WO2020147695A1 - 一种信号发送、接收方法及设备 - Google Patents

一种信号发送、接收方法及设备 Download PDF

Info

Publication number
WO2020147695A1
WO2020147695A1 PCT/CN2020/071844 CN2020071844W WO2020147695A1 WO 2020147695 A1 WO2020147695 A1 WO 2020147695A1 CN 2020071844 W CN2020071844 W CN 2020071844W WO 2020147695 A1 WO2020147695 A1 WO 2020147695A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
length
synchronization signal
mod
resource units
Prior art date
Application number
PCT/CN2020/071844
Other languages
English (en)
French (fr)
Inventor
郑娟
李超君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20741240.4A priority Critical patent/EP3902356A4/en
Publication of WO2020147695A1 publication Critical patent/WO2020147695A1/zh
Priority to US17/377,537 priority patent/US20210345335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0003Code application, i.e. aspects relating to how codes are applied to form multiplexed channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • H04J2011/0016Combination with other multiplexing techniques with FDM/FDMA and TDM/TDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0077Multicode, e.g. multiple codes assigned to one user
    • H04J2013/0088Multicode, e.g. multiple codes assigned to one user with FDM/FDMA and TDM/TDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J2013/0096Network synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L23/00Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
    • H04L23/02Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00 adapted for orthogonal signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for signal sending and receiving.
  • a terminal device accesses a wireless communication system, such as a long term evolution (LTE) system or a new radio (NR) system, it needs to synchronize with the network equipment under the wireless communication system. That is, the synchronization information of the network device is obtained by detecting the synchronization channel.
  • the synchronization information may include time synchronization information and/or frequency synchronization information, and may also obtain information about the cell under the jurisdiction of the network device, so as to ensure that the subsequent communication with the network device Perform normal data communication.
  • synchronization channels are designed separately for terminal devices of different capabilities, and different synchronization channels are independent of each other.
  • NB-IoT internet of things
  • the frequency domain broadband can be used for the frequency domain broadband.
  • the synchronization channel of 6 resource blocks (RB) is connected to the LTE system.
  • the NB-IoT terminal device can access the NB-IoT system through the synchronization channel of 1 RB in the frequency domain broadband.
  • the embodiments of the present application provide a signal sending and receiving method and device for improving resource utilization.
  • a signal sending method comprising: generating a synchronization signal, the synchronization signal including a first synchronization signal and a second synchronization signal; sending the synchronization signal, wherein the first synchronization signal and the synchronization signal The second synchronization signal overlaps in the time domain, and within the time domain resources where the first synchronization signal and the second synchronization signal overlap, the frequency domain resource corresponding to the first synchronization signal and the first synchronization signal The frequency domain resources corresponding to the two synchronization signals have an intersection.
  • the method may be executed by a first communication device.
  • the first communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, and of course, it may also be another communication device, such as a chip system.
  • the first communication device is a network device.
  • the frequency domain resources corresponding to the first synchronization signal and the frequency domain resources corresponding to the second synchronization signal have an intersection, which is equivalent to,
  • the two synchronization signals are not completely independent, but partially overlap in the frequency domain, which can reduce the frequency domain resources occupied by the synchronization signal, thereby saving frequency domain resources for other data transmission processes, and the two synchronization signals Part of frequency domain resources can also be shared, which improves resource utilization.
  • different synchronization channels are not completely independent, but partially overlapped, which can also reduce the implementation complexity to a certain extent.
  • the frequency domain resource corresponding to the second synchronization signal is M resource units
  • the frequency domain resource corresponding to the first synchronization signal is K*M Resource units
  • M is a positive integer
  • K is an integer greater than 1
  • K is greater than 1
  • K can be an integer or a decimal.
  • the frequency domain resources corresponding to the second synchronization signal be M resource units, and the frequency domain resources corresponding to the first synchronization signal are K*M resource units, so that the sequence for generating the second synchronization signal is the sequence for generating the first synchronization signal Or the sequence for generating the first synchronization signal can be obtained according to the sequence for generating the second synchronization signal, etc., which reduces the complexity of generating the synchronization signal.
  • the first synchronization signal is generated according to a first sequence
  • the second synchronization signal is generated according to a second sequence.
  • the synchronization signal may be generated by the network device according to the sequence.
  • the first sequence and/or the second sequence may also be specified through an agreement or other means, and the network device only needs to determine the first sequence and/or the second sequence without generating it.
  • the first sequence is obtained based on the second sequence and the third sequence.
  • the first sequence can be obtained according to the second sequence and the third sequence. If the network device is required to generate the first sequence, the network device only needs to know the second sequence and the third sequence to generate the first sequence, which is relatively simple. Of course, the first sequence may also be specified by agreement or other means, and the network device only needs to determine the first sequence without generating it.
  • the first sequence is obtained according to the second sequence and the third sequence, and includes at least one of the following:
  • the K*L length of the first sequence is obtained according to the K*N length sequence, and the K*N length of the sequence is obtained according to the N length of the second sequence and the K length of the fifth sequence;
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the fourth sequence of L length is obtained based on the second sequence of N length;
  • the first sequence of K*L length is obtained according to the sequence of H*N length
  • the sequence of H*N length is obtained according to the second sequence of N length and the third sequence of H length ;or
  • the first sequence of K*L length is obtained from the sequence of H*L length, and the sequence of H*L length is obtained from the fourth sequence of L length and the third sequence of H length, so The L-long fourth sequence is obtained based on the N-long second sequence;
  • the K-length fifth sequence is obtained from the H-length third sequence
  • the L-long fourth sequence is obtained from the N-length second sequence
  • L is the M The number of subcarriers included in the resource unit.
  • the network device does not need to perform the step of obtaining the fifth sequence from the third sequence. .
  • the second sequence can be directly used as the fourth sequence. In this case, the network device does not need to execute the fourth sequence obtained from the second sequence. step.
  • the first sequence with a length of K*L is obtained based on a fourth sequence with a length of L and a fifth sequence with a length of K.
  • the fourth sequence of is obtained from the second sequence of N length;
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with K*L length The sequence is ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,...,a L-1 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a L-1 b 1 ,...,A 0 b K-1 ,a 1 b K-1 ,a 2 b K-1 ,..., a L-1 b K-1 ⁇ ; or,
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with a length of K*L is obtained according to a sequence of H*N length
  • the sequence with a length of H*N is obtained according to N Obtained from the long second sequence and the H long third sequence;
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ m 0 n 0 ,m 1 n 0 ,m 2 n 0 ,...,m N-1 n 0 ,m 0 n 1 ,m 1 n 1 ,m 2 n 1 ,...,m N-1 n 1 , ...,M 0 n H-1 ,m 1 n H-1 ,m 2 n H-1 ,...,m N-1 n H-1 ⁇ ; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ p i m i mod N n i mod H 0 ⁇ i ⁇ H*N-1 ⁇ , where mod is the remainder operator; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the third sequence is an all-one sequence or an orthogonal sequence.
  • the third sequence is an all-one sequence or an orthogonal sequence, and it is relatively simple to generate the first sequence.
  • the embodiment of the present application does not limit the third sequence to other sequences.
  • the frequency domain resource corresponding to the second synchronization signal is M resource units
  • the frequency domain resource corresponding to the first synchronization signal is K*M Resource units
  • M and K are both positive integers
  • the third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and each of them The sequence carried by each part is the same as the sequence carried on the M resource units corresponding to the second synchronization signal.
  • the first sequence is the sequence obtained by "stretching" the second sequence.
  • the first sequence can be obtained according to the second sequence and a simple sequence of all ones.
  • the sequence is relatively simple.
  • all elements included in the first sequence have the same amplitude, and the second sequence is a part of the first sequence.
  • sequence element as the constant amplitude sequence element is that the sequence obtained after such a sequence undergoes DFT or IDFT has ideal autocorrelation characteristics, which facilitates the terminal device to quickly synchronize with the network device.
  • the second sequence is a part of the first sequence, the system does not need to separately design synchronization sequences for broadband terminal equipment and narrowband terminal equipment, which simplifies the design on the system side.
  • the first sequence is an m sequence.
  • the first sequence can be an m-sequence of constant amplitude, of course, it can also be other sequences.
  • a signal receiving method includes: receiving a first synchronization signal from a network device, wherein the first synchronization signal and the second synchronization signal overlap in the time domain and are In the time domain resource where a synchronization signal and the second synchronization signal overlap, the frequency domain resource corresponding to the first synchronization signal and the frequency domain resource corresponding to the second synchronization signal have an intersection; according to the first synchronization The signal is synchronized with the network device; wherein the second synchronization signal corresponds to the network device.
  • the method can be executed by a second communication device.
  • the second communication device can be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, and of course, it can also be another communication device, such as a chip system.
  • the second communication device is a terminal device.
  • the method further includes: receiving the second synchronization signal from the network device.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units, the frequency domain resources corresponding to the first synchronization signal are K*M resource units, M is a positive integer, and K is an integer greater than 1; or,
  • the frequency domain resources corresponding to the first synchronization signal are M resource units
  • the frequency domain resources corresponding to the second synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1.
  • the K is greater than 1, and K can be an integer or a decimal
  • the first synchronization signal is generated according to a first sequence
  • the second synchronization signal is generated according to a second sequence
  • the first synchronization signal is generated according to the second sequence, and the second synchronization signal is generated according to the first sequence.
  • the first sequence is obtained based on the second sequence and the third sequence.
  • the first sequence is obtained based on the second sequence and the third sequence, and includes at least one of the following:
  • the K*L length of the first sequence is obtained according to the K*N length sequence, and the K*N length of the sequence is obtained according to the N length of the second sequence and the K length of the fifth sequence;
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the fourth sequence of L length is obtained based on the second sequence of N length;
  • the first sequence of K*L length is obtained according to the sequence of H*N length
  • the sequence of H*N length is obtained according to the second sequence of N length and the third sequence of H length ;or
  • the first sequence of K*L length is obtained from the sequence of H*L length, and the sequence of H*L length is obtained from the fourth sequence of L length and the third sequence of H length, so The L-long fourth sequence is obtained based on the N-long second sequence;
  • the K-length fifth sequence is obtained from the H-length third sequence
  • the L-long fourth sequence is obtained from the N-length second sequence
  • L is the M The number of subcarriers included in the resource unit.
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length.
  • the fourth sequence of is obtained from the second sequence of N length;
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with K*L length The sequence is ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,...,a L-1 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a L-1 b 1 ,...,A 0 b K-1 ,a 1 b K-1 ,a 2 b K-1 ,..., a L-1 b K-1 ⁇ ; or,
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with a length of K*L is obtained according to a sequence of H*N length
  • the sequence with a length of H*N is obtained according to N Obtained from the long second sequence and the H long third sequence;
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ m 0 n 0 ,m 1 n 0 ,m 2 n 0 ,...,m N-1 n 0 ,m 0 n 1 ,m 1 n 1 ,m 2 n 1 ,...,m N-1 n 1 , ...,M 0 n H-1 ,m 1 n H-1 ,m 2 n H-1 ,...,m N-1 n H-1 ⁇ ; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ p i m i mod N n i mod H 0 ⁇ i ⁇ H*N-1 ⁇ , where mod is the remainder operator; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the third sequence is an all-one sequence or an orthogonal sequence.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units
  • the frequency domain resources corresponding to the first synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1
  • the The third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and the sequence carried by each part of them corresponds to the second synchronization signal
  • the sequences carried on M resource units are the same; or,
  • the frequency domain resources corresponding to the first synchronization signal are M resource units
  • the frequency domain resources corresponding to the second synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1
  • the The third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and the sequence carried by each part of them corresponds to the first synchronization signal
  • the sequences carried on the M resource units are the same.
  • all elements included in the first sequence have the same amplitude, and the second sequence is a part of the first sequence.
  • the first sequence is an m sequence.
  • a first communication device is provided, for example, the communication device is the first communication device as described above.
  • the communication device is configured to execute the foregoing first aspect or any possible implementation of the first aspect.
  • the communication device may include a module for executing the method in the first aspect or any possible implementation of the first aspect, for example, including a processing module and a transceiver module coupled with each other.
  • the communication device is a network device. among them,
  • the processing module is configured to generate a synchronization signal, the synchronization signal including a first synchronization signal and a second synchronization signal;
  • the transceiver module is configured to send the synchronization signal, where the first synchronization signal and the second synchronization signal overlap in the time domain, and the first synchronization signal and the second synchronization signal In the overlapping time domain resources, the frequency domain resources corresponding to the first synchronization signal and the frequency domain resources corresponding to the second synchronization signal have an intersection.
  • the frequency domain resource corresponding to the second synchronization signal is M resource units
  • the frequency domain resource corresponding to the first synchronization signal is K*M Resource units
  • M is a positive integer
  • K is an integer greater than 1.
  • the first synchronization signal is generated according to a first sequence
  • the second synchronization signal is generated according to a second sequence.
  • the first sequence is obtained based on the second sequence and the third sequence.
  • the first sequence is obtained based on the second sequence and the third sequence, and includes at least one of the following:
  • the K*L length of the first sequence is obtained according to the K*N length sequence, and the K*N length of the sequence is obtained according to the N length of the second sequence and the K length of the fifth sequence;
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the fourth sequence of L length is obtained based on the second sequence of N length;
  • the first sequence of K*L length is obtained according to the sequence of H*N length
  • the sequence of H*N length is obtained according to the second sequence of N length and the third sequence of H length ;or
  • the first sequence of K*L length is obtained from the sequence of H*L length, and the sequence of H*L length is obtained from the fourth sequence of L length and the third sequence of H length, so The L-long fourth sequence is obtained based on the N-long second sequence;
  • the K-length fifth sequence is obtained from the H-length third sequence
  • the L-long fourth sequence is obtained from the N-length second sequence
  • L is the M The number of subcarriers included in the resource unit.
  • the first sequence with a length of K*L is obtained based on a fourth sequence with a length of L and a fifth sequence with a length of K.
  • the fourth sequence of is obtained from the second sequence of N length;
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with K*L length The sequence is ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,...,a L-1 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a L-1 b 1 ,...,A 0 b K-1 ,a 1 b K-1 ,a 2 b K-1 ,..., a L-1 b K-1 ⁇ ; or,
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with a length of K*L is obtained according to a sequence of H*N length
  • the sequence with a length of H*N is obtained according to N Obtained from the long second sequence and the H long third sequence;
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ m 0 n 0 ,m 1 n 0 ,m 2 n 0 ,...,m N-1 n 0 ,m 0 n 1 ,m 1 n 1 ,m 2 n 1 ,...,m N-1 n 1 , ...,M 0 n H-1 ,m 1 n H-1 ,m 2 n H-1 ,...,m N-1 n H-1 ⁇ ; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ p i m i mod N n i mod H 0 ⁇ i ⁇ H*N-1 ⁇ , where mod is the remainder operator; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the third sequence is an all-one sequence or an orthogonal sequence.
  • the frequency domain resource corresponding to the second synchronization signal is M resource units
  • the frequency domain resource corresponding to the first synchronization signal is K*M Resource units
  • M and K are both positive integers
  • the third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and each of them The sequence carried by each part is the same as the sequence carried on the M resource units corresponding to the second synchronization signal.
  • all elements included in the first sequence have the same amplitude, and the second sequence is a part of the first sequence.
  • the first sequence is an m sequence.
  • a second communication device is provided, for example, the communication device is the second communication device as described above.
  • the communication device is used to execute the foregoing second aspect or any possible implementation of the second aspect.
  • the communication device may include a module for executing the method in the second aspect or any possible implementation of the second aspect, for example, including a processing module and a transceiver module that are coupled with each other.
  • the communication device is a terminal device. among them,
  • the transceiver module is configured to receive a first synchronization signal from a network device, wherein the first synchronization signal and the second synchronization signal overlap in the time domain, and the first synchronization signal and the second synchronization signal overlap each other in the time domain.
  • the frequency domain resources corresponding to the first synchronization signal and the frequency domain resources corresponding to the second synchronization signal have an intersection;
  • the processing module is configured to synchronize with the network device according to the first synchronization signal
  • the second synchronization signal corresponds to the network device.
  • the transceiver module is further configured to receive the second synchronization signal from the network device.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units, the frequency domain resources corresponding to the first synchronization signal are K*M resource units, M is a positive integer, and K is an integer greater than 1; or,
  • the frequency domain resources corresponding to the first synchronization signal are M resource units
  • the frequency domain resources corresponding to the second synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1.
  • the first synchronization signal is generated according to a first sequence
  • the second synchronization signal is generated according to a second sequence
  • the first synchronization signal is generated according to the second sequence, and the second synchronization signal is generated according to the first sequence.
  • the first sequence is obtained based on the second sequence and the third sequence.
  • the first sequence is obtained based on the second sequence and the third sequence, and includes at least one of the following:
  • the K*L length of the first sequence is obtained according to the K*N length sequence, and the K*N length of the sequence is obtained according to the N length of the second sequence and the K length of the fifth sequence;
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the fourth sequence of L length is obtained based on the second sequence of N length;
  • the first sequence of K*L length is obtained according to the sequence of H*N length
  • the sequence of H*N length is obtained according to the second sequence of N length and the third sequence of H length ;or
  • the first sequence of K*L length is obtained from the sequence of H*L length, and the sequence of H*L length is obtained from the fourth sequence of L length and the third sequence of H length, so The L-long fourth sequence is obtained based on the N-long second sequence;
  • the K-length fifth sequence is obtained from the H-length third sequence
  • the L-long fourth sequence is obtained from the N-length second sequence
  • L is the M The number of subcarriers included in the resource unit.
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the L length
  • the fourth sequence of is obtained from the second sequence of N length;
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with K*L length The sequence is ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,...,a L-1 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a L-1 b 1 ,...,A 0 b K-1 ,a 1 b K-1 ,a 2 b K-1 ,..., a L-1 b K-1 ⁇ ; or,
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with a length of K*L is obtained according to a sequence of H*N length
  • the sequence with a length of H*N is obtained according to N Obtained from the long second sequence and the H long third sequence;
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ m 0 n 0 ,m 1 n 0 ,m 2 n 0 ,...,m N-1 n 0 ,m 0 n 1 ,m 1 n 1 ,m 2 n 1 ,...,m N-1 n 1 , ...,M 0 n H-1 ,m 1 n H-1 ,m 2 n H-1 ,...,m N-1 n H-1 ⁇ ; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ p i m i mod N n i mod H 0 ⁇ i ⁇ H*N-1 ⁇ , where mod is the remainder operator; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the third sequence is an all-one sequence or an orthogonal sequence.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units
  • the frequency domain resources corresponding to the first synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1
  • the The third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and the sequence carried by each part of them corresponds to the second synchronization signal
  • the sequences carried on M resource units are the same; or,
  • the frequency domain resources corresponding to the first synchronization signal are M resource units
  • the frequency domain resources corresponding to the second synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1
  • the The third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and the sequence carried by each part of them corresponds to the first synchronization signal
  • the sequences carried on the M resource units are the same.
  • all elements included in the first sequence have the same amplitude, and the second sequence is a part of the first sequence.
  • the first sequence is an m sequence.
  • a third communication device is provided.
  • the communication device is, for example, the first communication device described above.
  • the communication device includes a processor and a transceiver, and is used to implement the method described in the first aspect or various possible designs of the first aspect.
  • the communication device is a chip provided in a communication device.
  • the communication device is a network device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec, etc. in the communication device, or if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. Connect with the radio frequency transceiving component in the communication equipment, so as to realize the sending and receiving of information through the radio frequency transceiving component. among them,
  • the processor is configured to generate a synchronization signal, the synchronization signal including a first synchronization signal and a second synchronization signal;
  • the transceiver is configured to send the synchronization signal, wherein the first synchronization signal and the second synchronization signal overlap in the time domain, and the first synchronization signal and the second synchronization signal In the overlapping time domain resources, the frequency domain resources corresponding to the first synchronization signal and the frequency domain resources corresponding to the second synchronization signal have an intersection.
  • the frequency domain resource corresponding to the second synchronization signal is M resource units
  • the frequency domain resource corresponding to the first synchronization signal is K*M Resource units
  • M is a positive integer
  • K is an integer greater than 1.
  • the first synchronization signal is generated according to a first sequence
  • the second synchronization signal is generated according to a second sequence.
  • the first sequence is obtained based on the second sequence and the third sequence.
  • the first sequence is obtained based on the second sequence and the third sequence, and includes at least one of the following:
  • the K*L length of the first sequence is obtained according to the K*N length sequence, and the K*N length of the sequence is obtained according to the N length of the second sequence and the K length of the fifth sequence;
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the fourth sequence of L length is obtained based on the second sequence of N length;
  • the first sequence of K*L length is obtained according to the sequence of H*N length
  • the sequence of H*N length is obtained according to the second sequence of N length and the third sequence of H length ;or
  • the first sequence of K*L length is obtained from the sequence of H*L length, and the sequence of H*L length is obtained from the fourth sequence of L length and the third sequence of H length, so The L-long fourth sequence is obtained based on the N-long second sequence;
  • the K-length fifth sequence is obtained from the H-length third sequence
  • the L-long fourth sequence is obtained from the N-length second sequence
  • L is the M The number of subcarriers included in the resource unit.
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the L length
  • the fourth sequence of is obtained from the second sequence of N length;
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with K*L length The sequence is ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,...,a L-1 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a L-1 b 1 ,...,A 0 b K-1 ,a 1 b K-1 ,a 2 b K-1 ,..., a L-1 b K-1 ⁇ ; or,
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with a length of K*L is obtained according to the sequence of H*N length, and the sequence with a length of H*N is obtained according to N Obtained from the long second sequence and the H long third sequence;
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ m 0 n 0 ,m 1 n 0 ,m 2 n 0 ,...,m N-1 n 0 ,m 0 n 1 ,m 1 n 1 ,m 2 n 1 ,...,m N-1 n 1 , ...,M 0 n H-1 ,m 1 n H-1 ,m 2 n H-1 ,...,m N-1 n H-1 ⁇ ; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ p i m i mod N n i mod H 0 ⁇ i ⁇ H*N-1 ⁇ , where mod is the remainder operator; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the third sequence is an all-one sequence or an orthogonal sequence.
  • the frequency domain resource corresponding to the second synchronization signal is M resource units
  • the frequency domain resource corresponding to the first synchronization signal is K*M Resource units
  • M and K are both positive integers
  • the third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and each of them The sequence carried by each part is the same as the sequence carried on the M resource units corresponding to the second synchronization signal.
  • all elements included in the first sequence have the same amplitude, and the second sequence is a part of the first sequence.
  • the first sequence is an m sequence.
  • a fourth communication device is provided.
  • the communication device is, for example, the second communication device as described above.
  • the communication device includes a processor and a transceiver, and is used to implement the foregoing second aspect or the methods described in various possible designs of the second aspect.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec, etc. in the communication device, or if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. Connect with the radio frequency transceiving component in the communication equipment, so as to realize the sending and receiving of information through the radio frequency transceiving component. among them,
  • the transceiver is configured to receive a first synchronization signal from a network device, where the first synchronization signal and the second synchronization signal overlap in the time domain, and the first synchronization signal and the second synchronization signal overlap each other in the time domain.
  • the frequency domain resources corresponding to the first synchronization signal and the frequency domain resources corresponding to the second synchronization signal have an intersection;
  • the processor is configured to synchronize with the network device according to the first synchronization signal
  • the second synchronization signal corresponds to the network device.
  • the transceiver is further configured to receive the second synchronization signal from the network device.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units, the frequency domain resources corresponding to the first synchronization signal are K*M resource units, M is a positive integer, and K is an integer greater than 1; or,
  • the frequency domain resources corresponding to the first synchronization signal are M resource units
  • the frequency domain resources corresponding to the second synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1.
  • the first synchronization signal is generated according to a first sequence
  • the second synchronization signal is generated according to a second sequence
  • the first synchronization signal is generated according to the second sequence, and the second synchronization signal is generated according to the first sequence.
  • the first sequence is obtained based on the second sequence and the third sequence.
  • the first sequence is obtained according to the second sequence and the third sequence, and includes at least one of the following:
  • the K*L length of the first sequence is obtained according to the K*N length sequence, and the K*N length of the sequence is obtained according to the N length of the second sequence and the K length of the fifth sequence;
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the fourth sequence of L length is obtained based on the second sequence of N length;
  • the first sequence of K*L length is obtained according to the sequence of H*N length
  • the sequence of H*N length is obtained according to the second sequence of N length and the third sequence of H length ;or
  • the first sequence of K*L length is obtained from the sequence of H*L length, and the sequence of H*L length is obtained from the fourth sequence of L length and the third sequence of H length, so The L-long fourth sequence is obtained based on the N-long second sequence;
  • the K-length fifth sequence is obtained from the H-length third sequence
  • the L-long fourth sequence is obtained from the N-length second sequence
  • L is the M The number of subcarriers included in the resource unit.
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length.
  • the fourth sequence of is obtained from the second sequence of N length;
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with K*L length The sequence is ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,...,a L-1 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a L-1 b 1 ,...,A 0 b K-1 ,a 1 b K-1 ,a 2 b K-1 ,..., a L-1 b K-1 ⁇ ; or,
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with a length of K*L is obtained according to a sequence of H*N length
  • the sequence of a length of H*N is obtained according to N Obtained from the long second sequence and the H long third sequence;
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ m 0 n 0 ,m 1 n 0 ,m 2 n 0 ,...,m N-1 n 0 ,m 0 n 1 ,m 1 n 1 ,m 2 n 1 ,...,m N-1 n 1 , ...,M 0 n H-1 ,m 1 n H-1 ,m 2 n H-1 ,...,m N-1 n H-1 ⁇ ; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ p i m i mod N n i mod H 0 ⁇ i ⁇ H*N-1 ⁇ , where mod is the remainder operator; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the third sequence is an all-one sequence or an orthogonal sequence.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units
  • the frequency domain resources corresponding to the first synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1
  • the The third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and the sequence carried by each part of them corresponds to the second synchronization signal
  • the sequences carried on M resource units are the same; or,
  • the frequency domain resources corresponding to the first synchronization signal are M resource units
  • the frequency domain resources corresponding to the second synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1
  • the The third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and the sequence carried by each part of them corresponds to the first synchronization signal
  • the sequences carried on the M resource units are the same.
  • all elements included in the first sequence have the same amplitude, and the second sequence is a part of the first sequence.
  • the first sequence is an m sequence.
  • a fifth communication device is provided.
  • the communication device may be the first communication device in the above method design.
  • the communication device is a chip set in a network device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the fifth communication device is caused to execute the foregoing first aspect or the method in any one of the possible implementation manners of the first aspect.
  • the fifth communication device may also include a communication interface, and the communication interface may be a transceiver in a network device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the fifth communication
  • the device is a chip set in a network device, and the communication interface may be an input/output interface of the chip, such as input/output pins.
  • a sixth communication device is provided.
  • the communication device may be the second communication device in the above method design.
  • the communication device is a chip provided in a terminal device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the sixth communication device executes the second aspect or the method in any one of the possible implementation manners of the second aspect.
  • the sixth communication device may also include a communication interface, and the communication interface may be a transceiver in a terminal device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the sixth communication If the device is a chip set in a terminal device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • a communication system may include the first communication device described in the third aspect, the third communication device described in the fifth aspect, or the fifth communication device described in the seventh aspect , And including the second communication device described in the fourth aspect, the fourth communication device described in the sixth aspect, or the sixth communication device described in the eighth aspect.
  • a computer storage medium stores instructions, which when run on a computer, cause the computer to execute the first aspect or any one of the possible designs of the first aspect The method described.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the above-mentioned second aspect or any one of the possible designs of the second aspect The method described in.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the first aspect or any one of the first aspects described above. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the second aspect or any one of the possibilities of the second aspect above. The method described in the design.
  • the two synchronization signals are not completely independent, but partially overlap in the frequency domain. This can reduce the frequency domain resources occupied by the synchronization signals, thereby saving the frequency domain for other data transmission processes. Resources, and two synchronization signals can also share a part of frequency domain resources, which improves resource utilization.
  • Figure 1 is a design method of synchronization channel under in-band deployment of LTE system and NB-IoT system;
  • Figure 2 is a schematic diagram of an application scenario of an embodiment of the application
  • Fig. 3 is a flowchart of a signal sending and receiving method provided by an embodiment of the application.
  • 4A and 4B are schematic diagrams of two cases where the first synchronization signal and the second synchronization signal overlap in the time domain in an embodiment of the application;
  • FIG. 5 is a schematic diagram of an intersection of frequency domain resources corresponding to broadband synchronization signals and frequency domain resources corresponding to narrowband synchronization signals in an embodiment of the application;
  • FIG. 6 is a schematic diagram showing that a part of the first sequence is the same as the second sequence in an embodiment of the application;
  • FIGS. 7A to 7C are schematic diagrams of several ways to obtain the first sequence provided by embodiments of the application.
  • FIG. 8 is a schematic diagram of the synchronization grid corresponding to the second synchronization signal shifted by a frequency offset based on the synchronization grid corresponding to the first synchronization signal in the embodiment of the application;
  • FIG. 9 is a schematic diagram of a communication device capable of realizing the function of a network device provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a communication device capable of realizing the functions of a terminal device provided by an embodiment of the application;
  • 11A to 11B are two schematic diagrams of a communication device provided by embodiments of this application.
  • Terminal devices including devices that provide voice and/or data connectivity to users, for example, may include handheld devices with wireless connection capabilities, or processing devices connected to wireless modems.
  • the terminal device may communicate with the core network via a radio access network (RAN) and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device (D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote), access point (access point (AP), remote terminal (remote) terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user) and so on.
  • IoT internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication services
  • PCS personal communication services
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, devices with limited storage capacity, or devices with limited computing power. Examples include bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions that do not depend on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various types of smart bracelets, smart helmets, smart jewelry, etc. for sign monitoring.
  • the various terminal devices described above are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), they can be regarded as on-board terminal devices.
  • the on-board terminal devices are also called on-board units (OBU, for example) ).
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • the embodiments of the present application involve two types of terminal equipment: broadband terminal equipment and narrowband terminal equipment.
  • the conditions that broadband terminal equipment and narrowband terminal equipment need to meet include but are not limited to the following:
  • the maximum bandwidth capability of the narrowband terminal device is less than or equal to the minimum bandwidth capability of the broadband terminal device.
  • the data transmission bandwidth of NB-IoT terminal equipment is 1 RB, that is, 180kHz or 200kHz (including guard band), because the LTE system
  • the frequency resource occupied by the primary synchronization signal (PSS)/secondary synchronization signal (SSS) is 6 RBs, that is, 1.08MHz or 1.44MHz (including guard band), so the minimum bandwidth of broadband terminal equipment
  • the capability can be considered to be not less than 1.08MHz.
  • the maximum bandwidth capability of the narrowband terminal device is less than or equal to the minimum bandwidth capability of the broadband terminal device.
  • narrowband terminal equipment is NB-IoT terminal equipment
  • broadband terminal equipment is NR terminal equipment.
  • the minimum bandwidth capacity of NR terminal equipment can be considered as 20 RBs.
  • Each RB includes 12 subcarriers.
  • the subcarrier spacing is related to the frequency band deployed by the NR system, and is not a fixed value.
  • the minimum bandwidth capability of the narrowband terminal device is smaller than the minimum bandwidth capability of the broadband terminal device. If a data transmission channel is established between a terminal device and a network device, in general, the terminal device needs to receive the synchronization channel and the broadcast channel sent by the network device first. Therefore, it can be considered that the bandwidth corresponding to the synchronization channel and the broadcast channel sent by the network device is The minimum bandwidth capability required by the terminal device.
  • the narrowband terminal device can also be considered as a bandwidth limited (BL) terminal device. It should be noted that the BL terminal device may also have other bandwidth characteristics than 1 and 2, which are not specifically limited.
  • narrowband terminal equipment can also be considered to need to maintain normal data communication with network equipment through coverage enhancement (CE) technology, while broadband terminal equipment can maintain normal data communication with network equipment even if it does not pass CE technology.
  • CE technologies include but are not limited to technologies such as repeated data transmission or power enhancement.
  • broadband terminal equipment and narrowband terminal equipment need to repeat data transmission in certain scenarios, and maintain normal data communication with network equipment, then the maximum number of repetitions required for narrowband terminal equipment and network equipment to maintain data communication , Is less than the maximum number of repetitions required by the broadband terminal equipment and network equipment to maintain data communication.
  • narrowband terminal equipment can also be considered as low power wide coverage access (LPWA) terminal equipment
  • broadband terminal equipment can be considered as eMBB terminal equipment or ultra-reliable low-latency communication ( ultra-reliability low-latency communication (URLLC) terminal equipment.
  • LPWA low power wide coverage access
  • URLLC ultra-reliability low-latency communication
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • a network device in a V2X technology is a roadside unit (RSU).
  • the base station can be used to convert received air frames and Internet Protocol (IP) packets to each other as a router between the terminal equipment and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in an LTE system or advanced long-term evolution (LTE-A), or may also include a 5G NR system
  • NodeB or eNB or e-NodeB, evolutional Node B in an LTE system or advanced long-term evolution (LTE-A)
  • LTE-A long-term evolution
  • the next generation node B may also include a centralized unit (CU) and a distributed unit (distributed unit) in a cloud access network (cloud radio access network, Cloud RAN) system DU), the embodiments of the present application are not limited.
  • the mentioned cell may be a cell corresponding to a base station, and the cell may belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: metro cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmit power , Suitable for providing high-speed data transmission services.
  • the carrier in the LTE system or the NR system can have multiple cells working at the same frequency at the same time.
  • the concept of a carrier and a cell can be considered equivalent.
  • CA carrier aggregation
  • the concept of carrier and cell is equivalent.
  • a terminal device accessing a carrier is equivalent to accessing a cell.
  • DC dual connectivity
  • system and “network” in the embodiments of the present application can be used interchangeably.
  • “At least one” means one or more, and “multiple” means two or more.
  • the character “/” generally indicates that the related object is a “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • At least one item (a) in a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or multiple .
  • the embodiments of the present application refer to ordinal numbers such as "first” and "second” to distinguish between multiple objects, and are not used to limit the order, timing, priority, or Importance.
  • the first synchronization signal and the second synchronization signal are only for distinguishing different synchronization signals, but do not indicate the difference in content, priority, transmission order, or importance of the two synchronization signals.
  • 5G NR Fifth-generation mobile communication technology
  • 5G NR system is based on a global standard 5G orthogonal frequency-division multiplexing (orthogonal frequency division multiplexing, OFDM) air interface of the new design, but also very important to the next generation of cellular
  • OFDM orthogonal frequency-division multiplexing
  • the business of 5G technology is very diverse, and it can be oriented to eMBB, ultra-reliability low-latency communication (URLLC) and massive machine-type communication (mMTC).
  • URLLC ultra-reliability low-latency communication
  • mMTC massive machine-type communication
  • NR system design The diversification of NR system services requires NR system design to meet the access requirements of terminal equipment with different bandwidth capabilities.
  • eMBB terminal equipment can access the NR system by acquiring the broadband information of the NR system
  • some mMTC terminal equipment can access the NR system by acquiring the narrowband information of the NR system due to considerations of design cost and low power consumption; Even for the same service type, such as mMTC, there are different service rate requirements.
  • terminal devices do not require high data transmission rates, but generally require deep coverage , Generally can be accessed through narrowband; on the other hand, such as surveillance video backhaul, etc., require a relatively high data transmission rate, so such terminal equipment can be regarded as terminal equipment with medium and high-end capabilities, and generally can be accessed through broadband .
  • a terminal device accesses a wireless communication system, such as an LTE system or an NR system, it needs to synchronize with the network device under the wireless communication system, that is, first obtain synchronization information of the network device by detecting the synchronization channel.
  • the synchronization information may include time synchronization information and/or frequency synchronization information, and may also obtain cell information managed by the network device, so as to ensure subsequent normal data communication with the network device.
  • the LTE system can simultaneously serve eMBB services and NB-IoT services.
  • NB-IoT is built on a cellular network and only consumes about 180KHz of bandwidth. It can be directly deployed on an LTE network to reduce deployment costs.
  • non-NB-IoT terminal equipment such as terminal equipment under eMBB service
  • the NB-IoT terminal device accesses the NB-IoT system through a synchronous channel with a frequency domain bandwidth of 1 RB (ie, 180 kHz).
  • the synchronization channels serving different types of terminal devices are independently designed. Refer to Figure 1, which is a design method for in-band deployment of the LTE system and the NB-IoT system.
  • the subframe #0 and subframe #5 are respectively designed Represents the first subframe and the sixth subframe in a wireless frame
  • the slashed box represents the synchronization signal designed for non-NB-IoT terminal equipment
  • the vertical line represents the NB-IoT terminal device design ⁇ Sync signal.
  • the current design method for the synchronization channel reduces the utilization efficiency of resources. Moreover, the current independent synchronization channel design will bring additional implementation complexity.
  • the technical solutions of the embodiments of the present application are provided.
  • the frequency domain resources corresponding to the first synchronization signal and the frequency domain resources corresponding to the second synchronization signal have an intersection, which is equivalent to,
  • the two synchronization signals are not completely independent, but partially overlap in the frequency domain, which can reduce the frequency domain resources occupied by the synchronization signal, thereby saving frequency domain resources for other data transmission processes, and the two synchronization signals Part of frequency domain resources can also be shared, which improves resource utilization.
  • the different synchronization channels are not completely independent, but partially overlapped, which can also reduce the complexity of implementation to a certain extent.
  • the technical solutions provided by the embodiments of the present application can be used in wireless communication systems, including 4.5G or 5G wireless communication systems, and further evolution systems based on LTE or NR, and future wireless communication systems.
  • An application scenario of the embodiment of the present application may be a wireless communication system capable of simultaneously serving terminal devices with different bandwidth capabilities.
  • an LTE system or an NR system that can simultaneously serve NB-IoT terminal equipment and eMBB terminal equipment.
  • FIG. 2 is a network architecture applied in the embodiment of this application.
  • Figure 2 includes a network device and two terminal devices, terminal device 1 and terminal device 2, both of which can be connected to the network device.
  • terminal device 1 is a terminal device that supports a broadband synchronization channel, such as a non- NB-IoT terminal device
  • terminal device 2 is a terminal device that supports a narrowband synchronization channel, for example, an NB-IoT terminal device.
  • the number of terminal devices in Figure 2 is just an example.
  • a network device can provide services for multiple terminal devices.
  • the network device in FIG. 2 is, for example, an access network device, such as a base station.
  • the access network device in different systems corresponding to different devices for example, in the fourth generation mobile communication technology (the 4 th generation, 4G) system, the eNB may correspond, a corresponding access network device 5G 5G in the system, For example, gNB.
  • the NB-IoT terminal device in FIG. 2 is an example of a vehicle-mounted terminal device or car, and a non-NB-IoT terminal device is an example of a mobile phone, but the terminal device in the embodiment of the present application is not limited to this.
  • the embodiment of the present application provides a signal sending and receiving method. Please refer to FIG. 3, which is a flowchart of the method.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the first communication device may be a network device or a communication device capable of supporting the network device to realize the functions required by the method, or the first communication device may be a terminal device or a communication device capable of supporting the terminal device to realize the functions required by the method
  • it can also be other communication devices, such as chip systems.
  • the second communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, or the second communication device may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, of course It may also be other communication devices, such as a chip system. And there are no restrictions on the implementation of the first communication device and the second communication device.
  • the first communication device may be a network device, the second communication device is a terminal device, or the first communication device is a network device and the second communication device is a terminal device.
  • the network device is, for example, a base station.
  • the method is performed by the network device and the terminal device as an example, that is, the first communication device is a network device and the second communication device is a terminal device as an example.
  • the network device described below may be the network device in the network architecture shown in FIG. 2, and the terminal device described below may be The terminal device 1 or the terminal device 2 in the network architecture shown in FIG. 2.
  • the network device generates a synchronization signal, where the synchronization signal includes a first synchronization signal and a second synchronization signal.
  • the synchronization signal can be considered as a signal carried on the synchronization channel for transmission. Based on this, in the embodiment of this application, the synchronization signal and the synchronization channel are equivalent, that is, the description of the synchronization signal and the synchronization channel Can be interchangeable.
  • the terminal device may only be able to receive narrowband synchronization signals, but not capable of receiving wideband synchronization signals.
  • the first synchronization signal can be a narrowband synchronization signal
  • the second synchronization signal is a broadband synchronization signal.
  • the terminal device only receives the first synchronization signal; or, if the terminal device is a broadband terminal device, the terminal device may only receive the broadband synchronization signal, or it may receive both the broadband synchronization signal and the narrowband synchronization signal.
  • the terminal device It can also receive a second synchronization signal from a network device.
  • the first synchronization signal may be a narrowband synchronization signal
  • the second synchronization signal may be a wideband synchronization signal
  • the first synchronization signal may be a wideband synchronization signal
  • the second sync signal is a narrowband sync signal.
  • the frequency domain resources corresponding to the wideband synchronization signal are more than the frequency domain resources corresponding to the narrowband synchronization signal.
  • the first synchronization signal and the second synchronization signal overlap in the time domain, and within the time domain resources where the first synchronization signal and the second synchronization signal overlap, the frequency domain corresponding to the first synchronization signal
  • the resource and the frequency domain resource corresponding to the second synchronization signal have an intersection.
  • the transmission period of the first synchronization signal and the transmission period of the second synchronization signal may be the same, or, considering that the narrowband terminal device may need to repeatedly transmit multiple times to improve coverage, the transmission period of the narrowband synchronization signal may be shorter.
  • the transmission period of the broadband synchronization signal may be longer, so the transmission period of the two synchronization signals may also be different.
  • the first synchronization signal and the second synchronization signal overlap in the time domain in each transmission period.
  • the slashed box represents the first synchronization signal
  • the vertical line represents the second synchronization signal
  • the vertical line represents the second synchronization signal.
  • the first synchronization signal It can be seen that the transmission period of the two synchronization signals is the same. In each transmission period, the two synchronization signals overlap in the time domain. However, because the time domain lengths of the two synchronization signals are different, in each transmission cycle Inside, the two synchronization signals do not necessarily overlap completely in the time domain.
  • the first synchronization signal and the second synchronization signal may only be part of the transmission period and overlap in the time domain.
  • the slashed box represents the first synchronization signal
  • the vertical line represents the second synchronization signal
  • the vertical line represents the second synchronization signal.
  • the first synchronization signal It can be seen that the transmission period of the two synchronization signals is different.
  • the transmission period of the wideband synchronization signal is shorter than that of the narrowband synchronization signal. Then, the two synchronization signals do not overlap in the time domain in each transmission period.
  • the two synchronization signals overlap in the time domain during only part of the transmission period.
  • the two synchronization signals overlap in the time domain.
  • the two synchronization signals do not necessarily overlap in the time domain, but only overlap in part of the transmission period, for example, The first synchronization signal and the second synchronization signal overlap in the time domain in the first transmission cycle that occurs simultaneously, but may not overlap in the time domain in the second transmission cycle that occurs simultaneously. Because the time domain lengths of the two synchronization signals are different, in a transmission period that overlaps in the time domain, the two synchronization signals do not necessarily overlap completely in the time domain, and may only partially overlap.
  • FIGS. 4A and 4B it can be seen from FIGS. 4A and 4B that, in the time domain resources where the first synchronization signal and the second synchronization signal overlap, the frequency domain resources corresponding to the first synchronization signal and the frequency domain resources corresponding to the second synchronization signal are There is an intersection, and FIG. 4A and FIG. 4B are based on an example that the frequency domain resource corresponding to the narrowband synchronization signal is a proper subset of the frequency domain resource corresponding to the wideband synchronization signal. It is also possible to refer to Figure 5, where the slashed box represents the broadband synchronization signal, and the vertical line represents the narrowband synchronization signal.
  • the frequency domain resources corresponding to the narrowband synchronization signal and the broadband only have an intersection, but the frequency domain resources corresponding to the narrowband synchronization signal are not a proper subset of the frequency domain resources corresponding to the wideband synchronization signal.
  • the technical solution of the embodiment of the present application is mainly described by taking as an example that the frequency domain resource corresponding to the narrowband synchronization signal is a proper subset of the frequency domain resource corresponding to the wideband synchronization signal.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units, and the frequency domain resources corresponding to the first synchronization signal are K*M Resource unit
  • the frequency domain resources corresponding to the first synchronization signal are M resource units, and the frequency domain resources corresponding to the second synchronization signal are K*M resource units, where M is a positive integer and K is an integer greater than 1, or, if K is greater than 1, K can be an integer or a decimal.
  • the resource unit may be a resource element (resource element, RE), or an RB, or it may also be another resource unit in the frequency domain, which is not specifically limited.
  • a resource unit can be composed of an integer number of subcarriers.
  • a resource unit can be a frequency resource corresponding to an RB, that is, a resource unit is an RB, then a resource unit is composed of 12 consecutive Subcarrier composition, where the carrier spacing between two adjacent subcarriers is 15kHz.
  • a resource unit can also be a frequency resource corresponding to an RB, that is, a resource unit is an RB, then a resource unit is composed of 12 consecutive subcarriers, of which two adjacent subcarriers
  • the carrier spacing between is configurable or is associated with the frequency band deployed by the NR system, for example, it can be 15kHz, 30kHz, 60kHz, or 120kHz.
  • the frequency resource corresponding to the synchronization signal is M resource units, which can be understood as the frequency resource used when the network device sends the synchronization signal is M resource units.
  • M has the following characteristics (1) and (2) at the same time:
  • the number of subcarriers included in M resource units is equal to or greater than M1;
  • M is the smallest integer that satisfies (1).
  • M has the following characteristics (3) and (4) at the same time:
  • M is the largest integer that satisfies (3).
  • the frequency unit corresponding to the synchronization signal is represented by RB
  • one RB includes 12 consecutive subcarriers
  • the sequence length of the sequence corresponding to the synchronization signal sent by the network device is 127
  • M 12.
  • 12 resource units include 144 subcarriers
  • the sequence length of the sequence corresponding to the synchronization signal sent by the network device is 127
  • there are 144-127 17 subcarriers that do not correspond to the transmission of the synchronization signal.
  • the network device may not send anything or send other information.
  • the frequency resource corresponding to the synchronization signal can still be understood as 12 RBs.
  • M resource units can be understood as the network device sending the The frequency resource used when synchronizing signals.
  • the frequency resource corresponding to the synchronization signal is K*M resource units, which can be understood as the frequency resource used by the network device when sending the synchronization signal is K*M resource units, or it can also be understood as assuming that the network device sends
  • the sequence length of the sequence corresponding to the synchronization signal is M2, then K*M has the following characteristics (5) and (6) at the same time:
  • the number of subcarriers included in K*M resource units is equal to or greater than M2;
  • K*M is the smallest integer that satisfies (1).
  • K*M has the following characteristics (7) and (8) at the same time:
  • the number of subcarriers included in K*M resource units is equal to or less than M2;
  • K*M is the largest integer satisfying (3).
  • the first synchronization signal may be generated according to the first sequence
  • the second synchronization signal may be generated according to the second sequence
  • the first synchronization signal may be generated according to the second sequence
  • the second synchronization signal may be generated according to the first sequence
  • the first sequence can be regarded as a sequence for generating a wideband synchronization signal
  • the second sequence is a sequence for generating a narrowband synchronization signal.
  • the second sequence can be a ZC sequence (Zadoff-Chu sequence), a Walsh sequence, a Gold sequence, or an m sequence, or other sequences.
  • the network device obtains the second sequence first, and then the first sequence.
  • the second sequence may also be a standard protocol specification or predefined.
  • the network device obtains the second sequence. This step does not need to be performed, and the network device can directly determine the second sequence.
  • the second sequence is a sequence used to generate a narrowband synchronization signal
  • the length of the second sequence may not be suitable for a wideband synchronization signal, so another sequence can be introduced, for example, called the third sequence.
  • the second sequence can be "stretched" to get the first sequence. It can be understood that the first sequence can be obtained from the second sequence and the third sequence.
  • the first sequence may also be a standard protocol specification or predefined.
  • the network device obtains the first sequence, and this step does not need to be performed, and the network device may directly determine the first sequence.
  • the network device needs to obtain the second sequence and needs to obtain the first sequence as examples. If the network device does not need to obtain the first sequence, but directly determines the first sequence, then the first sequence determined by the network device and the network The first sequence obtained by the device has the same characteristics. Similarly, if the network device does not need to obtain the second sequence, but directly determines the second sequence, then the second sequence determined by the network device is the same as that obtained by the network device. The second sequence has the same characteristics.
  • the third sequence may be a sequence of all ones, that is, all elements included in the third sequence are 1, or the third sequence may also be an orthogonal sequence, and the fifth sequence is based on the third sequence If obtained, then the fifth sequence may also be an orthogonal sequence, or the fifth sequence may be a sequence obtained based on a transformation of the orthogonal sequence (the third sequence). If the third sequence is an orthogonal sequence, optionally, the third sequence can be a constant envelope zero auto-correlation (CAZAC) sequence, or a Walsh sequence, or it can be Other orthogonal sequences.
  • CAZAC constant envelope zero auto-correlation
  • the length of the second sequence is N, for example, and the length of the third sequence is H, for example.
  • L is the number of subcarriers included in M resource units
  • K*L is the length of the first sequence.
  • Both N and H are integers.
  • there is no restriction on the size relationship between N and L For example, N can be greater than or equal to L, or N can also be less than L.
  • H and K for example, H can be greater than or equal to K, or H can also be less than K
  • the L-long fourth sequence can be obtained.
  • the second sequence itself is suitable for generating a narrowband synchronization signal, for example, the sequence of sequence elements included in the second sequence and the sequence Length, etc., just suitable for narrowband synchronization signals, there is no need to process the second sequence, and the first sequence can be obtained directly according to the second sequence;
  • the third sequence of H length the fifth sequence of K length can be obtained, which is understandable Therefore, if the third sequence itself is suitable for generating broadband synchronization signals, such as the sequence of sequence elements included in the third sequence and the sequence length, etc., which are just suitable for broadband synchronization signals, there is no need to process the third sequence and can be directly based on The second sequence and the third sequence result in the first sequence for the wideband synchronization signal.
  • the first sequence is obtained, which is divided into many different ways.
  • the first sequence with the length of K*L can be obtained from the second sequence of N length and the fifth sequence of K length.
  • a K*N long sequence is obtained according to an N-long second sequence and a K-long fifth sequence, and then a K*L-long first sequence is obtained according to the K*N long sequence.
  • the first sequence of K*L length is obtained from the sequence of K*N length
  • the sequence of K*N length is obtained from the second sequence of N length and the fifth sequence of K length.
  • the K-length fifth sequence is obtained from the H-length third sequence, that is, the K-length fifth sequence can be obtained from the H-length third sequence.
  • H K
  • the third sequence can be used directly.
  • the third sequence is the fifth sequence, so the network device does not need to perform the step of obtaining the fifth sequence according to the third sequence.
  • H is not equal to K, that is, the length of the third sequence is inappropriate, and the third sequence needs to be processed first to obtain the fifth sequence of K length.
  • the third sequence and the fifth sequence are identical, the sequence elements included in the third sequence and the fifth sequence are the same, and the sequence of the sequence elements included in each is the same, there is no need to For sequence processing, the third sequence can be used directly. In this case, the third sequence is the fifth sequence. Otherwise, the third sequence needs to be processed first to obtain the K-length fifth sequence.
  • the third sequence is a sequence of all ones, then if H is greater than K, K sequence elements can be extracted from the third sequence of H length, and these K sequence elements constitute the fifth sequence; if H is less than K, H
  • the long third sequence is extended to extend its length to K length, so that the K length fifth sequence is obtained.
  • the method of expanding the third sequence may be cyclic expansion or the like.
  • the cyclic extension refers to the cyclic extension based on the original H-length third sequence.
  • the H-length third sequence is ⁇ c 0 ,c 1 ,...,c H-1 ⁇
  • the third sequence can be cyclically extended It is ⁇ c 0 ,c 1 ,...,c H-1 ,c 0 ,c 1 ,c 3 ... ⁇ .
  • the fifth sequence may be regarded as a sequence obtained based on the transformation of the orthogonal sequence.
  • the method of deforming the orthogonal sequence may include truncation, cyclic expansion, zero padding, equal interval or non-equal interval sampling, etc. It should be noted that the reason why the orthogonal sequence needs to be deformed is mainly because the sequence length of the orthogonal sequence corresponding to the third sequence may not match K, or the sequence length required by the first sequence. .
  • the sequence length of the orthogonal sequence corresponding to the third sequence can be an odd number, for example, the length is 7.
  • truncation means that when the length of the orthogonal sequence (the third sequence) on which the fifth sequence is based is greater than K, the fifth sequence is obtained by truncating the orthogonal sequence on which it is based; cyclic extension It means that when the length of the orthogonal sequence (third sequence) on which the fifth sequence is based is less than K, the fifth sequence is obtained by cyclically extending the orthogonal sequence on which it is based.
  • the fifth sequence can also be obtained by adding zeros to the orthogonal sequence (third sequence) on which it is based, or extracting partial sequence elements in the orthogonal sequence (third sequence) on which it is based and the All the sequence elements of the orthogonal sequence form the fifth sequence together.
  • the extracted partial sequence elements are added after the sequence elements of the orthogonal sequence on which they are based.
  • the specific extraction method is not specifically limited.
  • the fifth sequence can also be obtained by rearranging the orthogonal sequence (third sequence) at equal intervals.
  • the orthogonal sequence based on (the third sequence of length H) is expressed as ⁇ d 0 , d 1 ,..., d H-1 ⁇
  • s represents the third length, that is, the sampling interval, let s be the same as H Relatively prime positive integers
  • the orthogonal sequence on which the orthogonal sequence is based is sampled and rearranged at equal intervals according to s.
  • the sequence can be expressed as ⁇ d (s*i)mod H , 0 ⁇ i ⁇ H-1 ⁇ , and the reordering There are other ways, which are not specifically limited.
  • the length of the second sequence is N, which may not match the length L required by the first sequence, or it may match. If N is not equal to L, the network device can obtain a sequence of K*N length according to the fifth sequence and the second sequence. Since the length N of the second sequence is inappropriate, the network device also needs to process the sequence of K*N length , To get the first sequence of K*L length. According to the K*N length sequence to obtain the K*L length of the first sequence, you can refer to the method of obtaining the K length of the fifth sequence according to the H length of the third sequence, or you can refer to the method of obtaining the K length of the fifth sequence which will be introduced later in the article. The manner in which the second sequence obtains the L-long fourth sequence will not be described in detail.
  • the N-long second sequence is the L-long fourth sequence
  • the network device can directly obtain the K*L length according to the fourth sequence and the fifth sequence.
  • the first sequence with the length of K*L can be obtained directly from the second sequence and the fifth sequence without further processing to obtain the first sequence, that is, according to K*
  • the N-long sequence results in the K*L-long first sequence, and this step is unnecessary.
  • the network device can directly generate the narrowband synchronization signal according to the fourth sequence, or the sequence used for the narrowband synchronization signal can be directly the N-long second sequence There is no need to generate the narrowband synchronization signal after obtaining the L-long fourth sequence from the N-long second sequence.
  • the N-long second sequence requires further processing, for example, N is not equal to L
  • the network device needs to first obtain the L-long fourth sequence according to the N-long second sequence, and then generate the narrowband synchronization signal according to the L-long fourth sequence. In other words, the L-long fourth sequence used for the narrowband synchronization signal is obtained from the N-long second sequence.
  • the K*N sequence obtained by the network device is the K*L-long first sequence, and the network device does not need to execute the K*N-long sequence to obtain The process of the first sequence of K*L length.
  • the network device gets the K*N sequence, and the network device needs to process the K*N sequence to obtain the first K*L sequence. sequence.
  • the network device processes the sequence of K*N to obtain the first sequence of K*L, you can refer to the network device that will be introduced later to process the second sequence of N length to obtain the fourth sequence of L length Or refer to the manner in which the network device processes the third sequence of H length to obtain the fifth sequence of K length as described above.
  • the L-long fourth sequence can be obtained from the N-long second sequence, and then the L-long fourth sequence and K-length
  • the fifth sequence obtains the first sequence of K*L length.
  • the first sequence of K*L length is obtained from the fourth sequence of L length and the fifth sequence of K length
  • the fourth sequence of L length is obtained from the second sequence of N length.
  • the third sequence is directly used.
  • the third sequence is also the fifth sequence, so there is no need to perform the steps of obtaining the fifth sequence from the third sequence.
  • H is not equal to K, that is, the length of the third sequence is inappropriate, and the third sequence needs to be processed first to obtain the fifth sequence of K length.
  • the manner of processing the third sequence to obtain the fifth sequence refer to the related introduction in the above-mentioned first manner of obtaining the first sequence from the second sequence and the third sequence. More generally, if the third sequence and the fifth sequence are identical, the sequence elements included in the third sequence and the fifth sequence are the same, and the sequence of the sequence elements included in each is the same, there is no need to For sequence processing, the third sequence can be used directly, otherwise, the third sequence needs to be processed first, and a K-length fifth sequence has been obtained.
  • the network device can process the second sequence first to obtain a fourth sequence with a suitable length of L, and then obtain K*L according to the fourth sequence and the fifth sequence A long first sequence, and a narrowband synchronization signal is generated according to the fourth sequence.
  • the second sequence is ⁇ b 0 ,b 1 ,...,b N-1 ⁇ , and the network device processes the second sequence to obtain the fourth sequence as follows:
  • the network device can extract L sequence elements in the N-long second sequence ⁇ b 0 ,b 1 ,...,b N-1 ⁇ , and these L sequence elements constitute the fourth sequence.
  • the extracted L sequence elements may be the first L continuous sequence elements or the last L continuous sequence elements in the N-long second sequence. More generally, in the embodiment of the present application, how to extract L
  • the number of sequence elements is not specifically limited. For example, any L continuous sequence elements may be extracted from the second sequence, or any L discontinuous sequence elements may also be extracted from the second sequence.
  • the network device may extend the N-long second sequence to extend its length to L, thereby obtaining the L-long fourth sequence.
  • the method of extending the second sequence includes but not limited to zero padding or cyclic expansion.
  • zero padding is to add LN zeros on the basis of the original N-length second sequence ⁇ b 0 ,b 1 ,...,b N-1 ⁇ to form the fourth sequence, for example, the fourth sequence is ⁇ b 0 , b 1 ,...,b N-1 ,0,0,...,0 ⁇ , or ⁇ 0,0,...,0,b 0 ,b 1 ,...,b N-1 ⁇ etc.
  • the order of appearance in the fourth sequence is not specifically limited; the cyclic extension is based on the cyclic extension of the original N-long second sequence ⁇ b 0 ,b 1 ,...,b N-1 ⁇ , for example, the obtained fourth sequence can be ⁇ b 0 ,b 1 ,...,b N-1 ,b 0 ,b 1 ,b 3 ,... ⁇ . It should be noted that in addition to cyclic expansion, it is also possible to extract any LN elements from the second sequence based on the N-long second sequence, and add them to the second sequence to form an L-long fourth sequence. The positions where the extracted LN elements appear in the second sequence may or may not be adjacent.
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with K*L length can be ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,..., a L-1 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a L-1 b 1 ,... ,a 0 b K-1 ,a 1 b K-1 ,a 2 b K-1 ,..., a L-1 b K-1 ⁇ .
  • the first sequence constructed in this way can maintain the better characteristics of the ZC sequence on M resource units. If the first sequence is constructed in this way, and the third sequence is an all-one sequence (or the fifth sequence is an all-one sequence), then the K*M resource units corresponding to the broadband synchronization signal can be regarded as including K Parts, each of which includes M resource units, for example, the 1st resource unit to the Mth resource unit is one of the K parts, and the M+1th resource unit to the 2Mth resource unit It is another part of the K parts, and so on. In this case, the sequences carried by each of the K parts and the sequences carried on the M resource units corresponding to the narrowband synchronization signal may be the same.
  • the first sequence includes K parts, and each part of the K parts is the same sequence as the second sequence.
  • the first sequence with this property is generated in a relatively simple manner.
  • the first synchronization signal corresponding to the first sequence is obtained by repeating or retransmitting the second synchronization signal corresponding to the second sequence in the frequency domain.
  • the fourth sequence can also be regarded as the second sequence
  • the fifth sequence is the third sequence.
  • the carried sequence can be understood as the sequence element included in the sequence mapped to the corresponding resource unit, for example, the sequence carried by each of the K parts can be understood as K The sequence elements carried on each of the parts.
  • the sequence carried on the frequency resource corresponding to each RB is the same sequence, that is, the second sequence, for example, the second sequence It is a ZC sequence.
  • a copy of the ZC sequence means that the same ZC sequence is carried.
  • the M resource units corresponding to the narrowband synchronization signal may be any one of the K parts included in the K*M resource units corresponding to the wideband synchronization signal.
  • the M resource units corresponding to the narrowband synchronization signal A resource unit is the part with the lowest frequency among the K parts included in the K*M resource units corresponding to the broadband synchronization signal.
  • the M resource units corresponding to the narrowband synchronization signal are corresponding to the broadband synchronization signal.
  • the positions of the K*M resource units are not limited, that is, the M resource units corresponding to the narrowband synchronization signal may be any part of the K parts included in the K*M resource units corresponding to the wideband synchronization signal.
  • the fourth sequence and the fifth sequence are both ZC sequences.
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a 11 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b 5 ⁇ , which is obtained from the 12-length fourth sequence and the 6-length fifth sequence
  • the first sequence can be ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,...,a 11 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a 11 b 1 , ...,A 0 b 5 ,a 1 b 5 ,a 2 b 5 ,...,a 11 b 5 ⁇ .
  • the fourth sequence can also be regarded as the second sequence
  • the fifth sequence is the third sequence.
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the fourth sequence can also be regarded as the second sequence
  • the fifth sequence is the third sequence.
  • the second sequence and the fifth sequence are both ZC sequences.
  • the second sequence is ⁇ a 0 ,a 1 ,...,a 10 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b 5 ⁇ , which is obtained from the 11-length second sequence and the 6-length fifth sequence
  • the first sequence can be ⁇ a 0 b 0 ,a 1 b 1 ,...,a 10 b 4 ,0,a 0 b 5 ,a 1 b 0 ,...,a 10 b 3 ,0,...,a 0 b 1 , whil,A 10 b 5 ,0 ⁇ .
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the second sequence and the fifth sequence are both ZC sequences.
  • the second sequence is ⁇ a 0 ,a 1 ,...,a 11 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b 5 ⁇ , which is obtained from the 11-length second sequence and the 6-length fifth sequence
  • the sequence can be ⁇ a 0 b 0 ,a 1 b 1 ,...,a 10 b 4 ,0,a 0 b 5 ,a 1 b 0 ,...,a 10 b 3 ,0,...,a 0 b 1 ,... ...,A 10 b 5 ,0 ⁇ .
  • the sequence is sampled at equal intervals at the interval of 13, and the first sequence obtained is ⁇ a 0 b 0 ,a 1 b 0 ,...,a 10 b 0 ,0, a 0 b 5 ,a 1 b 5 ,...,a 10 b 5 ,0, whil ⁇ ⁇ .
  • the H*N long sequence can be obtained according to the N-long second sequence and the H-long third sequence, and then according to H*N The long sequence results in the first sequence of K*L length.
  • the first sequence of K*L length is obtained from the sequence of H*N length
  • the sequence of H*N length is obtained from the second sequence of N length and the third sequence of H length.
  • the network device needs to process the N-long second sequence to obtain the L-long fourth sequence, and then generate a narrowband synchronization signal according to the fourth sequence.
  • the process of the network device processing the N-long second sequence to obtain the L-long fourth sequence can be understood as mapping the sequence elements included in the N-long second sequence to L resource elements (for example, subcarriers) , Or the N-long second sequence used for the L-long narrowband synchronization signal.
  • the set formed by the elements carried on the L resource elements (or subcarriers) can be regarded as the L-long fourth sequence.
  • the H*N sequence obtained by the network device is the first sequence of K*L length, and the network device does not need to execute the sequence according to H The process of obtaining the first sequence of K*L length from the *N-long sequence.
  • the network device obtains the K*N sequence, and the network device needs to process the K*N sequence.
  • the network device processes the sequence of K*N to obtain the first sequence of K*L, and the network device processes the second sequence of N length to obtain the fourth sequence of L length as described above.
  • the network device processes the third sequence of H length to obtain the fifth sequence of K length as described above.
  • the network device obtains the H*L sequence, and the network device needs to process the H*L sequence , To get the first sequence of K*L.
  • the network device processes the H*L sequence to obtain the first sequence of K*L, and the network device processes the N-length second sequence to obtain the L-length fourth sequence.
  • the network device processes the third sequence of H length to obtain the fifth sequence of K length as described above.
  • both the second sequence and the third sequence need further processing, for example, N is not equal to L and H is not equal to K, then the network device obtains the H*N sequence, and the network device needs to process the H*N sequence.
  • the network device processes the H*N sequence to obtain the first sequence of K*L, and the network device processes the N-long second sequence to obtain the L-long fourth sequence.
  • the network device processes the third sequence of H length to obtain the fifth sequence of K length as described above.
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N length sequence is ⁇ m 0 n 0 ,m 1 n 0 ,m 2 n 0 ,...,m N-1 n 0 ,m 0 n 1 ,m 1 n 1 ,m 2 n 1 ,...,m N-1 n 1 ,...,m 0 n H-1 ,m 1 n H-1 ,m 2 n H-1 ,...,m N-1 n H-1 ⁇ .
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • mod is the remainder operator.
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the second length and the first length may be the same or different.
  • the H*N long sequence is processed according to the values of K and L to obtain the first sequence, which can be understood as K*L resource elements (or subcarriers) A collection of carried elements.
  • the L-long fourth sequence can be obtained from the N-long second sequence, and the L-long fourth sequence and the H-long fourth sequence can be obtained according to the The three sequences obtain the H*L long sequence, and then according to the H*L long sequence, the K*L long first sequence is obtained.
  • the first sequence of K*L length is obtained from the sequence of H*L length
  • the sequence of H*L length is obtained from the fourth sequence of L length and the third sequence of H length.
  • the four sequence is obtained from the second sequence of N length.
  • the L-long sequence can be directly determined by the fourth sequence and the H-long third sequence to determine the H*L-long sequence, or the narrowband synchronization signal can be generated directly according to the fourth sequence, without other processing for the second sequence, that is to say When generating the first sequence or the narrowband synchronization signal, the network device does not need to perform the step of obtaining the fourth sequence of L length according to the second sequence of N length.
  • the network device uses the method to first obtain the L-long fourth sequence according to the N-long second sequence, and then generate the H*L-long sequence according to the L-long fourth sequence Sequence, and then process the H*L long sequence to get the first sequence.
  • the network device also needs to obtain the fourth sequence.
  • the network device needs to process the N-long second sequence to obtain the L-long fourth sequence, and then generate a narrowband synchronization signal according to the fourth sequence.
  • the sequence used for the narrowband synchronization signal is obtained based on the N-long second sequence, that is, the second sequence is used for the narrowband synchronization signal.
  • the manner in which the network device processes the N-long second sequence to obtain the L-long fourth sequence, or how to use the second sequence for the narrowband synchronization signal can refer to the relevant introduction in the foregoing.
  • the sequence of H*L obtained by the network device is the first sequence of K*L length, and the network device does not need to execute the sequence of H*L length to obtain K*L The process of the long first sequence.
  • the network device obtains the H*L sequence, and the network device needs to process the H*L sequence to obtain the K*L first sequence.
  • the network device processes the H*L sequence to obtain the first sequence of K*L, and the network device processes the N-length second sequence to obtain the L-length fourth sequence.
  • the network device processes the third sequence of H length to obtain the fifth sequence of K length as described above.
  • the second sequence in order to make the sequence length generated from the second sequence and the third sequence match the length required by the first sequence, the second sequence can be deformed to obtain the fourth sequence and / Or deform the third sequence to obtain the fifth sequence, so that the sequence lengths of the fourth sequence and the fifth sequence obtained after the deformation match the length required by the first sequence; or the second sequence and the third sequence
  • the sequence is deformed, and the sequence after the combination of the second sequence and the third sequence is directly deformed, so that the sequence length matches the length required by the first sequence.
  • the deformation methods include truncation, expansion, or sampling, etc., which are not specifically limited.
  • Manner 2 Obtain the second sequence according to the first sequence.
  • the second sequence corresponding to the narrowband synchronization signal is first obtained, and then the first sequence corresponding to the wideband synchronization signal is obtained according to the second sequence and the third sequence, or the one used for the wideband synchronization signal.
  • the first sequence is obtained from the second sequence and the third sequence, where the second sequence is used for narrowband synchronization signals.
  • the second method introduced here is to obtain the first sequence for the broadband synchronization signal first, and part of the first sequence may correspond to the second sequence.
  • the amplitudes of all the elements included in the first sequence are the same, that is, all the elements included in the first sequence are constant amplitude sequence elements, and the second sequence is a part of the first sequence.
  • the K*M resource units corresponding to the broadband synchronization signal can still be regarded as including K parts, each of which includes M resource units.
  • the first resource unit to the Mth resource unit are One of the K parts
  • the M+1th resource unit to the 2Mth resource unit is another part of the K parts, and so on.
  • the sequences carried by each of the K parts and the sequences carried on the M resource units corresponding to the narrowband synchronization signal may be the same or different.
  • the first sequence includes K parts, and each of the K parts is the same sequence as the second sequence.
  • M resource units include L subcarriers
  • K*L subcarriers included in K*M resource units carry the first sequence
  • the relationship between K*M and the length of the first sequence can be If the above-mentioned relationship is satisfied and is not specifically limited, the set of elements carried on any L subcarriers among the K*L subcarriers can be regarded as the second sequence.
  • the second sequence of L length can be ⁇ e i ,e i+1 ,...,e i+L-1 ⁇ , Where 0 ⁇ i ⁇ (K-1)*L.
  • the first sequence can be an m-sequence with a constant amplitude, of course, it can also be other sequences.
  • sequence elements as constant amplitude sequence elements is that the sequence obtained after such a sequence undergoes discrete Fourier transform (DFT) or inverse discrete fourier transform (IDFT) has Ideal autocorrelation characteristics, which facilitates the terminal equipment to quickly synchronize with the network equipment.
  • DFT discrete Fourier transform
  • IDFT inverse discrete fourier transform
  • the second sequence is a part of the first sequence, the system does not need to separately design synchronization sequences for broadband terminal equipment and narrowband terminal equipment, which simplifies the design on the system side.
  • the two methods for obtaining the first sequence and the second sequence are introduced above.
  • which method is used to obtain the first sequence and the second sequence can be stipulated by an agreement or can be determined by the network device itself.
  • the network device can generate a broadband synchronization signal according to the first sequence, and after obtaining the second sequence, the network device can generate a narrowband synchronization signal according to the second sequence.
  • the wideband synchronization signal is the first synchronization signal and the narrowband synchronization signal is the second synchronization signal, or the wideband synchronization signal is the second synchronization signal, and the narrowband synchronization signal is the first synchronization signal.
  • the network device can generate a broadband synchronization signal according to the first sequence. Since the second sequence is part of the first sequence, the network device does not need to perform additional generation of a narrowband synchronization signal according to the second sequence. the process of.
  • the process of generating a synchronization signal according to the sequence can be understood as a process of mapping the sequence corresponding to the synchronization signal (sequence for the synchronization signal) to the physical resource occupied by the synchronization signal, where
  • the physical resources include the time resources and frequency resources occupied when the network device sends the synchronization signal, which can be represented by resource elements, or other representation methods can be used.
  • the time resource occupied by the network device when sending the synchronization signal can be represented by the OFDM symbol index number, and the frequency resource can be represented by the subcarrier index number; or, in the embodiment of the present application, the synchronization signal is generated according to the sequence, It can be understood that the sequence is used for the synchronization signal, that is, to generate the synchronization signal according to the sequence, this step may not need to be performed.
  • the first synchronization signal is generated based on the first sequence, and the first sequence is obtained based on the second sequence and the third sequence. It can be understood that the first sequence used for the first synchronization signal is based on the second sequence and the first sequence. The three sequences are obtained, or it can also be understood that after obtaining the first sequence according to the second sequence and the third sequence, the first sequence is mapped to the time-frequency resource or resource element occupied by the first synchronization signal.
  • the frequency domain resources of the second synchronization signal have an intersection, especially when the frequency domain resource corresponding to the second synchronization signal is a proper subset of the frequency domain resource corresponding to the first synchronization signal, and the time domain resource corresponding to the second synchronization signal corresponds to the first synchronization signal
  • the network device when the network device generates the first synchronization signal (maps the sequence corresponding to the first synchronization signal to the physical resource occupied by the first synchronization signal), it has also completed the generation of the second synchronization signal.
  • the sequence corresponding to the second synchronization signal is mapped to the physical resource occupied by the second synchronization signal). This process can also be understood as the network device generating the first synchronization signal and the second synchronization signal.
  • the network device sends the first synchronization signal and the second synchronization signal, and the terminal device receives the first synchronization signal from the network device.
  • the network device may send the first synchronization signal and the second synchronization signal.
  • the first synchronization signal and the second synchronization signal overlap in the time domain, and within the time domain resources where the first synchronization signal and the second synchronization signal overlap, the frequency domain resources corresponding to the first synchronization signal and the second synchronization signal.
  • the frequency domain resources corresponding to the signals have an intersection.
  • the network device may send the first synchronization signal on K*M resource units and send the second synchronization signal on M resource units, or send the second synchronization signal on K*M resource units, and
  • the first synchronization signal is sent on M resource units, and the M resource units are a proper subset of K*M resource units.
  • the network device sending the first synchronization signal also includes sending the second synchronization signal.
  • the network device sending the first synchronization signal and the second synchronization signal it is also referred to as the network device sending the first synchronization signal and the second synchronization signal.
  • the second synchronization signal may be considered as a signal corresponding to the network device.
  • the so-called “correspondence” means that the second synchronization signal is also sent by the network device, and the terminal device may not have received it temporarily, or may have received it, because of the relationship between the first synchronization signal and the second synchronization signal. If the terminal device has not yet received the second synchronization signal, the second synchronization signal also needs to be introduced. Therefore, it can be described as that the second synchronization signal corresponds to the network device.
  • the terminal device synchronizes with the network device according to the first synchronization signal.
  • the first synchronization signal may be a narrowband synchronization signal.
  • the terminal device is the first synchronization signal received by M resource units, and the terminal device can synchronize with the network device according to the first synchronization signal.
  • the first synchronization signal may be a broadband synchronization signal
  • the terminal device may be a first synchronization signal received by K*M resource units, or the first synchronization signal may also be a narrowband synchronization signal
  • the terminal device is the first synchronization signal received through M resource units, and the terminal device can synchronize with the network device according to the first synchronization signal.
  • the terminal device is a broadband terminal device, and the terminal device can receive a second synchronization signal in addition to the first synchronization signal
  • the first synchronization signal can be a broadband synchronization signal
  • the terminal device receives K*M resource units.
  • the first synchronization signal, the second synchronization signal is a narrowband synchronization signal, the terminal device receives the second synchronization signal through M resource units, or the second synchronization signal can be a broadband synchronization signal, and the terminal device receives it through K*M resource units
  • the first synchronization signal is a narrowband synchronization signal, and the terminal device receives the first synchronization signal through M resource units.
  • the terminal device can synchronize with the network device according to the first synchronization signal and the second synchronization signal. For example, the terminal device can superimpose the first synchronization signal and the second synchronization signal, and synchronize with the network device according to the synchronization signal obtained after the superposition.
  • the terminal device may need to receive the broadcast channel after completing synchronization with the network device. Therefore, in this embodiment of the application, the position relationship between the broadcast channel and the synchronization channel can be configured so that the terminal device can receive the broadcast channel in time.
  • broadcast information can be considered as information carried on a broadcast channel for transmission. Based on this, in the embodiment of this application, broadcast information and broadcast channel are equivalent, that is, the description of broadcast information and broadcast channel Can be interchangeable.
  • the network device may generate the first broadcast information and the second broadcast information, and may transmit the first broadcast information and the second broadcast information. If the terminal device is a narrowband terminal device, then the terminal device may only be able to receive narrowband broadcast information, but not capable of receiving broadband broadcast information.
  • the first broadcast information may be narrowband broadcast information and the second broadcast information is broadband broadcast Information, the terminal device only receives the first broadcast information; or, if the terminal device is a broadband terminal device, then the terminal device may only receive broadband broadcast information, or it may receive broadband broadcast information and narrowband broadcast information.
  • the terminal device It is also possible to receive second broadcast information from a network device.
  • the first broadcast information may be narrowband broadcast information
  • the second synchronization information may be broadband broadcast information
  • the first broadcast information may be broadband synchronization information.
  • the second synchronization information is narrowband broadcast information.
  • the broadband broadcast information and the broadband synchronization information are related to each other.
  • the terminal device can determine the time-frequency resource location where the broadband broadcast information is located according to the received broadband synchronization signal.
  • broadband terminal equipment can receive broadband synchronization signals to achieve time-frequency synchronization with network equipment, and then detect broadband broadcast information based on the time-frequency synchronization information; similarly, narrowband broadcast information and narrowband synchronization information are related to each other.
  • the terminal device can determine the time-frequency position of the narrowband broadcast information based on the received narrowband synchronization signal.
  • a narrowband terminal device or a broadband terminal device can realize time-frequency synchronization with the network device by receiving a narrowband synchronization signal, and then detect narrowband broadcast information based on the time-frequency synchronization information.
  • the distance between the frequency domain position of the first broadcast information and the frequency domain position of the first synchronization signal is the first frequency domain offset
  • the frequency domain position of the second broadcast information and the frequency domain position of the second synchronization signal are between
  • the distance of is the second frequency domain offset.
  • the first frequency offset and the second frequency offset can be pre-configured or specified by agreement.
  • the terminal device can determine the frequency of the first broadcast information according to the first frequency offset. Domain location, thereby receiving the first broadcast information, and the frequency domain location of the second broadcast information can be determined according to the second frequency offset, thereby receiving the second broadcast information.
  • the first frequency offset may be equal to 0 or not equal to 0. If the first frequency offset is equal to 0, it indicates that the position of the frequency domain resource corresponding to the first broadcast information is the same as the position of the frequency domain resource corresponding to the first synchronization signal In the same way, if the second frequency offset is equal to 0, it indicates that the position of the frequency domain resource corresponding to the second broadcast information is the same as the position of the frequency domain resource corresponding to the second synchronization signal.
  • the distance between the time domain position of the first broadcast information and the time domain position of the first synchronization signal may be the first time domain offset
  • the time domain position of the second broadcast information and the second synchronization signal The distance between the time domain positions may be the second time domain offset.
  • the first time domain offset and the second time domain offset may be pre-configured or specified through an agreement.
  • the terminal device can determine the time domain position of the first broadcast information according to the first time domain offset. In the case where both the time domain position and the frequency domain position of the first broadcast information are determined, the terminal device can receive the first broadcast at the correct position In the same way, the terminal device can determine the time domain position of the second broadcast information according to the second time domain offset. When both the time domain position and the frequency domain position of the second broadcast information are determined, the terminal device can The location receives the second broadcast information.
  • the first time domain offset may be equal to 0 or not equal to 0. If the first time domain offset is equal to 0, it indicates that the position of the time domain resource corresponding to the first broadcast information is equal to the time domain resource corresponding to the first synchronization signal. The positions are the same, and for the same reason, if the second time domain offset is equal to 0, it indicates that the position of the time domain resource corresponding to the second broadcast information is the same as the position of the time domain resource corresponding to the second synchronization signal.
  • the terminal device can directly determine the location of the corresponding broadcast information through the detected synchronization signal, and then detect the information transmitted in the broadcast information to achieve communication with the network device Data transfer.
  • the frequency domain resource corresponding to the third synchronization signal is greater than that of the first synchronization signal.
  • the frequency domain resources corresponding to the first synchronization signal are greater than the frequency domain resources corresponding to the second synchronization signal.
  • the frequency domain resources corresponding to the first synchronization signal can be 6 RBs
  • the frequency domain resources corresponding to the second synchronization signal can be less than 6 RBs
  • the frequency domain resources corresponding to the third synchronization signal can be 20 RBs.
  • the wireless communication system can serve narrowband terminal devices with multiple bandwidth capabilities, for example, terminal devices that access the wireless communication system through synchronization signals of 1 to 6 RBs, or broadband terminal devices, such as Access to the terminal equipment of the wireless communication system through 20 RB synchronization signals.
  • the synchronization raster can be designed to be relatively sparse to reduce the burden of initial access by the terminal device.
  • the frequency position of the synchronization grid or the synchronization signal can satisfy the following formula: N*1200kHz+M*50 kHz, where the value of N is an integer greater than or equal to 1 and less than or equal to 2499, and the value of M is 1,3,5.
  • the frequency position of the first synchronization signal, or the synchronization grid corresponding to the first synchronization signal can also have the same design, that is, the first
  • the synchronization grid corresponding to the synchronization signal can satisfy the following formula: N'*1200kHz+M'*50kHz+[C*Channelspace], where Channelspace can represent the frequency corresponding to the interval between adjacent carriers, such as the frequency of a broadband system
  • the bandwidth is 100MHz. If it is assumed that every 20MHz corresponds to 1 carrier, the frequency size corresponding to the interval between adjacent carriers is 20MHz.
  • C is an integer greater than or equal to zero.
  • the synchronization gate corresponding to the second synchronization signal may be offset by a frequency offset based on the synchronization grid corresponding to the first synchronization signal, for example, refer to FIG. 8.
  • FIG. 8 it is assumed that the time domain resources corresponding to the first synchronization signal and the time domain resources corresponding to the second synchronization signal are exactly the same, and the frequency domain resources corresponding to the first synchronization signal are 6 RBs, of which one RB carries The second synchronization signal.
  • the synchronization grid corresponding to the first synchronization signal satisfies the formula N'*1200kHz+M'*50kHz+[C*Channelspace], which can not only reduce the detection complexity of the terminal device (for example, the terminal device that can detect the first synchronization signal), but also Can save the cost of network device notification.
  • the description here assumes that the frequency domain resources corresponding to the first synchronization signal are K*M resource units, and the frequency domain resources corresponding to the second synchronization signal are M resource units.
  • the synchronization raster corresponding to the first synchronization signal may be pre-configured, for example, standardized by a standard protocol, or notified by the access network device to the terminal device, optionally, the access network The device may only notify N', M', and C, and the terminal device can determine the synchronization raster corresponding to the first synchronization signal according to the formula N'*1200kHz+M'*50kHz+[C*Channelspace].
  • the frequency offset between the synchronization grid corresponding to the second synchronization signal and the synchronization grid corresponding to the first synchronization signal may be pre-configured, such as a standard protocol specification, or may be notified by the access network device Terminal Equipment.
  • the offset can be used to determine the synchronization grid corresponding to the second synchronization signal, and then the frequency position of the second synchronization signal can be determined without access
  • the network equipment notifies the terminal equipment of the absolute frequency position of the synchronization grid corresponding to the second synchronization signal, which saves system signaling overhead.
  • the access network equipment can use broadcast signaling or terminal equipment-specific signaling to notify the terminal equipment.
  • the signaling may be radio resource control (RRC) signaling or
  • the physical layer signaling for example, bears the signaling sent through the physical layer control channel, and may also be media access control (MAC) signaling, which is not specifically limited in the present invention.
  • the first synchronization signal may include at least one of a primary synchronization signal and a secondary synchronization signal
  • the second synchronization signal may include at least one of a primary synchronization signal and a secondary synchronization signal
  • the frequency domain resource corresponding to the first synchronization signal when the first synchronization signal and the second synchronization signal overlap in the time domain, and within the time domain resources where the first synchronization signal and the second synchronization signal overlap, the frequency domain resource corresponding to the first synchronization signal When the frequency domain resources corresponding to the second synchronization signal have an intersection, the first synchronization signal and the second synchronization signal are either the same as the primary synchronization signal, or both are the secondary synchronization signal, or can be the same as the primary synchronization signal and the secondary synchronization signal.
  • FIG. 9 shows a schematic structural diagram of a communication device 900.
  • the communication device 900 can implement the functions of the network device mentioned above.
  • the communication device 900 may be the network device described above, or may be a chip set in the network device described above.
  • the communication device 900 may include a processor 901 and a transceiver 902.
  • the processor 901 may be used to execute S31 in the embodiment shown in FIG. 5, and/or to support other processes of the technology described herein, for example, it may execute the above-mentioned terminal device except for receiving and sending. All other processes or part of other processes outside the process.
  • the transceiver 902 may be used to perform S32 in the embodiment shown in FIG. 3, and/or other processes used to support the technology described herein, for example, it may perform all the transceiving processes performed by the terminal device described above. Or part of the sending and receiving process.
  • the processor 901 is configured to generate a synchronization signal, where the synchronization signal includes a first synchronization signal and a second synchronization signal;
  • the transceiver 902 is configured to send the synchronization signal, where the first synchronization signal and the second synchronization signal overlap in the time domain, and the first synchronization signal and the second synchronization signal are in phase Within the overlapping time domain resources, the frequency domain resources corresponding to the first synchronization signal and the frequency domain resources corresponding to the second synchronization signal have an intersection.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units
  • the frequency domain resources corresponding to the first synchronization signal are K*M resource units
  • M is a positive integer.
  • K is an integer greater than 1, or, if K is greater than 1, K can be an integer or a decimal.
  • the first synchronization signal is generated according to a first sequence
  • the second synchronization signal is generated according to a second sequence
  • the first sequence is obtained according to the second sequence and the third sequence.
  • the first sequence is obtained according to the second sequence and the third sequence, and includes at least one of the following:
  • the K*L length of the first sequence is obtained according to the K*N length sequence, and the K*N length of the sequence is obtained according to the N length of the second sequence and the K length of the fifth sequence;
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the fourth sequence of L length is obtained based on the second sequence of N length;
  • the first sequence of K*L length is obtained according to the sequence of H*N length
  • the sequence of H*N length is obtained according to the second sequence of N length and the third sequence of H length ;or
  • the first sequence of K*L length is obtained from the sequence of H*L length, and the sequence of H*L length is obtained from the fourth sequence of L length and the third sequence of H length, so The L-long fourth sequence is obtained based on the N-long second sequence;
  • the K-length fifth sequence is obtained from the H-length third sequence
  • the L-long fourth sequence is obtained from the N-length second sequence
  • L is the M The number of subcarriers included in the resource unit.
  • the first sequence of K*L length is obtained according to the fourth sequence of L length and the fifth sequence of K length
  • the fourth sequence of L length is obtained according to the length of N Obtained from the second sequence
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with K*L length The sequence is ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,...,a L-1 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a L-1 b 1 ,...,A 0 b K-1 ,a 1 b K-1 ,a 2 b K-1 ,..., a L-1 b K-1 ⁇ ; or,
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence of K*L length is obtained from the sequence of H*N length
  • the sequence of H*N length is obtained from the second sequence of N length and H Obtained by the long third sequence
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ m 0 n 0 ,m 1 n 0 ,m 2 n 0 ,...,m N-1 n 0 ,m 0 n 1 ,m 1 n 1 ,m 2 n 1 ,...,m N-1 n 1 , ...,M 0 n H-1 ,m 1 n H-1 ,m 2 n H-1 ,...,m N-1 n H-1 ⁇ ; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ p i m i mod N n i mod H 0 ⁇ i ⁇ H*N-1 ⁇ , where mod is the remainder operator; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the third sequence is an all-one sequence or an orthogonal sequence.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units
  • the frequency domain resources corresponding to the first synchronization signal are K*M resource units
  • both M and K are A positive integer
  • the third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each part of which includes M resource units, and the sequence carried by each part is identical to the first
  • the sequences carried on the M resource units corresponding to the two synchronization signals are the same.
  • all elements included in the first sequence have the same amplitude, and the second sequence is a part of the first sequence.
  • the first sequence is an m sequence.
  • FIG. 10 shows a schematic structural diagram of a communication device 1000.
  • the communication device 1000 can implement the functions of the terminal device mentioned above.
  • the communication apparatus 1000 may be the terminal device described above, or may be a chip provided in the terminal device described above.
  • the communication device 1000 may include a processor 1001 and a transceiver 1002.
  • the processor 1001 may be used to execute S33 in the embodiment shown in FIG. 3 and/or to support other processes of the technology described herein, for example, it may execute other processes performed by the terminal device described above except for receiving and sending. All other processes or part of other processes outside the process.
  • the transceiver 1002 can be used to perform S32 in the embodiment shown in FIG. 3, and/or other processes used to support the technology described herein, for example, it can perform all the transceiving processes performed by the terminal device described above. Or part of the sending and receiving process.
  • the transceiver 1002 is configured to receive a first synchronization signal from a network device, where the first synchronization signal and the second synchronization signal overlap in the time domain, and the first synchronization signal and the second synchronization signal overlap each other in the time domain.
  • the frequency domain resources corresponding to the first synchronization signal and the frequency domain resources corresponding to the second synchronization signal have an intersection;
  • the processor 1001 is configured to synchronize with the network device according to the first synchronization signal
  • the second synchronization signal corresponds to the network device.
  • the transceiver 1002 is further configured to receive the second synchronization signal from the network device.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units, the frequency domain resources corresponding to the first synchronization signal are K*M resource units, M is a positive integer, and K is an integer greater than 1; or,
  • the frequency domain resources corresponding to the first synchronization signal are M resource units
  • the frequency domain resources corresponding to the second synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1.
  • the K is greater than 1, and K can be an integer or a decimal
  • the first synchronization signal is generated according to a first sequence
  • the second synchronization signal is generated according to a second sequence
  • the first synchronization signal is generated according to the second sequence, and the second synchronization signal is generated according to the first sequence.
  • the first sequence is obtained according to the second sequence and the third sequence.
  • the first sequence is obtained according to the second sequence and the third sequence, and includes at least one of the following:
  • the K*L length of the first sequence is obtained according to the K*N length sequence, and the K*N length of the sequence is obtained according to the N length of the second sequence and the K length of the fifth sequence;
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the fourth sequence of L length is obtained based on the second sequence of N length;
  • the first sequence of K*L length is obtained according to the sequence of H*N length
  • the sequence of H*N length is obtained according to the second sequence of N length and the third sequence of H length ;or
  • the first sequence of K*L length is obtained from the sequence of H*L length, and the sequence of H*L length is obtained from the fourth sequence of L length and the third sequence of H length, so The L-long fourth sequence is obtained based on the N-long second sequence;
  • the K-length fifth sequence is obtained from the H-length third sequence
  • the L-long fourth sequence is obtained from the N-length second sequence
  • L is the M The number of subcarriers included in the resource unit.
  • the first sequence of K*L length is obtained according to the fourth sequence of L length and the fifth sequence of K length
  • the fourth sequence of L length is obtained according to the length of N Obtained from the second sequence
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with K*L length The sequence is ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,...,a L-1 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a L-1 b 1 ,...,A 0 b K-1 ,a 1 b K-1 ,a 2 b K-1 ,..., a L-1 b K-1 ⁇ ; or,
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence of K*L length is obtained from the sequence of H*N length
  • the sequence of H*N length is obtained from the second sequence of N length and H Obtained by the long third sequence
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ m 0 n 0 ,m 1 n 0 ,m 2 n 0 ,...,m N-1 n 0 ,m 0 n 1 ,m 1 n 1 ,m 2 n 1 ,...,m N-1 n 1 , ...,M 0 n H-1 ,m 1 n H-1 ,m 2 n H-1 ,...,m N-1 n H-1 ⁇ ; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ p i m i mod N n i mod H 0 ⁇ i ⁇ H*N-1 ⁇ , where mod is the remainder operator; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the third sequence is an all-one sequence or an orthogonal sequence.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units
  • the frequency domain resources corresponding to the first synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1
  • the The third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and the sequence carried by each part of them corresponds to the second synchronization signal
  • the sequences carried on M resource units are the same; or,
  • the frequency domain resources corresponding to the first synchronization signal are M resource units
  • the frequency domain resources corresponding to the second synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1
  • the The third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and the sequence carried by each part of them corresponds to the first synchronization signal
  • the sequences carried on the M resource units are the same.
  • all elements included in the first sequence have the same amplitude, and the second sequence is a part of the first sequence.
  • the first sequence is an m sequence.
  • the communication device 900 or the communication device 1000 can also be implemented by the structure of the communication device 1100 as shown in FIG. 11A.
  • the communication apparatus 1100 can implement the functions of the terminal equipment or network equipment mentioned above.
  • the communication device 1100 may include a processor 1101.
  • the processor 1101 may be used to execute S33 in the embodiment shown in FIG. 3, and/or to support the technology described herein. Other processes, for example, all other processes or parts of other processes performed by the terminal equipment described above except for the receiving and sending process may be executed; or, the communication device 1100 is used to implement the functions of the network equipment mentioned above At this time, the processor 1101 may be used to execute S31 in the embodiment shown in FIG. 3, and/or to support other processes of the technology described herein, for example, it may execute the operations performed by the network device described above in addition to receiving and sending. All other operations or part of other operations other than operations.
  • the communication device 1100 can use field-programmable gate array (FPGA), application specific integrated circuit (ASIC), system on chip (SoC), and central processor (central processor). unit, CPU), network processor (network processor, NP), digital signal processing circuit (digital signal processor, DSP), microcontroller (microcontroller unit, MCU), or programmable controller (programmable logic device, PLD) or other integrated chips, the communication device 1100 can be set in the terminal device or the network device in the embodiment of the present application, so that the terminal device or the network device implements the method provided in the embodiment of the present application.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • central processor central processor
  • unit CPU
  • network processor network processor
  • NP digital signal processing circuit
  • DSP digital signal processor
  • microcontroller microcontroller unit, MCU
  • PLD programmable controller
  • the communication device 1100 may include a transceiver component for communicating with other devices.
  • the transceiver component can be used to perform S32 in the embodiment shown in FIG. 3, and/or to support the functions described herein.
  • Other processes of technology are a transceiver component.
  • a transceiver component is a communication interface. If the communication device 1100 is a terminal device or a network device, the communication interface may be a transceiver in the terminal device or network device, such as the transceiver 902 or the transceiver 1002.
  • the transceiver is, for example, a terminal.
  • the communication device 1100 may further include a memory 1102, as shown in FIG. 11B, where the memory 1102 is used to store computer programs or instructions, and the processor 1101 is used to decode and execute these computer programs or instruction.
  • these computer programs or instructions may include functional programs of the aforementioned terminal devices or network devices.
  • the terminal device can realize the function of the terminal device in the method provided in the embodiment shown in FIG. 3 of the embodiment of the present application.
  • the network device can realize the function of the network device in the method provided in the embodiment shown in FIG. 3 of the embodiment of the present application.
  • the functional programs of these terminal devices or network devices are stored in a memory external to the communication device 1100.
  • the memory 1102 temporarily stores part or all of the above-mentioned functional program of the terminal device.
  • the function program of the network device is decoded and executed by the processor 1101, the memory 1102 temporarily stores part or all of the content of the function program of the network device.
  • the functional programs of these terminal devices or network devices are set in the memory 1102 stored in the communication device 1100.
  • the communication device 1100 may be set in the terminal device in the embodiment of the present application.
  • the memory 1102 inside the communication device 1100 stores the function program of the network device
  • the communication device 1100 may be set in the network device of the embodiment of the present application.
  • part of the content of the functional programs of these terminal devices is stored in a memory outside the communication device 1100, and other parts of the content of the functional programs of these terminal devices are stored in the memory 1102 inside the communication device 1100.
  • part of the content of the functional programs of these network devices is stored in a memory outside the communication device 1100, and other parts of the content of the functional programs of these network devices are stored in the memory 1102 inside the communication device 1100.
  • the communication device 900, the communication device 1000, and the communication device 1100 are presented in the form of dividing each function module corresponding to each function, or may be presented in the form of dividing each function module in an integrated manner.
  • the "module” herein may refer to an ASIC, a processor and memory that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the communication device 900 provided by the embodiment shown in FIG. 9 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 901, and the transceiver module may be implemented by the transceiver 902.
  • the processing module can be used to execute S31 in the embodiment shown in FIG. 3, and/or other processes used to support the technology described in this article, for example, can execute the above-mentioned terminal device except for the transceiving process. All other processes or part of other processes.
  • the transceiver module can be used to perform S32 in the embodiment shown in FIG. 3, and/or other processes used to support the technology described herein, for example, it can perform all the transceiver processes or processes performed by the terminal device described above. Part of the sending and receiving process.
  • the processing module is configured to generate a synchronization signal, the synchronization signal including a first synchronization signal and a second synchronization signal;
  • the transceiver module is configured to send the synchronization signal, wherein the first synchronization signal and the second synchronization signal overlap in the time domain, and the first synchronization signal and the second synchronization signal overlap Within the time domain resources of, the frequency domain resources corresponding to the first synchronization signal and the frequency domain resources corresponding to the second synchronization signal have an intersection.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units
  • the frequency domain resources corresponding to the first synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1.
  • the first synchronization signal is generated according to a first sequence
  • the second synchronization signal is generated according to a second sequence
  • the first sequence is obtained according to the second sequence and the third sequence.
  • the first sequence is obtained according to the second sequence and the third sequence, and includes at least one of the following:
  • the K*L length of the first sequence is obtained according to the K*N length sequence, and the K*N length of the sequence is obtained according to the N length of the second sequence and the K length of the fifth sequence;
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the fourth sequence of L length is obtained based on the second sequence of N length;
  • the first sequence of K*L length is obtained according to the sequence of H*N length
  • the sequence of H*N length is obtained according to the second sequence of N length and the third sequence of H length ;or
  • the first sequence of K*L length is obtained from the sequence of H*L length, and the sequence of H*L length is obtained from the fourth sequence of L length and the third sequence of H length, so The L-long fourth sequence is obtained based on the N-long second sequence;
  • the K-length fifth sequence is obtained from the H-length third sequence
  • the L-long fourth sequence is obtained from the N-length second sequence
  • L is the M The number of subcarriers included in the resource unit.
  • the first sequence of K*L length is obtained according to the fourth sequence of L length and the fifth sequence of K length
  • the fourth sequence of L length is obtained according to the length of N Obtained from the second sequence
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with K*L length The sequence is ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,...,a L-1 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a L-1 b 1 ,...,A 0 b K-1 ,a 1 b K-1 ,a 2 b K-1 ,..., a L-1 b K-1 ⁇ ; or,
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence of K*L length is obtained from the sequence of H*N length
  • the sequence of H*N length is obtained from the second sequence of N length and H Obtained by the long third sequence
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ m 0 n 0 ,m 1 n 0 ,m 2 n 0 ,...,m N-1 n 0 ,m 0 n 1 ,m 1 n 1 ,m 2 n 1 ,...,m N-1 n 1 , ...,M 0 n H-1 ,m 1 n H-1 ,m 2 n H-1 ,...,m N-1 n H-1 ⁇ ; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ p i m i mod N n i mod H 0 ⁇ i ⁇ H*N-1 ⁇ , where mod is the remainder operator; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the third sequence is an all-one sequence or an orthogonal sequence.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units
  • the frequency domain resources corresponding to the first synchronization signal are K*M resource units
  • both M and K are A positive integer
  • the third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each part of which includes M resource units, and the sequence carried by each part is identical to the first
  • the sequences carried on the M resource units corresponding to the two synchronization signals are the same.
  • all elements included in the first sequence have the same amplitude, and the second sequence is a part of the first sequence.
  • the first sequence is an m sequence.
  • the communication device 1000 provided by the embodiment shown in FIG. 10 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 1001, and the transceiver module may be implemented by the transceiver 1002.
  • the processing module can be used to execute S33 in the embodiment shown in FIG. 3, and/or other processes used to support the technology described in this article, for example, can execute the above-mentioned terminal equipment except the transceiving process. All other processes or part of other processes.
  • the transceiver module can be used to perform S32 in the embodiment shown in FIG. 3, and/or other processes used to support the technology described herein, for example, it can perform all the transceiver processes or processes performed by the terminal device described above. Part of the sending and receiving process.
  • the transceiver module is used to receive a first synchronization signal from a network device, where the first synchronization signal and the second synchronization signal overlap in the time domain, and the first synchronization signal and the second synchronization signal overlap each other in the time domain.
  • the frequency domain resources corresponding to the first synchronization signal and the frequency domain resources corresponding to the second synchronization signal have an intersection;
  • a processing module configured to synchronize with the network device according to the first synchronization signal
  • the second synchronization signal corresponds to the network device.
  • the transceiver module is further configured to receive the second synchronization signal from the network device.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units, the frequency domain resources corresponding to the first synchronization signal are K*M resource units, M is a positive integer, and K is an integer greater than 1; or,
  • the frequency domain resources corresponding to the first synchronization signal are M resource units
  • the frequency domain resources corresponding to the second synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1.
  • the first synchronization signal is generated according to a first sequence
  • the second synchronization signal is generated according to a second sequence
  • the first synchronization signal is generated according to the second sequence, and the second synchronization signal is generated according to the first sequence.
  • the first sequence is obtained according to the second sequence and the third sequence.
  • the first sequence is obtained according to the second sequence and the third sequence, and includes at least one of the following:
  • the K*L length of the first sequence is obtained according to the K*N length sequence, and the K*N length of the sequence is obtained according to the N length of the second sequence and the K length of the fifth sequence;
  • the first sequence of K*L length is obtained based on the fourth sequence of L length and the fifth sequence of K length, and the fourth sequence of L length is obtained based on the second sequence of N length;
  • the first sequence of K*L length is obtained according to the sequence of H*N length
  • the sequence of H*N length is obtained according to the second sequence of N length and the third sequence of H length ;or
  • the first sequence of K*L length is obtained from the sequence of H*L length, and the sequence of H*L length is obtained from the fourth sequence of L length and the third sequence of H length, so The L-long fourth sequence is obtained based on the N-long second sequence;
  • the K-length fifth sequence is obtained from the H-length third sequence
  • the L-long fourth sequence is obtained from the N-length second sequence
  • L is the M The number of subcarriers included in the resource unit.
  • the first sequence of K*L length is obtained according to the fourth sequence of L length and the fifth sequence of K length
  • the fourth sequence of L length is obtained according to the length of N Obtained from the second sequence
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence with K*L length The sequence is ⁇ a 0 b 0 ,a 1 b 0 ,a 2 b 0 ,...,a L-1 b 0 ,a 0 b 1 ,a 1 b 1 ,a 2 b 1 ,...,a L-1 b 1 ,...,A 0 b K-1 ,a 1 b K-1 ,a 2 b K-1 ,..., a L-1 b K-1 ⁇ ; or,
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the fourth sequence is ⁇ a 0 ,a 1 ,...,a L-1 ⁇
  • the fifth sequence is ⁇ b 0 ,b 1 ,...b K-1 ⁇
  • the first sequence of K*L length is obtained from the sequence of H*N length
  • the sequence of H*N length is obtained from the second sequence of N length and H Obtained by the long third sequence
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ m 0 n 0 ,m 1 n 0 ,m 2 n 0 ,...,m N-1 n 0 ,m 0 n 1 ,m 1 n 1 ,m 2 n 1 ,...,m N-1 n 1 , ...,M 0 n H-1 ,m 1 n H-1 ,m 2 n H-1 ,...,m N-1 n H-1 ⁇ ; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the H*N long sequence Is ⁇ p i m i mod N n i mod H 0 ⁇ i ⁇ H*N-1 ⁇ , where mod is the remainder operator; or,
  • the second sequence is ⁇ m 0 ,m 1 ,...,m N-1 ⁇
  • the third sequence is ⁇ n 0 ,n 1 ,...,n H-1 ⁇
  • the third sequence is an all-one sequence or an orthogonal sequence.
  • the frequency domain resources corresponding to the second synchronization signal are M resource units
  • the frequency domain resources corresponding to the first synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1
  • the The third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and the sequence carried by each part of them corresponds to the second synchronization signal
  • the sequences carried on M resource units are the same; or,
  • the frequency domain resources corresponding to the first synchronization signal are M resource units
  • the frequency domain resources corresponding to the second synchronization signal are K*M resource units
  • M is a positive integer
  • K is an integer greater than 1
  • the The third sequence is a sequence of all 1s
  • the K*M resource units include K parts, each of which includes M resource units, and the sequence carried by each part of them corresponds to the first synchronization signal
  • the sequences carried on the M resource units are the same.
  • all elements included in the first sequence have the same amplitude, and the second sequence is a part of the first sequence.
  • the first sequence is an m sequence.
  • the communication device 900, the communication device 1000, and the communication device 1100 provided in the embodiments of the present application can be used to execute the method provided in the embodiment shown in FIG. 3, the technical effects that can be obtained can refer to the above method embodiments. No longer.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another readable storage medium. For example, the computer instructions may be passed from a website, computer, server, or data center.
  • Wired for example, coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)
  • wireless for example, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital universal disc (DVD)), or semiconductor media (eg, solid state disk (SSD) ))Wait.

Abstract

一种信号发送、接收方法及设备,信号发送方法包括:生成同步信号,所述同步信号包括第一同步信号和第二同步信号;发送所述同步信号,其中,所述第一同步信号和所述第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集。本申请实施例令两个同步信号不会完全独立,而是在频域上有一部分重叠,这样可以减少同步信号所占用的频域资源,从而为其他的数据传输过程节省了频域资源,而且两个同步信号还可以共用一部分频域资源,提高了资源的利用率。

Description

一种信号发送、接收方法及设备
相关申请的交叉引用
本申请要求在2019年01月18日提交国家知识产权局、申请号为201910104172.6、申请名称为“一种信号发送、接收方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号发送、接收方法及设备。
背景技术
一般而言,终端设备在接入一个无线通信系统时,例如长期演进(long term evolution,LTE)系统或新无线(new radio,NR)系统,需要先和该无线通信系统下的网络设备实现同步,即,先通过检测同步信道获取网络设备的同步信息,同步信息可以包括时间同步信息和/或频率同步信息,以及还可能获取网络设备所管辖的小区信息,这样才能保证后续和网络设备之间进行正常的数据通信。
目前,针对不同能力的终端设备是分别设计同步信道,而且不同的同步信道是相互独立的。例如对于非窄带物联网(narrow band internet of things,NB-IoT)终端设备,例如(增强)移动宽带((enhanced)mobile broadband,(e)MBB)业务下的终端设备,可以通过频域宽带为6个资源块(resource block,RB)的同步信道接入LTE系统,另一方面,NB-IoT终端设备可以通过频域宽带为1个RB的同步信道接入NB-IoT系统。
而由于分配给同步信道的资源无法再被其他数据传输过程所使用,因此降低了资源利用效率。
发明内容
本申请实施例提供一种信号发送、接收方法及设备,用于提高资源的利用率。
第一方面,提供一种信号发送方法,该方法包括:生成同步信号,所述同步信号包括第一同步信号和第二同步信号;发送所述同步信号,其中,所述第一同步信号和所述第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集。
该方法可由第一通信装置执行,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。这里以第一通信装置是网络设备为例。
在本申请实施例中,在第一同步信号和第二同步信号相重叠的时域资源内,第一同步信号对应的频域资源和第二同步信号对应的频域资源有交集,相当于,令两个同步信号不会完全独立,而是在频域上有一部分重叠,这样可以减少同步信号所占用的频域资源,从而为其他的数据传输过程节省了频域资源,而且两个同步信号还可以共用一部分频域资源,提高了资源的利用率。并且,令不同的同步信道不完全独立,而是有一部分重叠,也可以 在一定程度上降低实现的复杂度。
结合第一方面,在第一方面的一种可能的实施方式中,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,或者,K大于1,K可以为整数或小数。
令第二同步信号对应的频域资源为M个资源单位,第一同步信号对应的频域资源为K*M个资源单位,可以使得生成第二同步信号的序列是生成第一同步信号的序列的一部分,或者可以根据生成第二同步信号的序列得到生成第一同步信号的序列等,降低了生成同步信号的复杂度。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的。
在本申请实施例中,同步信号可以是网络设备根据序列生成的。或者,第一序列和/或第二序列也可能是通过协议或其他方式规定的,网络设备只需确定第一序列和/或第二序列即可,无需生成。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的。
第一序列可以根据第二序列和第三序列得到,如果需要网络设备生成第一序列,那么网络设备只需获知第二序列和第三序列就可以生成第一序列,较为简单。当然,第一序列也可能是通过协议或其他方式规定的,网络设备只需确定第一序列即可,无需生成。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
根据第二序列和第三序列得到第一序列,可以有多种方式,这里只是列举了几种,具体的不做限制。另外,如果第三序列的长度和序列元素的排列顺序等正好是可用的,那么第三序列可以直接作为第五序列,在这种情况下网络设备无需执行根据第三序列得到第五序列的步骤。同理,如果第二序列的长度和序列元素的排列顺序等正好是可用的,那么第二序列可以直接作为第四序列,在这种情况下网络设备无需执行根据第二序列得到第四序列的步骤。
结合第一方面,在第一方面的一种可能的实施方式中,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K,0≤i≤K*L-1},其中mod为求余运算符;或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K,0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
这里只是对第四序列和第五序列做了一些举例,具体的不做限制。
结合第一方面,在第一方面的一种可能的实施方式中,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
这里只是对第二序列和第三序列做了一些举例,具体的不做限制。
结合第一方面,在第一方面的一种可能的实施方式中,所述第三序列为全1序列或正交序列。
第三序列为全1序列或正交序列,在生成第一序列时会较为简单。当然本申请实施例不限制第三序列还可以是其他序列。
结合第一方面,在第一方面的一种可能的实施方式中,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M和K均为正整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同。
相当于,第一序列是对第二序列进行“拉伸”后得到的序列,在这种情况下,只需确定第二序列,根据第二序列和一个全1的简单序列就可以得到第一序列,较为简单。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
采用序列元素为恒幅值序列元素的好处在于,这样的序列经过DFT或者IDFT之后得到的序列,具有理想的自相关特性,进而便于终端设备快速与网络设备实现同步。此外,由于第二序列为第一序列的一部分,因此,系统无需针对宽带终端设备和窄带终端设备分别设计同步序列,简化了系统侧的设计。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一序列为m序列。
第一序列可以是恒幅值的m序列,当然也可以是其他序列。
第二方面,提供一种信号接收方法,该方法包括:接收来自网络设备的第一同步信号,其中,所述第一同步信号和第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集;根据所述第一同步信号与所述网络设备进行同步;其中,所述第二同步信号对应于所述网络设备。
该方法可由第二通信装置执行,第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。这里以第二通信装置是终端设备为例。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:接收来自所述网络设备的所述第二同步信号。
结合第二方面,在第二方面的一种可能的实施方式中,
所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数;或,
所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
可选的,所述K大于1,K可以为整数或小数
结合第二方面,在第二方面的一种可能的实施方式中,
所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的;或,
所述第一同步信号是根据第二序列生成的,所述第二同步信号是根据第一序列生成的。
结合第二方面,在第二方面的一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的。
结合第二方面,在第二方面的一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
结合第二方面,在第二方面的一种可能的实施方式中,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…, a L-1b K-1};或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K0≤i≤K*L-1},其中mod为求余运算符;或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
结合第二方面,在第二方面的一种可能的实施方式中,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
结合第二方面,在第二方面的一种可能的实施方式中,所述第三序列为全1序列或正交序列。
结合第二方面,在第二方面的一种可能的实施方式中,
所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同;或,
所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第一同步信号对应的M个资源单位上承载的序列相同。
结合第二方面,在第二方面的一种可能的实施方式中,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
结合第二方面,在第二方面的一种可能的实施方式中,所述第一序列为m序列。
关于第二方面或第二方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第三方面,提供第一种通信装置,例如该通信装置为如前所述的第一通信装置。所述通信装置用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为网络设备。其中,
所述处理模块,用于生成同步信号,所述同步信号包括第一同步信号和第二同步信号;
所述收发模块,用于发送所述同步信号,其中,所述第一同步信号和所述第二同步信 号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集。
结合第三方面,在第三方面的一种可能的实施方式中,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
结合第三方面,在第三方面的一种可能的实施方式中,所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的。
结合第三方面,在第三方面的一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的。
结合第三方面,在第三方面的一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
结合第三方面,在第三方面的一种可能的实施方式中,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K,0≤i≤K*L-1},其中mod为求余运算符;或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K,0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
结合第三方面,在第三方面的一种可能的实施方式中,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N 长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
结合第三方面,在第三方面的一种可能的实施方式中,所述第三序列为全1序列或正交序列。
结合第三方面,在第三方面的一种可能的实施方式中,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M和K均为正整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同。
结合第三方面,在第三方面的一种可能的实施方式中,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
结合第三方面,在第三方面的一种可能的实施方式中,所述第一序列为m序列。
关于第三方面或第三方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第四方面,提供第二种通信装置,例如该通信装置为如前所述的第二通信装置。所述通信装置用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。示例性地,所述通信装置为终端设备。其中,
所述收发模块,用于接收来自网络设备的第一同步信号,其中,所述第一同步信号和第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集;
所述处理模块,用于根据所述第一同步信号与所述网络设备进行同步;
其中,所述第二同步信号对应于所述网络设备。
结合第四方面,在第四方面的一种可能的实施方式中,所述收发模块,还用于接收来自所述网络设备的所述第二同步信号。
结合第四方面,在第四方面的一种可能的实施方式中,
所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数;或,
所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
结合第四方面,在第四方面的一种可能的实施方式中,
所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的;或,
所述第一同步信号是根据第二序列生成的,所述第二同步信号是根据第一序列生成的。
结合第四方面,在第四方面的一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的。
结合第四方面,在第四方面的一种可能的实施方式中,所述第一序列是根据所述第二 序列和第三序列得到的,包括以下至少一种:
K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
结合第四方面,在第四方面的一种可能的实施方式中,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K0≤i≤K*L-1},其中mod为求余运算符;或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
结合第四方面,在第四方面的一种可能的实施方式中,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
结合第四方面,在第四方面的一种可能的实施方式中,所述第三序列为全1序列或正交序列。
结合第四方面,在第四方面的一种可能的实施方式中,
所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部 分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同;或,
所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第一同步信号对应的M个资源单位上承载的序列相同。
结合第四方面,在第四方面的一种可能的实施方式中,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
结合第四方面,在第四方面的一种可能的实施方式中,所述第一序列为m序列。
关于第四方面或第四方面的各种可能的实施方式所带来的技术效果,可以参考对第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第五方面,提供第三种通信装置,该通信装置例如为如前所述的第一通信装置。该通信装置包括处理器和收发器,用于实现上述第一方面或第一方面的各种可能的设计所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。示例性的,所述通信设备为网络设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述处理器,用于生成同步信号,所述同步信号包括第一同步信号和第二同步信号;
所述收发器,用于发送所述同步信号,其中,所述第一同步信号和所述第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集。
结合第五方面,在第五方面的一种可能的实施方式中,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
结合第五方面,在第五方面的一种可能的实施方式中,所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的。
结合第五方面,在第五方面的一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的。
结合第五方面,在第五方面的一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
结合第五方面,在第五方面的一种可能的实施方式中,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K,0≤i≤K*L-1},其中mod为求余运算符;或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K,0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
结合第五方面,在第五方面的一种可能的实施方式中,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
结合第五方面,在第五方面的一种可能的实施方式中,所述第三序列为全1序列或正交序列。
结合第五方面,在第五方面的一种可能的实施方式中,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M和K均为正整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同。
结合第五方面,在第五方面的一种可能的实施方式中,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
结合第五方面,在第五方面的一种可能的实施方式中,所述第一序列为m序列。
关于第五方面或第五方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第六方面,提供第四种通信装置,该通信装置例如为如前所述的第二通信装置。该通信装置包括处理器和收发器,用于实现上述第二方面或第二方面的各种可能的设计所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。示例性的,所述通信设备为终端设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述收发器,用于接收来自网络设备的第一同步信号,其中,所述第一同步信号和第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集;
所述处理器,用于根据所述第一同步信号与所述网络设备进行同步;
其中,所述第二同步信号对应于所述网络设备。
结合第六方面,在第六方面的一种可能的实施方式中,所述收发器,还用于接收来自所述网络设备的所述第二同步信号。
结合第六方面,在第六方面的一种可能的实施方式中,
所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数;或,
所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
结合第六方面,在第六方面的一种可能的实施方式中,
所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的;或,
所述第一同步信号是根据第二序列生成的,所述第二同步信号是根据第一序列生成的。
结合第六方面,在第六方面的一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的。
结合第六方面,在第六方面的一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
结合第六方面,在第六方面的一种可能的实施方式中,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K0≤i≤K*L-1},其中mod为求余运算符;或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第 一序列是对序列{c i=a i mod Lb i mod K0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
结合第六方面,在第六方面的一种可能的实施方式中,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
结合第六方面,在第六方面的一种可能的实施方式中,所述第三序列为全1序列或正交序列。
结合第六方面,在第六方面的一种可能的实施方式中,
所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同;或,
所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第一同步信号对应的M个资源单位上承载的序列相同。
结合第六方面,在第六方面的一种可能的实施方式中,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
结合第六方面,在第六方面的一种可能的实施方式中,所述第一序列为m序列。
关于第六方面或第六方面的各种可能的实施方式所带来的技术效果,可以参考对第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第七方面,提供第五种通信装置。该通信装置可以为上述方法设计中的第一通信装置。示例性地,所述通信装置为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第五种通信装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。
其中,第五种通信装置还可以包括通信接口,该通信接口可以是网络设备中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果第五种通信装置为设置在网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第八方面,提供第六种通信装置。该通信装置可以为上述方法设计中的第二通信装置。示例性地,所述通信装置为设置在终端设备中的芯片。该通信装置包括:存储器,用于存 储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第六种通信装置执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。
其中,第六种通信装置还可以包括通信接口,该通信接口可以是终端设备中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果第六种通信装置为设置在终端设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第九方面,提供一种通信系统,该通信系统可以包括第三方面所述的第一种通信装置、第五方面所述的第三种通信装置或第七方面所述的第五种通信装置,以及包括第四方面所述的第二种通信装置、第六方面所述的第四种通信装置或第八方面所述的第六种通信装置。
第十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
在本申请实施例中,令两个同步信号不会完全独立,而是在频域上有一部分重叠,这样可以减少同步信号所占用的频域资源,从而为其他的数据传输过程节省了频域资源,而且两个同步信号还可以共用一部分频域资源,提高了资源的利用率。
附图说明
图1为LTE系统与NB-IoT系统带内部署下同步信道的一种设计方法;
图2为本申请实施例的一种应用场景示意图;
图3为本申请实施例提供的一种信号发送、接收方法的流程图;
图4A和图4B为本申请实施例中第一同步信号和第二同步信号在时域上有重叠的两种情况的示意图;
图5为本申请实施例中宽带同步信号对应的频域资源和窄带同步信号对应的频域资源有交集的一种示意图;
图6为本申请实施例中第一序列的一个部分与第二序列相同的一种示意图;
图7A~图7C为本申请实施例提供的得到第一序列的几种方式的示意图;
图8为本申请实施例中第二同步信号对应的同步栅格在第一同步信号对应的同步栅格的基础上偏移一个频率偏移量的示意图;
图9为本申请实施例提供的能够实现网络设备的功能的通信装置的一种示意图;
图10为本申请实施例提供的能够实现终端设备的功能的通信装置的一种示意图;
图11A~图11B为本申请实施例提供的一种通信装置的两种示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例涉及两种终端设备:宽带终端设备和窄带终端设备。其中,宽带终端设备和窄带终端设备需满足的条件,包括但不限于如下几种:
①在本申请实施例中,窄带终端设备的最大带宽能力小于或等于宽带终端设备的最小带宽能力。以窄带终端设备是NB-IoT终端设备、宽带终端设备是LTE终端设备为例,NB-IoT终端设备的数据传输带宽为1个RB,即180kHz或200kHz(包括保护频带),因 为LTE系统下的主同步信号(primary synchronization signal,PSS)/辅同步信号(secondary synchronization signal,SSS)所占的频率资源为6个RB,即1.08MHz或1.44MHz(包括保护频带),所以宽带终端设备的最小带宽能力可以认为是不小于1.08MHz的,在这种情况下,可以认为窄带终端设备的最大带宽能力小于或等于宽带终端设备的最小带宽能力。又例如,窄带终端设备是NB-IoT终端设备、宽带终端设备为NR终端设备,基于NR系统同步信号块(synchronization signal block,SSB)的设计,NR终端设备的最小带宽能力可以认为是20个RB,其中每个RB包括12个子载波,在NR系统中,子载波间隔与NR系统部署的频带有关,不是固定值,以最小的子载波间隔15kHz为例,最小带宽能力可以认为是大于或等于20*12*15=3.6MHz,依然可以认为窄带终端设备的最大带宽能力小于或等于宽带终端设备的最小带宽能力。
②在本申请实施例中,也可以认为窄带终端设备的最小带宽能力小于宽带终端设备的最小带宽能力。如果终端设备与网络设备之间建立数据传输通道,则一般而言,终端设备需要先接收网络设备发送的同步信道以及广播信道,因此可以认为网络设备发送的同步信道以及广播信道所对应的带宽为终端设备所需要具备的最小带宽能力。
基于①和②,窄带终端设备也可以认为是带宽受限(bandwidth limited,BL)终端设备,需要说明的是,BL终端设备也可以具有除①和②的其他带宽特征,不作具体限定。
③在本申请实施例中,窄带终端设备也可以认为需要通过覆盖增强(coverage enhancement,CE)技术与网络设备保持正常的数据通信,而宽带终端设备即使不通过CE技术,也可以与网络设备保持正常的数据通信。CE技术包括但不限于数据重复传输或功率提升等技术。或者,如果宽带终端设备和窄带终端设备在某些场景下,都需要通过数据重复传输,和网络设备保持正常的数据通信,那么,窄带终端设备与网络设备保持数据通信,所需要的最大重复次数,要小于宽带终端设备与网络设备保持数据通信所需要的最大重复次数。
④在本申请实施例中,窄带终端设备也可以认为是低功率广覆盖接入(low power wide coverage access,LPWA)终端设备,宽带终端设备可以认为是eMBB终端设备或者超可靠低延时通信(ultra-reliability low-latency communication,URLLC)终端设备。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
3)本申请实施例中,提到的小区可以是基站对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站。这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有 覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
LTE系统或NR系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,可以认为载波与小区的概念等同。例如在载波聚合(carrier aggregation,CA)场景下,当为终端设备配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(cell identify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,例如终端设备接入一个载波和接入一个小区是等同的。对于双连接(dual connectivity,DC)场景,也有类似说明。本申请实施例中将以小区的概念来介绍。在NR系统中,如果一个小区或一个载波上只有一个激活的带宽部分(bandwidth part,BWP),则也可以认为小区与BWP的概念等同。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一同步信号和第二同步信号,只是为了区分不同的同步信号,而并不是表示这两个同步信号的内容、优先级、发送顺序或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
第五代移动通信技术(the 5 th generation,5G)NR系统,是基于正交频分复用(orthogonal frequency division multiplexing,OFDM)的全新空口设计的全球性5G标准,也是下一代非常重要的蜂窝移动技术的基础。5G技术的业务非常多样,可以面向eMBB、超可靠低延时通信(ultra-reliability low-latency communication,URLLC)以及大规模机器通信(massive machine-type communication,mMTC)。
NR系统业务的多样化,就需要NR系统设计可以满足不同带宽能力的终端设备的接入需求。例如,eMBB终端设备可以通过获取NR系统的宽带信息接入NR系统,而部分mMTC终端设备由于设计成本、低功耗等方面的考虑,可以通过获取NR系统的窄带信息接入NR系统;又例如,即使针对同一种业务类型,例如mMTC,也有不同的业务速率要求,例如对于抄电表、跟踪追查或按需支付等用例,此类终端设备对数据传输速率要求不高,但一般要求具有深覆盖,一般可以通过窄带接入;另一方面,例如监控视频回传等,对数据传输速率要求比较高,因此可以将此类终端设备看作具有中高端能力的终端设备,一般可以通过宽带接入。
一般而言,终端设备在接入一个无线通信系统时,例如LTE系统或NR系统,需要先和该无线通信系统下的网络设备实现同步,即,先通过检测同步信道获取网络设备的同步信息,同步信息可以包括时间同步信息和/或频率同步信息,以及还可能获取网络设备所管辖的小区信息,这样才能保证后续和网络设备之间进行正常的数据通信。
LTE系统可以同时服务于eMBB业务和NB-IoT业务。NB-IoT构建于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于LTE网络,以降低部署成本。
以LTE网络带内部署(in-band deployment)NB-IoT为例,非NB-IoT终端设备,例如eMBB业务下的终端设备,可以通过频域宽带为6个RB的同步信道接入LTE系统,另一方面,NB-IoT终端设备通过频域宽带为1个RB(即,180kHz)的同步信道接入NB-IoT系统。服务于不同类型的终端设备的同步信道是独立设计的,可参考图1,为LTE系统与NB-IoT系统带内部署下同步信道的一种设计方法,其中子帧#0和子帧#5分别表示一个无线帧中的第一个子帧和第六个子帧,画斜线的方框表示为非NB-IoT终端设备设计的同步信号,画竖线的方框表示为NB-IoT终端设备设计的同步信号。
而由于分配给同步信道的资源无法再被其他数据传输过程所使用,因此目前对于同步信道的设计方式,降低了资源的利用效率。而且目前这种相互独立的同步信道设计,会带来额外的实现复杂度。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,在第一同步信号和第二同步信号相重叠的时域资源内,第一同步信号对应的频域资源和第二同步信号对应的频域资源有交集,相当于,令两个同步信号不会完全独立,而是在频域上有一部分重叠,这样可以减少同步信号所占用的频域资源,从而为其他的数据传输过程节省了频域资源,而且两个同步信号还可以共用一部分频域资源,提高了资源的利用率。并且,令不同的同步信道不完全独立,而是有一部分重叠,也可以在一定程度上降低实现的复杂度。
本申请实施例提供的技术方案可以用于无线通信系统,包括4.5G或5G无线通信系统,以及基于LTE或者NR的进一步演进系统,以及未来的无线通信系统。
本申请实施例的一种应用场景可以是,能够同时服务不同带宽能力的终端设备的无线通信系统。例如可以同时服务NB-IoT终端设备和eMBB终端设备的LTE系统或NR系统。
下面介绍本申请实施例所应用的网络架构。请参考图2,为本申请实施例所应用的一种网络架构。
图2中包括网络设备和两个终端设备,分别为终端设备1和终端设备2,这两个终端设备均可以与网络设备连接,例如终端设备1为支持宽带同步信道的终端设备,例如为非NB-IoT终端设备,终端设备2为支持窄带同步信道的终端设备,例如为NB-IoT终端设备。当然图2中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。
图2中的网络设备例如为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4 th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。
其中,图2中的NB-IoT终端设备是以车载终端设备或车为例,非NB-IoT终端设备是以手机为例,但本申请实施例中的终端设备不限于此。
接下来结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供一种信号发送、接收方法,请参见图3,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端设备或能够支持终端设备实现该 方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置可以是网络设备,第二通信装置是终端设备,或者第一通信装置是网络设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,或者第一通信装置是能够支持网络设备实现该方法所需的功能的通信装置,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例,也就是,以第一通信装置是网络设备、第二通信装置是终端设备为例。因为本实施例是以应用在图2所示的网络架构为例,因此,下文中所述的网络设备可以是图2所示的网络架构中的网络设备,下文中所述的终端设备可以是图2所示的网络架构中的终端设备1或终端设备2。
S31、网络设备生成同步信号,所述同步信号包括第一同步信号和第二同步信号。
需要说明的是,同步信号可以认为是承载在同步信道上传输的信号,基于此,在本申请实施例中,同步信号和同步信道是等效的,也就是说,同步信号和同步信道的描述可以是相互替换的。
如果终端设备是窄带终端设备,那么终端设备可能只能接收窄带同步信号,而没有能力接收宽带同步信号,在这种情况下,第一同步信号可以是窄带同步信号,第二同步信号是宽带同步信号,终端设备只接收第一同步信号;或者,如果终端设备是宽带终端设备,那么终端设备可能只接收宽带同步信号,或者可以接收宽带同步信号和窄带同步信号,在这种情况下,终端设备还可以接收来自网络设备的第二同步信号,另外在这种情况下,第一同步信号可以是窄带同步信号,第二同步信号是宽带同步信号,或者第一同步信号可以是宽带同步信号,第二同步信号是窄带同步信号。其中,宽带同步信号对应的频域资源多于窄带同步信号对应的频域资源。
在本申请实施例中,第一同步信号和第二同步信号在时域上有重叠,且在第一同步信号和第二同步信号相重叠的时域资源内,第一同步信号对应的频域资源和第二同步信号对应的频域资源有交集。其中,第一同步信号的发送周期和第二同步信号的发送周期可能相同,或者,考虑到窄带终端设备可能需要通过多次重复发送来提高覆盖,因此窄带同步信号的发送周期可能较短,而相对来说宽带同步信号的发送周期可能较长,因此两个同步信号的发送周期也可能不同。
如果第一同步信号的发送周期和第二同步信号的发送周期相同,那么第一同步信号和第二同步信号在每个发送周期内,在时域上都是有重叠的。可参考图4A,其中画斜线的方框表示第一同步信号,画竖线的方框表示第二同步信号,或者画斜线的方框表示第二同步信号,画竖线的方框表示第一同步信号。可以看到,两个同步信号的发送周期相同,在每个发送周期内,两个同步信号在时域上都有重叠,但因为两个同步信号的时域长度不同,所以在每个发送周期内,两个同步信号在时域上不一定是完全重叠。
或者,如果第一同步信号的发送周期和第二同步信号的发送周期不同,那么第一同步信号和第二同步信号可能只是在部分发送周期内,在时域上有重叠。可参考图4B,其中画斜线的方框表示第一同步信号,画竖线的方框表示第二同步信号,或者画斜线的方框表示第二同步信号,画竖线的方框表示第一同步信号。可以看到,两个同步信号的发送周期不同,宽带同步信号的发送周期短于窄带同步信号的发送周期,那么并不是在每个发送周期内,两个同步信号在时域上都有重叠,而可能只是在部分发送周期内,两个同步信号在时 域上有重叠。在图4B中,只要在一个发送周期内既发送第一同步信号也发送第二同步信号,则这两个同步信号在时域上就有重叠。还有可能,即使在一个发送周期内既发送第一同步信号也发送第二同步信号,这两个同步信号在时域上也不一定都会重叠,而也只在部分发送周期内重叠,例如,第一同步信号和第二同步信号在同时出现的第一个发送周期中在时域上是有重叠,但是在同时出现的第二个发送周期中,在时域上可能不重叠。因为两个同步信号的时域长度不同,所以在一个在时域上有重叠的发送周期内,两个同步信号在时域上不一定是完全重叠,可能只是部分重叠。
另外,从图4A和图4B中可以看出,在第一同步信号和第二同步信号相重叠的时域资源内,第一同步信号对应的频域资源和第二同步信号对应的频域资源有交集,而且图4A和图4B是以窄带同步信号对应的频域资源是宽带同步信号对应的频域资源的真子集为例。还有可能,可参考图5,其中画斜线的方框表示宽带同步信号,画竖线的方框表示窄带同步信号,从图5中可以看到,窄带同步信号对应的频域资源与宽带同步信号对应的频域资源只是有交集,但窄带同步信号对应的频域资源并不是宽带同步信号对应的频域资源的真子集。在下文中,主要以窄带同步信号对应的频域资源是宽带同步信号对应的频域资源的真子集为例介绍本申请实施例的技术方案。
如果第二同步信号为窄带同步信号,第一同步信号为宽带同步信号,那么,第二同步信号对应的频域资源为M个资源单位,第一同步信号对应的频域资源为K*M个资源单位,而如果第一同步信号为窄带同步信号,第二同步信号为宽带同步信号,那么,第一同步信号对应的频域资源为M个资源单位,第二同步信号对应的频域资源为K*M个资源单位,其中,M为正整数,K为大于1的整数,或者,K大于1,K可以为整数或小数。
在本申请实施例中,资源单位可以是资源单元(resource element,RE),或者是RB,或者还可能是其他的频域上的资源单位,具体的不做限制。例如,一个资源单位可以由整数个子载波组成,例如在LTE系统下,一个资源单位可以是一个RB对应的频率资源,也就是,一个资源单位是一个RB,那么一个资源单位是由12个连续的子载波组成,其中相邻的两个子载波之间的载波间隔为15kHz。又例如在NR系统下,一个资源单位也可以是一个RB对应的频率资源,也就是,一个资源单位是一个RB,那么一个资源单位由12个连续的子载波组成,其中相邻的两个子载波之间的载波间隔是可配置的或者与NR系统部署的频段相关联,例如可以是15kHz、30kHz、60kHz或120kHz等。
需要说明的是,在本申请实施例中,同步信号对应的频率资源为M个资源单位,可以理解为网络设备发送该同步信号时所使用的频率资源为M个资源单位。其中,假设网络设备发送的同步信号所对应的序列的序列长度为M1,则M同时具有下述特征(1)和(2):
(1)M个资源单位所包括的子载波个数等于或大于M1;
(2)M为满足(1)的最小整数。
或者,M同时具有下述特征(3)和(4):
(3)M个资源单位所包括的子载波个数小于或等于M1;
(4)M为满足(3)的最大整数。
举例说明,假设同步信号对应的频率单位用RB来表示,1个RB包括12个连续的子载波,网络设备发送的同步信号所对应的序列的序列长度为127,则M=12。进一步可选地,因为12个资源单位包括144个子载波,而网络设备发送的同步信号所对应的序列的序列长度为127,因此有144-127=17个子载波并不对应同步信号的发送,在这17个子载波上, 网络设备可能什么都不发送,或者发送其他信息。即使在这种情况下,在本申请实施例中,为了便于描述,仍然可以将同步信号对应的频率资源理解为12个RB。即,在本申请实施例中,只要M同时具有上述特征(1)和(2),或者同时具有上述特征(3)和(4),则M个资源单位就可以理解为是网络设备发送该同步信号时所使用的频率资源。
类似地,同步信号对应的频率资源为K*M个资源单位,可以理解为网络设备发送该同步信号时所使用的频率资源为K*M个资源单位,或者也可以理解为,假设网络设备发送的同步信号所对应的序列的序列长度为M2,则K*M同时具有下述特征(5)和(6):
(5)K*M个资源单位所包括的子载波个数等于或大于M2;
(6)K*M为满足(1)的最小整数。
或者,K*M同时具有下述特征(7)和(8):
(7)K*M个资源单位所包括的子载波个数等于或小于M2;
(8)K*M为满足(3)的最大整数。
第一同步信号可以是根据第一序列生成的,第二同步信号是根据第二序列生成的,或者,第一同步信号是根据第二序列生成的,第二同步信号是根据第一序列生成的。第一序列可以视为是用于生成宽带同步信号的序列,第二序列是用于生成窄带同步信号的序列。
在S31中,网络设备获取第一序列和第二序列的方式可以有多种,下面分别介绍。
方式1、根据第二序列得到第一序列。例如第二序列可以是ZC序列(Zadoff-Chu sequence),沃尔什(Walsh)序列,Gold序列,或m序列,或者也可以是其他序列。
在方式1下,网络设备是先得到第二序列,再得到第一序列。需要说明的是,第二序列也可以是标准协议规范或者是预定义的,在这种情况下,网络设备得到第二序列,该步骤是无需执行的,网络设备可以直接确定第二序列。其中,因为第二序列是用于生成窄带同步信号的序列,因此第二序列的长度可能并不能适用于宽带同步信号,因此还可以引入另一个序列,例如称为第三序列,通过第三序列可以“拉伸”第二序列,从而得到第一序列。可以理解为,第一序列可以根据第二序列和第三序列得到。或者,第一序列也可以是标准协议规范或者是预定义的,在这种情况下,网络设备得到第一序列,这个步骤也无需执行,网络设备可以直接确定第一序列。在下文中,主要以网络设备需要得到第二序列和需要得到第一序列为例,如果是网络设备无需得到第一序列,而是直接确定第一序列,那么网络设备所确定的第一序列与网络设备得到的第一序列,所具有的特征是相同的,同理,如果是网络设备无需得到第二序列,而是直接确定第二序列,那么网络设备所确定的第二序列与网络设备得到的第二序列,所具有的特征是相同的。
在本申请实施例中,第三序列可以是全1序列,也就是第三序列所包括的所有元素均为1,或者第三序列也可以是正交序列,而第五序列是根据第三序列得到的,那么第五序列也就可以是正交序列,或者第五序列可以是基于正交序列(第三序列)的变形得到的序列。如果第三序列为正交序列,可选的,第三序列可以是恒包络零自相关(constant amplitude zero auto-correlation,CAZAC)序列,或者为沃尔什(Walsh)序列,或者也可以是其他的正交序列。
其中,第二序列的长度例如为N,第三序列的长度例如为H。L为M个资源单位所包括的子载波的个数,K*L就是第一序列的长度,第一序列可以理解为,M个资源单位所包括的子载波上承载的元素所构成的序列。例如,假设L=12,M=1,资源单位为1个RB,K=6,则72个子载波上承载的元素所构成的序列为第一序列,第一序列的元素中可以包括 零,也可以不包括零。N和H均为整数。另外对于N和L的大小关系不做限制,例如N可以大于或等于L,或者N也可以小于L。同理,对于H和K的大小关系也不做限制,例如H可以大于或等于K,或者H也可以小于K
其中,根据N长的第二序列可以得到L长的第四序列,对此可以理解为,如果第二序列本身就适用于生成窄带同步信号,例如第二序列包括的序列元素的排列顺序以及序列长度等,正好适用于窄带同步信号,则无需对第二序列进行处理,可以直接根据第二序列得到第一序列;根据H长的第三序列可以得到K长的第五序列,对此可以理解为,如果第三序列本身就适用于生成宽带同步信号,例如第三序列包括的序列元素的排列顺序以及序列长度等,正好适用于宽带同步信号,则无需对第三序列进行处理,可以直接根据第二序列和第三序列得到用于宽带同步信号的第一序列。
根据第二序列和第三序列得到第一序列,又分为多种不同的方式。
(1)作为根据第二序列和第三序列得到第一序列的第一种方式,可以根据N长的第二序列和K长的第五序列得到K*L长的第一序列。可选的,例如根据N长的第二序列和K长的第五序列得到K*N长的序列,再根据K*N长的序列得到K*L长的第一序列。或者说,K*L长的第一序列是根据K*N长的序列得到的,K*N长的序列是根据N长的第二序列和K长的第五序列得到的。
其中,K长的第五序列是根据H长的所述第三序列得到的,也就是说,可以根据H长的第三序列得到K长的第五序列。在这种情况下,可以认为如果第三序列无需进行处理,例如H=K,也就是说第三序列的长度和序列元素的排列顺序等都是正好的,可以直接使用第三序列,此时第三序列就是第五序列,那么网络设备无需执行根据第三序列得到第五序列的步骤。或者,也可以认为H不等于K,也就是说第三序列的长度不合适,需要对第三序列先进行处理,以得到K长的第五序列。更为一般地,如果第三序列和第五序列完全相同,包括第三序列和第五序列各自包括的序列元素是相同的且各自包括的序列元素的排列顺序也是相同的,则无需对第三序列进行处理,可以直接使用第三序列,此时第三序列就是第五序列,否则,则需要对第三序列先进行处理,以得到K长的第五序列。
如果第三序列是全1序列,那么,如果H大于K,可以在H长的第三序列中提取K个序列元素,这K个序列元素就构成第五序列;如果H小于K,可以对H长的第三序列进行扩展,使其长度扩展为K长,这样就得到了K长的第五序列。对第三序列进行扩展的方法可以是循环扩展等。其中,循环扩展是指基于原来的H长的第三序列的循环扩展,例如H长的第三序列为{c 0,c 1,…,c H-1},对第三序列进行循环扩展可以是{c 0,c 1,…,c H-1,c 0,c 1,c 3…}。
或者,如果第三序列是正交序列,那么第五序列可以视为是基于正交序列的变形得到的序列。其中对正交序列进行变形的方法可以包括截短、循环扩展、补零、等间隔或者非等间隔采样等。需要说明的是,之所以需要对正交序列进行变形,主要是考虑到第三序列所对应的正交序列的序列长度可能与K不匹配,或者说与第一序列所需的序列长度不匹配。例如当K=6时,为了得到更多具有较理想的互相关特性的正交序列,例如CAZAC序列,第三序列对应的正交序列的序列长度可以为奇数,例如长度为7,这样的话,就需要对第三序列对应的正交序列进行截短操作,得到第五序列。即对长度为7(H=7)的第三序列进行截短,得到长度为6(K=6)的第五序列,然后再根据第五序列和第二序列,或者第五序列和第四序列,得到第一序列。
在本申请实施例中,截短是指当第五序列所基于的正交序列(第三序列)的长度大于K时,第五序列是对所基于的正交序列截短得到的;循环扩展是指当第五序列所基于的正交序列(第三序列)的长度小于K时,第五序列是对所基于的正交序列循环扩展得到的。除了循环扩展的方式,第五序列还可以通过对所基于的正交序列(第三序列)进行补零得到,或者抽取所基于的正交序列(第三序列)中的部分序列元素与所基于的正交序列的所有序列元素一起,构成第五序列,例如将抽取的部分序列元素添加在所基于的正交序列的序列元素之后,具体如何抽取不作具体限定。此外,第五序列还可以基于对正交序列(第三序列)的等间隔采样重排获得。例如,所基于的正交序列(长度为H的第三序列)表示为{d 0,d 1,…,d H-1},s表示第三长度,也就是采样间隔,令s为与H互素的正整数,则对所基于的正交序列按照s进行等间隔采样重排之后的序列可以表示为{d (s*i)mod H,0≤i≤H-1},重排序还有其他方式,不作具体限定。
而第二序列的长度为N,与第一序列所需要的长度L可能是不匹配的,也可能是匹配的。如果N不等于L,网络设备可以根据第五序列和第二序列得到一个K*N长的序列,由于第二序列的长度N不合适,因此网络设备还需要对K*N长的序列进行处理,以得到K*L长的第一序列。根据K*N长的序列得到K*L长的第一序列的方式,可以参考根据H长的第三序列得到K长的第五序列的方式,也可以参考后文中将要介绍的根据N长的第二序列得到L长的第四序列的方式,不多赘述。而如果N长的第二序列无需进一步处理,例如N=L,则N长的第二序列也就是L长的第四序列,网络设备可以直接根据第四序列和第五序列得到K*L长的第一序列,或者也可以理解为,K*L长的第一序列可以直接根据第二序列和第五序列得到,无需为了得到第一序列再进行进一步的处理,也就是说,根据K*N长的序列得到K*L长的第一序列,这个步骤是无需执行的。
另外,如果N长的第二序列无需进一步处理,例如N=L,则网络设备可以直接根据第四序列生成窄带同步信号,或者说用于窄带同步信号的序列可以直接为N长的第二序列,无需根据N长的第二序列得到L长的第四序列之后再生成窄带同步信号。而如果N长的第二序列需要进一步处理例如N不等于L,则网络设备需要先根据N长的第二序列得到L长的第四序列,再根据L长的第四序列生成窄带同步信号,或者说,用于窄带同步信号的L长第四序列是根据N长的第二序列得到的。
如果N长的第二序列无需进一步处理,例如N=L,那么网络设备得到的K*N的序列也就是K*L长的第一序列,网络设备无需再执行根据K*N长的序列得到K*L长的第一序列的过程。
而如果N长的第二序列需要进一步处理,例如N不等于L,则网络设备得到的是K*N的序列,网络设备需要对K*N的序列进行处理,以得到K*L的第一序列。其中,网络设备对K*N的序列进行处理以得到K*L的第一序列的方式,可以参考后文即将介绍的网络设备对N长的第二序列进行处理以得到L长的第四序列的方式,或者参考前文所述的网络设备对H长的第三序列进行处理以得到K长的第五序列的方式。
(2)作为根据第二序列和第三序列得到第一序列的第二种方式,可以根据N长的第二序列得到L长的第四序列,再根据L长的第四序列和K长的第五序列得到K*L长的第一序列。或者说,K*L长的第一序列是根据L长的第四序列和K长的第五序列得到的,L长的第四序列是根据N长的第二序列得到的。
在这种情况下,如果第三序列无需进行处理例如H=K,也就是说第三序列的长度是正 好的(例如长度正好的第三序列是第五序列),可以无需对第三序列进行处理,而是直接使用第三序列,此时第三序列也就是第五序列,那么也就无需执行根据第三序列得到第五序列的步骤。或者,也可以认为H不等于K,也就是说第三序列的长度不合适,需要对第三序列先进行处理,以得到K长的第五序列。对第三序列进行处理以得到第五序列的方式,可以参考对于如上的根据第二序列和第三序列得到第一序列的第一种方式中的相关介绍。更为一般地,如果第三序列和第五序列完全相同,包括第三序列和第五序列各自包括的序列元素是相同的且各自包括的序列元素的排列顺序也是相同的,则无需对第三序列进行处理,可以直接使用第三序列,否则,则需要对第三序列先进行处理,已得到K长的第五序列。
而第二序列的长度为N,与第一序列所需要的长度L可能是匹配的,也可能是不匹配的。如果第二序列无需进一步处理,例如N=L,则N长的第二序列也就是L长的第四序列,网络设备可以直接根据第二序列和第五序列得到K*L长的第一序列,也可以直接根据第二序列生成窄带同步信号,无需再对第二序列进行其他处理,也就是说,根据N长的第二序列得到L长的第四序列,这个步骤是无需执行的。
如果第二序列需要进一步处理,例如N不等于L,网络设备可以先对第二序列进行处理,以得到合适的L长的第四序列,之后再根据第四序列和第五序列得到K*L长的第一序列,以及根据第四序列生成窄带同步信号。例如第二序列为{b 0,b 1,…,b N-1},网络设备对第二序列进行处理以得到第四序列的方式如下:
例如,如果N大于L,网络设备可以在N长的第二序列{b 0,b 1,…,b N-1}中提取L个序列元素,这L个序列元素就构成第四序列,第四序列就可以用于生成窄带同步信号。例如,提取的L个序列元素可以是N长的第二序列中的前L个连续的序列元素或者后L个连续的序列元素,更为一般地,在本申请实施例中,对于如何提取L个序列元素不作具体限定,例如可以从第二序列中提取任意L个连续的序列元素,或者也可以从第二序列中提取任意的L个不连续的序列元素。
或者,如果N小于L,网络设备可以对N长的第二序列进行扩展,使其的长度扩展为L,从而得到L长的第四序列。对第二序列进行扩展的方法,包括但不限于补零或循环扩展等。其中,补零是在原来的N长的第二序列{b 0,b 1,…,b N-1}的基础上补充L-N个零,构成第四序列,例如第四序列为{b 0,b 1,…,b N-1,0,0,…,0},或者为{0,0,…,0,b 0,b 1,…,b N-1}等,对于L-N个零在第四序列中出现的顺序不作具体限定;循环扩展是基于原来的N长的第二序列{b 0,b 1,…,b N-1}的循环扩展,例如得到的第四序列可以是{b 0,b 1,…,b N-1,b 0,b 1,b 3,…}。需要说明的是,除了循环扩展之外,还可以基于N长的第二序列,从第二序列中提取任意的L-N个元素,补充在第二序列中,进而构成一个L长的第四序列,其中提取的L-N个元素在第二序列中出现的位置可以相邻也可以不相邻。
为了更好地理解,下面对于根据第四序列和第五序列得到第一序列的方式进行举例介绍。
例如,第四序列为{a 0,a 1,…,a L-1},第五序列为{b 0,b 1,…b K-1},则K*L长的第一序列可以是{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1}。采用这种方式构造的第一序列,可以在M个资源单位上保持ZC序列的较好特性。如果采用这种方式构造第一序列,且第三序列为全1序列(或者说第五序列为全1序列),那么,可以将宽带 同步信号所对应的K*M个资源单位视为包括K个部分,其中的每个部分就包括M个资源单位,例如,第1个资源单位~第M个资源单位是K个部分中的一个部分,第M+1个资源单位~第2M个资源单位是K个部分中的另一个部分,以此类推。在这种情况下,K个部分中的每个部分所承载的序列,与窄带同步信号对应的M个资源单位上所承载的序列,可以是相同的。对此也可以理解为,第一序列包括K个部分,K个部分中的每个部分都与第二序列是同一序列,具有这种性质的第一序列,生成方式是较为简单的。或者,也可以理解为,对应于第一序列的第一同步信号是对应于第二序列的第二同步信号在频域上重复或者重传得到的。
这里,如果第二序列和第三序列无需进一步操作,也可以认为第四序列即为第二序列,第五序列即为第三序列。需要说明的是,在本申请实施例中,承载的序列可以理解为序列中包括的序列元素映射到对应的资源单位上,例如K个部分中的每个部分所承载的序列,可以理解为K个部分中的每个部分上携带的序列元素。
请参考图6,以1个资源单位是一个RB、且M=1为例,那么,每个RB对应的频率资源上承载的序列都是相同的序列,也就是第二序列,例如第二序列为ZC序列,图6中,ZC序列的副本(copy of ZC sequence)就表示承载的是相同的ZC序列。需要说明的是,窄带同步信号对应的M个资源单位可以是宽带同步信号对应的K*M个资源单位所包括的K个部分中的任意一个部分,例如图6中,窄带同步信号对应的M个资源单位为宽带同步信号对应的K*M个资源单位所包括的K个部分中的频率最低的一个部分,而本申请实施例对窄带同步信号对应的M个资源单元在宽带同步信号对应的K*M个资源单元中的位置不限定,即,窄带同步信号对应的M个资源单元可以是宽带同步信号对应的K*M个资源单元所包括的K个部分中的任意一个部分。
请参考图7A,以L=12、K=6为例。例如第四序列和第五序列均为ZC序列。例如第四序列为{a 0,a 1,…,a 11},第五序列为{b 0,b 1,…b 5},根据12长的第四序列和6长的第五序列得到的第一序列可以是{a 0b 0,a 1b 0,a 2b 0,…,a 11b 0,a 0b 1,a 1b 1,a 2b 1,…,a 11b 1,…,a 0b 5,a 1b 5,a 2b 5,…,a 11b 5}。这里,如果第二序列和第三序列无需进一步操作,也可以认为第四序列即为第二序列,第五序列即为第三序列。
或者,第四序列为{a 0,a 1,…,a L-1},第五序列为{b 0,b 1,…b K-1},K*L长的第一序列为{c i=a i mod Lb i mod K,0≤i≤K*L-1},其中mod为求余运算符。这里,如果第二序列和第三序列无需进一步操作,也可以认为第四序列即为第二序列,第五序列即为第三序列。采用这种方式构造的第一序列,第一序列在不同的M个资源单位上的部分的自相关性可能是不同的。
请参考图7B,以N=11、K=6为例。例如第二序列和第五序列均为ZC序列。例如第二序列为{a 0,a 1,…,a 10},第五序列为{b 0,b 1,…b 5},根据11长的第二序列和6长的第五序列得到的第一序列可以是{a 0b 0,a 1b 1,…,a 10b 4,0,a 0b 5,a 1b 0,…,a 10b 3,0,…,a 0b 1,……,a 10b 5,0}。需要说明的是,在本申请实施例中,可以先对N=11长的第二序列补零得到L=12长的第四序列,然后再对第四序列和K=6长的第五序列的对应元素进行{c i=a i mod Lb i mod K,0≤i≤K*L-1}运算,或者,也可以先对N=11长的第二序列和K=6长的第五序列的对应元素进行{c i=a i mod Lb i mod K,0≤i≤K*N-1},然后再补零得到72长的第一序列。图7B所示的为后一种实施方式,即第二序列与第五序列的对应元素先根据公式{c i=a i mod Lb i mod K,0≤i≤ K*N-1}相乘,然后再补零。
或者,第四序列为{a 0,a 1,…,a L-1},第五序列为{b 0,b 1,…b K-1},K*L长的第一序列是对序列{c i=a i mod Lb i mod K,0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,第一长度与K*L互为素数。采用这种方式,即,对根据第二序列和第三序列得到的序列进行采样之后,再构成第一序列,可以尽量使得每M个资源单位上的序列有较为理想的自相关特性。
请参考图7C,以N=11、L=12、K=6为例。例如第二序列和第五序列均为ZC序列。例如第二序列为{a 0,a 1,…,a 11},第五序列为{b 0,b 1,…b 5},根据11长的第二序列和6长的第五序列得到的序列可以是{a 0b 0,a 1b 1,…,a 10b 4,0,a 0b 5,a 1b 0,…,a 10b 3,0,…,a 0b 1,……,a 10b 5,0}。再以第一长度等于13为例,也就是以13为间隔对该序列进行等间隔采样,得到的第一序列为{a 0b 0,a 1b 0,…,a 10b 0,0,a 0b 5,a 1b 5,…,a 10b 5,0,……}。
(3)作为根据第二序列和第三序列得到第一序列的第三种方式,可以根据N长的第二序列和H长的第三序列得到H*N长的序列,再根据H*N长的序列得到K*L长的第一序列。或者说,K*L长的第一序列是根据H*N长的序列得到的,H*N长的序列是根据N长的第二序列和H长的第三序列得到的。
第二序列的长度为N,与第一序列所需要的长度L可能是匹配的,也可能是不匹配的。如果第二序列无需进一步处理,例如N=L,则N长的第二序列也就是L长的第四序列,网络设备可以直接根据第二序列得到H*L长的序列,该第二序列可以直接用于窄带同步信号,无需再对第二序列进行其他处理。如果第二序列需要进一步处理,例如N不等于L,网络设备采用的方式是根据N长的第二序列生成H*N长的序列,再对H*N长的序列进行处理后得到第一序列。而除了得到第一序列,网络设备还需要得到第二序列,网络设备需要对N长的第二序列进行处理,得到L长的第四序列,再根据第四序列生成窄带同步信号。这里,网络设备对N长的第二序列进行处理以得到L长的第四序列的过程,可以理解为将N长的第二序列包括的序列元素映射到L个资源元素(例如子载波)上,或者用于L长窄带同步信号的为N长第二序列。其中L个资源元素(或者子载波)上承载的元素构成的集合可以看为L长的第四序列。网络设备对N长的第二序列进行处理以得到L长的第四序列的方式,可参考前文的相关介绍。
第三序列的长度为H,与第一序列所需要的长度K可能是匹配的,也可能是不匹配的。如果第三序列无需进一步处理,例如H=K,则H长的第三序列也就是K长的第五序列,网络设备可以直接根据第五序列得到K*N长的序列。如果第三序列需要进一步处理,例如H不等于K,网络设备采用的方式是根据H长的第三序列生成H*N长的序列,再对H*N长的序列进行处理后得到第一序列。
如果第二序列、第三序列都无需进一步处理,例如N=L,H=K,那么网络设备得到的H*N的序列也就是K*L长的第一序列,网络设备无需再执行根据H*N长的序列得到K*L长的第一序列的过程。
而如果第二序列需要进一步处理而第三序列无需进一步处理,例如N不等于L,H=K,则网络设备得到的是K*N的序列,网络设备需要对K*N的序列进行处理,以得到K*L的第一序列。其中,网络设备对K*N的序列进行处理以得到K*L的第一序列的方式,可以参考前文所述的网络设备对N长的第二序列进行处理以得到L长的第四序列的方式,或者 参考前文所述的网络设备对H长的第三序列进行处理以得到K长的第五序列的方式。
或者,如果第二序列无需进一步处理而第三序列需要进一步处理,例如N=L,H不等于K,则网络设备得到的是H*L的序列,网络设备需要对H*L的序列进行处理,以得到K*L的第一序列。其中,网络设备对H*L的序列进行处理以得到K*L的第一序列的方式,可以参考前文所述的网络设备对N长的第二序列进行处理以得到L长的第四序列的方式,或者参考前文所述的网络设备对H长的第三序列进行处理以得到K长的第五序列的方式。
或者,如果第二序列和第三序列都需要进一步处理,例如N不等于L,H不等于K,则网络设备得到的是H*N的序列,网络设备需要对H*N的序列进行处理,以得到K*L的第一序列。其中,网络设备对H*N的序列进行处理以得到K*L的第一序列的方式,可以参考前文所述的网络设备对N长的第二序列进行处理以得到L长的第四序列的方式,或者参考前文所述的网络设备对H长的第三序列进行处理以得到K长的第五序列的方式。
为了更好地理解,下面对于根据第二序列和第三序列得到第一序列的方式进行举例介绍。
例如,第二序列为{m 0,m 1,…,m N-1},第三序列为{n 0,n 1,…,n H-1},H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1}。
或者例如,第二序列为{m 0,m 1,…,m N-1},第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1}。其中,mod为求余运算符。
或者例如,第二序列为{m 0,m 1,…,m N-1},第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,第二长度与H*N互为素数。第二长度和第一长度可能相同,也可能不同。
在得到H*N长的序列后,再根据K和L的值对H*N长的序列进行处理,得到第一序列,第一序列可以理解为K*L个资源元素(或者子载波)上承载的元素构成的集合。
(4)作为根据第二序列和第三序列得到第一序列的第四种方式,可以根据N长的第二序列得到L长的第四序列,根据L长的第四序列和H长的第三序列得到H*L长的序列,再根据H*L长的序列得到K*L长的第一序列。或者说,K*L长的第一序列是根据H*L长的序列得到的,H*L长的序列是根据L长的第四序列和H长的第三序列得到的,L长的第四序列是根据N长的第二序列得到的。
第二序列的长度为N,与第一序列所需要的长度L可能是匹配的,也可能是不匹配的。如果第二序列无需进一步处理,例如N=L,则N长的第二序列也就是L长的第四序列,网络设备可以直接根据第四序列得到H*L长的序列,或者说,H*L长的序列可以直接通过第四序列和H长的第三序列确定H*L长的序列,也可以直接根据第四序列生成窄带同步信号,无需再对第二序列进行其他处理,也就是说,网络设备在生成第一序列或在生成窄带同步信号时,无需执行根据N长的第二序列得到L长的第四序列的步骤。如果第二序列需要进一步处理,例如N不等于L,网络设备采用的方式是先根据N长的第二序列得到L长的第四序列,再根据L长的第四序列生成H*L长的序列,再对H*L长的序列进行处理后得到第一序列。而除了得到第一序列,网络设备还需要得到第四序列,网络设备需要对N长的第二序列进行处理,得到L长的第四序列,再根据第四序列生成窄带同步信号。或者说,用于窄带同步信号的序列是基于N长的第二序列得到的,即第二序列用于窄带同步信号。网络设备对N长的第二序列进行处理以得到L长的第四序列的方式,或者说如何将 第二序列用于窄带同步信号,可参考前文的相关介绍。
第三序列的长度为H,与第一序列所需要的长度K可能是匹配的,也可能是不匹配的。如果第三序列无需进一步变化,例如H=K,则H长的第三序列也就是K长的第五序列,网络设备可以直接根据第五序列得到K*N长的序列。如果第三序列需要进一步变化,例如H不等于K,网络设备采用的方式是根据H长的第三序列生成H*L长的序列,再对H*L长的序列进行处理后得到第一序列。或者理解为,用于宽带同步信号的第一序列是根据H*L长的序列得到的。
如果第三序列无需进一步变化,例如H=K,那么网络设备得到的H*L的序列也就是K*L长的第一序列,网络设备无需再执行根据H*L长的序列得到K*L长的第一序列的过程。
或者,如果第三序列需要进一步变化,例如H不等于K,则网络设备得到的是H*L的序列,网络设备需要对H*L的序列进行处理,以得到K*L的第一序列。其中,网络设备对H*L的序列进行处理以得到K*L的第一序列的方式,可以参考前文所述的网络设备对N长的第二序列进行处理以得到L长的第四序列的方式,或者参考前文所述的网络设备对H长的第三序列进行处理以得到K长的第五序列的方式。
可以看到在本申请实施例中,为了使得根据第二序列和第三序列生成的序列长度可以与第一序列所需的长度相匹配,既可以先对第二序列进行变形得到第四序列和/或对第三序列进行变形得到第五序列,进而使得变形之后得到的第四序列与第五序列对应的序列长度与第一序列所需的长度匹配;或者也可以不对第二序列和第三序列变形,而直接对第二序列和第三序列组合之后的序列进行变形,使其序列长度与第一序列所需的长度相匹配。变形的方式包括截短、扩展或采样等,不作具体限定。
方式2、根据第一序列得到第二序列。在前文介绍的方式1下,均是先得到对应于窄带同步信号的第二序列,再根据第二序列和第三序列得到对应于宽带同步信号的第一序列,或者说用于宽带同步信号的第一序列是根据第二序列和第三序列得到的,其中第二序列用于窄带同步信号。此处再介绍方式2,是先得到用于宽带同步信号的第一序列,第一序列中的一部分可以对应第二序列。
在方式2下,第一序列包括的所有元素的幅值相同,也就是第一序列所包括的所有的元素为恒幅值序列元素,而第二序列就是第一序列的一部分。例如,还是可以将宽带同步信号所对应的K*M个资源单位视为包括K个部分,其中的每个部分就包括M个资源单位,例如,第1个资源单位~第M个资源单位是K个部分中的一个部分,第M+1个资源单位~第2M个资源单位是K个部分中的另一个部分,以此类推。在这种情况下,K个部分中的每个部分所承载的序列,与窄带同步信号对应的M个资源单位上所承载的序列,可以是相同的,也可以是不同的。如果是相同的,也可以理解为,第一序列包括K个部分,K个部分中的每个部分都与第二序列是同一序列。或者更为一般地,假设M个资源单位中包括L个子载波,K*M个资源单位包括的K*L个子载波上承载第一序列,其中K*M与第一序列长度之间的关系可以满足上文所提到的关系,不作具体限定,则K*L个子载波中的其中任意L个子载波上承载的元素组成的集合就可以视为第二序列。例如假设第一序列为{d 0,d 1,…,d K*L-1},则L长的第二序列可以为{e i,e i+1,…,e i+L-1},其中0≤i≤(K-1)*L。
在方式2下,第一序列可以是恒幅值的m序列,当然也可以是其他序列。
采用序列元素为恒幅值序列元素的好处在于,这样的序列经过离散傅里叶变换 (discrete fourier transform,DFT)或者逆离散傅里叶变换(inverse discrete fourier transform,IDFT)之后得到的序列,具有理想的自相关特性,进而便于终端设备快速与网络设备实现同步。此外,由于第二序列为第一序列的一部分,因此,系统无需针对宽带终端设备和窄带终端设备分别设计同步序列,简化了系统侧的设计。
如上介绍了得到第一序列和第二序列的两种方式,在实际应用中,究竟选择哪种方式来得到第一序列和第二序列,可以通过协议规定,或者也可以由网络设备自行确定。
在得到第一序列后,网络设备就可以根据第一序列生成宽带同步信号,在得到第二序列后,网络设备就可以根据第二序列生成窄带同步信号。宽带同步信号为第一同步信号,窄带同步信号为第二同步信号,或,宽带同步信号为第二同步信号,窄带同步信号为第一同步信号。需要说明的是,对于方式2,网络设备可以根据第一序列生成宽带同步信号,由于第二序列是第一序列的其中一部分,因此,网络设备不需要再额外执行根据第二序列生成窄带同步信号的过程。
需要说明的是,在本申请实施例中,根据序列生成同步信号的过程,可以理解为将同步信号对应的序列(用于同步信号的序列)映射到该同步信号占用的物理资源的过程,其中物理资源包括网络设备发送该同步信号时所占用的时间资源和频率资源,可以用资源元素表示,或者可以使用其他表示方法。例如,在NR系统中,网络设备发送同步信号时占用的时间资源可以用OFDM符号索引号表示,频率资源可以用子载波索引号表示;或者,在本申请实施例中,根据序列生成同步信号,可以理解为该序列用于同步信号,也就是说,根据序列生成同步信号,这个步骤可以是无需执行的。例如,第一同步信号是根据第一序列生成的,第一序列是根据第二序列和第三序列得到的,可以理解为,用于第一同步信号的第一序列是根据第二序列和第三序列得到的,或者也可以理解为,根据第二序列和第三序列得到第一序列之后,将第一序列映射到第一同步信号所占用的时频资源上或者资源元素上。
需要说明的是,在本申请实施例中,由于第一同步信号和第二同步信号在频域资源上的“嵌套”结构,即第一同步信号对应的频域资源和第二同步信号对应的频域资源有交集,特别是当第二同步信号对应的频域资源为第一同步信号对应的频域资源的真子集,且第二同步信号对应的时域资源与第一同步信号对应的时域资源完全相同时,网络设备在生成第一同步信号时(将第一同步信号对应的序列映射到该第一同步信号占用的物理资源上),也已经完成了生成第二同步信号(将第二同步信号对应的序列映射到该第二同步信号占用的物理资源上),这个过程也可以理解为网络设备生成第一同步信号和第二同步信号。
S32、所述网络设备发送所述第一同步信号和所述第二同步信号,终端设备接收来自网络设备的所述第一同步信号。
在生成第一同步信号和第二同步信号后,网络设备可以发送第一同步信号和第二同步信号。其中,第一同步信号和第二同步信号在时域上有重叠,且在第一同步信号和第二同步信号相重叠的时域资源内,第一同步信号对应的频域资源和第二同步信号对应的频域资源有交集。例如,网络设备可以在K*M个资源单位上发送第一同步信号,以及在M个资源单位上发送第二同步信号,或者,在K*M个资源单位上发送第二同步信号,以及在M个资源单位上发送第一同步信号,且,所述的M个资源单位是K*M个资源单位的真子集。
需要说明的是,在本申请实施例中,由于第一同步信号和第二同步信号在频域资源上的“嵌套”结构,当第二同步信号对应的频域资源为第一同步信号对应的频域资源的真子集, 且第二同步信号对应的时域资源与第一同步信号对应的时域资源完全相同时(这里假设第一同步信号为宽带同步信号,第二同步信号为窄带同步信号),网络设备发送第一同步信号,则也包括了发送第二同步信号。针对这种特殊情况,在本申请实施例中,也称为网络设备发送第一同步信号和第二同步信号。
另外,对于终端设备来说,第二同步信号可以认为是与该网络设备对应的信号。所谓的“对应”是指,第二同步信号也是该网络设备发送的,终端设备可能暂时还未接收,或者也可能已经接收了,是因为第一同步信号和第二同步信号之间的关系,则如果终端设备还未接收第二同步信号,也需引入第二同步信号,因此可以描述为,第二同步信号对应于该网络设备。
S33、所述终端设备根据所述第一同步信号与所述网络设备进行同步。
如果终端设备为窄带终端设备,那么第一同步信号可以是窄带同步信号,终端设备是通过M个资源单位接收的第一同步信号,终端设备根据第一同步信号就能与网络设备进行同步。
或者,如果终端设备是宽带终端设备,那么第一同步信号可以是宽带同步信号,终端设备是通过K*M个资源单位接收的第一同步信号,或者第一同步信号也可以是窄带同步信号,终端设备是通过M个资源单位接收的第一同步信号,终端设备根据第一同步信号可以实现与网络设备的同步。
或者,如果终端设备是宽带终端设备,终端设备除了接收第一同步信号之外还可以接收第二同步信号,那么第一同步信号可以是宽带同步信号,终端设备是通过K*M个资源单位接收的第一同步信号,第二同步信号是窄带同步信号,终端设备通过M个资源单位接收第二同步信号,或者第二同步信号可以是宽带同步信号,终端设备是通过K*M个资源单位接收的第二同步信号,第一同步信号是窄带同步信号,终端设备通过M个资源单位接收第一同步信号。终端设备可以根据第一同步信号和第二同步信号与网络设备进行同步,例如终端设备可以将第一同步信号和第二同步信号进行叠加,并根据叠加后得到的同步信号与网络设备进行同步。
另外,终端设备在完成与网络设备的同步之后,可能需要接收广播信道,因此在本申请实施例中,可以配置广播信道和同步信道之间的位置关系,使得终端设备能够及时接收广播信道。需要说明的是,广播信息可以认为是承载在广播信道上传输的信息,基于此,在本申请实施例中,广播信息和广播信道是等效的,也就是说,广播信息和广播信道的描述可以是相互替换的。
例如,网络设备可以生成第一广播信息和第二广播信息,并可以发送第一广播信息和第二广播信息。如果终端设备是窄带终端设备,那么终端设备可能只能接收窄带广播信息,而没有能力接收宽带广播信息,在这种情况下,第一广播信息可以是窄带广播信息,第二广播信息是宽带广播信息,终端设备只接收第一广播信息;或者,如果终端设备是宽带终端设备,那么终端设备可能只接收宽带广播信息,或者可以接收宽带广播信息和窄带广播信息,在这种情况下,终端设备还可以接收来自网络设备的第二广播信息,另外在这种情况下,第一广播信息可以是窄带广播信息,第二同步信息是宽带广播信息,或者第一广播信息可以是宽带同步信息,第二同步信息是窄带广播信息。其中,宽带广播信息与宽带同步信息相互关联,例如终端设备根据接收到的宽带同步信号,就可以确定宽带广播信息所在的时频资源位置。具体的,宽带终端设备可以通过接收宽带同步信号,实现与网络设备 之间的时频同步,然后根据此时频同步信息,检测宽带广播信息;类似地,窄带广播信息与窄带同步信息相互关联,例如终端设备根据接收到的窄带同步信号,就可以确定窄带广播信息所在的时频位置。具体的,窄带终端设备或者宽带终端设备,可以通过接收窄带同步信号,实现与网络设备之间的时频同步,然后根据此时频同步信息,检测窄带广播信息。
例如,第一广播信息的频域位置和第一同步信号的频域位置之间的距离为第一频域偏移,第二广播信息的频域位置和第二同步信号的频域位置之间的距离为第二频域偏移,第一频率偏移和第二频率偏移可以是预配置的,或者是通过协议规定的,终端设备根据第一频率偏移可以确定第一广播信息的频域位置,从而接收第一广播信息,根据第二频率偏移可以确定第二广播信息的频域位置,从而接收第二广播信息。
第一频率偏移可以等于0,也可以不等于0,如果第一频率偏移等于0,就表明第一广播信息对应的频域资源的位置与第一同步信号对应的频域资源的位置相同,同理,如果第二频率偏移等于0,就表明第二广播信息对应的频域资源的位置与第二同步信号对应的频域资源的位置相同。
除了频域之外,第一广播信息的时域位置和第一同步信号的时域位置之间的距离可以是第一时域偏移,第二广播信息的时域位置和第二同步信号的时域位置之间的距离可以是第二时域偏移。第一时域偏移和第二时域偏移可以是预配置的,或者是通过协议规定的。终端设备根据第一时域偏移可以确定第一广播信息的时域位置,在第一广播信息的时域位置和频域位置都确定的情况下,终端设备能够在正确的位置接收第一广播信息,同理,终端设备根据第二时域偏移可以确定第二广播信息的时域位置,在第二广播信息的时域位置和频域位置都确定的情况下,终端设备能够在正确的位置接收第二广播信息。
第一时域偏移可以等于0,也可以不等于0,如果第一时域偏移等于0,就表明第一广播信息对应的时域资源的位置与第一同步信号对应的时域资源的位置相同,同理,如果第二时域偏移等于0,就表明第二广播信息对应的时域资源的位置与第二同步信号对应的时域资源的位置相同。
通过预配置广播信息和同步信号之间的位置关系,终端设备通过检测到的同步信号,就可以直接确定相应的广播信息所在的位置,进而检测广播信息中传输的信息,实现与网络设备之间的数据传输。
在本申请实施例中,在一个无线通信系统中,除了第一同步信号和第二同步信号之外,还可能存在第三同步信号,其中第三同步信号对应的频域资源大于第一同步信号对应的频域资源,这里假设第一同步信号对应的频域资源大于第二同步信号对应的频域资源。以NR系统为例,第一同步信号对应的频域资源可以为6个RB,第二同步信号对应的频域资源可以小于6个RB,第三同步信号对应的频域资源可以为20个RB,其中第一同步信号和第二同步信号对应的子载波间隔是相同的,例如都为15KHz,第三同步信号对应的子载波间隔与第一同步信号和第二同步信号对应的子载波间隔可以相同也可以不相同。通过这样的设计,该无线通信系统既可以服务具有多种带宽能力的窄带终端设备,例如通过1~6个RB的同步信号接入该无线通信系统的终端设备,也可以服务宽带终端设备,例如通过20个RB的同步信号接入该无线通信系统的终端设备。
在目前的NR系统中,由于系统部署的频率带宽一般都比较宽,因此同步栅格(synchronization raster)可以设计的比较稀疏,以减轻终端设备初始接入的负担。在NR系统中,同步栅格或者是同步信号的频率位置可以满足如下公式:N*1200kHz+M*50 kHz,其中N的取值为大于等于1且小于等于2499的整数,M的取值为1,3,5。
为了简化系统设计,降低宽带系统内窄带终端设备搜索同步信号的复杂度,第一同步信号所在的频率位置,或者说第一同步信号对应的同步栅格,也可以具有相同的设计,即第一同步信号对应的同步栅格可以满足如下公式:N’*1200kHz+M’*50kHz+[C*Channelspace],其中Channelspace可以表示相邻的载波之间的间隔对应的频率大小,例如一个宽带系统的频率带宽为100MHz,如果假设每20MHz对应1个载波,则相邻的载波之间的间隔对应的频率大小为20MHz,N’、M’为整数,N’的取值可以与N相同,也可以不同,M’取值可以与M相同,也可以不同,不作具体限定。C为大于或等于零的整数。
进一步可选地,考虑到第一同步信号与第二同步信号对应的频率资源之间的关系,或者第一同步信号与第二同步信号之间的嵌套关系,第二同步信号对应的同步栅格可以在第一同步信号对应的同步栅格的基础上偏移一个频率偏移量,例如可参考图8。图8中,假设第一同步信号对应的时域资源和第二同步信号对应的时域资源完全相同,并且第一同步信号对应的频域资源为6个RB,其中1个RB上承载的为第二同步信号。第一同步信号对应的同步栅格满足公式N’*1200kHz+M’*50kHz+[C*Channelspace],不仅可以降低终端设备(例如可以检测第一同步信号的终端设备)的检测复杂度,而且还能节省网络设备通知的开销。需要说明的是,这里的描述,是假设第一同步信号对应的频域资源为K*M个资源单位,第二同步信号对应的频域资源为M个资源单位。
在本申请实施例中,第一同步信号对应的同步栅格(raster)可以是预配置的,例如标准协议规范的,或者是接入网设备通知给终端设备的,可选的,接入网设备可以只通知N’,M’,以及C,终端设备根据公式N’*1200kHz+M’*50kHz+[C*Channelspace]可以确定第一同步信号对应的同步raster。可选的,第二同步信号对应的同步栅格与第一同步信号对应的同步栅格之间的频率偏移量可以是预配置的,例如标准协议规范,也可以由接入网设备通知给终端设备。对于可以通过第一同步信号接入接入网设备的终端设备而言,可以通过该偏移量确定第二同步信号对应的同步栅格,进而确定第二同步信号的频率位置,而无需接入网设备将第二同步信号对应的同步栅格的绝对频率位置通知给终端设备,节省了系统信令开销。需要说明的是,接入网设备通知给终端设备可以使用广播信令,也可以使用终端设备特定的信令,该信令可以是无线资源控制(radio resource control,RRC)信令,也可以是物理层信令,例如承载通过物理层控制信道发送的信令,也可以是介质访问控制(media access control,MAC)信令,本发明不作具体限定。
需要说明的是,在本申请实施例中,第一同步信号可以包括主同步信号和辅同步信号中的至少一项,第二同步信号可以包括主同步信号和辅同步信号中的至少一项。进一步可选地,当第一同步信号和第二同步信号在时域上有重叠,且在第一同步信号和第二同步信号相重叠的时域资源内,第一同步信号对应的频域资源和第二同步信号对应的频域资源有交集时,第一同步信号和第二同步信号或者同为主同步信号,或者同为辅同步信号,或者可以同为主同步信号和辅同步信号。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图9示出了一种通信装置900的结构示意图。该通信装置900可以实现上文中涉及的网络设备的功能。该通信装置900可以是上文中所述的网络设备,或者可以是设置在上文中所述的网络设备中的芯片。该通信装置900可以包括处理器901和收发器902。其中, 处理器901可以用于执行图5所示的实施例中的S31,和/或用于支持本文所描述的技术的其他过程,例如可以执行前文中所述的终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程。收发器902可以用于执行图3所示的实施例中的S32,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的终端设备所执行的全部的收发过程或部分的收发过程。
例如,处理器901,用于生成同步信号,所述同步信号包括第一同步信号和第二同步信号;
收发器902,用于发送所述同步信号,其中,所述第一同步信号和所述第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集。
在一种可能的实施方式中,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,或者,K大于1,K可以为整数或小数。
在一种可能的实施方式中,所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的。
在一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的。
在一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
在一种可能的实施方式中,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K,0≤i≤K*L-1},其中mod为求余运算符;或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K,0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
在一种可能的实施方式中,K*L长的所述第一序列是根据H*N长的序列得到的,所 述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
在一种可能的实施方式中,所述第三序列为全1序列或正交序列。
在一种可能的实施方式中,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M和K均为正整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同。
在一种可能的实施方式中,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
在一种可能的实施方式中,所述第一序列为m序列。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图10示出了一种通信装置1000的结构示意图。该通信装置1000可以实现上文中涉及的终端设备的功能。该通信装置1000可以是上文中所述的终端设备,或者可以是设置在上文中所述的终端设备中的芯片。该通信装置1000可以包括处理器1001和收发器1002。其中,处理器1001可以用于执行图3所示的实施例中的S33,和/或用于支持本文所描述的技术的其他过程,例如可以执行前文中所述的终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程。收发器1002可以用于执行图3所示的实施例中的S32,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的终端设备所执行的全部的收发过程或部分的收发过程。
例如,收发器1002,用于接收来自网络设备的第一同步信号,其中,所述第一同步信号和第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集;
处理器1001,用于根据所述第一同步信号与所述网络设备进行同步;
其中,所述第二同步信号对应于所述网络设备。
在一种可能的实施方式中,收发器1002,还用于接收来自所述网络设备的所述第二同步信号。
在一种可能的实施方式中,
所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数;或,
所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
可选的,所述K大于1,K可以为整数或小数
在一种可能的实施方式中,
所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的;或,
所述第一同步信号是根据第二序列生成的,所述第二同步信号是根据第一序列生成的。
在一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的。
在一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
在一种可能的实施方式中,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K0≤i≤K*L-1},其中mod为求余运算符;或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
在一种可能的实施方式中,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
在一种可能的实施方式中,所述第三序列为全1序列或正交序列。
在一种可能的实施方式中,
所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同;或,
所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第一同步信号对应的M个资源单位上承载的序列相同。
在一种可能的实施方式中,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
在一种可能的实施方式中,所述第一序列为m序列。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将通信装置900或通信装置1000通过如图11A所示的通信装置1100的结构实现。该通信装置1100可以实现上文中涉及的终端设备或网络设备的功能。该通信装置1100可以包括处理器1101。
其中,在该通信装置1100用于实现上文中涉及的终端设备的功能时,处理器1101可以用于执行图3所示的实施例中的S33,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程;或者,在该通信装置1100用于实现上文中涉及的网络设备的功能时,处理器1101可以用于执行图3所示的实施例中的S31,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的网络设备所执行的除了收发操作之外的全部的其他操作或部分的其他操作。
其中,通信装置1100可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置1100可被设置于本申请实施例的终端设备或网络设备中,以使得终端设备或网络设备实现本申请实施例提供的方法。
在一种可选的实现方式中,该通信装置1100可以包括收发组件,用于与其他设备进行通信。其中,在该通信装置1100用于实现上文中涉及的终端设备或网络设备的功能时,收发组件可以用于执行图3所示的实施例中的S32,和/或用于支持本文所描述的技术的其它过程。例如,一种收发组件为通信接口,如果通信装置1100为终端设备或网络设备,则通信接口可以是终端设备或网络设备中的收发器,例如收发器902或收发器1002,收发器例如为终端设备或网络设备中的射频收发组件,或者,如果通信装置1100为设置在终端设备或网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
在一种可选的实现方式中,该通信装置1100还可以包括存储器1102,可参考图11B,其中,存储器1102用于存储计算机程序或指令,处理器1101用于译码和执行这些计算机 程序或指令。应理解,这些计算机程序或指令可包括上述终端设备或网络设备的功能程序。当终端设备的功能程序被处理器1101译码并执行时,可使得终端设备实现本申请实施例图3所示的实施例所提供的方法中终端设备的功能。当网络设备的功能程序被处理器1101译码并执行时,可使得网络设备实现本申请实施例图3所示的实施例所提供的方法中网络设备的功能。
在另一种可选的实现方式中,这些终端设备或网络设备的功能程序存储在通信装置1100外部的存储器中。当终端设备的功能程序被处理器1101译码并执行时,存储器1102中临时存放上述终端设备的功能程序的部分或全部内容。当网络设备的功能程序被处理器1101译码并执行时,存储器1102中临时存放上述网络设备的功能程序的部分或全部内容。
在另一种可选的实现方式中,这些终端设备或网络设备的功能程序被设置于存储在通信装置1100内部的存储器1102中。当通信装置1100内部的存储器1102中存储有终端设备的功能程序时,通信装置1100可被设置在本申请实施例的终端设备中。当通信装置1100内部的存储器1102中存储有网络设备的功能程序时,通信装置1100可被设置在本申请实施例的网络设备中。
在又一种可选的实现方式中,这些终端设备的功能程序的部分内容存储在通信装置1100外部的存储器中,这些终端设备的功能程序的其他部分内容存储在通信装置1100内部的存储器1102中。或,这些网络设备的功能程序的部分内容存储在通信装置1100外部的存储器中,这些网络设备的功能程序的其他部分内容存储在通信装置1100内部的存储器1102中。
在本申请实施例中,通信装置900、通信装置1000及通信装置1100对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图9所示的实施例提供的通信装置900还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器901实现,收发模块可通过收发器902实现。其中,处理模块可以用于执行图3所示的实施例中的S31,和/或用于支持本文所描述的技术的其他过程,例如可以执行前文中所述的终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程。收发模块可以用于执行图3所示的实施例中的S32,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的终端设备所执行的全部的收发过程或部分的收发过程。
例如,处理模块,用于生成同步信号,所述同步信号包括第一同步信号和第二同步信号;
收发模块,用于发送所述同步信号,其中,所述第一同步信号和所述第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集。
在一种可能的实施方式中,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
在一种可能的实施方式中,所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的。
在一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的。
在一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
在一种可能的实施方式中,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K,0≤i≤K*L-1},其中mod为求余运算符;或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K,0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
在一种可能的实施方式中,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
在一种可能的实施方式中,所述第三序列为全1序列或正交序列。
在一种可能的实施方式中,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M和K均为正整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同。
在一种可能的实施方式中,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
在一种可能的实施方式中,所述第一序列为m序列。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图10所示的实施例提供的通信装置1000还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器1001实现,收发模块可通过收发器1002实现。其中,处理模块可以用于执行图3所示的实施例中的S33,和/或用于支持本文所描述的技术的其他过程,例如可以执行前文中所述的终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程。收发模块可以用于执行图3所示的实施例中的S32,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的终端设备所执行的全部的收发过程或部分的收发过程。
例如,收发模块,用于接收来自网络设备的第一同步信号,其中,所述第一同步信号和第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集;
处理模块,用于根据所述第一同步信号与所述网络设备进行同步;
其中,所述第二同步信号对应于所述网络设备。
在一种可能的实施方式中,收发模块,还用于接收来自所述网络设备的所述第二同步信号。
在一种可能的实施方式中,
所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数;或,
所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
在一种可能的实施方式中,
所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的;或,
所述第一同步信号是根据第二序列生成的,所述第二同步信号是根据第一序列生成的。
在一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的。
在一种可能的实施方式中,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
在一种可能的实施方式中,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K0≤i≤K*L-1},其中mod为求余运算符;或,
所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
在一种可能的实施方式中,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
在一种可能的实施方式中,所述第三序列为全1序列或正交序列。
在一种可能的实施方式中,
所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同;或,
所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第一同步信号对应的M个资源单位上承载的序列相同。
在一种可能的实施方式中,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
在一种可能的实施方式中,所述第一序列为m序列。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的通信装置900、通信装置1000及通信装置1100可用于执行图3所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的 每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (48)

  1. 一种信号发送方法,其特征在于,包括:
    生成同步信号,所述同步信号包括第一同步信号和第二同步信号;
    发送所述同步信号,其中,所述第一同步信号和所述第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集。
  2. 根据权利要求1所述的方法,其特征在于,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的。
  4. 根据权利要求3所述的方法,其特征在于,所述第一序列是根据所述第二序列和第三序列得到的。
  5. 根据权利要求4所述的方法,其特征在于,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
    K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
    K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
    K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
    K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
    其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
  6. 根据权利要求5所述的方法,其特征在于,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K,0≤i≤K*L-1},其中mod为求余运算符;或,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K,0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
  7. 根据权利要求5所述的方法,其特征在于,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得 到的;其中,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
  8. 根据权利要求4~7任一项所述的方法,其特征在于,所述第三序列为全1序列或正交序列。
  9. 根据权利要求8所述的方法,其特征在于,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M和K均为正整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同。
  10. 根据权利要求3所述的方法,其特征在于,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
  11. 根据权利要求10所述的方法,其特征在于,所述第一序列为m序列。
  12. 一种信号接收方法,其特征在于,包括:
    接收来自网络设备的第一同步信号,其中,所述第一同步信号和第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集;
    根据所述第一同步信号与所述网络设备进行同步;
    其中,所述第二同步信号对应于所述网络设备。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的所述第二同步信号。
  14. 根据权利要求12或13所述的方法,其特征在于,
    所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数;或,
    所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
  15. 根据权利要求12~14任一项所述的方法,其特征在于,
    所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的;或,
    所述第一同步信号是根据第二序列生成的,所述第二同步信号是根据第一序列生成的。
  16. 根据权利要求15所述的方法,其特征在于,所述第一序列是根据所述第二序列和第三序列得到的。
  17. 根据权利要求16所述的方法,其特征在于,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
    K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
    K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
    K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
    K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
    其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
  18. 根据权利要求17所述的方法,其特征在于,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K0≤i≤K*L-1},其中mod为求余运算符;或,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
  19. 根据权利要求18所述的方法,其特征在于,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
  20. 根据权利要求16~19任一项所述的方法,其特征在于,所述第三序列为全1序列或正交序列。
  21. 根据权利要求20所述的方法,其特征在于,
    所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同;或,
    所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第一同步信号对应的M个资源单位上承载的序列相同。
  22. 根据权利要求15所述的方法,其特征在于,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
  23. 根据权利要求22所述的方法,其特征在于,所述第一序列为m序列。
  24. 一种网络设备,其特征在于,包括:
    处理器,用于生成同步信号,所述同步信号包括第一同步信号和第二同步信号;
    收发器,用于发送所述同步信号,其中,所述第一同步信号和所述第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集。
  25. 根据权利要求24所述的网络设备,其特征在于,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
  26. 根据权利要求24或25所述的网络设备,其特征在于,所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的。
  27. 根据权利要求26所述的网络设备,其特征在于,所述第一序列是根据所述第二序列和第三序列得到的。
  28. 根据权利要求27所述的网络设备,其特征在于,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
    K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
    K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
    K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
    K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
    其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
  29. 根据权利要求28所述的网络设备,其特征在于,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K,0≤i≤K*L-1},其中mod为求余运算符;或,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K,0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
  30. 根据权利要求28所述的网络设备,其特征在于,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
  31. 根据权利要求27~30任一项所述的网络设备,其特征在于,所述第三序列为全1序列或正交序列。
  32. 根据权利要求31所述的网络设备,其特征在于,所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M和K均为正整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同。
  33. 根据权利要求26所述的网络设备,其特征在于,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
  34. 根据权利要求33所述的网络设备,其特征在于,所述第一序列为m序列。
  35. 一种终端设备,其特征在于,包括:
    收发器,用于接收来自网络设备的第一同步信号,其中,所述第一同步信号和第二同步信号在时域上有重叠,且在所述第一同步信号和所述第二同步信号相重叠的时域资源内,所述第一同步信号对应的频域资源和所述第二同步信号对应的频域资源有交集;
    处理器,用于根据所述第一同步信号与所述网络设备进行同步;
    其中,所述第二同步信号对应于所述网络设备。
  36. 根据权利要求35所述的终端设备,其特征在于,所述收发器,还用于接收来自所述网络设备的所述第二同步信号。
  37. 根据权利要求35或36所述的终端设备,其特征在于,
    所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数;或,
    所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数。
  38. 根据权利要求35~37任一项所述的终端设备,其特征在于,
    所述第一同步信号是根据第一序列生成的,所述第二同步信号是根据第二序列生成的;或,
    所述第一同步信号是根据第二序列生成的,所述第二同步信号是根据第一序列生成的。
  39. 根据权利要求38所述的终端设备,其特征在于,所述第一序列是根据所述第二序列和第三序列得到的。
  40. 根据权利要求39所述的终端设备,其特征在于,所述第一序列是根据所述第二序列和第三序列得到的,包括以下至少一种:
    K*L长的所述第一序列是根据K*N长的序列得到的,所述K*N长的序列是根据N长的所述第二序列和K长的第五序列得到的;
    K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
    K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;或,
    K*L长的所述第一序列是根据H*L长的序列得到的,所述H*L长的序列是根据L长的第四序列和H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;
    其中,所述K长的第五序列是根据H长的所述第三序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的,L为所述M个资源单位包括的子载波的个数。
  41. 根据权利要求40所述的终端设备,其特征在于,K*L长的所述第一序列是根据L长的第四序列和K长的第五序列得到的,所述L长的第四序列是根据N长的所述第二序列得到的;其中,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{a 0b 0,a 1b 0,a 2b 0,…,a L-1b 0,a 0b 1,a 1b 1,a 2b 1,…,a L-1b 1,…,a 0b K-1,a 1b K-1,a 2b K-1,…,a L-1b K-1};或,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列为{c i=a i mod Lb i mod K0≤i≤K*L-1},其中mod为求余运算符;或,
    所述第四序列为{a 0,a 1,…,a L-1},所述第五序列为{b 0,b 1,…b K-1},K*L长的所述第一序列是对序列{c i=a i mod Lb i mod K0≤i≤K*L-1}按照第一长度等间隔采样得到的,其中,所述第一长度与K*L互为素数。
  42. 根据权利要求41所述的终端设备,其特征在于,K*L长的所述第一序列是根据H*N长的序列得到的,所述H*N长的序列是根据N长的所述第二序列和H长的所述第三序列得到的;其中,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{m 0n 0,m 1n 0,m 2n 0,…,m N-1n 0,m 0n 1,m 1n 1,m 2n 1,…,m N-1n 1,…,m 0n H-1,m 1n H-1,m 2n H-1,…,m N-1n H-1};或,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列为{p i=m i mod Nn i mod H0≤i≤H*N-1},其中mod为求余运算符;或,
    所述第二序列为{m 0,m 1,…,m N-1},所述第三序列为{n 0,n 1,…,n H-1},所述H*N长的序列是对序列{p i=m i mod Nn i mod H0≤i≤H*N-1}按照第二长度等间隔采样得到的,其中,所述第二长度与H*N互为素数,mod为求余运算符。
  43. 根据权利要求39~42任一项所述的终端设备,其特征在于,所述第三序列为全1序列或正交序列。
  44. 根据权利要求43所述的终端设备,其特征在于,
    所述第二同步信号对应的频域资源为M个资源单位,所述第一同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第二同步信号对应的M个资源单位上承载的序列相同;或,
    所述第一同步信号对应的频域资源为M个资源单位,所述第二同步信号对应的频域资源为K*M个资源单位,M为正整数,K为大于1的整数,所述第三序列为全1序列,所述K*M个资源单位包括K个部分,其中的每个部分包括M个资源单位,且其中的每个部分承载的序列与所述第一同步信号对应的M个资源单位上承载的序列相同。
  45. 根据权利要求38所述的终端设备,其特征在于,所述第一序列包括的所有元素的幅值相同,且所述第二序列是所述第一序列的一部分。
  46. 根据权利要求45所述的终端设备,其特征在于,所述第一序列为m序列。
  47. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令在被计算机执行时,使所述计算机执行如权利要求1~11中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令在被计算机执行时,使所述计算机执行如权利要求12~23中任一项所述的方法。
PCT/CN2020/071844 2019-01-18 2020-01-13 一种信号发送、接收方法及设备 WO2020147695A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20741240.4A EP3902356A4 (en) 2019-01-18 2020-01-13 METHOD AND DEVICE FOR TRANSMITTING SIGNALS, AND METHOD AND DEVICE FOR RECEIVING SIGNALS
US17/377,537 US20210345335A1 (en) 2019-01-18 2021-07-16 Signal sending method, signal receiving method, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910104172.6 2019-01-18
CN201910104172.6A CN111465022B (zh) 2019-01-18 2019-01-18 一种信号发送、接收方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/377,537 Continuation US20210345335A1 (en) 2019-01-18 2021-07-16 Signal sending method, signal receiving method, and device

Publications (1)

Publication Number Publication Date
WO2020147695A1 true WO2020147695A1 (zh) 2020-07-23

Family

ID=71613326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071844 WO2020147695A1 (zh) 2019-01-18 2020-01-13 一种信号发送、接收方法及设备

Country Status (4)

Country Link
US (1) US20210345335A1 (zh)
EP (1) EP3902356A4 (zh)
CN (1) CN111465022B (zh)
WO (1) WO2020147695A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079948A (zh) * 2020-08-21 2022-02-22 华为技术有限公司 一种通信方法及相关装置
WO2022067780A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种接入信号的发送方法、接收方法及装置
CN115462152A (zh) * 2021-02-23 2022-12-09 北京小米移动软件有限公司 同步信号的确定方法、装置及通信设备
CN116939766A (zh) * 2022-03-31 2023-10-24 华为技术有限公司 接入方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3031912A1 (en) * 2016-07-29 2018-02-01 Sharp Kabushiki Kaisha Terminal apparatus, communication method, and integrated circuit
WO2018127027A1 (zh) * 2017-01-09 2018-07-12 中兴通讯股份有限公司 信号接收、发送方法、控制信道的接收、发送方法、装置及存储介质
CN108880606A (zh) * 2017-05-16 2018-11-23 华为技术有限公司 传输同步信号的方法和装置
US20180376454A1 (en) * 2017-06-22 2018-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Transmission and reception of broadcast information in a wireless communication system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496975B2 (en) * 2014-09-19 2016-11-15 Qualcomm Incorporated Dynamic directional synchronization signals in wireless communications
EP3340700A4 (en) * 2015-08-21 2019-04-17 NTT DoCoMo, Inc. USER TERMINAL, WIRELESS BASE STATION, AND WIRELESS COMMUNICATION METHOD
KR102622879B1 (ko) * 2016-02-03 2024-01-09 엘지전자 주식회사 협대역 동기신호 송수신 방법 및 이를 위한 장치
WO2018073683A1 (en) * 2016-10-10 2018-04-26 Nokia Technologies Oy Synchronization of narrowband and wideband user equipment
US10461981B2 (en) * 2016-11-11 2019-10-29 Motorola Mobility Llc Determining a location of a frequency-domain resource block
US11122497B2 (en) * 2017-05-04 2021-09-14 Samsung Electronics Co., Ltd. Method and apparatus for SS block index and timing indication in wireless systems
WO2020041196A1 (en) * 2018-08-20 2020-02-27 Intel Corporation Fast initial acquisition by transmitting non-orthogonal synchronization signal blocks in 5g new radio
CN113273259B (zh) * 2019-01-11 2024-02-27 富士通株式会社 数据传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3031912A1 (en) * 2016-07-29 2018-02-01 Sharp Kabushiki Kaisha Terminal apparatus, communication method, and integrated circuit
WO2018127027A1 (zh) * 2017-01-09 2018-07-12 中兴通讯股份有限公司 信号接收、发送方法、控制信道的接收、发送方法、装置及存储介质
CN108880606A (zh) * 2017-05-16 2018-11-23 华为技术有限公司 传输同步信号的方法和装置
US20180376454A1 (en) * 2017-06-22 2018-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Transmission and reception of broadcast information in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "Link Level Simulation Results for NR Initial Synchronization above 6GHz with Updated Evaluation Assumptions", 3GPP TSG RAN WG1 R1-1612127, 18 November 2016 (2016-11-18), Reno, USA, pages 1 - 5, XP051190301 *
See also references of EP3902356A4 *

Also Published As

Publication number Publication date
EP3902356A4 (en) 2022-07-06
US20210345335A1 (en) 2021-11-04
EP3902356A1 (en) 2021-10-27
CN111465022A (zh) 2020-07-28
CN111465022B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2020147695A1 (zh) 一种信号发送、接收方法及设备
CN105684324B (zh) 用于传输同步信号的系统和方法
WO2020186946A1 (zh) 一种通信方法及设备
WO2020147731A1 (zh) 一种通信方法及装置
JP2016535505A (ja) D2d信号の伝送方法及び装置
WO2021027893A1 (zh) 一种dmrs端口确定方法及通信装置
US20210345269A1 (en) Communication Method And Device
WO2019028793A1 (zh) 随机接入前导码传输方法及装置
WO2018228417A1 (zh) 用于确定传输方向的方法和设备
WO2018171741A1 (zh) 传输信号的方法和装置
JP2021503791A (ja) 検出ウィンドウ指示方法及び装置
WO2020029896A1 (zh) 一种参考信号发送、接收方法及装置
WO2020020376A1 (zh) 一种参考信号发送、接收方法、装置及设备
TW201607283A (zh) 用於傳送及接收信標訊框之無線裝置、方法及電腦可讀媒體
WO2021062716A1 (zh) 一种通信方法及装置
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2022067703A1 (zh) 一种通信方法及装置
WO2021032134A1 (zh) 同步信号传输方法及通信装置
WO2021134702A1 (zh) 一种通信方法及装置
WO2021087877A1 (zh) 一种通信方法及装置
WO2020199897A1 (zh) 一种通信方法及设备
WO2023011620A1 (zh) 一种通信方法及装置
WO2021159511A1 (zh) 一种资源指示和确定方法及相关装置
WO2020151480A1 (zh) 一种信号发送、接收方法及装置
WO2023006067A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020741240

Country of ref document: EP

Effective date: 20210722