WO2023011620A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023011620A1
WO2023011620A1 PCT/CN2022/110477 CN2022110477W WO2023011620A1 WO 2023011620 A1 WO2023011620 A1 WO 2023011620A1 CN 2022110477 W CN2022110477 W CN 2022110477W WO 2023011620 A1 WO2023011620 A1 WO 2023011620A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time slot
symbol
uplink
slot
Prior art date
Application number
PCT/CN2022/110477
Other languages
English (en)
French (fr)
Inventor
陆绍中
郭志恒
马蕊香
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023011620A1 publication Critical patent/WO2023011620A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • PUSCH physical uplink shared channel
  • ToMS transport block over multi-slot
  • TBoMS transmission can only use uplink time slots (that is, time slots in which all symbols are used for uplink), and the uplink coverage performance is poor.
  • the present application provides a communication method and device, which are used to solve the problem that transmission blocks transmitted across time slots can only be transmitted using uplink time slots, and the uplink coverage performance is poor.
  • the present application provides a communication method, and the execution subject of the method may be a terminal device, or may be a chip or a circuit.
  • the method includes: receiving first signaling, the first signaling is used to indicate to send uplink transmission blocks on multiple time slots, and the first signaling indicates a first symbol and a second symbol, the first symbol includes at least one symbol, the second The two symbols include at least one symbol; determining a time domain resource for sending the uplink transmission block based on the first signaling, and sending the uplink transmission block on the determined time domain resource.
  • the time domain resources include time domain resources on the first time slot, the first symbols on the first time slot include downlink symbols, and the second symbols on the first time slot do not include downlink symbols.
  • the first signaling enables the terminal device to effectively distinguish uplink time slots (that is, time slots that do not include downlink symbols in the first symbol) and special time slots (that is, time slots that include downlink symbols in the first symbol and the second
  • uplink time slots that is, time slots that do not include downlink symbols in the first symbol
  • special time slots that is, time slots that include downlink symbols in the first symbol and the second
  • the downlink symbol is not included in the downlink symbol
  • the first signaling indicates at least one of the following: a first start symbol, a first length, and the first start symbol and the first length are used to indicate the first symbol.
  • the first signaling further indicates at least one of the following items: a second start symbol and a second length, the second start symbol and the second length are used to indicate the second symbol.
  • the time domain resources further include time domain resources on the second time slot, and the first symbols on the second time slot do not include downlink symbols.
  • the first signaling also indicates the start time slot and the first time slot number, and the first time slot number indicates the number of time slots allocated to the consecutive time slots of the uplink transport block. In this way, the range of time-domain resources can be divided in advance, and the implementation is simpler.
  • the first signaling also indicates a start time slot and a second time slot number, where the second time slot number is a number of time slots used to send the uplink transport block.
  • the transmitted uplink transmission block can carry complete information, and the reliability and coverage performance are better.
  • the following process may be performed on each time slot sequentially starting from the initial time slot until the count value of the counter is equal to the second Number of time slots: determine the first symbol on the time slot according to the first signaling; when the first symbol does not include symbols for downlink transmission, the time domain resource includes the first symbol on the time slot, and the counter Add one to the count value; in the case where the first symbol includes a symbol for downlink transmission, determine the second symbol on the time slot according to the first signaling; if the second symbol does not include a symbol for downlink transmission, The time domain resource includes the second symbol on the time slot, the time slot is the first time slot, and the count value of the counter is increased by one.
  • the resource quantity for sending the uplink transmission block can be guaranteed, so that the transmitted uplink transmission block can carry complete information, and have better reliability and coverage performance.
  • the first symbol of a time slot does not include symbols used for downlink transmission, or, the first symbol of the time slot includes symbols used for downlink transmission, and the second symbol does not include symbols used for downlink transmission. If the time slot is occupied by other high-priority signals or channels, the time slot is skipped, that is, the time slot is not used to send the uplink transmission block. In the above manner, resource conflicts can be avoided.
  • the amount of information bits corresponding to the uplink transmission block can be determined according to the parameter K used for scaling, and the uplink signal corresponding to the uplink transmission block can be determined according to the amount of information bits .
  • K is a ratio of resources corresponding to the first time unit to resources corresponding to the second time unit in the uplink transmission block.
  • the first time unit is the first time slot used to send the uplink transport block, or the longest third time unit among the third time units used to send the uplink transport block, or the third time used to send the uplink transport block.
  • the second time unit is the longest of the first type of time slot, or the second type of time slot, or the first third time unit used to send the uplink transmission block, or the third time unit used to send the uplink transmission block
  • the first symbol of the slot includes symbols for downlink transmission
  • the second symbol of the second type of time slot does not include symbols for downlink transmission.
  • the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the calculation of information bit amount can be made more accurate, and the accuracy of information transmission can be improved.
  • the resource is the number of symbols, or the number of symbols after symbols carrying demodulation reference signals DMRS, or the number of REs in a physical resource block PRB, or the total number of REs.
  • the resource corresponding to the second time unit refers to the resource used to send the uplink transport block in the resource corresponding to the second time unit
  • the resource corresponding to the first time unit refers to the resource used in the resource corresponding to the first time unit Resources for sending uplink transport blocks.
  • the method further includes: repeatedly transmitting the uplink transmission block based on the repetition interval.
  • the repetition interval is used to indicate the time interval between two repeated transmissions.
  • the repetition interval is indicated by the first signaling, or the repetition interval is preconfigured.
  • the repetition interval indicates the time interval between the start slots of two adjacent repeated transmissions; or, the repetition interval indicates the multiple time slots configured for the previous repeated transmission in two adjacent repeated transmissions The time interval between the last time slot in the previous repeated transmission and the start time slot of the next repeated transmission; or, the repeated interval indicates the time interval between the last time slot used for uplink transmission in the previous repeated transmission in two adjacent repeated transmissions The time interval between the start slots of a repeated transmission.
  • repetition type A repetition type A
  • the unit of the time interval is a time slot, or a third time unit, or a mini-slot, or a subframe, or a half frame, or a frame, or a ratio cycle of uplink and downlink time slots, or milliseconds, where , the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the first signaling may also indicate the DMRS mapping mode in the second type of time slot, the first symbol of the second type of time slot includes symbols for downlink transmission, and the second symbol does not include Symbols for downlink transmission.
  • the DMRS mapping mode in the second type of time slot may also be the default.
  • the present application provides a communication method, and the execution subject of the method may be a terminal device, or may be a chip or a circuit.
  • the method includes: sending first signaling, the first signaling is used to indicate to send uplink transport blocks on multiple time slots, and the first signaling indicates a first symbol and a second symbol, the first symbol includes at least one symbol, the second Two symbols include at least one symbol.
  • the time domain resources include time domain resources on the first time slot, the first symbols on the first time slot include downlink symbols, and the second symbols on the first time slot do not include downlink symbols.
  • the first signaling enables the terminal device to effectively distinguish uplink time slots (that is, time slots that do not include downlink symbols in the first symbol) and special time slots (that is, time slots that include downlink symbols in the first symbol and the second
  • uplink time slots that is, time slots that do not include downlink symbols in the first symbol
  • special time slots that is, time slots that include downlink symbols in the first symbol and the second
  • the downlink symbol is not included in the downlink symbol
  • the first signaling indicates at least one of the following: a first start symbol, a first length, and the first start symbol and the first length are used to indicate the first symbol.
  • the first signaling further indicates at least one of the following items: a second start symbol and a second length, the second start symbol and the second length are used to indicate the second symbol.
  • the time domain resources further include time domain resources on the second time slot, and the first symbols on the second time slot do not include downlink symbols.
  • the first signaling also indicates the start time slot and the first time slot number, and the first time slot number indicates the number of time slots allocated to the consecutive time slots of the uplink transport block. In this way, the range of time-domain resources can be divided in advance, and the implementation is simpler.
  • the first signaling also indicates a start time slot and a second time slot number, where the second time slot number is a number of time slots used to send the uplink transport block.
  • the transmitted uplink transmission block can carry complete information, and the reliability and coverage performance are better.
  • the following process may be performed on each time slot sequentially starting from the initial time slot until the count value of the counter is equal to the second Number of time slots: determine the first symbol on the time slot according to the first signaling; when the first symbol does not include symbols for downlink transmission, the time domain resource includes the first symbol on the time slot, and the counter Add one to the count value; in the case where the first symbol includes a symbol for downlink transmission, determine the second symbol on the time slot according to the first signaling; if the second symbol does not include a symbol for downlink transmission, The time domain resource includes the second symbol on the time slot, the time slot is the first time slot, and the count value of the counter is increased by one.
  • the resource quantity for sending the uplink transmission block can be guaranteed, so that the transmitted uplink transmission block can carry complete information, and have better reliability and coverage performance.
  • the first symbol of a time slot does not include symbols used for downlink transmission, or, the first symbol of the time slot includes symbols used for downlink transmission, and the second symbol does not include symbols used for downlink transmission. If the time slot is occupied by other high-priority signals or channels, the time slot is skipped, that is, the time slot is not used to send the uplink transmission block. In the above manner, resource conflicts can be avoided.
  • the amount of information bits corresponding to the uplink transmission block is related to the parameter K used for scaling.
  • K is a ratio of resources corresponding to the first time unit to resources corresponding to the second time unit in the uplink transmission block.
  • the first time unit is the first time slot used to send the uplink transport block, or the longest third time unit among the third time units used to send the uplink transport block, or the third time used to send the uplink transport block.
  • the second time unit is the longest of the first type of time slot, or the second type of time slot, or the first third time unit used to send the uplink transmission block, or the third time unit used to send the uplink transmission block
  • the first symbol of the slot includes symbols for downlink transmission
  • the second symbol of the second type of time slot does not include symbols for downlink transmission.
  • the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the calculation of information bit amount can be made more accurate, and the accuracy of information transmission can be improved.
  • the resource is the number of symbols, or the number of symbols after the symbols carrying DMRS, or the number of REs in one PRB, or the total number of REs.
  • the resource corresponding to the second time unit refers to the resource used to send the uplink transport block in the resource corresponding to the second time unit
  • the resource corresponding to the first time unit refers to the resource used in the resource corresponding to the first time unit Resources for sending uplink transport blocks.
  • the method further includes: receiving repeated transmission of the uplink transmission block based on a repetition interval.
  • the repetition interval is used to indicate the time interval between two repeated transmissions.
  • the repetition interval is indicated by the first signaling, or the repetition interval is preconfigured.
  • the repetition interval indicates the time interval between the start slots of two adjacent repeated transmissions; or, the repetition interval indicates the multiple time slots configured for the previous repeated transmission in two adjacent repeated transmissions The time interval between the last time slot in the previous repeated transmission and the start time slot of the next repeated transmission; or, the repeated interval indicates the time interval between the last time slot used for uplink transmission in the previous repeated transmission in two adjacent repeated transmissions The time interval between the start slots of a repeated transmission.
  • repetition type A repetition type A
  • the unit of the time interval is a time slot, or a third time unit, or a mini-slot, or a subframe, or a half frame, or a frame, or a ratio cycle of uplink and downlink time slots, or milliseconds, where , the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the first signaling may also indicate the DMRS mapping mode in the second type of time slot, the first symbol of the second type of time slot includes symbols for downlink transmission, and the second symbol does not include Symbols for downlink transmission.
  • the DMRS mapping mode in the second type of time slot may also be the default.
  • the present application provides a communication method, and the execution subject of the method may be a terminal device, or may be a chip or a circuit.
  • the method includes: determining the time domain resource for each repeated transmission of the uplink transmission block according to the repetition interval, and the repetition interval is used to indicate the time interval between two repeated transmissions; performing repeated transmission on the uplink transmission block according to the determined time domain resource.
  • the repetition interval can be indicated more flexibly, and a longer repetition interval can be indicated, which helps to obtain time diversity gain and improve uplink coverage performance.
  • the method further includes: receiving first signaling, the first signaling is used to indicate time domain resource allocation (time domain resource allocation, TDRA) of the uplink transport block, and the first signaling indicates repeated interval.
  • time domain resource allocation time domain resource allocation, TDRA
  • the repetition interval is preconfigured.
  • the repetition interval indicates the time interval between the start slots of two adjacent repeated transmissions; or, the repetition interval indicates the multiple time slots configured for the previous repeated transmission in two adjacent repeated transmissions The time interval between the last time slot in the previous repeated transmission and the start time slot of the next repeated transmission; or, the repeated interval indicates the time interval between the last time slot used for uplink transmission in the previous repeated transmission in two adjacent repeated transmissions The time interval between the start slots of a repeated transmission.
  • repetition type A repetition type A
  • the unit of the time interval is a time slot, or a third time unit, or a mini-slot, or a subframe, or a half frame, or a frame, or a ratio cycle of uplink and downlink time slots, or milliseconds, where , the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the first signaling may also indicate the DMRS mapping mode in the second type of time slot, the first symbol of the second type of time slot includes symbols for downlink transmission, and the second symbol does not include Symbols for downlink transmission.
  • the DMRS mapping mode in the second type of time slot may also be the default.
  • the present application provides a communication method, and the execution body of the method may be a network device, or may be a chip or a circuit.
  • the method includes: determining the time domain resource for each repeated transmission of the uplink transmission block according to the repetition interval, the repetition interval being used to indicate the time interval between two repeated transmissions; receiving the repeated transmission of the uplink transmission block according to the determined time domain resource.
  • the repetition interval can be indicated more flexibly, and a longer repetition interval can be indicated, which helps to obtain time diversity gain and improve uplink coverage performance.
  • the method further includes: sending first signaling, where the first signaling is used to indicate TDRA of an uplink transport block, and the first signaling indicates a repetition interval.
  • the repetition interval is preconfigured.
  • the repetition interval indicates the time interval between the start slots of two adjacent repeated transmissions; or, the repetition interval indicates the multiple time slots configured for the previous repeated transmission in two adjacent repeated transmissions The time interval between the last time slot in the previous repeated transmission and the start time slot of the next repeated transmission; or, the repeated interval indicates the time interval between the last time slot used for uplink transmission in the previous repeated transmission in two adjacent repeated transmissions The time interval between the start slots of a repeated transmission.
  • repetition type A repetition type A
  • the unit of the time interval is a time slot, or a third time unit, or a mini-slot, or a subframe, or a half frame, or a frame, or a ratio cycle of uplink and downlink time slots, or milliseconds, where , the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the first signaling may also indicate the DMRS mapping mode in the second type of time slot, the first symbol of the second type of time slot includes symbols for downlink transmission, and the second symbol does not include Symbols for downlink transmission.
  • the DMRS mapping mode in the second type of time slot may also be the default.
  • the present application provides a communication method, and the execution body of the method may be a terminal device, or may be a chip or a circuit.
  • the method includes: determining the amount of information bits corresponding to the uplink transmission block according to the parameter K used for scaling, and determining the uplink signal corresponding to the uplink transmission block according to the amount of information bits.
  • K is a ratio of resources corresponding to the first time unit to resources corresponding to the second time unit in the uplink transmission block.
  • the first time unit is the first time slot used to send the uplink transport block, or the longest third time unit among the third time units used to send the uplink transport block, or the third time used to send the uplink transport block.
  • the second time unit is the longest of the first type of time slot, or the second type of time slot, or the first third time unit used to send the uplink transmission block, or the third time unit used to send the uplink transmission block
  • the first symbol of the slot includes symbols for downlink transmission
  • the second symbol of the second type of time slot does not include symbols for downlink transmission.
  • the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the calculation of information bit amount can be made more accurate, and the accuracy of information transmission can be improved.
  • the resource is the number of symbols, or the number of symbols after the symbols carrying DMRS, or the number of REs in one PRB, or the total number of REs.
  • the resource corresponding to the second time unit refers to the resource used to send the uplink transport block in the resource corresponding to the second time unit
  • the resource corresponding to the first time unit refers to the resource used in the resource corresponding to the first time unit Resources for sending uplink transport blocks.
  • the present application provides a communication method, and the execution body of the method may be a network device, or may be a chip or a circuit.
  • the method includes: receiving an uplink transmission block, wherein the amount of information bits corresponding to the uplink transmission block is related to the parameter K used for scaling.
  • K is a ratio of resources corresponding to the first time unit to resources corresponding to the second time unit in the uplink transmission block.
  • the first time unit is the first time slot used to send the uplink transport block, or the longest third time unit among the third time units used to send the uplink transport block, or the third time used to send the uplink transport block.
  • the second time unit is the longest of the first type of time slot, or the second type of time slot, or the first third time unit used to send the uplink transmission block, or the third time unit used to send the uplink transmission block
  • the first symbol of the slot includes symbols for downlink transmission
  • the second symbol of the second type of time slot does not include symbols for downlink transmission.
  • the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the calculation of information bit amount can be made more accurate, and the accuracy of information transmission can be improved.
  • the resource is the number of symbols, or the number of symbols after the symbols carrying DMRS, or the number of REs in one PRB, or the total number of REs.
  • the resource corresponding to the second time unit refers to the resource used to send the uplink transport block in the resource corresponding to the second time unit
  • the resource corresponding to the first time unit refers to the resource used in the resource corresponding to the first time unit Resources for sending uplink transport blocks.
  • the present application further provides a communication device, where the communication device has a function of implementing any method provided in the first aspect, the third aspect, or the fifth aspect.
  • the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communications device includes: a processor, where the processor is configured to support the communications device to execute corresponding functions of the terminal device in the methods shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is used to support communication between the communication device and equipment such as network equipment.
  • the communication device has the function of implementing the method provided by the first aspect above.
  • An interface circuit configured to receive first signaling, where the first signaling is used to indicate that an uplink transport block is to be sent on multiple time slots, and the first signaling indicates a first symbol and a second symbol, and the first symbol includes at least one symbol , the second symbol includes at least one symbol.
  • a processor configured to determine time domain resources for sending uplink transport blocks based on the first signaling.
  • the interface circuit is further configured to send the uplink transmission block on the determined time domain resource.
  • the time domain resources include time domain resources on the first time slot, the first symbols on the first time slot include downlink symbols, and the second symbols on the first time slot do not include downlink symbols.
  • the communication device has the function of implementing the method provided by the above third aspect.
  • the processor is configured to determine time-domain resources for each repeated transmission of the uplink transmission block according to a repetition interval, where the repetition interval is used to indicate a time interval between two repeated transmissions.
  • the interface circuit is used for repeatedly transmitting the uplink transmission block according to the determined time domain resources.
  • the communication device has the function of implementing the method provided by the fifth aspect above.
  • the processor is configured to determine the amount of information bits corresponding to the uplink transmission block according to the parameter K used for scaling, and determine the uplink signal corresponding to the uplink transmission block according to the amount of information bits.
  • K is a ratio of resources corresponding to the first time unit to resources corresponding to the second time unit in the uplink transmission block.
  • the first time unit is the first time slot used to send the uplink transport block, or the longest third time unit among the third time units used to send the uplink transport block, or the third time used to send the uplink transport block.
  • the second time unit is the longest of the first type of time slot, or the second type of time slot, or the first third time unit used to send the uplink transmission block, or the third time unit used to send the uplink transmission block
  • the first symbol of the slot includes symbols for downlink transmission
  • the second symbol of the second type of time slot does not include symbols for downlink transmission.
  • the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the communication device includes corresponding functional modules, which are respectively used to implement the steps in the above method.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit (or processing module) and a communication unit (or communication module), and these units can perform the corresponding functions in the above method examples.
  • a processing unit or processing module
  • a communication unit or communication module
  • the communication device has the function of implementing the method provided by the first aspect above.
  • a communication module configured to receive first signaling, where the first signaling is used to indicate that an uplink transmission block is to be sent on multiple time slots, and the first signaling indicates a first symbol and a second symbol, and the first symbol includes at least one symbol , the second symbol includes at least one symbol.
  • a processing module configured to determine time domain resources for sending uplink transport blocks based on the first signaling.
  • the communication module is further configured to send the uplink transmission block on the determined time domain resource.
  • the time domain resources include time domain resources on the first time slot, the first symbols on the first time slot include downlink symbols, and the second symbols on the first time slot do not include downlink symbols.
  • the communication device has the function of implementing the method provided by the above third aspect.
  • the processing module is configured to determine time-domain resources for each repeated transmission of the uplink transmission block according to a repetition interval, where the repetition interval is used to indicate a time interval between two repeated transmissions.
  • the communication module is configured to repeatedly transmit the uplink transmission block according to the determined time domain resources.
  • the communication device has the function of implementing the method provided by the fifth aspect above.
  • the processing module is configured to determine the amount of information bits corresponding to the uplink transmission block according to the scaling parameter K, and determine the uplink signal corresponding to the uplink transmission block according to the amount of information bits.
  • K is a ratio of resources corresponding to the first time unit to resources corresponding to the second time unit in the uplink transmission block.
  • the first time unit is the first time slot used to send the uplink transport block, or the longest third time unit among the third time units used to send the uplink transport block, or the third time used to send the uplink transport block.
  • the second time unit is the longest of the first type of time slot, or the second type of time slot, or the first third time unit used to send the uplink transmission block, or the third time unit used to send the uplink transmission block
  • the first symbol of the slot includes symbols for downlink transmission
  • the second symbol of the second type of time slot does not include symbols for downlink transmission.
  • the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the present application further provides a communication device, where the communication device has a function of implementing any method provided in the second aspect, the fourth aspect, or the sixth aspect.
  • the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication device includes: a processor, where the processor is configured to support the communication device to execute corresponding functions of the network device in the methods shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication device further includes an interface circuit, where the interface circuit is used to support communication between the communication device and devices such as terminal equipment.
  • the communication device has the function of implementing the method provided by the second aspect above.
  • An interface circuit configured to send first signaling, where the first signaling is used to indicate that an uplink transport block is to be sent on multiple time slots, and the first signaling indicates a first symbol and a second symbol, and the first symbol includes at least one symbol , the second symbol includes at least one symbol.
  • a processor configured to determine time domain resources for receiving uplink transmission blocks based on the first signaling.
  • the interface circuit is also used for receiving the uplink transmission block on the time domain resource.
  • the time domain resources include time domain resources on the first time slot, the first symbols on the first time slot include downlink symbols, and the second symbols on the first time slot do not include downlink symbols.
  • the communication device has a function of implementing the method provided in the fourth aspect above.
  • the processor is configured to determine time-domain resources for each repeated transmission of the uplink transmission block according to a repetition interval, where the repetition interval is used to indicate a time interval between two repeated transmissions.
  • the interface circuit is used for receiving the repeated transmission of the uplink transmission block according to the determined time domain resource.
  • the communication device has a function of implementing the method provided in the sixth aspect above.
  • the interface circuit is used to receive the uplink transmission block, where the amount of information bits corresponding to the uplink transmission block is related to the parameter K used for scaling.
  • K is a ratio of resources corresponding to the first time unit to resources corresponding to the second time unit in the uplink transmission block.
  • the first time unit is the first time slot used to send the uplink transport block, or the longest third time unit among the third time units used to send the uplink transport block, or the third time used to send the uplink transport block The shortest third time unit in the unit, or multiple third time units in the third time unit used to send the uplink transport block, or all the time slots used to send the uplink transport block.
  • the second time unit is the longest of the first type of time slot, or the second type of time slot, or the first third time unit used to send the uplink transmission block, or the third time unit used to send the uplink transmission block
  • the first symbol of the slot includes symbols for downlink transmission
  • the second symbol of the second type of time slot does not include symbols for downlink transmission.
  • the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the communication device includes corresponding functional modules, which are respectively used to implement the steps in the above method.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit (or processing module) and a communication unit (or communication module), and these units can perform the corresponding functions in the above method examples.
  • a processing unit or processing module
  • a communication unit or communication module
  • the communication device has the function of implementing the method provided by the second aspect above.
  • a communication module configured to send first signaling, where the first signaling is used to indicate that an uplink transmission block is to be sent on multiple time slots, and the first signaling indicates a first symbol and a second symbol, and the first symbol includes at least one symbol , the second symbol includes at least one symbol.
  • a processing module configured to determine time-domain resources for receiving uplink transmission blocks based on the first signaling.
  • the communication module is further configured to receive uplink transmission blocks on time domain resources.
  • the time domain resources include time domain resources on the first time slot, the first symbols on the first time slot include downlink symbols, and the second symbols on the first time slot do not include downlink symbols.
  • the communication device has a function of implementing the method provided in the fourth aspect above.
  • the processing module is configured to determine time-domain resources for each repeated transmission of the uplink transmission block according to a repetition interval, where the repetition interval is used to indicate a time interval between two repeated transmissions.
  • the communication module is configured to receive the repeated transmission of the uplink transmission block according to the determined time domain resource.
  • the communication device has a function of implementing the method provided in the sixth aspect above.
  • the communication module is configured to receive an uplink transmission block, where the amount of information bits corresponding to the uplink transmission block is related to the parameter K used for scaling.
  • K is a ratio of resources corresponding to the first time unit to resources corresponding to the second time unit in the uplink transmission block.
  • the first time unit is the first time slot used to send the uplink transport block, or the longest third time unit among the third time units used to send the uplink transport block, or the third time used to send the uplink transport block The shortest third time unit in the unit, or multiple third time units in the third time unit used to send the uplink transport block, or all the time slots used to send the uplink transport block.
  • the second time unit is the longest of the first type of time slot, or the second type of time slot, or the first third time unit used to send the uplink transmission block, or the third time unit used to send the uplink transmission block
  • the first symbol of the slot includes symbols for downlink transmission
  • the second symbol of the second type of time slot does not include symbols for downlink transmission.
  • the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor is used to implement the method in the aforementioned first aspect, third aspect, or fifth aspect and any possible design through a logic circuit or executing code instructions.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor is used to implement the method in the aforementioned second aspect, fourth aspect, or sixth aspect and any possible design through a logic circuit or executing code instructions.
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is executed by a processor, the foregoing first to sixth aspects are realized Any aspect and method in any possible design.
  • a computer program product storing instructions, and when the instructions are executed by a processor, the method in any one of the aforementioned first to sixth aspects and any possible design is implemented.
  • a chip system includes a processor, and may further include a memory, for implementing the method in any one of the foregoing first to sixth aspects and any possible designs.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a communication system in a fourteenth aspect, includes the device described in the first aspect (such as a terminal device) and the device described in the second aspect (such as a network device).
  • a fifteenth aspect provides a communication system, where the system includes the apparatus described in the third aspect (such as a terminal device) and the apparatus described in the fourth aspect (such as a network device).
  • a sixteenth aspect provides a communication system, where the system includes the apparatus (such as a terminal device) described in the fifth aspect and the apparatus (such as a network device) described in the sixth aspect.
  • FIG. 1 is a schematic diagram of the architecture of a network system according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a time-domain resource for sending an uplink transport block according to an embodiment of the present application
  • FIG. 4 is a schematic flow diagram of determining a time-domain resource for sending an uplink transport block according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a time-domain resource for sending an uplink transport block according to an embodiment of the present application
  • FIG. 6 is another schematic flowchart of determining time-domain resources for sending an uplink transport block according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of a time-domain resource for sending an uplink transport block according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a TOT according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a repetition interval of an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a repetition interval in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a repetition interval of an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a repetition interval of an embodiment of the present application.
  • FIG. 13 is a schematic diagram of repeated transmission according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of repeated transmission according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • a format of a slot may include several orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the format of a slot may include 14 OFDM symbols, or, the format of a slot may include 12 OFDM symbols; or, the format of a slot may include 7 OFDM symbols. All OFDM symbols in a slot can be used for uplink transmission; all of them can be used for downlink transmission; some can be used for downlink transmission, some can be used for uplink transmission, and some flexible time domain symbols can be flexibly configured for uplink or downlink transmission). It should be understood that the above examples are for illustrative purposes only, and should not constitute any limitation to the present application.
  • the number of OFDM symbols included in the slot and the slot used for uplink transmission and/or downlink transmission are not limited to the above examples.
  • the time domain symbols may be OFDM symbols, and the time domain symbols may be replaced by OFDM symbols or symbols.
  • the OFDM symbols used for uplink transmission are called uplink symbols
  • the OFDM symbols used for downlink transmission are called downlink symbols, which can be flexibly configured as symbols for uplink or downlink transmission.
  • Symbols are called flexible symbols.
  • a time slot in which symbols are all uplink symbols is called an uplink time slot
  • a time slot in which symbols are all downlink symbols is called a downlink time slot.
  • a time slot including uplink symbols and at least one of the following items: downlink symbols or flexible symbols, or a time slot including only flexible symbols is called a special time slot.
  • TOT is a time unit involved in the uplink transmission process of TBoMS, including one or more physical time slots for uplink transmission.
  • the number of time slots included in the TOT can be 1, 2, 3, 4, 7, 8, 12, 16 and so on. It should be understood that this is only an illustration, and does not limit the number of time slots of the TOT.
  • TOT is only an exemplary naming, and this embodiment of the present application does not specifically limit the naming of such time units.
  • Repeated transmission of type A refers to: N repetitions need to schedule N consecutive slots (such as consecutive N physical time slots, or consecutive N available time slots), and configure the time domain that needs to be occupied in a slot
  • N is an integer greater than or equal to 1.
  • the transmission on each slot needs to be on the 2nd to 10th time-domain symbols of each slot.
  • Terminal equipment including equipment that provides voice and/or data connectivity to users, specifically, equipment that provides voice to users, or equipment that provides data connectivity to users, or equipment that provides voice and data connectivity to users sexual equipment. Examples may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (vehicle to everything, V2X) terminal equipment , machine-to-machine/machine-type communications (machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (internet of things, IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station) station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket, hand-held, computer built-in mobile devices, and the like.
  • PCS personal communication service
  • cordless telephone cordless telephone
  • session initiation protocol session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc., which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may further include a relay (relay).
  • a relay relay
  • all devices capable of performing data communication with the base station can be regarded as terminal devices.
  • the device used to realize the function of the terminal device may be a terminal device, or a device applied to the terminal device that can support the terminal device to realize the function, such as a component or component with a communication function, or a chip system , the device can be installed in the terminal equipment.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • Network equipment including, for example, access network (access network, AN) equipment, such as base stations (eg, access points), may refer to equipment in the access network that communicates with terminal equipment through one or more cells over the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (long term evolution, LTE) system or an advanced long term evolution (long term evolution-advanced, LTE-A), or It may include the next generation node B (next generation node B, gNB) in the 5th generation mobile communication technology (the 5th generation, 5G) NR system (also referred to as NR system) or may also include the cloud radio access network (cloud radio access)
  • the centralized unit (centralized unit, CU) and/or distributed unit (distributed unit, DU) in the network, Cloud RAN) system is not limited in this embodiment of the present application.
  • the network device can be a CU in the Cloud RAN system
  • the network device may also include a core network device, and the core network device includes, for example, an access and mobility management function (access and mobility management function, AMF) and the like. Since the embodiments of the present application mainly relate to the access network, unless otherwise specified in the following, the network equipment mentioned refers to the access network equipment.
  • AMF access and mobility management function
  • the device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the network device as an example for realizing the function of the network device.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • first and second are used to distinguish multiple objects, and are not used to limit the size, content, order, and timing of multiple objects , priority or importance, etc.
  • first time unit and the second time unit are only for distinguishing different time units, and do not represent the difference in size, priority or importance of the two time units.
  • the TBoMS PUSCH technology In order to enhance the uplink coverage performance of NR, the TBoMS PUSCH technology is proposed. This technology aggregates small data packets on each time slot into a large data packet, and completes the transmission of this large data packet on multiple time slots. Packet header overhead can be reduced by small packet aggregation, cyclic redundancy code overhead can be reduced by reducing the number of transport block (TB) splits, coding gain can be increased by increasing the transport block size (TBS), and by Reducing the number of physical resource blocks (physical resource blocks, PRBs) can increase the power spectral density, and ultimately achieve the purpose of enhancing NR uplink coverage performance.
  • TB transport block
  • PRBs physical resource blocks
  • TBoMS transmitted TDRA can multiplex repetition type A TDRA (repetition type A like TDRA). That is, TBoMS uses the same symbol allocation on each slot.
  • the start symbol and length of each time slot can be indicated by the start and length indicator value (start and length indicator value, SLIV) (startSymbolAndLength field) in the TDRA table, and/or start symbol S (startSymbol field) and length L (length field) indication.
  • start and length indicator value start and length indicator value
  • start symbol S startSymbol field
  • length L length L
  • the special time slot usually includes three parts, which are downlink symbols, flexible symbols and uplink symbols in turn. Therefore, the transmission block that solves cross-slot transmission can only be transmitted using the uplink time slot, and the uplink coverage performance is poor.
  • the embodiments of the present application provide a communication method and device, which are used to solve the problem that transmission blocks transmitted across time slots can only be transmitted using uplink time slots, and the uplink coverage performance is poor.
  • the method and the device are based on the same inventive concept, and since the principles of the method and the device to solve problems are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example, it can be the Internet of Things (Internet of Things, IoT), narrowband Internet of Things (NB-IoT), LTE, or it can be the first
  • the fifth generation ( 5th generation, 5G) communication system can also be a hybrid architecture of LTE and 5G, or it can be a new communication system that appears in 6G or future communication development.
  • the 5G communication system described in this application may include at least one of a non-standalone (NSA) 5G communication system and a standalone (standalone, SA) 5G communication system.
  • the communication system may also be an M2M network, MTC or other networks.
  • FIG. 1 To facilitate understanding of the embodiment of the present application, a communication system applicable to the embodiment of the present application is first described with reference to FIG. 1 .
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 111 shown in FIG. 1 , and the communication system 100 may also include at least one terminal device, such as the terminal device 121 shown in FIG. 1 .
  • FIG. 1 is only a schematic diagram, and does not specifically limit the type of the communication system, and the quantity and type of devices included in the communication system.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • repeated transmission, repeated transmission or repeated transmission of uplink transmission blocks are mentioned several times, and those skilled in the art should understand the meanings thereof.
  • Repeated transmission, repeated transmission or repeated transmission of an uplink transmission block are all used to indicate that a certain uplink transmission block is to be sent once or multiple times.
  • the content sent each time is completely the same.
  • the RV sent each time may be different.
  • uplink transmission block can be replaced with "transmission block” or "data” or “data block” or “uplink data”, etc., or used to express the same or similar meaning in future agreements The nomenclature is applicable to the embodiments of this application.
  • FIG. 2 it is a schematic flowchart of a communication method provided by the present application.
  • the method includes:
  • the network device sends first signaling to the terminal device.
  • the terminal device receives the first signaling from the network device.
  • the first signaling is used to indicate the TDRA of the uplink transport block, where the uplink transport block may be sent in multiple time slots, for example, the uplink transport block is TBoMS.
  • the first signaling may indicate a first symbol and a second symbol, where the first symbol includes at least one symbol, and the second symbol includes at least one symbol.
  • the first signaling may indicate a first start symbol and a first length, where the first start symbol is the first symbol in the first time slot allocated to the uplink transport block, and the first length is the first symbol allocated to the uplink transmission block.
  • the first signaling may carry at least one of the following parameters: a first SLIV, a first start symbol, or a first length, where the first SLIV may indicate the first start symbol and the first length.
  • the above-mentioned indication method of the first symbol takes the first start symbol and the first length as an example.
  • the first signaling may also indicate the first symbol through the first end symbol and the first length, or, The first symbol and so on may also be indicated by a first start symbol and a first end symbol.
  • first start symbol, first end symbol or first length may also be default, for example, the first start symbol defaults to the first symbol in the time slot, and the first end symbol defaults to the time slot The last symbol in , the first length defaults to 7 symbols and so on.
  • the indication manner of the second symbol is similar to the indication manner of the first symbol, and repeated descriptions are omitted.
  • the first signaling may also indicate the start time slot and the first time slot number, the first time slot number indicates the number of time slots allocated to the continuous time slots of the uplink transport block, that is, the first time slot number indicates the allocation The number of physical slots given to this uplink transport block. In this way, the range of time-domain resources can be divided in advance, and the implementation is simpler.
  • the first signaling may also indicate the starting time slot and the second number of time slots
  • the second number of time slots indicates the number of time slots used to send the multiple time slots of the uplink transport block, that is, the second number of time slots Indicates the number of available slots for this uplink transport block.
  • the transmitted uplink transmission block can carry complete information, and the reliability and coverage performance are better.
  • the candidate values of the first number of time slots may be but not limited to: 1, 2, 3, 4, 7, 8, 12, 16, 20, 24, 28, 32, 34, 36, 40 , 42 and so on.
  • Candidate values for the second number of time slots may be, but not limited to: 1, 2, 3, 4, 7, 8, 12, 16, 20, 24, 28, 32, 34, 36, 40, 42 and so on.
  • first number of time slots and the second number of time slots are only an example of the first number of time slots and the second number of time slots, and does not limit that the candidate values of the first number of time slots and the second number of time slots are the same, and in specific implementation, the first time slot number Candidate values for the number of slots and the number of second time slots may also include others, or include the parts in the above examples, which are not specifically limited here.
  • the terminal device can determine the time slot for sending the uplink transport block.
  • the first signaling may also indicate a repetition interval, and the repetition interval is used to indicate the time interval between two adjacent repetitions.
  • the specific indication content of the repetition interval will be described in detail below.
  • the first signaling may also indicate the number of repetitions of the uplink transport block.
  • the repetition interval may indicate the time interval between the start time slots of two adjacent repeated transmissions.
  • the repetition interval may indicate the time interval between the last time slot among the multiple time slots configured for the previous repeated transmission in two adjacent repeated transmissions and the start time slot of the next repeated transmission.
  • the repetition interval may indicate the time interval between the last time slot used for uplink transmission in the previous repeated transmission and the start time slot of the next repeated transmission among two adjacent repeated transmissions.
  • the unit of the time interval may be a time slot, or a third time unit, or a mini-slot, or a subframe, or a half frame, or a frame, or a ratio cycle of uplink and downlink time slots, or milliseconds, wherein the third time
  • the third time unit please refer to the relevant description of TOT in the previous terminology introduction.
  • the third time unit is referred to as TOT below.
  • the repetition interval when the first signaling indicates the first number of time slots, the repetition interval may be Example 1, Example 2, or Example 3.
  • the repetition interval may be Example 1 or Example 3.
  • the indication content of the first signaling is introduced above, and the signaling design of the first signaling is illustrated below with an example. It should be understood that the following example is only an example in which the first signaling includes the above-mentioned parameters, and it is not limited that the first signaling includes all the parameters in the following examples.
  • the first signaling may be radio resource control (radio resource control, RRC) signaling.
  • the first signaling may indicate the TDRA of the uplink transport block through the TDRA table (PUSCH-TimeDomainResourceAllocationList) in the RRC signaling. Two possible TDRA tables are described below.
  • the TDRA table includes a PUSCH allocation table (puschAllocationList table), and the PUSCH allocation table includes at least one of the following fields: slotNum, startSymbolAndLength, startSymbol, Length, startSymbolAndLength2, startSymbol2, Length2, intervalOfRepetitions, where slotNum is used for Indicates the first or second slot number, startSymbolAndLength is used to indicate the first SLIV, startSymbol is used to indicate the first start symbol, Length is used to indicate the first length, startSymbolAndLength2 is used to indicate the second SLIV, startSymbol2 is used to indicate The second start symbol, Length2 is used to indicate the second length, and intervalOfRepetitions is used to indicate the repetition interval.
  • slotNum is used for Indicates the first or second slot number
  • startSymbolAndLength is used to indicate the first SLIV
  • startSymbol is used to indicate the first start symbol
  • Length is used to indicate the first length
  • the PUSCH allocation table may also include other fields, such as the k2 field indicating the start time slot, the mappingType field indicating the DMRS mapping method in the first type of time slot, the numberOfRepetitions field used to indicate the number of repetitions, etc., which will not be repeated here List them all.
  • the TDRA table includes k2 and a PUSCH allocation table, where the PUSCH allocation table includes mappingType, slotNum, startSymbolAndLength, startSymbol, Length, startSymbolAndLength2, startSymbol2, Length2, numberOfRepetitions, and intervalOfRepetitions.
  • the first signaling can indicate information such as the second symbol, the repetition interval, and the number of time slots.
  • the TDRA table includes a PUSCH allocation table (puschAllocationList table), and the PUSCH allocation table includes at least one of the following fields: startSymbolAndLength, startSymbol, Length, startSymbolAndLength2, startSymbol2, Length2, numberOfRepetitions, where numberOfRepetitions may indicate the first The number of time slots or the number of second time slots, startSymbolAndLength is used to indicate the first SLIV, startSymbol is used to indicate the first start symbol, Length is used to indicate the first length, startSymbolAndLength2 is used to indicate the second SLIV, startSymbol2 is used to indicate the second The initial symbol, Length2 is used to indicate the second length.
  • the PUSCH allocation table may also include other fields, such as the k2 field indicating the start time slot, the mappingType field indicating the DMRS mapping mode in the first type of time slot, etc., which will not be listed here.
  • the TDRA table includes k2 and the PUSCH allocation table, wherein the PUSCH allocation table includes mappingType, startSymbolAndLength, startSymbol, Length, startSymbolAndLength2, startSymbol2, Length2, and numberOfRepetitions.
  • the number of time slots is indicated by multiplexing the numberOfRepetitions field, thereby reducing signaling overhead.
  • Example 2 can be applied to scenarios that do not support repeated transmission.
  • the first signaling may also indicate the mapping manner of the DMRS in the second type of time slot.
  • the PUSCH allocation table of the first signaling may include a mappingType2 field, which may indicate the DMRS mapping manner in the second type of time slot.
  • mapping method of DMRS in the second type of time slot can also be determined in other ways, for example, the mapping method of DMRS in the second type of time slot can also be default, for example, the mapping method of DMRS in the second type of time slot The mapping method can default to MappingTypeB.
  • the terminal device determines, based on the first signaling, a time domain resource for sending the uplink transport block.
  • the terminal device determines the time-domain resource for sending the uplink transmission block based on the first signaling, which may include: determining a time slot for sending the uplink transmission block, and determining a time-domain resource for sending the uplink transmission block in each time slot The time domain resource of the uplink transmission block.
  • the time domain resource used for sending the uplink transport block in each time slot is introduced.
  • the satisfied conditions of the time slots are different, and the time domain resources used for sending the uplink transport block on the time slots are different.
  • Three examples of the time domain resources used to send the uplink transport block in the time slot under different conditions are introduced below.
  • Example 1 if the first symbol on the time slot does not include a downlink symbol, the time domain resource of the uplink transmission block includes the first symbol on the time slot. Or, if the first symbol on the time slot includes a downlink symbol, and the second symbol on the time slot does not include a downlink symbol, the time domain resource of the uplink transmission block includes the second symbol on the time slot and does not include The first symbol on the first slot.
  • the terminal device may determine, according to the first signaling, that the time domain resources used to send the uplink transport block include at least one of the following items: the second symbol in the first time slot, or the first symbol in the second time slot .
  • the first symbol in the first time slot includes downlink symbols
  • the second symbol in the first time slot does not include downlink symbols.
  • Downlink symbols are not included in the first symbols in the second time slot.
  • Example 2 if the first symbol on the time slot does not include a downlink symbol, and the second symbol on the time slot does not include a downlink symbol, then the time domain resource of the uplink transmission block includes the first symbol on the time slot. Or, if the first symbol on the time slot includes a downlink symbol, and the second symbol on the time slot does not include a downlink symbol, the time domain resource of the uplink transmission block includes the second symbol on the time slot.
  • time slots 1 to 5 are taken as an example, wherein, time slots 1 to 2 each include 14 downlink symbols, symbols 0 to 7 in time slot 3 are downlink symbols, and symbols 8 to 13 are uplink symbols , time slot 4 to time slot 5 each include 14 uplink symbols.
  • first signaling indicates that the first symbols are 0-11, and the second symbols are 10-13.
  • both the first symbol and the second symbol include downlink symbols, and there is no time domain resource for sending uplink transport blocks in time slot 1 and time slot 2.
  • the first symbols include downlink symbols, and the second symbols are all uplink symbols, then symbols 10-13 in time slot 3 are time domain resources for sending uplink transport blocks.
  • time slot 4 and time slot 5 the first symbols are both uplink symbols, and symbols 0-11 in time slot 4 and time slot 5 are time domain resources for sending uplink transport blocks.
  • Figure 3 shows that time slots 1 to 2 each include 14 downlink symbols
  • symbols 0 to 7 in time slot 3 are downlink symbols
  • symbols 8 to 13 are uplink symbols
  • the terminal device may determine, according to the first signaling, that the time domain resources used to send the uplink transport block include at least one of the following items: the second symbol in the third time slot, or the first symbol in the fourth time slot .
  • the first symbol in the third time slot includes downlink symbols, and the second symbol in the third time slot does not include downlink symbols.
  • the first symbol in the fourth time slot does not include downlink symbols, and the second symbol in the fourth time slot does not include downlink symbols.
  • Example 3 if the first symbol on the time slot does not include downlink symbols, and the second symbol on the time slot does not include downlink symbols, and the first symbol on the time slot has more symbols than the number of symbols on the time slot If the number of symbols is two symbols, the time-domain resource of the uplink transport block includes the first symbol on the time slot.
  • the time domain resource of the uplink transmission block includes the first symbol on the time slot.
  • the time-domain resource of the uplink transmission block includes the second symbol on the time slot.
  • the time domain resource of the uplink transmission block includes the second symbol on the time slot.
  • the terminal device may determine according to the first signaling that the time-domain resources used to send the uplink transport block include at least one of the following items: the first symbol in the fifth time slot, or the first symbol in the sixth time slot , or the second symbol in the seventh slot, or the second symbol in the eighth slot.
  • the first symbol on the fifth time slot does not include a downlink symbol
  • the second symbol on the fifth time slot does not include a downlink symbol
  • the number of symbols of the first symbol on the fifth time slot is more than that of the fifth time slot The number of symbols on the second symbol.
  • the first symbol on the sixth slot does not include downlink symbols, and the second symbol on the sixth slot includes downlink symbols.
  • the first symbol on the seventh time slot does not include downlink symbols
  • the second symbol on the seventh time slot does not include downlink symbols
  • the number of symbols of the first symbol on the seventh time slot is not more than that on the seventh time slot The number of symbols for the second symbol of .
  • the first symbol on the eighth time slot includes downlink symbols, and the second symbol on the eighth time slot does not include downlink symbols.
  • the first signaling may indicate the mapping manner of the DMRS in the first type of time slot and the mapping manner of the DMRS in the second type of time slot.
  • the first signaling may include a mappingType field and a mappingType2 field, wherein the mappingType field indicates the DMRS mapping mode in the first type of time slot, and the mappingType2 field indicates the DMRS mapping mode in the second type of time slot.
  • the time domain resource used for sending the uplink transport block in the time slot is the first symbol or the second symbol according to whether the first symbol and the second symbol include a downlink symbol.
  • an optional solution is also given here, that is, when the time domain resource used to send the uplink transport block in the time slot is determined to be the first symbol, in addition to satisfying the corresponding conditions in the above three examples , and also satisfy the following: if there are downlink symbols in the time slot, and the interval between the last downlink symbol and the first uplink symbol of the first symbol is not less than GP.
  • a time slot satisfies the above-mentioned conditions of the second time slot, or the fourth time slot, or the fifth time slot, or the sixth time slot, and the time slot has downlink symbols, and the last If the interval between the downlink symbol and the first uplink symbol of the first symbol is not less than GP, it may be determined that the time domain resource used for sending the uplink transport block in the time slot is the first symbol.
  • the time slot satisfies the above conditions for the second time slot, or the fourth time slot, or the fifth time slot, or the sixth time slot, but the time slot has downlink symbols, and the last downlink symbol is the same as the first If the interval between the first uplink symbols of the symbols is smaller than the GP, it may be determined that the time domain resource used for sending the uplink transport block in the time slot is the second symbol.
  • the above three examples only take whether the first symbol includes a downlink symbol, and/or whether the second symbol includes a downlink symbol as an example, to determine the time domain resources used to send the uplink transport block on the time slot as The first symbol or the second symbol. In a specific implementation, it may also be based on whether the first symbol includes at least one of the following: downlink symbol, flexible symbol, guard period (guard period, GP), and/or, whether the second symbol includes at least one of the following: downlink symbol , a flexible symbol, and a GP to determine whether the time-domain resource used for sending the uplink transport block on the time slot is the first symbol or the second symbol.
  • the time slot that uses the first symbol to send the uplink transmission block is called the first type of time slot, and the time slot that uses the second symbol to send the uplink transmission block will be used
  • the time slot for sending the uplink transmission block with two symbols is called the second type of time slot. It should be understood that this is only for the purpose of distinguishing, and it is not limited that the time slots should be classified according to the satisfied conditions.
  • the time domain resource used for sending the uplink transport block in each time slot is introduced above, and the method for determining the time slot used for sending the uplink transport block is introduced below.
  • the first signaling may indicate the start time slot and the first time slot number, or indicate the start time slot and the second time slot number.
  • the method for the terminal device to determine the time slot for sending the uplink transport block is described in conjunction with the first number N of time slots and the second number M of time slots.
  • the terminal device may determine the time slot for sending the uplink transmission block according to the above three examples, wherein the first continuous time slot starts with The starting time slot indicated by the first signaling is the starting point, and the length is the first number N of time slots.
  • time slot used to send the uplink transport block and the time domain resource used to send the uplink transport block in each time slot can be determined through an implementation process. Taking the above example 1 as an example, as shown in FIG. 4, The implementation process can be as follows:
  • the initial value of n is the index of the starting time slot indicated by the first signaling.
  • S402. Determine whether the first symbol includes a symbol used for downlink transmission. If yes, execute S403; if not, execute S407.
  • the time slot for sending the uplink transmission block and the time domain resource for sending the uplink transmission block in each time slot can be determined through the process shown in FIG. 4 .
  • the first type of time slot and the second type of time slot in the first continuous time slot are used as time slots for sending uplink transmission blocks, but in specific implementation, there may be some first time slots in the first transmission time slot.
  • the time slots of the first type/the second type are preempted by other high-priority signals or channels, therefore, the terminal equipment can exclude these time slots when determining time domain resources.
  • the starting time slot is the first time slot
  • the priority signal or channel preempts the second uplink time slot, and this uplink transmission block actually uses 4 time slots, as shown in FIG. 5 .
  • the terminal device can start from the start time slot indicated by the first signaling, and determine M times for sending the time slot according to the above three examples The time slot of the uplink transport block, and increment the counter by 1. Otherwise, continue to judge the next time slot until the value of the counter is equal to the second number M of time slots.
  • M time slots for sending uplink transport blocks can be determined in the above manner.
  • time slot used to send the uplink transport block and the time domain resources used to send the uplink transport block in each time slot can be determined through an implementation process. Take the determination method shown in the above example 1 as an example, as shown in FIG. 6, the implementation process can be as follows:
  • the initial value of n is the index of the starting time slot indicated by the first signaling.
  • S602. Determine whether the first symbol includes a symbol used for downlink transmission. If yes, execute S603; if not, execute S607.
  • the initial value of the counter is 0.
  • the time slot for sending the uplink transmission block and the time domain resource for sending the uplink transmission block in each time slot can be determined through the process shown in FIG. 6 .
  • the determined first-type time slot and the second-type time slot are used as time slots for sending uplink transmission blocks, but in specific implementation, the determined first-type time slot/second-type time slot may be Other high-priority signals or channels preempt, therefore, the terminal equipment can exclude these time slots when determining time domain resources.
  • the uplink and downlink time slot ratio cycle is "DDDSUDDSUU"
  • the starting time slot is the first time slot
  • the first S time slot in the second uplink and downlink time slot matching period will also be used for uplink Transmission block, as shown in Figure 7.
  • the network device determines, based on the first signaling, time-domain resources for sending the uplink transmission block.
  • the manner in which the network device determines the time-domain resources is the same as that of the terminal device, for details, please refer to S202, which will not be repeated here.
  • steps S202 and S203 are not executed in strict time order.
  • the terminal device sends the uplink transmission block on the determined time domain resource.
  • the network device receives the uplink transmission block on the determined time domain resource.
  • the terminal device can effectively distinguish the uplink time slot and the special time slot, and can independently indicate the time domain resources in the uplink time slot and the special time slot, so that the special time slot can be effectively used.
  • the uplink transmission block is sent every slot, which is beneficial to improve resource utilization and improve transmission efficiency.
  • the process for the terminal device to send the uplink transmission block on the determined time domain resource will be described below.
  • the terminal device when the terminal device sends the uplink transmission block on the determined time domain resource, it may determine the amount of information bits corresponding to the uplink transmission block, and determine the uplink signal corresponding to the uplink transmission block according to the amount of information bits. The terminal device sends the uplink signal on the time domain resource.
  • the amount of information bits may be determined according to a scaling parameter K, where K is a ratio of resources corresponding to the first time unit to resources corresponding to the second time unit in the uplink transmission block.
  • K is a ratio of resources corresponding to the first time unit to resources corresponding to the second time unit in the uplink transmission block.
  • the amount of information bits N info may satisfy the following formula, or may also be understood as being determined by the following formula:
  • N info K ⁇ N RE ⁇ R ⁇ Q m ⁇ v
  • N RE is the number of resource elements (resource element, RE) in the second time unit
  • R represents a code rate
  • Q m represents a modulation order
  • v represents the number of layers.
  • the resource corresponding to the first time unit refers to the resource used to send the uplink transmission block among the resources corresponding to the first time unit
  • the resource corresponding to the second time unit refers to the resource used to send the uplink transmission block among the resources corresponding to the second time unit .
  • the above resources may refer to the number of symbols (the number of symbols of the first symbol or the number of symbols of the second symbol), or the number of symbols after dividing the DMRS symbols, or the number of REs N' RE in one PRB, or the total number of REs, etc.
  • the first time unit may be at least one of the following: the longest TOT among the TOTs used to send the uplink transport block, or the shortest TOT among the TOTs used to send the uplink transport block, or the longest TOT among the TOTs used to send the uplink transport block TOT, or all time slots used to send uplink transport blocks.
  • the second time unit may be at least one of the following: the first type of time slot, or the second type of time slot, or the first TOT used to send the uplink transport block (that is, the first available TOT), or the first The time slot used to send the uplink transport block (that is, the first available time slot), or the longest TOT among the TOTs used to send the uplink transport block, or the shortest TOT among the TOTs used to send the uplink transport block.
  • the uplink and downlink time slot ratio is "DDDSUDDSUU"
  • the starting time slot is the first downlink time slot, as shown in FIG. 8 .
  • the uplink transmission block includes three TOTs, the first TOT is the first two "SU" time slots, the second TOT is the middle three "SUU” time slots, and the third TOT is the last two "SU" time slots Gap.
  • the first time unit is the shortest TOT among the TOTs used to send the uplink transport block, the first time unit is the first TOT or the third TOT in FIG. 8 , etc., and will not be described here one by one.
  • the second time unit is the first available time slot
  • the second time unit is the first special time slot in FIG. 8 , etc., which will not be described one by one here.
  • L and L2 represent the first symbol length and the second symbol length respectively
  • L DMRS and L2 DMRS represent the DMRS symbol number on the first type time slot and the DMRS symbol number on the second type time slot respectively
  • N′ RE and N' RE2 respectively represent the number of REs in a PRB on the first type of time slot and the number of REs in a PRB on the second type of time slot
  • N RE and N RE2 represent the total number of REs on the first type of time slot respectively and the total number of REs on the second type of slot.
  • the uplink transmission block may also be sent in a manner of repeated transmission.
  • the number of repeated transmissions may be indicated by the first signaling. In this manner, if the first signaling does not indicate the number of repeated transmissions, it may be considered that the uplink transmission block does not support (or not perform) repeated transmissions.
  • the terminal device may determine time domain resources for next repeated transmission according to the repetition interval.
  • the repetition interval refer to the three examples of the repetition interval introduced in the above step S201.
  • the repetition interval may be indicated by the first signaling, and for the specific indication manner, please refer to the related description of the first signaling above.
  • the repetition interval may also be preconfigured, for example, the start time slot of each repeated transmission is at the same position of the uplink and downlink time slot matching period, and so on.
  • repetition #m the number of repetitions traversing the uplink transmission block.
  • m 0, 1, . . . , M-1; it should be understood that repetition #0 represents the first transmission of the uplink transmission block.
  • the start time slot of each repeated transmission is at the same position of the uplink and downlink time slot matching period.
  • the downlink slot ratio cycle is "DDDSUDDSUU”
  • the start slot of repetition #0 is the first special slot of a downlink slot ratio cycle
  • the start slot of repetition #m It is the first special time slot of another uplink and downlink time slot matching period, as shown in FIG. 9 .
  • the starting position of each repetition can be determined through a preconfigured repetition interval (or a default repetition interval).
  • Example 2 in combination with Example 1 of the repetition interval, the difference between the start time slot of repetition #m and the start time slot of repetition #m-1 is 1.
  • the uplink and downlink time slot ratio period is "DDDSUDDSUU”
  • 10 time slots are allocated for the uplink transmission block.
  • the time slots allocated for repetition #m-1 are 10 time slots in an uplink and downlink time slot ratio cycle
  • the starting time slot is the first downlink time slot in the uplink and downlink time slot ratio cycle
  • the repetition interval I 10 time slots
  • the initial time slot of repetition #m is the time slot after 10 time slots, that is, the first downlink time slot of the next uplink and downlink time slot matching period, as shown in FIG. 10 .
  • Example 3 combined with Example 2 of the repetition interval, the difference between the start time slot of repetition #m and the last time slot (ie the last physical time slot) allocated to repetition #m-1 is 1.
  • the uplink and downlink time slot ratio period is "DDDSUDDSUU”
  • 7 time slots are allocated for the uplink transmission block.
  • the time slots allocated for repetition #m-1 are the first 7 time slots of an uplink and downlink time slot matching cycle
  • the last time slot allocated for repetition #m-1 is the fifth uplink and downlink time slot matching cycle
  • the starting time slot of repetition #m is the first special time slot of the next uplink and downlink time slot ratio cycle, as shown in FIG. 11 .
  • Example 4 combined with Example 3 of the repetition interval, the difference between the start time slot of repetition #m and the last time slot actually used by repetition #m-1 (ie the last available time slot) is 1.
  • the uplink and downlink time slot ratio period is "DDDSUDDSUU”
  • 10 time slots are allocated for the uplink transmission block.
  • the time slots allocated for repetition #m-1 are 10 time slots in one uplink and downlink time slot matching cycle
  • the last time slot actually used by repetition #m-1 is the second uplink and downlink time slot matching cycle
  • the starting time slot of repetition #m is the first special time slot of the next uplink and downlink time slot matching period, as shown in FIG. 12 .
  • time domain resources in each repeated transmission may be determined according to the method described in S202.
  • the time domain resource allocation of each repeated transmission can be made consistent, so that repetition type A (repetition type A) in the prior art can be reused.
  • the repetition interval can be indicated more flexibly, and a longer repetition interval can be indicated, which helps to obtain time diversity gain and improve uplink coverage performance.
  • the definition of the repetition interval and the method for determining the start time slot of the repetition interval provided in the embodiment of the present application may be independently implemented independently of the method described in FIG. 2 .
  • the method for determining the amount of information bits corresponding to the uplink transmission block according to the parameter K used for scaling provided in the embodiment of the present application may also be independently implemented independently of the method described in FIG. 2 .
  • the terminal device can effectively distinguish the uplink time slot and the special time slot, and can independently indicate the time domain resources in the uplink time slot and the special time slot, so that the special time slot can be effectively used.
  • the uplink transmission block is sent every slot, which is beneficial to improve resource utilization and improve transmission efficiency.
  • the time domain resource allocation of each repeated transmission can be made consistent, so that repetition type A (repetition type A) in the prior art can be reused.
  • the repetition interval can be indicated more flexibly, and a longer repetition interval can be indicated, which helps to obtain time diversity gain and improve uplink coverage performance.
  • this embodiment of the present application provides a communication device.
  • the structure of the communication device may be as shown in FIG. 15 , including a communication module 1501 and a processing module 1502 .
  • the communication device can be specifically used to implement the method executed by the terminal device in the embodiment in FIG. Executes part of the associated method's functionality.
  • the communication module 1501 is configured to receive a first signaling, the first signaling is used to indicate that an uplink transport block is to be sent on multiple time slots, and the first signaling indicates a first symbol and a second symbol, and the first symbol includes At least one symbol, the second symbol includes at least one symbol;
  • the processing module 1502 is configured to determine a time-domain resource for sending an uplink transmission block based on the first signaling, the time-domain resource includes a time-domain resource on the first time slot, and the second The first symbol on a time slot includes a downlink symbol, and the second symbol on the first time slot does not include a downlink symbol;
  • the communication module 1501 is also configured to send an uplink transmission block on time domain resources.
  • the time-domain resources may also include time-domain resources on the second time slot, and the first symbols on the second time slot do not include downlink symbols.
  • the first signaling also indicates the starting time slot and the first number of time slots, and the first number of time slots indicates the number of time slots allocated to the continuous time slots of the uplink transmission block; or, the first signaling also indicates the starting time slot A start time slot and a second time slot number, where the second time slot number is the number of time slots used to send the uplink transport block.
  • the processing module 1502 is specifically configured to: starting from the initial time slot, perform the following process on each time slot in sequence until the count value of the counter is equal to the second number of time slots: when determined according to the first signaling The first symbol on the slot; in the case that the first symbol does not include the symbol used for downlink transmission, the time domain resource includes the first symbol on the time slot, and the count value of the counter is increased by one; the first symbol includes the symbol used for In the case of symbols for downlink transmission, the second symbol on the time slot is determined according to the first signaling; when the second symbol does not include symbols for downlink transmission, the time domain resource includes the second symbol on the time slot , the time slot is the first time slot, and the count value of the counter is increased by one.
  • the processing module 1502 may also be configured to: determine the amount of information bits corresponding to the uplink transmission block according to the scaling parameter K, where K is the ratio of the resource corresponding to the first time unit in the uplink transmission block to the resource corresponding to the second time unit The ratio, the resource is the number of symbols, or the number of symbols after dividing the symbols carrying DMRS, or the number of REs in a PRB, or the total number of REs; and, according to the amount of information bits, determine the uplink signal corresponding to the uplink transmission block.
  • the communication module 1501 when sending the uplink signal transmission block on the time domain resource, may be specifically configured to: send the uplink signal on the time domain resource.
  • the first time unit is the first time slot used to send the uplink transport block, or the longest third time unit among the third time units used to send the uplink transport block, or the longest time slot used to send the uplink transport block.
  • the second time unit is the longest of the first type of time slot, or the second type of time slot, or the first third time unit used to send the uplink transmission block, or the third time unit used to send the uplink transmission block
  • the first symbol of the slot includes symbols for downlink transmission
  • the second symbol of the second type of time slot does not include symbols for downlink transmission.
  • the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the resource corresponding to the second time unit refers to the resource used to send the uplink transmission block in the resource corresponding to the second time unit
  • the resource corresponding to the first time unit refers to the resource used to send the uplink transmission block in the resource corresponding to the first time unit block of resources.
  • the processing module 1502 may also be configured to: repeatedly transmit the uplink transmission block through the communication module 1501 based on the repetition interval;
  • the repetition interval is indicated by the first signaling, or, the repetition interval is preconfigured; the repetition interval indicates the time interval between the start time slots of two adjacent repeated transmissions; or, the repetition interval indicates two adjacent repetitions The time interval between the last of the multiple slots configured for the previous repeat transmission in a transmission and the start slot of the next repeat transmission; alternatively, the repeat interval indicates the previous repeat of two adjacent repeat transmissions The time interval between the last time slot used for uplink transmission in a transmission and the start time slot of the next repeated transmission.
  • the unit of the time interval is a time slot, or a third time unit, or a mini-slot, or a subframe, or a half-frame, or a frame, or a ratio cycle of uplink and downlink time slots, or milliseconds, where the third The time unit is one time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the communication device can specifically be used to implement the method performed by the network device in the embodiment of FIG. Executes part of the associated method's functionality.
  • the communication module 1501 is configured to send a first signaling, the first signaling is used to indicate that an uplink transmission block is sent on multiple time slots, and the first signaling indicates a first symbol and a second symbol, and the first symbol includes At least one symbol, the second symbol includes at least one symbol;
  • the processing module 1502 is configured to determine time-domain resources for receiving uplink transmission blocks based on the first signaling, the time-domain resources include time-domain resources on the first time slot, and the second The first symbol on a time slot includes downlink symbols, and the second symbol on the first time slot does not include downlink symbols;
  • the communication module 1501 is also configured to receive uplink transmission blocks on time domain resources.
  • the time domain resources may also include time domain resources on the second time slot, and the first symbols on the second time slot do not include downlink symbols.
  • the first signaling also indicates the starting time slot and the first number of time slots, and the first number of time slots indicates the number of time slots allocated to the continuous time slots of the uplink transmission block; or, the first signaling also indicates the starting time slot A start time slot and a second time slot number, where the second time slot number is the number of time slots used to send the uplink transport block.
  • the processing module 1502 is specifically configured to: starting from the initial time slot, perform the following process on each time slot in sequence until the count value of the counter is equal to the second number of time slots: when determined according to the first signaling The first symbol on the slot; in the case that the first symbol does not include the symbol used for downlink transmission, the time domain resource includes the first symbol on the time slot, and the count value of the counter is increased by one; the first symbol includes the symbol used for In the case of symbols for downlink transmission, the second symbol on the time slot is determined according to the first signaling; when the second symbol does not include symbols for downlink transmission, the time domain resource includes the second symbol on the time slot , the time slot is the first time slot, and the count value of the counter is increased by one.
  • the amount of information bits corresponding to the uplink transmission block is related to the parameter K used for scaling;
  • K is the ratio of the resource corresponding to the first time unit in the uplink transmission block to the resource corresponding to the second time unit, and the resource is the number of symbols , or the number of symbols after dividing the symbols carrying DMRS, or the number of REs in one PRB, or the total number of REs;
  • the first time unit is the first time slot used to send the uplink transport block, or the longest third time unit among the third time units used to send the uplink transport block, or the longest time slot used to send the uplink transport block.
  • the second time unit is the longest of the first type of time slot, or the second type of time slot, or the first third time unit used to send the uplink transmission block, or the third time unit used to send the uplink transmission block
  • the first symbol of the slot includes symbols for downlink transmission
  • the second symbol of the second type of time slot does not include symbols for downlink transmission.
  • the third time unit is a time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • the resource corresponding to the second time unit refers to the resource used to send the uplink transmission block in the resource corresponding to the second time unit
  • the resource corresponding to the first time unit refers to the resource used to send the uplink transmission block in the resource corresponding to the first time unit block of resources.
  • the processing module 1502 may also be configured to: receive repeated transmission of the uplink transmission block through the communication module 1501 based on the repetition interval; wherein the repetition interval is indicated by the first signaling, or the repetition interval is preconfigured; the repetition interval Indicates the time interval between the start slots of two adjacent repeated transmissions; or, the repetition interval indicates the last time slot and the next time slot among the multiple time slots configured for the previous repeated transmission in two adjacent repeated transmissions The time interval between the start timeslots of repeated transmissions; or, the repetition interval indicates the interval between the last time slot used for uplink transmission in the previous repeated transmission and the start time slot of the next repeated transmission in two adjacent repeated transmissions time interval between.
  • the unit of the time interval is a time slot, or a third time unit, or a mini-slot, or a subframe, or a half-frame, or a frame, or a ratio cycle of uplink and downlink time slots, or milliseconds, where the third The time unit is one time slot used for uplink transmission or the third time unit is a plurality of consecutive time slots used for uplink transmission.
  • each functional module in each embodiment of the present application can be integrated into a processing In the controller, it can also be physically present separately, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It can be understood that, for the function or implementation of each module in the embodiment of the present application, further reference may be made to the relevant description of the method embodiment.
  • the communication device may be as shown in Figure 16, and the device may be a communication device or a chip in a communication device, where the communication device may be the terminal device in the above embodiment or it may be the terminal device in the above embodiment Internet equipment.
  • the device includes a processor 1601 and a communication interface 1602 , and may also include a memory 1603 .
  • the processing module 1502 may be the processor 1601 .
  • the communication module 1501 may be a communication interface 1602 .
  • the processor 1601 may be a CPU, or a digital processing unit or the like.
  • the communication interface 1602 may be a transceiver, or an interface circuit such as a transceiver circuit, or a transceiver chip or the like.
  • the device also includes: a memory 1603 for storing programs executed by the processor 1601 .
  • the memory 1603 can be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and can also be a volatile memory (volatile memory), such as a random access memory (random -access memory, RAM).
  • the memory 1603 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the processor 1601 is configured to execute the program codes stored in the memory 1603, and is specifically configured to execute the actions of the above-mentioned processing module 1502, which will not be repeated in this application.
  • the communication interface 1602 is specifically used to execute the actions of the above-mentioned communication module 1501, which will not be repeated in this application.
  • the embodiment of the present application does not limit the specific connection medium among the communication interface 1602, the processor 1601, and the memory 1603.
  • the memory 1603, the processor 1601, and the communication interface 1602 are connected through the bus 1604.
  • the bus is represented by a thick line in FIG. 16, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 16 , but it does not mean that there is only one bus or one type of bus.
  • An embodiment of the present invention also provides a computer-readable storage medium for storing computer software instructions to be executed for executing the above-mentioned processor, which includes a program for executing the above-mentioned processor.
  • An embodiment of the present application further provides a communication system, including a communication device for realizing the function of the terminal device in the embodiment of FIG. 2 and a communication device for realizing the function of the network device in the embodiment of FIG. 4 .
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,用于解决跨时隙传输的传输块利用上行时隙传输,上行覆盖性能差的问题。该方法包括:接收用于指示在多个时隙上发送上行传输块的第一信令,第一信令指示包括至少一个符号的第一符号以及包括至少一个符号的第二符号;基于第一信令确定用于发送上行传输块的时域资源并发送上行传输块。时域资源包括第一时隙上的时域资源,第一时隙的第一符号包括下行符号且第二符号不包括下行符号。通过第一信令可以区分上行时隙(第一符号不包括下行符号的时隙)和特殊时隙(第一符号包括下行符号且第二符号不包括下行符号的时隙),并可以独立的指示上行时隙和特殊时隙中的时域资源,从而可以有效的利用特殊时隙发送上行传输块。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年08月06日提交中国专利局、申请号为202110902765.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
为了增强新空口(new radio,NR)的上行覆盖性能,提出跨多时隙传输块(transport block over multi-slot,TBoMS)物理上行共享信道(physical uplink shared channel,PUSCH)技术。该技术将多个小数据包聚合成一个大数据包,并在多个时隙上完成这个大数据包的传输。
目前,TBoMS传输只能利用上行时隙(即所包括符号均用于上行的时隙),上行覆盖性能较差。
发明内容
本申请提供一种通信方法及装置,用于解决跨时隙传输的传输块只能利用上行时隙传输,上行覆盖性能较差的问题。
第一方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是芯片或电路。方法包括:接收第一信令,第一信令用于指示在多个时隙上发送上行传输块,且第一信令指示第一符号以及第二符号,第一符号包括至少一个符号,第二符号包括至少一个符号;基于第一信令确定用于发送上行传输块的时域资源,并在确定的时域资源上发送该上行传输块。时域资源包括第一时隙上的时域资源,第一时隙上的第一符号中包括下行符号,且第一时隙上的第二符号中不包括下行符号。
本申请实施例中通过第一信令使得终端设备可以有效的判别上行时隙(即第一符号中不包括下行符号的时隙)和特殊时隙(即第一符号中包括下行符号且第二符号中不包括下行符号的时隙),并可以独立的指示上行时隙和特殊时隙中的时域资源,从而可以有效的利用特殊时隙发送上行传输块,并有利于提升资源利用率,提高传输效率。
一种可能的设计中,第一信令指示如下至少一项:第一起始符号、第一长度,第一起始符号以及第一长度用于指示第一符号。第一信令还指示如下至少一项:第二起始符号以及第二长度,第二起始符号以及第二长度用于指示第二符号。
一种可能的设计中,时域资源还包括第二时隙上的时域资源,第二时隙上的第一符号中不包括下行符号。通过上述设计,终端设备可以利用上行时隙和特殊时隙传输该上行传输块,从而可以提升传输效率。
一种可能的设计中,第一信令还指示起始时隙以及第一时隙数,第一时隙数指示分配 给上行传输块的连续时隙的时隙数。通过该方式,使得时域资源范围能够提前划分,实现更简单。
一种可能的设计中,第一信令还指示起始时隙以及第二时隙数,第二时隙数是用于发送上行传输块的多个时隙的时隙数。通过该方式,可以使得发送的上行传输块携带信息完整,可靠性、覆盖性能更优。
一种可能的设计中,确定用于发送上行传输块的时域资源时,可以根据第一信令确定第一连续时隙中第n个时隙上的第一符号,n={1,2,3……N},N为第一时隙数,第一连续时隙为根据起始时隙以及第一时隙数确定的;在第一符号不包括用于下行传输的符号的情况下,时域资源包括第n个时隙上的第一符号;在第一符号包括用于下行传输的符号的情况下,根据第一信令确定第n个时隙上的第二符号;在第二符号不包括用于下行传输的符号的情况下,时域资源包括第n个时隙上的第二符号,第n个时隙为第一时隙。
通过上述设计,可以确定分配的时隙中实际可用的时隙,以及每个可用时隙中可发送该上行传输块的符号,从而可以提高通信的可靠性。
一种可能的设计中,基于第一信令确定用于发送上行传输块的时域资源时,可以从起始时隙开始,依次对各个时隙执行以下过程,直到计数器的计数值等于第二时隙数:根据第一信令确定时隙上的第一符号;在第一符号不包括用于下行传输的符号的情况下,时域资源包括时隙上的第一符号,并将计数器的计数值加一;在第一符号包括用于下行传输的符号的情况下,根据第一信令确定时隙上的第二符号;在第二符号不包括用于下行传输的符号的情况下,时域资源包括时隙上的第二符号,时隙为第一时隙,并将计数器的计数值加一。
通过上述设计,可以保证发送该上行传输块的资源数量,从而可以使得发送的上行传输块携带信息完整,可靠性、覆盖性能更优。
一种可能的设计中,若一个时隙的第一符号不包括用于下行传输的符号,或者,该时隙的第一符号包括用于下行传输的符号,且第二符号不包括用于下行传输的符号,但是该时隙被其它高优先级信号或信道抢占,则跳过该时隙,即该时隙不用于发送该上行传输块。通过上述方式,可以避免资源冲突。
一种可能的设计中,在时域资源上发送上行信号传输块时,可以根据用于缩放的参数K确定上行传输块对应的信息比特量,并根据信息比特量确定上行传输块对应的上行信号。
其中,K为上行传输块中第一时间单元对应的资源与第二时间单元对应的资源的比值。第一时间单元为第一个用于发送上行传输块的时隙、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元、或用于发送上行传输块的第三时间单元中多个第三时间单元、或用于发送上行传输块的所有时隙。
第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送上行传输块的第三时间单元、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元,其中,第一类时隙的第一符号中不包括用于下行传输的符号,第二类时隙的第一符号中包括用于下行传输的符号,且第二类时隙的第二符号中不包括用于下行传输的符号。
第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
通过上述方式,可以在利用特殊时隙进行上行传输的前提下,使得信息比特量计算的更准确,提升信息传输的准确性。
一种可能的设计中,资源为符号数、或除承载解调参考信号DMRS的符号后的符号数、或一个物理资源块PRB中的RE数、或RE总数。
一种可能的设计中,第二时间单元对应的资源指第二时间单元对应的资源中用于发送上行传输块的资源,第一时间单元对应的资源指第一时间单元对应的资源中用于发送上行传输块的资源。通过上述设计,有利于信息比特量计算的更准确,提升信息传输的准确性。
一种可能的设计中,该方法还包括:基于重复间隔对上行传输块进行重复传输。其中,重复间隔用于指示两次重复传输之间的时间间隔。重复间隔由第一信令指示,或者,重复间隔为预配置的。通过上述方式,可以更为灵活的指示重复间隔,且可以指示更长的重复间隔,有助于获取时间分集增益,提升上行覆盖性能。
一种可能的设计中,重复间隔指示相邻两次重复传输的起始时隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中为前一次重复传输配置的多个时隙中的最后一个时隙与后一次重复传输的起始时隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中前一次重复传输中最后一个用于上行传输的时隙与后一次重复传输的起始时隙之间的时间间隔。
通过上述方式,可以使得每一次重复传输的时域资源分配一致,从而可以复用现有技术重复类型A(repetition type A)。
一种可能的设计中,时间间隔的单位为时隙、或第三时间单元、或迷你时隙、或子帧、或半帧、或帧、或上下行时隙配比周期、或毫秒,其中,第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
一种可能的设计中,第一信令还可以指示第二类时隙中DMRS的映射方式,第二类时隙的第一符号中包括用于下行传输的符号,且第二符号中不包括用于下行传输的符号。
一种可能的设计中,第二类时隙中DMRS的映射方式也可以为默认的。
第二方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是芯片或电路。方法包括:发送第一信令,第一信令用于指示在多个时隙上发送上行传输块,且第一信令指示第一符号以及第二符号,第一符号包括至少一个符号,第二符号包括至少一个符号。基于第一信令确定用于接收上行传输块的时域资源,并在时域资源上接收上行传输块。时域资源包括第一时隙上的时域资源,第一时隙上的第一符号中包括下行符号,且第一时隙上的第二符号中不包括下行符号。
本申请实施例中通过第一信令使得终端设备可以有效的判别上行时隙(即第一符号中不包括下行符号的时隙)和特殊时隙(即第一符号中包括下行符号且第二符号中不包括下行符号的时隙),并可以独立的指示上行时隙和特殊时隙中的时域资源,从而可以有效的利用特殊时隙发送上行传输块,并有利于提升资源利用率,提高传输效率。
一种可能的设计中,第一信令指示如下至少一项:第一起始符号、第一长度,第一起始符号以及第一长度用于指示第一符号。第一信令还指示如下至少一项:第二起始符号以及第二长度,第二起始符号以及第二长度用于指示第二符号。
一种可能的设计中,时域资源还包括第二时隙上的时域资源,第二时隙上的第一符号中不包括下行符号。通过上述设计,终端设备可以利用上行时隙和特殊时隙传输该上行传输块,提高传输效率。
一种可能的设计中,第一信令还指示起始时隙以及第一时隙数,第一时隙数指示分配给上行传输块的连续时隙的时隙数。通过该方式,使得时域资源范围能够提前划分,实现更简单。
一种可能的设计中,第一信令还指示起始时隙以及第二时隙数,第二时隙数是用于发送上行传输块的多个时隙的时隙数。通过该方式,可以使得发送的上行传输块携带信息完整,可靠性、覆盖性能更优。
一种可能的设计中,确定用于发送上行传输块的时域资源时,可以根据第一信令确定第一连续时隙中第n个时隙上的第一符号,n={1,2,3……N},N为第一时隙数,第一连续时隙为根据起始时隙以及第一时隙数确定的;在第一符号不包括用于下行传输的符号的情况下,时域资源包括第n个时隙上的第一符号;在第一符号包括用于下行传输的符号的情况下,根据第一信令确定第n个时隙上的第二符号;在第二符号不包括用于下行传输的符号的情况下,时域资源包括第n个时隙上的第二符号,第n个时隙为第一时隙。
通过上述设计,可以确定分配的时隙中实际可用的时隙,以及每个可用时隙中可发送该上行传输块的符号,从而可以确定接收上行传输块的时域资源,进而可以提升通信的可靠想。
一种可能的设计中,基于第一信令确定用于发送上行传输块的时域资源时,可以从起始时隙开始,依次对各个时隙执行以下过程,直到计数器的计数值等于第二时隙数:根据第一信令确定时隙上的第一符号;在第一符号不包括用于下行传输的符号的情况下,时域资源包括时隙上的第一符号,并将计数器的计数值加一;在第一符号包括用于下行传输的符号的情况下,根据第一信令确定时隙上的第二符号;在第二符号不包括用于下行传输的符号的情况下,时域资源包括时隙上的第二符号,时隙为第一时隙,并将计数器的计数值加一。
通过上述设计,可以保证发送该上行传输块的资源数量,从而可以使得发送的上行传输块携带信息完整,可靠性、覆盖性能更优。
一种可能的设计中,若一个时隙的第一符号不包括用于下行传输的符号,或者,该时隙的第一符号包括用于下行传输的符号,且第二符号不包括用于下行传输的符号,但是该时隙被其它高优先级信号或信道抢占,则跳过该时隙,即该时隙不用于发送该上行传输块。通过上述方式,可以避免资源冲突。
一种可能的设计中,上行传输块对应的信息比特量与用于缩放的参数K相关。其中,K为上行传输块中第一时间单元对应的资源与第二时间单元对应的资源的比值。第一时间单元为第一个用于发送上行传输块的时隙、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元、或用于发送上行传输块的第三时间单元中多个第三时间单元、或用于发送上行传输块的所有时隙。
第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送上行传输块的第三时间单元、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元,其中,第一类时隙的第一符号中不包括用于下行传输的符号,第二类时隙的第一符号中包括用于下行传输的符号,且第二类时隙的第二符号中不包括用于下行传输的符号。
第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
通过上述方式,可以在利用特殊时隙进行上行传输的前提下,使得信息比特量计算的更准确,提升信息传输的准确性。
一种可能的设计中,资源为符号数、或除承载DMRS的符号后的符号数、或一个PRB中的RE数、或RE总数。
一种可能的设计中,第二时间单元对应的资源指第二时间单元对应的资源中用于发送上行传输块的资源,第一时间单元对应的资源指第一时间单元对应的资源中用于发送上行传输块的资源。通过上述设计,有利于信息比特量计算的更准确,提升信息传输的准确性。
一种可能的设计中,该方法还包括:基于重复间隔接收上行传输块的重复传输。其中,重复间隔用于指示两次重复传输之间的时间间隔。重复间隔由第一信令指示,或者,重复间隔为预配置的。通过上述方式,可以更为灵活的指示重复间隔,且可以指示更长的重复间隔,有助于获取时间分集增益,提升上行覆盖性能。
一种可能的设计中,重复间隔指示相邻两次重复传输的起始时隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中为前一次重复传输配置的多个时隙中的最后一个时隙与后一次重复传输的起始时隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中前一次重复传输中最后一个用于上行传输的时隙与后一次重复传输的起始时隙之间的时间间隔。
通过上述方式,可以使得每一次重复传输的时域资源分配一致,从而可以复用现有技术重复类型A(repetition type A)。
一种可能的设计中,时间间隔的单位为时隙、或第三时间单元、或迷你时隙、或子帧、或半帧、或帧、或上下行时隙配比周期、或毫秒,其中,第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
一种可能的设计中,第一信令还可以指示第二类时隙中DMRS的映射方式,第二类时隙的第一符号中包括用于下行传输的符号,且第二符号中不包括用于下行传输的符号。
一种可能的设计中,第二类时隙中DMRS的映射方式也可以为默认的。
第三方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是芯片或电路。方法包括:根据重复间隔确定上行传输块的每次重复传输的时域资源,重复间隔用于指示两次重复传输之间的时间间隔;根据确定的时域资源对上行传输块进行重复传输。
通过上述方式,可以更为灵活的指示重复间隔,且可以指示更长的重复间隔,有助于获取时间分集增益,提升上行覆盖性能。
一种可能的设计中,该方法还包括:接收第一信令,第一信令用于指示上行传输块的时域资源分配(time domain resource allocation,TDRA),且该第一信令指示重复间隔。
一种可能的设计中,重复间隔为预配置的。
一种可能的设计中,重复间隔指示相邻两次重复传输的起始时隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中为前一次重复传输配置的多个时隙中的最后一个时隙与后一次重复传输的起始时隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中前一次重复传输中最后一个用于上行传输的时隙与后一次重复传输的起始时隙之间的时间间隔。
通过上述方式,可以使得每一次重复传输的时域资源分配一致,从而可以复用现有技术重复类型A(repetition type A)。
一种可能的设计中,时间间隔的单位为时隙、或第三时间单元、或迷你时隙、或子帧、或半帧、或帧、或上下行时隙配比周期、或毫秒,其中,第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
一种可能的设计中,第一信令还可以指示第二类时隙中DMRS的映射方式,第二类时隙的第一符号中包括用于下行传输的符号,且第二符号中不包括用于下行传输的符号。
一种可能的设计中,第二类时隙中DMRS的映射方式也可以为默认的。
第四方面,本申请提供一种通信方法,该方法的执行主体可以是网络设备,也可以是芯片或电路。方法包括:根据重复间隔确定上行传输块的每次重复传输的时域资源,重复间隔用于指示两次重复传输之间的时间间隔;根据确定的时域资源接收上行传输块的重复传输。
通过上述方式,可以更为灵活的指示重复间隔,且可以指示更长的重复间隔,有助于获取时间分集增益,提升上行覆盖性能。
一种可能的设计中,该方法还包括:发送第一信令,第一信令用于指示上行传输块的TDRA,且该第一信令指示重复间隔。
一种可能的设计中,重复间隔为预配置的。
一种可能的设计中,重复间隔指示相邻两次重复传输的起始时隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中为前一次重复传输配置的多个时隙中的最后一个时隙与后一次重复传输的起始时隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中前一次重复传输中最后一个用于上行传输的时隙与后一次重复传输的起始时隙之间的时间间隔。
通过上述方式,可以使得每一次重复传输的时域资源分配一致,从而可以复用现有技术重复类型A(repetition type A)。
一种可能的设计中,时间间隔的单位为时隙、或第三时间单元、或迷你时隙、或子帧、或半帧、或帧、或上下行时隙配比周期、或毫秒,其中,第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
一种可能的设计中,第一信令还可以指示第二类时隙中DMRS的映射方式,第二类时隙的第一符号中包括用于下行传输的符号,且第二符号中不包括用于下行传输的符号。
一种可能的设计中,第二类时隙中DMRS的映射方式也可以为默认的。
第五方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是芯片或电路。方法包括:根据用于缩放的参数K确定上行传输块对应的信息比特量,并根据信息比特量确定上行传输块对应的上行信号。
其中,K为上行传输块中第一时间单元对应的资源与第二时间单元对应的资源的比值。第一时间单元为第一个用于发送上行传输块的时隙、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元、或用于发送上行传输块的第三时间单元中多个第三时间单元、或用于发送上行传输块的所有时隙。
第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送上行传输块的第三时间单元、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元,其中,第一类时隙的第一符号中不包括用于下行传输的符号,第二类时隙的第一符号中包括用于下行传输的符号,且第二类时隙的 第二符号中不包括用于下行传输的符号。
第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
通过上述方式,可以在利用特殊时隙进行上行传输的前提下,使得信息比特量计算的更准确,提升信息传输的准确性。
一种可能的设计中,资源为符号数、或除承载DMRS的符号后的符号数、或一个PRB中的RE数、或RE总数。
一种可能的设计中,第二时间单元对应的资源指第二时间单元对应的资源中用于发送上行传输块的资源,第一时间单元对应的资源指第一时间单元对应的资源中用于发送上行传输块的资源。通过上述设计,有利于信息比特量计算的更准确,提升信息传输的准确性。
第六方面,本申请提供一种通信方法,该方法的执行主体可以是网络设备,也可以是芯片或电路。方法包括:接收上行传输块,其中,上行传输块对应的信息比特量与用于缩放的参数K相关。
其中,K为上行传输块中第一时间单元对应的资源与第二时间单元对应的资源的比值。第一时间单元为第一个用于发送上行传输块的时隙、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元、或用于发送上行传输块的第三时间单元中多个第三时间单元、或用于发送上行传输块的所有时隙。
第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送上行传输块的第三时间单元、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元,其中,第一类时隙的第一符号中不包括用于下行传输的符号,第二类时隙的第一符号中包括用于下行传输的符号,且第二类时隙的第二符号中不包括用于下行传输的符号。
第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
通过上述方式,可以在利用特殊时隙进行上行传输的前提下,使得信息比特量计算的更准确,提升信息传输的准确性。
一种可能的设计中,资源为符号数、或除承载DMRS的符号后的符号数、或一个PRB中的RE数、或RE总数。
一种可能的设计中,第二时间单元对应的资源指第二时间单元对应的资源中用于发送上行传输块的资源,第一时间单元对应的资源指第一时间单元对应的资源中用于发送上行传输块的资源。通过上述设计,有利于信息比特量计算的更准确,提升信息传输的准确性。
第七方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面或第三方面或第五方面提供的任一方法的功能。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
一种可能的设计中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与网络设备等设备之间的通信。
例如,通信装置具有实现上述第一方面提供的方法的功能。接口电路,用于接收第一 信令,第一信令用于指示在多个时隙上发送上行传输块,且第一信令指示第一符号以及第二符号,第一符号包括至少一个符号,第二符号包括至少一个符号。处理器,用于基于第一信令确定用于发送上行传输块的时域资源。接口电路,还用于在确定的时域资源上发送该上行传输块。时域资源包括第一时隙上的时域资源,第一时隙上的第一符号中包括下行符号,且第一时隙上的第二符号中不包括下行符号。
又例如,通信装置具有实现上述第三方面提供的方法的功能。处理器,用于根据重复间隔确定上行传输块的每次重复传输的时域资源,重复间隔用于指示两次重复传输之间的时间间隔。接口电路,用于根据确定的时域资源对上行传输块进行重复传输。
再例如,通信装置具有实现上述第五方面提供的方法的功能。处理器,用于根据用于缩放的参数K确定上行传输块对应的信息比特量,并根据信息比特量确定上行传输块对应的上行信号。其中,K为上行传输块中第一时间单元对应的资源与第二时间单元对应的资源的比值。第一时间单元为第一个用于发送上行传输块的时隙、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元、或用于发送上行传输块的第三时间单元中多个第三时间单元、或用于发送上行传输块的所有时隙。第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送上行传输块的第三时间单元、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元,其中,第一类时隙的第一符号中不包括用于下行传输的符号,第二类时隙的第一符号中包括用于下行传输的符号,且第二类时隙的第二符号中不包括用于下行传输的符号。第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
一种可能的设计中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的设计中,通信装置的结构中包括处理单元(或处理模块)和通信单元(或通信模块),这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
例如,通信装置具有实现上述第一方面提供的方法的功能。通信模块,用于接收第一信令,第一信令用于指示在多个时隙上发送上行传输块,且第一信令指示第一符号以及第二符号,第一符号包括至少一个符号,第二符号包括至少一个符号。处理模块,用于基于第一信令确定用于发送上行传输块的时域资源。通信模块,还用于在确定的时域资源上发送该上行传输块。时域资源包括第一时隙上的时域资源,第一时隙上的第一符号中包括下行符号,且第一时隙上的第二符号中不包括下行符号。
又例如,通信装置具有实现上述第三方面提供的方法的功能。处理模块,用于根据重复间隔确定上行传输块的每次重复传输的时域资源,重复间隔用于指示两次重复传输之间的时间间隔。通信模块,用于根据确定的时域资源对上行传输块进行重复传输。
再例如,通信装置具有实现上述第五方面提供的方法的功能。处理模块,用于根据用于缩放的参数K确定上行传输块对应的信息比特量,并根据信息比特量确定上行传输块对应的上行信号。其中,K为上行传输块中第一时间单元对应的资源与第二时间单元对应的资源的比值。第一时间单元为第一个用于发送上行传输块的时隙、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的 第三时间单元、或用于发送上行传输块的第三时间单元中多个第三时间单元、或用于发送上行传输块的所有时隙。第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送上行传输块的第三时间单元、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元,其中,第一类时隙的第一符号中不包括用于下行传输的符号,第二类时隙的第一符号中包括用于下行传输的符号,且第二类时隙的第二符号中不包括用于下行传输的符号。第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
第八方面,本申请还提供一种通信装置,该通信装置具有实现上述第二方面或第四方面或第六方面提供的任一方法的功能。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
一种可能的设计中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与终端设备等设备之间的通信。
例如,通信装置具有实现上述第二方面提供的方法的功能。接口电路,用于发送第一信令,第一信令用于指示在多个时隙上发送上行传输块,且第一信令指示第一符号以及第二符号,第一符号包括至少一个符号,第二符号包括至少一个符号。处理器,用于基于第一信令确定用于接收上行传输块的时域资源。接口电路,还用于在时域资源上接收上行传输块。时域资源包括第一时隙上的时域资源,第一时隙上的第一符号中包括下行符号,且第一时隙上的第二符号中不包括下行符号。
又例如,通信装置具有实现上述第四方面提供的方法的功能。处理器,用于根据重复间隔确定上行传输块的每次重复传输的时域资源,重复间隔用于指示两次重复传输之间的时间间隔。接口电路,用于根据确定的时域资源接收上行传输块的重复传输。
再例如,通信装置具有实现上述第六方面提供的方法的功能。接口电路,用于接收上行传输块,其中,上行传输块对应的信息比特量与用于缩放的参数K相关。其中,K为上行传输块中第一时间单元对应的资源与第二时间单元对应的资源的比值。第一时间单元为第一个用于发送上行传输块的时隙、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元、或用于发送上行传输块的第三时间单元中多个第三时间单元、或用于发送上行传输块的所有时隙。第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送上行传输块的第三时间单元、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元,其中,第一类时隙的第一符号中不包括用于下行传输的符号,第二类时隙的第一符号中包括用于下行传输的符号,且第二类时隙的第二符号中不包括用于下行传输的符号。第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
一种可能的设计中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的设计中,通信装置的结构中包括处理单元(或处理模块)和通信单元(或通信模块),这些单元可以执行上述方法示例中相应功能,具体参见第二方面提供的方法 中的描述,此处不做赘述。
例如,通信装置具有实现上述第二方面提供的方法的功能。通信模块,用于发送第一信令,第一信令用于指示在多个时隙上发送上行传输块,且第一信令指示第一符号以及第二符号,第一符号包括至少一个符号,第二符号包括至少一个符号。处理模块,用于基于第一信令确定用于接收上行传输块的时域资源。通信模块,还用于在时域资源上接收上行传输块。时域资源包括第一时隙上的时域资源,第一时隙上的第一符号中包括下行符号,且第一时隙上的第二符号中不包括下行符号。
又例如,通信装置具有实现上述第四方面提供的方法的功能。处理模块,用于根据重复间隔确定上行传输块的每次重复传输的时域资源,重复间隔用于指示两次重复传输之间的时间间隔。通信模块,用于根据确定的时域资源接收上行传输块的重复传输。
再例如,通信装置具有实现上述第六方面提供的方法的功能。通信模块,用于接收上行传输块,其中,上行传输块对应的信息比特量与用于缩放的参数K相关。其中,K为上行传输块中第一时间单元对应的资源与第二时间单元对应的资源的比值。第一时间单元为第一个用于发送上行传输块的时隙、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元、或用于发送上行传输块的第三时间单元中多个第三时间单元、或用于发送上行传输块的所有时隙。第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送上行传输块的第三时间单元、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元,其中,第一类时隙的第一符号中不包括用于下行传输的符号,第二类时隙的第一符号中包括用于下行传输的符号,且第二类时隙的第二符号中不包括用于下行传输的符号。第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
第九方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第三方面或第五方面以及任意可能的设计中的方法。
第十方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面或第四方面或第六方面以及任意可能的设计中的方法。
第十一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被处理器执行时,实现前述第一方面至第六方面中任一方面以及任意可能的设计中的方法。
第十二方面,提供了一种存储有指令的计算机程序产品,当该指令被处理器运行时,实现前述第一方面至第六方面中任一方面以及任意可能的设计中的方法。
第十三方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面至第六方面中任一方面以及任意可能的设计中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,提供一种通信系统,所述系统包括第一方面所述的装置(如终端设备)以及第二方面所述的装置(如网络设备)。
第十五方面,提供一种通信系统,所述系统包括第三方面所述的装置(如终端设备)以及第四方面所述的装置(如网络设备)。
第十六方面,提供一种通信系统,所述系统包括第五方面所述的装置(如终端设备)以及第六方面所述的装置(如网络设备)。
附图说明
图1为本申请实施例的一种网络系统的架构示意图;
图2为本申请实施例的一种通信方法的流程示意图;
图3为本申请实施例的一种用于发送上行传输块的时域资源示意图;
图4为本申请实施例的一种确定用于发送上行传输块的时域资源的流程示意图;
图5为本申请实施例的一种用于发送上行传输块的时域资源的示意图;
图6为本申请实施例的另一种确定用于发送上行传输块的时域资源的流程示意图;
图7为本申请实施例的一种用于发送上行传输块的时域资源的示意图;
图8为本申请实施例的一种TOT示意图;
图9为本申请实施例的一种重复间隔示意图;
图10为本申请实施例的一种重复间隔示意图;
图11为本申请实施例的一种重复间隔示意图;
图12为本申请实施例的一种重复间隔示意图;
图13为本申请实施例的一种重复传输示意图;
图14为本申请实施例的一种重复传输示意图;
图15为本申请实施例的一种通信装置的结构示意图;
图16为本申请实施例的一种通信装置的结构示意图。
具体实施方式
为便于理解本申请实施例,下面首先结合本申请中涉及的几个术语进行简单介绍。
1)时隙(slot)
一种slot的格式可以为包含若干个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。例如,一个slot的格式可以包括14个OFDM符号,或者,一种slot的格式可以为包含12个OFDM符号;或者,一种slot的格式为包含7个OFDM符号。一个slot中的OFDM符号可以全用于上行传输;可以全用于下行传输;也可以一部分用于下行传输,一部分用于上行传输,一部分灵活时域符号(可以灵活的配置为用于上行或者下行传输)。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。出于系统前向兼容性考虑,slot包含的OFDM符号的数目以及slot用于上行传输和/或下行传输不限于以上示例。本申请中,时域符号可以为OFDM符号,即时域符号可以替换为OFDM符号或者符号。
为了描述上的方便,本申请实施例中将用于上行传输的OFDM符号称为上行符号,将用于下行传输的OFDM符号称为下行符号,将可以灵活的配置为用于上行或者下行传输的符号称为灵活符号。并将所包括符号均为上行符号的时隙称为上行时隙,将所包括符号均为下行符号的时隙称为下行时隙。将包括上行符号和如下至少一项的时隙:下行符号或灵 活符号,或者,只包括灵活符号的时隙称为特殊时隙。
应理解,上述时隙和符号的命名仅是一种示例,并不限定于此。
2)物理时隙:可以理解为NR帧结构中定义的时隙,详见3GPP 38.211,这里不再展开叙述。
3)可用时隙:发送上行传输块实际使用的时隙。
4)传输时机(transmission occasions of TBoMS,TOT)
TOT为TBoMS的上行传输过程中涉及的一种时间单元,包括一个或多个用于上行传输的物理时隙。举例说明,TOT包括的时隙数可以为1,2,3,4,7,8,12,16等等。应理解,这里仅是一种举例说明,并不限定TOT的时隙数。
应理解,“TOT”仅是一种示例性命名,本申请实施例并不对这种时间单元的命名进行具体限定。
5)类型A(type A)的重复发送
type A的重复发送,指的是:N次重复需要调度连续的N个slot(如连续的N个物理时隙,又如连续的N个可用时隙),配置一个slot中需要占用的时域符号的起始位置和总长度,N个slot中发送占用的时域符号的起始位置和总长度均满足配置的起始位置和总长度。其中,N为大于或等于1的整数。例如,假设配置了发送占据一个slot上的第2至第10个时域符号,那么每一个slot上的发送均需要在各个slot的第2至第10个时域符号上。
6)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅 是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是应用于终端设备中能够支持终端设备实现该功能的装置,例如具备通信功能的部件或组件,或者芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
7)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与终端设备通信的设备。网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和/或分布式单元(distributed unit,DU),本申请实施例并不限定。例如网络设备可以为Cloud RAN系统中的CU,或为DU,或为CU和DU的整体。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)等。本申请实施例由于主要涉及接入网,因此在后文中如无特殊说明,则所述的网络设备均是指接入网设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一时间单元和第二时间单元,只是为了区分不同的时间单元,而并不是表示这两个时间单元的大小、优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
为了增强NR的上行覆盖性能,提出TBoMS PUSCH技术。该技术将每个时隙上的小数据包聚合成一个大数据包,并在多个时隙上完成这个大数据包的传输。通过小包聚合能够降低包头开销,通过减少传输块(transport block,TB)的切分次数能够减少循环冗余码的开销,通过增加传输块大小(transport block size,TBS)能够提高编码增益,并通过降低物理资源块(physical resource block,PRB)数量能够提高功率谱密度,最终达成NR上行覆盖性能增强的目的。
目前,TBoMS传输的TDRA可以复用重复类型A的TDRA(repetition type A like TDRA)。即TBoMS在每个时隙上使用相同的符号分配。其中,每个时隙的起始符号和长度可以由TDRA表中起始和长度指示值(start and length indicator value,SLIV)(startSymbolAndLength字段)、和/或起始符号S(startSymbol字段)和长度L(length字段)指示。目前,当SLIV(或起始符号S、长度L)指示的符号中包括下行符号时,符号所在时隙不能用于PUSCH传输。而特殊时隙通常包括三部分,依次为下行符号,灵活符号和上行符号。因此,解决跨时隙传输的传输块只能利用上行时隙传输,上行覆盖性能较差。
基于此,本申请实施例提供一种通信方法及装置,用于解决跨时隙传输的传输块只能利用上行时隙传输,上行覆盖性能较差的问题。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例的技术方案可以应用于各种通信系统,例如:可以是物联网(internet of things,IoT)、窄带物联网(narrow band internet of things,NB-IoT)、LTE,也可以是第五代(5 th generation,5G)通信系统,还可以是LTE与5G混合架构,也可以是6G或者未来通信发展中出现的新的通信系统等。本申请所述的5G通信系统可以包括非独立组网(non-standalone,NSA)的5G通信系统、独立组网(standalone,SA)的5G通信系统中的至少一种。通信系统还可以是M2M网络、MTC或者其他网络。
为便于理解本申请实施例,首先结合图1说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备111,该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121。
本申请实施例也可用于其他通信系统,只要该通信系统中需要进行跨时隙的上行传输。另外申请实施例不仅适用于一个网络设备和一个UE通信的场景,而且适用于一个网络设备与多个UE通信,或者,多个网络设备协作同时与一个或多个UE进行通信的场景。图1仅是一种示意图,并不对通信系统的类型,以及通信系统内包括的设备的数量、类型等进行具体限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题同样适用。
本申请实施例中“在……情况下”、“若……”、“如果”、“当……时”等之间相互替换描述。例如,“在所述第一符号不包括用于下行传输的符号的情况下”,也可以描述为“若所述第一符号不包括用于下行传输的符号”,或者“如果所述第一符号不包括用于下行传输的符号”或者“当所述第一符号不包括用于下行传输的符号时”等等。
此外,下文实施例中,多次提到重复发送、重复传输或者重复发送上行传输块,对此本领域技术人员应理解其含义。重复发送、重复传输或者重复发送上行传输块,其均用于表示对于某一上行传输块,要发送一次或者多次。本申请实施例对每次发送的内容是否完全相同,不作限定。例如,在实际通信中,每次发送的RV可能是不同的。另,在本申请中,“上行传输块”均可以替换为“传输块”或者“数据”或“数据块”或者“上行数据”等等,或者在未来协议中,用于表示相同或相似含义的命名,都适用于本申请实施例。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
参见图2,为本申请提供的一种通信方法的流程示意图。该方法包括:
S201,网络设备向终端设备发送第一信令。相应的,终端设备接收来自网络设备的第一信令。
其中,第一信令用于指示上行传输块的TDRA,其中,该上行传输块可以在多个时隙发送,例如,该上行传输块为TBoMS。具体的,第一信令可以指示第一符号以及第二符号,第一符号包括至少一个符号,第二符号包括至少一个符号。
可选的,第一符号与第二符号有如下至少一项区别:起始符号不同、长度不同。
示例性的,第一信令可以指示第一起始符号和第一长度,其中,第一起始符号为分配给该上行传输块的第一时隙中的第一个符号,第一长度为分配给该上行传输块的第一时隙中的符号数。根据第一起始符号S1和第一长度L1可以确定以符号S1为起点,长度为L1的第一符号。举例说明,第一信令可以携带如下至少一个参数:第一SLIV、第一起始符号、或第一长度,其中,第一SLIV可以指示第一起始符号和第一长度。
可以理解的,上述第一符号的指示方式以第一起始符号和第一长度为例,在具体实施中,第一信令也可以通过第一结束符号与第一长度指示第一符号,或者,还可以通过第一起始符号和第一结束符号指示第一符号等等。
需要说明的是,上述第一起始符号、第一结束符号或第一长度也可以是默认的,例如,第一起始符号默认为时隙中的第一个符号,第一结束符号默认为时隙中的最后一个符号,第一长度默认为7个符号等等。
第二符号的指示方式与第一符号的指示方式类似,重复之处不再赘述。
此外,第一信令还可以指示起始时隙以及第一时隙数,第一时隙数指示分配给上行传输块的连续时隙的时隙数,也就是,第一时隙数指示分配给该上行传输块的物理时隙的数量。通过该方式,使得时域资源范围能够提前划分,实现更简单。
或者,第一信令还可以指示起始时隙以及第二时隙数,第二时隙数指示用于发送上行传输块的多个时隙的时隙数,也就是,第二时隙数指示该上行传输块的可用时隙的数量。通过该方式,可以使得发送的上行传输块携带信息完整,可靠性、覆盖性能更优。
一种示例性说明中,第一时隙数的候选值可以但不限于为:1,2,3,4,7,8,12,16,20,24,28,32,34,36,40,42等等。
第二时隙数的候选值可以但不限于为:1,2,3,4,7,8,12,16,20,24,28,32,34,36,40,42等等。
应理解,这里仅是对第一时隙数、第二时隙数进行举例说明,并不限定第一时隙数与第二时隙数的候选值相同,且在具体实施中,第一时隙数、第二时隙数的候选值也可以包括其他,或者包括上述举例中的部分,这里不做具体限定。
通过上述方式,终端设备可以确定发送上行传输块的时隙。
可选的,若该上行传输块采用重复传输(例如重复类型A)的方式进行发送,第一信令还可以指示重复间隔,重复间隔用于指示相邻两次重复之间的时间间隔。重复间隔的具体指示内容将在下文详细介绍。第一信令还可以指示上行传输块的重复次数。
示例一,重复间隔可以指示相邻两次重复传输的起始时隙之间的时间间隔。
示例二,重复间隔可以指示相邻两次重复传输中为前一次重复传输配置的多个时隙中的最后一个时隙与后一次重复传输的起始时隙之间的时间间隔。
示例三,重复间隔可以指示相邻两次重复传输中前一次重复传输中最后一个用于上行传输的时隙与后一次重复传输的起始时隙之间的时间间隔。
其中,时间间隔的单位可以为时隙、或第三时间单元、或迷你时隙、或子帧、或半帧、或帧、或上下行时隙配比周期、或毫秒,其中,第三时间单元可以参阅前文术语介绍中关于TOT的相关描述。为了便于描述,下面将第三时间单元称为TOT。
一种可能的实施方式中,第一信令指示第一时隙数时,重复间隔可以为示例一或示例二或示例三。第一信令指示第二时隙数时,重复间隔可以为示例一或示例三。
以上介绍了第一信令的指示内容,下面对第一信令的信令设计进行举例说明。应理解,下面的示例仅以第一信令包括前文涉及到的各个参数为例,并不限定第一信令包括以下示例中的所有参数。
该第一信令可以为无线资源控制(radio resource control,RRC)信令。第一信令可以通过RRC信令中TDRA表(PUSCH-TimeDomainResourceAllocationList)指示上行传输块的TDRA。下面介绍两种可能的TDRA表。
示例一,TDRA表中包括PUSCH分配表(puschAllocationList表),该PUSCH分配表中包括以下字段中的至少一个字段:slotNum、startSymbolAndLength、startSymbol、Length、startSymbolAndLength2、startSymbol2、Length2、intervalOfRepetitions,其中,slotNum用于指示第一时隙数或第二时隙数,startSymbolAndLength用于指示第一SLIV,startSymbol用于指示第一起始符号,Length用于指示第一长度,startSymbolAndLength2用于指示第二SLIV,startSymbol2用于指示第二起始符号,Length2用于指示第二长度,intervalOfRepetitions用于指示重复间隔。该PUSCH分配表还可以包括其他字段,例如指示起始时隙的k2字段、指示第一类时隙中DMRS的映射方式的mappingType字段、用于指示重复次数的numberOfRepetitions字段等等,这里不再一一列举。
一种举例说明,TDRA表中包括k2以及PUSCH分配表,其中,PUSCH分配表包括mappingType、slotNum、startSymbolAndLength、startSymbol、Length、startSymbolAndLength2、startSymbol2、Length2、numberOfRepetitions、以及intervalOfRepetitions。
上述示例中,通过增加slotNum、startSymbolAndLength2、startSymbol2、Length2、intervalOfRepetitions等字段,使得第一信令可以指示第二符号、重复间隔、时隙数等信息。
示例二,TDRA表中包括PUSCH分配表(puschAllocationList表),该PUSCH分配表中包括以下字段中的至少一个字段:startSymbolAndLength、startSymbol、Length、startSymbolAndLength2、startSymbol2、Length2、numberOfRepetitions,其中,numberOfRepetitions可以指示第一时隙数或第二时隙数,startSymbolAndLength用于指示第一SLIV,startSymbol用于指示第一起始符号,Length用于指示第一长度,startSymbolAndLength2用于指示第二SLIV,startSymbol2用于指示第二起始符号,Length2用于指示第二长度。该PUSCH分配表还可以包括其他字段,例如指示起始时隙的k2字段、 指示第一类时隙中DMRS的映射方式的mappingType字段等等,这里不再一一列举。
一种举例说明,TDRA表中包括k2以及PUSCH分配表,其中,PUSCH分配表包括mappingType、startSymbolAndLength、startSymbol、Length、startSymbolAndLength2、startSymbol2、Length2、以及numberOfRepetitions。
上述示例中,通过复用numberOfRepetitions字段来指示时隙数,从而可以降低信令开销。
需要说明的是,示例二可以应用于不支持重复传输的场景中。
此外,第一信令还可以指示第二类时隙中DMRS的映射方式。例如,第一信令的PUSCH分配表中可以包括mappingType2字段,该字段可以指示第二类时隙中DMRS的映射方式。
需要说明的是,在第一信令中指示第二类时隙中DMRS的映射方式仅是一种可能的实施方式。在具体实施中,第二类时隙中DMRS的映射方式也可以通过其他方式确定,例如,第二类时隙中DMRS的映射方式也可以是默认的,例如,第二类时隙中DMRS的映射方式可以默认为MappingTypeB。
S202,终端设备基于第一信令确定用于发送该上行传输块的时域资源。
在一些实施例中,终端设备基于第一信令确定用于发送该上行传输块的时域资源,可以包括:确定用于发送该上行传输块的时隙,以及每个时隙中用于发送该上行传输块的时域资源。
这里首先介绍每个时隙中用于发送该上行传输块的时域资源。
一种实现方式中,时隙的满足的条件不同,时隙上用于发送该上行传输块的时域资源不同。下面介绍不同条件下时隙中用于发送该上行传输块的时域资源的三个举例。
举例1,若时隙上的第一符号中不包括下行符号,则上行传输块的时域资源包括该时隙上的第一符号。或者,若时隙上的第一符号中包括下行符号,且该时隙上的第二符号中不包括下行符号,则上行传输块的时域资源包括该时隙上的第二符号,不包括第一时隙上的第一符号。
基于上述举例,终端设备可以根据第一信令确定用于发送该上行传输块的时域资源包括如下至少一项:第一时隙中的第二符号、或第二时隙中的第一符号。
其中,第一时隙中的第一符号包括下行符号,且第一时隙中的第二符号中不包括下行符号。第二时隙中的第一符号中不包括下行符号。
举例2,若时隙上的第一符号中不包括下行符号,且该时隙上的第二符号中不包括下行符号,则上行传输块的时域资源包括该时隙上的第一符号。或者,若时隙上的第一符号包括下行符号,且该时隙上的第二符号中不包括下行符号,则上行传输块的时域资源包括该时隙上的第二符号。
一种举例说明中,以时隙1~5为例,其中,时隙1~时隙2均包括14个下行符号,时隙3中符号0~7为下行符号,符号8~13为上行符号,时隙4~时隙5均包括14个上行符号。假设第一信令指示第一符号为0~11,第二符号为10~13。对于时隙1和时隙2,第一符号和第二符号均包括下行符号,则时隙1和时隙2上没有用于发送上行传输块的时域资源。对于时隙3,第一符号包括下行符号,第二符号均为上行符号,则时隙3中的符号10~13为用于发送上行传输块的时域资源。对于时隙4和时隙5,第一符号均为上行符号,则时隙4和时隙5中的符号0~11为用于发送上行传输块的时域资源。如图3所示。
基于上述举例,终端设备可以根据第一信令确定用于发送该上行传输块的时域资源包 括如下至少一项:第三时隙中的第二符号、或第四时隙中的第一符号。
其中,第三时隙中的第一符号包括下行符号,且第三时隙中的第二符号中不包括下行符号。第四时隙中的第一符号中不包括下行符号,且第四时隙中的第二符号中不包括下行符号。
举例3,若时隙上的第一符号不包括下行符号,且该时隙上的第二符号不包括下行符号,且该时隙上的第一符号的符号数量多于该时隙上的第二符号的符号数量,则上行传输块的时域资源包括该时隙上的第一符号。
或者,若该时隙上的第一符号不包括下行符号,且该时隙上的第二符号包括下行符号,则上行传输块的时域资源包括该时隙上的第一符号。
或者,若该时隙上的第一符号不包括下行符号,且该时隙上的第二符号不包括下行符号,且该时隙上的第一符号的符号数量不多于该时隙上的第二符号的符号数量,则上行传输块的时域资源包括该时隙上的第二符号。
或者,若该时隙上的第一符号包括下行符号,且该时隙上的第二符号不包括下行符号,则上行传输块的时域资源包括该时隙上的第二符号。
基于上述举例,终端设备可以根据第一信令确定用于发送该上行传输块的时域资源包括如下至少一项:第五时隙中的第一符号、或第六时隙中的第一符号、或第七时隙中的第二符号、或第八时隙中的第二符号。
其中,第五时隙上的第一符号不包括下行符号,且第五时隙上的第二符号不包括下行符号,且第五时隙上的第一符号的符号数量多于第五时隙上的第二符号的符号数量。
第六时隙上的第一符号不包括下行符号,且第六时隙上的第二符号包括下行符号。
第七时隙上的第一符号不包括下行符号,且第七时隙上的第二符号不包括下行符号,且第七时隙上的第一符号的符号数量不多于第七时隙上的第二符号的符号数量。
第八时隙上的第一符号包括下行符号,且第八时隙上的第二符号不包括下行符号。
可选的,基于上述举例3,第一信令可以指示第一类时隙中DMRS的映射方式以及第二类时隙中DMRS的映射方式。例如,第一信令可以包括mappingType字段以及mappingType2字段,其中,mappingType字段指示第一类时隙中DMRS的映射方式,mappingType2字段指示第二类时隙中DMRS的映射方式。
在上述三个举例中,根据第一符号和第二符号中是否包括下行符号来确定时隙中用于发送上行传输块的时域资源为第一符号还是第二符号。基于上述三个举例,这里还给出一种可选的方案,即在确定时隙中用于发送上行传输块的时域资源为第一符号时,除了满足上述三个举例中对应的条件以外,还要满足如下:如果该时隙有下行符号,且最后一个下行符号与第一符号的第一个上行符号之间的间隔不小于GP。在这个方案中,如果一个时隙满足了上述第二时隙、或第四时隙、或第五时隙、或第六时隙所满足的条件,且该时隙有下行符号,且最后一个下行符号与第一符号的第一个上行符号之间的间隔不小于GP,则可以确定该时隙中用于发送上行传输块的时域资源为第一符号。如果该时隙满足了上述第二时隙、或第四时隙、或第五时隙、或第六时隙所满足的条件,但是该时隙有下行符号,且最后一个下行符号与第一符号的第一个上行符号之间的间隔小于GP,则可以确定该时隙中用于发送上行传输块的时域资源为第二符号。
需要说明的是,上述三个举例仅以第一符号是否包括下行符号,和/或,第二符号是否包括下行符号为例,来确定时隙上用于发送该上行传输块的时域资源为第一符号还是第二 符号。在具体实施中,也可以根据第一符号是否包括如下至少一项:下行符号、灵活符号、保护间隔(guard period,GP),和/或,第二符号中是否包括如下至少一项:下行符号、灵活符号、GP,来确定时隙上用于发送该上行传输块的时域资源为第一符号还是第二符号。
为了区分使用第一符号发送上行传输块的时隙和使用第二符号发送上行传输块的时隙,下面将使用第一符号发送上行传输块的时隙称为第一类时隙,将使用第二符号发送上行传输块的时隙称为第二类时隙。应理解,这里仅为了区分作用,并不限定时隙要根据满足的条件进行分类。
上文介绍了每个时隙中用于发送该上行传输块的时域资源,下面介绍确定用于发送该上行传输块的时隙的方法。
根据前文所述,第一信令可以指示起始时隙和第一时隙数,或者,指示起始时隙和第二时隙数。这里结合第一时隙数N和第二时隙数M对终端设备确定用于发送该上行传输块的时隙的方法进行说明。
在第一信令指示起始时隙和第一时隙数N的实施方式中,终端设备可以根据上述三个举例确定用于发送该上行传输块的时隙,其中,第一连续时隙以第一信令指示的起始时隙为起点,且长度为第一时隙数N。
应理解,用于发送该上行传输块的时隙以及每个时隙中用于发送该上行传输块的时域资源可以通过一个实现过程确定,以上述举例1为例,如图4所示,该实现过程可以如下:
S401,根据第一信令确定时隙n上的第一符号。执行S402。
其中,n的初始值为第一信令指示的起始时隙的索引。
S402,判断第一符号是否包括用于下行传输的符号。若是,执行S403,若否,执行S407。
S403,根据第一信令确定时隙n上的第二符号。执行S404。
S404,判断第二符号是否包括用于下行传输的符号。若是,执行S405,若否,执行S408。
S405,判断n的值是否小于(n+N-1)。若是,则执行S406。若否,则结束。
S406,将n的值加1。执行S401。
S407,确定用于发送该上行传输块的时域资源包括时隙n上的第一符号。执行S405。
S408,确定用于发送该上行传输块的时域资源包括时隙n上的第二符号。执行S405。
通过图4所示过程可以确定出用于发送该上行传输块的时隙以及每个时隙中用于发送该上行传输块的时域资源。
图4所述方法中将第一连续时隙中的第一类时隙和第二类时隙作为发送上行传输块的时隙,但是在具体实施中,第一传输时隙中可能存在一些第一类时隙/第二类时隙被其它高优先级信号或信道抢占,因此,终端设备在确定时域资源时可以将这些时隙排除掉。
举例说明,假设上下行时隙配比周期“DDDSUDDSUU”,起始时隙为第一个时隙,N=10,即给上行传输块分配了10个时隙,除去下行时隙和被其它高优先级信号或信道抢占第二个上行时隙,该上行传输块实际使用了4个时隙,如图5所示。
在第一信令指示起始时隙和第二时隙数M的实施方式中,终端设备可以从第一信令指示的起始时隙开始,根据上述三个举例确定M个用于发送该上行传输块的时隙,并将计数器加1。否则,继续判断下一个时隙,直到计数器的值等于第二时隙数M。通过上述方式可以确定出M个用于发送上行传输块的时隙。
应理解,用于发送该上行传输块的时隙以及每个时隙中用于发送该上行传输块的时域资源可以通过一个实现过程确定,以上述举例1所示确定方法为例,如图6所示,该实现过程可以如下:
S601,根据第一信令确定时隙n上的第一符号。执行S602。
其中,n的初始值为第一信令指示的起始时隙的索引。
S602,判断第一符号是否包括用于下行传输的符号。若是,执行S603,若否,执行S607。
S603,根据第一信令确定时隙n上的第二符号。执行S604。
S604,判断第二符号是否包括用于下行传输的符号。若是,执行S605,若否,执行S608。
S605,判断计数器的值是否小于(M-1)。若是,则执行S606。若否,则结束。
其中,计数器的初始值为0。
S606,将n的值加1。执行S601。
S607,确定用于发送该上行传输块的时域资源包括时隙n上的第一符号,且计数器加1。执行S605。
S608,确定用于发送该上行传输块的时域资源包括时隙n上的第二符号,且计数器加1。执行S605。
通过图6所示过程可以确定出用于发送该上行传输块的时隙以及每个时隙中用于发送该上行传输块的时域资源。
图6所述方法中将确定的第一类时隙和第二类时隙作为发送上行传输块的时隙,但是在具体实施中,确定的第一类时隙/第二类时隙可能被其它高优先级信号或信道抢占,因此,终端设备在确定时域资源时可以将这些时隙排除掉。
举例说明,假设上下行时隙配比周期“DDDSUDDSUU”,起始时隙为第一个时隙,N=5,即上行传输块实际使用5个时隙,除去下行时隙和被其它高优先级信号或信道抢占第二个上行时隙,为了保证上行传输块实际使用的时隙数为5,第二个上下行时隙配比周期中的第一个S时隙也会被用于上行传输块,如图7所示。
S203,网络设备基于第一信令确定用于发送该上行传输块的时域资源。
其中,网络设备确定时域资源的方式与终端设备相同,具体可以参阅S202,这里不再重复赘述。
需要说明的是,步骤S202和S203在执行上没有严格的时间顺序。
S204,终端设备在确定的时域资源上发送该上行传输块。相应的,网络设备在确定的时域资源上接收该上行传输块。
具体传输方式将在下文详细说明。
本申请实施例中通过第一信令使得终端设备可以有效的判别上行时隙和特殊时隙,并可以独立的指示上行时隙和特殊时隙中的时域资源,从而可以有效的利用特殊时隙发送上行传输块,并有利于提升资源利用率,提高传输效率。
下面对终端设备在确定的时域资源上发送该上行传输块的过程进行说明。
一种可能的实施方式中,终端设备在确定的时域资源上发送该上行传输块时,可以确定上行传输块对应的信息比特量,并根据信息比特量确定上行传输块对应的上行信号。终端设备在时域资源上发送该上行信号。
其中,该信息比特量可以根据用于缩放的参数K确定,K为上行传输块中第一时间单元对应的资源与第二时间单元对应的资源的比值。例如,信息比特量N info可以满足如下公式,或者,也可以理解为通过如下公式确定:
N info=K·N RE·R·Q m·v;
其中,N RE为第二时间单元上的资源单元(resource element,RE)数,R表示码率,Q m表示调制阶次,v表示层数。
上述第一时间单元对应的资源指第一时间单元对应的资源中用于发送上行传输块的资源,第二时间单元对应的资源指第二时间单元对应的资源中用于发送上行传输块的资源。
上述资源可以指符号数(第一符号的符号数或第二符号的符号数)、或除DMRS的符号后的符号数、或一个PRB中的RE数N′ RE、或RE总数等等。
下面介绍第一时间单元、第二时间单元的几种可能的定义。
第一时间单元可以为如下至少一种:用于发送上行传输块的TOT中最长的TOT、或用于发送上行传输块的TOT中最短的TOT、或用于发送上行传输块的TOT中多个TOT、或用于发送上行传输块的所有时隙。
第二时间单元可以为如下至少一种:第一类时隙、或第二类时隙、或第一个用于发送上行传输块的TOT(即第一个可用的TOT)、或第一个用于发送上行传输块的时隙(即第一个可用的时隙)、或用于发送上行传输块的TOT中最长的TOT、或用于发送上行传输块的TOT中最短的TOT。
举例说明,假设上下行时隙配比为“DDDSUDDSUU”,上行传输块分配的时隙数为N=15,起始时隙为第一个下行时隙,如图8所示。假设上行传输块包括三个TOT,其中第一个TOT为前两个“SU”时隙,第二个TOT为中间三个“SUU”时隙,第三个TOT为最后两个“SU”时隙。
若第一时间单元为用于发送上行传输块的TOT中最短的TOT,第一时间单元为图8的第一个TOT或第三个TOT,等等,这里不再一一展开说明。
若第二时间单元为第一个可用的时隙,第二时间单元为图8的第一个特殊时隙,等等,这里不再一一展开说明。
为了便于对方案的理解,下面集合第一时间单元、第二时间单元以及资源的各个示例解释K的定义。示例性的,如表1所示。
表1
Figure PCTCN2022110477-appb-000001
Figure PCTCN2022110477-appb-000002
Figure PCTCN2022110477-appb-000003
其中,其中L和L2分别表示第一符号长度和第二符号长度,L DMRS和L2 DMRS分别表示第一类时隙上的DMRS符号数和第二类时隙上的DMRS符号数,N′ RE和N′ RE2分别表示第一类时隙上的一个PRB中的RE数和第二类时隙上的一个PRB中的RE数,N RE和N RE2分别表示第一类时隙上的RE总数和第二类时隙上的RE总数。
需要说明的是,表1仅示出几种可能的K的定义,在具体实施中,K的定义也可以为其他,这里不再一一列举。
通过上述确定信息比特量的方式,可以在利用特殊时隙进行上行传输的前提下,使得信息比特量计算的更准确,提升信息传输的准确性。
以上介绍了上行传输块的一次传输的过程,在具体实施中,上行传输块也可以采用重复传输的方式进行发送。
其中,重复传输的次数可以是第一信令指示的,在这种方式中,若第一信令未指示重复传输的次数,可以认为该上行传输块不支持(或不进行)重复传输。
若该上行传输块进行重复传输,终端设备可以根据重复间隔确定下一次重复传输的时域资源。重复间隔的定义可以参阅上述步骤S201中介绍的重复间隔的三个示例。
其中,重复间隔可以为第一信令指示的,指示方式具体可以参阅前文中第一信令的相关描述。或者,重复间隔也可以是预配置的,例如,每次重复传输的起始时隙在上下行时隙配比周期的同一位置,等等。
下面结合重复间隔的不同示例对重复传输的起始位置进行说明。遍历该上行传输块的重复传输,记作重复#m,其中,m=0,1,…,M-1;应理解,重复#0表示该上行传输块的第一次传输。
举例1,每次重复传输的起始时隙在上下行时隙配比周期的同一位置。示例性的,假设下行时隙配比周期为“DDDSUDDSUU”,重复#0的起始时隙为一个上下行时隙配比周期的第一个特殊时隙,则重复#m的起始时隙为另一个上下行时隙配比周期的第一个特殊时隙,如图9所示。
该方式中,通过预配置的重复间隔(或者默认的重复间隔)可以确定每次重复的起始位置。
举例2,结合重复间隔的示例一,重复#m的起始时隙与重复#m-1的起始时隙相差I。示例性的,假设上下行时隙配比周期为“DDDSUDDSUU”,且为上行传输块分配了10个时隙。为重复#m-1分配的时隙为一个上下行时隙配比周期的10个时隙,起始时隙为该上下行时隙配比周期的第一个下行时隙,假设重复间隔I=10时隙,则重复#m的起始时隙为10个时隙后的时隙,即下一个上下行时隙配比周期的第一个下行时隙,如图10所示。
举例3,结合重复间隔的示例二,重复#m的起始时隙与分配给重复#m-1的最后一个时隙(即最后一个物理时隙)相差I。示例性的,假设上下行时隙配比周期为“DDDSUDDSUU”,且为上行传输块分配了7个时隙。为重复#m-1分配的时隙为一个上下行时隙配比周期的前7个时隙,重复#m-1分配的最后一个时隙为该上下行时隙配比周期的第五个下行时隙,假设重复间隔I=6个时隙,则重复#m的起始时隙为下一个上下行时隙配比周期的第1个特殊时隙,如图11所示。
举例4,结合重复间隔的示例三,重复#m的起始时隙与重复#m-1实际使用的最后一个时隙(即最后一个可用时隙)相差I。示例性的,假设上下行时隙配比周期为“DDDSUDDSUU”,且为上行传输块分配了10个时隙。为重复#m-1分配的时隙为一个上下行时隙配比周期的10个时隙,重复#m-1实际使用的最后一个时隙为该上下行时隙配比周期的第二个上行时隙,假设重复间隔I=4个时隙,则重复#m的起始时隙为下一个上下行时隙配比周期的第一个特殊时隙,如图12所示。
基于上述确定起始时隙,可以根据S202所述的方法确定每次重复传输中的时域资源。
通过上述确定重复传输的起始位置的方式,可以使得每一次重复传输的时域资源分配一致,从而可以复用现有技术重复类型A(repetition type A)。并且,通过上述方式,可以更为灵活的指示重复间隔,且可以指示更长的重复间隔,有助于获取时间分集增益,提升上行覆盖性能。
例如,以图4所述方法为例,假设上下行时隙配比周期“DDDSUDDSUU”,N=10,则每一次重复传输分配的时隙数均为10,如图13所示,除去下行时隙和被其它高优先级信号或信道抢占第二个上行时隙,重复#0实际使用了4个时隙,重复#1实际使用了5个时隙。
又例如,以图6所述方法为例,假设上下行时隙配比周期“DDDSUDDSUU”,M=4,则每一次重复传输实际使用时隙数都是4,如图14所示,除去下行时隙和被其它高优先级信号或信道抢占第二个上行时隙,重复#0实际使用了前两个特殊时隙和第一、三个上行时隙,重复#1实际使用了第三、第四个特殊时隙和第四、五个上行时隙。
需要说明的是,本申请实施例中提供的重复间隔的定义以及确定重复间隔的起始时隙的方法可以不依赖于图2所述的方法单独实施。此外,本申请实施例提供的确定根据用于缩放的参数K确定所述上行传输块对应的信息比特量的方法也可以不依赖于图2所述的方法单独实施。
本申请实施例中通过第一信令使得终端设备可以有效的判别上行时隙和特殊时隙,并可以独立的指示上行时隙和特殊时隙中的时域资源,从而可以有效的利用特殊时隙发送上行传输块,并有利于提升资源利用率,提高传输效率。
并且,通过上述确定信息比特量的方式,可以在利用特殊时隙进行上行传输的前提下,使得信息比特量计算的更准确,提升信息传输的准确性。
此外,通过上述确定重复传输的起始位置的方式,可以使得每一次重复传输的时域资源分配一致,从而可以复用现有技术重复类型A(repetition type A)。并且,通过上述方式,可以更为灵活的指示重复间隔,且可以指示更长的重复间隔,有助于获取时间分集增益,提升上行覆盖性能。
基于与方法实施例的同一发明构思,本申请实施例提供一种通信装置,该通信装置的结构可以如图15所示,包括通信模块1501和处理模块1502。
在一种实施方式中,通信装置具体可以用于实现图2的实施例中终端设备执行的方法,该装置可以是终端设备本身,也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,通信模块1501,用于接收第一信令,第一信令用于指示在多个时隙上发送上行传输块,且第一信令指示第一符号以及第二符号,第一符号包括至少一个符号,第二符号包括至少一个符号;处理模块1502,用于基于第一信令确定用于发送上行传输块的时域资源,时域资源包括第一时隙上的时域资源,第一时隙上的第一符号中包括下行符号,且第一时隙上的第二符号中不包括下行符号;通信模块1501,还用于在时域资源上发送上行传输块。
时域资源还可以包括第二时隙上的时域资源,第二时隙上的第一符号中不包括下行符号。
示例性的,第一信令还指示起始时隙以及第一时隙数,第一时隙数指示分配给上行传输块的连续时隙的时隙数;或者,第一信令还指示起始时隙以及第二时隙数,第二时隙数是用于发送上行传输块的多个时隙的时隙数。
一种实现方式中,处理模块1502,具体可以用于,包括:根据第一信令确定第一连续时隙中第n个时隙上的第一符号,n={1,2,3……N},N为第一时隙数,第一连续时隙为根据起始时隙以及第一时隙数确定的;在第一符号不包括用于下行传输的符号的情况下,时域资源包括第n个时隙上的第一符号;在第一符号包括用于下行传输的符号的情况下,根据第一信令确定第n个时隙上的第二符号;在第二符号不包括用于下行传输的符号的情况下,时域资源包括第n个时隙上的第二符号,第n个时隙为第一时隙。
另一种实现方式中,处理模块1502,具体用于:从起始时隙开始,依次对各个时隙执行以下过程,直到计数器的计数值等于第二时隙数:根据第一信令确定时隙上的第一符 号;在第一符号不包括用于下行传输的符号的情况下,时域资源包括时隙上的第一符号,并将计数器的计数值加一;在第一符号包括用于下行传输的符号的情况下,根据第一信令确定时隙上的第二符号;在第二符号不包括用于下行传输的符号的情况下,时域资源包括时隙上的第二符号,时隙为第一时隙,并将计数器的计数值加一。
处理模块1502,还可以用于:根据用于缩放的参数K确定上行传输块对应的信息比特量,其中,K为上行传输块中第一时间单元对应的资源与第二时间单元对应的资源的比值,资源为符号数、或除承载DMRS的符号后的符号数、或一个PRB中的RE数、或RE总数;以及,根据信息比特量确定上行传输块对应的上行信号。
基于上述方式,通信模块1501,在时域资源上发送上行信号传输块时,可以具体用于:在时域资源上发送上行信号。
其中,第一时间单元为第一个用于发送上行传输块的时隙、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元、或用于发送上行传输块的第三时间单元中多个第三时间单元、或用于发送上行传输块的所有时隙。
第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送上行传输块的第三时间单元、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元,其中,第一类时隙的第一符号中不包括用于下行传输的符号,第二类时隙的第一符号中包括用于下行传输的符号,且第二类时隙的第二符号中不包括用于下行传输的符号。
第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
示例性的,第二时间单元对应的资源指第二时间单元对应的资源中用于发送上行传输块的资源,第一时间单元对应的资源指第一时间单元对应的资源中用于发送上行传输块的资源。
可选的,处理模块1502,还可以用于:基于重复间隔通过通信模块1501对上行传输块进行重复传输;
其中,重复间隔由第一信令指示,或者,重复间隔为预配置的;重复间隔指示相邻两次重复传输的起始时隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中为前一次重复传输配置的多个时隙中的最后一个时隙与后一次重复传输的起始时隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中前一次重复传输中最后一个用于上行传输的时隙与后一次重复传输的起始时隙之间的时间间隔。
示例性的,时间间隔的单位为时隙、或第三时间单元、或迷你时隙、或子帧、或半帧、或帧、或上下行时隙配比周期、或毫秒,其中,第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
在一种实施方式中,通信装置具体可以用于实现图2的实施例中网络设备执行的方法,该装置可以是网络设备本身,也可以是网络设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。其中,通信模块1501,用于发送第一信令,第一信令用于指示在多个时隙上发送上行传输块,且第一信令指示第一符号以及第二符号,第一符号包括至少一个符号,第二符号包括至少一个符号;处理模块1502,用于基于第一信令确定用于接收上行传输块的时域资源,时域资源包括第一时隙上的时域资源,第一时隙上的第一符号中包括 下行符号,且第一时隙上的第二符号中不包括下行符号;通信模块1501,还用于在时域资源上接收上行传输块。
可选的,时域资源还可以包括第二时隙上的时域资源,第二时隙上的第一符号中不包括下行符号。
示例性的,第一信令还指示起始时隙以及第一时隙数,第一时隙数指示分配给上行传输块的连续时隙的时隙数;或者,第一信令还指示起始时隙以及第二时隙数,第二时隙数是用于发送上行传输块的多个时隙的时隙数。
一种实现方式中,处理模块1502,具体用于:根据第一信令确定第一连续时隙中第n个时隙上的第一符号,n={1,2,3……N},N为第一时隙数,第一连续时隙为根据起始时隙以及第一时隙数确定的;在第一符号不包括用于下行传输的符号的情况下,时域资源包括第n个时隙上的第一符号;在第一符号包括用于下行传输的符号的情况下,根据第一信令确定第n个时隙上的第二符号;在第二符号不包括用于下行传输的符号的情况下,时域资源包括第n个时隙上的第二符号,第n个时隙为第一时隙。
另一种实现方式中,处理模块1502,具体用于:从起始时隙开始,依次对各个时隙执行以下过程,直到计数器的计数值等于第二时隙数:根据第一信令确定时隙上的第一符号;在第一符号不包括用于下行传输的符号的情况下,时域资源包括时隙上的第一符号,并将计数器的计数值加一;在第一符号包括用于下行传输的符号的情况下,根据第一信令确定时隙上的第二符号;在第二符号不包括用于下行传输的符号的情况下,时域资源包括时隙上的第二符号,时隙为第一时隙,并将计数器的计数值加一。
一种示例中,上行传输块对应的信息比特量与用于缩放的参数K相关;K为上行传输块中第一时间单元对应的资源与第二时间单元对应的资源的比值,资源为符号数、或除承载DMRS的符号后的符号数、或一个PRB中的RE数、或RE总数;
其中,第一时间单元为第一个用于发送上行传输块的时隙、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元、或用于发送上行传输块的第三时间单元中多个第三时间单元、或用于发送上行传输块的所有时隙。
第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送上行传输块的第三时间单元、或用于发送上行传输块的第三时间单元中最长的第三时间单元、或用于发送上行传输块的第三时间单元中最短的第三时间单元,其中,第一类时隙的第一符号中不包括用于下行传输的符号,第二类时隙的第一符号中包括用于下行传输的符号,且第二类时隙的第二符号中不包括用于下行传输的符号。
第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
示例性的,第二时间单元对应的资源指第二时间单元对应的资源中用于发送上行传输块的资源,第一时间单元对应的资源指第一时间单元对应的资源中用于发送上行传输块的资源。
可选的,处理模块1502,还可以用于:基于重复间隔通过通信模块1501接收上行传输块的重复传输;其中,重复间隔由第一信令指示,或者,重复间隔为预配置的;重复间隔指示相邻两次重复传输的起始时隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中为前一次重复传输配置的多个时隙中的最后一个时隙与后一次重复传输的起始时 隙之间的时间间隔;或者,重复间隔指示相邻两次重复传输中前一次重复传输中最后一个用于上行传输的时隙与后一次重复传输的起始时隙之间的时间间隔。
示例性的,时间间隔的单位为时隙、或第三时间单元、或迷你时隙、或子帧、或半帧、或帧、或上下行时隙配比周期、或毫秒,其中,第三时间单元为用于上行传输的一个时隙或第三时间单元为连续的用于上行传输的多个时隙。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
一种可能的方式中,通信装置可以如图16所示,该装置可以是通信设备或者通信设备中的芯片,其中该通信设备可以为上述实施例中的终端设备也可以是上述实施例中的网络设备。该装置包括处理器1601和通信接口1602,还可以包括存储器1603。其中,处理模块1502可以为处理器1601。通信模块1501可以为通信接口1602。
处理器1601,可以是一个CPU,或者为数字处理单元等等。通信接口1602可以是收发器、也可以为接口电路如收发电路等、也可以为收发芯片等等。该装置还包括:存储器1603,用于存储处理器1601执行的程序。存储器1603可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器1603是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。
处理器1601用于执行存储器1603存储的程序代码,具体用于执行上述处理模块1502的动作,本申请在此不再赘述。通信接口1602具体用于执行上述通信模块1501的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口1602、处理器1601以及存储器1603之间的具体连接介质。本申请实施例在图16中以存储器1603、处理器1601以及通信接口1602之间通过总线1604连接,总线在图16中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本申请实施例还提供一种通信系统,包括用于实现图2的实施例中终端设备功能的通信装置和用于实现图4的实施例中网络设备功能的通信装置。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或 方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (39)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收第一信令,所述第一信令用于指示在多个时隙上发送上行传输块,且所述第一信令指示第一符号以及第二符号,所述第一符号包括至少一个符号,所述第二符号包括至少一个符号;
    基于所述第一信令确定用于发送所述上行传输块的时域资源,所述时域资源包括第一时隙上的时域资源,所述第一时隙上的所述第一符号中包括下行符号,且所述第一时隙上的所述第二符号中不包括下行符号;
    在所述时域资源上发送所述上行传输块。
  2. 如权利要求1所述的方法,其特征在于,所述时域资源还包括第二时隙上的时域资源,所述第二时隙上的所述第一符号中不包括下行符号。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一信令还指示起始时隙以及第一时隙数,所述第一时隙数指示分配给所述上行传输块的连续时隙的时隙数;或者
    所述第一信令还指示起始时隙以及第二时隙数,所述第二时隙数是用于发送所述上行传输块的多个时隙的时隙数。
  4. 如权利要求3所述的方法,其特征在于,所述确定用于发送所述上行传输块的时域资源,包括:
    根据所述第一信令确定第一连续时隙中第n个时隙上的第一符号,所述n={1,2,3……N},所述N为所述第一时隙数,所述第一连续时隙为根据所述起始时隙以及所述第一时隙数确定的;
    在所述第一符号不包括用于下行传输的符号的情况下,所述时域资源包括所述第n个时隙上的所述第一符号;
    在所述第一符号包括用于下行传输的符号的情况下,根据所述第一信令确定所述第n个时隙上的所述第二符号;
    在所述第二符号不包括用于下行传输的符号的情况下,所述时域资源包括所述第n个时隙上的所述第二符号,所述第n个时隙为所述第一时隙。
  5. 如权利要求3所述的方法,其特征在于,所述基于所述第一信令确定用于发送所述上行传输块的时域资源,包括:
    从所述起始时隙开始,依次对各个时隙执行以下过程,直到计数器的计数值等于所述第二时隙数:
    根据所述第一信令确定所述时隙上的所述第一符号;
    在所述第一符号不包括用于下行传输的符号的情况下,所述时域资源包括所述时隙上的所述第一符号,并将所述计数器的计数值加一;
    在所述第一符号包括用于下行传输的符号的情况下,根据所述第一信令确定所述时隙上的第二符号;
    在所述第二符号不包括用于下行传输的符号的情况下,所述时域资源包括所述时隙上的所述第二符号,所述时隙为所述第一时隙,并将所述计数器的计数值加一。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,所述在所述时域资源上发送所述上行信号传输块,包括:
    根据用于缩放的参数K确定所述上行传输块对应的信息比特量,其中,所述K为所述 上行传输块中第一时间单元对应的资源与所述第二时间单元对应的资源的比值,所述资源为符号数、或除承载解调参考信号DMRS的符号后的符号数、或一个物理资源块PRB中的RE数、或RE总数;
    根据所述信息比特量确定所述上行传输块对应的上行信号;
    在所述时域资源上发送所述上行信号;
    其中,所述第一时间单元为第一个用于发送所述上行传输块的时隙、或用于发送所述上行传输块的第三时间单元中最长的第三时间单元、或用于发送所述上行传输块的第三时间单元中最短的第三时间单元、或用于发送所述上行传输块的第三时间单元中多个第三时间单元、或用于发送所述上行传输块的所有时隙;
    所述第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送所述上行传输块的第三时间单元、或用于发送所述上行传输块的第三时间单元中最长的第三时间单元、或用于发送所述上行传输块的第三时间单元中最短的第三时间单元,其中,所述第一类时隙的所述第一符号中不包括用于下行传输的符号,所述第二类时隙的所述第一符号中包括用于下行传输的符号,且所述第二类时隙的所述第二符号中不包括用于下行传输的符号;
    所述第三时间单元为用于上行传输的一个时隙或所述第三时间单元为连续的用于上行传输的多个时隙。
  7. 如权利要求6所述的方法,其特征在于,所述第二时间单元对应的资源指所述第二时间单元对应的资源中用于发送所述上行传输块的资源,所述第一时间单元对应的资源指所述第一时间单元对应的资源中用于发送所述上行传输块的资源。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    基于重复间隔对所述上行传输块进行重复传输;
    其中,所述重复间隔由所述第一信令指示,或者,所述重复间隔为预配置的;
    所述重复间隔指示相邻两次重复传输的起始时隙之间的时间间隔;或者,
    所述重复间隔指示相邻两次重复传输中为前一次重复传输配置的多个时隙中的最后一个时隙与后一次重复传输的起始时隙之间的时间间隔;或者,
    所述重复间隔指示相邻两次重复传输中前一次重复传输中最后一个用于上行传输的时隙与后一次重复传输的起始时隙之间的时间间隔。
  9. 如权利要求8所述的方法,其特征在于,所述时间间隔的单位为时隙、或第三时间单元、或迷你时隙、或子帧、或半帧、或帧、或上下行时隙配比周期、或毫秒,其中,所述第三时间单元为用于上行传输的一个时隙或所述第三时间单元为连续的用于上行传输的多个时隙。
  10. 一种通信方法,其特征在于,所述方法包括:
    发送第一信令,所述第一信令用于指示在多个时隙上发送上行传输块,且所述第一信令指示第一符号以及第二符号,所述第一符号包括至少一个符号,所述第二符号包括至少一个符号;
    基于所述第一信令确定用于接收所述上行传输块的时域资源,所述时域资源包括第一时隙上的时域资源,所述第一时隙上的所述第一符号中包括下行符号,且所述第一时隙上的所述第二符号中不包括下行符号;
    在所述时域资源上接收所述上行传输块。
  11. 如权利要求10所述的方法,其特征在于,所述时域资源还包括第二时隙上的时域资源,所述第二时隙上的所述第一符号中不包括下行符号。
  12. 如权利要求10或11所述的方法,其特征在于,所述第一信令还指示起始时隙以及第一时隙数,所述第一时隙数指示分配给所述上行传输块的连续时隙的时隙数;或者
    所述第一信令还指示起始时隙以及第二时隙数,所述第二时隙数是用于发送所述上行传输块的多个时隙的时隙数。
  13. 如权利要求12所述的方法,其特征在于,
    所述确定用于发送所述上行传输块的时域资源,包括:
    根据所述第一信令确定第一连续时隙中第n个时隙上的第一符号,所述n={1,2,3……N},所述N为所述第一时隙数,所述第一连续时隙为根据所述起始时隙以及所述第一时隙数确定的;
    在所述第一符号不包括用于下行传输的符号的情况下,所述时域资源包括所述第n个时隙上的所述第一符号;
    在所述第一符号包括用于下行传输的符号的情况下,根据所述第一信令确定所述第n个时隙上的所述第二符号;
    在所述第二符号不包括用于下行传输的符号的情况下,所述时域资源包括所述第n个时隙上的所述第二符号,所述第n个时隙为所述第一时隙。
  14. 如权利要求12所述的方法,其特征在于,
    所述基于所述第一信令确定用于发送所述上行传输块的时域资源,包括:
    从所述起始时隙开始,依次对各个时隙执行以下过程,直到计数器的计数值等于所述第二时隙数:
    根据所述第一信令确定所述时隙上的所述第一符号;
    在所述第一符号不包括用于下行传输的符号的情况下,所述时域资源包括所述时隙上的所述第一符号,并将所述计数器的计数值加一;
    在所述第一符号包括用于下行传输的符号的情况下,根据所述第一信令确定所述时隙上的第二符号;
    在所述第二符号不包括用于下行传输的符号的情况下,所述时域资源包括所述时隙上的所述第二符号,所述时隙为所述第一时隙,并将所述计数器的计数值加一。
  15. 如权利要求10-14中任一项所述的方法,其特征在于,所述上行传输块对应的信息比特量与用于缩放的参数K相关;
    所述K为所述上行传输块中第一时间单元对应的资源与所述第二时间单元对应的资源的比值,所述资源为符号数、或除承载解调参考信号DMRS的符号后的符号数、或一个物理资源块PRB中的RE数、或RE总数;
    其中,所述第一时间单元为第一个用于发送所述上行传输块的时隙、或用于发送所述上行传输块的第三时间单元中最长的第三时间单元、或用于发送所述上行传输块的第三时间单元中最短的第三时间单元、或用于发送所述上行传输块的第三时间单元中多个第三时间单元、或用于发送所述上行传输块的所有时隙;
    所述第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送所述上行传输块的第三时间单元、或用于发送所述上行传输块的第三时间单元中最长的第三时间单元、或用于发送所述上行传输块的第三时间单元中最短的第三时间单元,其中,所述第一类时隙的所述第一符号中不包括用于下行传输的符号,所述第二类时隙的所述第一符号中包括用于下行传输的符号,且所述第二类时隙的所述第二符号中不包括用于下行传输的符号;
    所述第三时间单元为用于上行传输的一个时隙或所述第三时间单元为连续的用于上行传输的多个时隙。
  16. 如权利要求15所述的方法,其特征在于,所述第二时间单元对应的资源指所述第二时间单元对应的资源中用于发送所述上行传输块的资源,所述第一时间单元对应的资源指所述第一时间单元对应的资源中用于发送所述上行传输块的资源。
  17. 如权利要求10-16任一项所述的方法,其特征在于,所述方法还包括:
    基于重复间隔接收所述上行传输块的重复传输;
    其中,所述重复间隔由所述第一信令指示,或者,所述重复间隔为预配置的;
    所述重复间隔指示相邻两次重复传输的起始时隙之间的时间间隔;或者,
    所述重复间隔指示相邻两次重复传输中为前一次重复传输配置的多个时隙中的最后一个时隙与后一次重复传输的起始时隙之间的时间间隔;或者,
    所述重复间隔指示相邻两次重复传输中前一次重复传输中最后一个用于上行传输的时隙与后一次重复传输的起始时隙之间的时间间隔。
  18. 如权利要求17所述的方法,其特征在于,所述时间间隔的单位为时隙、或第三时间单元、或迷你时隙、或子帧、或半帧、或帧、或上下行时隙配比周期、或毫秒,其中,所述第三时间单元为用于上行传输的一个时隙或所述第三时间单元为连续的用于上行传输的多个时隙。
  19. 一种通信装置,其特征在于,所述装置包括:
    通信模块,用于接收第一信令,所述第一信令用于指示在多个时隙上发送上行传输块,且所述第一信令指示第一符号以及第二符号,所述第一符号包括至少一个符号,所述第二符号包括至少一个符号;
    处理模块,用于基于所述第一信令确定用于发送所述上行传输块的时域资源,所述时域资源包括第一时隙上的时域资源,所述第一时隙上的所述第一符号中包括下行符号,且所述第一时隙上的所述第二符号中不包括下行符号;
    所述通信模块,还用于在所述时域资源上发送所述上行传输块。
  20. 如权利要求19所述的装置,其特征在于,所述时域资源还包括第二时隙上的时域资源,所述第二时隙上的所述第一符号中不包括下行符号。
  21. 如权利要求19或20所述的装置,其特征在于,所述第一信令还指示起始时隙以及第一时隙数,所述第一时隙数指示分配给所述上行传输块的连续时隙的时隙数;或者
    所述第一信令还指示起始时隙以及第二时隙数,所述第二时隙数是用于发送所述上行传输块的多个时隙的时隙数。
  22. 如权利要求21所述的装置,其特征在于,所述处理模块,具体用于,包括:
    根据所述第一信令确定第一连续时隙中第n个时隙上的第一符号,所述n={1,2,3……N},所述N为所述第一时隙数,所述第一连续时隙为根据所述起始时隙以及所述第一时隙数确定的;
    在所述第一符号不包括用于下行传输的符号的情况下,所述时域资源包括所述第n个时隙上的所述第一符号;
    在所述第一符号包括用于下行传输的符号的情况下,根据所述第一信令确定所述第n个时隙上的所述第二符号;
    在所述第二符号不包括用于下行传输的符号的情况下,所述时域资源包括所述第n个时隙上的所述第二符号,所述第n个时隙为所述第一时隙。
  23. 如权利要求21所述的装置,其特征在于,所述处理模块,具体用于:
    从所述起始时隙开始,依次对各个时隙执行以下过程,直到计数器的计数值等于所述第二时隙数:
    根据所述第一信令确定所述时隙上的所述第一符号;
    在所述第一符号不包括用于下行传输的符号的情况下,所述时域资源包括所述时隙上的所述第一符号,并将所述计数器的计数值加一;
    在所述第一符号包括用于下行传输的符号的情况下,根据所述第一信令确定所述时隙上的第二符号;
    在所述第二符号不包括用于下行传输的符号的情况下,所述时域资源包括所述时隙上的所述第二符号,所述时隙为所述第一时隙,并将所述计数器的计数值加一。
  24. 如权利要求19-23中任一项所述的装置,其特征在于,所述处理模块,还用于:
    根据用于缩放的参数K确定所述上行传输块对应的信息比特量,其中,所述K为所述上行传输块中第一时间单元对应的资源与所述第二时间单元对应的资源的比值,所述资源为符号数、或除承载解调参考信号DMRS的符号后的符号数、或一个物理资源块PRB中的RE数、或RE总数;
    以及,根据所述信息比特量确定所述上行传输块对应的上行信号;
    所述通信模块,在所述时域资源上发送所述上行信号传输块时,具体用于:在所述时域资源上发送所述上行信号;
    其中,所述第一时间单元为第一个用于发送所述上行传输块的时隙、或用于发送所述上行传输块的第三时间单元中最长的第三时间单元、或用于发送所述上行传输块的第三时间单元中最短的第三时间单元、或用于发送所述上行传输块的第三时间单元中多个第三时间单元、或用于发送所述上行传输块的所有时隙;
    所述第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送所述上行传输块的第三时间单元、或用于发送所述上行传输块的第三时间单元中最长的第三时间单元、或用于发送所述上行传输块的第三时间单元中最短的第三时间单元,其中,所述第一类时隙的所述第一符号中不包括用于下行传输的符号,所述第二类时隙的所述第一符号中包括用于下行传输的符号,且所述第二类时隙的所述第二符号中不包括用于下行传输的符号;
    所述第三时间单元为用于上行传输的一个时隙或所述第三时间单元为连续的用于上行传输的多个时隙。
  25. 如权利要求24所述的装置,其特征在于,所述第二时间单元对应的资源指所述第二时间单元对应的资源中用于发送所述上行传输块的资源,所述第一时间单元对应的资源指所述第一时间单元对应的资源中用于发送所述上行传输块的资源。
  26. 如权利要求19-25任一项所述的装置,其特征在于,所述处理模块,还用于:
    基于重复间隔通过所述通信模块对所述上行传输块进行重复传输;
    其中,所述重复间隔由所述第一信令指示,或者,所述重复间隔为预配置的;
    所述重复间隔指示相邻两次重复传输的起始时隙之间的时间间隔;或者,
    所述重复间隔指示相邻两次重复传输中为前一次重复传输配置的多个时隙中的最后一个时隙与后一次重复传输的起始时隙之间的时间间隔;或者,
    所述重复间隔指示相邻两次重复传输中前一次重复传输中最后一个用于上行传输的时隙与后一次重复传输的起始时隙之间的时间间隔。
  27. 如权利要求26所述的装置,其特征在于,所述时间间隔的单位为时隙、或第三时 间单元、或迷你时隙、或子帧、或半帧、或帧、或上下行时隙配比周期、或毫秒,其中,所述第三时间单元为用于上行传输的一个时隙或所述第三时间单元为连续的用于上行传输的多个时隙。
  28. 一种通信装置,其特征在于,所述装置包括:
    通信模块,用于发送第一信令,所述第一信令用于指示在多个时隙上发送上行传输块,且所述第一信令指示第一符号以及第二符号,所述第一符号包括至少一个符号,所述第二符号包括至少一个符号;
    处理模块,用于基于所述第一信令确定用于接收所述上行传输块的时域资源,所述时域资源包括第一时隙上的时域资源,所述第一时隙上的所述第一符号中包括下行符号,且所述第一时隙上的所述第二符号中不包括下行符号;
    所述通信模块,还用于在所述时域资源上接收所述上行传输块。
  29. 如权利要求28所述的装置,其特征在于,所述时域资源还包括第二时隙上的时域资源,所述第二时隙上的所述第一符号中不包括下行符号。
  30. 如权利要求28或29所述的装置,其特征在于,所述第一信令还指示起始时隙以及第一时隙数,所述第一时隙数指示分配给所述上行传输块的连续时隙的时隙数;或者
    所述第一信令还指示起始时隙以及第二时隙数,所述第二时隙数是用于发送所述上行传输块的多个时隙的时隙数。
  31. 如权利要求30所述的装置,其特征在于,所述处理模块,具体用于:
    根据所述第一信令确定第一连续时隙中第n个时隙上的第一符号,所述n={1,2,3……N},所述N为所述第一时隙数,所述第一连续时隙为根据所述起始时隙以及所述第一时隙数确定的;
    在所述第一符号不包括用于下行传输的符号的情况下,所述时域资源包括所述第n个时隙上的所述第一符号;
    在所述第一符号包括用于下行传输的符号的情况下,根据所述第一信令确定所述第n个时隙上的所述第二符号;
    在所述第二符号不包括用于下行传输的符号的情况下,所述时域资源包括所述第n个时隙上的所述第二符号,所述第n个时隙为所述第一时隙。
  32. 如权利要求30所述的装置,其特征在于,所述处理模块,具体用于:
    从所述起始时隙开始,依次对各个时隙执行以下过程,直到计数器的计数值等于所述第二时隙数:
    根据所述第一信令确定所述时隙上的所述第一符号;
    在所述第一符号不包括用于下行传输的符号的情况下,所述时域资源包括所述时隙上的所述第一符号,并将所述计数器的计数值加一;
    在所述第一符号包括用于下行传输的符号的情况下,根据所述第一信令确定所述时隙上的第二符号;
    在所述第二符号不包括用于下行传输的符号的情况下,所述时域资源包括所述时隙上的所述第二符号,所述时隙为所述第一时隙,并将所述计数器的计数值加一。
  33. 如权利要求28-32中任一项所述的装置,其特征在于,所述上行传输块对应的信息比特量与用于缩放的参数K相关;
    所述K为所述上行传输块中第一时间单元对应的资源与所述第二时间单元对应的资源 的比值,所述资源为符号数、或除承载解调参考信号DMRS的符号后的符号数、或一个物理资源块PRB中的RE数、或RE总数;
    其中,所述第一时间单元为第一个用于发送所述上行传输块的时隙、或用于发送所述上行传输块的第三时间单元中最长的第三时间单元、或用于发送所述上行传输块的第三时间单元中最短的第三时间单元、或用于发送所述上行传输块的第三时间单元中多个第三时间单元、或用于发送所述上行传输块的所有时隙;
    所述第二时间单元为第一类时隙、或第二类时隙、或第一个用于发送所述上行传输块的第三时间单元、或用于发送所述上行传输块的第三时间单元中最长的第三时间单元、或用于发送所述上行传输块的第三时间单元中最短的第三时间单元,其中,所述第一类时隙的所述第一符号中不包括用于下行传输的符号,所述第二类时隙的所述第一符号中包括用于下行传输的符号,且所述第二类时隙的所述第二符号中不包括用于下行传输的符号;
    所述第三时间单元为用于上行传输的一个时隙或所述第三时间单元为连续的用于上行传输的多个时隙。
  34. 如权利要求33所述的装置,其特征在于,所述第二时间单元对应的资源指所述第二时间单元对应的资源中用于发送所述上行传输块的资源,所述第一时间单元对应的资源指所述第一时间单元对应的资源中用于发送所述上行传输块的资源。
  35. 如权利要求28-34任一项所述的装置,其特征在于,所述处理模块,还用于:
    基于重复间隔通过所述通信模块接收所述上行传输块的重复传输;
    其中,所述重复间隔由所述第一信令指示,或者,所述重复间隔为预配置的;
    所述重复间隔指示相邻两次重复传输的起始时隙之间的时间间隔;或者,
    所述重复间隔指示相邻两次重复传输中为前一次重复传输配置的多个时隙中的最后一个时隙与后一次重复传输的起始时隙之间的时间间隔;或者,
    所述重复间隔指示相邻两次重复传输中前一次重复传输中最后一个用于上行传输的时隙与后一次重复传输的起始时隙之间的时间间隔。
  36. 如权利要求35所述的装置,其特征在于,所述时间间隔的单位为时隙、或第三时间单元、或迷你时隙、或子帧、或半帧、或帧、或上下行时隙配比周期、或毫秒,其中,所述第三时间单元为用于上行传输的一个时隙或所述第三时间单元为连续的用于上行传输的多个时隙。
  37. 一种芯片,其特征在于,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行如权利要求1至9中任一项所述的方法,或者,执行如权利要求10至18中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至9中任一项所述的方法,或者,使得所述计算机执行如权利要求10至18中任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至9中任一项所述的方法,或者,使得所述计算机执行如权利要求10至18中任一项所述的方法。
PCT/CN2022/110477 2021-08-06 2022-08-05 一种通信方法及装置 WO2023011620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110902765.4A CN115707125A (zh) 2021-08-06 2021-08-06 一种通信方法及装置
CN202110902765.4 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023011620A1 true WO2023011620A1 (zh) 2023-02-09

Family

ID=85155331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110477 WO2023011620A1 (zh) 2021-08-06 2022-08-05 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115707125A (zh)
WO (1) WO2023011620A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803383A (zh) * 2017-11-16 2019-05-24 华为技术有限公司 发送和接收信息的方法及装置
WO2021090818A1 (en) * 2019-11-07 2021-05-14 Sharp Kabushiki Kaisha User equipments, base stations and signaling for resource allocations of enhanced uplink transmissions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803383A (zh) * 2017-11-16 2019-05-24 华为技术有限公司 发送和接收信息的方法及装置
WO2021090818A1 (en) * 2019-11-07 2021-05-14 Sharp Kabushiki Kaisha User equipments, base stations and signaling for resource allocations of enhanced uplink transmissions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2104242, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010696 *
HUAWEI, HISILICON: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2106496, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052037824 *
INTERDIGITAL, INC.: "TB processing over multiple slots", 3GPP DRAFT; R1-2104860, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052011081 *

Also Published As

Publication number Publication date
CN115707125A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2020143750A1 (zh) 侧行参考信号的传输方法和通信装置
US20210329431A1 (en) Feedback Channel Sending Method And Apparatus, And Feedback Channel Receiving Method And Apparatus
JP6807453B2 (ja) 情報送信方法、端末デバイス、およびネットワークデバイス
WO2021208821A1 (zh) 一种通信方法和通信装置
WO2020200035A1 (zh) 传输上行控制信息的方法及装置
WO2018137675A1 (zh) 通信方法和网络设备
WO2019047632A1 (zh) 用于传输下行数据的资源的确定和配置方法、终端和基站
CN111867095A (zh) 一种通信方法与终端装置
WO2020221326A1 (zh) 一种资源调度的方法及通信装置
WO2019062151A1 (zh) 一种资源指示方法、通信装置及网络设备
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
CN114451044A (zh) 一种通信方法及装置
WO2017031643A1 (zh) 资源分配、指示及识别资源类型、接收数据的方法及装置
WO2020233370A1 (zh) 一种通信方法及设备
WO2018141139A1 (zh) 发送信息的方法、接收信息的方法和装置
CN112291035B (zh) 一种信息传输方法、装置及通信设备
WO2021062815A1 (zh) 调制解调参考信号的配置信息获取方法、配置方法及装置
WO2023051458A1 (zh) 通信方法及装置
CN110612684B (zh) 一种应答反馈方法、终端及网络设备
WO2022057562A1 (zh) 一种通信方法及通信装置
WO2023011620A1 (zh) 一种通信方法及装置
WO2022141299A1 (zh) 参考信号资源的传输方法、设备及存储介质
WO2021031632A1 (zh) 一种下行控制信息dci的发送方法及装置
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
WO2021134702A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE