過する間、例えば、1~8分、好ましくは1分~3分の間加温される。加温する時間は、搬送部の速度を調節することによって変化させ得る。
 加温工程は、様々な加温時間と温度の組み合わせを取り得る。例えば、ある実施形態では、根菜類を75~90℃で3~7分間加温する。他の実施形態では、葉物類を、60~75℃で1~3分間加温する。さらに他の実施形態では、果菜類を45~75℃で1~3分間加温する。さらに別の実施形態では、動物性食材を75~90℃で3~8分間加温する。
 例えば、本発明の1つの実施形態において、加温工程は、洗浄・カットされた食材を、内部温度が45℃~90℃の範囲にある所定の一定温度に保たれた加温部410の端部に搬送し、その後、スチーム加温器の内部に任意に取り付けられたファンによって対流を発生させ、それによって該食材の表面に送風しながらその食材を加温部410の内部で1分~8分かけて搬送することによってその食材の温度を上昇させる。加温工程では、食材は外気に晒されることなく加温され得る。
 ステップS003:冷却工程
 ステップS003では、食材が冷却される。好ましくは、食材を冷却する工程は、直接的に食材を冷却する工程である。
 一部の実施形態では、好ましくは、冷却部420は送風機構を備え、送風機構を用いて冷気を食材に当てることによって、加温された食材を速やかに冷却する。これにより、食材の表面と内部を、細菌増殖が抑制された状態に維持することが可能である。冷却する過程で細菌の増殖しやすい温度帯(例えば、約20~40℃)を通過するため、速やかに食材を冷却し、例えば、チルド帯(例えば、約2℃)にまで冷却することが望ましい。
 食材は、冷却部420を通過する間(例えば、約2~8分、好ましくは約2分~5分、さらに好ましくは約2分~約4分の間)冷却される。代表的な実施形態において、加温工程の加温時間の調節のために設定された搬送速度に応じて、冷却部420の長さを変化させることによって冷却時間を調節するか、または十分に食材が冷却されるように冷却部420の温度または送風機構の送風強度を設定することができる。他の実施形態において、冷却時間は、搬送部の速度を調節することによって変化させ得る。
 冷却部420の内部の温度は、限定されるものではないが、約-10℃~約-40℃、約-10℃~約-35℃、約-10℃~約-30℃などであり得る。また、理論に束縛されるものではないが、冷却工程終了時の食材の温度が約10℃を超える場合、その後の作業中に細菌が増殖する危険性が生じる場合がある。冷却工程直後の食材の温度は、限定されるものではないが、好ましくは約5℃以下、さらに好ましくは約1℃~約4℃、より好ましくは約2℃である。
 ある実施形態において、食材が冷却部420の中にある時間は約2~約8分、好ましくは約2~約5分、さらに好ましくは約2~約4分である。冷却時間は、食材の熱伝導性と、切り分けられた食材の大きさとによって、適当に調節される。食材が冷却部420を出る時には、食材の表面から中心部までの温度は、約5℃~約-40℃、好ましくは約2℃~約-20℃に低下している。このような温度と時間の設定によって、冷却工程では食材全体の温度が微生物の繁殖が困難な低温域に急速に低下し、そのような低温域で保持される。
 1つの実施形態では、冷却工程は、加温工程を終えた食材を外気にさらすことなく内部温度が約-10℃~約-40℃の範囲にある所定温度に保たれた冷却部420の端部に搬送し、その後、その食材を冷却部420の内部で約2分~約8分かけて搬送することによってその食材を冷却する、急速冷却工程であり得る。冷却工程においても、食材は外気に晒されることなく冷却される。
 加温工程から冷却工程までをできる限り短い時間で行うことによって、食材加工中の食材表面での細菌繁殖や、食材内部の変質を抑えることができる。なお、冷却工程は必ずしも必須ではなく、中間温度帯での加温後に直ちに以下の冷凍工程に移ってもよい。
 ステップS004:冷凍工程
 ステップS004は、食材冷凍システム1において行われる。
 ステップS004では、食材が急速に(約5~約6分で)冷凍される。好ましくは、食材を冷凍する工程は、直接的に食材を冷凍する工程である。
 一部の実施形態では、好ましくは、冷凍部は送風機構を備え、送風機構を用いて冷気を食材に当てることによって、冷却された食材を速やかに冷凍する。これにより、冷却された食材の表面と内部を、細菌増殖が抑制された状態を維持して長期保存することが可能である。
 食材は、第1の冷凍部100Aおよび第2の冷凍部100Bを通過する間(例えば、約6分以下、好ましくは約4~約6分、さらに好ましくは約5~約6分の間)急速冷凍される。代表的な実施形態において、加温工程の加温時間の調節のために設定された搬送速度、および、冷却工程の冷却時間の調節のために設定された搬送速度に応じて、冷凍部100Aおよび冷凍部100Bの長さをそれぞれ変化させることによって冷凍時間を調節するか、または、十分に食材が急速冷凍されるように第1の冷凍部100Aおよび第2の冷凍部100Bの温度または送風機構の送風強度を設定することができる。他の実施形態において、冷凍時間は、搬送部の速度を調節することによって変化させ得る。
 冷凍工程において、食材は、様々な冷凍条件下で冷凍され得る。冷凍条件は、例えば、第1の冷凍部100Aおよび第2の冷凍部100Bの形状、大きさ(長さ)、数、内部の温度、送風機構の送風強度、送風機構の送風の向き、エアーカーテン生成機構の有無(またはエアーカーテン生成機構の数)、エアーカーテン生成機構の送風強度、食材の種類、食材の大きさ、食材の熱伝導性、食材の水分量に関連する。本発明は、細胞膜を有する食材を、細胞膜を壊さずに冷凍するための冷凍技術に関するものである。したがって、細胞膜が破壊されていない食材原体(採取しただけの「生の」野菜や魚介類、肉類)や、図4に示すように細胞膜を破壊せずに加工処理した食材は本発明の冷凍技術の恩恵を受けるが、加工工程で細胞膜を破壊する処理を行った一般的な加工食品には優位性が無い。ここで、細胞膜を破壊する処理としては、例えば、ブランチングによる加熱殺菌処理である。ブランチングは青果などに対して熱湯、または高温蒸気を用いて加熱殺菌処理するものであって、処理温度が細胞膜を破壊する温度帯である為に冷凍加工の以前の処理で細胞膜が破壊される。従って、冷凍加工段階で本発明の食材冷凍システムによって細胞膜を担保する加工が行えたとしてもその効果の有意性が大きく損なわれる。冷凍条件は、冷凍工程前の各工程に依存して(例えば、加温工程における加温条件、および/または、冷却工程における冷却条件に応じて)変更されるものであってもよい。
 例えば、食材は、食材の種類などにかかわらず、画一的な冷凍条件下で冷凍され得る。これにより、冷凍条件を変更する手間が省かれ、時間的に効率良く冷凍工程を実施することが可能である。あるいは、例えば、食材は、食材の種類ごとに異なる冷凍条件下で冷凍され得る。これにより、食材の種類にマッチした冷凍手法をとることが可能であり、画一的な冷凍条件下の場合よりも高品質な冷凍食材を提供することが可能である。
 食材前処理(殺菌)部400では、食材に対して、保水材や増粘材などの処理剤による化学的処理、圧縮、押圧などの物理的処理を行わず、加温部410で比較的緩やかな条件で食材を処理するにすぎない。しかしながら驚くべきことに、この加温処理により、食材の品質が向上する。第一に、加温部410において一定時間45℃~90℃の温度に保たれることで、果物や野菜に含まれる酵素が失活し、食材の自己劣化・自己分解が抑えられる。このため、野菜や果物を食材前処理(殺菌)部400で処理したものを常温で数日以上保管しても、変色、形崩れ、果汁や野菜汁の流出が抑えられ、良い食感が維持される。これに対して、市販の新鮮な野菜や果物を数日室温保管すれば、変色、形崩れ、果汁や野菜汁の流出が起こり易くなり生食には適さなくなる。
 このように、食材前処理(殺菌)部400では食材の内容物の流出や食品の乾燥が抑えられるため、食材原料から最終加工食品に至る歩留まりが良い。従来の、熱湯や熱風を用いた高温調理を行った惣菜や乾燥野菜の製造に比べ、食材前処理(殺菌)部400の搬出部で得られる加工食品は、食材原料から最終加工食品に至る歩留まりが10%以上向上することが経験的に明らかとなっている。
 加温部410では比較的低温で食材を処理することにより、新鮮な食材の組織が変質せず、新鮮食材に特有の硬さや軟らかさが維持される。加温部410における処理により、食材に含まれる雑味成分(いわゆる灰汁)が除かれる点は注目に値する。このため、食材が生で食べられる野菜や果物の場合には、生野菜の食感と濃厚な味を兼ね備えた、新鮮味のある加工野菜が提供される。このような加工野菜は、従来のカット野菜にもカットフル一ツにも無い品質を有する。食材が海産物やきのこなどの旨味や香りが豊富な食材の場合には、食材の旨味や香りがより濃厚になる、新鮮な食材の滑らかな舌触りが維持されるといった効果がある。
 本発明の食材冷凍システムでは、食材前処理(殺菌)部400によって加工されることにより上記の優れた状態を維持したこのような食材を上記の様々な冷凍条件下で急速冷凍することにより、食材の上記優れた状態を損なうことなく、むしろその優れた状態を長期的に維持させることが可能である。これにより、食材の廃棄処分量を大幅に低減することが可能であり、消費者は、より低コストでより優れた状態の食材を食すことが可能である。
 驚くべきことに、食材の中間温度帯での前処理(45℃~90℃)を行わないで冷凍処理をした場合、急速冷凍したとしても細胞膜の破壊は発生し得ることを本発明者は確認した。理論に拘束されることを意図しないが、冷凍処理を行う前に食材の中間温度帯での前処理(45℃~90℃)を行うことによって、食材の細胞膜が熱に対する耐性を有するように変化したものと考えられる。
 従来技術の冷凍食材であれば、冷凍・解凍の間の細胞組織の破壊によって、解凍後には、食材の栄養素は、重量で40%以下になるのが平均であった。他方、本発明の冷凍技術を用いることにより、解凍後も細胞膜を破壊せずに、食材が本来有する成分や栄養素はそのまま維持するため、食糧備蓄が60%向上するとみなすことができる。昨今、食糧危機の問題に直面しているところ、本発明は、このような食糧危機に対する解決策をも提供し得るものである。
 (食材)
 本発明の冷凍システムのために好ましい食材は、例えば、カット野菜やカットフルーツであり得る。例えば、本発明の冷凍システムのために好ましい食材は、ブロッコリー、カリフラワー、ホウレン草、ニンジン、ジャガイモ、蓮根、キャベツ、白菜、Mトマト等の野菜類、パイナップル、マンゴー、リンゴ等の果実類、鶏肉、豚肉、牛肉等の肉類、蟹、海老、ホタテ等の魚介類である。ただし、煮る、焼く、茹でるなどの加工を施された食材、およびブランチングなどの加熱前処理(本発明の前処理(殺菌)部での処理は除く)を施された食材は、既に細胞が破壊されており、そのような食材については本発明の冷凍システムを用いて食材の細胞を破壊しないように配慮する意味が小さくなる。例えば、本発明の冷凍システムのために好ましい食材の状態は、本発明の前処理(殺菌)部での処理が施された食材(細胞が破壊されていない食材)、または煮る、焼く、茹でるなどの加工が施されていない食材である。他方で、上記のような中間温度帯での処理では細胞膜が破壊されておらず、本発明の冷凍処理の利益を享受できる。
 以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。
 (実施例1)
 野菜(ブロッコリー、カリフラワー、ホウレン草、人参等)を所定の大きさにカットし、その後、本発明の食材前処理(殺菌)部(図4)で前処理を行った。これら前処理を行ったカット野菜を本発明の食材冷凍システムを用いて冷凍したものと、従来の冷凍方法で冷凍したものとにおいて、解凍した際の状態について比較した。比較した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、本発明の食材冷凍システムで加工した野菜は、解凍した際の離水(成分流出)もなく、冷凍前の野菜特有の歯触りなどの食感および食味を維持していた。それに対して、従来の冷凍方法で加工した野菜は、いずれも解凍した際の離水(成分流出)が生じ、食感および食味が劣化していた。
 液体窒素による冷凍は、処理温度(約-196℃)が非常に低いため食材の持つ繊維の収縮と水分の膨張する関係の整合性が得られず細胞膜の破損が生じてしまうものと考えられる。冷凍フリーザー、IGFなどの冷凍においては、食材の中心温度を-5℃にするために長い時間(約10分以上)必要となるため、食材表面と食材中芯部での温度状態が異なり、細胞膜内の氷結質量の増加を抑制することができない。その結果、食材表面に対して食材中芯部での細胞膜の破損が激しく、解凍時に離水(成分流出)を引き起こしたものと考える。
 (実施例2)
 種々の処理を行ったブロッコリーの細胞組織を、岡山工業試験場において、プレパラートに薄くスライスした食材を並列に並べ、染色液を1滴食材に添加し、透明なガラス板で蓋をして顕微鏡で観察した。
 まず、未処理の生のブロッコリーの500倍顕微鏡写真を図12Aに示す。細胞組織が破壊されずにしっかり残っていることがわかる。
 本発明の食材前処理(殺菌)部(図4)で中間温度帯での前処理(約88℃)を行ったあとのブロッコリーの500倍顕微鏡写真を図12Bに示す。十分に細胞組織が破壊されずに残っていることが、細胞膜の形状から確認できた。
 次に、図12Bに示す組織を-60℃5分で冷凍(ランダムに送風口より冷風が吹き出す様式)したのちに解凍したブロッコリーの500倍顕微鏡写真を図12Cに示す。驚くべきことに、十分に細胞組織が破壊されずに残っていることが細胞膜の形状から確認できた。
 比較として、図12Bに示す組織を-35℃~-45℃で15分~20分かけて冷凍したのちに解凍したブロッコリーの500倍顕微鏡写真を図12Dに示す。図12Cとは異なり、繊維方向の細胞のみが破壊されずに残り、他は破壊されていることがわかる。
 なお、中間温度帯での前処理を行っていない食材においては、-60℃5分で冷凍したとしても、細胞組織の破壊が確認でき(図示せず)、図12Cのような結果にはならなかった。理論に拘束されることを意図しないが、本発明の中間温度帯での前処理を行うことによって、細胞組織が熱に対する耐性を有するように構造に何等かの変化が起こり、それと-60℃以下5分以内という冷凍とが組み合わされることによって、解凍後にも細胞組織が破壊されずに残るという優れた冷凍技術が生み出されたと考えられる。
 本発明は、従来の冷凍食材と比較して解凍後の離水が減少された食材冷凍システム、およびその食材冷凍システムを用いた冷凍食材の製造方法を提供するものとして有用である。
 1 食材冷凍システム
 10 食材加工システム
 100A 第1の冷凍部
 100B 第2の冷凍部
 200 搬送部
 300 エアーカーテン生成機構
 400 食材前処理(殺菌)部
 410 加温部
 420 冷却部
 430 搬送部

Claims (22)

  1.  食材を冷凍するための食材冷凍システムであって、
     前記食材冷凍システムは、
     前記食材を冷凍するための冷凍部と、
     前記食材を前記2つ以上の冷凍部に搬送するための搬送部と
     を備え、
     前記冷凍部は、約-60℃~約-90℃の冷風で冷却されるように構成されている、食材冷凍システム。
  2.  前記冷凍部は、-60℃~-89℃の冷風が送風されるように構成されている、請求項1に記載の冷凍システム。
  3.  前記食材を冷凍する前に、食材を冷却する予冷部をさらに備え、
     前記搬送路は、前記予定部、次いで前記冷凍部という順に前記食材を搬送する、請求項1または2に記載の冷凍システム。
  4.  前記予冷部は、前記食材の搬送順に、第1予冷部および第2予冷部を少なくとも含み、前記第1予冷部と前記第2予冷部とは異なる温度の冷風で冷却されるように構成されている、請求項3に記載の冷凍システム。
  5.  前記予冷部は、前記食材の搬送順に、第1予冷部、第2予冷部および第3予冷部を少なくとも含み、前記第1予冷部と前記第2予冷部とは異なる温度の冷風で冷却され、前記第2予冷部と前記第3予冷部とは異なる温度の冷風で冷却されるように構成されている、請求項3に記載の冷凍システム。
  6.  前記第3予冷部は約-25℃~約-45℃の冷風で冷却されるように構成されている、請求項5に記載の冷凍システム。
  7.  前記第1予冷部は約-25℃~約-45℃の冷風で冷却されるように構成されている、請求項4~6のいずれか一項に記載の冷凍システム。
  8.  前記第2予冷部は約-60℃~約-90℃の冷風で冷却されるように構成されている、請求項4~7のいずれか一項に記載の冷凍システム。
  9.  前記第2予冷部における冷風は、前記第1予冷部および前記第3予冷部における冷風よりも温度が低い、請求項5に記載の冷凍システム。
  10.  前記食材冷凍システムは、隣接する予冷部の間にエアーカーテンを生成するための少なくとも1つのエアーカーテン生成機構をさらに備える、請求項4~9のいずれか一項に記載の食材冷凍システム。
  11.  前記冷凍部は、冷風を前記搬送部に向かって送風する送風口を前記搬送部の搬送方向に沿って複数備え、前記送風口の向きは、前記搬送部の搬送方向に対抗する向きとなるように構成されている、請求項1~10のいずれか一項に記載の冷凍システム。
  12.  前記送風口の向きは、前記搬送部の搬送方向に対向し、約30°~約60°の角度で傾斜している、請求項11に記載の食材冷凍システム。
  13.  前記送風口は、前記搬送部の下部に設けられる、請求項11または12に記載の食材冷凍システム。
  14.  前記送風口は、前記搬送部の下部と上部との両方に設けられる、請求項13に記載の食材冷凍システム。
  15.  前記上部の送風口は、前記搬送部の前記搬送方向に直交する方向に対して傾斜するように設けられ、
     前記下部の送風口は、前記上部の送風口の傾斜と交差するように設けられる、請求項14に記載の食材冷凍システム。
  16. 送風口の傾斜する向きは、前記搬送部の前記搬送方向に沿って交互に変更するように構成されている、請求項15の記載の食材冷凍システム。
  17.  前記搬送部は、前記食材が前記食材冷凍システムに入ってから前記冷凍部を約6分以内に通過するように、前記食材を搬送するように構成されている、請求項1~16のいずれか一項に記載の食材冷凍システム。
  18. 食材加工システムであって、
    (1)食材を間接的に加温する加温機構を備える加温部と、
    (2)請求項1~6のいずれか一項に記載の食材冷凍システムと、
    を備え、前記搬送部は前記加温部と前記食材冷凍システムとを通って前記食材を搬送する、食材加工システム。
  19.  前記加温機構は、前記搬送部の下方にのみ存在し、熱を媒介する物質を下向きに放出するように構成され、前記加温部は、前記搬送部ではない方向に風を送るように構成されている送風機構を備える、請求項18に記載の食材加工システム。
  20.  前記加温部は前記搬送部近傍に温度センサーを備え、前記温度センサーによって前記加温機構が間欠的に駆動される、請求項19に記載の食材加工システム。
  21.  請求項1~17のいずれか一項に記載の食材冷凍システム、または請求項18~20のいずれか一項に記載の食材加工システムを用いて食材を冷凍する加工工程を含む、冷凍食材の製造方法。
  22.  前記食材がカット野菜である、請求項21に記載の製造方法。
PCT/JP2020/001062 2019-01-15 2020-01-15 食材冷凍システムおよび冷凍食材の製造方法 WO2020149300A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP20741721.3A EP3912478A4 (en) 2019-01-15 2020-01-15 INGREDIENT FREEZING SYSTEM AND METHOD FOR MANUFACTURING FROZEN INGREDIENTS
US17/422,894 US11751580B2 (en) 2019-01-15 2020-01-15 Ingredient freezing system and method for producing frozen ingredient
AU2020209582A AU2020209582A1 (en) 2019-01-15 2020-01-15 Ingredient freezing system and method for producing frozen ingredient
CA3126380A CA3126380A1 (en) 2019-01-15 2020-01-15 Ingredient freezing system and method for producing frozen ingredient
CN202080014761.6A CN113811196A (zh) 2019-01-15 2020-01-15 食材冷冻系统和冷冻食材的制造方法
KR1020217025210A KR20210141926A (ko) 2019-01-15 2020-01-15 식재료 냉동 시스템 및 냉동 식재료의 제조 방법
JP2020541813A JP6952378B2 (ja) 2019-01-15 2020-01-15 食材冷凍システムおよび冷凍食材の製造方法
SG11202107694RA SG11202107694RA (en) 2019-01-15 2020-01-15 Ingredient freezing system and method for producing frozen ingredient
JP2021152167A JP2022008439A (ja) 2019-01-15 2021-09-17 食材冷凍システムおよび冷凍食材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019004434 2019-01-15
JP2019-004434 2019-01-15

Publications (1)

Publication Number Publication Date
WO2020149300A1 true WO2020149300A1 (ja) 2020-07-23

Family

ID=71613617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001062 WO2020149300A1 (ja) 2019-01-15 2020-01-15 食材冷凍システムおよび冷凍食材の製造方法

Country Status (9)

Country Link
US (1) US11751580B2 (ja)
EP (1) EP3912478A4 (ja)
JP (2) JP6952378B2 (ja)
KR (1) KR20210141926A (ja)
CN (1) CN113811196A (ja)
AU (1) AU2020209582A1 (ja)
CA (1) CA3126380A1 (ja)
SG (1) SG11202107694RA (ja)
WO (1) WO2020149300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220167468A (ko) * 2021-06-14 2022-12-21 대한민국(농촌진흥청장) 농산물 예냉 장치

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767205C1 (ru) * 2022-01-13 2022-03-16 Общество с ограниченной ответственностью «КЬЮМИ» Способ приготовления блюд-полуфабрикатов в упаковке с возможностью их дальнейшего автоматизированного разогрева и/или доготовки
WO2023227532A1 (en) * 2022-05-23 2023-11-30 Ocado Innovation Limited Multi-temperature storage system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010240B2 (ja) 1977-08-15 1985-03-15 株式会社日立製作所 ロボツトの対人衝突防止制御法
JPH0553491U (ja) * 1991-12-27 1993-07-20 ダイエー食品工業株式会社 食品の凍結装置
JP2008128606A (ja) * 2006-11-24 2008-06-05 Mitsubishi Heavy Ind Ltd 冷凍システム及び冷凍システムの運転方法
JP2009019851A (ja) * 2007-07-13 2009-01-29 Nobuyuki Takahashi 冷却方法及び冷却装置
JP2010210109A (ja) * 2009-03-06 2010-09-24 Toyo Eng Works Ltd コンベア式冷凍装置
JP2015230124A (ja) * 2014-06-04 2015-12-21 三菱重工冷熱株式会社 冷凍方法及び冷凍装置
JP2019045102A (ja) * 2017-09-05 2019-03-22 株式会社前川製作所 連続搬送式フリーザ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2237255A (en) 1937-05-29 1941-04-01 William J Finnegan Method and apparatus for quick freezing and handling of comestibles
AT263824B (de) * 1966-07-21 1968-08-12 Herbert Feuermann Kühltunnel für Grünfutter oder Blattgemüse u.dgl.
GB1524317A (en) * 1977-04-19 1978-09-13 Southern & Redfern Ltd Cooling apparatus
JPS6010240U (ja) 1983-07-01 1985-01-24 株式会社信明産業 圧力スイツチ
JPH0553491A (ja) 1991-08-29 1993-03-05 Ricoh Co Ltd クリーニング装置
WO2006046317A1 (ja) * 2004-10-29 2006-05-04 Mayekawa Mfg. Co., Ltd. 連続搬送式フリーザ
KR100942034B1 (ko) * 2008-06-11 2010-02-11 주식회사 탑그린테크 식품류의 급속동결을 위한 다층구조의 터널식 동결방법 및그에 사용되는 냉매
US9668512B2 (en) * 2013-06-10 2017-06-06 Nichirei Foods Inc. Continuous food frying device, continuous food frying method, and method for producing fried food
JP6199141B2 (ja) * 2013-09-26 2017-09-20 株式会社前川製作所 魚肉凍結品の製造方法及び製造システム、並びに赤身魚肉の凍結品
ES2885473T3 (es) * 2015-03-13 2021-12-13 Hakubai Co Ltd Sistema de procesamiento de alimentos de calentamiento y enfriamiento integrado
JP6010240B1 (ja) * 2015-03-13 2016-10-19 ケレス株式会社 加温・冷却一体型食材加工システム
KR101916714B1 (ko) * 2017-01-26 2018-11-08 정이영 식품급속 개체냉동장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010240B2 (ja) 1977-08-15 1985-03-15 株式会社日立製作所 ロボツトの対人衝突防止制御法
JPH0553491U (ja) * 1991-12-27 1993-07-20 ダイエー食品工業株式会社 食品の凍結装置
JP2008128606A (ja) * 2006-11-24 2008-06-05 Mitsubishi Heavy Ind Ltd 冷凍システム及び冷凍システムの運転方法
JP2009019851A (ja) * 2007-07-13 2009-01-29 Nobuyuki Takahashi 冷却方法及び冷却装置
JP2010210109A (ja) * 2009-03-06 2010-09-24 Toyo Eng Works Ltd コンベア式冷凍装置
JP2015230124A (ja) * 2014-06-04 2015-12-21 三菱重工冷熱株式会社 冷凍方法及び冷凍装置
JP2019045102A (ja) * 2017-09-05 2019-03-22 株式会社前川製作所 連続搬送式フリーザ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220167468A (ko) * 2021-06-14 2022-12-21 대한민국(농촌진흥청장) 농산물 예냉 장치
KR102615874B1 (ko) 2021-06-14 2023-12-21 대한민국 농산물 예냉 장치

Also Published As

Publication number Publication date
EP3912478A4 (en) 2023-01-25
EP3912478A1 (en) 2021-11-24
US20220061342A1 (en) 2022-03-03
US11751580B2 (en) 2023-09-12
AU2020209582A1 (en) 2021-08-26
CN113811196A (zh) 2021-12-17
SG11202107694RA (en) 2021-08-30
JPWO2020149300A1 (ja) 2021-02-18
KR20210141926A (ko) 2021-11-23
JP6952378B2 (ja) 2021-10-20
CA3126380A1 (en) 2020-07-23
JP2022008439A (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2020149300A1 (ja) 食材冷凍システムおよび冷凍食材の製造方法
KR102437321B1 (ko) 가온·냉각 일체형 식재 가공 시스템
JP5878983B2 (ja) 機能性連続急速冷凍装置
KR20220122790A (ko) 가온·냉각 일체형 식재 가공 시스템
JP2015230124A (ja) 冷凍方法及び冷凍装置
Muthukumarappan et al. Refrigeration and freezing preservation of vegetables
US20020127315A1 (en) Process for preparing french fried potatoes having an extended shelf life at refrigerated temperatures and a reduced reconstitution time
JP5840154B2 (ja) 冷蔵庫
CN108433009A (zh) 一种速冻调制食品及其制作方法
JPH09229527A (ja) 急速凍結庫
CN212806187U (zh) 一种玉米棒专用速冻机
KR101827499B1 (ko) 식품 냉동용 가스를 사용한 열교환 장치
GB2263617A (en) Freezing process and apparatus
EP1656029A1 (en) Process for blanching vegetables
JP5203760B2 (ja) 冷蔵庫
CN107950644A (zh) 一种水果冷藏运输的技术方法
Vieira et al. Low-Temperature Preservation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020541813

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3126380

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020741721

Country of ref document: EP

Effective date: 20210816

ENP Entry into the national phase

Ref document number: 2020209582

Country of ref document: AU

Date of ref document: 20200115

Kind code of ref document: A