WO2020147755A1 - 电池模块 - Google Patents

电池模块 Download PDF

Info

Publication number
WO2020147755A1
WO2020147755A1 PCT/CN2020/072265 CN2020072265W WO2020147755A1 WO 2020147755 A1 WO2020147755 A1 WO 2020147755A1 CN 2020072265 W CN2020072265 W CN 2020072265W WO 2020147755 A1 WO2020147755 A1 WO 2020147755A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
bus bar
battery cell
arrangement structure
battery module
Prior art date
Application number
PCT/CN2020/072265
Other languages
English (en)
French (fr)
Inventor
游凯杰
周灵刚
史东洋
项延火
林永寿
胡飞
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20740834.5A priority Critical patent/EP3800701B1/en
Publication of WO2020147755A1 publication Critical patent/WO2020147755A1/zh
Priority to US17/139,814 priority patent/US11532857B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of batteries, in particular to a battery module.
  • the positive and negative poles of the battery cells are placed in the same direction, thereby avoiding the positive and negative poles of the battery cells from being crossed.
  • the electrical connection is wrong and the short circuit occurs.
  • the total positive electrode and the total negative electrode of the electrode connector of the existing battery module are on the same side of the battery module, so it is easy to cause insufficient space for electrical connection, difficult operation, and lower safety of the battery module.
  • the present invention provides a battery module to solve the problem of the single structure of the existing electrical connector.
  • the inventor provides a battery module including a first battery cell arrangement structure, a second battery cell arrangement structure and a bus bar array.
  • the first battery cell arrangement structure and the second battery cell arrangement structure are stacked in a vertical direction.
  • Both the first battery cell arrangement structure and the second battery cell arrangement structure include a plurality of battery cells arranged in a horizontal direction, and the battery cell includes a first electrode terminal, a second electrode terminal, and a battery case Body, the first electrode terminal and the second electrode terminal are arranged on the surface of the battery case.
  • the bus bar array electrically connects a plurality of battery cells.
  • the bus bar array includes a first bus bar, one end of the first bus bar is connected to the first electrode terminal of the first battery cell arrangement structure, and the other end of the first bus bar is connected to the The second electrode terminal of the second battery cell arrangement structure, and the first bus bar extends in a first direction, and the first direction intersects the horizontal direction and the vertical direction.
  • the first battery cell arrangement structure and the second battery cell arrangement structure are stacked to form a module, and the size of the one module in the horizontal direction is larger than that of the one module The dimension along the vertical direction.
  • the battery cell further includes an electrode assembly, and the electrode assembly is accommodated in the battery casing.
  • the electrode assembly includes a first pole piece, a second pole piece, and a diaphragm arranged between the first pole piece and the second pole piece, and the first electrode terminal is electrically connected to the first pole piece ,
  • the second electrode terminal is electrically connected to the second pole piece.
  • the electrode assembly has a wound structure and is flat, and the outer surface of the electrode assembly includes two flat surfaces, and the two flat surfaces face each other in the vertical direction; or, the electrode assembly is In a laminated structure, the first pole piece, the diaphragm, and the second pole piece are stacked along the vertical direction.
  • the first bus bar includes a first end, a transition portion, and a second end, the first end is connected to the first electrode terminal, and the second end is Connected to the second electrode terminal, and the transition portion connects the first end and the second end.
  • an explosion-proof valve is provided on the battery case, the explosion-proof valve is provided between the first electrode terminal and the second electrode terminal, and the first busbar is connected to the The avoidance setting of explosion-proof valve is described.
  • the transition part is arranged between the explosion-proof valves of the two battery cells stacked in the vertical direction.
  • the transition portion is provided with an installation opening that penetrates the transition portion along the horizontal direction.
  • the shape of the cross section of the first busbar parallel to the vertical direction and the horizontal direction is an "S" structure.
  • the bus bar array further includes a second bus bar, the second bus bar extends along the horizontal direction, and two ends of the second bus bar are respectively connected to the horizontal direction
  • the number of the second bus bars is an odd number.
  • the bus bar array further includes a third bus bar extending along the second direction, and one end of the second bus bar is connected to the first battery cell The first electrode terminal of the battery cell in the arrangement structure, and the other end of the second bus bar is connected to the second electrode terminal of the battery cell in the second battery cell arrangement structure,
  • the second direction and the first direction are symmetrical along a vertical plane perpendicular to the horizontal direction.
  • the battery module further includes a total positive electrode connecting piece and a total negative electrode connecting piece, the positive electrode connecting piece is electrically connected to the total positive electrode of the battery module, and the total negative electrode is connected
  • the sheet is electrically connected to the total negative electrode of the battery module.
  • the total positive electrode connecting piece and the total negative electrode connecting piece are respectively located at two ends of the battery module along the horizontal direction.
  • the total positive electrode connecting piece and the total negative electrode connecting piece are both connected to the first battery cell arrangement structure.
  • the battery case includes two first surfaces and two second surfaces, and the area of the first surface is larger than the area of the second surface.
  • the two second surfaces face each other in the horizontal direction
  • the two first surfaces face each other in the vertical direction.
  • the first battery cell arrangement structure and the second battery cell arrangement junction of the above technical solution are stacked in the horizontal direction through the battery cells, and at the same time they are stacked in the vertical direction, and use the bus bar array.
  • the first bus bar sequentially connects the battery cells of the first battery cell arrangement structure and the second battery cell arrangement junction.
  • the total positive pole and the total negative pole of the battery module are located at both ends of the battery module, which greatly reduces the possibility of short circuit of the battery module and improves the safety of the battery module.
  • FIG. 1 is a structural diagram of the battery module of the present invention
  • FIG. 2 is a schematic diagram of the battery module of the present invention.
  • Figure 3 is an exploded view of a battery cell of the battery module of the present invention.
  • FIG. 4 is a cross-sectional view of a battery cell with a wound structure of the battery module of the present invention
  • FIG. 5 is a cross-sectional view of a battery cell with a laminated structure of the battery module of the present invention
  • Fig. 6 is a structural diagram of the first bus bar of the battery module of the present invention.
  • 11a winding structure electrode assembly
  • 11b laminated structure electrode assembly
  • Electrode assembly 111. Electrode assembly; 112. Battery case; 113. First electrode terminal;
  • L is the length of the first battery cell arrangement structure and the second battery cell arrangement structure
  • H is the height when the first battery cell arrangement structure and the second battery cell arrangement structure are stacked:
  • the direction indicated by arrow X is the length direction
  • the direction indicated by arrow Y is the width direction
  • the direction indicated by arrow Z is the vertical direction.
  • the horizontal direction is a direction parallel to the horizontal plane, and may be the aforementioned longitudinal direction or the aforementioned width direction.
  • the horizontal direction includes not only the direction absolutely parallel to the horizontal plane, but also the direction generally parallel to the horizontal plane conventionally recognized in engineering.
  • the vertical direction is the direction perpendicular to the horizontal plane.
  • the vertical direction includes not only the direction absolutely perpendicular to the horizontal plane, but also the direction generally perpendicular to the horizontal plane generally recognized in engineering.
  • the present invention provides a battery module including a first battery cell arrangement structure 1, a second battery cell arrangement structure 2 and a bus bar array 3.
  • the first battery cell arrangement structure 1 consists of a plurality of battery cells 11 adjacent to the vertical plane (the plane where the Z axis and the Y axis are located) and are arranged in a single layer along the horizontal direction (X axis direction); the same is true for the second battery cell
  • All the battery cells 11 in the body arrangement structure 2 are also parallel to the vertical plane (the plane where the Z axis and the Y axis are located) and are arranged in a single layer along the horizontal direction (X axis direction).
  • the battery module has a two-layer structure, and the bus bar array 3 is used to pair the first battery cell.
  • the battery cells 11 in the bulk arrangement structure 1 and the second battery cell arrangement structure 2 are sequentially connected.
  • the dimensions of the first battery cell arrangement structure 1 and the second battery cell arrangement structure 2 after being arranged in the horizontal direction (X-axis direction) are the same in this embodiment, and their length dimension will be greater than the vertical direction after stacking. (Z-axis direction) size.
  • the length of the first battery cell arrangement structure and the second battery cell arrangement structure be L
  • the height when the first battery cell arrangement structure and the second battery cell arrangement structure are stacked is H
  • the size of L will be greater than The size of H.
  • the second bus bar 32 is connected in series in the horizontal direction (X-axis direction) adjacent to two battery cells 11, and the second bus bar 32 extends along the horizontal direction (X-axis direction).
  • the bus bar 32 is an odd number, the total positive electrode connecting piece and the total negative electrode connecting piece located at both ends of the battery module will be located on the same battery cell arrangement structure. In this embodiment, they will be located in the first battery cell arrangement structure 1 On both ends.
  • the second bus bar 32 is an even number, the total positive electrode connection piece and the total negative electrode connection piece at both ends of the battery module will be located on different battery cell arrangement structures, that is, the total positive electrode connection piece and the total negative electrode connection
  • the sheets are respectively located on the first battery cell arrangement structure 1 and the second battery cell arrangement structure 2. Therefore, it is possible to separate the total positive electrode connecting piece and the total negative electrode connecting piece of the battery module, which greatly avoids the problem of short circuit of the battery module.
  • the third bus bar 33 in this embodiment extends in the second direction (along the opposite direction of the X-axis arrow), and the first bus bar 31 extends in the first direction (along the X-axis The direction of the arrow).
  • the number of second bus bars 32 Take the number of second bus bars 32 as one as an example.
  • the first battery cell arrangement structure 1 and the second battery cell arrangement structure 2 are sequentially connected along the first direction (X-axis direction) through the first bus bar. , And leave the last two battery cells 11 stacked up and down unconnected.
  • the battery cell 11 includes an electrode assembly 111, a battery case 112, a first electrode terminal 113, a second electrode terminal 114, and an explosion-proof valve 115.
  • the electrode assembly 111 includes a first pole piece 1111, a second pole piece 1112 and a diaphragm 1113 arranged between the first pole piece 1111 and the second pole piece 1112.
  • the first pole piece 1111 may be a positive pole piece or a negative pole piece, and the second pole piece 1112 and the first pole piece 1111 have opposite polarities. Accordingly, the second pole piece 1112 is a negative pole piece or a positive pole piece.
  • the first pole piece 1111 is used as a positive electrode piece, and the second pole piece 1112 is used as a negative electrode piece for description.
  • the first pole piece 1111 can also be a negative pole piece, and the second pole piece 1112 is a positive pole piece.
  • the diaphragm 1113 is an insulator between the first pole piece 1111 and the second pole piece 1112.
  • the battery housing 112 has a hexahedral structure.
  • the battery housing 112 includes two first surfaces 1121 and two second surfaces 1122.
  • the area of the first surface 1121 is larger than that of the second surface 1122.
  • the two second surfaces 1122 of each battery cell 11 face each other in a horizontal direction (for example, the X-axis direction), and the two first surfaces 1121 of each battery cell 11 are vertically aligned.
  • the directions (Z-axis direction) face each other.
  • the battery case 112 may be made of materials such as aluminum, aluminum alloy, or plastic.
  • the battery case 112 is a rectangular body (hexahedron).
  • the battery case 112 has an internal space accommodating the electrode assembly 111 and the electrolyte, and the battery case 112 has an opening.
  • the electrode assembly 111 is contained in the battery case 112, and the cover plate 115 covers the opening and is used to enclose the electrode assembly 111 in the battery case 112.
  • the electrode assembly 111 may be an electrode assembly 11a with a wound structure or an electrode assembly 11b with a laminated structure.
  • the electrode assembly 111 when the electrode assembly 111 is a winding structure, the electrode assembly 111 is flat, and the outer surface of the electrode assembly 111 includes two flat surfaces 1110, which are along the vertical direction (Z axis Direction) face each other, that is, the flat surface 1110 and the first surface 1121 face each other.
  • the electrode assembly 111 has a substantially hexahedral structure, and the flat surface 1110 is substantially parallel to the winding axis and is an outer surface with the largest area.
  • the flat surface 1110 may only be a relatively flat surface, and is not required to be a pure plane. As shown in FIG.
  • the first pole piece 1111, the diaphragm 1113, and the second pole piece 1112 are stacked in the vertical direction (Z-axis direction), that is, the surface of the first pole piece 1111 Facing each other with the first surface 1121.
  • the first electrode terminal 113 and the second electrode terminal 114 are located on the same surface of the battery case 112, that is, the first electrode terminal 113 and the second electrode terminal 114 are mounted on the cover plate 115 of the battery cell 11.
  • the first electrode terminal 113 penetrates the cover plate 115 and is electrically connected to the first pole piece
  • the second electrode terminal 114 also penetrates the cover plate 115 and is electrically connected to the second pole piece.
  • the distance between the first electrode terminal 113 and the second electrode terminal 114 of the battery cell 11 is equal to the first electrode terminal 113 and the second electrode terminal 113 of the adjacent battery cell 11 in the same battery cell arrangement structure. The distance between the two electrode terminals 114.
  • the positive active material is coated on the coating area of the positive electrode sheet, and the negative active material is coated on the coating area of the negative electrode sheet.
  • the uncoated area extending from the coated area is used as a tab.
  • the electrode assembly 111 includes two tabs, namely a positive tab and a negative tab.
  • the positive tab extends from the coating area of the positive tab; the negative tab extends from the tab of the negative tab.
  • the coating area extends out.
  • the positive ear and the positive electrode terminal are electrically connected through a positive terminal connector, and the negative ear and the negative electrode terminal are electrically connected through a negative terminal connector.
  • the explosion-proof valve 115 is installed on the cover plate of the battery cell 11 between the first electrode terminal 113 and the second electrode terminal 114.
  • the busbar needs to avoid the explosion-proof valve 115.
  • the bus bar is prevented from blocking the explosion-proof valve 115, which ensures that the explosion-proof valve 115 can be disengaged when the battery cell 11 is thermally out of control without causing an explosion.
  • the specific avoidance method and structure are described by the bus bar below.
  • the bus bar array 3 includes a first bus bar 31, a second bus bar 32, and a third bus bar 33.
  • the first bus bar 31 has an "S" structure, and the first bus bar 31 includes a first end.
  • the first end 311 is connected to one end of the transition part 312, and the second end 313 is connected to the other end of the transition part 312, so that the shape of the first bus bar 31 is similar to " S"-shaped structure, and the first end portion 311, the transition portion 312, and the second end portion 313 can be manufactured by integral molding, which improves the structural stability of the first bus bar 31.
  • the transition portion 312 is arranged between the explosion-proof valves 115 of the two battery cells 11 stacked in the vertical direction (Z-axis direction), and the transition portion 312 has a straight plate structure, so that the first busbar 31 passes through the transition portion 312 to avoid the explosion-proof valves 115 of the upper and lower battery cells 11. As shown in FIG.
  • the first end portion 311 is connected to the upper first electrode terminal 113 at the upward (Z-axis upward direction) corner, and the second end 313 is downward (Z-axis downward direction) corner is connected to the lower layer
  • the second electrode terminal 114 is connected, and the two battery cells 11 on the upper and lower layers can be in a stacking relationship, or they can be stacked next to each other, so as to achieve an explosion-proof valve for the two stacked battery cells 11 115 The effect of avoidance.
  • an installation opening 314 is opened on the transition portion 312 of the first bus bar 31, and the installation opening 314 penetrates the confluence in the horizontal direction (X-axis direction).
  • the two sides of the row that is, the plate surface of the transition part 312 is provided with a groove connected on both sides, so the sampling component can be arranged through the installation openings 314 of the first bus bar 31, so that the sampling component is partially accommodated in The installation opening 314 of the first bus bar 31 improves its space utilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明提供一种电池模块,包括第一电池单体排列结构、第二电池单体排列结构和汇流排阵列,第一电池单体排列结构与第二电池单体排列结构包括多个电池单体,电池单体包括第一电极端子、第二电极端子和电池壳体,汇流排阵列包括第一汇流排。第一电池单体排列结构与第二电池单体排列结通过电池单体沿着水平方向堆叠,同时其自身在竖直方向层叠,并使用汇流排阵列的第一汇流排将第一电池单体排列结构与第二电池单体排列结的电池单体进行依次连接。使得电池模块的总正极和总负极位于电池模块的两端,极大的降低了电池模块短路的可能,提高电池模块的安全性。

Description

电池模块 技术领域
本发明涉及电池技术领域,尤其涉及一种电池模块。
背景技术
电池单体进行成组时,为了便于电连接件连接各个电池单体上的正负电极,现有技术中都是将电池单体正负极朝向一致放置,进而避免电池单体正负极交错布置时,由于放错电池单体的方向,而导致电连接错误发生短路的情况。
而现有的电池模组的电极连接件的总正极和总负极在电池模组的同一侧,因此容易造成电连接的空间不足操作困难,以及导致电池模组的安全性较低等问题。
发明内容
本发明提供一种电池模块,用以解决现有的电连接件结构单一的问题。
为实现上述目的,发明人提供了一种电池模块,包括第一电池单体排列结构、第二电池单体排列结构和汇流排阵列。所述第一电池单体排列结构和所述第二电池单体排列结构沿竖直方向上层叠。所述第一电池单体排列结构与所述第二电池单体排列结构均包括沿水平方向排列的多个电池单体,所述电池单体包括第一电极端子、第二电极端子和电池壳体,所述第一电极端子和所述第二电极端子设置于所述电池壳体的表面。所述汇流排阵列将多个所述电池单体电连接。所述汇流排阵列包括第一汇流排,所述第一汇流排一端连接于所述第一电池单体排列结构的所述第一电极端子,所述第一汇流排的另一端连接于所述第二电池单体排列结构的所述第二电极端子,且所述第一汇流排沿第一方向延伸,所述第一方向与所述水平方向及所述竖直方向相交。
作为本发明的一种优选结构,所述第一电池单体排列结构与所述第二电池单体排列结构层叠后组成一个模块,所述一个模块沿所述水平方向的尺寸大于所述一个模块沿所述竖直方向的尺寸。
作为本发明的一种优选结构,所述电池单体还包括电极组件,所述电极组件容纳于所述电池壳体内。所述电极组件包括第一极片、第二极片以及设置于所述第一极片和所述第二极片之间的隔膜,所述第一电极端子与所述第一极片电连接,所述第二电极端子与所述第二极片电连接。所述电极组件为卷绕式结构且为扁平状,所述电极组件的外表面包括两个扁平面,两个所述扁平面沿所述竖直方向相互面对;或,所述电极组件为叠片式结构,所述第一极片、所述隔膜和所述第二极片沿所述竖直方向层叠。
作为本发明的一种优选结构,所述第一汇流排包括第一端部、过渡部和第二端部,所述第一端部与所述第一电极端子连接,所述第二端部与所述第二电极端子连接,所述过渡部将所述第一端部和所述第二端部连接。
作为本发明的一种优选结构,所述电池壳体上设置有防爆阀,所述防爆阀设置于所述第一电极端子和所述第二电极端子之间,所述第一汇流排与所述防爆阀避让设置。
作为本发明的一种优选结构,所述过渡部设置于所述竖直方向层叠的两个所述电池单体的所述防爆阀之间。
作为本发明的一种优选结构,所述过渡部上设置有沿所述水平方向贯通所述过渡部的安装开口。
作为本发明的一种优选结构,所述第一汇流排的平行于所述竖直方向和所述水平方向的截面的形状为“S”型结构。
作为本发明的一种优选结构,所述汇流排阵列还包括第二汇流排,所述第二汇流排沿着所述水平方向延伸,所述第二汇流排的两端分别连接所述水平方向相邻的两个所述电池单体,所述第二汇流排的数量为奇数。
作为本发明的一种优选结构,所述汇流排阵列还包括第三汇流排,所述第三汇流排沿着第二方向延伸,所述第二汇流排一端连接于所述第一电池单体排列结构的所述电池单体的所述第一电极端子,所述第二汇流排的另一端连接于所述第二电池单体排列结构的所述电池单体的所述第二电极端子,所述第二方向与所述第一方向沿着垂直于所述水平方向的竖直平面对称。
作为本发明的一种优选结构,所述电池模块还包括总正电极连接片和总负电极连接片,所述正电极连接片电连接于所述电池模块的总正极,所述总负电极连接片电连接所述电池模块的总负极。所述总正电极连接片和所述总负电极连接片分别位于所述电池模块沿所述水平方向的两端。
作为本发明的一种优选结构,所述总正电极连接片和所述总负电极连接片均连接于第一电池单体排列结构。
作为本发明的一种优选结构,所述电池壳体包括两个第一表面和两个第二表面,所述第一表面的面积大于所述第二表面的面积。在所述电池单体中,所述两个第二表面沿所述水平方向相互面对,所述两个第一表面沿所述竖直方向相互面对。
区别于现有技术,上述技术方案的第一电池单体排列结构与第二电池单体排列结通过电池单体沿着水平方向堆叠,同时其自身在竖直方向层叠,并使用汇流排阵列的第一汇流排将第一电池单体排列结构与第二电池单体排列结的电池单体进行依次连接。使得电池模块的总正极和总负极位于电池模块的两端,极大的降低了电池模块短路的可能,提高电池模块的安全性。
附图说明
图1为本发明的电池模块的结构图;
图2为本发明的电池模块的示意图;
图3为本发明的电池模块的电池单体的爆炸图;
图4为本发明的电池模块的具有卷绕式结构的电池单体的剖视图;
图5为本发明的电池模块的具有叠片式结构的电池单体的剖视图;
图6为本发明的电池模块的第一汇流排的结构图。
附图标记说明:
1、第一电池单体排列结构;
11、电池单体;
11a、卷绕式结构电极组件;11b、叠片式结构电极组件;
111、电极组件;112、电池壳体;113、第一电极端子;
114、第二电极端子;115、防爆阀;
1110、扁平面;1111、第一极片;1112、第二极片;
1113、隔膜;1121、第一表面;1122、第二表面;
2、第二电池单体排列结构;
3、汇流排阵列;
31、第一汇流排;32、第二汇流排;33、第三汇流排;
311、第一端部;312、过渡部;313、第二端部;314、安装开口;
4、总正电极连接片;
5、总负电极连接片;
L为第一电池单体排列结构和第二电池单体排列结构的长度;
H为第一电池单体排列结构和第二电池单体排列结构层叠时的高度:
具体实施方式
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二” 等仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“多个”是指两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本申请的描述中,所有附图中箭头X所指方向为长度方向,箭头Y所指方向为宽度方向,箭头Z所指方向为竖直方向。水平方向为平行于水平面的方向,既可以是上述长度方向也可以是上述宽度方向。另外,水平方向不仅包括绝对平行于水平面的方向,也包括了工程上常规认知的大致平行于水平面的方向。竖直方向为垂直于水平面的方向,竖直方向不仅包括绝对垂直于水平面的方向,也包括了工程上常规认知的大致垂直于水平面的方向。此外,本申请描述的“上”、“下”、“顶”、“底”等方位词均是相对于竖直方向来进行理解的。为了便于理解和说明,下文中会根据附图内的X、Y、Z坐标系进行方向的描述。
请参阅图1,本发明提供一种电池模块,包括第一电池单体排列结构1、第二电池单体排列结构2和汇流排阵列3。第一电池单体排列结构1由多个电池单体11平行于垂直面(Z轴与Y轴所在面)邻接,并沿着水平方向(X轴方向)单层排列;同理第二电池单体排列结构2中的所有电池单体11也平行于垂直面(Z轴与Y轴所在面)邻接,并沿着水平方向(X轴方向)单层排列。因此当第一电池单体排列结构1与第二电池单体排列结构2沿着竖直方向(Z轴方向)层叠后,电池模块为两层结构,再使用汇流排阵列3对第一电池单体排列结构1和第二电池单体排列结构2中的电池单体11进行依次连接。而且,第一电池单体排列结构1与第二电池单体排列结构2沿着水平方向(X轴方向)排列后的尺寸在本实施例中相同,其长度尺寸会大于其层叠后竖直方向(Z轴方向)的尺寸。设第一电池单体排列结构和第二电池单体排列结构的 长度为L,而第一电池单体排列结构和第二电池单体排列结构层叠时的高度为H,而L的尺寸会大于H的尺寸。使得在连接布置汇流排阵列3后,可以使得电池模块的总正电极连接片4和总负电极连接片5分别位于电池模块的两端上,极大的避免了电池模块短路的可能。
如图2所示,第二汇流排32串联在水平方向(X轴方向)相邻两个电池单体11,且第二汇流排32沿着水平方向(X轴方向)延伸,因此当第二汇流排32为奇数时,位于电池模块两端的总正电极连接片和总负电极连接片,会位于同一个电池单体排列结构上,本实施例中其会位于第一电池单体排列结构1的两端上。而当第二汇流排32为偶数时,则电池模块两端的总正电极连接片和总负电极连接片,会位于不同的电池单体排列结构上,即总正电极连接片和总负电极连接片会分别位于第一电池单体排列结构1与第二电池单体排列结构2上。因此,都可以达到将电池模组的总正电极连接片和总负电极连接片分开,极大的避免了电池模组短路的问题。
如图2所示,本实施例中第三汇流排33沿着第二方向延伸(沿着X轴箭头的反方向),而第一汇流排31则沿着第一方向延伸(沿着X轴箭头的方向)。以第二汇流排32的数量为一个进行为例说明,先通过第一汇流排沿着第一方向(X轴方向)依次连接第一电池单体排列结构1与第二电池单体排列结构2,并保留其最后上下层叠的两个电池单体11不连接。将该两个电池单体11旋转180度(绕着Y轴旋转),使得两个相邻的异性电极端子位于同一电池单体排列结构上,再通过第二汇流排进行连接,而最后两个电池单体11则通过第三汇流排33进行连接,使得电池模组的总正电极连接片和总负电极连接片位于同一电池单体排列结构上,便于对电池模组与电池模组之间的电连接。
如图3所示,电池单体11包括电极组件111、电池壳体112、第一电极端子113、第二电极端子114和防爆阀115,电极组件111包括第一极片1111、第二极片1112以及设置于第一极片1111和第二极片1112之间的隔膜1113。 第一极片1111可以是正极片或负极片,第二极片1112与第一极片1111的极性相反,相应地,第二极片1112为负极片或正极片。示例性地以第一极片1111为正极片,第二极片1112为负极片进行说明。同样地,在其他的实施例中,第一极片1111还可以为负极片,而第二极片1112为正极片。其中,隔膜1113是介于第一极片1111和第二极片1112之间的绝缘体。
电池壳体112为六面体结构,电池壳体112包括两个第一表面1121和两个第二表面1122,第一表面1121的面积大于第二表面1122的面积。在电池单体11中,每个电池单体11的两个第二表面1122沿水平方向(例如,X轴方向)相互面对,每个电池单体11的两个第一表面1121沿竖直方向(Z轴方向)相互面对。电池壳体112可以由例如铝、铝合金或塑料等材料制造。
实施例中电池壳体112为矩形体(六面体)。电池壳体112具有容纳电极组件111和电解液的内部空间,并且电池壳体112具有开口。电极组件111容纳在电池壳体112内,盖板115覆盖开口,并用于将电极组件111封闭在电池壳体112内。
如图4以及图5所示,电极组件111可以是卷绕式结构电极组件11a,也可以是叠片式结构电极组件11b。如图4所示,当电极组件111为卷绕式结构时,电极组件111为扁平状,并且电极组件111的外表面包括两个扁平面1110,两个扁平面1110沿竖直方向(Z轴方向)相互面对,即扁平面1110与第一表面1121相互面对。电极组件111大致为六面体结构,扁平面1110大致平行于卷绕轴线且为面积最大的外表面。扁平面1110可以只是相对平整的表面,并不要求是纯平面。如图5所示,当电极组件111为叠片式结构时,第一极片1111、隔膜1113和第二极片1112沿竖直方向(Z轴方向)层叠,即第一极片1111的表面与第一表面1121相互面对。
本实施例中第一电极端子113和第二电极端子114位于电池壳体112的同一表面,即第一电极端子113和第二电极端子114安装在电池单体11的盖 板115上。且,第一电极端子113贯穿盖板115与第一极片电连接,第二电极端子114也贯穿盖板115与第二极片电连接。而且,本实施例中电池单体11的第一电极端子113与第二电极端子114之间的间距等于同一电池单体排列结构中相邻电池单体11的相邻第一电极端子113与第二电极端子114之间的间距。
具体的,正极活性物质被涂覆在正极片的涂覆区上,而负极活性物质被涂覆到负极片的涂覆区上。从涂覆区延伸出的未涂覆区则作为极耳,电极组件111包括两个极耳,即正极耳和负极耳,正极耳从正极片的涂覆区延伸出;负极耳从负极片的涂覆区延伸出。正极耳与正电极端子之间通过正极端子连接件电连接,负极耳与负电极端子之间通过负极端子连接件电连接。
而对于防爆阀115则安装在第一电极端子113和第二电极端子114之间的电池单体11的盖板上,在进行安装连接汇流排时,汇流排需要对防爆阀115进行避让设置,避免汇流排对防爆阀115造成遮挡,保证了电池单体11在热失控时防爆阀115可以脱开,不会造成爆炸的情况,具体的避让方式和结构由下文中的汇流排进行说明。
如图6所示,汇流排阵列3包括第一汇流排31、第二汇流排32和第三汇流排33,第一汇流排31为“S”型结构,第一汇流排31包括第一端部311、过渡部312和第二端部313,第一端部311与过渡部312的一端连接,第二端部313与过渡部312的另一端连接,使得第一汇流排31的形状类似“S”型结构,且第一端部311、过渡部312和第二端部313可以一体成型进行制造,提高第一汇流排31的结构稳固性。
本实施例中过渡部312设置于竖直方向(Z轴方向)层叠的两个电池单体11的防爆阀115之间,且过渡部312为直条型的板片结构,使得第一汇流排31通过过渡部312避让开上下层的电池单体11的防爆阀115。如图6所示,第一端部311向上(Z轴朝上的方向)拐角与上层的第一电极端子113连接, 而第二端部313向下(Z轴朝下的方向)拐角与下层的第二电极端子114连接,而上下层的两个电池单体11可以是正对着层叠的关系,也可以是相邻叠放的关系,进而达到对层叠的两个电池单体11的防爆阀115避让的效果。如图6所示,而且为了便于在电池单体11上安装采样部件,在第一汇流排31的过渡部312上开设一个安装开口314,安装开口314在水平方向(X轴方向)上贯通汇流排的两侧面,即在过渡部312的板面设置一个两侧导通的凹槽,因此采样部件可以穿过多个第一汇流排31的安装开口314布置,使得采样部件的局部容置在第一汇流排31的安装开口314,提高了其空间利用率。
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明专利的保护范围之内。

Claims (13)

  1. 一种电池模块,包括:
    沿竖直方向上层叠的第一电池单体排列结构和第二电池单体排列结构,所述第一电池单体排列结构与所述第二电池单体排列结构均包括沿水平方向排列的多个电池单体,所述电池单体包括第一电极端子、第二电极端子和电池壳体,所述第一电极端子和所述第二电极端子设置于所述电池壳体的表面;以及
    汇流排阵列,所述汇流排阵列将多个所述电池单体电连接,所述汇流排阵列包括第一汇流排,所述第一汇流排一端连接于所述第一电池单体排列结构的所述第一电极端子,所述第一汇流排的另一端连接于所述第二电池单体排列结构的所述第二电极端子,且所述第一汇流排沿第一方向延伸,所述第一方向与所述水平方向及所述竖直方向相交。
  2. 根据权利要求1所述的电池模块,所述第一电池单体排列结构与所述第二电池单体排列结构层叠后组成一个模块,所述一个模块沿所述水平方向的尺寸大于所述一个模块沿所述竖直方向的尺寸。
  3. 根据权利要求1或2所述的电池模块,所述电池单体还包括:
    电极组件,所述电极组件容纳于所述电池壳体内,所述电极组件包括第一极片、第二极片以及设置于所述第一极片和所述第二极片之间的隔膜,所述第一电极端子与所述第一极片电连接,所述第二电极端子与所述第二极片电连接;
    所述电极组件为卷绕式结构且为扁平状,所述电极组件的外表面包括两个扁平面,两个所述扁平面沿所述竖直方向相互面对;或,所述电极组件为叠片式结构,所述第一极片、所述隔膜和所述第二极片沿所述竖直方向层叠。
  4. 根据权利要求1-3中任一项所述的电池模块,所述第一汇流排包括第一端部、过渡部和第二端部,所述第一端部与所述第一电极端子连接,所述第二端部与所述第二电极端子连接,所述过渡部将所述第一端部和所述第二 端部连接。
  5. 根据权利要求4所述的电池模块,所述电池壳体上设置有防爆阀,所述防爆阀设置于所述第一电极端子和所述第二电极端子之间,所述第一汇流排与所述防爆阀避让设置。
  6. 根据权利要求5所述的电池模块,所述过渡部设置于所述竖直方向层叠的两个所述电池单体的所述防爆阀之间。
  7. 根据权利要求4-6中任一项所述的电池模块,所述过渡部上设置有沿所述水平方向贯通所述过渡部的安装开口。
  8. 根据权利要求1-7中任一项所述的电池模块,所述第一汇流排的平行于所述竖直方向和所述水平方向的截面的形状为“S”型结构。
  9. 根据权利要求1-8中任一项所述的电池模块,所述汇流排阵列还包括:
    第二汇流排,所述第二汇流排沿着所述水平方向延伸,所述第二汇流排的两端分别连接所述水平方向相邻的两个所述电池单体,所述第二汇流排的数量为奇数。
  10. 根据权利要求9所述的电池模块,所述汇流排阵列还包括:
    第三汇流排,所述第三汇流排沿着第二方向延伸,所述第二汇流排一端连接于所述第一电池单体排列结构的所述电池单体的所述第一电极端子,所述第二汇流排的另一端连接于所述第二电池单体排列结构的所述电池单体的所述第二电极端子,所述第二方向与所述第一方向沿着垂直于所述水平方向的竖直平面对称。
  11. 根据权利要求1-10中任一项所述的电池模块,
    所述电池模块还包括总正电极连接片和总负电极连接片,所述正电极连接片电连接于所述电池模块的总正极,所述总负电极连接片电连接所述电池模块的总负极;
    所述总正电极连接片和所述总负电极连接片分别位于所述电池模块沿所 述水平方向的两端。
  12. 根据权利要求11所述的电池模块,所述总正电极连接片和所述总负电极连接片均连接于第一电池单体排列结构。
  13. 根据权利要求1-12中任一项所述的电池模块,
    所述电池壳体包括两个第一表面和两个第二表面,所述第一表面的面积大于所述第二表面的面积;
    在所述电池单体中,所述两个第二表面沿所述水平方向相互面对,所述两个第一表面沿所述竖直方向相互面对。
PCT/CN2020/072265 2019-01-18 2020-01-15 电池模块 WO2020147755A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20740834.5A EP3800701B1 (en) 2019-01-18 2020-01-15 Battery module
US17/139,814 US11532857B2 (en) 2019-01-18 2020-12-31 Battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920084533.0 2019-01-18
CN201920084533.0U CN209730034U (zh) 2019-01-18 2019-01-18 一种电池模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/139,814 Continuation US11532857B2 (en) 2019-01-18 2020-12-31 Battery module

Publications (1)

Publication Number Publication Date
WO2020147755A1 true WO2020147755A1 (zh) 2020-07-23

Family

ID=68680313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072265 WO2020147755A1 (zh) 2019-01-18 2020-01-15 电池模块

Country Status (5)

Country Link
US (1) US11532857B2 (zh)
EP (1) EP3800701B1 (zh)
CN (1) CN209730034U (zh)
HU (1) HUE060844T2 (zh)
WO (1) WO2020147755A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209730034U (zh) * 2019-01-18 2019-12-03 宁德时代新能源科技股份有限公司 一种电池模块
WO2021196169A1 (zh) 2020-04-03 2021-10-07 宁德时代新能源科技股份有限公司 电池模块、电池包以及使用电池作为电源的装置
CN112310575B (zh) * 2020-04-03 2022-11-29 宁德时代新能源科技股份有限公司 电池模块、电池组及使用二次电池的装置
CN113036313B (zh) * 2021-03-05 2023-03-21 中创新航技术研究院(江苏)有限公司 一种电池模组
US11791515B2 (en) 2021-08-18 2023-10-17 Beta Air, Llc Battery assembly for an aircraft
WO2023133749A1 (zh) * 2022-01-13 2023-07-20 宁德时代新能源科技股份有限公司 电池、用电设备、制备电池的方法和设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182583A (ja) * 1998-12-18 2000-06-30 Sony Corp 電池セル接続体及び移動体搭載用バッテリ装置
CN101809786A (zh) * 2007-09-28 2010-08-18 株式会社东芝 电池组
CN103137936A (zh) * 2011-11-23 2013-06-05 株式会社电装 电池组
CN108666462A (zh) * 2017-03-30 2018-10-16 奥动新能源汽车科技有限公司 动力电池模组
CN108666515A (zh) * 2017-03-30 2018-10-16 奥动新能源汽车科技有限公司 汇流板及含其的电池模组
CN208173649U (zh) * 2017-03-29 2018-11-30 日立汽车系统株式会社 电池包
CN209730034U (zh) * 2019-01-18 2019-12-03 宁德时代新能源科技股份有限公司 一种电池模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568915B2 (en) * 2006-08-11 2013-10-29 Johnson Controls—SAFT Power Solutions LLC Battery with integrally formed terminal
US11660971B2 (en) 2006-11-07 2023-05-30 Clarios Advanced Solutions Llc System for arranging and coupling battery cells in a battery module
US8647766B2 (en) * 2010-06-22 2014-02-11 Ford Global Technologies, Llc Voltage detection in a battery
KR20180048030A (ko) * 2016-11-02 2018-05-10 삼성에스디아이 주식회사 이차 전지 및 그 모듈

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182583A (ja) * 1998-12-18 2000-06-30 Sony Corp 電池セル接続体及び移動体搭載用バッテリ装置
CN101809786A (zh) * 2007-09-28 2010-08-18 株式会社东芝 电池组
CN103137936A (zh) * 2011-11-23 2013-06-05 株式会社电装 电池组
CN208173649U (zh) * 2017-03-29 2018-11-30 日立汽车系统株式会社 电池包
CN108666462A (zh) * 2017-03-30 2018-10-16 奥动新能源汽车科技有限公司 动力电池模组
CN108666515A (zh) * 2017-03-30 2018-10-16 奥动新能源汽车科技有限公司 汇流板及含其的电池模组
CN209730034U (zh) * 2019-01-18 2019-12-03 宁德时代新能源科技股份有限公司 一种电池模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3800701A4 *

Also Published As

Publication number Publication date
HUE060844T2 (hu) 2023-04-28
US11532857B2 (en) 2022-12-20
EP3800701A4 (en) 2021-10-13
EP3800701B1 (en) 2022-11-02
EP3800701A1 (en) 2021-04-07
US20210126321A1 (en) 2021-04-29
CN209730034U (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2020147755A1 (zh) 电池模块
CN209447876U (zh) 一种电池模组
US9166216B2 (en) Rechargeable battery and module thereof
EP2849262B1 (en) Battery cell of irregular structure and battery module comprising same
WO2020177721A1 (zh) 一种电池模块及电池包
EP2562842B1 (en) Battery module
WO2020140644A1 (zh) 一种电池模块、电池包及车辆
WO2020140334A1 (zh) 一种电池单体组件、电池模块及电池包
US10468647B2 (en) Battery pack
CN106605317B (zh) 组电池
JP2011243561A (ja) バッテリーパック
WO2020140643A1 (zh) 一种电池包及车辆
US20110200867A1 (en) Modular battery with battery cell having bimetallic end plates
CN209447949U (zh) 一种电池模块及电池包
WO2021174403A1 (zh) 电池、电池模组、电池包、电动车、储能装置和电动工具
WO2020134745A1 (zh) 二次电池、电池模组以及二次电池的制造方法
JP2014207097A (ja) 電池パック
US12009546B2 (en) Battery module and battery pack
WO2023115744A1 (zh) 一种便于成组的锂离子电池
KR102358434B1 (ko) 이차 전지
WO2020133673A1 (zh) 二次电池以及电池模组
WO2023115743A1 (zh) 一种方壳锂离子电池
WO2020070773A1 (ja) 電池モジュール及び電池パック
CN113675543A (zh) 一种电芯、电池组及用电设备
JP2019212561A (ja) 蓄電装置及び組電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020740834

Country of ref document: EP

Effective date: 20201230

NENP Non-entry into the national phase

Ref country code: DE