WO2018127027A1 - 信号接收、发送方法、控制信道的接收、发送方法、装置及存储介质 - Google Patents

信号接收、发送方法、控制信道的接收、发送方法、装置及存储介质 Download PDF

Info

Publication number
WO2018127027A1
WO2018127027A1 PCT/CN2017/120336 CN2017120336W WO2018127027A1 WO 2018127027 A1 WO2018127027 A1 WO 2018127027A1 CN 2017120336 W CN2017120336 W CN 2017120336W WO 2018127027 A1 WO2018127027 A1 WO 2018127027A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
reference signal
resource
unit
signal
Prior art date
Application number
PCT/CN2017/120336
Other languages
English (en)
French (fr)
Inventor
张淑娟
鲁照华
李儒岳
弓宇宏
蒋创新
梅猛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018127027A1 publication Critical patent/WO2018127027A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communications, for example, to a signal receiving and transmitting method, a receiving and transmitting method of a control channel, an apparatus, and a storage medium.
  • high-frequency communication provides effective support for future 5G big data communication.
  • the biggest feature of high-frequency communication is that it has relatively large spatial fading characteristics, making long-distance transmission based on high frequency a problem.
  • the wavelength of the high frequency is relatively short, more antenna elements can be collected in the same area than the low frequency, so that a high gain beam can be formed, and the beam fading can be used to resist the spatial fading in the high frequency communication, so that the coverage of the high frequency communication is made. Effectively increased, it is possible to use high frequency communication for cellular communication.
  • the demodulation reference signal of the Physical Downlink Control Channel (PDCCH) of the Long Term Evolution (LTE) control channel in the related art is a Cell-Specific Reference Signal (CRS).
  • the coverage of the CRS is the cell range, and the CRS is transmitted in each subframe.
  • the CRS is transmitted within the system bandwidth.
  • the CRS of the same port considers that the transmit beams are the same within the system bandwidth. Only the CRS can accurately obtain the accurate channel estimation value of the control channel, including the large-scale information of the channel.
  • the control channel demodulation reference signal of the beam transmission based control channel is not the cell coverage but only the beam range, and the transmission beam of each time unit may change, further considering the beam transmission based control channel and the beam transmission based control channel How to send the reference signal.
  • NR New Radio
  • DMRS Demodulation References Signal
  • the reference signal is not transmitted in the whole system bandwidth, nor is it transmitted every time unit.
  • the demodulation reference signal can be different in different resources.
  • the transmission of the control channel demodulation reference signal based on the DMRS method needs further research on how to obtain an accurate control channel. The exact channel estimate.
  • the first problem to be studied is how to determine the control channel and the Precoding Resource Block Groups (PRGs) of its demodulation reference signals.
  • the Enhanced Physical Downlink Control Channel (EPDCCH) also uses the DMRS as the demodulation reference signal
  • the physical resource block (PRB) occupied by the EPDCCH is allocated by the upper layer, which may be the frequency domain non- Continuous, and thus the PRG of the control channel is at most one PRB in the frequency domain.
  • PRB Physical resource block
  • the second problem to be studied is how to obtain the large-scale channel characteristic parameter information of the control channel demodulation reference signal. If there is no CRS, how to obtain the large-scale channel characteristic parameters of the control channel demodulation reference signal is also needed for further research. problem.
  • the present disclosure provides a signal receiving and transmitting method, a receiving and transmitting method for a control channel, and a device, which solve the related art in which a control channel using a DMRS as a demodulation reference signal uses at least one of a transmitting mechanism and a beam mechanism to transmit a signal. In the process, how to improve the accuracy of channel estimation.
  • a signal receiving method includes:
  • the first resource unit is configured to determine a transmission parameter of the signal
  • the second resource unit includes at least one of: a control channel resource group, a control channel unit, a candidate control channel, and a degree of aggregation of the control channel.
  • Search space a private search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel sub-band, and the second communication node The corresponding bandwidth resource, the resource occupied by the signal, and one physical resource block.
  • the first resource unit includes at least one of: a precoding resource block group of the signal, a minimum sending unit of the signal, and a resource unit of the first reference signal corresponding to the signal, A minimum resource unit of the signal transmission pattern is determined.
  • the method further comprises: acquiring a channel estimation value of the signal according to the relevant transmission parameter of the signal.
  • the first reference signal satisfies at least one of the following:
  • the signal and the first reference signal are quasi-co-located
  • the channel characteristic information of the signal is obtained according to channel characteristic information of the first reference signal
  • the port set of the first reference signal is a subset of a set of demodulation reference signal ports of the signal
  • the sequence set used by the port of the first reference signal is a subset of the sequence set used by the demodulation reference signal of the signal;
  • intersection of the set of ports of the first reference signal and the set of demodulation reference signal ports of the signal is empty;
  • the frequency domain resource occupied by the signal is a subset of the frequency domain resources occupied by the first reference signal
  • the time domain resource occupied by the signal is a subset of time domain resources occupied by the first reference signal.
  • the first resource unit of the signal is determined according to at least one of:
  • the first resource unit of the signal is K times of the second resource unit, including at least one of the following:
  • the frequency domain resource of the first resource unit is K times of the frequency domain resource of the second resource unit
  • the time domain resource of the first resource unit is K times the time domain resource of the second resource unit;
  • the number of time-frequency resources included in the first resource unit is K times the number of time-frequency resources included in the second resource unit.
  • the transmission pattern of the signal is determined according to the minimum resource unit, and the transmission pattern of the signal includes at least one of the following The time domain resource occupied by the signal, the frequency domain resource occupied by the signal, and the code domain resource occupied by the signal.
  • receiving the signal sent by the first communications node includes: receiving information about the first resource unit that is notified by the first communications node, and obtaining the information according to the related information of the first resource unit. Correlating information of the second resource unit; and/or receiving related information of the second resource unit notified by the first communication node, and obtaining related information of the first resource unit according to related information of the second resource unit .
  • the frequency domain or code domain resource occupied by the first resource unit is determined according to time domain information of the first resource unit.
  • the K value is determined according to at least one of the following:
  • the K value is determined according to the number of time-frequency resources available in the second resource unit that can be used for control channel transmission.
  • receiving, by the first communication node, a type of the second resource unit where the type of the second resource unit comprises: a control channel resource group, a control channel unit, a candidate control channel, and a control channel a search space at a degree of aggregation, a proprietary search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, and a control channel sub-band, The bandwidth resource corresponding to the second communication node, the resource occupied by the signal, and one physical resource block.
  • the precoding resource block group includes K second resource units, wherein the value of the K is determined according to a degree of aggregation of the control channel.
  • the signal is transmitted at least in the minimum transmitting unit.
  • the reference signal in the minimum transmission unit is used for demodulation of all candidate control channels in the minimum transmission unit
  • the transmission pattern of the signal is determined by the smallest unit of the signal.
  • a signaling method includes:
  • the first resource unit is configured to determine a transmission parameter of the signal
  • the second resource unit includes at least one of: a control channel resource group, a control channel unit, a candidate control channel, and a control channel at a degree of aggregation.
  • a search space a private search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel subband, and a second communication node Bandwidth resources, resources occupied by the signals, and physical resource blocks.
  • the first resource unit includes at least one of: a precoding resource block group of the signal, a minimum sending unit of the signal, and a resource unit of the first reference signal corresponding to the signal, determining The minimum resource unit of the signal transmission pattern.
  • transmitting the signal to the second communication node comprises transmitting the signal to the second communication node based on a relevant transmission parameter of the signal.
  • the first reference signal satisfies at least one of the following:
  • the signal and the first reference signal are quasi-co-located
  • the channel characteristic information of the signal is obtained according to channel characteristic information of the first reference signal
  • the port set of the first reference signal is a subset of a set of demodulation reference signal ports of the signal
  • the sequence set used by the port of the first reference signal is a subset of the sequence set used by the demodulation reference signal of the signal;
  • intersection of the set of ports of the first reference signal and the set of demodulation reference signal ports of the signal is empty;
  • the frequency domain resource occupied by the signal is a subset of the frequency domain resources occupied by the first reference signal
  • the time domain resource occupied by the signal is a subset of time domain resources occupied by the first reference signal.
  • the first resource unit of the signal is determined according to at least one of:
  • the first resource unit of the signal is K times of the second resource unit, including at least one of the following:
  • the frequency domain resource of the first resource unit is K times of the frequency domain resource of the second resource unit
  • the time domain resource of the first resource unit is K times the time domain resource of the second resource unit;
  • the number of time-frequency resources included in the first resource unit is K times the number of time-frequency resources included in the second resource unit.
  • the transmission pattern of the signal is determined according to the minimum resource unit, and the transmission pattern of the signal includes at least one of the following The time domain resource occupied by the signal, the frequency domain resource occupied by the signal, and the code domain resource occupied by the signal.
  • transmitting the signal to the second communication node comprises:
  • Notifying the second communication node of related information of the first resource unit notifying related information of the second resource unit by using related information of the first resource unit, and/or,
  • the frequency domain/code domain resource occupied by the first resource unit is determined according to time domain information of the first resource unit.
  • the K value is determined according to the number of time-frequency resources available in the second resource unit that can be used for control channel transmission.
  • transmitting the signal to the second communication node comprises: notifying the second communication node of a type of the second resource unit, where the type of the second resource unit comprises: a control channel resource group, a control channel unit a candidate control channel, a search space at a degree of aggregation of the control channel, a proprietary search space of the second communication node, a common search space that the second communication node needs to detect, and all search spaces of the second communication node, A control channel subband, a bandwidth resource corresponding to the second communication node, a resource occupied by the signal, and a physical resource block.
  • the type of the second resource unit comprises: a control channel resource group, a control channel unit a candidate control channel, a search space at a degree of aggregation of the control channel, a proprietary search space of the second communication node, a common search space that the second communication node needs to detect, and all search spaces of the second communication node, A control channel subband, a bandwidth resource corresponding to the second communication node, a
  • the precoding resource block group includes K second resource units, wherein the value of the K is determined according to a degree of aggregation of the control channel.
  • the signal is transmitted at least in the minimum transmitting unit.
  • the reference signal in the minimum transmission unit is used for demodulation of all candidate control channels in the minimum transmission unit
  • the transmission pattern of the signal is determined by the smallest unit of the signal.
  • a method for receiving a control channel includes:
  • Determining a set of demodulation reference signal ports of the control channel wherein the set of demodulation reference signal ports of the control channel is a subset of the second set of reference signal ports;
  • the second reference signal port set is determined by at least one of the following manners: the second reference signal port set is fixed, and the second reference signal port set is obtained according to signaling information sent by the first communication node, Acquired according to the demodulation reference signal set of the broadcast channel, and acquired according to the measurement reference signal port set.
  • the set of demodulation reference signal ports of the control channel is determined according to at least one of the following information: the transmission resource information corresponding to the second communication node, the time parameter corresponding to the control channel, and the demodulation reference signal
  • the number of port sets M1 the type of the control channel region in which the control channel is located, the time parameter corresponding to the control channel region in which the control channel is located, the frequency domain resource index corresponding to the control channel, and the control channel of the control channel
  • the unit index, the control resource group index of the control channel receives signaling information sent by the first communications node, where the signaling information includes related information of the control channel demodulation reference signal.
  • the sending resource satisfies at least one of the following characteristics:
  • the plurality of transmission resources correspond to one same demodulation reference signal port
  • the second reference signal port set When the transmission resource corresponding to the second communication node changes, the second reference signal port set performs a corresponding change.
  • the set of demodulation reference signal ports of the control channel satisfies one of the following characteristics:
  • the set of demodulation reference signal ports of the control channel are variable at different time units
  • the set of demodulation reference signal ports of the control channel is variable in different frequency domain resources.
  • the set of demodulation reference signal ports of the control channel is determined by one of the following methods:
  • the set of demodulation reference signal ports of the control channel is obtained according to signaling information sent by the first communication node.
  • determining the set of demodulation reference signal ports of the control channel comprises:
  • the third reference signal port set is the second reference signal port set and the control channel solution Adjusts the difference set of reference signal port sets.
  • the method for determining the demodulation reference signal of the control channel is different, and/or the detection method of the control channel is different, and/or The minimum transmission unit of the demodulation reference signal of the control channel is different.
  • determining the set of demodulation reference signal ports of the control channel comprises at least one of the following:
  • the demodulation reference signal of the control channel is the second reference signal port set, and in the second control channel region, the demodulation reference signal of the control channel is the second reference a true subset of the set of signal ports;
  • a demodulation reference signal of the control channel in the first control channel region is fixed; and a demodulation reference signal of the control channel in the second control channel region is changed with time;
  • a demodulation reference signal of the control channel in the first control channel region is fixed, and a demodulation reference signal of the control channel in the second control channel region is changed according to a frequency domain resource;
  • control channels other than the control channel do not occupy time-frequency resources occupied by the control channel, and are occupied by other control channels on the second control channel region.
  • the time-frequency resource occupied by the control channel when other control channels other than the control channel do not occupy time-frequency resources occupied by the control channel, and are occupied by other control channels on the second control channel region.
  • the demodulation reference signal port of the control channel in different control channel regions satisfies at least one of the following features:
  • the number of demodulation reference signal ports of the control channel in different control channel regions is the same;
  • the set of demodulation reference signal ports of the control channel in one control channel region is a subset of the set of demodulation reference signal ports of the control channel in another control channel region.
  • the different control channel regions satisfy at least one of the following characteristics:
  • the union of the different control channel regions is the same within the frequency domain and the bandwidth of the second communication node.
  • control channel region satisfies at least one of the following characteristics:
  • the configuration information sent by the first communication node indicates a time unit in which different control channel regions are located, and/or a time-frequency resource in which different control channel regions are located.
  • the demodulation reference signal of the control channel satisfies at least one of the following features:
  • the first communication node transmits the demodulation reference signal of the control channel only in a time unit that transmits the control channel;
  • the first communication node transmits a demodulation reference signal of the control channel in an agreed time unit and a time unit in which the control channel is transmitted, the first in the agreed time unit The communication node does not transmit the control channel of the second communication node.
  • the minimum transmitting unit of the demodulation reference signal of the control channel further satisfies at least one of the following features:
  • the minimum sending unit is one or more control channel resource groups
  • the minimum transmitting unit is one or more control channel units
  • the minimum sending unit is a resource occupied by one or more candidate control channels
  • the minimum sending unit is a resource occupied by a search space of the same degree of aggregation
  • the minimum sending unit is a resource occupied by all search controls of all degrees of aggregation of the second communication node
  • the minimum transmission unit is the control channel region.
  • a method for transmitting a control channel comprising:
  • Determining a set of demodulation reference signal ports of the control channel wherein the demodulation reference signal port of the control channel is a subset of the second set of reference signal ports;
  • the second reference signal port set is determined by at least one of the following: the second reference signal port set is fixed, and the second reference signal port set is obtained according to signaling information sent to the second communication node. And acquiring according to the demodulation reference signal set of the broadcast channel, and acquiring according to the measurement reference signal port set.
  • the set of demodulation reference signal ports of the control channel is determined according to at least one of the following information: the transmission resource information corresponding to the second communication node, the time parameter corresponding to the control channel, and the demodulation reference signal
  • the number of port sets M1 the type of the control channel region in which the control channel is located, the time parameter corresponding to the control channel region in which the control channel is located, the frequency domain resource index corresponding to the control channel, and the control channel of the control channel A unit index, a control resource group index of the control channel.
  • the sending resource satisfies at least one of the following characteristics:
  • the plurality of transmission resources correspond to one same demodulation reference signal port
  • the second reference signal port set When the transmission resource corresponding to the second communication node changes, the second reference signal port set performs a corresponding change.
  • the set of demodulation reference signal ports of the control channel satisfies one of the following characteristics:
  • the set of demodulation reference signal ports of the control channel are variable at different time units
  • the set of demodulation reference signal ports of the control channel is variable in different frequency domain resources.
  • determining the set of demodulation reference signal ports of the control channel comprises:
  • the method for determining the demodulation reference signal of the control channel is different, and/or the method for transmitting the control channel is different, and/or the control The minimum transmission unit of the channel demodulation reference signal is different.
  • determining the demodulation reference signal port set of the control channel includes at least one of the following methods:
  • the demodulation reference signal of the control channel is the second reference signal port set, and in the second control channel region, the demodulation reference signal of the control channel is the second reference a true subset of the set of signal ports;
  • a demodulation reference signal of the control channel in the first control channel region is fixed; and a demodulation reference signal of the control channel in the second control channel region is changed with time;
  • control channels except the control channel do not occupy time-frequency resources occupied by the control channel, and on the second control channel region, except for the control channel.
  • the other control channels occupy the time-frequency resources occupied by the control channel.
  • the demodulation reference signal port of the control channel in different control channel regions satisfies at least one of the following features:
  • the number of demodulation reference signal ports of the control channel in different control channel regions is the same;
  • the set of demodulation reference signal ports of the control channel in one control channel region is a subset of the set of demodulation reference signal ports of the control channel in another control channel region.
  • the different control channel regions satisfy at least one of the following characteristics:
  • control channel region is determined by acquiring a control channel region included in the time unit according to time parameter information of the time unit.
  • determining the set of demodulation reference signal ports of the control channel comprises:
  • Configuration information indicates a time unit in which different control channel regions are located, and/or a time-frequency resource in which different control channel regions are located.
  • determining the set of demodulation reference signal ports of the control channel comprises:
  • the minimum transmitting unit of different control channel regions further satisfies at least one of the following features:
  • the minimum sending unit is one or more control channel resource groups
  • the minimum transmitting unit is one or more control channel units
  • the minimum sending unit is a resource occupied by one or more candidate control channels
  • the minimum sending unit is a resource occupied by a search space of the same degree of aggregation
  • the minimum sending unit is a resource occupied by all search controls of all degrees of aggregation of the second communication node
  • the minimum transmission unit is the control channel region.
  • a signal receiving device includes:
  • a first receiving module configured to receive a signal sent by the first communications node, where the first resource unit of the signal is K times the second resource unit of the signal, and the K is a natural number;
  • the first resource unit is configured to determine a transmission parameter of the signal
  • the second resource unit includes at least one of: a control channel resource group, a control channel unit, a candidate control channel, and a degree of aggregation of the control channel.
  • Search space a private search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel sub-band, and the second communication node The corresponding bandwidth resource, the resource occupied by the signal, and one physical resource block.
  • the first resource unit includes at least one of: a precoding resource block group of the signal, a minimum sending unit of the signal, and a resource unit of the first reference signal corresponding to the signal, A minimum resource unit of the signal transmission pattern is determined.
  • the first resource unit of the signal is K times the second resource unit, and at least one of the following features is included:
  • the frequency domain resource of the first resource unit is K times of the frequency domain resource of the second resource unit
  • the time domain resource of the first resource unit is K times the time domain resource of the second resource unit;
  • the number of time-frequency resources included in the first resource unit is K times the number of time-frequency resources included in the second resource unit.
  • the K value is determined according to the number of time-frequency resources available in the second resource unit that can be used for control channel transmission.
  • a signal transmitting device includes:
  • a first sending module configured to send a signal to the second communications node, where the first resource unit of the signal is K times the second resource unit of the signal, and the K is a natural number;
  • the first resource unit is configured to determine an associated transmission parameter of the signal
  • the second resource unit includes at least one of: a control channel resource group, a control channel unit, a candidate control channel, and a control channel under a degree of aggregation Search space, a private search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, control channel subband, the second communication Node bandwidth resource, resource occupied by the signal, physical resource block.
  • the first resource unit of the signal is K times the second resource unit, and at least one of the following features is included:
  • the frequency domain resource of the first resource unit is K times of the frequency domain resource of the second resource unit
  • the time domain resource of the first resource unit is K times the time domain resource of the second resource unit;
  • the number of time-frequency resources included in the first resource unit is K times the number of time-frequency resources included in the second resource unit.
  • determining, and/or notifying, the K value according to at least one of the following manners, further comprising:
  • the K value is determined according to the number of time-frequency resources available in the second resource unit that can be used for control channel transmission.
  • a receiving device for a control channel comprising:
  • a first determining module configured to determine a demodulation reference signal port set of the control channel, where the demodulation reference signal port set of the control channel is a subset of the second reference signal port set;
  • a second receiving module configured to receive the control channel on the determined control channel demodulation reference signal port
  • the second reference signal port set is determined by at least one of the following manners: the second reference signal port set is fixed, and the second reference signal port set is obtained according to signaling information sent by the first communication node, Acquired according to the demodulation reference signal set of the broadcast channel, and acquired according to the measurement reference signal port set.
  • the demodulation reference signal of the control channel satisfies at least one of the following features:
  • the first communication node transmits the demodulation reference signal of the control channel only in a time unit that transmits the control channel;
  • the first communication node transmits the demodulation reference signal of the control channel in the agreed time unit and the time unit in which the control channel is transmitted, assuming that the said time unit is in the agreed time unit
  • the first communication node may not transmit the control channel of the second communication node.
  • a transmitting device for a control channel comprising:
  • a second determining module configured to determine a demodulation reference signal port set of the control channel, where the demodulation reference signal port of the control channel is a subset of the second reference signal port set;
  • a second sending module configured to send the control channel to the second communications node on the determined demodulation reference signal port
  • the second reference signal port set is determined by at least one of the following: the second reference signal port set is fixed, and the second reference signal port set is obtained according to signaling information sent to the second communication node. And acquiring according to the demodulation reference signal set of the broadcast channel, and acquiring according to the measurement reference signal port set.
  • the second determining module is further configured to: in the first control channel region, send the demodulation reference signal of the control channel only in a time unit that sends the control channel; Transmitting, in a channel region, a demodulation reference signal of the control channel in an agreed time unit and a time unit transmitting the control channel, where the second communication node may not be sent in the agreed time unit Control channel.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the methods described above.
  • the signal receiving and transmitting method, the receiving and transmitting method and the device for controlling the channel of the present disclosure receive the signal sent by the first communication node, wherein the first resource unit of the signal is K times of the second resource unit, and K is a natural number;
  • the first resource unit is configured to determine a transmission parameter of the signal, and the second resource unit includes at least one of: a control channel resource group, a control channel unit, a candidate control channel, a search space of a control channel, and a second communication.
  • Block PRB Since the first resource unit of the signal used for channel estimation is K times of the second resource unit given above, channel estimation according to the signal makes channel estimation more accurate, and therefore, the DMRS is used as a demodulation reference in the related art.
  • the problem that the control channel of the signal improves the accuracy of the channel estimation during the signal transmission process by at least one of the transmission mechanism and the beam mechanism.
  • FIG. 1 is a block diagram showing the hardware structure of a mobile terminal of a signal receiving method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a signal receiving method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a signal transmitting method according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method of receiving a control channel according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method of transmitting a control channel according to an embodiment of the present disclosure
  • FIG. 6 is a first schematic diagram 1 of a PRG of a control channel according to an embodiment of the present disclosure
  • FIG. 7 is a second schematic diagram of a PRG of a control channel in accordance with an embodiment of the present disclosure.
  • FIG. 8 is a third schematic diagram of a PRG of a control channel in accordance with an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram 4 of a PRG of a control channel according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram 5 of a PRG of a control channel according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram 6 of a PRG of a control channel according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram 7 of a PRG of a control channel in accordance with an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a minimum transmitting unit according to an embodiment of the present disclosure.
  • FIG. 14 is a first schematic diagram 1 of a demodulation reference signal in a control channel according to an embodiment of the present disclosure
  • 15 is a second schematic diagram of a demodulation reference signal in a control channel according to an embodiment of the present disclosure
  • 16 is a third diagram of a demodulation reference signal in a control channel according to an embodiment of the present disclosure.
  • 17 is a fourth diagram of a demodulation reference signal in a control channel according to an embodiment of the present disclosure.
  • FIG. 18 is a first schematic diagram of a control channel region in accordance with an embodiment of the present disclosure.
  • 19 is a second schematic diagram of a control channel region in accordance with an embodiment of the present disclosure.
  • 20 is a first schematic diagram of downlink transmission according to an embodiment of the present disclosure.
  • 21 is a third schematic diagram of a control channel region in accordance with an embodiment of the present disclosure.
  • 22 is a second schematic diagram of downlink transmission according to an embodiment of the present disclosure.
  • FIG. 23 is a third schematic diagram of downlink transmission according to an embodiment of the present disclosure.
  • 24 is a schematic diagram of acquiring a demodulation reference signal pattern according to an embodiment of the present disclosure.
  • 25 is a first schematic diagram of a control domain subband in accordance with an embodiment of the present disclosure.
  • 26 is a second schematic diagram of a control domain subband in accordance with an embodiment of the present disclosure.
  • FIG. 27 is a schematic diagram of a frequency domain resource corresponding to a port set of a demodulation reference signal according to an embodiment of the present disclosure
  • FIG. 28 is a schematic diagram of a control channel unit CCE corresponding to a port set of a demodulation reference signal, according to an embodiment of the present disclosure
  • 29 is a schematic diagram of a PRG unit in accordance with an embodiment of the present disclosure.
  • FIG. 30 is a structural block diagram of a signal receiving apparatus according to an embodiment of the present disclosure.
  • 31 is a block diagram showing the structure of a signal transmitting apparatus according to an embodiment of the present disclosure.
  • 32 is a structural block diagram of a receiving apparatus of a control channel according to an embodiment of the present disclosure.
  • FIG. 33 is a structural block diagram of a transmitting apparatus of a control channel according to an embodiment of the present disclosure.
  • FIG. 1 is a hardware structural block diagram of a mobile terminal of a signal receiving method according to an embodiment of the present disclosure.
  • the mobile terminal 10 may include one or more (only one shown) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA).
  • FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the signal receiving method in the embodiment of the present disclosure, and the processor 102 executes various kinds by executing software programs and modules stored in the memory 104. Functional application and data processing, that is, the above method is implemented.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is for receiving or transmitting data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 2 is a flowchart of a signal receiving method according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps:
  • Step S202 receiving a signal sent by the first communication node, where the first resource unit of the signal is K times of the second resource unit, K is a natural number; the first resource unit is used to determine a transmission parameter of the signal, and the second resource unit includes At least one of: a control channel resource group, a control channel unit, a candidate control channel, a search space under a degree of aggregation of the control channel, a proprietary search space of the second communication node, and a common search space that the second communication node needs to detect, All search spaces of the second communication node, one control channel subband, the bandwidth resource corresponding to the second communication node, the resource occupied by the signal, and one physical resource block PRB.
  • the first resource unit for the channel estimation is K times of the given second resource unit, channel estimation according to the signal makes the channel estimation more accurate, and therefore, the DMRS adopted in the related art can be solved. How to improve the accuracy of channel estimation in the process of transmitting a signal for the control channel transmission mechanism and/or beam mechanism of the demodulation reference signal.
  • the first resource unit includes at least one of the following: a pre-coded resource block group of the signal, a minimum transmission unit of the signal, a resource unit of the first reference signal corresponding to the signal, and a minimum resource unit that determines the signal transmission pattern. .
  • the method further comprises: acquiring a channel estimation value of the signal according to the relevant transmission parameter of the signal.
  • the first reference signal satisfies at least one of the following characteristics: the signal and the first reference signal are quasi co-location quasi co-location; the channel characteristic information of the signal is obtained according to channel characteristic information of the first reference signal;
  • the set of ports of a reference signal is a subset of the set of demodulation reference signal ports of the signal; the set of sequences used by the port of the first reference signal is a subset of the set of sequences used by the demodulation reference signal of the signal; the set of ports of the first reference signal
  • the intersection of the demodulation reference signal port set with the signal is empty; the frequency domain resource occupied by the signal is a subset of the frequency domain resource occupied by the first reference signal; the time domain resource occupied by the signal is occupied by the first reference signal A subset of time domain resources.
  • the signal comprises at least one of: a control channel signal, a demodulation reference signal, a measurement reference signal, and a data channel signal.
  • the first resource unit of the signal is determined according to at least one of: determining according to the second resource unit corresponding to the signal; determining according to a bandwidth corresponding to the second communication node; determining according to a control domain bandwidth of the second communication node; It is determined according to the resource mapping manner corresponding to the signal.
  • the first resource unit of the signal is K times of the second resource unit, and at least one of the following features: the frequency domain resource of the first resource unit is K times of the frequency domain resource of the second resource unit; The time domain resource of the resource unit is K times of the time domain resource of the second resource unit; the number of time-frequency resources included in the first resource unit is K times the number of time-frequency resources included in the second resource unit.
  • the minimum transmission unit of the signal when the signal is a demodulation reference signal and/or a measurement reference signal, the minimum transmission unit of the signal satisfies at least one of the following characteristics: the minimum transmission unit corresponds to a frequency domain length of Transmitting a minimum frequency domain unit of the signal; the minimum transmitting unit is the same minimum unit for precoding the signal; the frequency domain length corresponding to the minimum transmitting unit is the same minimum frequency domain unit as the signal precoding; The time domain and/or the frequency domain corresponding to the minimum transmitting unit is a minimum resource unit in which the signal time domain and/or the frequency domain can be interpolated; the demodulation reference signal of the time-frequency resource in the minimum transmitting unit is the signal .
  • determining a minimum resource unit of the signal transmission pattern includes: the transmission pattern of the signal is determined according to the minimum resource unit, and the transmission pattern of the signal includes at least the following: One: the time domain resource occupied by the signal, the frequency domain resource occupied by the signal, and the code domain resource occupied by the signal.
  • the receiving, by the first communications node, the signal that is sent by the first communications node includes: receiving information about the first resource unit that is notified by the first communications node, and obtaining related information of the second resource unit according to the related information of the first resource unit; Receiving related information of the second resource unit notified by the first communication node, and obtaining related information of the first resource unit according to related information of the second resource unit.
  • the base station notifies the PRG of the control channel corresponding to the terminal, and the terminal can obtain the degree of aggregation of the candidate control channel corresponding to the terminal. For example, if the PRG is K times the CCE, then the aggregation degree of the candidate control channel channel is:
  • the time domain/frequency domain/code domain resource occupied by the second resource unit is determined according to at least one of the following information: a time domain parameter, and a cell radio network temporary identifier of the second communication node (Cell Radio Network Temporary Identifier) , C-RNTI), bandwidth information corresponding to the second communication node, and frequency domain information where the broadcast channel is located.
  • a time domain parameter a time domain parameter
  • a cell radio network temporary identifier of the second communication node Cell Radio Network Temporary Identifier
  • C-RNTI Cell Radio Network Temporary Identifier
  • the frequency domain/code domain resource occupied by the first resource unit is determined according to time domain information.
  • determining the K value according to at least one of the following manners further comprising: receiving a K value notified by the first communication node; determining a K value according to the system bandwidth; determining a K value according to the bandwidth information corresponding to the second communication node; The resource mapping manner of the signal determines the K value; and the K value is determined according to the number of transmission resources fed back by the second communication node.
  • receiving the signal for sending by the first communications node comprises: receiving a type of the second resource unit notified by the first communications node, where the type of the second resource unit comprises: a control channel resource group, a control channel unit, a candidate a control channel, a search space at a degree of aggregation of the control channel, a proprietary search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, and a control channel subband, The bandwidth resource corresponding to the second communication node, the resource occupied by the signal, and one physical resource block PRB.
  • the manner of notifying the first communication node comprises: dynamic signaling, and/or high layer semi-static signaling.
  • FIG. 3 is a flowchart of a signal sending method according to an embodiment of the present disclosure. As shown in FIG. 3, the process includes the following steps:
  • Step S302 sending a signal to the second communication node, where the first resource unit of the signal is K times of the second resource unit, K is a natural number; the first resource unit is used to determine a transmission parameter of the signal, and the second resource unit includes the following At least one of: a control channel resource group, a control channel unit, a candidate control channel, a search space under a degree of aggregation of the control channel, a proprietary search space of the second communication node, a common search space that the second communication node needs to detect, and a second All search spaces of the communication node, control channel subband, second communication node bandwidth resource, signal occupied resource, physical resource block PRB.
  • the first resource unit for the channel estimation is K times of the given second resource unit, channel estimation according to the signal makes the channel estimation more accurate, and therefore, the DMRS adopted in the related art can be solved. How to improve the accuracy of channel estimation in the process of transmitting a signal for the control channel transmission mechanism and/or beam mechanism of the demodulation reference signal.
  • the first resource unit includes at least one of: a pre-coded resource block group of signals, a minimum transmission unit of the signal, a resource unit of the first reference signal corresponding to the signal, and a minimum resource unit that determines the signal transmission pattern.
  • transmitting the signal to the second communication node comprises transmitting a signal to the second communication node based on the associated transmission parameter of the signal.
  • the first reference signal satisfies at least one of the following characteristics: the signal and the first reference signal are quasi co-location quasi co-location; the channel characteristic information of the signal is obtained according to channel characteristic information of the first reference signal;
  • the set of ports of a reference signal is a subset of the set of demodulation reference signal ports of the signal; the set of sequences used by the port of the first reference signal is a subset of the set of sequences used by the demodulation reference signal of the signal; the set of ports of the first reference signal
  • the intersection of the demodulation reference signal port set with the signal is empty; the frequency domain resource occupied by the signal is a subset of the frequency domain resource occupied by the first reference signal; the time domain resource occupied by the signal is occupied by the first reference signal A subset of time domain resources.
  • the signal comprises at least one of: a control channel signal, a demodulation reference signal, a measurement reference signal, and a data channel signal.
  • the first resource unit of the signal is determined according to at least one of: determining according to the second resource unit corresponding to the signal; determining according to a bandwidth corresponding to the second communication node; determining according to a control domain bandwidth of the second communication node; It is determined according to the resource mapping manner corresponding to the signal.
  • the first resource unit of the signal is K times of the second resource unit, and at least one of the following features: the frequency domain resource of the first resource unit is K times of the frequency domain resource of the second resource unit; The time domain resource of the resource unit is K times of the time domain resource of the second resource unit; the number of time-frequency resources included in the first resource unit is K times the number of time-frequency resources included in the second resource unit.
  • determining a minimum resource unit of the signal transmission pattern includes: the transmission pattern of the signal is determined according to the minimum resource unit, and the transmission pattern of the signal includes at least the following: One: the time domain resource occupied by the signal, the frequency domain resource occupied by the signal, and the code domain resource occupied by the signal.
  • transmitting the signal for channel estimation to the second communication node comprises: information related to the first resource unit notified to the second communication node, and notifying the second resource unit by the related information of the first resource unit Relevant information; the related information of the first resource unit notified to the second communication node, and the related information of the first resource unit is notified by the related information of the second resource unit;
  • determining the time domain/frequency domain/code domain resource occupied by the second resource unit according to at least one of the following information: time domain information, The identification information of the second communication node, the bandwidth information corresponding to the second communication node, and the frequency domain information of the broadcast channel, wherein the identification information may be a cell radio network temporary identifier C-RNTI, or an NR-RNTI.
  • the frequency domain/code domain resource occupied by the first resource unit is determined according to time domain information.
  • determining the K value according to at least one of the following manners further comprising: determining a K value according to the system bandwidth according to the manner of notifying the K value to the second communication node; determining K according to the bandwidth information corresponding to the second communication node. a value; determining a K value according to a resource mapping manner of the signal; and determining a K value according to the number of transmission resources fed back by the second communication node.
  • the sending the signal to the second communication node comprises: the type of the second resource unit notified to the second communication node, the type of the second resource unit comprises: a control channel resource group, a control channel unit, a candidate control channel, a search space at a degree of aggregation of the control channel, a proprietary search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel subband, and a second communication The bandwidth resource corresponding to the node, the resource occupied by the signal, and one physical resource block PRB.
  • FIG. 4 is a flowchart of a method for receiving a control channel according to an embodiment of the present disclosure. As shown in FIG. 4, the process includes the following steps. :
  • Step S402 determining a demodulation reference signal port set of the control channel, where the demodulation reference signal port set of the control channel is a subset of the second reference signal port set;
  • Step S404 receiving a control channel on the determined control channel demodulation reference signal port
  • the second reference signal port set is determined by at least one of the following: the second reference signal port set is fixed, and the second reference signal port set is obtained according to the signaling information sent by the first communication node, and is demodulated according to the broadcast channel.
  • the reference signal set is acquired and obtained according to the measurement reference signal port set.
  • the determined demodulation reference signal port set of the control channel is a subset of the second reference signal port set, channel estimation is performed according to the signal transmitted on the control channel, so that the channel estimation is more accurate, and therefore, the correlation can be solved.
  • the problem of how to improve the accuracy of channel estimation is adopted in the process of transmitting signals by using the control channel transmission mechanism and/or the beam mechanism of the DMRS as the demodulation reference signal.
  • the set of demodulation reference signal ports of the control channel is obtained according to at least one of the following information: the transmission resource information corresponding to the second communication node, the time parameter corresponding to the control channel, and the number of port sets of the demodulation reference signal M1.
  • the transmission resource used by the node, the transmission resource of the first communication node, and the transmission resource includes at least one of the following resource types: a transmission beam resource, a transmission port resource, a precoding matrix resource, a transmission time resource, a frequency domain resource, and a sequence resource.
  • the different control channel region includes: the first communication node assumes that the first control region is a single-user multiple-input multiple-output (SU-MIMO) transmission mode; A communication node assumes that the first control region is a hybrid transmission mode of SU-MIMO and MU-MIMO.
  • SU-MIMO single-user multiple-input multiple-output
  • the transmission resource satisfies at least one of the following characteristics: a one-to-one correspondence between the transmission resource and the demodulation reference signal port; and a one-to-one correspondence between the transmission resource and the demodulation reference signal port set;
  • the sending resource corresponds to an identical demodulation reference signal port; when the corresponding transmission resource of the second communication node changes, the second reference signal port set performs corresponding change.
  • the transmit port is the port used for the reference signal.
  • the set of demodulation reference signal ports of the control channel satisfies one of the following characteristics: the demodulation reference signal port set of the control channel is variable at different time units; the demodulation reference signal port of the control channel is set at Different frequency domain resources are variable.
  • the set of demodulation reference signal ports of the control channel is obtained by detecting a reference signal in the second reference signal port set, and selecting a second reference signal port set according to the receiving performance of the reference signal.
  • One or more reference signal ports constitute a set of demodulation reference signal ports of the control channel; a control channel is detected on each reference signal port of the second reference signal port set, and the set of successfully detected reference signals constitutes a demodulation reference signal of the control channel a set of ports; a set of demodulation reference signal ports of the control channel is obtained according to signaling information sent by the first communication node.
  • the set of demodulation reference signal ports of the control channel satisfies at least one of the following features: assuming that the set of demodulation reference signal ports of the control channel includes at most M2 reference signals, where M2 is a natural number; The set of demodulation reference signal ports of the control channel includes M2 reference signals, where M2 is a natural number.
  • determining the set of demodulation reference signal ports of the control channel comprises: assuming that one or more other control channels may occupy ports in the third set of reference signal ports, and the third reference signal port set is a second reference signal port The difference set of the set of control and control channel demodulation reference signal ports.
  • the method for determining the demodulation reference signal of the control channel is different, and/or the detection method of the control channel is different, and/or the demodulation reference of the control channel
  • the minimum transmission unit of the signal is different.
  • determining the set of demodulation reference signal ports of the control channel comprises at least one of: in the first control channel region, the demodulation reference signal of the control channel is a second reference signal port set, and the second control channel In the region, the demodulation reference signal of the control channel is a true subset of the second reference signal port set; the demodulation reference signal of the control channel in the first control channel region is fixed and does not change with time; the control channel in the second control channel region The demodulation reference signal is time-varying; the demodulation reference signal of the control channel in the first control channel region is fixed and does not change with the frequency domain resource; the demodulation reference signal of the control channel in the second control channel region is The frequency domain resource is changed; in the first control channel region, the demodulation reference signal port of the control channel can be determined only according to the number of ports included in the demodulation reference signal of the control channel, and in the second control channel region, according to the control channel The number of ports included in the demodulation reference signal cannot determine the demodulation reference signal
  • the demodulation reference signal port of the control channel in different control channel regions satisfies at least one of the following characteristics: the number of demodulation reference signal ports of the control channel in the different control regions is the same; and the solution of the control channel in one control channel region
  • the set of reference signal ports is a subset of the set of demodulation reference signal ports of another control region control channel.
  • the different control channel regions satisfy at least one of the following features: the intersection of different control channel regions is empty; the different control channel regions belong to the same time unit; the different control channel regions pass time division, and/or frequency division, and / Or code division mode multiplexing; different control channel regions are combined in the same frequency domain and system bandwidth; the sum of different control channel regions is the same in the frequency domain and the bandwidth of the second communication node.
  • control channel region satisfies at least one of: acquiring a control channel region type included in the time unit according to time parameter information of the time unit; and configuring information sent by the first communication node indicating a time unit in which different control channel regions are located And/or time-frequency resources in which different control channel regions are located.
  • the demodulation reference signal of the control channel satisfies at least one of the following characteristics: in the first control channel region, it is assumed that the first communication node transmits the demodulation reference signal of the control channel only in the time unit in which the control channel is transmitted. In the second control channel region, it is assumed that the first communication node transmits the demodulation reference signal of the control channel in the agreed time unit and the time unit in which the control channel is transmitted, assuming that the first communication node may not transmit in the agreed time unit The control channel of the second communication node.
  • the minimum sending unit satisfies at least one of the following features: the minimum sending unit is a precoding resource unit corresponding to the reference signal; if the reference signal is sent, the minimum sending unit is a sending station a minimum resource unit of the reference signal; the minimum transmission unit is a minimum resource unit of the reference signal time-frequency interpolation
  • the minimum transmitting unit of the demodulation reference signal of the control channel further satisfies at least one of the following features: the minimum transmitting unit is one or more control channel resource groups; and the minimum transmitting unit is one or more control channel units;
  • the minimum transmission unit is a resource occupied by one or more candidate control channels; the minimum transmission unit is a resource occupied by one search space of the same degree of aggregation; and the minimum transmission unit is all search control units of all aggregation degrees of the second communication node.
  • the occupied resource; the minimum sending unit is the control channel area.
  • the same reference signal port of the different control regions is quasi-co-located; or in the first predetermined time unit, the same reference signal port of the different control regions is quasi-co-located, at the first predetermined time In the time unit other than the unit, the same reference signal port of the different control areas does not have a quasi-co-location relationship.
  • the method before determining that the demodulation reference signal port set of the control channel is a subset of the second reference signal port set, the method further includes: receiving configuration information sent by the first communication node, where the configuration information indicates different control channels
  • the configuration information is sent by at least one of the following methods: broadcast message transmission, high layer signaling, dynamic signaling, and agreed rules.
  • a quasi co-location between different reference signals indicates that the large-scale channel characteristic parameter of one reference signal can be obtained from a large-scale channel characteristic parameter of another reference signal.
  • FIG. 5 is a flowchart of a method for transmitting a control channel according to an embodiment of the present disclosure. As shown in FIG. 5, the process includes the following steps. :
  • Step S502 determining a demodulation reference signal port set of the control channel, where the demodulation reference signal port of the control channel is a subset of the second reference signal port set;
  • Step S504 transmitting a control channel to the second communication node on the determined demodulation reference signal port;
  • the second reference signal port set is determined by at least one of the following: the second reference signal port set is fixed, and the second reference signal port set is obtained according to the signaling information sent to the second communication node, according to the solution of the broadcast channel
  • the reference signal set acquisition is obtained according to the measurement reference signal port set.
  • the determined demodulation reference signal port set of the control channel is a subset of the second reference signal port set, channel estimation is performed according to the signal transmitted on the control channel, so that the channel estimation is more accurate, and therefore, the correlation can be solved.
  • the problem of how to improve the accuracy of channel estimation is adopted in the process of transmitting signals by using the control channel transmission mechanism and/or the beam mechanism of the DMRS as the demodulation reference signal.
  • the set of demodulation reference signal ports of the control channel is obtained according to at least one of the following information: the transmission resource information corresponding to the second communication node, the time parameter corresponding to the control channel, and the number of port sets of the demodulation reference signal M1.
  • the resource is a transmission resource used by the first communication node, and the transmission resource used by the first communication node is a transmission resource to the second communication node.
  • the transmission resource includes at least one of the following resource types: a transmission beam resource, and a transmission port.
  • the resource transmits a precoding matrix resource, transmits a time resource, transmits a frequency domain resource, and transmits a sequence resource, wherein the transmission resource is a resource used to send a signal to the second communication node.
  • the transmit port is the port used for the reference signal.
  • the transmission resource satisfies at least one of the following characteristics: a one-to-one correspondence between the transmission resource and the demodulation reference signal port; and a one-to-one correspondence between the transmission resource and the demodulation reference signal port set;
  • the sending resource corresponds to an identical demodulation reference signal port; when the corresponding transmission resource of the second communication node changes, the second reference signal port set performs corresponding change.
  • the set of demodulation reference signal ports of the control channel satisfies one of the following characteristics: the demodulation reference signal port set of the control channel is variable at different time units; the demodulation reference signal port of the control channel is set at Different frequency domain resources are variable.
  • determining the set of demodulation reference signal ports of the control channel comprises: transmitting signaling information to the second communication node, wherein the signaling information comprises demodulation reference signal port information of the control channel.
  • control channel region in which the control channel is located is different, the method for determining the demodulation reference signal of the control channel is different, and/or the method for transmitting the control channel is different.
  • determining the demodulation reference signal port set of the control channel includes at least one of: demodulation reference of the control channel in the first control channel region
  • the signal is a second reference signal port set, in the second control channel region, the demodulation reference signal of the control channel is a true subset of the second reference signal port set; the demodulation reference signal of the control channel in the first control channel region is fixed
  • the demodulation reference signal of the control channel in the second control channel region is time-varying; in the first control channel region, the number of ports included in the demodulation reference signal of the control channel can determine the control channel.
  • Demodulating the reference signal port, in the second control channel region, the demodulation reference signal port of the control channel cannot be determined according to the number of ports included in the demodulation reference signal of the control channel; on the first control channel region, other control channels are assumed Does not occupy the time-frequency resources occupied by the control channel, on the second control channel area, assume it When the control channel occupies a channel occupied frequency resources.
  • the demodulation reference signal port of the control channel in different control channel regions satisfies at least one of the following characteristics: the number of demodulation reference signal ports of the control channel in the different control regions is the same; and the solution of the control channel in one control channel region
  • the set of reference signal ports is a subset of the set of demodulation reference signal ports of another control region control channel.
  • different control channel regions satisfy at least one of the following features: the intersection of different control channel regions is empty; different control channel regions belong to the same time unit; different control channel regions overlap in time domain; different control channel regions pass time division, And / or frequency division, and / or code division mode multiplexing; different control channel area unions occupy the system bandwidth.
  • control channel region is determined by acquiring the control channel region included in the time unit according to the time parameter information of the time unit.
  • determining the set of demodulation reference signal ports of the control channel comprises: transmitting configuration information to the second communication node, wherein the configuration information indicates a time unit in which different control channel regions are located, and/or a different control channel region is located Time-frequency resources.
  • determining the demodulation reference signal port set of the control channel comprises: transmitting, in the first control channel region, a demodulation reference signal of the control channel only in a time unit transmitting the control channel; in the second control channel region The demodulation reference signal of the control channel is transmitted in the agreed time unit and the time unit in which the control channel is transmitted, and the control channel of the second communication node may not be transmitted in the agreed time unit.
  • the minimum unit of the reference signal transmission of the first control region and the minimum transmission unit of the reference signal of the second control region are different.
  • the minimum transmission unit of the different control channel region further satisfies at least one of the following: the resource occupied by the candidate control channel in the search space in the first control channel region is the minimum transmission unit; and the first control channel region
  • the resource occupied by one search space of the same degree of aggregation is the smallest transmission unit; the resources occupied by all the search spaces of all the aggregation degrees in the first control channel region are the minimum transmission unit; the smallest unit of the reference signal transmission in the second control channel region It is the second control channel region; the smallest unit of reference signal transmission in the second control channel region is the entire system bandwidth.
  • the same reference signal port of the different control regions is quasi-co-located; or in the first predetermined time unit, the same reference signal port of the different control regions is quasi-co-located, at the first predetermined time In the time unit other than the unit, the same reference signal port of the different control areas does not have a quasi-co-location relationship.
  • the method before determining that the demodulation reference signal port set of the control channel is a subset of the second reference signal port set, the method further includes: transmitting configuration information to the second communication node, where the configuration information indicates different control channel regions The time unit, and/or the time-frequency resource where the different control channel area is located, the configuration information is sent by at least one of the following methods: broadcast message transmission, high-level signaling, dynamic signaling, and agreed rules.
  • Embodiments of the present disclosure are directed to a PRG, QCL, demodulation reference signal pattern of a control channel and a control channel demodulation reference signal in a control channel transmitted by a control channel transmission mechanism and/or a beam mechanism using a DMRS as a demodulation reference signal.
  • the acquisition of the reference signal port and the detection of the control channel propose a solution.
  • the above embodiments of the present disclosure can solve the problem of control channel correlation detection and control channel demodulation reference signal acquisition under the control channel transmission mechanism of the beam mechanism and/or DMRS as the demodulation reference signal.
  • the foregoing embodiment can solve the PRG problem of determining the control channel and its demodulation reference signal, and increase the channel estimation performance of the control channel demodulation reference signal while obtaining the beam diversity gain.
  • the QCL information acquisition for the control channel demodulation reference signal provides a related solution to solve the acquisition of the QCL information of the control channel demodulation reference signal without CRS.
  • the acquisition of the control channel demodulation reference signal pattern provides a related solution, supports MU-MIMO transmission, and/or UE-Specific transmission beam to transmit the control channel.
  • the above embodiments propose different control channel detection methods for different control channel regions, support control channel regions for SU-MIMO transmission, and SU-MIMO/MU-MIMO transparent handover regions, and increase control channel capacity while reducing
  • the terminal detects the complexity of the control channel.
  • the first communication node may be a base station
  • the second communication node may be a terminal.
  • the base station transmits to the terminal a signal for channel estimation, which may be a control channel signal, a demodulation reference signal, a measurement reference signal, or a data channel signal.
  • a signal for channel estimation which may be a control channel signal, a demodulation reference signal, a measurement reference signal, or a data channel signal.
  • one control channel resource group is similar to REG (Resource element group) in LTE (or EREG (Enhanced Resource Element Group)), or NR-CCE adopted by NR in the future.
  • a control channel unit similar to the Control Channel Element (CCE) in LTE (or ECCE (Enhanced Control Channel Element Enhanced Control Channel Element)), or the NR-CCE adopted by NR in the future.
  • CCE Control Channel Element
  • ECCE Enhanced Control Channel Element Enhanced Control Channel Element
  • one or more REGs form a CCE
  • CCE is a basic unit of Downlink Control Information (DCI) mapping
  • DCI Downlink Control Information
  • one or more CCEs constitute a candidate control channel
  • one or The multiple candidate control channels form a search space.
  • the number of CCEs occupied by different candidate control channels in one search space is the same, and the number of CCEs occupied by one candidate control channel is called the degree of aggregation.
  • Different search spaces corresponding to different degrees of aggregation one or more search spaces constitute a proprietary search space, one or more search spaces constitute a common search space, and the terminal searches for proprietary control information in a proprietary search space in a common search space. Search for public control information.
  • the candidate control channel may also have other equivalent information, and does not affect the inventiveness of the embodiments of the present disclosure.
  • the precoding resource block group of the control channel (similar to the PRG, Precoding resource block Group in LTE) includes K second resource units, where the second resource unit includes at least one of: one control channel Resource group REG, a control channel unit CCE, a candidate control channel, a search space under a degree of aggregation of the control channel, a proprietary search space of the second communication node, all search spaces of the second communication node, control The subband in which the channel is located, the bandwidth corresponding to the second communication node, the frequency domain width occupied by the signal, and one PRB.
  • the REG in this embodiment is a unit for controlling channel resources
  • the CCE is composed of one or more REGs
  • the CCE is a minimum resource unit for controlling information mapping.
  • the REG may be other equivalent information, such as NR-REG, and does not affect the inventiveness of the embodiments of the present disclosure.
  • the same CCE can also be other equivalent information, such as NR-CCE, without affecting the inventiveness of the embodiments of the present disclosure.
  • the number of CCEs included in one candidate control channel is called the degree of aggregation of the candidate control channels.
  • the multiple candidate control channels of the same degree of aggregation constitute one search space, and the specific search space of one terminal is composed of multiple search spaces.
  • the search space of a terminal includes a proprietary search space and a common search space.
  • FIG. 6 is a first schematic diagram of a PRG of a control channel according to an embodiment of the present disclosure.
  • the PRG of the control channel is a REG, and thus the same reference signal port is allowed to adopt different precoding in different REGs (of course The same precoding can also be used, that is, different beams send the control channel to the terminal to obtain the diversity gain, but since the unit of the PRG is relatively small at this time, the terminal can only perform interpolation and filtering of the channel in the PRG, thereby making the channel The performance is estimated to be limited, which affects the reception performance of the control channel.
  • each PRG since the channel estimation of different PRGs cannot be interpolated, each PRG has its own demodulation reference signal, and the load of demodulating the reference signal is also a problem.
  • the PRG of the control channel it is preferable to specify or inform the PRG of the control channel to include K REGs, preferably the natural number whose K value is less than or equal to M and greater than 1.
  • M is the number of REGs included in a CCE, and of course K can be a natural number greater than M.
  • a PRG of a control channel may also be a CCE, where one CCE includes 9 REGs, that is, one reference signal port is in the one.
  • the precoding used by the CCE is the same, and the number of CCEs included in a PRG may be agreed or notified, where K is a natural number.
  • a PRG of a control channel may also be a candidate control channel.
  • one candidate control channel is composed of two CCEs, but For example, the number of other CCEs is not excluded.
  • the aggregation degree of the candidate control channel is different, that is, the number of CCEs corresponding to one candidate control channel is different.
  • the size of the PRG is different, for example, the number of CCEs included in the candidate control channel 1. If the value is 1, the size of the PRG is 1 CCE, and the number of CCEs included in the candidate control channel 2 is 2.
  • the size of the PRG is 2 CCEs.
  • the size of the PRG may be determined according to the aggregation degree set corresponding to the terminal. For example, the size of the PRG is the lowest aggregation degree of the aggregation degree corresponding to the terminal, for example, the aggregation degree set corresponding to the terminal is ⁇ 1.
  • the size of the PRG of the terminal is 1 CCE (the minimum degree of aggregation in the degree of aggregation), or the size of the PRG is the largest in the set of aggregation degrees corresponding to the terminal, or the average degree of aggregation is determined.
  • FIG. 9 is a schematic diagram 4 of a PRG of a control channel according to an embodiment of the present disclosure.
  • a PRG of a control channel is a resource corresponding to all candidate control channels at a degree of aggregation corresponding to a terminal, that is, a search space.
  • the PRGs of different search spaces are different (the number of candidate control channels corresponding to different search spaces is different due to different aggregation degrees of different search spaces); or the search space is determined according to the maximum aggregation degree of the terminal.
  • the degree of aggregation of the proprietary search space is ⁇ 1, 2, 4, 8 ⁇ search space composition, wherein the search space with a degree of aggregation of 1 includes 6 candidate control channels, including 6 CCEs; the search space with a degree of aggregation 2 includes 6 candidate control channels, including 12 CCEs, the search space with a degree of aggregation of 4 includes 2 candidate control channels, including 8 CCEs, and the search space with a degree of aggregation of 8 includes 2 candidate control channels, including 16 CCEs, and these CCEs may overlap.
  • one way of PRG is to take the greatest common divisor of the total number of CCEs corresponding to each search space, such as the greatest common divisor of (6, 12, 8, 16), that is, 2 CCEs; PRG is the smallest of all the search space includes the total number of CCE, PRG case six CCE, or PRG search space comprising all of the largest total number of CCE, this time to 16 PRG CCE.
  • the PRG is a resource component corresponding to a specific search space of the terminal.
  • the PRG is a resource component corresponding to all search spaces of the terminal.
  • the PRG is a control domain resource corresponding to the terminal
  • FIG. 11 is a schematic diagram 6 of the PRG of the control channel according to an embodiment of the present disclosure.
  • the terminal is in different time units.
  • the bandwidth of the corresponding control domain resources may be different, and thus the size of the PRG is also different.
  • the bandwidth allocated to the terminal in FIG. 11 is the same as the bandwidth of the control domain.
  • 12 is a schematic diagram 7 of a PRG of a control channel according to an embodiment of the present disclosure. As shown in FIG. 12, a control domain bandwidth of a terminal is smaller than a bandwidth of a terminal, where a bandwidth of the terminal is a maximum frequency domain that the base station allocates to the terminal, and the signal may exist.
  • the control domain bandwidth is the control information of the terminal or the maximum bandwidth of the control channel hopping.
  • the hopping may be a hopping in a time unit or a hopping in a different time unit.
  • the bandwidth length and location of the control domain in different time units in FIG. 12 are unchanged.
  • the control resource is used.
  • the PRG indicates that the base station informs the terminal that the precoding used by the same reference signal port in the PRG is the same, and the terminal decides whether to perform joint channel estimation in the PRG, for example, the terminal measures channel frequency selection/or The time selection is more serious, even if a PRG cannot perform joint channel estimation of the channel, if the frequency selection is not serious, joint channel estimation can be performed to filter out noise while suppressing interference. These can all be decided by the terminal itself.
  • the terminal can jointly acquire large-scale information of the channel by using reference signals of the PRG area, such as delay spread, Doppler spread, Doppler shift, average delay, departure angle, and angle of arrival measurement.
  • the terminal only needs to obtain information such as large-scale information of the channel according to the demodulation reference signal in the PRG, and the base station only informs the intermediate terminal that the precoding used by the same reference signal port in the PRG resource unit is used.
  • the precoding includes radio frequency precoding and digital precoding, in which the same transmission beam used for the same reference signal is the same.
  • the beams used by different PRG units may be different and joint channel estimation cannot be performed.
  • the transmit beams of all time-frequency resources corresponding to the demodulation reference signal port are the same in the PRG resource unit, or the demodulation corresponding to the demodulation reference signal port is indicated at this time.
  • the transmit beam on the reference signal time-frequency resource is the same in the PRG resource unit, and the transmit beam used to demodulate the reference signal and the control information may be different, such as an open loop based approach.
  • REG0 ⁇ REG8 are only logical indexes, and the time-frequency resources occupied by each REG may be discrete or continuous.
  • CCEn and CCEn+1 are also logical indexes only, and the time-frequency resources occupied by each CCE may be continuous or discrete.
  • the precoding resource block group may also be referred to as a precoding granularity unit, or other equivalent name, without affecting the inventiveness of the present disclosure.
  • the minimum transmission unit of the reference signal includes K second resource units, wherein the second resource unit includes at least one of the following: one control channel resource group REG, one control channel unit CCE, and one candidate control Channel, a search space under a degree of aggregation of the control channel, a proprietary search space of the second communication node, all search spaces of the second communication node, a control domain subband, and a bandwidth corresponding to the second communication node , the frequency domain width occupied by the signal, one PRB.
  • the second resource unit includes at least one of the following: one control channel resource group REG, one control channel unit CCE, and one candidate control Channel, a search space under a degree of aggregation of the control channel, a proprietary search space of the second communication node, all search spaces of the second communication node, a control domain subband, and a bandwidth corresponding to the second communication node , the frequency domain width occupied by the signal, one PRB.
  • the minimum sending unit of the reference signal includes at least one of the following information: if the reference signal is sent, the smallest unit that is sent is the minimum sending unit, where the reference signal occupies the minimum sending a partial time-frequency resource in the unit, where the time-frequency resource is similar to an RE in LTE, then the minimum transmission unit is a minimum frequency domain transmission unit; and the minimum transmission unit is a minimum resource unit in which the reference signal can be time-frequency interpolated Channel estimation obtained by the same reference signal port in the same time unit cannot perform channel interpolation in different minimum units; the minimum transmission unit is one PRG unit; time-frequency resources in the minimum transmission unit may adopt the reference signal As a demodulation reference signal.
  • FIG. 13 is a schematic diagram of a minimum transmission unit according to an embodiment of the present disclosure.
  • the terminal may obtain a channel estimation value based on a reference signal in a minimum transmission unit.
  • the channel estimate can be demodulated by all candidate control channels in the smallest transmission unit.
  • a control channel demodulation reference signal is transmitted in the minimum transmission unit for enhancing the estimation performance of the control channel demodulation reference signal, and can be shared by multiple users.
  • the base station sends a control channel to the terminal by using a UE-Specific transmit beam mode in the control channel region.
  • the base station sends a control channel and a reference signal to the terminal, where the first resource unit associated with the reference signal is K times the second resource unit, where K is a natural number.
  • the first resource unit is a minimum resource unit that determines the signal transmission pattern
  • the second resource unit is at least one of the following resource units: a control channel resource group REG, a control channel unit CCE, and a candidate control channel.
  • a search space at a degree of aggregation of the control channel a proprietary search space of the second communication node, all search spaces of the second communication node (including a proprietary search space and a common search space), and a sub-control channel Band, the bandwidth corresponding to the second communication node, the frequency domain width occupied by the signal, and one PRB.
  • the transmission pattern of the reference signal is determined according to the first resource unit; wherein the transmission pattern of the signal includes at least one of the following: a time domain resource and/or a frequency domain resource occupied by the signal, the signal possessing Code domain resources.
  • the second resource unit is a candidate control channel
  • each candidate control channel in the terminal's proprietary search space has a demodulation reference signal
  • the demodulation reference signal of each candidate control channel is used to demodulate the candidate.
  • the signal of the control channel. 14 is a first schematic diagram of demodulation reference signals in a control channel according to an embodiment of the present disclosure. As shown in FIG. 14, each of the candidate control channels has its own independent demodulation reference signal, since the terminal is in the blind control channel.
  • the different candidate control channels included in the terminal's proprietary search space may be the control channels sent by the base station to different terminals. In this case, the beams used by the control channels of different terminals may be different, so it is required to carry them in each candidate control channel.
  • the independent demodulation reference signal, the resources occupied by the first to sixth sets of demodulation reference signals in FIG. 14 are only examples, and other situations are not excluded, for example, the positions of the demodulation reference signals in different candidate control channels occupy different positions.
  • the number of resources occupied is different.
  • the minimum resource unit of the control channel demodulation reference signal pattern is determined to be a candidate control channel.
  • the second resource unit is a dedicated search space, and all candidate control channels in the proprietary search space of the same degree of aggregation of the terminal share a set of demodulation reference signal resources.
  • 15 is a second schematic diagram of demodulating a reference signal in a control channel according to an embodiment of the present disclosure. As shown in FIG. 15, a minimum resource unit for determining a control channel demodulation reference signal pattern is a proprietary search space at a degree of aggregation. The transmission pattern of the reference signal is determined based on the resources of a proprietary search space.
  • the second resource unit is a proprietary search space, and all search spaces of the terminal share a set of demodulation reference signal resources.
  • 16 is a third schematic diagram of demodulating a reference signal in a control channel according to an embodiment of the present disclosure. As shown in FIG. 16, a minimum resource unit for determining a control channel demodulation reference signal pattern is a dedicated search space, according to a proprietary search space. The resource determines the transmission pattern of the reference signal.
  • the second resource unit is one REG, there is a demodulation reference signal in each REG.
  • the time-frequency resources occupied by the demodulation reference signal in the second resource unit are merely examples, and the present embodiment does not exclude other resource occupation.
  • the minimum resource unit for determining the transmission pattern minimum resource unit is determined.
  • the minimum resource unit of the demodulation reference signal transmission pattern is determined.
  • the demodulation reference is determined according to the minimum resource unit.
  • the transmission pattern of the signal is as shown in FIG. 14 to FIG. 16.
  • the CRS or DMRS similar to LTE is each PRB, and the patterns of the reference signals are the same or similar, and there is a demodulation reference in the minimum resource unit for determining the demodulation reference signal.
  • the transmission patterns in different minimum resource units are the same or similar, and there may be no demodulation reference signal in the resource units smaller than the minimum resource unit.
  • the minimum resource unit of the demodulation reference signal transmission pattern is determined to be one REG, then there is a demodulation reference signal time-frequency resource in each REG. If the minimum resource unit of the demodulation reference signal transmission pattern is determined to be a CCE, then Each CCE has a demodulation reference signal time-frequency resource. At this time, there is no demodulation reference signal time-frequency resource in one REG constituting one CCE.
  • the demodulation reference signal may be used for demodulation of signals in all time-frequency resources in the minimum resource unit (where all the time-frequency resources are time-frequency corresponding to the demodulation reference signal port) Resources may need to remove time-frequency resources occupied by other demodulation reference signal ports that are orthogonal to the demodulation reference signal port by time division/frequency division.
  • 17 is a fourth diagram of a demodulation reference signal in a control channel according to an embodiment of the present disclosure, as shown in FIG. 17, although the second resource unit is composed of all candidate control channels under the same degree of aggregation, ie, a second resource unit.
  • the minimum resource unit for determining the demodulation reference signal transmission pattern is a search space, indicating all of the minimum resource units.
  • the time-frequency resource shares a set of demodulation reference signal resources.
  • the base station sends a control channel and a reference signal to the terminal, where the first resource unit associated with the reference signal is K times the second resource unit, where K is a natural number.
  • the first resource unit is a resource unit of the first reference signal corresponding to the signal, the reference signal and the first reference signal are quasi-co-location QCL, and the channel large-scale information of the reference signal may be
  • the large-scale information of the first reference signal is obtained, and the channel large-scale information includes at least one of the following information: delay spread, Doppler spread, Doppler shift, average delay, ZOD (vertical departure angle), AOD (horizontal exit angle), ZOA (vertical angle of arrival), AOA (horizontal angle of arrival).
  • the foregoing second resource unit includes at least one of: a control channel resource group REG, a control channel unit CCE, a candidate control channel, a search space under a degree of aggregation of the control channel, and a proprietary search of the second communication node. Space, all search spaces of the second communication node (including a proprietary search space and a common search space), a sub-band in which the control channel is located, a bandwidth corresponding to the second communication node, and a frequency domain width occupied by the signal.
  • a control channel region is a subset of a QCL resource unit (where a QCL resource unit is a resource unit of the first reference signal).
  • the channel large-scale information of the demodulation reference signal of the control channel region can be obtained by the large-scale information of the first reference signal in the QCL resource unit.
  • the control channel region may include at least one of: one REG, one CCE, one candidate control channel, one search space, a dedicated search space, all search spaces in the current time unit, and the first bandwidth.
  • the first bandwidth is a bandwidth in which the control information of the first communication node can jump to occupy resources, and the hopping may be a hopping in the current time unit, or may be a hopping in different time units, that is, the terminal assumes that the control thereof
  • the channel is only transmitted within the bandwidth and is not transmitted outside of the bandwidth.
  • the embodiment provides a control channel and a demodulation reference signal sending method, and the control channel sent by the base station (that is, the first communication node) to the terminal (that is, the second communication node) satisfies the following characteristics, the control channel
  • the control channel area is different, the transmission mode is different; the control channel area where the control channel is located is different, the control channel demodulation reference signal is determined differently, and/or the control channel detection method is different.
  • control channel when the control channel is transmitted in the first control channel region, a single-user multiple-input multiple-output SU-MIMO method is adopted;
  • the SU-MIMO and MU-MIMO hybrid modes are used for transmission.
  • the hybrid transmission mode of SU-MIMO and MU-MIMO indicates that the region is SU-MIMO in some time units, and in some time units is the MU-MIMO transmission mode, the SU-MIMO/MU
  • the MIMO mode base station dynamically schedules according to scheduling requirements, or some time-frequency resources in this area are currently in the SU-MIMO transmission mode, and some time-frequency resources are in the MU-MIMO transmission mode.
  • the number of control channel demodulation reference signal ports is M
  • the demodulation reference signal port is determined according to the M
  • the control channel is transmitted in the second channel region
  • the number of control channel demodulation reference signal ports is M1
  • the demodulation reference signal port is a subset of the second set of reference signal ports.
  • the control channel demodulation reference signal port set is obtained according to at least one or more of the following information: the transmission resource information corresponding to the terminal; the time parameter corresponding to the control channel, and the port set of the demodulation reference signal a number M1, a time parameter corresponding to the second control channel region, a frequency domain resource index (such as a PRB index) where the control channel is located, an identification information C-RNTI of the terminal, and a second control channel region corresponding to Control channel resources (preferably different control channel resources may correspond to different time-frequency resources, or corresponding to different airspace resources, such as transmit beams, and/or receive beams); control channel resources corresponding to the control channels.
  • the sending resource is a sending resource used by the base station in the communication link (ie, a downlink communication link) received by the base station, and the sending resource includes one of the following resource types or Multiple: transmit beam resources, send port resources, send precoding matrix resources, send time resources, send frequency domain resources, and send sequence resources.
  • the transmission resource is a resource used by the first communication node to send a signal.
  • FIG. 19 is a schematic diagram 2 of a control channel region according to an embodiment of the present disclosure.
  • a control domain frequency in one time unit is divided into two regions, and the first control is performed.
  • the channel area, the second control channel area, wherein the control information is transmitted in the first control channel region is a SU-MIMO transmission mode, that is, only one control information is transmitted on the same time-frequency resource.
  • the control channel demodulation reference signal port is fixed, for example, one demodulation reference signal port, and the demodulation reference signal port is port 1.
  • the terminal detects the control channel in the first control region, it detects the control channel only on the demodulation reference port 1.
  • the terminal assumes that the base station does not send the control channel to other terminals through other demodulation reference signal ports on the time-frequency resources occupied by its control channel, or the most base stations send the other terminals through the same demodulation reference signal port through space division.
  • the control channel transmission of the second control channel region is a SU-MIMO/MU-MIMO hybrid transmission mode, that is, the control can be sent to multiple terminals by means of space division on the same time-frequency resource of the second control channel region.
  • Information different terminals occupy different control channel demodulation reference signal ports.
  • the different control channel demodulation reference signal ports are code division multiplexed. Of course, any one or more of the time division/frequency division may be used.
  • the demodulation reference signal port is time-division/frequency division, since the total number of layers of the control channel MU-MIMO transmitted by the base station is dynamically changed, it needs to be considered.
  • one solution is to inform the terminal of the total number of MU-MIMO transmission layers, and the terminal obtains the total number of ports of the current control channel demodulation reference signal according to the total number of layers, thereby performing rate matching, and at this time, SU-MIMO and MU-MIMO is non-transparent to the terminal.
  • Another solution is that the resources occupied by the control channel demodulation reference signal port are reserved, and the control information is not transmitted.
  • the control channel demodulation reference signal of the terminal in the area may be obtained according to the transmission resource corresponding to the terminal.
  • the transmission resource corresponding to the terminal is agreed by the previous base station and the terminal, for example, the process terminal such as beam training or beam tracking obtains its corresponding transmission resource.
  • the transmission resource and the control channel demodulation reference signal are in one-to-one correspondence.
  • the one-to-one correspondence between the transmission resource and the control channel demodulation reference signal is pre-determined by both the transmitting and receiving parties.
  • FIG. 20 is a first schematic diagram of downlink transmission according to an embodiment of the present disclosure.
  • a base station in downlink transmission, has a total of 12 transmission resources (for example, 12 transmission beams), and corresponding control channel demodulation reference signal port 1 ⁇ 12.
  • the terminal confirms that the transmission resource corresponding to the control channel is the transmission resource 1 through the previous beam training process or the beam tracking process, or the base station configures the transmission resource corresponding to the current terminal detection control channel as the transmission resource 1 (ie, the terminal is transmitting at this time)
  • the terminal detects the control channel in the second control channel region
  • the terminal first detects the control channel on the demodulation reference signal port 1 corresponding to the transmission resource 1, and detects other transmissions.
  • the demodulation reference signal port corresponding to the resource that is, the terminal also detects the control channel demodulation reference signal ports 2 to 12, thereby performing operations such as control channel MU interference estimation cancellation.
  • the frequency division manner of the first control channel region and the second control channel region in FIG. 19 is merely an example and does not exclude other frequency division methods.
  • the embodiment does not exclude the manner that the first control channel region and the second control channel region are time division and/or frequency division.
  • the control domain of one time unit is divided into multiple ways by using ECCE in LTE or CCE.
  • Control channel resources, the first control channel region includes a first control channel resource set, and the second control channel region includes a second control channel resource set.
  • the first control channel region and the second control channel region occupy the entire system bandwidth.
  • This embodiment does not exclude that the first control channel region and the second control channel region only occupy part of the system bandwidth.
  • the first control channel region and the second control channel region are transmitted before the corresponding transmission domain in FIG.
  • FIG. 19 is a schematic diagram 3 of a control channel region according to an embodiment of the present disclosure. As shown in FIG. 21, each time unit obtains one of a first control channel region and a second control channel region according to a time parameter corresponding to the time unit. Alternatively, the time unit in which the first control channel region and the second control channel region are located is previously agreed by the transmitting and receiving parties, for example, through high layer signaling, or through common control information, or through previous dynamic signaling.
  • the second embodiment of the present embodiment is similar to the first embodiment except that the transmission resource and the demodulation reference signal port set in the second control channel region are in one-to-one correspondence.
  • each transmission resource corresponds to one demodulation reference port set
  • the demodulation reference signal port set includes at least one reference signal port.
  • the intersection of different sets of demodulation reference signal ports is null, and the other way is that the intersection of different sets of reference signal ports is non-empty.
  • the number of the reference signal ports included in the different reference signal port sets may be the same or different.
  • the terminal performs the control channel detection at the demodulation reference signal port corresponding to the transmission resource i, and detects the demodulation reference corresponding to the other transmission resources.
  • the MU interference is detected on the port in the signal port set, and the MU interference cancellation of the control channel is performed.
  • the corresponding transmission resource is obtained as the transmission resource 1 by the previous beam training or other process terminal, and the transmission resource 1 corresponds to the demodulation reference signal port set 1, and the demodulation reference signal port set 1 is included.
  • Ports 1, 2, at this time, the terminal detects its control channel on ports 1, 2, detects demodulation reference signal ports corresponding to other transmission resources, and performs MU interference cancellation on the control channel.
  • the third embodiment of the present embodiment is similar to the first embodiment except that a plurality of transmission resources in the second control channel region correspond to one reference signal port.
  • the demodulation reference signal port corresponding to the transmission resource i is obtained by taking the sum of the _Num_Max, wherein the reference signal _Num_Max represents the maximum number of reference signal ports in the second control channel region. Specifically, as shown in FIG.
  • the base station has a total of 12
  • the transmission resource, reference signal _Num_Max 3, at this time, the transmission resource ⁇ 1, 4, 7, 10 ⁇ corresponds to port 1, the transmission resource ⁇ 2, 5, 8, 11 ⁇ corresponds to port 2, and the resource ⁇ 3, 6, 9,12 ⁇ corresponds to port 3, or the reference signal port corresponding to the transmission resource i is At this time, the transmission resource ⁇ 1, 2, 3 ⁇ corresponds to the demodulation reference signal port 1, the transmission resource ⁇ 4, 5, 6 ⁇ corresponds to the demodulation reference signal port 2, and the transmission resource ⁇ 7, 8, 9 ⁇ corresponds to the demodulation reference signal.
  • Port 3 the transmission resource ⁇ 10, 11, 12 ⁇ corresponds to the demodulation reference signal port 4. Note that the sending resource number starts from 0 in this operation. Of course, this embodiment does not exclude the correspondence between other transmission resources and reference signal ports.
  • one mode is that the terminal only uses the demodulation reference signal corresponding to the optimal transmission resource.
  • the terminal may detect the control channel on multiple demodulation reference signal ends corresponding to multiple transmission resources.
  • the fourth embodiment of the present embodiment is similar to the first embodiment, except that in the second control channel region, the demodulation reference signal of the terminal is no longer obtained according to the transmission resource corresponding to the terminal, but the terminal is in a
  • the first demodulation reference signal port is blindly detected.
  • the control channel is detected in the demodulation reference signal port.
  • the blind detection complexity of the terminal is increased, but the MU-MIMO pairing of the control channel is provided with greater flexibility, and the control channel transmission beam transmitted by the base station can be made flexible, because the reference signal is demodulated at this time. Not associated with the transmit beam.
  • the fifth embodiment of the present embodiment is similar to the fourth embodiment, except that the transmitting end and the receiving end further define the value of the M1, for example, the terminal blindly detects each of the third reference signal port sets.
  • the reference signal port receives the performance, and at most selects the M1 reference signal ports with the best reception performance, and jointly demodulates the control channel.
  • the sixth embodiment of the present embodiment is similar to the first embodiment except that the demodulation reference signal of the second control channel region is based on the identification number C-RNTI of the terminal and the time domain corresponding to the control channel of the terminal.
  • the minimum index (or maximum index) of the resource, and/or the minimum index (or maximum index) of the frequency domain resource corresponding to the control channel of the terminal is obtained by demodulating the reference signal port, and/or according to the minimum CCE corresponding to the control channel of the terminal ( Or the maximum CCE index), so that the reference signal ports of the two users are always the same on the same time-frequency resource, so that two users can perform MU-MIMO transmission.
  • the demodulation reference signal is not associated with the transmission resources of the beam training phase, so that the transmission resources (such as the transmission beam) of the control channel can be more flexible.
  • FIG. 22 is a second schematic diagram of downlink transmission according to an embodiment of the present disclosure. As shown in FIG.
  • the number of ports of the control channel demodulation reference signal is the total number of transmission resources LB corresponding to the terminal, and the terminal The corresponding transmission resource and the maximum value of M are obtained together.
  • the first control channel region and the second control channel region are both dedicated search channel regions
  • the terminal first determines an area where the control channel is located, for example, according to a previous agreement with the base station.
  • the rule obtains a proprietary search space, and determines, for each candidate control channel in the private search space, whether the region in which the control channel is located is the first control channel region or the second control channel region, and uses different detection modes for different control channel regions. Demodulation of the control channel and the control channel demodulation reference signal is performed.
  • the terminal In the second control channel region of the SU-MIMO/MU-MIMO transmission, the terminal assumes that one or more other control information may occupy a port in the third reference signal port set, and the third reference signal port set is the second The reference signal port set and the control channel demodulation reference signal port set difference set, the terminal detects the MUI (Mutiple user interferce multi-user interference) on the third port set terminal port.
  • MUI Mobile User Interference
  • the first resource unit includes K second resource units, and the method for obtaining the K value is described in this embodiment.
  • the method for obtaining the K value may include at least one of the following five methods:
  • the first method is that the first communication node notifies the second communication node of the K value, and may be a dynamic signaling notification or a high layer signaling notification, such as RRC signaling or MAC CE signaling. Notice;
  • the second method is to determine the K value according to the system bandwidth, for example, the first resource unit is a PRG unit;
  • the third method is to determine the K value according to the bandwidth information corresponding to the second communication node, for example, the bandwidth is the bandwidth of the PDCCH of the notified second communication node, that is, the PDCCH of the second communication node is in the current segment.
  • the hopping time can only be within the bandwidth, and the bandwidth is not exceeded. At least the PDCCH whose priority is detected does not exceed the bandwidth;
  • the fourth method is to determine the K value according to the resource mapping manner of the signal.
  • the first resource unit is a PRG unit
  • the physical resource occupied by the control channel is a continuous PRB, that is, NR-CCE or NR.
  • the mapping from -REG to PRB is local.
  • the value of K can be larger.
  • the mapping of NR-CCE or NR-REG to PRB is distributed (distrubute). At this time, the K value can be smaller.
  • the fifth method is to determine the K value according to the number of transmission resources that are fed back by the second communication node. For example, the more the transmission resources that the terminal feeds back to the base station, the more the transmission resources correspond to the transmission beam, and the more the transmission resources, the base station More transmit beams can be used to send control channels to the terminal, so that the more the number of transmit beams fed back by the terminal, the smaller the PRG can be.
  • the sending resource is a transmitting beam of the base station in the downlink communication link that the base station sends and receives with the terminal, where different transmitting beams can be distinguished by at least one of the following resource types: transmitting beam resources, transmitting reference signal port resources, and transmitting precoding. Matrix resources, send time resources, send frequency domain resources, and send sequence resources.
  • the transmission resource is a resource used by the base station to transmit a signal.
  • the transmit port is the port used for the reference signal.
  • the K value may be determined according to the number of time-frequency resources available for control channel transmission in the second resource unit, for example, the second resource unit is a CCE, and one The time-frequency resource available for the control channel in the CCE is 8 or 16. (In the case of 8, some time-frequency resources in this CCE are occupied by reference signals or broadcast channels or synchronization signals).
  • the first resource unit is the second. 2 times the resource unit, when 16 is the first resource unit is 1 times the second resource unit, of course, it may be other cases.
  • the base station sends a control channel and/or a demodulation reference signal to the terminal, where the first resource unit associated with the demodulation reference signal is K times the second resource unit, where K is a natural number.
  • the first resource unit is a PRG resource unit
  • the second resource unit is at least one of the following resource units: a control channel resource group REG, a control channel unit CCE, a candidate control channel, and a control channel under a degree of aggregation a search space, a private search space of the second communication node, all search spaces of the second communication node (including a proprietary search space and a common search space), a sub-band in which the control channel is located, the second The bandwidth corresponding to the communication node, the frequency domain width occupied by the signal, and one PRB.
  • the number K of the second resource unit included in the PRG may be larger, and when the mapping of the control channel to the physical resource is discrete, the second resource unit included in the PRG The number K value can be smaller.
  • the second resource unit type included in the PRG is of a higher level
  • the mapping of the control channel to the physical resource is discrete
  • the second resource included in the PRG The unit type level is lower.
  • the REG, CCE, a candidate control channel, a search space, a proprietary search space, all search spaces, a subband in which the control channel is located, a bandwidth corresponding to the second communication node, and a frequency domain width occupied by the signal The level of the unit type is increased in turn. Or the larger the frequency domain resource and/or the time domain resource corresponding to the second resource unit type, the higher the level of the second resource unit type.
  • K times of the first resource unit in the foregoing embodiment is the second resource unit, and K is a natural number.
  • the number of time-frequency resources included in the first resource unit is K times the number of time-frequency resources included in the second resource unit. That is, the first resource unit includes K second resource units.
  • only the number of resources occupied by the first resource unit in the frequency domain is K times of the frequency domain resource occupied by the second resource unit, or only the length of the first resource unit in the frequency domain is The length of the frequency domain occupied by the second resource unit is K times, and the number of time domain resources of the first resource unit and the number of time domain resources of the second resource unit may be different.
  • only the number of time domain resources occupied by the first resource unit is K times of the time domain resource occupied by the second resource unit, or only the first resource unit is in the time domain length.
  • the second resource unit occupies a time domain length K times, and the number of frequency domain resources of the first resource unit and the number of frequency domain resources of the second resource unit may be different.
  • a PRG of a signal ie, a precoding resource block group, or a precoding granularity unit
  • a minimum transmission unit of a signal ie, a precoding resource block group, or a precoding granularity unit
  • a resource unit of a quasi-co-reference signal of a signal ie, a precoding resource block group, or a precoding granularity unit
  • a minimum resource unit that determines a signal transmission pattern ie, a precoding resource block group, or a precoding granularity unit
  • the first way is that the PRG of the above signal, the minimum transmitting unit of the signal, the resource unit of the quasi-common reference signal of the signal, and the minimum resource unit of the determined signal transmission pattern are the same unit;
  • the second way is that the PRG of the above signal, the minimum transmitting unit of the signal, the resource unit of the quasi-common reference signal of the signal, and the smallest resource unit that determines the signal transmission pattern, the smallest resource unit is a PRG, and the other resource units are PRGs. Integer multiple.
  • the third way is that the PRG of the above signal, the minimum transmission unit of the signal, the resource unit of the quasi-common reference signal of the signal, and the minimum resource unit of the signal transmission pattern are determined, and the minimum resource unit for determining the signal transmission pattern is the smallest, and other resources are Determine the integer multiple of the minimum resource unit of the signal transmission pattern.
  • the K times of the first resource unit being the second resource unit are further discussed in detail below.
  • the first resource unit of the signal is K times of the second resource unit, where the second resource unit is a resource occupied by the signal, for example, the signal is a control channel, and the first resource is The unit is a minimum resource unit for determining a reference signal, the control channel occupies a PPB, and the demodulation reference signal obtains a demodulation reference signal pattern with a PRB, the control channel occupies 2 PRBs, and the demodulation reference signal is Two PRBs get a demodulated reference signal pattern. As shown in Figure 24.
  • the first resource unit is K times of the second resource unit, and K is a natural number.
  • the first communication node notifies the second communication node of the second resource unit type, where the second resource unit type includes: one control channel resource group REG, one control channel unit CCE, and one candidate control channel, a search space under one degree of aggregation of the control channel, a specific search space of the second communication node, all search spaces of the second communication node, a subband where the control channel is located, and a bandwidth corresponding to the second communication node , the frequency domain width occupied by the signal, one PRB.
  • control domain subband The following is a detailed discussion of the control domain subband.
  • control region subband is determined according to at least one of the following information: time domain information, C-RNTI of the second communication node, bandwidth information corresponding to the second communication node (such as a terminal), MIB/ The frequency domain information where the SIB is located.
  • the control domain subband is a subband where the control channel of the terminal is located, and the frequency domain length is equal to or smaller than the bandwidth that the data signal of the terminal can transmit.
  • the bandwidth information corresponding to the second communication node is at least one of the following: a system bandwidth of the second communication node; a bandwidth of the control domain of the second communication; and bandwidth information of the proprietary control information of the second communication node. .
  • the one control domain subband may also be referred to as a control resource set, and one control information is in a control domain subband.
  • the terminal detects the control channel based on the full bandwidth, and its power consumption is relatively large. It is advocated that the control channel is placed in a narrow band, thereby reducing the power consumption of the terminal, such as the control channel of the terminal.
  • the control domain subband allocated to a terminal is fixed or configured at a high level, the flexible scheduling user combination cannot be implemented well at this time. For example, the control domain subband 1 is user 1 to user.
  • sub-band 2 is shared by users 11 to 20, then each sub-band needs to be reserved with the maximum number of users (for example, sub-band 1 can allow users 1 to 10 to simultaneously schedule, otherwise the scheduling is limited)
  • the scheduling restriction is increased. For example, the user 1 to the user 11 need to be scheduled at this time, the sub-band 1 is saturated, and the users 1 to 10 cannot be scheduled by using the resources of the sub-band 2.
  • FIG. 25 is a first schematic diagram of a control domain subband according to an embodiment of the present disclosure.
  • the user's control domain subband is hopped over time, for example, every L time units are hopped once, and L is a natural number. So that the user who collided can no longer collide after L time units for a period of time.
  • the control domain subband and the data domain subband are the same, that is, in the time unit, the control domain subband and data
  • the domain subbands are the same, and the present embodiment does not exclude the difference between the two, that is, in the same time unit, the control domain subband and the data domain subband length are different, or the positions are different, as shown in FIG. 26, FIG.
  • the data domain subband is a data schedulable subband of the data terminal, and the scheduling data of the terminal occupies part or all of the frequency domain of the data domain.
  • the hopping of the subband at this time is a hopping in the whole system bandwidth, but a hopping in a limited subband set in the system bandwidth, the subcarrier spacing in the subband sets is the same, or the maximum time domain occupied by the control domain
  • the number of symbols is the same, or it is a transition in the set of subbands of the signaling configuration.
  • the control region subband of the control channel can be obtained according to the subband where the broadcast channel (PBCH (Physical Broadcast Channel), NR-PBCH (Next Radio Physical Broadcast Channel)) is located.
  • PBCH Physical Broadcast Channel
  • NR-PBCH Next Radio Physical Broadcast Channel
  • the control domain subband is a subband where the broadcast channel is located, or the frequency domain resource set occupied by the control domain subband is a subset of the frequency domain resource set occupied by the subband where the broadcast channel is located.
  • control channel demodulation reference signal is a subset of the second set of reference signals.
  • the control channel demodulation reference signal is obtained according to at least one of the following information: the transmission resource information corresponding to the second communication node (such as a terminal); the time parameter corresponding to the control channel, and the port set of the demodulation reference signal. a number M1, a control channel region type in which the control channel is located, a time parameter corresponding to a control channel region in which the control channel is located, a frequency domain resource index corresponding to the control channel, and a control channel unit corresponding to the control channel ( Similar to CCE) index.
  • control channel resource group (similar to REG) index corresponding to the control channel
  • the different control channel region includes: the first communication node assumes that the first control region is a SU-MIMO transmission mode; the first communication The node assumes that the first control region is a hybrid transmission mode of SU-MIMO and MU-MIMO.
  • the sending resource is a sending resource of the first communications node in the communications link received by the first communications node (such as a base station), and the sending resource includes the following resource types. One or more of the following: transmitting a beam resource, transmitting a port resource, transmitting a precoding matrix resource, transmitting a time resource, transmitting a frequency domain resource, and transmitting a sequence resource.
  • the transmission resource is a resource used by the first communication node to send a signal. In an embodiment, different transmission resources correspond to different transmission beams of the base station.
  • control channel needs to support the MU-MIMO transmission mode, and the MU-MIMO user can obtain the demodulation reference signal port by the above manner.
  • the terminal detects that the transmit beam resources of the base station where the control channel is located may be used to demodulate the ports of the reference signal, so that the demodulation reference signal ports of the users under different transmit beams may be different, of course, when the number of transmit beams is different. When the number is far greater than the number of ports, some of the transmission resources need to share the demodulation reference signal port.
  • the demodulation reference signal port of the control channel of the same terminal may change with time, that is, the control channel demodulation reference signal port may be determined according to the time parameter.
  • control channel region type in which the control channel is located wherein different control channel regions include: SU-MIMO control channel transmission region and SU-MIMO/MU-MIMO transmission mode, and different control channel region control channel demodulation reference signal acquisition
  • the first control channel region and the second control channel region control channel demodulation reference signal satisfy at least one of the following characteristics: demodulation of the control channel in the first control channel region (such as the SU-MIMO transmission region)
  • the reference signal is the second reference signal port set, and in the second control channel region (such as the SU-MIMO/MU-MIMO transmission region), the demodulation reference signal of the control channel is the second reference signal port set True subset.
  • the demodulation reference signal of the control channel of the first control region is fixed and does not change with time; the demodulation reference signal of the control channel of the second control region is time-varying; the first control region is The demodulation reference signal set of the control channel is determined according to the number of ports included in the demodulation reference signal set of the control channel, and the demodulation reference signal set of the control channel of the second control region needs to be according to the control channel. The number of ports and other information contained in the demodulation reference signal set can be determined.
  • the second communication node In the first control channel region, the second communication node has no other control channel occupying the time-frequency resource occupied by the control information, and on the second control channel region, the second communication node assumes that other control channels occupy the The time-frequency resource occupied by the control channel.
  • the number of demodulation reference signal ports of the control channel is the same in different control regions, or the demodulation reference signal port set of the control channel in one control channel region is a sub-module of the demodulation reference signal port of the control channel of another control region set.
  • different control channel regions include: a proprietary control channel region and a common control channel region.
  • FIG. 27 is a schematic diagram of a frequency domain resource corresponding to a port set of a demodulation reference signal according to an embodiment of the present disclosure, as shown in FIG. 27, the frequency domain resource is different from the demodulation reference signal.
  • the port collection is different.
  • the different frequency domain resources in FIG. 27 transmit different control information (DCI) of one terminal, or different frequency domain resources that transmit one control information, where one frequency domain resource includes one or more consecutive PRBs.
  • DCI control information
  • FIG. 28 is a schematic diagram of a control channel unit CCE corresponding to a port set of a demodulation reference signal according to an embodiment of the present disclosure. As shown in FIG. 28, a control channel unit CCE in which a control channel of the same terminal is located is different, and a control channel demodulation reference thereof is used. The signal ports can be different.
  • control domain subband (or control channel resource group) in which the control channel of the same terminal is located is different, and the ports of the control channel demodulation reference signal are different.
  • the demodulation reference signal port set of the control channel is variable at different time units; in an embodiment, the demodulation reference signal port of the control channel is set in different frequency domain resources. Medium is variable; in an embodiment, the terminal assumes that one or more other control information may occupy a port in the third set of reference signal ports, and the third reference signal port set is the second set of reference signal ports And a difference set of the control channel demodulation reference signal port set.
  • the second reference signal port set Determining, by at least one of the second reference signal port sets, the second reference signal port set is fixed; the second reference signal port set is obtained according to signaling information sent by the first communication node; A set of demodulation reference signals for the channel; a set of beam training reference signal ports.
  • the different control region satisfies at least one of the following features: an intersection of different control channel regions is empty; different control channel regions belong to the same time unit; different control channel regions overlap in time domain; and different control channel regions pass time division , and / or frequency division, and / or code division mode reuse; different control channel area unions occupy the system bandwidth.
  • the different control regions satisfy at least one of the following features: different control channel region intersections are empty; different control channel regions belong to different time units; and the time unit information is obtained according to time parameter information of the time unit Control channel area.
  • the base station sends configuration information to the terminal, where the configuration information indicates a time unit in which different control channel regions are located, and/or a time-frequency resource in which different control channel regions are located.
  • the configuration information may be sent in one or more of the following manners: a broadcast message, a high layer signaling, a dynamic signaling, and a rule agreed by the second communication node.
  • control channel demodulation reference signal ports The number of control channel demodulation reference signal ports will be described in detail below.
  • a method of determining the number of control channel demodulation reference signal ports is exemplified.
  • the correspondence relationship is agreed with the terminal before, or for example, according to the reporting by the terminal, and/or according to the notification of the base station.
  • the number of ports of the control channel demodulation reference signal is obtained together with the total number of transmission resources LB corresponding to the terminal, the transmission resource corresponding to the terminal, and the maximum value M_Max of the M.
  • M_Max the maximum value of the M.
  • a method for detecting a control channel is provided, mainly for supporting MU-MIMO transmission of a control channel.
  • the terminal detects a reference signal in the second reference signal port set, and selects one or more reference signal ports in the third reference signal port set to form the control channel according to the receiving performance of the reference signal.
  • a set of demodulation reference signal ports are provided.
  • the terminal detects a control channel on each reference signal port of the second reference signal port set, and the detected reference signal set constitutes a demodulation reference signal of the control channel;
  • the terminal may assume that the demodulation reference signal port set of the control channel includes at most M2 reference signals, that is, the terminal assumes that the base station uses at most M2 demodulation reference signal ports to send control information thereto, or at the same time frequency.
  • the base station on the resource uses up to M2 demodulation reference signal ports to send control information to it.
  • the terminal assumes that the base station uses M2 demodulation reference signals to transmit control information thereto, or the base station uses M2 demodulation reference signal ports to transmit control information to the same time-frequency resource.
  • the second communication node assumes that the control information of the second communication node needs to be transmitted in the first control channel region, and the demodulation reference signal of the first control channel region is sent.
  • the second communication node assumes that the demodulation reference signal of the second control channel region is fixedly transmitted at an agreed time unit, even if the second control channel region on the agreed time unit does not transmit any control information.
  • the demodulation reference signal of the second control channel region in the time unit other than the agreed time unit is transmitted only when there is control information to be transmitted.
  • the second communication node assumes that the minimum unit of the reference signal transmission of the first control region and the minimum transmission unit of the second control region reference signal are different.
  • the minimum sending unit satisfies at least one of the following features: the minimum sending unit is a PRG resource unit corresponding to the reference signal; if the reference signal is sent, the minimum resource unit sent is the minimum sending unit;
  • the transmitting unit is a minimum resource unit in which the reference signal can be time-frequency interpolated; channel estimation obtained by the same reference signal port in the same time unit cannot perform channel interpolation in different minimum units.
  • the minimum unit of the reference signal transmission of the different control areas of the terminal satisfies at least one of the following characteristics: the resource occupied by the candidate control channel in the search space of the second communication node in the first control channel area is the minimum a sending unit; the resource occupied by one search space of the same degree of aggregation of the second communication node in the first control channel area is the minimum sending unit; and all the aggregation degrees of the second communication node in the first control channel area
  • the resource occupied by the search space is the minimum transmission unit; the smallest unit of the reference signal transmission in the second control channel region is the second control channel region; the minimum unit for transmitting the reference signal in the second control channel region is the entire system bandwidth .
  • the QCL information will be described in detail below for different control channel regions.
  • the second communication node assumes that the QCL information of the same reference signal port of the different control areas is the same in the predetermined time unit, and the QCL information of the same reference signal port of the different control area is different in the time unit other than the agreed time unit .
  • the downlink control information (DCI) or the downlink control channel may be frequency-division multiplexed with the measurement reference signal, where the first resource unit of the measurement reference signal is K times of the second resource unit, where the first
  • the resource unit is a minimum transmitting unit that measures a reference signal
  • the second resource unit includes at least one of the following resource unit types: a control channel resource group, a control channel unit, a candidate control channel, a search space under a degree of aggregation of the control channel, and a second a private search space of the communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel sub-band, and a bandwidth resource corresponding to the second communication node.
  • the data channel and the control channel may be frequency division multiplexed, and the first resource unit of the data channel is K times of the second resource unit.
  • the first resource unit is at least one of the following units of the data channel: a minimum transmission unit of the data channel (or a minimum allocated resource unit of the data channel, or a minimum allocated resource unit of the data channel in the control domain); a PRG unit of the data channel; a minimum unit determined by the demodulation reference signal pattern of the data channel; a minimum transmission unit of the demodulation reference signal of the data channel (or a minimum transmission of the demodulation reference signal of the data channel in the control domain) unit).
  • the second resource unit includes at least one of the following resource unit types: a control channel resource group, a control channel unit, a candidate control channel, a search space under a degree of aggregation of the control channel, and a dedicated search space of the second communication node, the first a common search space that the two communication nodes need to detect, all search spaces of the second communication node, one control channel sub-band, a bandwidth resource corresponding to the second communication node, a resource occupied by the signal, and a physical resource block PRB .
  • one PRG unit includes a plurality of time units.
  • 29 is a schematic diagram of a PRG unit according to an embodiment of the present disclosure. As shown in FIG. 29, in the nth time unit and the n+1th time unit, the same communication direction (where the direction includes downlink and uplink) is occupied by the same user. The precoding of the resources is the same, or the same communication direction is the same as the precoding of the same frequency domain resource occupied by the same user.
  • FIG. 29 it is the nth time unit and the n+1th time unit, and the precoding between the resources in the same communication direction in the different time units of the user 1 is the same, and the other time unit conditions are not excluded in this embodiment, for example. It is a plurality of time units, and multiple time units may also be time-discontinuous.
  • the embodiments of the present disclosure are all directed to a downlink control channel, or a downlink reference signal.
  • the disclosure does not exclude that the technology is similarly used in an uplink control channel or an uplink reference signal.
  • a device for receiving a signal, transmitting a signal, receiving a control channel, and transmitting a control channel is also provided.
  • the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 30 is a structural block diagram of a signal receiving apparatus according to an embodiment of the present disclosure. As shown in FIG. 30, the apparatus includes:
  • the first receiving module 302 is configured to receive a signal sent by the first communications node, where the first resource unit of the signal is K times of the second resource unit, and K is a natural number;
  • the first resource unit is configured to determine a transmission parameter of the signal
  • the second resource unit includes at least one of: a control channel resource group, a control channel unit, a candidate control channel, a search space of a control channel, and a second search space.
  • a dedicated search space of the communication node a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel subband, a bandwidth resource corresponding to the second communication node, a resource occupied by the signal, and a physics Resource block PRB.
  • the first resource unit includes at least one of the following: a pre-coded resource block group of the signal, a minimum transmission unit of the signal, a resource unit of the first reference signal corresponding to the signal, and a minimum resource unit that determines the signal transmission pattern. .
  • the method further comprises: acquiring a channel estimation value of the signal according to the relevant transmission parameter of the signal.
  • the first reference signal satisfies at least one of the following characteristics: the signal and the first reference signal are quasi co-location quasi co-location; the channel characteristic information of the signal is obtained according to channel characteristic information of the first reference signal;
  • the set of ports of a reference signal is a subset of the set of demodulation reference signal ports of the signal; the set of sequences used by the port of the first reference signal is a subset of the set of sequences used by the demodulation reference signal of the signal; the set of ports of the first reference signal
  • the intersection of the demodulation reference signal port set with the signal is empty; the frequency domain resource occupied by the signal is a subset of the frequency domain resource occupied by the first reference signal; the time domain resource occupied by the signal is occupied by the first reference signal A subset of time domain resources.
  • the signal comprises at least one of: a control channel signal, a demodulation reference signal, a measurement reference signal, and a data channel signal.
  • the first resource unit of the signal is determined according to at least one of: determining according to the second resource unit corresponding to the signal; determining according to a bandwidth corresponding to the second communication node; determining according to a control domain bandwidth of the second communication node; It is determined according to the resource mapping manner corresponding to the signal.
  • the first resource unit of the signal is K times of the second resource unit, and at least one of the following features: the frequency domain resource of the first resource unit is K times of the frequency domain resource of the second resource unit; The time domain resource of the resource unit is K times of the time domain resource of the second resource unit; the number of time-frequency resources included in the first resource unit is K times the number of time-frequency resources included in the second resource unit.
  • determining a minimum resource unit of the signal transmission pattern includes: the transmission pattern of the signal is determined according to the minimum resource unit, and the transmission pattern of the signal includes at least the following: One: the time domain resource occupied by the signal, the frequency domain resource occupied by the signal, and the code domain resource occupied by the signal.
  • the first receiving module is further configured to receive related information of the first resource unit that is notified by the first communications node, obtain related information of the second resource unit according to the related information of the first resource unit, and receive the first communications.
  • the related information of the second resource unit notified by the node obtains related information of the first resource unit according to the related information of the second resource unit.
  • the time domain/frequency domain/code domain resource occupied by the second resource unit is determined according to at least one of the following information: a time domain parameter, identification information of the second communication node, and bandwidth information corresponding to the second communication node. , the frequency domain information where the broadcast channel is located.
  • the frequency domain/code domain resource occupied by the first resource unit is determined according to time domain information.
  • determining the K value according to at least one of the following manners further comprising: receiving a K value notified by the first communication node; determining a K value according to the system bandwidth; determining a K value according to the bandwidth information corresponding to the second communication node; The resource mapping manner of the signal determines the K value; and the K value is determined according to the number of transmission resources fed back by the second communication node.
  • the first receiving module is further configured to receive a type of the second resource unit that is notified by the first communications node, where the type of the second resource unit includes: a control channel resource group, a control channel unit, a candidate control channel, and a control. a search space at a degree of aggregation of the channel, a proprietary search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel subband, and a second communication node Corresponding bandwidth resource, resource occupied by signal, and physical resource block PRB.
  • Figure 31 is a block diagram showing the structure of a signal transmitting apparatus according to an embodiment of the present disclosure. As shown in Figure 31, the apparatus includes:
  • a second sending module 312, configured to send a signal to the second communications node, where the first resource unit of the signal is K times the second resource unit, where the K is a natural number;
  • the first resource unit is configured to determine a transmission parameter of the signal
  • the second resource unit includes at least one of: a control channel resource group, a control channel unit, a candidate control channel, and a control channel at a degree of aggregation.
  • a search space a private search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel subband, and a second communication node Bandwidth resource, the resource occupied by the signal, and the physical resource block PRB.
  • the first resource unit includes at least one of: a pre-coded resource block group of signals, a minimum transmission unit of the signal, a resource unit of the first reference signal corresponding to the signal, and a minimum resource unit that determines the signal transmission pattern.
  • transmitting the signal to the second communication node comprises transmitting a signal to the second communication node based on the associated transmission parameter of the signal.
  • the first reference signal satisfies at least one of the following characteristics: the signal and the first reference signal are quasi co-location quasi co-location; the channel characteristic information of the signal is obtained according to channel characteristic information of the first reference signal;
  • the set of ports of a reference signal is a subset of the set of demodulation reference signal ports of the signal; the set of sequences used by the port of the first reference signal is a subset of the set of sequences used by the demodulation reference signal of the signal; the set of ports of the first reference signal
  • the intersection of the demodulation reference signal port set with the signal is empty; the frequency domain resource occupied by the signal is a subset of the frequency domain resource occupied by the first reference signal; the time domain resource occupied by the signal is occupied by the first reference signal A subset of time domain resources.
  • the signal comprises at least one of: a control channel signal, a demodulation reference signal, a measurement reference signal, and a data channel signal.
  • the first resource unit of the signal is determined according to at least one of: determining according to the second resource unit corresponding to the signal; determining according to a bandwidth corresponding to the second communication node; determining according to a control domain bandwidth of the second communication node; It is determined according to the resource mapping manner corresponding to the signal.
  • the first resource unit of the signal is K times of the second resource unit, and at least one of the following features: the frequency domain resource of the first resource unit is K times of the frequency domain resource of the second resource unit; The time domain resource of the resource unit is K times of the time domain resource of the second resource unit; the number of time-frequency resources included in the first resource unit is K times the number of time-frequency resources included in the second resource unit.
  • determining a minimum resource unit of the signal transmission pattern includes: the transmission pattern of the signal is determined according to the minimum resource unit, and the transmission pattern of the signal includes at least the following: One: the time domain resource occupied by the signal, the frequency domain resource occupied by the signal, and the code domain resource occupied by the signal.
  • transmitting the signal for channel estimation to the second communication node comprises: information related to the first resource unit notified to the second communication node, and notifying the second resource unit by the related information of the first resource unit Relevant information; the related information of the first resource unit notified to the second communication node, and the related information of the first resource unit is notified by the related information of the second resource unit;
  • determining the time domain/frequency domain/code domain resource occupied by the second resource unit according to at least one of the following information: time domain information, The identification information of the second communication node, the bandwidth information corresponding to the second communication node, and the frequency domain information of the broadcast channel.
  • the frequency domain/code domain resource occupied by the first resource unit is determined according to time domain information.
  • determining the K value according to at least one of the following manners further comprising: determining a K value according to the system bandwidth according to the manner of notifying the K value to the second communication node; determining K according to the bandwidth information corresponding to the second communication node. a value; determining a K value according to a resource mapping manner of the signal; and determining a K value according to the number of transmission resources fed back by the second communication node.
  • the first receiving module is further configured to notify the second communication node of the type of the second resource unit, where the type of the second resource unit includes: a control channel resource group, a control channel unit, a candidate control channel, and a control. a search space at a degree of aggregation of the channel, a proprietary search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel subband, and a second communication node Corresponding bandwidth resource, resource occupied by signal, and physical resource block PRB.
  • FIG. 32 is a structural block diagram of a receiving apparatus of a control channel according to an embodiment of the present disclosure. As shown in FIG. 32, the apparatus includes:
  • a first determining module 322, configured to determine a demodulation reference signal port set of the control channel, where the demodulation reference signal port set of the control channel is a subset of the second reference signal port set;
  • the second receiving module 324 is connected to the first determining module 322, and configured to receive the control channel on the determined control channel demodulation reference signal port;
  • the second reference signal port set is determined by at least one of the following manners: the second reference signal port set is fixed, and the second reference signal port set is obtained according to signaling information sent by the first communication node, Acquired according to the demodulation reference signal set of the broadcast channel, and acquired according to the measurement reference signal port set.
  • the set of demodulation reference signal ports of the control channel is obtained according to at least one of the following information: the transmission resource information corresponding to the second communication node, the time parameter corresponding to the control channel, and the number of port sets of the demodulation reference signal M1.
  • the type of the control channel region where the control channel is located, the time parameter corresponding to the control channel region where the control channel is located, the frequency domain resource index corresponding to the control channel, the control channel unit index of the control channel, the control resource group index of the control channel, and the first reception The signaling information sent by the communication node, wherein the signaling information includes related information of the control channel demodulation reference signal.
  • the transmission resource satisfies at least one of the following characteristics: a one-to-one correspondence between the transmission resource and the demodulation reference signal port; and a one-to-one correspondence between the transmission resource and the demodulation reference signal port set;
  • the sending resource corresponds to an identical demodulation reference signal port; when the corresponding transmission resource of the second communication node changes, the second reference signal port set performs corresponding change.
  • the set of demodulation reference signal ports of the control channel satisfies one of the following characteristics: the demodulation reference signal port set of the control channel is variable at different time units; the demodulation reference signal port of the control channel is set at Different frequency domain resources are variable.
  • the set of demodulation reference signal ports of the control channel is obtained by detecting a reference signal in the second reference signal port set, and selecting a second reference signal port set according to the receiving performance of the reference signal.
  • One or more reference signal ports constitute a set of demodulation reference signal ports of the control channel; a control channel is detected on each reference signal port of the second reference signal port set, and the set of successfully detected reference signals constitutes a demodulation reference signal of the control channel a set of ports; a set of demodulation reference signal ports of the control channel is obtained according to signaling information sent by the first communication node.
  • the first determining module is further configured to assume that one or more other control channels may occupy ports in the third reference signal port set, and the third reference signal port set is the second reference signal port set and the control channel. Demodulation of the difference set of reference signal port sets.
  • the determining means of the demodulation reference signal of the control channel is different, and/or the detecting means of the control channel is different, and/or the demodulation reference of the control channel
  • the minimum transmission unit of the signal is different.
  • the first determining module is further configured to: in the first control channel region, the demodulation reference signal of the control channel is a second reference signal port set, and in the second control channel region, the control channel is demodulated The reference signal is a true subset of the second set of reference signal ports; the demodulation reference signal of the control channel in the first control channel region is fixed and does not change with time; the demodulation reference signal of the control channel in the second control channel region is over time The demodulation reference signal of the control channel in the first control channel region is fixed and does not change with the frequency domain resource; the demodulation reference signal of the control channel in the second control channel region is changed with the frequency domain resource; In the control channel region, the demodulation reference signal port of the control channel may be determined only according to the number of ports included in the demodulation reference signal of the control channel, and in the second control channel region, the port included in the demodulation reference signal according to the control channel The number cannot determine the demodulation reference signal port of the control channel; on the first control channel region,
  • the demodulation reference signal port of the control channel in different control channel regions satisfies at least one of the following characteristics: the number of demodulation reference signal ports of the control channel in the different control regions is the same; and the solution of the control channel in one control channel region
  • the set of reference signal ports is a subset of the set of demodulation reference signal ports of another control region control channel.
  • the different control channel regions satisfy at least one of the following features: the intersection of different control channel regions is empty; the different control channel regions belong to the same time unit; the different control channel regions pass time division, and/or frequency division, and / Or code division mode multiplexing; different control channel regions are combined in the same frequency domain and system bandwidth; the sum of different control channel regions is the same in the frequency domain and the bandwidth of the second communication node.
  • control channel region satisfies at least one of: acquiring a control channel region type included in the time unit according to time parameter information of the time unit; and configuring information sent by the first communication node indicating a time unit in which different control channel regions are located And/or time-frequency resources in which different control channel regions are located.
  • the demodulation reference signal of the control channel satisfies at least one of the following characteristics: in the first control channel region, it is assumed that the first communication node transmits the demodulation reference signal of the control channel only in the time unit in which the control channel is transmitted. . In the second control channel region, it is assumed that the first communication node transmits the demodulation reference signal of the control channel in the agreed time unit and the time unit in which the control channel is transmitted, assuming that the first communication node may not transmit in the agreed time unit. The control channel of the two communication nodes.
  • the minimum transmitting unit of the demodulation reference signal of the control channel further satisfies at least one of the following features: the minimum transmitting unit is one or more control channel resource groups; and the minimum transmitting unit is one or more control channel units;
  • the minimum transmission unit is a resource occupied by one or more candidate control channels; the minimum transmission unit is a resource occupied by one search space of the same degree of aggregation; and the minimum transmission unit is all search control of all aggregation degrees of the second communication node.
  • the occupied resource; the minimum sending unit is the control channel area.
  • the same reference signal port of the different control regions is quasi-co-located; or in the first predetermined time unit, the same reference signal port of the different control regions is quasi-co-located, at the first predetermined time In the time unit other than the unit, the same reference signal port of the different control areas does not have a quasi-co-location relationship.
  • FIG. 33 is a structural block diagram of a transmitting apparatus of a control channel according to an embodiment of the present disclosure. As shown in FIG. 33, the apparatus includes:
  • a second determining module 332, configured to determine a demodulation reference signal port set of the control channel, where the demodulation reference signal port of the control channel is a subset of the second reference signal port set;
  • the second sending module 334 is connected to the foregoing second determining module 332, configured to send the control channel to the second communications node on the determined demodulation reference signal port;
  • the second reference signal port set is determined by at least one of the following: the second reference signal port set is fixed, and the second reference signal port set is obtained according to signaling information sent to the second communication node. And acquiring according to the demodulation reference signal set of the broadcast channel, and acquiring according to the measurement reference signal port set.
  • the set of demodulation reference signal ports of the control channel is obtained according to at least one of the following information: the transmission resource information corresponding to the second communication node, the time parameter corresponding to the control channel, and the number of port sets of the demodulation reference signal M1.
  • the type of the control channel region where the control channel is located, the time parameter corresponding to the control channel region where the control channel is located, the frequency domain resource index corresponding to the control channel, the control channel unit index of the control channel, the control resource group index of the control channel, and the first reception The signaling information sent by the communication node, wherein the signaling information includes related information of the control channel demodulation reference signal.
  • the transmission resource satisfies at least one of the following characteristics: a one-to-one correspondence between the transmission resource and the demodulation reference signal port; and a one-to-one correspondence between the transmission resource and the demodulation reference signal port set;
  • the sending resource corresponds to an identical demodulation reference signal port; when the corresponding transmission resource of the second communication node changes, the second reference signal port set performs corresponding change.
  • the set of demodulation reference signal ports of the control channel satisfies one of the following characteristics: the demodulation reference signal port set of the control channel is variable at different time units; the demodulation reference signal port of the control channel is set at Different frequency domain resources are variable.
  • the second determining module is further configured to send signaling information to the second communications node, where the signaling information includes demodulation reference signal port information of the control channel.
  • control channel region in which the control channel is located is different, the determining means of the demodulation reference signal of the control channel is different, and/or the transmitting device of the control channel is different.
  • the second determining module is further configured to: in the first control channel region, the demodulation reference signal of the control channel is a second reference signal port set, where the control channel region where the control channel is located is different.
  • the demodulation reference signal of the control channel is a true subset of the second reference signal port set; the demodulation reference signal of the control channel in the first control channel region is fixed and does not change with time; the second control The demodulation reference signal of the control channel in the channel region is time-varying; in the first control channel region, the demodulation reference signal port of the control channel can be determined according to the number of ports included in the demodulation reference signal of the control channel, in the second In the control channel region, the demodulation reference signal port of the control channel cannot be determined according to the number of ports included in the demodulation reference signal of the control channel; on the first control channel region, it is assumed that other control channels do not occupy the time-frequency resource occupied by the control channel. On the second control channel region, it is assumed that
  • the demodulation reference signal port of the control channel in different control channel regions satisfies at least one of the following characteristics: the number of demodulation reference signal ports of the control channel in the different control regions is the same; and the solution of the control channel in one control channel region
  • the set of reference signal ports is a subset of the set of demodulation reference signal ports of another control region control channel.
  • different control channel regions satisfy at least one of the following features: the intersection of different control channel regions is empty; different control channel regions belong to the same time unit; different control channel regions overlap in time domain; different control channel regions pass time division, And / or frequency division, and / or code division mode multiplexing; different control channel area unions occupy the system bandwidth.
  • control channel region is determined by acquiring the control channel region included in the time unit according to the time parameter information of the time unit.
  • the second determining module is further configured to send configuration information to the second communications node, where the configuration information indicates a time unit in which different control channel regions are located, and/or a time-frequency resource in which different control channel regions are located.
  • the second determining module is further configured to: in the first control channel region, send a demodulation reference signal of the control channel only in a time unit that sends the control channel; in the second control channel region, at an agreed time The unit and the time unit transmitting the control channel transmit a demodulation reference signal of the control channel, and the control channel of the second communication node may not be transmitted in the agreed time unit.
  • the minimum unit of the reference signal transmission of the first control region and the minimum transmission unit of the reference signal of the second control region are different.
  • the minimum transmission unit of the different control channel region further satisfies at least one of the following: the minimum transmission unit is one or more control channel resource groups; and the minimum transmission unit is one or more control channel units.
  • the minimum transmission unit is a resource occupied by one or more candidate control channels; the minimum transmission unit is a resource occupied by one search space of the same degree of aggregation; and the minimum transmission unit is the second communication node. All the search units of all the degrees of aggregation control the resources; the minimum transmission unit is the control channel area.
  • the same reference signal port of the different control regions is quasi-co-located; or in the first predetermined time unit, the same reference signal port of the different control regions is quasi-co-located, at the first predetermined time In the time unit other than the unit, the same reference signal port of the different control areas does not have a quasi-co-location relationship.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a storage medium.
  • the storage medium may be configured to store program code for performing the following steps:
  • the unit includes at least one of: a control channel resource group, a control channel unit, a candidate control channel, a search space under a degree of aggregation of the control channel, a proprietary search space of the second communication node, and a common search that the second communication node needs to detect. Space, all search spaces of the second communication node, one control channel subband, the bandwidth resource corresponding to the second communication node, the resource occupied by the signal, and one physical resource block PRB.
  • the storage medium is further configured to store program code for performing the following steps:
  • the first resource unit includes at least one of the following: a pre-coded resource block group of the signal, a minimum transmission unit of the signal, a resource unit of the first reference signal corresponding to the signal, and a minimum resource unit that determines the signal transmission pattern.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method After receiving the signal sent by the first communications node, the method further includes: acquiring a channel estimation value of the signal according to the relevant transmission parameter of the signal.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first reference signal satisfies at least one of the following characteristics: the signal and the first reference signal are quasi co-location quasi co-location; the channel characteristic information of the signal is obtained according to channel characteristic information of the first reference signal;
  • the port set is a subset of the set of demodulation reference signal ports of the signal; the set of sequences used by the port of the first reference signal is a subset of the set of sequences used by the demodulation reference signal of the signal; the set of ports of the first reference signal and the solution of the signal
  • the intersection of the set of reference signal ports is empty; the frequency domain resource occupied by the signal is a subset of the frequency domain resources occupied by the first reference signal; the time domain resource occupied by the signal is the time domain resource occupied by the first reference signal a subset of.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the signal includes at least one of: a control channel signal, a demodulation reference signal, a measurement reference signal, and a data channel signal.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first resource unit of the signal is determined according to at least one of: determining according to the second resource unit corresponding to the signal; determining according to the bandwidth corresponding to the second communication node; determining according to the control domain bandwidth of the second communication node; The resource mapping method is determined.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first resource unit of the signal is K times of the second resource unit, and at least one of the following features: the frequency domain resource of the first resource unit is K times of the frequency domain resource of the second resource unit; The domain resource is K times the time domain resource of the second resource unit; the number of time-frequency resources included in the first resource unit is K times the number of time-frequency resources included in the second resource unit.
  • the storage medium is further arranged to store program code for performing the following steps:
  • determining a minimum resource unit of the signal transmission pattern includes: the transmission pattern of the signal is determined according to the minimum resource unit, and the transmission pattern of the signal includes at least one of the following: a signal Occupied time domain resources, frequency domain resources occupied by signals, and code domain resources occupied by signals.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Receiving the signal sent by the first communications node includes: receiving related information of the first resource unit notified by the first communications node, obtaining related information of the second resource unit according to related information of the first resource unit, and receiving the first communications.
  • the related information of the second resource unit notified by the node obtains related information of the first resource unit according to the related information of the second resource unit.
  • the storage medium is further arranged to store program code for performing the following steps:
  • S1 Determine a time domain/frequency domain/code domain resource occupied by the second resource unit according to at least one of the following information: a time domain parameter, identifier information of the second communication node, bandwidth information corresponding to the second communication node, and a broadcast channel Frequency domain information.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the frequency domain/code domain resource occupied by the first resource unit is determined according to time domain information.
  • the storage medium is further arranged to store program code for performing the following steps:
  • S1 determining a K value according to at least one of the following manners, further comprising: receiving a K value notified by the first communication node; determining a K value according to the system bandwidth; determining a K value according to the bandwidth information corresponding to the second communication node; and mapping the resource according to the signal
  • the mode determines the K value; the K value is determined according to the number of transmission resources fed back by the second communication node.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the signal for: receiving, by the first communication node, the type of the second resource unit, where the type of the second resource unit includes: a control channel resource group, a control channel unit, a candidate control channel, and a control a search space at a degree of aggregation of the channel, a proprietary search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel subband, and a second communication node Corresponding bandwidth resource, resource occupied by signal, and physical resource block PRB.
  • the type of the second resource unit includes: a control channel resource group, a control channel unit, a candidate control channel, and a control a search space at a degree of aggregation of the channel, a proprietary search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel subband, and a second communication node Corresponding bandwidth resource, resource occupied by signal
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the first resource unit of the signal is K times of the second resource unit, and K is a natural number; wherein the first resource unit is used to determine a related transmission parameter of the signal, and the second resource unit Including at least one of: a control channel resource group, a control channel unit, a candidate control channel, a search space under a degree of aggregation of the control channel, a proprietary search space of the second communication node, and a common search space that the second communication node needs to detect, All search spaces of the second communication node, control channel subband, second communication node bandwidth resource, signal occupied resource, physical resource block PRB.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first resource unit includes at least one of: a pre-coded resource block group of the signal, a minimum transmission unit of the signal, a resource unit of the first reference signal corresponding to the signal, and a minimum resource unit that determines the signal transmission pattern.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Sending a signal to the second communication node includes: transmitting a signal to the second communication node according to the relevant transmission parameter of the signal.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first reference signal satisfies at least one of the following characteristics: the signal and the first reference signal are quasi co-location quasi co-location; the channel characteristic information of the signal is obtained according to channel characteristic information of the first reference signal;
  • the port set is a subset of the set of demodulation reference signal ports of the signal; the set of sequences used by the port of the first reference signal is a subset of the set of sequences used by the demodulation reference signal of the signal; the set of ports of the first reference signal and the solution of the signal
  • the intersection of the set of reference signal ports is empty; the frequency domain resource occupied by the signal is a subset of the frequency domain resources occupied by the first reference signal; the time domain resource occupied by the signal is the time domain resource occupied by the first reference signal a subset of.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the signal includes at least one of: a control channel signal, a demodulation reference signal, a measurement reference signal, and a data channel signal.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first resource unit of the signal is determined according to at least one of: determining according to the second resource unit corresponding to the signal; determining according to the bandwidth corresponding to the second communication node; determining according to the control domain bandwidth of the second communication node; The resource mapping method is determined.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first resource unit of the signal is K times of the second resource unit, and at least one of the following features: the frequency domain resource of the first resource unit is K times of the frequency domain resource of the second resource unit; The domain resource is K times the time domain resource of the second resource unit; the number of time-frequency resources included in the first resource unit is K times the number of time-frequency resources included in the second resource unit.
  • the storage medium is further arranged to store program code for performing the following steps:
  • determining a minimum resource unit of the signal transmission pattern includes: the transmission pattern of the signal is determined according to the minimum resource unit, and the transmission pattern of the signal includes at least one of the following: a signal Occupied time domain resources, frequency domain resources occupied by signals, and code domain resources occupied by signals.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the sending, by the second communications node, the signal for channel estimation includes: information related to the first resource unit that is notified to the second communications node, and the related information of the second resource unit is notified by the related information of the first resource unit;
  • the related information of the first resource unit that is notified by the second communication node, and the related information of the first resource unit is notified by the related information of the second resource unit;
  • the storage medium is further arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the frequency domain/code domain resource occupied by the first resource unit is determined according to time domain information.
  • the storage medium is further arranged to store program code for performing the following steps:
  • determining the K value according to at least one of the following manners further comprising: determining a K value according to the system bandwidth according to the manner of notifying the K value to the second communication node; determining the K value according to the bandwidth information corresponding to the second communication node;
  • the resource mapping manner determines the K value; the K value is determined according to the number of transmission resources fed back by the second communication node.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Sending a signal to the second communications node includes: a type of the second resource unit notified to the second communications node, where the type of the second resource unit includes: a control channel resource group, a control channel unit, a candidate control channel, and a control channel. a search space under the degree of aggregation, a proprietary search space of the second communication node, a common search space that the second communication node needs to detect, all search spaces of the second communication node, a control channel subband, and a bandwidth corresponding to the second communication node Resources, resources occupied by signals, and a physical resource block PRB.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the second reference signal port set is determined by at least one of: the second reference signal port set is fixed, and the second reference signal port set is configured according to The signaling information obtained by the first communication node is acquired, acquired according to the demodulation reference signal set of the broadcast channel, and acquired according to the measurement reference signal port set.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the demodulation reference signal port set of the control channel is obtained according to at least one of the following information: the transmission resource information corresponding to the second communication node, the time parameter corresponding to the control channel, and the number of port sets M1 of the demodulation reference signal, where the control channel is located.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the sending resource meets at least one of the following characteristics: a one-to-one correspondence between the sending resource and the demodulation reference signal port; a one-to-one correspondence between the sending resource and the demodulation reference signal port set; and one of the multiple sending resources The same demodulation reference signal port; when the transmission resource corresponding to the second communication node changes, the second reference signal port set undergoes a corresponding change.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the demodulation reference signal port set of the control channel satisfies one of the following characteristics: the demodulation reference signal port set of the control channel is variable at different time units; the demodulation reference signal port of the control channel is set in different frequency domains.
  • the resources are variable.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the demodulation reference signal port set of the control channel is obtained by: detecting a reference signal in the second reference signal port set, and selecting one or more of the second reference signal port set according to the receiving performance of the reference signal.
  • the reference signal port constitutes a set of demodulation reference signal ports of the control channel; the control channel is detected on each reference signal port of the second reference signal port set, and the set of successfully detected reference signals constitutes a set of demodulation reference signal ports of the control channel;
  • the set of demodulation reference signal ports of the channel is acquired according to signaling information sent by the first communication node.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Determining a demodulation reference signal port set of the control channel includes: assuming that one or more other control channels may occupy a port in the third reference signal port set, and the third reference signal port set is a second reference signal port set and a control channel. Demodulation of the difference set of reference signal port sets.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method for determining the demodulation reference signal of the control channel is different, and/or the detection method of the control channel is different, and/or the minimum transmission of the demodulation reference signal of the control channel The unit is different.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the demodulation reference signal port of the control channel may be determined only according to the number of ports included in the demodulation reference signal of the control channel, and in the second control channel region, the demodulation reference signal according to the control channel The number of ports included cannot determine the demodulation reference signal
  • the storage medium is further arranged to store program code for performing the following steps:
  • the demodulation reference signal port of the control channel in different control channel regions satisfies at least one of the following characteristics: the number of demodulation reference signal ports of the control channel in the different control regions is the same; the demodulation reference signal port of the control channel in one control channel region
  • the set is a subset of the set of demodulation reference signal ports of another control region control channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • different control channel regions satisfy at least one of the following characteristics: intersection of different control channel regions is empty; different control channel regions belong to the same time unit; different control channel regions pass time division, and/or frequency division, and/or code division manner Multiplexing; different control channel regions are combined in the same frequency domain and system bandwidth; the sum of different control channel regions is the same in the frequency domain and the bandwidth of the second communication node.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the control channel region satisfies at least one of: acquiring a control channel region type included in the time unit according to time parameter information of the time unit; and configuring information sent by the first communication node indicating a time unit in which the different control channel region is located, and/or Time-frequency resources where different control channel regions are located.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the demodulation reference signal of the control channel satisfies at least one of the following features: in the first control channel region, it is assumed that the first communication node transmits the demodulation reference signal of the control channel only in the time unit of transmitting the control channel; In the control channel region, it is assumed that the first communication node transmits the demodulation reference signal of the control channel in the agreed time unit and the time unit in which the control channel is transmitted, assuming that the first communication node may not transmit the second communication node in the agreed time unit Control channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the minimum transmitting unit of the demodulation reference signal of the control channel further satisfies at least one of the following features: the minimum transmitting unit is one or more control channel resource groups; the minimum transmitting unit is one or more control channel units; and the minimum sending unit is The resource occupied by one or more candidate control channels; the minimum transmission unit is a resource occupied by one search space of the same degree of aggregation; and the minimum transmission unit is the resource occupied by all the search controls of all the aggregation degrees of the second communication node.
  • the minimum transmission unit is the control channel area.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the same reference signal port of the different control area is a quasi-co-location, and in the time unit other than the second predetermined time unit, the same reference signal port of the different control area does not have a quasi-co-location relationship.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the demodulation reference signal port set of the control channel is obtained according to at least one of the following information: the transmission resource information corresponding to the second communication node, the time parameter corresponding to the control channel, and the number of port sets M1 of the demodulation reference signal, where the control channel is located.
  • the control channel region type The control channel region type, the time parameter corresponding to the control channel region where the control channel is located, the frequency domain resource index corresponding to the control channel, the control channel unit index of the control channel, and the control resource group index of the control channel; wherein, the transmission resource is The communication link of the signal sent by the second communication node, the transmission resource used by the first communication node, and the transmission resource to the second communication node, and the transmission resource includes at least one of the following resource types: a transmission beam resource, a transmission port resource, and a transmission pre- The coding matrix resource, the transmission time resource, the transmission frequency domain resource, and the transmission sequence resource, wherein the transmission resource is a resource used to send a signal to the second communication node.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the sending resource meets at least one of the following characteristics: a one-to-one correspondence between the sending resource and the demodulation reference signal port; a one-to-one correspondence between the sending resource and the demodulation reference signal port set; and one of the multiple sending resources The same demodulation reference signal port; when the transmission resource corresponding to the second communication node changes, the second reference signal port set undergoes a corresponding change.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the demodulation reference signal port set of the control channel satisfies one of the following characteristics: the demodulation reference signal port set of the control channel is variable at different time units; the demodulation reference signal port of the control channel is set in different frequency domains.
  • the resources are variable.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Determining a demodulation reference signal port set of the control channel includes: transmitting signaling information to the second communication node, where the signaling information includes demodulation reference signal port information of the control channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • control channel region where the control channel is located is different, the method for determining the demodulation reference signal of the control channel is different, and/or the method for transmitting the control channel is different.
  • the storage medium is further arranged to store program code for performing the following steps:
  • determining the demodulation reference signal port set of the control channel includes at least one of: in the first control channel region, the demodulation reference signal of the control channel is the second a reference signal port set, in the second control channel region, the demodulation reference signal of the control channel is a true subset of the second reference signal port set; the demodulation reference signal of the control channel in the first control channel region is fixed, not over time Changing; the demodulation reference signal of the control channel in the second control channel region is time-varying; in the first control channel region, the demodulation reference signal of the control channel can be determined according to the number of ports included in the demodulation reference signal of the control channel a port, in the second control channel region, the demodulation reference signal port of the control channel cannot be determined according to the number of ports included in the demodulation reference signal of the control channel; on the first control channel region, it is assumed that other control channels do not occupy the control channel Occupied time-frequency resources, on the second
  • the storage medium is further arranged to store program code for performing the following steps:
  • the demodulation reference signal port of the control channel in different control channel regions satisfies at least one of the following characteristics: the number of demodulation reference signal ports of the control channel in the different control regions is the same; the demodulation reference signal port of the control channel in one control channel region
  • the set is a subset of the set of demodulation reference signal ports of another control region control channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • different control channel regions satisfy at least one of the following features: the intersection of different control channel regions is empty; different control channel regions belong to the same time unit; different control channel regions overlap in time domain; different control channel regions pass time division, and/or frequency Division, and / or code division mode multiplexing; the combination of different control channel areas fills the system bandwidth.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the control channel region is determined by acquiring the control channel region included in the time unit according to the time parameter information of the time unit.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Determining a set of demodulation reference signal ports of the control channel includes: transmitting configuration information to the second communication node, where the configuration information indicates time units in which different control channel regions are located, and/or time-frequency resources in which different control channel regions are located.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Determining a demodulation reference signal port set of the control channel includes: transmitting, in a first control channel region, a demodulation reference signal of the control channel only in a time unit that transmits the control channel; in the second control channel region, in an agreement The demodulation reference signal of the control channel is transmitted in the time unit and the time unit in which the control channel is transmitted, and the control channel of the second communication node may not be transmitted in the agreed time unit.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the minimum unit of the reference signal transmission of the first control area is different from the minimum transmission unit of the reference signal of the second control area.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the minimum transmission unit of the different control channel region further satisfies at least one of the following features: the resource occupied by the candidate control channel in the search space in the first control channel region is the minimum transmission unit; and the same aggregation degree in the first control channel region
  • the resource occupied by one search space is the minimum transmission unit; the resources occupied by all the search spaces of all the aggregation degrees in the first control channel region are the minimum transmission unit; the smallest unit of the reference signal transmission in the second control channel region is the second control Channel region; the smallest unit of reference signal transmission in the second control channel region is the entire system bandwidth.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the same reference signal port of the different control area is a quasi-co-location, and in the time unit other than the second predetermined time unit, the same reference signal port of the different control area does not have a quasi-common Value relationship.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), and a mobile hard disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor performs: receiving, according to the stored program code in the storage medium, a signal sent by the first communication node, where the first resource unit of the signal is K times of the second resource unit. And K is a natural number; wherein, the first resource unit is configured to determine a related transmission parameter of the signal, and the second resource unit includes at least one of: a control channel resource group, a control channel unit, a candidate control channel, and a degree of aggregation of the control channel.
  • Search space the private search space of the second communication node, the common search space that the second communication node needs to detect, all the search spaces of the second communication node, one control channel subband, the bandwidth resource corresponding to the second communication node, the signal Possession of resources, a physical resource block PRB.
  • the processor executes according to the stored program code in the storage medium: the first resource unit includes at least one of the following: a pre-coded resource block group of the signal, and a minimum transmission unit of the signal, The resource unit of the first reference signal corresponding to the signal determines the minimum resource unit of the signal transmission pattern.
  • the processor performs, according to the stored program code in the storage medium, after receiving the signal sent by the first communication node, further comprising: obtaining a channel estimate of the signal according to the relevant transmission parameter of the signal. value.
  • the processor executes according to the stored program code in the storage medium: the first reference signal satisfies at least one of the following characteristics: the signal and the first reference signal are quasi-co-location quasi co-location
  • the channel characteristic information of the signal is obtained according to the channel characteristic information of the first reference signal;
  • the port set of the first reference signal is a subset of the set of demodulation reference signal ports of the signal;
  • the sequence set used by the port of the first reference signal is a signal Demodulating a subset of the sequence set used by the reference signal;
  • the intersection of the port set of the first reference signal and the set of demodulation reference signal ports of the signal is null;
  • the frequency domain resource occupied by the signal is the frequency domain occupied by the first reference signal A subset of resources;
  • the time domain resource occupied by the signal is a subset of the time domain resources occupied by the first reference signal.
  • the processor executes according to the stored program code in the storage medium: the signal includes at least one of: a control channel signal, a demodulation reference signal, a measurement reference signal, and a data channel signal.
  • the processor executes according to the stored program code in the storage medium: the first resource unit of the signal is determined according to at least one of: determining according to the second resource unit corresponding to the signal; The bandwidth corresponding to the second communication node is determined; determined according to the control domain bandwidth of the second communication node; and determined according to the resource mapping manner corresponding to the signal.
  • the processor executes according to the stored program code in the storage medium: the first resource unit of the signal is K times of the second resource unit, and includes at least one of the following features: the first resource unit The frequency domain resource is K times the frequency domain resource of the second resource unit; the time domain resource of the first resource unit is K times of the time domain resource of the second resource unit; the number of time-frequency resources included in the first resource unit is The second resource unit includes K times the number of time-frequency resources.
  • the processor executes according to the stored program code in the storage medium: when the signal is a demodulation reference signal and/or a measurement reference signal, determining a minimum resource unit of the signal transmission pattern
  • the method includes: transmitting a signal according to the minimum resource unit, and the sending pattern of the signal includes at least one of the following: a time domain resource occupied by the signal, a frequency domain resource occupied by the signal, and a code domain resource occupied by the signal.
  • the processor performs, according to the stored program code in the storage medium, that: receiving, by the first communication node, the signal for: comprising: receiving, by the first communication node, the first resource unit Obtaining, according to related information of the first resource unit, related information of the second resource unit; receiving related information of the second resource unit notified by the first communication node, and obtaining related information of the first resource unit according to related information of the second resource unit .
  • the processor performs, according to the stored program code in the storage medium, determining the time domain/frequency domain/code domain resource occupied by the second resource unit according to at least one of the following information: The domain parameter, the identification information of the second communication node, the bandwidth information corresponding to the second communication node, and the frequency domain information of the broadcast channel.
  • the processor executes according to the stored program code in the storage medium: the frequency domain/code domain resource occupied by the first resource unit is determined according to the time domain information.
  • the processor executes according to the stored program code in the storage medium: determining the K value according to at least one of the following manners, further comprising: receiving the K value notified by the first communication node; The bandwidth determines the K value; the K value is determined according to the bandwidth information corresponding to the second communication node; the K value is determined according to the resource mapping manner of the signal; and the K value is determined according to the number of the transmitted resources fed back by the second communication node.
  • the processor performs, according to the stored program code in the storage medium, receiving the type of the second resource unit sent by the first communication node for receiving the first resource node notification
  • the type of the second resource unit includes: a control channel resource group, a control channel unit, a candidate control channel, a search space under a degree of aggregation of the control channel, a dedicated search space of the second communication node, and a second communication node that needs to be detected.
  • the common search space all search spaces of the second communication node, one control channel subband, the bandwidth resource corresponding to the second communication node, the resource occupied by the signal, and one physical resource block PRB.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the steps of: transmitting a signal to a second communication node, wherein the first resource unit of the signal is K times the second resource unit, K is a natural number; wherein the first resource unit For determining a relevant transmission parameter of the signal, the second resource unit includes at least one of: a control channel resource group, a control channel unit, a candidate control channel, a search space under a degree of aggregation of the control channel, and a proprietary search of the second communication node. Space, common search space that the second communication node needs to detect, all search spaces of the second communication node, control channel subband, second communication node bandwidth resource, signal occupied resource, physical resource block PRB.
  • the processor executes according to the stored program code in the storage medium: the first resource unit includes at least one of: a pre-coded resource block group of the signal, a minimum transmission unit of the signal, and a signal corresponding The resource unit of the first reference signal determines the minimum resource unit of the signal transmission pattern.
  • the processor executes according to the stored program code in the storage medium: transmitting the signal to the second communication node comprises: transmitting a signal to the second communication node according to the relevant transmission parameter of the signal.
  • the processor executes according to the stored program code in the storage medium: the first reference signal satisfies at least one of the following characteristics: the signal and the first reference signal are quasi-co-location quasi co-location
  • the channel characteristic information of the signal is obtained according to the channel characteristic information of the first reference signal;
  • the port set of the first reference signal is a subset of the set of demodulation reference signal ports of the signal;
  • the sequence set used by the port of the first reference signal is a signal Demodulating a subset of the sequence set used by the reference signal;
  • the intersection of the port set of the first reference signal and the set of demodulation reference signal ports of the signal is null;
  • the frequency domain resource occupied by the signal is the frequency domain occupied by the first reference signal A subset of resources;
  • the time domain resource occupied by the signal is a subset of the time domain resources occupied by the first reference signal.
  • the processor executes according to the stored program code in the storage medium: the signal includes at least one of: a control channel signal, a demodulation reference signal, a measurement reference signal, and a data channel signal.
  • the processor executes according to the stored program code in the storage medium: the first resource unit of the signal is determined according to at least one of: determining according to the second resource unit corresponding to the signal; The bandwidth corresponding to the second communication node is determined; determined according to the control domain bandwidth of the second communication node; and determined according to the resource mapping manner corresponding to the signal.
  • the processor executes according to the stored program code in the storage medium: the first resource unit of the signal is K times of the second resource unit, and includes at least one of the following features: the first resource unit The frequency domain resource is K times the frequency domain resource of the second resource unit; the time domain resource of the first resource unit is K times of the time domain resource of the second resource unit; the number of time-frequency resources included in the first resource unit is The second resource unit includes K times the number of time-frequency resources.
  • the processor executes according to the stored program code in the storage medium: when the signal is a demodulation reference signal and/or a measurement reference signal, determining a minimum resource unit of the signal transmission pattern
  • the method further includes: transmitting a signal according to a minimum resource unit, where the transmission pattern of the signal includes at least one of the following: a time domain resource occupied by the signal, a frequency domain resource occupied by the signal, and a code domain resource occupied by the signal.
  • the processor executes according to the stored program code in the storage medium: transmitting the signal for channel estimation to the second communication node comprises: notifying the first resource to the second communication node And the related information of the unit, the related information of the second resource unit is notified by the related information of the first resource unit; the related information of the first resource unit notified to the second communication node, and the first resource unit is notified by the related information of the second resource unit Related information;
  • the processor performs, according to the stored program code in the storage medium, determining the second resource according to at least one of the following information before transmitting the signal for channel estimation to the second communication node.
  • the time domain/frequency domain/code domain resource occupied by the unit time domain information, identification information of the second communication node, bandwidth information corresponding to the second communication node, and frequency domain information of the broadcast channel.
  • the processor executes according to the stored program code in the storage medium: the frequency domain/code domain resource occupied by the first resource unit is determined according to the time domain information.
  • the processor executes according to the stored program code in the storage medium: determining the K value according to at least one of the following manners, further comprising: according to the manner of notifying the K value to the second communication node
  • the K value is determined according to the system bandwidth; the K value is determined according to the bandwidth information corresponding to the second communication node; the K value is determined according to the resource mapping manner of the signal; and the K value is determined according to the number of the transmitted resources fed back by the second communication node.
  • the processor executes according to the stored program code in the storage medium: transmitting the signal to the second communication node comprises: a type of the second resource unit notified to the second communication node, second
  • the types of resource units include: a control channel resource group, a control channel unit, a candidate control channel, a search space under a degree of aggregation of the control channel, a proprietary search space of the second communication node, and a common search space that the second communication node needs to detect. All search spaces of the second communication node, one control channel subband, the bandwidth resource corresponding to the second communication node, the resource occupied by the signal, and one physical resource block PRB.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the step of determining a set of demodulation reference signal ports of the control channel, wherein the set of demodulation reference signal ports of the control channel is a subset of the second set of reference signal ports; Receiving a control channel on the control channel demodulation reference signal port; wherein the second reference signal port set is determined by at least one of: the second reference signal port set is fixed, and the second reference signal port set is according to the first communication node
  • the obtained signaling information is acquired, acquired according to the demodulation reference signal set of the broadcast channel, and acquired according to the measurement reference signal port set.
  • the processor executes, according to the stored program code in the storage medium, the demodulation reference signal port set of the control channel is obtained according to at least one of the following information: the sending resource corresponding to the second communication node.
  • the transmission resource is a transmission resource used by the first communication node in the communication link receiving the signal transmitted by the first communication node, and the transmission of the first communication node
  • the resource includes: at least one of the following resource types: a transmit beam resource, a transmit port resource, a transmit precoding matrix resource, a transmit time resource, a transmit frequency domain resource, and a transmit sequence resource, where the transmit resource is a first communication node
  • the processor performs, according to the stored program code in the storage medium, that the sending resource satisfies at least one of the following features: a one-to-one correspondence between the sending resource and the demodulation reference signal port; There is a one-to-one correspondence between the transmission resource and the set of demodulation reference signal ports; the plurality of transmission resources correspond to one same demodulation reference signal port; when the transmission resource corresponding to the second communication node changes, the second reference signal port is set The corresponding change.
  • the processor executes according to the stored program code in the storage medium: the demodulation reference signal port set of the control channel satisfies one of the following characteristics: the demodulation reference signal port of the control channel is set in Different time units are variable; the set of demodulation reference signal ports of the control channel is variable in different frequency domain resources.
  • the processor executes according to the stored program code in the storage medium: the demodulation reference signal port set of the control channel is obtained by one of: detecting the second reference signal port set And a reference signal, according to the receiving performance of the reference signal, selecting one or more reference signal ports in the second reference signal port set to form a demodulation reference signal port set of the control channel; each reference signal port in the second reference signal port set The control channel is detected, and the set of successfully detected reference signals constitutes a set of demodulation reference signal ports of the control channel; the set of demodulation reference signal ports of the control channel is obtained according to the signaling information sent by the first communication node.
  • the processor performs, according to the stored program code in the storage medium: determining the demodulation reference signal port set of the control channel comprises: assuming that one or more other control channels may occupy the third reference The port in the set of signal ports, the third reference signal port set is a difference set of the second reference signal port set and the control channel demodulation reference signal port set.
  • the processor performs, according to the stored program code in the storage medium, that the method for determining the demodulation reference signal of the control channel is different when the control channel region where the control channel is located is different.
  • the detection method of the control channel is different and/or the minimum transmission unit of the demodulation reference signal of the control channel is different.
  • the processor performs, according to the stored program code in the storage medium, determining that the demodulation reference signal port set of the control channel comprises at least one of: in the first control channel region, controlling The demodulation reference signal of the channel is a second reference signal port set, in the second control channel region, the demodulation reference signal of the control channel is a true subset of the second reference signal port set; the solution of the control channel in the first control channel region
  • the tuning reference signal is fixed and does not change with time; the demodulation reference signal of the control channel in the second control channel region changes with time; the demodulation reference signal of the control channel in the first control channel region is fixed, does not follow the frequency domain
  • the resource is changed; the demodulation reference signal of the control channel in the second control channel region is changed with the frequency domain resource; in the first control channel region, the control channel can be determined only according to the number of ports included in the demodulation reference signal of the control channel Demodulation reference signal port, in the second control channel region, according to a demodulation reference
  • the processor executes according to the stored program code in the storage medium: the demodulation reference signal port of the control channel in the different control channel region satisfies at least one of the following features: control in different control regions The number of demodulation reference signal ports of the channel is the same; the demodulation reference signal port set of the control channel in one control channel region is a subset of the set of demodulation reference signal ports of the other control region control channel.
  • the processor executes according to the stored program code in the storage medium: the different control channel regions satisfy at least one of the following features: the intersection of the different control channel regions is empty; the different control channel regions belong to Same time unit; different control channel regions are multiplexed by time division, and/or frequency division, and/or code division; different control channel regions are combined in the same frequency domain and system bandwidth; and different control channel regions are combined in the frequency domain The bandwidth is the same as the second communication node.
  • the processor executes, according to the stored program code in the storage medium, that the control channel region satisfies at least one of the following features: acquiring the control channel region included in the time unit according to the time parameter information of the time unit Type; the configuration information sent by the first communication node indicates a time unit in which different control channel regions are located, and/or a time-frequency resource in which different control channel regions are located.
  • the processor executes according to the stored program code in the storage medium: the demodulation reference signal of the control channel satisfies at least one of the following features: in the first control channel region, assuming the first The communication node transmits the demodulation reference signal of the control channel only in the time unit transmitting the control channel; in the second control channel region, it is assumed that the first communication node transmits the control channel in the time unit of the agreed time unit and the transmission control channel The reference signal is demodulated, assuming that the first communication node may not transmit the control channel of the second communication node in the agreed time unit.
  • the processor executes according to the stored program code in the storage medium: the minimum sending unit of the demodulation reference signal of the control channel further satisfies at least one of the following features: the minimum sending unit is one or a plurality of control channel resource groups; a minimum transmission unit is one or more control channel units; a minimum transmission unit is a resource occupied by one or more candidate control channels; and a minimum transmission unit is occupied by a search space of the same degree of aggregation The minimum transmission unit is the resource occupied by all the search control of all the aggregation degrees of the second communication node; the minimum transmission unit is the control channel area.
  • the processor executes according to the stored program code in the storage medium: in the first predetermined time unit, the same reference signal port of the different control area is a quasi-co-location, in the second In the time unit other than the predetermined time unit, the same reference signal port of the different control areas does not have a quasi-coordinate position relationship.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the step of determining a set of demodulation reference signal ports of the control channel, wherein the demodulation reference signal port of the control channel is a subset of the second set of reference signal ports; Transmitting a control channel to the second communication node on the demodulation reference signal port; wherein the second reference signal port set is determined by at least one of: the second reference signal port set is fixed, and the second reference signal port set is according to The acquisition of the signaling information sent by the two communication nodes is obtained according to the demodulation reference signal set of the broadcast channel, and is obtained according to the measurement reference signal port set.
  • the processor executes, according to the stored program code in the storage medium, the demodulation reference signal port set of the control channel is obtained according to at least one of the following information: the sending resource corresponding to the second communication node.
  • the sending resource includes at least one of the following resource types: a transmitting beam resource, a sending port resource, a precoding matrix resource, a sending time resource, a frequency domain resource, and a sequence resource, where the sending resource is to the second communication node.
  • the processor performs, according to the stored program code in the storage medium, that the sending resource satisfies at least one of the following features: a one-to-one correspondence between the sending resource and the demodulation reference signal port; There is a one-to-one correspondence between the transmission resource and the set of demodulation reference signal ports; the plurality of transmission resources correspond to one same demodulation reference signal port; when the transmission resource corresponding to the second communication node changes, the second reference signal port is set The corresponding change.
  • the processor executes according to the stored program code in the storage medium: the demodulation reference signal port set of the control channel satisfies one of the following characteristics: the demodulation reference signal port of the control channel is set in Different time units are variable; the set of demodulation reference signal ports of the control channel is variable in different frequency domain resources.
  • the processor performs, according to the stored program code in the storage medium, determining that the demodulation reference signal port set of the control channel comprises: sending signaling information to the second communication node, where the The information includes demodulation reference signal port information of the control channel.
  • the processor executes according to the stored program code in the storage medium: the control channel region where the control channel is located is different, the method for determining the demodulation reference signal of the control channel is different, and/or the control The channel is sent in different ways.
  • the processor performs, according to the stored program code in the storage medium, that when the control channel region where the control channel is located is different, determining the demodulation reference signal port set of the control channel includes the following At least one of the methods: in the first control channel region, the demodulation reference signal of the control channel is a second reference signal port set, and in the second control channel region, the demodulation reference signal of the control channel is a second reference signal port set a true subset; the demodulation reference signal of the control channel in the first control channel region is fixed and does not change with time; the demodulation reference signal of the control channel in the second control channel region is time-varying; in the first control channel region Demodulating the reference signal port of the control channel according to the number of ports included in the demodulation reference signal of the control channel.
  • the control channel cannot be determined according to the number of ports included in the demodulation reference signal of the control channel.
  • Demodulation reference signal port on the first control channel region, assume that other control channels are not The time-frequency resource occupied by the control channel is occupied.
  • other control channels are assumed to occupy the time-frequency resources occupied by the control channel.
  • the processor executes according to the stored program code in the storage medium: the demodulation reference signal port of the control channel in the different control channel region satisfies at least one of the following features: control in different control regions The number of demodulation reference signal ports of the channel is the same; the demodulation reference signal port set of the control channel in one control channel region is a subset of the set of demodulation reference signal ports of the other control region control channel.
  • the processor executes according to the stored program code in the storage medium: the different control channel regions satisfy at least one of the following features: the intersection of the different control channel regions is empty; the different control channel regions belong to The same time unit; different control channel regions overlap in time domain; different control channel regions are multiplexed by time division, and/or frequency division, and/or code division; different control channel regions are combined to occupy system bandwidth.
  • the processor executes according to the stored program code in the storage medium: the control channel region is determined by acquiring the control channel region included in the time unit according to the time parameter information of the time unit.
  • the processor performs, according to the stored program code in the storage medium, determining that the demodulation reference signal port set of the control channel comprises: sending configuration information to the second communication node, where the configuration information Indicates the time unit in which different control channel regions are located, and/or the time-frequency resources in which different control channel regions are located.
  • the processor performs, according to the stored program code in the storage medium, determining that the demodulation reference signal port set of the control channel comprises: in the first control channel region, only transmitting the control channel a demodulation reference signal for transmitting a control channel in a time unit; in the second control channel region, transmitting a demodulation reference signal of the control channel in a time unit of the agreed time unit and the transmission control channel, possibly in an agreed time unit
  • the control channel of the second communication node is not transmitted.
  • the processor executes according to the stored program code in the storage medium: the minimum unit of the reference signal transmission of the first control area and the minimum transmission unit of the reference signal of the second control area are different. .
  • the processor executes according to the stored program code in the storage medium: the minimum sending unit of the different control channel region further satisfies at least one of the following features: in the search space in the first control channel region
  • the resource occupied by the candidate control channel is the minimum transmission unit; the resource occupied by one search space of the same degree of aggregation in the first control channel region is the smallest transmission unit; and all the search spaces of all the aggregation degrees in the first control channel region occupy
  • the resource is the minimum transmission unit; the smallest unit transmitted by the reference signal in the second control channel region is the second control channel region; the smallest unit transmitted by the reference signal in the second control channel region is the entire system bandwidth.
  • the processor executes according to the stored program code in the storage medium: in the first predetermined time unit, the same reference signal port of the different control area is a quasi-co-location, in the second In the time unit other than the predetermined time unit, the same reference signal port of the different control areas does not have a quasi-common value relationship.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • they may be implemented by program code executable by a computing device such that they may be stored in a storage device for execution by the computing device and, in some cases, may be different from
  • the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the disclosure is not limited to any specific combination of hardware and software.
  • the signal receiving and transmitting method, the receiving and transmitting method and the device for controlling the channel of the present disclosure receive the signal transmitted by the first communication node, wherein the first resource unit of the signal is K times of the second resource unit, and K is a natural number. Since the first resource unit of the signal used for channel estimation is K times of the second resource unit given above, channel estimation according to the signal makes the channel estimation more accurate, and therefore, the DMRS is demodulated in the related art. The problem of improving the accuracy of channel estimation in the process of transmitting signals by the control channel transmission mechanism of the reference signal and/or the beam mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号接收方法包括:接收第一通信节点发送的信号,其中,信号的第一资源单元为第二资源单元的K倍,K为自然数;其中,第一资源单元设置为确定信号的传输参数,第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。

Description

信号接收、发送方法、控制信道的接收、发送方法、装置及存储介质 技术领域
本公开涉及通信领域,例如涉及一种信号接收、发送方法、控制信道的接收、发送方法、装置及存储介质。
背景技术
作为5G通信的核心技术之一,高频通信为未来5G的大数据通信提供有效支持。高频通信的最大特点就是具有比较大的空间衰落特性,使得基于高频的远距离传输成为问题。同时由于高频的波长比较短,可以在相同面积内相比低频集合更多的天线元素,从而可以形成高增益波束,用波束增益抵抗高频通信中的空间衰落,使得高频通信的覆盖范围有效增加,为高频通信用于蜂窝通信成为可能。
相关技术中的通用移动通信技术的长期演进(Long Term Evolution,LTE)控制信道物理下行控制信道(Physical Downlink Control Channel,PDCCH)的解调参考信号是小区专属参考信号(Cell-Specific Reference Signal,CRS),CRS的覆盖范围为小区范围,CRS在每个子帧都发送。CRS在系统带宽内发送,相同端口的CRS在系统带宽范围内认为发送波束相同,仅通过CRS就可以准确获得控制信道的准确信道估计值,包括信道的大尺度信息。
基于波束传输的控制信道的控制信道解调参考信号不是小区覆盖范围只是波束范围,而且每个时间单元发送波束都可能会变化,需要进一步考虑基于波束传输的控制信道,以及基于波束传输的控制信道参考信号的发送方法。另一方面,新空口(New Radio,NR)的讨论中,倾向于取消CRS,从而节省基站发送功率,采用解调参考信号(Demodulation References Signal,DMRS)作为控制信道的解调参考信号(解调参考信号不是全系统带宽发送,也不是每个时间单元都发送),解调参考信号在不同资源采用的波束可以不同,基于DMRS方式发送控制信道解调参考信号需要进一步研究如何获取准确的控制信道的准确信道估计值。
第一需要研究的问题是如何确定控制信道以及其解调参考信号的预编码资源块组(Precoding Resource block Groups,PRG)。虽然增强的物理下行控制信 道(Enhanced Physical Downlink Control Channel,EPDCCH)也采用DMRS作为解调参考信号,但是由于EPDCCH占有的物理资源块(Physical Resource Block,PRB)是高层分配的,可能是频域非连续的,从而控制信道的PRG在频域最多是一个PRB,随着NR中控制信道的增强,控制信道以及其解调参考信号的PRG如何确定,是需要进一步研究的问题。
第二个需要研究的问题是控制信道解调参考信号的大尺度信道特性参数信息如何获取,没有CRS的情况下,控制信道解调参考信号的大尺度信道特性参数如何获取,也是需要进一步研究的问题。
第三控制信道解调参考信号端口如何获取是需要进一步研究的问题,尤其当采用波束发送控制信道的情况下,可以采用多用户多入多出技术(Multi-User Multiple-Input Multiple-Output,MU-MIMO)的方式发送控制信道的时候。
发明内容
本公开提供了一种信号接收、发送方法、控制信道的接收、发送方法及装置,解决了相关技术中采用以DMRS为解调参考信号的控制信道使用发送机制和波束机制中至少一种发送信号过程中,如何提高信道估计的准确性的问题。
一种信号接收方法,包括:
接收第一通信节点发送的信号,其中,所述信号的第一资源单元为第二资源单元的K倍,所述K为自然数;
其中,所述第一资源单元用于确定所述信号的传输参数,所述第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,一个控制信道子带,所述第二通信节点对应的带宽资源,所述信号占有的资源,一个物理资源块。
在一实施例中,所述第一资源单元包括如下单元至少之一:所述信号的预编码资源块组,所述信号的最小发送单元,所述信号对应的第一参考信号的资源单元,确定所述信号发送图样的最小资源单元。
在一实施例中,在接收所述第一通信节点发送的信号之后,还包括:根据所述信号的相关传输参数获取所述信号的信道估计值。
在一实施例中,所述第一参考信号满足以下至少之一:
所述信号和所述第一参考信号是准共位置的;
所述信号的信道特性信息根据所述第一参考信号的信道特性信息获得;
所述第一参考信号的端口集合是所述信号的解调参考信号端口集合的子集;
所述第一参考信号的端口所用序列集合是所述信号的解调参考信号所用的序列集合的子集;
所述第一参考信号的端口集合与所述信号的解调参考信号端口集合的交集为空;
所述信号所占的频域资源是所述第一参考信号所占的频域资源的子集;
所述信号所占的时域资源是所述第一参考信号所占的时域资源的子集。
在一实施例中,所述信号的第一资源单元根据以下至少之一确定:
根据所述信号对应的第二资源单元确定;
根据所述第二通信节点对应的带宽确定;
根据所述第二通信节点的控制域带宽确定;
根据所述信号对应的资源映射方式确定。
在一实施例中,所述信号的第一资源单元为第二资源单元的K倍包括如下至少之一:
所述第一资源单元的频域资源是所述第二资源单元的频域资源的K倍;
所述第一资源单元的时域资源是所述第二资源单元的时域资源的K倍;
所述第一资源单元包括的时频资源个数是所述第二资源单元包括的时频资源个数的K倍。
在一实施例中,当所述信号为解调参考信号和/或测量参考信号的情况下,所述信号的发送图样根据所述最小资源单元确定,所述信号的发送图样包括以下至少之一:所述信号占有的时域资源,所述信号占用的频域资源,所述信号占有的码域资源。
在一实施例中,接收所述第一通信节点发送的信号包括:接收所述第一通信节点通知的所述第一资源单元的相关信息,根据所述第一资源单元的相关信息得到所述第二资源单元的相关信息;和/或接收所述第一通信节点通知的所述第二资源单元的相关信息,根据所述第二资源单元的相关信息得到所述第一资源单元的相关信息。
在一实施例中,所述第一资源单元所占的频域或码域资源根据所述第一资 源单元的时域信息确定。
在一实施例中,根据以下方式至少之一确定所述K值:
接收所述第一通信节点通知的所述K值;
根据系统带宽确定所述K值;
根据所述第二通信节点对应的带宽信息确定所述K值;
根据所述信号的资源映射方式确定所述K值;
根据所述第二通信节点反馈的发送资源个数确定所述K值;
根据所述第二资源单元中包括的可用于控制信道传输的时频资源个数确定所述K值。
在一实施例中,接收所述第一通信节点通知的所述第二资源单元的类型,所述第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,一个控制信道子带,所述第二通信节点对应的带宽资源,所述信号占有的资源,一个物理资源块。
在一实施例中,所述预编码资源块组包括K个第二资源单元,其中,所述K的值根据控制信道的聚合度确定。
在一实施例中,所述信号至少在所述最小发送单元中发送。
在一实施例中,所述最小发送单元中的参考信号用于所述最小发送单元中的所有候选控制信道的解调,
在一实施例中,所述信号的发送图样由所述信号的最小单元确定。
一种信号发送方法,,包括:
向第二通信节点发送信号,其中,所述信号的第一资源单元为第二资源单元的K倍,所述K为自然数;
其中,所述第一资源单元用于确定所述信号的传输参数,所述第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道一个聚合度下的搜索空间,所述第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,控制信道子带,所述第二通信节点带宽资源,所述信号占有的资源,物理资源块。
在一实施例中,所述第一资源单元包括至少之一:所述信号的预编码资源块组,所述信号的最小发送单元,所述信号对应的第一参考信号的资源单元, 确定所述信号发送图样的最小资源单元。
在一实施例中,向所述第二通信节点发送信号包括:根据所述信号的相关传输参数向所述第二通信节点发送所述信号。
在一实施例中,所述第一参考信号满足以下至少之一:
所述信号和所述第一参考信号是准共位置的;
所述信号的信道特性信息根据所述第一参考信号的信道特性信息获得;
所述第一参考信号的端口集合是所述信号的解调参考信号端口集合的子集;
所述第一参考信号的端口所用序列集合是所述信号的解调参考信号所用的序列集合的子集;
所述第一参考信号的端口集合与所述信号的解调参考信号端口集合的交集为空;
所述信号所占的频域资源是所述第一参考信号所占的频域资源的子集;
所述信号所占的时域资源是所述第一参考信号所占的时域资源的子集。
在一实施例中,所述信号的第一资源单元根据以下至少之一确定:
根据所述信号对应的第二资源单元确定;
根据所述第二通信节点对应的带宽确定;
根据所述第二通信节点的控制域带宽确定;
根据所述信号对应的资源映射方式确定。
在一实施例中,所述信号的第一资源单元为第二资源单元的K倍包括如下至少之一:
所述第一资源单元的频域资源是所述第二资源单元的频域资源的K倍;
所述第一资源单元的时域资源是所述第二资源单元的时域资源的K倍;
所述第一资源单元包括的时频资源个数是所述第二资源单元包括的时频资源个数的K倍。
在一实施例中,当所述信号为解调参考信号和/或测量参考信号的情况下,所述信号的发送图样根据所述最小资源单元确定,所述信号的发送图样包括以下至少之一:所述信号占有的时域资源,所述信号占有的频域资源,所述信号占有的码域资源。
在一实施例中,在向所述第二通信节点发送信号包括:
向所述第二通信节点通知所述第一资源单元的相关信息,通过所述第一资 源单元的相关信息通知所述第二资源单元的相关信息,和/或,
向所述第二通信节点通知所述第一资源单元的相关信息,通过所述第二资源单元的相关信息通知所述第一资源单元的相关信息。
在一实施例中,所述第一资源单元所占的频域/码域资源根据所述第一资源单元的时域信息确定。
在一实施例中,根据如下方式至少之一确定所述K值,还包括:
将所述K值通知给所述第二通信节点;
根据系统带宽确定所述K值;
根据所述第二通信节点对应的带宽信息确定所述K值;
根据所述信号的资源映射方式确定所述K值;
根据所述第二通信节点反馈的发送资源个数确定所述K值;
根据所述第二资源单元中包括的可用于控制信道传输的时频资源个数确定所述K值。
在一实施例中,向第二通信节点发送信号包括:向所述第二通信节点通知所述第二资源单元的类型,所述第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,一个控制信道子带,所述第二通信节点对应的带宽资源,所述信号占有的资源,一个物理资源块。
在一实施例中,所述预编码资源块组包括K个第二资源单元,其中,所述K的值根据控制信道的聚合度确定。
在一实施例中,所述信号至少在所述最小发送单元中发送。
在一实施例中,所述最小发送单元中的参考信号用于所述最小发送单元中的所有候选控制信道的解调,
在一实施例中,所述信号的发送图样由所述信号的最小单元确定。
一种控制信道的接收方法,包括:
确定控制信道的解调参考信号端口集合,其中,所述控制信道的解调参考信号端口集合是第二参考信号端口集合的子集;
在所述确定的控制信道解调参考信号端口上接收所述控制信道;
其中,通过以下方式至少之一确定所述第二参考信号端口集合:所述第二参考信号端口集合是固定的,所述第二参考信号端口集合根据第一通信节点发 送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
在一实施例中,所述控制信道的解调参考信号端口集合根据以下信息至少之一确定:第二通信节点对应的发送资源信息,所述控制信道对应的时间参数,所述解调参考信号的端口集合个数M1,所述控制信道所在的控制信道区域类型,所述控制信道所在的控制信道区域对应的时间参数,所述控制信道对应的频域资源索引,所述控制信道的控制信道单元索引,所述控制信道的控制资源组索引,接收第一通信节点发送的信令信息,其中所述信令信息中包括所述控制信道解调参考信号的相关信息。
在一实施例中,所述发送资源满足以下特征至少之一:
所述发送资源和解调参考信号端口之间存在一一对应关系;
所述发送资源和解调参考信号端口集合之间存在一一对应关系;
所述多个发送资源对应一个相同的解调参考信号端口;
当第二通信节点对应的发送资源改变时,所述第二参考信号端口集合进行相应的改变。
在一实施例中,所述控制信道的解调参考信号端口集合满足如下特征之一:
所述控制信道的解调参考信号端口集合在不同的时间单元是可变的;
所述控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
在一实施例中,所述控制信道的解调参考信号端口集合通过如下方式之一确定:
检测所述第二参考信号端口集合中的参考信号,根据所述参考信号的接收性能,在所述第二参考信号端口集合中选择一个或者多个参考信号端口构成所述控制信道的解调参考信号端口集合;
在所述第二参考信号端口集合的每个参考信号端口上检测控制信道,检测成功的参考信号集合构成所述控制信道的解调参考信号端口集合;
所述控制信道的解调参考信号端口集合根据所述第一通信节点发送的信令信息获取。
在一实施例中,确定控制信道的解调参考信号端口集合包括:
当一个或者多个除所述控制信道以外的其他控制信道占有第三参考信号端口集合中的端口,则所述第三参考信号端口集合为所述第二参考信号端口集合和所述控制信道解调参考信号端口集合的差集。
在一实施例中,在所述控制信道所在的控制信道区域不同的情况下,所述控制信道的解调参考信号的确定方法不同,和/或所述控制信道的检测方法不同,和/或所述控制信道的解调参考信号的最小发送单元不同。
在一实施例中,确定控制信道的解调参考信号端口集合包括以下至少之一:
在第一控制信道区域中,所述控制信道的解调参考信号是所述第二参考信号端口集合,在第二控制信道区域中,所述控制信道的解调参考信号是所述第二参考信号端口集合的真子集;
所述第一控制信道区域中所述控制信道的解调参考信号是固定的,;所述第二控制信道区域中所述控制信道的解调参考信号是随时间变化的;
所述第一控制信道区域中所述控制信道的解调参考信号是固定的,;所述第二控制信道区域中所述控制信道的解调参考信号是随频域资源变化的;
所述第一控制信道区域中,仅根据所述控制信道的解调参考信号包括的端口个数确定所述控制信道的解调参考信号端口,在所述第二控制信道区域中,根据所述控制信道的解调参考信号包括的端口个数不能确定所述控制信道的解调参考信号端口;
在所述第一控制信道区域上,当除所述控制信道之外的其他控制信道不占有所述控制信道占有的时频资源,则在所述第二控制信道区域上,由其他控制信道占有所述控制信道占有的时频资源。
在一实施例中,不同控制信道区域中所述控制信道的解调参考信号端口满足如下特征至少之一:
不同控制信道区域中所述控制信道的解调参考信号端口数相同;
一个控制信道区域中所述控制信道的解调参考信号端口集合是另一个控制信道区域中所述控制信道的解调参考信号端口集合的子集。
在一实施例中,不同控制信道区域满足如下特征至少之一:
不同控制信道区域的交集为空;
不同控制信道区域属于相同时间单元;
不同控制信道区域能够复用;
不同控制信道区域的并集在频域和系统带宽内相同;
不同控制信道区域的并集在频域和所述第二通信节点的带宽内相同。
在一实施例中,控制信道区域满足如下特征至少之一:
根据时间单元的时间参数信息获取所述时间单元包含的控制信道区域类 型;
所述第一通信节点发送的配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
在一实施例中,所述控制信道的解调参考信号满足如下特征至少之一:
在第一控制信道区域中,第一通信节点只在发送所述控制信道的时间单元中发送所述控制信道的解调参考信号;
在第二控制信道区域中,第一通信节点在约定的时间单元和发送所述控制信道的时间单元中发送所述控制信道的解调参考信号,在所述约定的时间单元中所述第一通信节点不发送所述第二通信节点的所述控制信道。
在一实施例中,所述控制信道的解调参考信号的所述最小发送单元还满足如下特征至少之一:
所述最小发送单元为一个或者多个控制信道资源组;
所述最小发送单元为一个或者多个控制信道单元;
所述最小发送单元为一个或者多个候选控制信道所占的资源;
所述最小发送单元为一个相同聚合度的一个搜索空间所占的资源;
所述最小发送单元为所述第二通信节点的所有聚合度的所有搜索控制所占的资源;
所述最小发送单元为所述控制信道区域。
一种控制信道的发送方法,包括:
确定控制信道的解调参考信号端口集合,其中,所述控制信道的解调参考信号端口是第二参考信号端口集合的子集;
在所述确定的解调参考信号端口上向所述第二通信节点发送所述控制信道;
其中,通过以下方式至少之一确定所述第二参考信号端口集合:所述第二参考信号端口集合是固定的,所述第二参考信号端口集合根据向第二通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
在一实施例中,所述控制信道的解调参考信号端口集合根据以下信息至少之一确定:第二通信节点对应的发送资源信息,所述控制信道对应的时间参数,所述解调参考信号的端口集合个数M1,所述控制信道所在的控制信道区域类型,所述控制信道所在的控制信道区域对应的时间参数,所述控制信道对应的 频域资源索引,所述控制信道的控制信道单元索引,所述控制信道的控制资源组索引。
在一实施例中,所述发送资源满足以下特征至少之一:
所述发送资源和解调参考信号端口之间存在一一对应关系;
所述发送资源和解调参考信号端口集合之间存在一一对应关系;
所述多个发送资源对应一个相同的解调参考信号端口;
当第二通信节点对应的发送资源改变时,所述第二参考信号端口集合进行相应的改变。
在一实施例中,所述控制信道的解调参考信号端口集合满足如下特征之一:
所述控制信道的解调参考信号端口集合在不同的时间单元是可变的;
所述控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
在一实施例中,确定控制信道的解调参考信号端口集合包括:
向所述第二通信节点发送信令信息,其中,所述信令信息包括所述控制信道的解调参考信号端口相关信息。
在一实施例中,所述控制信道所在的控制信道区域不同的情况下,所述控制信道的解调参考信号的确定方法不同,和/或所述控制信道的发送方法不同,和/或控制信道解调参考信号的最小发送单元不同。
在一实施例中,在所述控制信道所在的控制信道区域不同的情况下,确定所述控制信道的解调参考信号端口集合包括如下方法至少之一:
在第一控制信道区域中,所述控制信道的解调参考信号是所述第二参考信号端口集合,在第二控制信道区域中,所述控制信道的解调参考信号是所述第二参考信号端口集合的真子集;
所述第一控制信道区域中所述控制信道的解调参考信号是固定的,;所述第二控制信道区域中所述控制信道的解调参考信号是随时间变化的;
所述第一控制信道区域中,根据所述控制信道的解调参考信号包括的端口个数确定所述控制信道的解调参考信号端口,在所述第二控制信道区域中,根据所述控制信道的解调参考信号包括的端口个数不能确定所述控制信道的解调参考信号端口;
在所述第一控制信道区域上,除所述控制信道之外的其他控制信道不占有所述控制信道占有的时频资源,在所述第二控制信道区域上,除所述控制信道之外的其他控制信道占有所述控制信道占有的时频资源。
在一实施例中,不同控制信道区域中所述控制信道的解调参考信号端口满足如下特征至少之一:
不同控制信道区域中所述控制信道的解调参考信号端口数相同;
一个控制信道区域中所述控制信道的解调参考信号端口集合是另一个控制信道区域中所述控制信道的解调参考信号端口集合的子集。
在一实施例中,不同控制信道区域满足如下特征至少之一:
不同控制信道区域的交集为空;
不同控制信道区域属于相同时间单元;
不同控制信道区域时域重叠;
不同控制信道区域能够复用;
不同控制信道区域的并集占满系统带宽。
在一实施例中,控制信道区域通过如下方式确定:根据时间单元的时间参数信息获取所述时间单元包含的控制信道区域。
在一实施例中,确定控制信道的解调参考信号端口集合包括:
向所述第二通信节点发送配置信息,其中,所述配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
在一实施例中,确定控制信道的解调参考信号端口集合包括:
在第一控制信道区域中,只在发送所述控制信道的时间单元中发送所述控制信道的解调参考信号;
在第二控制信道区域中,在约定的时间单元和发送所述控制信道的时间单元中发送所述控制信道的解调参考信号,在所述约定的时间单元中不发送所述第二通信节点的所述控制信道。
在一实施例中,不同控制信道区域的所述最小发送单元还满足如下特征至少之一:
所述最小发送单元为一个或者多个控制信道资源组;
所述最小发送单元为一个或者多个控制信道单元;
所述最小发送单元为一个或者多个候选控制信道所占的资源;、
所述最小发送单元为一个相同聚合度的一个搜索空间所占的资源;
所述最小发送单元为所述第二通信节点的所有聚合度的所有搜索控制所占的资源;
所述最小发送单元为所述控制信道区域。
一种信号接收装置,包括:
第一接收模块,设置为接收第一通信节点发送的信号,其中,所述信号的第一资源单元为所述信号的第二资源单元的K倍,所述K为自然数;
其中,所述第一资源单元设置为确定所述信号的传输参数,所述第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,一个控制信道子带,所述第二通信节点对应的带宽资源,所述信号占有的资源,一个物理资源块。
在一实施例中,所述第一资源单元包括如下单元至少之一:所述信号的预编码资源块组,所述信号的最小发送单元,所述信号对应的第一参考信号的资源单元,确定所述信号发送图样的最小资源单元。
在一实施例中,所述信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:
所述第一资源单元的频域资源是所述第二资源单元的频域资源的K倍;
所述第一资源单元的时域资源是所述第二资源单元的时域资源的K倍;
所述第一资源单元包括的时频资源个数是所述第二资源单元包括的时频资源个数的K倍。
在一实施例中,根据以下方式至少之一确定所述K值,还包括:
接收所述第一通信节点通知的所述K值;
根据系统带宽确定所述K值;
根据所述第二通信节点对应的带宽信息确定所述K值;
根据所述信号的资源映射方式确定所述K值;
根据所述第二通信节点反馈的发送资源个数确定所述K值;
根据所述第二资源单元中包括的可用于控制信道传输的时频资源个数确定所述K值。
一种信号发送装置,包括:
第一发送模块,设置为向第二通信节点发送信号,其中,所述信号的第一资源单元为所述信号的第二资源单元的K倍,所述K为自然数;
其中,所述第一资源单元设置为确定所述信号的相关传输参数,所述第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道, 控制信道一个聚合度下的搜索空间,所述第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,控制信道子带,所述第二通信节点带宽资源,所述信号占有的资源,物理资源块。
在一实施例中,所述信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:
所述第一资源单元的频域资源是所述第二资源单元的频域资源的K倍;
所述第一资源单元的时域资源是所述第二资源单元的时域资源的K倍;
所述第一资源单元包括的时频资源个数是所述第二资源单元包括的时频资源个数的K倍。
在一实施例中,根据如下方式至少之一确定和/或通知所述K值,还包括:
将所述K值通知给所述第二通信节点,
根据系统带宽确定所述K值;
根据所述第二通信节点对应的带宽信息确定所述K值;
根据所述信号的资源映射方式确定所述K值;
根据所述第二通信节点反馈的发送资源个数确定所述K值;
根据所述第二资源单元中包括的可用于控制信道传输的时频资源个数确定所述K值。
一种控制信道的接收装置,包括:
第一确定模块,设置为确定控制信道的解调参考信号端口集合,其中,所述控制信道的解调参考信号端口集合是第二参考信号端口集合的子集;
第二接收模块,设置为在所述确定的控制信道解调参考信号端口上接收所述控制信道;
其中,通过以下方式至少之一确定所述第二参考信号端口集合:所述第二参考信号端口集合是固定的,所述第二参考信号端口集合根据第一通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
在一实施例中,所述控制信道的解调参考信号满足如下特征至少之一:
在第一控制信道区域中,假设第一通信节点只在发送所述控制信道的时间单元中发送所述控制信道的解调参考信号;
在第二控制信道区域中,假设第一通信节点在约定的时间单元和发送所述 控制信道的时间单元中发送所述控制信道的解调参考信号,假设在所述约定的时间单元中所述第一通信节点可能没有发送所述第二通信节点的所述控制信道。
一种控制信道的发送装置,包括:
第二确定模块,设置为确定控制信道的解调参考信号端口集合,其中,所述控制信道的解调参考信号端口是第二参考信号端口集合的子集;
第二发送模块,设置为在所述确定的解调参考信号端口上向所述第二通信节点发送所述控制信道;
其中,通过以下方式至少之一确定所述第二参考信号端口集合:所述第二参考信号端口集合是固定的,所述第二参考信号端口集合根据向第二通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
在一实施例中,所述第二确定模块,还用于在第一控制信道区域中,只在发送所述控制信道的时间单元中发送所述控制信道的解调参考信号;在第二控制信道区域中,在约定的时间单元和发送所述控制信道的时间单元中发送所述控制信道的解调参考信号,在所述约定的时间单元中可能没有发送所述第二通信节点的所述控制信道。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述述方法的步骤。
本公开的信号接收、发送方法、控制信道的接收、发送方法及装置,接收第一通信节点发送的信号,其中,信号的第一资源单元为第二资源单元的K倍,K为自然数;其中,第一资源单元用于确定信号的传输参数,第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。由于用于信道估计的信号第一资源单元为上述给出的第二资源单元的K倍,根据该信号进行信道估计使得信道估计更准确,因此,可以解决相关技术中采用以DMRS为解调参考信号的控制信道通过发送机制和波束机制至少之一发送信号过程中,如何提高信道估计的准确性的问题。
附图说明
图1是本公开实施例的一种信号接收方法的移动终端的硬件结构框图;
图2是根据本公开实施例的信号接收方法的流程图;
图3是根据本公开实施例的信号发送方法的流程图;
图4是根据本公开实施例的控制信道的接收方法的流程图;
图5是根据本公开实施例的控制信道的发送方法的流程图;
图6是根据本公开实施例的控制信道的PRG的示意图一;
图7是根据本公开实施例的控制信道的PRG的示意图二;
图8是根据本公开实施例的控制信道的PRG的示意图三;
图9是根据本公开实施例的控制信道的PRG的示意图四;
图10是根据本公开实施例的控制信道的PRG的示意图五;
图11是根据本公开实施例的控制信道的PRG的示意图六;
图12是根据本公开实施例的控制信道的PRG的示意图七;
图13是根据本公开实施例的最小发送单元的示意图;
图14是根据本公开实施例的控制信道中解调参考信号的示意图一;
图15是根据本公开实施例的控制信道中解调参考信号的示意图二;
图16是根据本公开实施例的控制信道中解调参考信号的示意图三;
图17是根据本公开实施例的控制信道中解调参考信号的示意图四;
图18是根据本公开实施例的控制信道区域的示意图一;
图19是根据本公开实施例的控制信道区域的示意图二;
图20是根据本公开实施例的下行传输的示意图一;
图21是根据本公开实施例的控制信道区域的示意图三;
图22是根据本公开实施例的下行传输的示意图二;
图23是根据本公开实施例的下行传输的示意图三;
图24是根据本公开实施例的获取解调参考信号图样示意图;
图25是根据本公开实施例的控制域子带的示意图一;
图26是根据本公开实施例的控制域子带的示意图二;
图27是根据本公开实施例的频域资源与解调参考信号的端口集合对应的示意图;
图28是根据本公开实施例的控制信道单元CCE与解调参考信号的端口集合对应的示意图;
图29是根据本公开实施例的PRG单元的示意图;
图30是根据本公开实施例的信号接收装置的结构框图;
图31是根据本公开实施例的信号发送装置的结构框图;
图32是根据本公开实施例的控制信道的接收装置的结构框图;
图33是根据本公开实施例的控制信道的发送装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例1所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本公开实施例的一种信号接收方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本公开实施例中的信号接收方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106 包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的信号接收方法,图2是根据本公开实施例的信号接收方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,接收第一通信节点发送的信号,其中,信号的第一资源单元为第二资源单元的K倍,K为自然数;第一资源单元用于确定信号的传输参数,第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
通过上述步骤,由于用于信道估计的信号第一资源单元为上述给出的第二资源单元的K倍,根据该信号进行信道估计使得信道估计更准确,因此,可以解决相关技术中采用以DMRS为解调参考信号的控制信道发送机制和/或波束机制发送信号过程中,如何提高信道估计的准确性的问题。
在一实施例中,第一资源单元包括如下单元至少之一:信号的预编码资源块组,信号的最小发送单元,信号对应的第一参考信号的资源单元,确定信号发送图样的最小资源单元。
在一实施例中,在接收第一通信节点发送的信号之后,还包括:根据信号的相关传输参数获取信号的信道估计值。
在一实施例中,第一参考信号满足以下特征至少之一:信号和第一参考信号是准共位置quasi co-location的;信号的信道特性信息根据第一参考信号的信道特性信息获得;第一参考信号的端口集合是信号的解调参考信号端口集合的子集;第一参考信号的端口所用序列集合是信号的解调参考信号所用的序列集合的子集;第一参考信号的端口集合与信号的解调参考信号端口集合的交集为空;信号所占的频域资源是第一参考信号所占的频域资源的子集;信号所占的时域资源是第一参考信号所占的时域资源的子集。
在一实施例中,信号包括至少之一:控制信道信号,解调参考信号,测量参考信号,数据信道信号。
在一实施例中,信号的第一资源单元至少根据以下之一确定:根据信号对 应的第二资源单元确定;根据第二通信节点对应的带宽确定;根据第二通信节点的控制域带宽确定;根据信号对应的资源映射方式确定。
在一实施例中,信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:第一资源单元的频域资源是第二资源单元的频域资源的K倍;第一资源单元的时域资源是第二资源单元的时域资源的K倍;第一资源单元包括的时频资源个数是第二资源单元包括的时频资源个数的K倍。
在一实施例中,当所述信号为解调参考信号和/或测量参考信号的情况下,所述信号的最小发送单元满足以下特征至少之一:所述最小发送单元对应的频域长度为发送所述信号的最小频域单元;所述最小发送单元为所述信号预编码相同的最小单元;所述最小发送单元对应的频域长度为所述信号预编码相同的最小频域单元;所述最小发送单元对应的时域和/或频域为所述信号时域和/或频域可以插值的最小资源单元;所述最小发送单元中的时频资源的解调参考信号为所述信号。
在一实施例中,当信号为解调参考信号和/或测量参考信号的情况下,确定信号发送图样的最小资源单元包括:信号的发送图样根据最小资源单元确定,信号的发送图样包括以下至少之一:信号占有的时域资源,信号占用的频域资源,信号占有的码域资源。
在一实施例中,接收第一通信节点发送的用于信号包括:接收第一通信节点通知的第一资源单元的相关信息,根据第一资源单元的相关信息得到第二资源单元的相关信息;接收第一通信节点通知的第二资源单元的相关信息,根据第二资源单元的相关信息得到第一资源单元的相关信息。又例如,基站通知终端对应的控制信道的PRG,终端就可以获得终端对应的候选控制信道的聚合度。比如PRG是CCE的K倍,那么此时候选控制信道信道的聚合度为:
Figure PCTCN2017120336-appb-000001
Figure PCTCN2017120336-appb-000002
在一实施例中,根据以下信息至少之一确定第二资源单元所占的时域/频域/码域资源:时域参数,第二通信节点的小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI),第二通信节点对应的带宽信息,广播信道所在的频域信息。
在一实施例中,第一资源单元所占的频域/码域资源根据时域信息确定。
在一实施例中,根据以下方式至少之一确定K值,还包括:接收第一通信节点通知的K值;根据系统带宽确定K值;根据第二通信节点对应的带宽信息 确定K值;根据信号的资源映射方式确定K值;根据第二通信节点反馈的发送资源个数确定K值。
在一实施例中,接收第一通信节点发送的用于信号包括:接收第一通信节点通知的第二资源单元的类型,第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
在一实施例中,所述第一通信节点的通知的方式包括:动态信令,和/或高层半静态信令。
在本实施例中提供了一种运行于上述移动终端的信号发送方法,图3是根据本公开实施例的信号发送方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,向第二通信节点发送信号,其中,信号的第一资源单元为第二资源单元的K倍,K为自然数;第一资源单元用于确定信号的传输参数,第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,控制信道子带,第二通信节点带宽资源,信号占有的资源,物理资源块PRB。
通过上述步骤,由于用于信道估计的信号第一资源单元为上述给出的第二资源单元的K倍,根据该信号进行信道估计使得信道估计更准确,因此,可以解决相关技术中采用以DMRS为解调参考信号的控制信道发送机制和/或波束机制发送信号过程中,如何提高信道估计的准确性的问题。
在一实施例中,第一资源单元包括至少之一:信号的预编码资源块组,信号的最小发送单元,信号对应的第一参考信号的资源单元,确定信号发送图样的最小资源单元。
在一实施例中,向第二通信节点发送信号包括:根据信号的相关传输参数向第二通信节点发送信号。
在一实施例中,第一参考信号满足以下特征至少之一:信号和第一参考信号是准共位置quasi co-location的;信号的信道特性信息根据第一参考信号的信道特性信息获得;第一参考信号的端口集合是信号的解调参考信号端口集合的子集;第一参考信号的端口所用序列集合是信号的解调参考信号所用的序列集 合的子集;第一参考信号的端口集合与信号的解调参考信号端口集合的交集为空;信号所占的频域资源是第一参考信号所占的频域资源的子集;信号所占的时域资源是第一参考信号所占的时域资源的子集。
在一实施例中,信号包括至少之一:控制信道信号,解调参考信号,测量参考信号,数据信道信号。
在一实施例中,信号的第一资源单元至少根据以下之一确定:根据信号对应的第二资源单元确定;根据第二通信节点对应的带宽确定;根据第二通信节点的控制域带宽确定;根据信号对应的资源映射方式确定。
在一实施例中,信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:第一资源单元的频域资源是第二资源单元的频域资源的K倍;第一资源单元的时域资源是第二资源单元的时域资源的K倍;第一资源单元包括的时频资源个数是第二资源单元包括的时频资源个数的K倍。
在一实施例中,当信号为解调参考信号和/或测量参考信号的情况下,确定信号发送图样的最小资源单元包括:信号的发送图样根据最小资源单元确定,信号的发送图样包括以下至少之一:信号占有的时域资源,信号占有的频域资源,信号占有的码域资源。
在一实施例中,在向第二通信节点发送用于信道估计的信号包括:向第二通信节点通知的第一资源单元的相关信息,通过第一资源单元的相关信息通知第二资源单元的相关信息;向第二通信节点通知的第一资源单元的相关信息,通过第二资源单元的相关信息通知第一资源单元的相关信息;
在一实施例中,在向第二通信节点发送用于信道估计的信号之前,根据以下信息至少之一确定第二资源单元所占的时域/频域/码域资源:时域信息,第二通信节点的标识信息,第二通信节点对应的带宽信息,广播信道所在的频域信息,其中,所述识别信息可以是小区无线网络临时标识C-RNTI,或者NR-RNTI等。
在一实施例中,第一资源单元所占的频域/码域资源根据时域信息确定。
在一实施例中,根据如下方式至少之一确定K值,还包括:根据将K值通知给第二通信节点的方式,根据系统带宽确定K值;根据第二通信节点对应的带宽信息确定K值;根据信号的资源映射方式确定K值;根据第二通信节点反馈的发送资源个数确定K值。
在一实施例中,向第二通信节点发送信号包括:向第二通信节点通知的第 二资源单元的类型,第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
在本实施例中提供了一种运行于上述移动终端的控制信道的接收方法,图4是根据本公开实施例的控制信道的接收方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,确定控制信道的解调参考信号端口集合,其中,控制信道的解调参考信号端口集合是第二参考信号端口集合的子集;
步骤S404,在确定的控制信道解调参考信号端口上接收控制信道;
其中,通过以下方式至少之一确定第二参考信号端口集合:第二参考信号端口集合是固定的,第二参考信号端口集合根据第一通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
通过上述步骤,由于确定的控制信道的解调参考信号端口集合是第二参考信号端口集合的子集,根据在该控制信道上传输的信号进行信道估计使得信道估计更准确,因此,可以解决相关技术中采用以DMRS为解调参考信号的控制信道发送机制和/或波束机制发送信号过程中,如何提高信道估计的准确性的问题。
在一实施例中,控制信道的解调参考信号端口集合根据以下信息至少之一获取:第二通信节点对应的发送资源信息,控制信道对应的时间参数,解调参考信号的端口集合个数M1,控制信道所在的控制信道区域类型,控制信道所在的控制信道区域对应的时间参数,控制信道对应的频域资源索引,控制信道的控制信道单元索引,控制信道的控制资源组索引,接收第一通信节点发送的信令信息,其中所述信令信息中包括所述控制信道解调参考信号的相关信息;其中,发送资源是接收第一通信节点发送的信号的通信链路中,第一通信节点采用的发送资源,第一通信节点的发送资源,发送资源包括以下资源类型至少之一:发送波束资源,发送端口资源,发送预编码矩阵资源,发送时间资源,发送频域资源,发送序列资源,其中,发送资源是第一通信节点发送信号所采用的资源。其中,不同控制信道区域包括:所述第一通信节点假设所述第一控制 区域中是单用户多输入多输出(Single-User Multiple-Input Multiple-Output简称SU-MIMO)传输模式;所述第一通信节点假设所述第一控制区域中是SU-MIMO和MU-MIMO的混合传输模式。在一实施例中,发送资源满足以下特征至少之一:发送资源和解调参考信号端口之间存在一一对应关系;发送资源和解调参考信号端口集合之间存在一一对应关系;多个发送资源对应一个相同的解调参考信号端口;当第二通信节点对应的发送资源改变时,第二参考信号端口集合进行相应的改变。所述发送端口是参考信号所用的端口。
在一实施例中,控制信道的解调参考信号端口集合满足如下特征之一:控制信道的解调参考信号端口集合在不同的时间单元是可变的;控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
在一实施例中,控制信道的解调参考信号端口集合通过如下方式之一获取:检测第二参考信号端口集合中的参考信号,根据参考信号的接收性能,在第二参考信号端口集合中选择一个或者多个参考信号端口构成控制信道的解调参考信号端口集合;在第二参考信号端口集合的每个参考信号端口上检测控制信道,检测成功的参考信号集合构成控制信道的解调参考信号端口集合;控制信道的解调参考信号端口集合根据第一通信节点发送的信令信息获取。
在一实施例中,所述控制信道的解调参考信号端口集合满足以下特征至少之一:假设所述控制信道的解调参考信号端口集合至多包括M2个参考信号,其中,M2为自然数;假设所述控制信道的解调参考信号端口集合包括M2个参考信号,其中,M2为自然数。
在一实施例中,确定控制信道的解调参考信号端口集合包括:假设一个或者多个其他控制信道可能占有第三参考信号端口集合中的端口,第三参考信号端口集合为第二参考信号端口集合和控制信道解调参考信号端口集合的差集。
在一实施例中,在控制信道所在的控制信道区域不同的情况下,控制信道的解调参考信号的确定方法不同,和/或控制信道的检测方法不同,和/或控制信道的解调参考信号的最小发送单元不同。
在一实施例中,确定控制信道的解调参考信号端口集合包括以下至少之一:在第一控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合,在第二控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合的真子集;第一控制信道区域中控制信道的解调参考信号是固定的,不随时间改变;第二控制信道区域中控制信道的解调参考信号是随时间变化的;第一控制 信道区域中控制信道的解调参考信号是固定的,不随频域资源而改变;第二控制信道区域中控制信道的解调参考信号是随频域资源变化的;第一控制信道区域中,仅根据控制信道的解调参考信号包括的端口个数可以确定控制信道的解调参考信号端口,在第二控制信道区域中,根据控制信道的解调参考信号包括的端口个数不能确定控制信道的解调参考信号端口;在第一控制信道区域上,假设其他控制信道不占有控制信道占有的时频资源,在第二控制信道区域上,假设其他控制信道占有控制信道占有的时频资源。
在一实施例中,不同控制信道区域中控制信道的解调参考信号端口满足如下特征至少之一:不同控制区域中控制信道的解调参考信号端口数相同;一个控制信道区域中控制信道的解调参考信号端口集合是另一个控制区域控制信道的解调参考信号端口集合的子集。
在一实施例中,不同控制信道区域满足如下特征至少之一:不同控制信道区域的交集为空;不同控制信道区域属于相同时间单元;不同控制信道区域通过时分,和/或频分,和/或码分方式复用;不同控制信道区域并集在频域和系统带宽相同;不同控制信道区域的并集合在频域和第二通信节点的带宽相同。
在一实施例中,控制信道区域满足如下特征至少之一:根据时间单元的时间参数信息获取时间单元包含的控制信道区域类型;第一通信节点发送的配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
在一实施例中,控制信道的解调参考信号满足如下特征至少之一:在第一控制信道区域中,假设第一通信节点只在发送控制信道的时间单元中发送控制信道的解调参考信号;在第二控制信道区域中,假设第一通信节点在约定的时间单元和发送控制信道的时间单元中发送控制信道的解调参考信号,假设在约定的时间单元中第一通信节点可能没有发送第二通信节点的控制信道。
在一实施例中,所述最小发送单元满足如下特征至少之一:所述最小发送单元为所述参考信号对应的预编码资源单元;如果所述参考信号发送,所述最小发送单元为发送所述参考信号的最小资源单元;所述最小发送单元为所述参考信号时频插值的最小资源单元
在一实施例中,控制信道的解调参考信号的最小发送单元还满足如下特征至少之一:最小发送单元为一个或者多个控制信道资源组;最小发送单元为一个或者多个控制信道单元;最小发送单元为一个或者多个候选控制信道所占的 资源;最小发送单元为一个相同聚合度的一个搜索空间所占的资源;最小发送单元为第二通信节点的所有聚合度的所有搜索控制所占的资源;最小发送单元为控制信道区域。
在一实施例中,不同控制区域的相同参考信号端口是准共位置的;或者在第一预定时间单元中,不同控制区域的相同参考信号端口是准共位置的,在所述第一预定时间单元之外的时间单元中,不同控制区域的相同参考信号端口不具有准共位置关系。
在一实施例中,在确定控制信道的解调参考信号端口集合是第二参考信号端口集合的子集之前,还包括:接收第一通信节点发送的配置信息,其中,配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源,配置信息通过如下方式至少之一发送:广播消息发送,高层信令发送,动态信令发送,约定的规则。
在一实施例中,其中不同参考信号之间是准共位置的(quasi co-location)表示,一个参考信号的大尺度信道特性参数可以由另一参考信号的大尺度信道特性参数得到。
在本实施例中提供了一种运行于上述移动终端的控制信道的发送方法,图5是根据本公开实施例的控制信道的发送方法的流程图,如图5所示,该流程包括如下步骤:
步骤S502,确定控制信道的解调参考信号端口集合,其中,控制信道的解调参考信号端口是第二参考信号端口集合的子集;
步骤S504,在确定的解调参考信号端口上向第二通信节点发送控制信道;
其中,通过以下方式至少之一确定第二参考信号端口集合:第二参考信号端口集合是固定的,第二参考信号端口集合根据向第二通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
通过上述步骤,由于确定的控制信道的解调参考信号端口集合是第二参考信号端口集合的子集,根据在该控制信道上传输的信号进行信道估计使得信道估计更准确,因此,可以解决相关技术中采用以DMRS为解调参考信号的控制信道发送机制和/或波束机制发送信号过程中,如何提高信道估计的准确性的问题。
在一实施例中,控制信道的解调参考信号端口集合根据以下信息至少之一 获取:第二通信节点对应的发送资源信息,控制信道对应的时间参数,解调参考信号的端口集合个数M1,控制信道所在的控制信道区域类型,控制信道所在的控制信道区域对应的时间参数,控制信道对应的频域资源索引,控制信道的控制信道单元索引,控制信道的控制资源组索引;其中,发送资源是向第二通信节点发送的信号的通信链路中,第一通信节点采用的发送资源,向第二通信节点的发送资源,发送资源包括以下资源类型至少之一:发送波束资源,发送端口资源,发送预编码矩阵资源,发送时间资源,发送频域资源,发送序列资源,其中,发送资源是向第二通信节点发送信号所采用的资源。所述发送端口是参考信号所用的端口。
在一实施例中,发送资源满足以下特征至少之一:发送资源和解调参考信号端口之间存在一一对应关系;发送资源和解调参考信号端口集合之间存在一一对应关系;多个发送资源对应一个相同的解调参考信号端口;当第二通信节点对应的发送资源改变时,第二参考信号端口集合进行相应的改变。
在一实施例中,控制信道的解调参考信号端口集合满足如下特征之一:控制信道的解调参考信号端口集合在不同的时间单元是可变的;控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
在一实施例中,确定控制信道的解调参考信号端口集合包括:向第二通信节点发送信令信息,其中,信令信息包括控制信道的解调参考信号端口信息。
在一实施例中,控制信道所在的控制信道区域不同,控制信道的解调参考信号的确定方法不同,和/或控制信道的发送方法不同。
在一实施例中,在控制信道所在的控制信道区域不同的情况下,确定控制信道的解调参考信号端口集合包括如下方法至少之一:在第一控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合,在第二控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合的真子集;第一控制信道区域中控制信道的解调参考信号是固定的,不随时间改变;第二控制信道区域中控制信道的解调参考信号是随时间变化的;第一控制信道区域中,根据控制信道的解调参考信号包括的端口个数可以确定控制信道的解调参考信号端口,在第二控制信道区域中,根据控制信道的解调参考信号包括的端口个数不能确定控制信道的解调参考信号端口;在第一控制信道区域上,假设其他控制信道不占有控制信道占有的时频资源,在第二控制信道区域上,假设其他控制信道占有控制信道占有的时频资源。
在一实施例中,不同控制信道区域中控制信道的解调参考信号端口满足如下特征至少之一:不同控制区域中控制信道的解调参考信号端口数相同;一个控制信道区域中控制信道的解调参考信号端口集合是另一个控制区域控制信道的解调参考信号端口集合的子集。
在一实施例中,不同控制信道区域满足如下特征至少之一:不同控制信道区域的交集为空;不同控制信道区域属于相同时间单元;不同控制信道区域时域重叠;不同控制信道区域通过时分,和/或频分,和/或码分方式复用;不同控制信道区域并集占满系统带宽。
在一实施例中,控制信道区域通过如下方式确定:根据时间单元的时间参数信息获取时间单元包含的控制信道区域。
在一实施例中,确定控制信道的解调参考信号端口集合包括:向第二通信节点发送配置信息,其中,配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
在一实施例中,确定控制信道的解调参考信号端口集合包括:在第一控制信道区域中,只在发送控制信道的时间单元中发送控制信道的解调参考信号;在第二控制信道区域中,在约定的时间单元和发送控制信道的时间单元中发送控制信道的解调参考信号,在约定的时间单元中可能没有发送第二通信节点的控制信道。
在一实施例中,第一控制区域的参考信号发送的最小单元和第二控制区域的参考信号发送的最小发送单元不同。
在一实施例中,不同控制信道区域的最小发送单元还满足如下特征至少之一:第一控制信道区域内搜索空间中的候选控制信道所占的资源为最小发送单元;第一控制信道区域内相同聚合度的一个搜索空间所占的资源为最小发送单元;第一控制信道区域内所有聚合度的所有搜索空间所占的资源为最小发送单元;第二控制信道区域内参考信号发送的最小单元是第二控制信道区域;第二控制信道区域内参考信号发送的最小单元是整个系统带宽。
在一实施例中,不同控制区域的相同参考信号端口是准共位置的;或者在第一预定时间单元中,不同控制区域的相同参考信号端口是准共位置的,在所述第一预定时间单元之外的时间单元中,不同控制区域的相同参考信号端口不具有准共位置关系。
在一实施例中,在确定控制信道的解调参考信号端口集合是第二参考信号 端口集合的子集之前,还包括:向第二通信节点发送配置信息,其中,配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源,配置信息通过如下方式至少之一发送:广播消息发送,高层信令发送,动态信令发送,约定的规则。
本公开实施例是针对以DMRS为解调参考信号的控制信道发送机制和/或波束机制发送的控制信道中,控制信道和控制信道解调参考信号的PRG,QCL,解调参考信号图样,解调参考信号端口的获取,控制信道的检测提出解决方案。
采用本公开上述实施例可以解决波束机制和/或DMRS作为解调参考信号的控制信道传输机制下,控制信道相关检测问题和控制信道解调参考信号获取的相关问题。具体的,采用上述实施例可以解决确定控制信道以及其解调参考信号的PRG问题,增加控制信道解调参考信号的信道估计性能的同时,取得波束分集增益。
而且,对于控制信道解调参考信号的QCL信息获取提供相关解决方法,解决没有CRS的情况下,控制信道解调参考信号的QCL信息的获取。
进一步地,对于控制信道解调参考信号端口的获取,控制信道解调参考信号图样的获取提供相关解决方案,支持MU-MIMO传输,和/或UE-Specific的发送波束发送所述控制信道。
再有,上述实施例提出对于不同的控制信道区域,控制信道的检测方法不同,支持SU-MIMO传输的控制信道区域和SU-MIMO/MU-MIMO透明切换区域,增加控制信道容量的同时,降低终端检测控制信道的复杂度。
需要说明的是,上述实施例中第一通信节点可以是基站,第二通信节点可以是终端,下面以第一通信节点为基站,第二通信节点为终端为例进行说明。在以下实施例中,基站给终端发送用于信道估计的信号,所述信号可以是控制信道信号,解调参考信号,测量参考信号,或者数据信道信号。在以下实施例中,一个控制信道资源组,类似于LTE中的REG(Resource element group资源组)(或者EREG(Enhanced Resource element group增强的资源组)),或者NR未来采用的NR-CCE,也可以是上行控制信道的一个REG,又或者其他等效的信息,上述并不对本公开实施例的创造性造成影响。一个控制信道单元,类似于LTE中的控制信道单元(Control Channel Element,CCE)(或者ECCE(Enhanced Control channel element增强的控制信道单元)),或者NR未来采用的NR-CCE。
类似于LTE中的相关概念,总之就是一个或者多个REG构成一个CCE, CCE是一个下行控制信息(Downlink Control Information,DCI)映射的基本单元,一个或者多个CCE构成一个候选控制信道,一个或者多个候选控制信道构成一个搜索空间,一个搜索空间中不同候选控制信道占有的CCE数相同,一个候选控制信道占有的CCE数,称为聚合度。不同聚合度对应的不同的搜索空间,一个或者多个搜索空间构成专有搜索空间,一个或者多个搜索空间构成公共搜索空间,终端在专有搜索空间中搜索专有控制信息,在公共搜索空间中搜索公共控制信息。其中搜索空间,候选控制信道也可以其他等效的信息,并不影响本公开实施例的创造性。
实施例1
在本实施例中控制信道的预编码资源块组(类似LTE中的PRG,Precoding resource block Group)包括K个第二资源单元,其中,所述第二资源单元包括以下至少之一:一个控制信道资源组REG,一个控制信道单元CCE,一个候选控制信道,控制信道一个聚合度下的一个搜索空间,所述第二通信节点的专有搜索空间,所述第二通信节点的所有搜索空间,控制信道所在的子带,所述第二通信节点对应的带宽,所述信号占有的频域宽度,一个PRB。其中,本实施例中的REG是控制信道资源的单元,CCE由一个或者多个REG构成,CCE是一个控制信息映射的最小资源单元。但是,本公开实施例中,REG可以为其他等效信息,比如NR-REG,并不影响本公开实施例的创造性。同理CCE也可以为其他等效信息,比如NR-CCE,并不影响本公开实施例的创造性。一个候选控制信道包括的CCE个数,称为候选控制信道的聚合度,相同聚合度的多个候选控制信道构成一个搜索空间,一个终端的专有搜索空间由多个搜索空间构成。一个终端的搜索空间包括专有搜索空间和公共搜索空间。
图6是根据本公开实施例的控制信道的PRG的示意图一,如图6所示,控制信道的PRG是一个REG,此时就允许同一参考信号端口在不同REG中采用不同的预编码(当然也可以采用相同的预编码),即不同的波束给终端发送控制信道,从而取得分集增益,但是由于此时PRG的单元比较小,终端只能在PRG中进行信道的插值和滤波,从而使得信道估计性能受限,从而影响控制信道的接收性能。另一方面由于不同PRG的信道估计不能进行插值,此时每个PRG中都有自己的解调参考信号,此时解调参考信号的负载也是个问题。为了在信道估计性能,解调参考信号负载,波束分集增益中取得折中,优选地可以规定或者通知控制信道的PRG包括K个REG,优选地所述K值小于或者等于M且大 于1的自然数,其中M是一个CCE包括的REG数,当然K也可以是大于M的自然数。
图7是根据本公开实施例的控制信道的PRG的示意图二,如图7所示,控制信道的PRG也可以是一个CCE,其中一个CCE包括9个REG,即一个参考信号端口在所述一个CCE采用的预编码相同,也可以约定或者通知一个PRG包括的CCE个数K,其中K为自然数。
图8是根据本公开实施例的控制信道的PRG的示意图三,如图8所示,控制信道的PRG也可以是一个候选控制信道,在图8中一个候选控制信道由2个CCE构成,只是示例,并不排除其他的CCE个数情况,候选控制信道对应的聚合度不同,即一个候选控制信道对应的CCE个数不同,此时PRG的大小不同,比如候选控制信道1包括的CCE个数为1,则其PRG的大小为1个CCE,候选控制信道2包括的CCE个数为2,则其PRG的大小为2个CCE。候选控制信道3包括的CCE个数为4,则其PRG的大小为4个CCE。候选控制信道4包括的CCE个数为8,则其PRG的大小为8个CCE。此时另一种实施方式是,也可以根据终端对应的聚合度集合确定其PRG的大小,比如PRG的大小为终端对应的聚合度中最低聚合度,比如终端对应的聚合度集合为{1,2,4},则终端的PRG的大小为1个CCE(取聚合度等级中的最小聚合度),或者PRG的大小为终端对应的聚合度集合中的最大,或者平均聚合度确定。
图9是根据本公开实施例的控制信道的PRG的示意图四,如图9所示,控制信道的PRG是终端对应的一个聚合度下的所有候选控制信道对应的资源,即一个搜索空间。当终端有多个搜索空间时,不同搜索空间的PRG不同(由于不同搜索空间的聚合度不同,不同搜索空间对应的候选控制信道的个数不同);或者根据终端的最大聚合度的搜索空间确定PRG大小;或者根据终端的最小聚合度的搜索空间确定PRG大小;或者,图10是根据本公开实施例的控制信道的PRG的示意图五,如图10所示,专有搜索空间由聚合度{1,2,4,8}的搜索空间构成,其中聚合度为1的搜索空间中包括6个候选控制信道,包括6个CCE;聚合度为2的搜索空间中包括6个候选控制信道,包括12个CCE,聚合度为4的搜索空间中包括2个候选控制信道,包括8个CCE,聚合度为8的搜索空间中包括2个候选控制信道,包括16个CCE,而且这些CCE可能有重叠,此时PRG的一种方式是取各个搜索空间对应的总的CCE个数的最大公约数,比如(6,12,8,16)的最大公约数,即为2个CCE;或者此时的PRG是所有搜索空间中包括CCE 总数最小的,此时PRG为6个CCE,或者PRG是所有搜索空间中包括CCE总数最大的,此时PRG为16个CCE。
本实施例的一种可选实施方式中,PRG是终端的专有搜索空间对应的资源构成。
本实施例的一种可选实施方式中,PRG是终端所有搜索空间对应的资源构成。
本实施例的一种可选实施方式中,PRG是终端对应的控制域资源,图11是根据本公开实施例的控制信道的PRG的示意图六,如图11所示,不同时间单元中,终端对应的控制域资源带宽可能不同,从而PRG的大小也不同,图11中分配给终端的带宽和控制域带宽相同。图12是根据本公开实施例的控制信道的PRG的示意图七,如图12所示,终端的控制域带宽小于终端的带宽,其中终端的带宽就是基站分配给终端其信号可能存在的最大频域范围。其中控制域带宽是终端的控制信息或者控制信道跳变的最大带宽,跳变可以是一个时间单元中跳变,也可以是不同时间单元跳变。图12中不同时间单元中控制域的带宽长度和位置都不变,本实例的另一种实施方式中是控制资源。
在本实施例中,所述PRG表示基站告知终端,在所述PRG中相同参考信号端口所用的预编码相同,终端自己决策是否在PRG中进行联合信道估计,比如终端测得信道频选/或者时选比较严重,即使一个PRG中也不能进行信道的联合信道估计,如果频选不严重,就可以进行联合信道估计,滤除噪声的同时抑制干扰。这些都可以由终端自己决定。而且终端可以采用PRG区域的参考信号联合获取信道大尺度信息,比如延迟扩展,多普勒扩展,多普勒频移,平均延迟,出发角度,到达角度的测量。此时即使PRG对应的物理资源是离散的,终端只需要根据PRG中的解调参考信号获取信道大尺度信息等信息,基站只是告知中终端在PRG资源单元中,相同参考信号端口所用的预编码相同,其中所述预编码包括射频预编码和数字预编码,总之相同参考信号所用的发送波束相同。不同PRG单元用的波束可能不同,不能进行联合信道估计。当所述参考信号是解调参考信号时,解调参考信号端口对应的所有时频资源的发送波束在所述PRG资源单元中是相同的,或者此时表明解调参考信号端口对应的解调参考信号时频资源上的发送波束在所述PRG资源单元中是相同的,此时解调参考信号和控制信息所用的发送波束可能不同,比如基于开环的方式。
在图6~10中,REG0~REG8只是逻辑索引,每个REG所占的时频资源可能 是离散的,也可能是连续的。CCEn和CCEn+1也是只逻辑索引,每个CCE所占的时频资源可能是连续的也可能是离散的。
在本公开中,所述预编码资源块组也可以称为预编码粒度单元,或者其他等效名称,对本公开的创造性并不造成影响。
实施例2
在本实施例中,参考信号的最小发送单元包括K个第二资源单元,其中所述第二资源单元包括如下单元至少之一:一个控制信道资源组REG,一个控制信道单元CCE,一个候选控制信道,控制信道一个聚合度下的一个搜索空间,所述第二通信节点的专有搜索空间,所述第二通信节点的所有搜索空间,控制域子带,所述第二通信节点对应的带宽,所述信号占有的频域宽度,一个PRB。本实施例中与上述对PRG的确定的方法类似的部分,此处不在赘述。
在本实施例中,所述参考信号的最小发送单元包括如下信息至少之一:所述参考信号如果发送,其发送的最小单元为所述最小发送单元,其中所述参考信号占有所述最小发送单元中的部分时频资源,其中所述时频资源类似LTE中的RE,那么此最小发送单元为最小频域发送单元;所述最小发送单元为所述参考信号可以时频插值的最小资源单元;相同时间单元中由相同参考信号端口得到的信道估计不能在不同最小单元中进行信道插值;所述最小发送单元为一个PRG单元;所述最小发送单元中的时频资源可以采用所述参考信号作为解调参考信号。
图13是根据本公开实施例的最小发送单元的示意图,如图13所示,当参考信号的最小发送单元大于一个候选控制信道,此时终端可以基于最小发送单元中的参考信号得到信道估计值,其信道估计可以用此最小发送单元中的所有候选控制信道的解调。一种方式是,在每个时间单元或者预定的时间单元中,在最小发送单元中都会发送控制信道解调参考信号,用于增强控制信道解调参考信号的估计性能,以及多个用户可以共享一套解调参考信号。或者只要有一个终端的控制信道发送,其解调参考信号的就以所述最小发送单元发送。
实施例3
本实施例中,基站在控制信道区域采用UE-Specific的发送波束方式给终端发送控制信道。基站向终端发送控制信道和参考信号,其中所述参考信号相关的第一资源单元为第二资源单元的K倍,其中K为自然数。所述第一资源单元为确定所述信号发送图样的最小资源单元,所述第二资源单元为如下资源单元 至少之一:一个控制信道资源组REG,一个控制信道单元CCE,一个候选控制信道,控制信道一个聚合度下的一个搜索空间,所述第二通信节点的专有搜索空间,所述第二通信节点的所有搜索空间(包括专有搜索空间和公共搜索空间),控制信道所在的子带,所述第二通信节点对应的带宽,所述信号占有的频域宽度,一个PRB。
所述参考信号的发送图样根据所述第一资源单元而确定;其中所述信号的发送图样包括如下信息至少之一:所述信号占有的时域资源和/或频域资源,所述信号占有的码域资源。
例如,第二资源单元为一个候选控制信道,所述终端的专有搜索空间中的每个候选控制信道都有解调参考信号,每个候选控制信道的解调参考信号用于解调本候选控制信道的信号。图14是根据本公开实施例的控制信道中解调参考信号的示意图一,如图14所示,在每个候选控制信道中都有各自独立的解调参考信号,由于终端在盲检控制信道时,终端的专有搜索空间中包含的不同候选控制信道可能是基站发送给不同终端的控制信道,此时不同终端的控制信道所用的波束可能不同,所以需要在每个候选控制信道中携带其独立的解调参考信号,图14中第一套~第六套解调参考信号所占的资源只是示例,并不排除其他的情况,比如不同候选控制信道中的解调参考信号占有的位置不同,占有的资源数不同。总之此时确定控制信道解调参考信号图样的最小资源单元为一个候选控制信道。
又例如,所述第二资源单元为一个专有搜索空间,所述终端的相同聚合度的专有搜索空间中的所有候选控制信道共享一套解调参考信号资源。图15是根据本公开实施例的控制信道中解调参考信号的示意图二,如图15所示,确定控制信道解调参考信号图样的最小资源单元为一个聚合度下的一个专有搜索空间,根据一个专有搜索空间的资源确定参考信号的发送图样。
又例如,所述第二资源单元为专有搜索空间,所述终端的所有搜索空间共享一套解调参考信号资源。图16是根据本公开实施例的控制信道中解调参考信号的示意图三,如图16所示,确定控制信道解调参考信号图样的最小资源单元为专有搜索空间,根据专有搜索空间的资源确定参考信号的发送图样。
又例如,所述第二资源单元为一个REG,则在每个REG中都有解调参考信号。
在图15~16中,解调参考信号在所述第二资源单元中占有的时频资源只是 示例,本实施例并不排除其他的资源占有情况。
下面对确定发送图样最小资源单元的进行详细解释,在本实施例中,确定所述解调参考信号发送图样的最小资源单元,第一种实施方式是根据所述最小资源单元确定解调参考信号的发送图样,如图14~16.类似LTE的CRS或者DMRS是每个PRB,这些参考信号的图样相同或者类似,此处在所述确定解调参考信号的最小资源单元中有解调参考信号图样,不同的最小资源单元中发送图样相同或者类似,小于所述最小资源单元的资源单元中可能没有解调参考信号。比如确定解调参考信号发送图样的最小资源单元为一个REG,那么在每个REG中都有解调参考信号时频资源,如果确定解调参考信号发送图样的最小资源单元为一个CCE,那么在每个CCE中都有解调参考信号时频资源,此时构成一个CCE的一个REG中就没有解调参考信号时频资源。
另一种实施方式是,所述解调参考信号可以用于所述最小资源单元中所有时频资源中信号的解调(其中所述所有时频资源是本解调参考信号端口对应的时频资源,可能需要除去与本解调参考信号端口通过时分/频分方式正交的其他解调参考信号端口占有的时频资源)。图17是根据本公开实施例的控制信道中解调参考信号的示意图四,如图17所示,虽然所述第二资源单元由相同聚合度下的所有候选控制信道构成,即第二资源单元为一个搜索空间,但是每个候选控制信道中的解调参考信号发送图样类似或者相同,此时确定解调参考信号发送图样的最小资源单元为一个搜索空间,表示所述最小资源单元中的所有时频资源共享一套解调参考信号资源。
实施例4
基站向终端发送控制信道和参考信号,其中所述参考信号相关的第一资源单元为第二资源单元的K倍,其中K为自然数。其中所述第一资源单元为所述信号对应的第一参考信号的资源单元,所述参考信号和所述第一参考信号是准共位置QCL的,所述参考信号的信道大尺度信息可以由所述第一参考信号的大尺度信息得到,所述信道大尺度信息包括如下信息至少之一:延迟扩展,多普勒扩展,多普勒偏移,平均延迟,ZOD(垂直离开角),AOD(水平离开角),ZOA(垂直到达角),AOA(水平到达角)。
上述第二资源单元包括如下至少之一:一个控制信道资源组REG,一个控制信道单元CCE,一个候选控制信道,控制信道一个聚合度下的一个搜索空间,所述第二通信节点的专有搜索空间,所述第二通信节点的所有搜索空间(包括专 有搜索空间和公共搜索空间),控制信道所在的子带,所述第二通信节点对应的带宽,所述信号占有的频域宽度。
图18是根据本公开实施例的控制信道区域的示意图一,如图18所示,控制信道区域是QCL资源单元(其中QCL资源单元即为所述第一参考信号的资源单元)的子集,此时控制信道区域的解调参考信号的信道大尺度信息可以通过QCL资源单元中第一参考信号的大尺度信息得到。
此时所述信号和所述第一参考信号之间满足如下特征至少之一:所述第一参考信号的端口集合是所述信号的解调参考信号端口集合的子集;所述第一参考信号的端口所用序列集合是所述信号的解调参考信号所用的序列集合的子集;所述第一参考信号的端口集合是所述信号的解调参考信号端口集合的交集为空。
其中所述控制信道区域,可以包括如下至少之一:一个REG,一个CCE,一个候选控制信道,一个搜索空间,专有搜索空间,当前时间单元中的所有搜索空间,第一带宽内,其中所述第一带宽是所述第一通信节点的控制信息可以在其中跳变占有资源的带宽,跳变可以是当前时间单元中跳变,也可以是不同时间单元中跳变,即终端假设其控制信道只在所述带宽内传输,不会在所述带宽之外传输。
实施例5
本实施例提供了一种控制信道和解调参考信号发送方法,基站(即为上述第一通信节点)给终端(即为上述第二通信节点)发送的控制信道满足如下特征,所述控制信道所在的控制信道区域不同,传输模式不同;所述控制信道所在的控制信道区域不同,控制信道解调参考信号的确定方式不同,和/或控制信道的检测方法不同。
例如,当所述控制信道在第一控制信道区域传输时,采用单用户多输入多输出SU-MIMO方式;
当所述控制信道在第二控制信道区域传输时,采用SU-MIMO和MU-MIMO混合方式传输。所述SU-MIMO和MU-MIMO的混合传输模式,表示在有些时间单元中此区域是SU-MIMO的方式,在有些时间单元是此区域是MU-MIMO传输模式,所述SU-MIMO/MU-MIMO模式基站根据调度需求动态调度,或者此区域的某些时频资源上当前是SU-MIMO传输模式,某些时频资源是MU-MIMO传输模式。当所述控制信道在第一控制信道区域传输时,其控制信 道解调参考信号端口数为M,所述解调参考信号端口根据所述M确定;当所述控制信道在第二信道区域传输时,其控制信道解调参考信号端口数为M1,所述解调参考信号端口为第二参考信号端口集合的子集。所述控制信道解调参考信号端口集合至少根据如下信息中的一种或者多种得到:所述终端对应的发送资源信息;所述控制信道对应的时间参数,所述解调参考信号的端口集合个数M1,所述第二控制信道区域对应的时间参数,所述控制信道所在的频域资源索引(比如PRB索引),所述终端的识别信息C-RNTI;所述第二控制信道区域对应的控制信道资源(优选地不同的控制信道资源可以对应不同的时频资源,或者对应不同的空域资源,比如发送波束,和/或接收波束);所述控制信道对应的控制信道资源。其中所述发送资源是所述基站发送与所述终端接收的通信链路(即下行通信链路)中,所述基站所采用的发送资源,所述发送资源包括如下资源类型中的一种或者多种:发送波束资源,发送端口资源,发送预编码矩阵资源,发送时间资源,发送频域资源,发送序列资源。所述发送资源是所述第一通信节点发送信号所采用的资源。
本实施例的第一种实施方式中,图19是根据本公开实施例的控制信道区域的示意图二,如图19所示,一个时间单元中的控制域频分为两个区域,第一控制信道区域,第二控制信道区域,其中控制信息在第一控制信道区域传输的时候是SU-MIMO的传输模式,即在相同的时频资源上只传一份控制信息。其控制信道解调参考信号端口固定,比如为1个解调参考信号端口,解调参考信号端口为端口1。当终端在第一控制区域检测控制信道时,其只在解调参考端口1上检测控制信道。终端假设在其控制信道占有的时频资源上,基站不会通过其他解调参考信号端口给其他终端发送控制信道,或者最多基站通过相同的解调参考信号端口通过空分的方式给其他终端发送控制信道。第二控制信道区域的控制信道传输是SU-MIMO/MU-MIMO混合传输模式,即此时在所述第二控制信道区域的相同时频资源上可以通过空分的方式给多个终端发送控制信息,不同终端占有不同的控制信道解调参考信号端口。优选地不同控制信道解调参考信号端口通过码分复用。当然也可以时分/频分中的任意一种或者多种,但是如果解调参考信号端口时分/频分,由于基站发送的控制信道MU-MIMO的总层数不同时间单元在动态变化,需要考虑控制信道速率匹配的问题,一种解决方法是告知终端MU-MIMO传输总层数,终端根据总层数得到当前控制信道解调参考信号总端口数,从而进行速率匹配,此时SU-MIMO和MU-MIMO对终端是 非透明的。另一个解决方式是控制信道解调参考信号端口占有的资源都预留,不传输控制信息,此时就可以做到SU-MIMO和MU-MIMO的传输对终端是透明的,但是此时资源利用率不是很高。此区域内终端的控制信道解调参考信号可以根据所述终端对应的发送资源得到。所述终端对应的发送资源是之前基站和终端约定好的,比如通过波束训练,或者波束跟踪等过程终端得到其对应的发送资源。发送资源和控制信道解调参考信号一一对应。所述发送资源和控制信道解调参考信号之间的一一对应关系是收发双方预先预定的。比如发送资源i对应控制信道解调参考信号端口i,总的发送资源数和控制信道解调参考信号的端口数相同。图20是根据本公开实施例的下行传输的示意图一,如图20所示,下行传输中,基站总共有12个发送资源(比如为12个发送波束),对应控制信道解调参考信号端口1~12。终端通过之前的波束训练过程,或者波束跟踪过程,确认其控制信道对应的发送资源为发送资源1,或者基站配置当前终端检测控制信道对应的发送资源为发送资源1(即在此时终端在发送资源1对应的基站的发送波束下检测控制信道),当终端在第二控制信道区域检测控制信道时,就首先在发送资源1对应的解调参考信号端口1上检测控制信道,并检测其他发送资源对应的解调参考信号端口,即终端也检测控制信道解调参考信号端口2~12,从而进行控制信道MU干扰估计消除等操作。
在图19中第一控制信道区域和第二控制信道区域的频分方式,只是示例并不排除其他频分方式。本实施例也不排除所述第一控制信道区域和第二控制信道区域是时分和/或频分的方式,比如采用类似LTE中ECCE,或者CCE的方式将一个时间单元的控制域分为多个控制信道资源,所述第一控制信道区域包含第一控制信道资源集合,所述第二控制信道区域包括第二控制信道资源集合。图19中第一控制信道区域和第二控制信道区域占满整个系统带宽,本实施例也不排除第一控制信道区域和第二控制信道区域只占部分系统带宽。图19中第一控制信道区域和第二控制信道区域在对应的传输域之前发送。
图19中第一控制信道区域和第二控制信道区域在相同的时间单元中,本实施例也不排除所述第一控制信道区域和所述第二控制信道区域在不同的时间单元中,图21是根据本公开实施例的控制信道区域的示意图三,如图21所示,每个时间单元根据时间单元对应的时间参数得到其包含第一控制信道区域和第二控制信道区域其中之一。或者第一控制信道区域和第二控制信道区域所在的时间单元是收发双方之前约定的,比如通过高层信令,或者通过公共控制信息 得到,或者通过之前的动态信令得到。
本实施例的第二种实施方式中,和第一种实施方式类似,区别在于第二控制信道区域中发送资源和解调参考信号端口集合一一对应。比如每个发送资源对应一个解调参考端口集合,所述解调参考信号端口集合中至少包括一个参考信号端口。此时一种方式是不同解调参考信号端口集合的交集为空,另一种方式是不同参考信号端口集合的交集为非空。而且对于不同参考信号端口集合中包含的参考信号端口数可以相同也可以不同,此时终端在发送资源i对应的解调参考信号端口进行控制信道检测的同时,检测其他发送资源对应的解调参考信号端口集合中的端口上检测MU干扰,进行控制信道的MU干扰消除等操作。类似地如图20所示,通过之前的波束训练或其他过程终端得到其对应的发送资源为发送资源1,而发送资源1对应解调参考信号端口集合1,解调参考信号端口集合1中包括端口1,2,此时终端在端口1,2上检测其控制信道,检测其他发送资源对应的解调参考信号端口,进行控制信道的MU干扰消除等操作。
本实施例的第三种实施方式中,和第一种实施方式类似,区别在于第二控制信道区域中多个发送资源对应一个参考信号端口。比如发送资源i对应的解调参考信号端口为i对_Num_Max取余得到,其中参考信号_Num_Max表示第二控制信道区域的最大参考信号端口数,具体地如图20所示,基站总共有12个发送资源,参考信号_Num_Max=3,此时发送资源{1,4,7,10}对应端口1,发送资源{2,5,8,11}对应端口2,发送资源{3,6,9,12}对应端口3,或者发送资源i对应的参考信号端口为
Figure PCTCN2017120336-appb-000003
此时发送资源{1,2,3}对应解调参考信号端口1,发送资源{4,5,6}对应解调参考信号端口2,发送资源{7,8,9}对应解调参考信号端口3,发送资源{10,11,12}对应解调参考信号端口4。注意此时操作中发送资源编号从0开始。当然本实施例也不排除其他的发送资源和参考信号端口之间的对应关系。
在上述第一~第三实施方式中,如果终端通过波束训练或者其他过程和基站约定其对应的发送资源不止一个,此时一种方式是终端只在最优发送资源对应的解调参考信号上检测控制信道,另一种方式中,终端可以在多个发送资源对应的多个解调参考信号端上都检测控制信道。
本实施例的第四种实施方式中,和第一种实施方式类似,区别在于,第二控制信道区域中,终端的解调参考信号不再根据终端对应的发送资源得到,而是终端在一个第一解调参考信号端口集合中盲检,当第一解调参考信号端口集 合中的端口的接收性能超过一定门限,就在所述解调参考信号端口中检测控制信道。此时增加了终端的盲检复杂度,但是对于控制信道的MU-MIMO配对提供更大的灵活性,而且可以使得基站发送的控制信道发送波束达到一定的灵活性,因为此时解调参考信号和发送波束没有关联。
本实施例的第五种实施方式中,和第四种实施方式类似,区别在于,此时发送端和接收端进一步限定M1的取值,比如终端盲检第三参考信号端口集合中的每个参考信号端口接收性能,至多选择接收性能最优的M1个参考信号端口,联合解调控制信道。
本实施例的第六种实施方式中,和第一种实施方式类似,区别在于,第二控制信道区域的解调参考信号根据终端的识别号C-RNTI,和终端的控制信道对应的时域资源的最小索引(或者最大索引),和/或终端的控制信道对应的频域资源的最小索引(或者最大索引)得到解调参考信号端口,和/或根据终端的控制信道对应的最小CCE(或者最大CCE索引),这样可以避免在相同时频资源上两个用户的参考信号端口总是相同,从而可以让两个用户可以进行MU-MIMO传输。同时此时解调参考信号和波束训练阶段的发送资源没有关联关系,使得控制信道的发送资源(比如发送波束)可以更加灵活。
在上述实施方式中,当控制信道在第一控制信道区域时,控制信道解调参考信号的端口数M固定,而且解调参考信号根据M得到,对此问题本实施例的第二种实施方式中,当所述控制信道在第一控制信道区域时,控制信道解调参考信号的端口数跟所述终端对应的发送资源总数LB之间存在对应关系。所述对应关系之前和所述终端约定好的。图22是根据本公开实施例的下行传输的示意图二,如图22所示,如果终端在波束训练阶段得到其相同接收波束下能够接收到发送波束{1,3,4},即LB=3,此时终端的第一控制信道区域的参考信号端口数M=3,对应端口{1,2,3},或者图23是根据本公开实施例的下行传输的示意图三,如图23所示,如果终端在波束训练阶段得到其相同接收波束下能够接收到发送波束{1,3,6,7,8},即LB=5,此时终端的第一控制信道区域的参考信号端口数M=5,对应端口{1~5},此时LB和M之间的对应关系只是举例,并不排除其他对应关系类型。对于此问题本实施例的第三种实施方式中,当所述控制信道在第一控制信道区域时,控制信道解调参考信号的端口数跟所述终端对应的发送资源总数LB和所述终端对应的发送资源以及M的最大值共同得到。如图23所示,如果终端在波束训练阶段得到其相同接收波束下能够接收到发送波束 {1,3,6,7,8},即LB=5,假设M的最大值为4,从而得到M=4,对应端口1~4。
本实施例的一种可选实施方式中,所述第一控制信道区域和第二控制信道区域都为专有搜索信道区域,终端首先确定其控制信道所在的区域,比如根据和基站之前约定的规则得到专有搜索空间,对于专有搜索空间中的每个候选控制信道确定其所在的区域是所述第一控制信道区域还是第二控制信道区域,对于不同的控制信道区域采用不同的检测方式进行控制信道以及控制信道解调参考信号的解调。
在SU-MIMO/MU-MIMO传输的第二控制信道区域,终端假设一个或者多个其他控制信息可能占有第三参考信号端口集合中的端口,所述第三参考信号端口集合为所述第二参考信号端口集合和所述控制信道解调参考信号端口集合的差集,终端在第三端口集合终端端口上检测MUI(Mutiple user interferce多用户干扰)。
实施例6
在本实施例中,所述第一资源单元中包括K个第二资源单元,本实施例说明所述K值的获取方法。所述K值的获取方法可以包括如下五种方法至少之一:
第一种方法是所述第一通信节点将所述K值通知给所述第二通信节点,此时可以是动态信令通知也可以是高层信令通知,比如RRC信令或者MAC CE信令通知;
第二种方法是根据系统带宽确定所述K值,比如所述第一资源单元为PRG单元;
第三种方法是根据所述第二通信节点对应的带宽信息确定所述K值,比如所述带宽是通知的第二通信节点的PDCCH所在的带宽,即所述第二通信节点PDCCH在当前一段时间内只能在所述带宽内跳变,不会超过所述带宽,起码其优先检测的PDCCH不会超过所述带宽内;
第四种方法是根据所述信号的资源映射方式确定所述K值,比如所述第一资源单元为一个PRG单元,当控制信道所占有的物理资源是连续的PRB,即NR-CCE或者NR-REG到PRB的映射是local的,此时K值可以大一些,当控制信道所占有的物理资源是离散的PRB,即NR-CCE或者NR-REG到PRB的映射是分布式(distrubute)的,此时K值可以小一些。
第五种方法是根据所述第二通信节点反馈的发送资源个数确定所述K值,比如终端给基站反馈的发送资源越多,其中发送资源就对应发送波束,发送资 源越多,基站就可以采用更多的发送波束给终端发送控制信道,从而终端反馈的发送波束个数越多,PRG就可以越小一些。
其中,发送资源是基站发送与终端接收的下行通信链路中,基站的发送波束,其中不同的发送波束可以通过如下资源类型至少之一区分:发送波束资源,发送参考信号端口资源,发送预编码矩阵资源,发送时间资源,发送频域资源,发送序列资源。所述发送资源是所述基站发送信号所采用的资源。所述发送端口是参考信号所用的端口。
本实施例的另一种可选实施例中,可以根据第二资源单元中可用于控制信道传输的时频资源个数确定所述K值,比如所述第二资源单元为一个CCE,而一个CCE中可用于控制信道的时频资源为8或者16(8的情况是这个CCE中一些时频资源被参考信号或者广播信道或者同步信号占有),当为8时,第一资源单元是第二资源单元的2倍,当为16是第一资源单元是第二资源单元的1倍,当然也可以是其他情况。
实施例7
基站向终端发送控制信道和/或解调参考信号,其中所述解调参考信号相关的第一资源单元为第二资源单元的K倍,其中,K为自然数。其中所述第一资源单元为PRG资源单元,所述第二资源单元为如下资源单元至少之一:一个控制信道资源组REG,一个控制信道单元CCE,一个候选控制信道,控制信道一个聚合度下的一个搜索空间,所述第二通信节点的专有搜索空间,所述第二通信节点的所有搜索空间(包括专有搜索空间和公共搜索空间),控制信道所在的子带,所述第二通信节点对应的带宽,所述信号占有的频域宽度,一个PRB。
当控制信道到物理资源的映射是连续的,PRG中包括的第二资源单元的个数K值可以大一些,当控制信道到物理资源的映射是离散的,PRG中包括的第二资源单元的个数K值可以小一些。
另一方面,当控制信道到物理资源的映射是连续的,则PRG中包括的第二资源单元类型级别更高,当控制信道到物理资源的映射是离散的,则PRG中包括的第二资源单元类型级别更低。
其中所述REG,CCE,一个候选控制信道,一个搜索空间,专有搜索空间,所有搜索空间,控制信道所在的子带,所述第二通信节点对应的带宽,所述信号占有的频域宽度的单元类型的级别依次升高。或者第二资源单元类型所对应的频域资源和/或时域资源越大,第二资源单元类型的级别越高。
实施例8
本实施例中对上述实施例中第一资源单元是第二资源单元的K倍进行详细论述,K是自然数。
第一种实施方式是,第一资源单元包括的时频资源个数是第二资源单元包括的时频资源个数的K倍。即第一资源单元中包括K个第二资源单元。
第二种实施方式中,仅表示第一资源单元在频域占有的资源个数是所述第二资源单元占有的频域资源的K倍,或者仅表示第一资源单元在频域长度是所述第二资源单元占有的频域长度K倍,第一资源单元的时域资源个数和所述第二资源单元的时域资源个数可以不同。
第三种实施方式中,仅表示第一资源单元占有的时域资源个数是所述第二资源单元占有的时域资源的K倍,或者仅表示第一资源单元在时域长度是所述第二资源单元占有的时域长度K倍,第一资源单元的频域资源个数和所述第二资源单元的频域资源个数可以不同。
实施例9
在本实施例中对一个信号的PRG(即预编码资源块组,或者预编码粒度单元),信号的最小发送单元,信号的准共参考信号的资源单元和确定信号发送图样的最小资源单元之间存在关系进行详细的论述。
第一种方式是,上述信号的PRG,信号的最小发送单元,信号的准共参考信号的资源单元和确定信号发送图样的最小资源单元是相同单元;
第二种方式是,上述信号的PRG,信号的最小发送单元,信号的准共参考信号的资源单元和确定信号发送图样的最小资源单元中,最小的资源单元是PRG,其他资源单元是PRG的整数倍。
第三种方式是,上述信号的PRG,信号的最小发送单元,信号的准共参考信号的资源单元和确定信号发送图样的最小资源单元中,确定信号发送图样的最小资源单元最小,其他资源是确定信号发送图样的最小资源单元的整数倍。
实施例10
下面进一步对第一资源单元是第二资源单元的K倍进行详细的论述。
在本实施例中,所述信号的第一资源单元是第二资源单元的K倍,其中,所述第二资源单元是所述信号占有的资源,比如所述信号为控制信道,第一资源单元是确定参考信号的最小资源单元,所述控制信道占有一个PPB,其解调参考信号就以一个PRB得到解调参考信号图样,所述控制信道占有2个PRB,其 解调参考信号就以2个PRB得到解调参考信号图样。如图24所示。
需要说明的是,本实施例中,第一资源单元是第二资源单元的K倍,K为自然数。所述第一通信节点给所述第二通信节点通知所述第二资源单元类型,其中所述第二资源单元类型包括:一个控制信道资源组REG,一个控制信道单元CCE,一个候选控制信道,控制信道一个聚合度下的一个搜索空间,所述第二通信节点的专有搜索空间,所述第二通信节点的所有搜索空间,控制信道所在的子带,所述第二通信节点对应的带宽,所述信号占有的频域宽度,一个PRB。
实施例11
下面从控制域子带方面进行详细的论述。
在本实施例中,控制域子带根据如下信息至少之一确定:时域信息,所述第二通信节点的C-RNTI,所述第二通信节点(比如终端)对应的带宽信息,MIB/SIB所在的频域信息。
其中,控制域子带为终端的控制信道所在的子带,其频域长度等于或者小于终端的数据信号可以传输的带宽。
其中,所述第二通信节点对应的带宽信息为如下带宽至少之一:第二通信节点的系统带宽;第二通信的控制域所在的带宽;第二通信节点的专有控制信息所在的带宽信息。
其中,所述一个控制域子带,也可以称为一个控制资源集合,一个控制信息处于一个控制域子带中。
现在NR的讨论中考虑到带宽比较大的时候,终端基于全带宽检测控制信道,其功耗比较大,主张将控制信道放在一个窄带中,从而降低终端的功耗,比如终端的控制信道放在一个控制域子带中,如果分配给一个终端的控制域子带是固定或者高层配置的,此时就不能很好的实现灵活的调度用户组合,比如控制域子带1是用户1~用户10共享,子带2是用户11~用户20共享,那么此时每个子带都需要以最大用户数预留(比如子带1上能够允许用户1~用户10同时调度,否则对调度造成限制),增加终端的射频功耗的同时,增加调度限制,比如此时需要调度用户1~用户11,子带1是饱和的,还不能利用子带2的资源调度用户1~10。
图25是根据本公开实施例的控制域子带的示意图一,如图25所示,让用户的控制域子带随着时间进行跳变,比如每L个时间单元跳变一次,L为自然数,使得发生碰撞的用户可以在一段时间L个时间单元之后不再碰撞,在图25 中是假设控制域子带和数据域子带相同,即所述的时间单元中,控制域子带和数据域子带相同,本实施例也不排除两者不同,即在相同的时间单元中,控制域子带和数据域子带长度不同,或者位置也不同,如图26所示,图26是根据本公开实施例的控制域子带的示意图二。其中数据域子带是数据终端的数据可调度的子带,终端的调度数据占数据域频域范围的部分或者全部。
优选地此时子带的跳变是不是全系统带宽中跳变,而是系统带宽中有限的子带集合中跳变,这些子带集合中子载波间隔相同,或者控制域占有的最大时域符号数相同,或者是信令配置的子带集合中跳变。
终端初始接入之后,其接收控制信道的控制域子带可以根据广播信道(比如PBCH(Physical Broadcast channel),NR-PBCH(Next Radio Physical Broadcast channel))所在的子带而得到。比如控制域子带是广播信道所在的子带,或者控制域子带所占的频域资源集合是广播信道所在的子带所占的频域资源集合的子集。
实施例12
下面对MU-MIMO传输模式下控制信道解调参考信号的获取进行详细的描述。
在本实施例中,控制信道解调参考信号是第二参考信号集合的子集。其中,控制信道解调参考信号根据如下信息至少之一得到:所述第二通信节点(比如终端)对应的发送资源信息;所述控制信道对应的时间参数,所述解调参考信号的端口集合个数M1,所述控制信道所在的控制信道区域类型,所述控制信道所在的控制信道区域对应的时间参数,所述控制信道对应的频域资源索引,所述控制信道对应的控制信道单元(类似CCE)索引。所述控制信道对应的控制信道资源组(类似REG)索引,其中,不同控制信道区域包括:所述第一通信节点假设所述第一控制区域中是SU-MIMO传输模式;所述第一通信节点假设所述第一控制区域中是SU-MIMO和MU-MIMO的混合传输模式。
其中,所述发送资源是所述第一通信节点(比如基站)发送与所述第二通信节点接收的通信链路中,所述第一通信节点的发送资源,所述发送资源包括如下资源类型中的一种或者多种:发送波束资源,发送端口资源,发送预编码矩阵资源,发送时间资源,发送频域资源,发送序列资源。所述发送资源是所述第一通信节点发送信号所采用的资源。在一实施例中不同的发送资源对应基站的不同发送波束。
例如,控制信道需要支持MU-MIMO传输方式,此时MU-MIMO用户就可以通过如上方式获取解调参考信号端口。
在一实施例中,终端检测控制信道所在的基站的发送波束资源可以用于解调参考信号的端口不同,从而使得不同发送波束下的用户的解调参考信号端口可以不同,当然当发送波束数远大于端口数时,部分发送资源需要共享解调参考信号端口。
同一终端的控制信道的解调参考信号端口可以随时间而变化,即可以根据时间参数确定控制信道解调参考信号端口。
所述控制信道所在的控制信道区域类型,其中不同的控制信道区域包括:SU-MIMO控制信道传输区域和SU-MIMO/MU-MIMO传输模式,不同的控制信道区域控制信道解调参考信号的获取方法不同,如上述对MU=MIMO传输方式传输控制信道的描写所述。
优选地,此时第一控制信道区域和第二控制信道区域控制信道解调参考信号满足如下特性至少之一:在第一控制信道区域(比如SU-MIMO传输区域),其控制信道的解调参考信号是所述第二参考信号端口集合,在第二控制信道区域(比如SU-MIMO/MU-MIMO传输区域)),其控制信道的解调参考信号是所述第二参考信号端口集合的真子集。所述第一控制区域所述控制信道的解调参考信号是固定的,不随时间改变;所述第二控制区域所述控制信道的解调参考信号是时间变化的;所述第一控制区域所述控制信道的解调参考信号集合根据所述控制信道的解调参考信号集合包含的端口个数确定,所述第二控制区域所述控制信道的解调参考信号集合需要根据所述控制信道的解调参考信号集合包含的端口个数和其他信息才能确定。在第一控制信道区域上,所述第二通信节点没有其他控制信道占有所述控制信息占有的时频资源,在第二控制信道区域上,所述第二通信节点假设其他控制信道占有所述控制信道占有的时频资源。
不同控制区域所述控制信道的解调参考信号端口数相同,或者一个控制信道区域所述控制信道的解调参考信号端口集合是另一个控制区域所述控制信道的解调参考信号端口集合的子集。或者不同的控制信道区域包括:专有控制信道区域和公共控制信道区域。
同一终端的控制信道所在的频域资源不同,其控制信道解调参考信号端口不同。所述控制信道对应的频域资源索引,图27是根据本公开实施例的频域资源与解调参考信号的端口集合对应的示意图,如图27所示,频域资源不同解调 参考信号的端口集合不同。图27中的不同频域资源传输一个终端的不同控制信息(DCI),或者是传输一个控制信息的不同频域资源,其中一个频域资源包括连续的一个或者多个PRB。
图28是根据本公开实施例的控制信道单元CCE与解调参考信号的端口集合对应的示意图,如图28所示,同一终端的控制信道所在的控制信道单元CCE不同,其控制信道解调参考信号端口可以不同,。
同一终端的控制信道所在的控制域子带(或者控制信道资源组)不同,其控制信道解调参考信号的端口不同。
当然图27~28中不同频域资源(或者不同控制信道单元)的端口集合之间没有交集,本实施例也不排除端口集合之间交集不为空。
在一实施例中,所述控制信道的解调参考信号端口集合在不同的时间单元是可变的;在一实施例中,所述控制信道的解调参考信号端口集合在不同的频域资源中是可变的;在一实施例中,终端假设一个或者多个其他控制信息可能占有第三参考信号端口集合中的端口,所述第三参考信号端口集合为所述第二参考信号端口集合和所述控制信道解调参考信号端口集合的差集。
通过如下方式至少之一确定所述第二参考信号端口集合:所述第二参考信号端口集合是固定的;所述第二参考信号端口集合根据第一通信节点发送的信令信息得到;根据广播信道的解调参考信号集合;波束训练参考信号端口集合得到。
在一实施例中,所述不同控制区域满足如下特征至少之一:不同控制信道区域的交集为空;不同控制信道区域属于相同时间单元;不同控制信道区域时域重叠;不同控制信道区域通过时分,和/或频分,和/或码分方式复用;不同控制信道区域并集占满系统带宽。
在一实施例中,对所述不同控制区域满足如下特征至少之一:不同控制信道区域交集为空;不同控制信道区域属于不同时间单元;根据时间单元的时间参数信息得到所述时间单元包含的控制信道区域。
在一实施例中,基站给终端发送配置信息,所述配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。所述配置信息可以通过如下方式中的一种或者多种方式发送:广播消息发送,高层信令发送,动态信令发送,和所述第二通信节点约定的规则。
实施例13
下面对控制信道解调参考信号端口数进行详细说明。
在本实例中,举例说明控制信道解调参考信号端口数的确定方法。控制信道解调参考信号的端口数跟所述终端对应的发送资源总数LB之间存在对应关系。所述对应关系之前和所述终端约定好的,或者比如根据终端的上报,和/或根据基站的通知。如图22所示,如果终端在波束训练阶段得到其相同接收波束下能够接收到发送波束{1,3,4},即LB=3,此时终端的解调参考信号端口数M=3,对应端口{1,2,3},或者所示如图23所示,如果终端在波束训练阶段得到其相同接收波束下能够接收到发送波束{1,3,6,7,8},即LB=5,此时终端的第一控制信道区域的参考信号端口数M=5,对应端口{1~5},此时LB和M之间是相等的对应关系,并不排除其他对应关系类型。
或者控制信道解调参考信号的端口数跟所述终端对应的发送资源总数LB和所述终端对应的发送资源以及M的最大值M_Max共同得到。如图23所示,如果终端在波束训练阶段得到其相同接收波束下能够接收到发送波束{1,3,6,7,8},即LB=5,假设M_Max为4,从而得到控制信道解调参考信号的端口数M=4,对应解调参考信号端口1~4。
实施例14
下面对控制信道解调参考信号端口的获取进行详细说明。
在本实施例中,提供了一种控制信道的检测方法,主要为了支持控制信道的MU-MIMO传输。
第一种实施方式中,终端检测第二参考信号端口集合中的参考信号,根据参考信号的接收性能,在所述第三参考信号端口集合中选择一个或者多个参考信号端口构成所述控制信道的解调参考信号端口集合。
第二种实施方式中,终端在第二参考信号端口集合的每个参考信号端口上检测控制信道,检测成功的参考信号集合构成所述控制信道的解调参考信号;
在一实施例中,终端可以假设控制信道的解调参考信号端口集合至多包括M2个参考信号,即终端假设基站最多采用M2个解调参考信号端口给其发送控制信息,或者在相同的时频资源上基站最多采用M2个解调参考信号端口给其发送控制信息。
在一实施例中,终端假设基站采用M2个解调参考信号给其传输控制信息,或者在相同的时频资源上基站采用M2个解调参考信号端口给其发送控制信息。
实施例15
下面对不同控制信道区域不同,控制信道解调参考信号的发送方式不同进行详细说明。
所述第二通信节点假设第一控制信道区域中有所述第二通信节点的控制信息需要发送时,所述第一控制信道区域的解调参考信号才会发送。所述第二通信节点假设所述第二控制信道区域的解调参考信号在约定的时间单元固定发送,即使约定的时间单元上第二控制信道区域不发送任何控制信息。在约定的时间单元之外的时间单元中所述第二控制信道区域的解调参考信号仅在有控制信息需要发送时才发送。
在一实施例中,所述第二通信节点假设第一控制区域的参考信号发送的最小单元和所述第二控制区域参考信号发送的最小发送单元不同。所述最小发送单元满足如下特征至少之一:所述最小发送单元为所述参考信号对应的PRG资源单元;如果所述参考信号发送,发送的最小资源单元为所述最小发送单元;所述最小发送单元为所述参考信号可以时频插值的最小资源单元;相同时间单元中由相同参考信号端口得到的信道估计不能在不同最小单元进行信道插值。
所述终端所述不同控制区域的参考信号发送的最小单元,满足如下特征至少之一:第一控制信道区域内所述第二通信节点搜索空间中的候选控制信道所占的资源为所述最小发送单元;第一控制信道区域内所述第二通信节点相同聚合度的一个搜索空间所占的资源为所述最小发送单元;第一控制信道区域内所述第二通信节点所有聚合度的所有搜索空间所占的资源为所述最小发送单元;第二控制信道区域内参考信号发送的最小单元是所述第二控制信道区域;第二控制信道区域内参考信号发送的最小单元是整个系统带宽。
实施例16
下面对不同控制信道区域不同,QCL信息进行详细说明。
所述第二通信节点假设在预定时间单元中,不同控制区域的相同参考信号端口的QCL信息相同,在约定的时间单元之外的时间单元中,不同控制区域的相同参考信号端口的QCL信息不同。
实施例17
在本实施例中,下行控制信息(DCI)或者下行控制信道可以和测量参考信号频分复用,此时测量参考信号的第一资源单元是第二资源单元的K倍,其中所述第一资源单元为测量参考信号的最小发送单元,第二资源单元包括如下资源单元类型至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信 道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,一个控制信道子带,所述第二通信节点对应的带宽资源,所述信号占有的资源,一个物理资源块PRB
实施例18
在本实施例中,数据信道和控制信道可以频分复用,此时数据信道的的第一资源单元是第二资源单元的K倍。
其中所述第一资源单元为数据信道的如下单元至少之一:所述数据信道的最小发送单元(或者所述数据信道最小分配资源单元,或者数据信道在控制域的最小分配资源单元);所述数据信道的PRG单元;所述数据信道的解调参考信号图样确定的最小单元;所述数据信道的解调参考信号的最小发送单元(或者数据信道的解调参考信号在控制域的最小发送单元)。
第二资源单元包括如下资源单元类型至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,一个控制信道子带,所述第二通信节点对应的带宽资源,所述信号占有的资源,一个物理资源块PRB。
实施例19
在本实施例中,一个PRG单元包括多个时间单元。图29是根据本公开实施例的PRG单元的示意图,如图29所示,第n时间单元和第n+1时间单元中,相同通信方向(其中所述方向包括下行和上行)被相同用户占有的资源的预编码相同,或者相同通信方向被相同用户占有的相同频域资源的预编码相同。
图29中,是第n时间单元和第n+1时间单元,用户1的不同时间单元中的相同通信方向的资源之间的预编码相同,本实施例也不排除其他的时间单元情况,比如是多个时间单元,多个时间单元也可以是时间不连续的。
本公开实施例部分都是针对下行控制信道,或者下行参考信号举例的,本公开并不排除将所述技术类似地用于上行控制信道,或者上行参考信号中。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现 出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种信号接收、信号发送、控制信道的接收、控制信道的发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图30是根据本公开实施例的信号接收装置的结构框图,如图30所示,该装置包括:
第一接收模块302,用于接收第一通信节点发送的信号,其中,信号的第一资源单元为第二资源单元的K倍,K为自然数;
其中,第一资源单元用于确定信号的传输参数,第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
在一实施例中,第一资源单元包括如下单元至少之一:信号的预编码资源块组,信号的最小发送单元,信号对应的第一参考信号的资源单元,确定信号发送图样的最小资源单元。
在一实施例中,在接收第一通信节点发送的信号之后,还包括:根据信号的相关传输参数获取信号的信道估计值。
在一实施例中,第一参考信号满足以下特征至少之一:信号和第一参考信号是准共位置quasi co-location的;信号的信道特性信息根据第一参考信号的信道特性信息获得;第一参考信号的端口集合是信号的解调参考信号端口集合的子集;第一参考信号的端口所用序列集合是信号的解调参考信号所用的序列集合的子集;第一参考信号的端口集合与信号的解调参考信号端口集合的交集为空;信号所占的频域资源是第一参考信号所占的频域资源的子集;信号所占的时域资源是第一参考信号所占的时域资源的子集。
在一实施例中,信号包括至少之一:控制信道信号,解调参考信号,测量 参考信号,数据信道信号。
在一实施例中,信号的第一资源单元至少根据以下之一确定:根据信号对应的第二资源单元确定;根据第二通信节点对应的带宽确定;根据第二通信节点的控制域带宽确定;根据信号对应的资源映射方式确定。
在一实施例中,信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:第一资源单元的频域资源是第二资源单元的频域资源的K倍;第一资源单元的时域资源是第二资源单元的时域资源的K倍;第一资源单元包括的时频资源个数是第二资源单元包括的时频资源个数的K倍。
在一实施例中,当信号为解调参考信号和/或测量参考信号的情况下,确定信号发送图样的最小资源单元包括:信号的发送图样根据最小资源单元确定,信号的发送图样包括以下至少之一:信号占有的时域资源,信号占用的频域资源,信号占有的码域资源。
在一实施例中,第一接收模块,还用于接收第一通信节点通知的第一资源单元的相关信息,根据第一资源单元的相关信息得到第二资源单元的相关信息;接收第一通信节点通知的第二资源单元的相关信息,根据第二资源单元的相关信息得到第一资源单元的相关信息。
在一实施例中,根据以下信息至少之一确定第二资源单元所占的时域/频域/码域资源:时域参数,第二通信节点的标识信息,第二通信节点对应的带宽信息,广播信道所在的频域信息。
在一实施例中,第一资源单元所占的频域/码域资源根据时域信息确定。
在一实施例中,根据以下方式至少之一确定K值,还包括:接收第一通信节点通知的K值;根据系统带宽确定K值;根据第二通信节点对应的带宽信息确定K值;根据信号的资源映射方式确定K值;根据第二通信节点反馈的发送资源个数确定K值。
在一实施例中,第一接收模块,还用于接收第一通信节点通知的第二资源单元的类型,第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
图31是根据本公开实施例的信号发送装置的结构框图,如图31所示,该 装置包括:
第二发送模块312,用于向第二通信节点发送信号,其中,所述信号的第一资源单元为第二资源单元的K倍,所述K为自然数;
其中,所述第一资源单元用于确定所述信号的传输参数,所述第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道一个聚合度下的搜索空间,所述第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,控制信道子带,所述第二通信节点带宽资源,所述信号占有的资源,物理资源块PRB。
在一实施例中,第一资源单元包括至少之一:信号的预编码资源块组,信号的最小发送单元,信号对应的第一参考信号的资源单元,确定信号发送图样的最小资源单元。
在一实施例中,向第二通信节点发送信号包括:根据信号的相关传输参数向第二通信节点发送信号。
在一实施例中,第一参考信号满足以下特征至少之一:信号和第一参考信号是准共位置quasi co-location的;信号的信道特性信息根据第一参考信号的信道特性信息获得;第一参考信号的端口集合是信号的解调参考信号端口集合的子集;第一参考信号的端口所用序列集合是信号的解调参考信号所用的序列集合的子集;第一参考信号的端口集合与信号的解调参考信号端口集合的交集为空;信号所占的频域资源是第一参考信号所占的频域资源的子集;信号所占的时域资源是第一参考信号所占的时域资源的子集。
在一实施例中,信号包括至少之一:控制信道信号,解调参考信号,测量参考信号,数据信道信号。
在一实施例中,信号的第一资源单元至少根据以下之一确定:根据信号对应的第二资源单元确定;根据第二通信节点对应的带宽确定;根据第二通信节点的控制域带宽确定;根据信号对应的资源映射方式确定。
在一实施例中,信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:第一资源单元的频域资源是第二资源单元的频域资源的K倍;第一资源单元的时域资源是第二资源单元的时域资源的K倍;第一资源单元包括的时频资源个数是第二资源单元包括的时频资源个数的K倍。
在一实施例中,当信号为解调参考信号和/或测量参考信号的情况下,确定信号发送图样的最小资源单元包括:信号的发送图样根据最小资源单元确定, 信号的发送图样包括以下至少之一:信号占有的时域资源,信号占有的频域资源,信号占有的码域资源。
在一实施例中,在向第二通信节点发送用于信道估计的信号包括:向第二通信节点通知的第一资源单元的相关信息,通过第一资源单元的相关信息通知第二资源单元的相关信息;向第二通信节点通知的第一资源单元的相关信息,通过第二资源单元的相关信息通知第一资源单元的相关信息;
在一实施例中,在向第二通信节点发送用于信道估计的信号之前,根据以下信息至少之一确定第二资源单元所占的时域/频域/码域资源:时域信息,第二通信节点的标识信息,第二通信节点对应的带宽信息,广播信道所在的频域信息。
在一实施例中,第一资源单元所占的频域/码域资源根据时域信息确定。
在一实施例中,根据如下方式至少之一确定K值,还包括:根据将K值通知给第二通信节点的方式,根据系统带宽确定K值;根据第二通信节点对应的带宽信息确定K值;根据信号的资源映射方式确定K值;根据第二通信节点反馈的发送资源个数确定K值。
在一实施例中,第一接收模块,还用于向第二通信节点通知的第二资源单元的类型,第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
图32是根据本公开实施例的控制信道的接收装置的结构框图,如图32所示,该装置包括:
第一确定模块322,用于确定控制信道的解调参考信号端口集合,其中,所述控制信道的解调参考信号端口集合是第二参考信号端口集合的子集;
第二接收模块324,连接至上述第一确定模块322,用于在所述确定的控制信道解调参考信号端口上接收所述控制信道;
其中,通过以下方式至少之一确定所述第二参考信号端口集合:所述第二参考信号端口集合是固定的,所述第二参考信号端口集合根据第一通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
在一实施例中,控制信道的解调参考信号端口集合根据以下信息至少之一获取:第二通信节点对应的发送资源信息,控制信道对应的时间参数,解调参考信号的端口集合个数M1,控制信道所在的控制信道区域类型,控制信道所在的控制信道区域对应的时间参数,控制信道对应的频域资源索引,控制信道的控制信道单元索引,控制信道的控制资源组索引,接收第一通信节点发送的信令信息,其中所述信令信息中包括所述控制信道解调参考信号的相关信息。
在一实施例中,发送资源满足以下特征至少之一:发送资源和解调参考信号端口之间存在一一对应关系;发送资源和解调参考信号端口集合之间存在一一对应关系;多个发送资源对应一个相同的解调参考信号端口;当第二通信节点对应的发送资源改变时,第二参考信号端口集合进行相应的改变。
在一实施例中,控制信道的解调参考信号端口集合满足如下特征之一:控制信道的解调参考信号端口集合在不同的时间单元是可变的;控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
在一实施例中,控制信道的解调参考信号端口集合通过如下方式之一获取:检测第二参考信号端口集合中的参考信号,根据参考信号的接收性能,在第二参考信号端口集合中选择一个或者多个参考信号端口构成控制信道的解调参考信号端口集合;在第二参考信号端口集合的每个参考信号端口上检测控制信道,检测成功的参考信号集合构成控制信道的解调参考信号端口集合;控制信道的解调参考信号端口集合根据第一通信节点发送的信令信息获取。
在一实施例中,第一确定模块,还用于假设一个或者多个其他控制信道可能占有第三参考信号端口集合中的端口,第三参考信号端口集合为第二参考信号端口集合和控制信道解调参考信号端口集合的差集。
在一实施例中,在控制信道所在的控制信道区域不同的情况下,控制信道的解调参考信号的确定装置不同,和/或控制信道的检测装置不同,和/或控制信道的解调参考信号的最小发送单元不同。
在一实施例中,第一确定模块,还用于在第一控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合,在第二控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合的真子集;第一控制信道区域中控制信道的解调参考信号是固定的,不随时间改变;第二控制信道区域中控制信道的解调参考信号是随时间变化的;第一控制信道区域中控制信道的解调参考信号是固定的,不随频域资源而改变;第二控制信道区域中控制信道的解调参考 信号是随频域资源变化的;第一控制信道区域中,仅根据控制信道的解调参考信号包括的端口个数可以确定控制信道的解调参考信号端口,在第二控制信道区域中,根据控制信道的解调参考信号包括的端口个数不能确定控制信道的解调参考信号端口;在第一控制信道区域上,假设其他控制信道不占有控制信道占有的时频资源,在第二控制信道区域上,假设其他控制信道占有控制信道占有的时频资源。
在一实施例中,不同控制信道区域中控制信道的解调参考信号端口满足如下特征至少之一:不同控制区域中控制信道的解调参考信号端口数相同;一个控制信道区域中控制信道的解调参考信号端口集合是另一个控制区域控制信道的解调参考信号端口集合的子集。
在一实施例中,不同控制信道区域满足如下特征至少之一:不同控制信道区域的交集为空;不同控制信道区域属于相同时间单元;不同控制信道区域通过时分,和/或频分,和/或码分方式复用;不同控制信道区域并集在频域和系统带宽相同;不同控制信道区域的并集合在频域和第二通信节点的带宽相同。
在一实施例中,控制信道区域满足如下特征至少之一:根据时间单元的时间参数信息获取时间单元包含的控制信道区域类型;第一通信节点发送的配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
在一实施例中,控制信道的解调参考信号满足如下特征至少之一:在第一控制信道区域中,假设第一通信节点只在发送控制信道的时间单元中发送控制信道的解调参考信号。在第二控制信道区域中,假设第一通信节点在约定的时间单元和发送控制信道的时间单元中发送控制信道的解调参考信号,假设在约定的时间单元中第一通信节点可能没有发送第二通信节点的控制信道。
在一实施例中,控制信道的解调参考信号的最小发送单元还满足如下特征至少之一:最小发送单元为一个或者多个控制信道资源组;最小发送单元为一个或者多个控制信道单元;最小发送单元为一个或者多个候选控制信道所占的资源;、最小发送单元为一个相同聚合度的一个搜索空间所占的资源;最小发送单元为第二通信节点的所有聚合度的所有搜索控制所占的资源;最小发送单元为控制信道区域。
在一实施例中,不同控制区域的相同参考信号端口是准共位置的;或者在第一预定时间单元中,不同控制区域的相同参考信号端口是准共位置的,在所 述第一预定时间单元之外的时间单元中,不同控制区域的相同参考信号端口不具有准共位置关系。
图33是根据本公开实施例的控制信道的发送装置的结构框图,如图33所示,该装置包括:
第二确定模块332,用于确定控制信道的解调参考信号端口集合,其中,所述控制信道的解调参考信号端口是第二参考信号端口集合的子集;
第二发送模块334,连接至上述第二确定模块332,用于在所述确定的解调参考信号端口上向所述第二通信节点发送所述控制信道;
其中,通过以下方式至少之一确定所述第二参考信号端口集合:所述第二参考信号端口集合是固定的,所述第二参考信号端口集合根据向第二通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
在一实施例中,控制信道的解调参考信号端口集合根据以下信息至少之一获取:第二通信节点对应的发送资源信息,控制信道对应的时间参数,解调参考信号的端口集合个数M1,控制信道所在的控制信道区域类型,控制信道所在的控制信道区域对应的时间参数,控制信道对应的频域资源索引,控制信道的控制信道单元索引,控制信道的控制资源组索引,接收第一通信节点发送的信令信息,其中所述信令信息中包括所述控制信道解调参考信号的相关信息。
在一实施例中,发送资源满足以下特征至少之一:发送资源和解调参考信号端口之间存在一一对应关系;发送资源和解调参考信号端口集合之间存在一一对应关系;多个发送资源对应一个相同的解调参考信号端口;当第二通信节点对应的发送资源改变时,第二参考信号端口集合进行相应的改变。
在一实施例中,控制信道的解调参考信号端口集合满足如下特征之一:控制信道的解调参考信号端口集合在不同的时间单元是可变的;控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
在一实施例中,第二确定模块,还用于向第二通信节点发送信令信息,其中,信令信息包括控制信道的解调参考信号端口信息。
在一实施例中,控制信道所在的控制信道区域不同,控制信道的解调参考信号的确定装置不同,和/或控制信道的发送装置不同。
在一实施例中,在控制信道所在的控制信道区域不同的情况下,第二确定模块,还用于在第一控制信道区域中,控制信道的解调参考信号是第二参考信 号端口集合,在第二控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合的真子集;第一控制信道区域中控制信道的解调参考信号是固定的,不随时间改变;第二控制信道区域中控制信道的解调参考信号是随时间变化的;第一控制信道区域中,根据控制信道的解调参考信号包括的端口个数可以确定控制信道的解调参考信号端口,在第二控制信道区域中,根据控制信道的解调参考信号包括的端口个数不能确定控制信道的解调参考信号端口;在第一控制信道区域上,假设其他控制信道不占有控制信道占有的时频资源,在第二控制信道区域上,假设其他控制信道占有控制信道占有的时频资源。
在一实施例中,不同控制信道区域中控制信道的解调参考信号端口满足如下特征至少之一:不同控制区域中控制信道的解调参考信号端口数相同;一个控制信道区域中控制信道的解调参考信号端口集合是另一个控制区域控制信道的解调参考信号端口集合的子集。
在一实施例中,不同控制信道区域满足如下特征至少之一:不同控制信道区域的交集为空;不同控制信道区域属于相同时间单元;不同控制信道区域时域重叠;不同控制信道区域通过时分,和/或频分,和/或码分方式复用;不同控制信道区域并集占满系统带宽。
在一实施例中,控制信道区域通过如下方式确定:根据时间单元的时间参数信息获取时间单元包含的控制信道区域。
在一实施例中,第二确定模块,还用于向第二通信节点发送配置信息,其中,配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
可选的,第二确定模块,还用于在第一控制信道区域中,只在发送控制信道的时间单元中发送控制信道的解调参考信号;在第二控制信道区域中,在约定的时间单元和发送控制信道的时间单元中发送控制信道的解调参考信号,在约定的时间单元中可能没有发送第二通信节点的控制信道。
在一实施例中,第一控制区域的参考信号发送的最小单元和第二控制区域的参考信号发送的最小发送单元不同。
在一实施例中,不同控制信道区域的最小发送单元还满足如下特征至少之一:所述最小发送单元为一个或者多个控制信道资源组;所述最小发送单元为一个或者多个控制信道单元;所述最小发送单元为一个或者多个候选控制信道所占的资源;所述最小发送单元为一个相同聚合度的一个搜索空间所占的资源; 所述最小发送单元为所述第二通信节点的所有聚合度的所有搜索控制所占的资源;所述最小发送单元为所述控制信道区域。
在一实施例中,不同控制区域的相同参考信号端口是准共位置的;或者在第一预定时间单元中,不同控制区域的相同参考信号端口是准共位置的,在所述第一预定时间单元之外的时间单元中,不同控制区域的相同参考信号端口不具有准共位置关系。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本公开的实施例还提供了一种存储介质。在一实施例中,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,接收第一通信节点发送的信号,其中,信号的第一资源单元为第二资源单元的K倍,K为自然数;其中,第一资源单元用于确定信号的相关传输参数,第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
在一实施例中,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,第一资源单元包括如下单元至少之一:信号的预编码资源块组,信号的最小发送单元,信号对应的第一参考信号的资源单元,确定信号发送图样的最小资源单元。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,在接收第一通信节点发送的信号之后,还包括:根据信号的相关传输参数获取信号的信道估计值。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一参考信号满足以下特征至少之一:信号和第一参考信号是准共位置quasi co-location的;信号的信道特性信息根据第一参考信号的信道特性信息获得;第一参考信号的端口集合是信号的解调参考信号端口集合的子集;第一参考信号的端口所用序列集合是信号的解调参考信号所用的序列集合的子集; 第一参考信号的端口集合与信号的解调参考信号端口集合的交集为空;信号所占的频域资源是第一参考信号所占的频域资源的子集;信号所占的时域资源是第一参考信号所占的时域资源的子集。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,信号包括至少之一:控制信道信号,解调参考信号,测量参考信号,数据信道信号。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,信号的第一资源单元至少根据以下之一确定:根据信号对应的第二资源单元确定;根据第二通信节点对应的带宽确定;根据第二通信节点的控制域带宽确定;根据信号对应的资源映射方式确定。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:第一资源单元的频域资源是第二资源单元的频域资源的K倍;第一资源单元的时域资源是第二资源单元的时域资源的K倍;第一资源单元包括的时频资源个数是第二资源单元包括的时频资源个数的K倍。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,当信号为解调参考信号和/或测量参考信号的情况下,确定信号发送图样的最小资源单元包括:信号的发送图样根据最小资源单元确定,信号的发送图样包括以下至少之一:信号占有的时域资源,信号占用的频域资源,信号占有的码域资源。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,接收第一通信节点发送的用于信号包括:接收第一通信节点通知的第一资源单元的相关信息,根据第一资源单元的相关信息得到第二资源单元的相关信息;接收第一通信节点通知的第二资源单元的相关信息,根据第二资源单元的相关信息得到第一资源单元的相关信息。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,根据以下信息至少之一确定第二资源单元所占的时域/频域/码域资源:时域参数,第二通信节点的标识信息,第二通信节点对应的带宽信息,广播信道所在的频域信息。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一资源单元所占的频域/码域资源根据时域信息确定。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,根据以下方式至少之一确定K值,还包括:接收第一通信节点通知的K值;根据系统带宽确定K值;根据第二通信节点对应的带宽信息确定K值;根据信号的资源映射方式确定K值;根据第二通信节点反馈的发送资源个数确定K值。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,接收第一通信节点发送的用于信号包括:接收第一通信节点通知的第二资源单元的类型,第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
S1,向第二通信节点发送信号,其中,信号的第一资源单元为第二资源单元的K倍,K为自然数;其中,第一资源单元用于确定信号的相关传输参数,第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,控制信道子带,第二通信节点带宽资源,信号占有的资源,物理资源块PRB。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一资源单元包括至少之一:信号的预编码资源块组,信号的最小发送单元,信号对应的第一参考信号的资源单元,确定信号发送图样的最小资源单元。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,向第二通信节点发送信号包括:根据信号的相关传输参数向第二通信节点发送信号。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一参考信号满足以下特征至少之一:信号和第一参考信号是准共位置quasi co-location的;信号的信道特性信息根据第一参考信号的信道特性信息获得;第一参考信号的端口集合是信号的解调参考信号端口集合的子集;第一 参考信号的端口所用序列集合是信号的解调参考信号所用的序列集合的子集;第一参考信号的端口集合与信号的解调参考信号端口集合的交集为空;信号所占的频域资源是第一参考信号所占的频域资源的子集;信号所占的时域资源是第一参考信号所占的时域资源的子集。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,信号包括至少之一:控制信道信号,解调参考信号,测量参考信号,数据信道信号。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,信号的第一资源单元至少根据以下之一确定:根据信号对应的第二资源单元确定;根据第二通信节点对应的带宽确定;根据第二通信节点的控制域带宽确定;根据信号对应的资源映射方式确定。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:第一资源单元的频域资源是第二资源单元的频域资源的K倍;第一资源单元的时域资源是第二资源单元的时域资源的K倍;第一资源单元包括的时频资源个数是第二资源单元包括的时频资源个数的K倍。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,当信号为解调参考信号和/或测量参考信号的情况下,确定信号发送图样的最小资源单元包括:信号的发送图样根据最小资源单元确定,信号的发送图样包括以下至少之一:信号占有的时域资源,信号占有的频域资源,信号占有的码域资源。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,在向第二通信节点发送用于信道估计的信号包括:向第二通信节点通知的第一资源单元的相关信息,通过第一资源单元的相关信息通知第二资源单元的相关信息;向第二通信节点通知的第一资源单元的相关信息,通过第二资源单元的相关信息通知第一资源单元的相关信息;
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,在向第二通信节点发送用于信道估计的信号之前,根据以下信息至少之一确定第二资源单元所占的时域/频域/码域资源:时域信息,第二通信节点的标识信息,第二通信节点对应的带宽信息,广播信道所在的频域信息。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一资源单元所占的频域/码域资源根据时域信息确定。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,根据如下方式至少之一确定K值,还包括:根据将K值通知给第二通信节点的方式,根据系统带宽确定K值;根据第二通信节点对应的带宽信息确定K值;根据信号的资源映射方式确定K值;根据第二通信节点反馈的发送资源个数确定K值。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,向第二通信节点发送信号包括:向第二通信节点通知的第二资源单元的类型,第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
S1,确定控制信道的解调参考信号端口集合,其中,控制信道的解调参考信号端口集合是第二参考信号端口集合的子集;
S2,在确定的控制信道解调参考信号端口上接收控制信道;其中,通过以下方式至少之一确定第二参考信号端口集合:第二参考信号端口集合是固定的,第二参考信号端口集合根据第一通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,控制信道的解调参考信号端口集合根据以下信息至少之一获取:第二通信节点对应的发送资源信息,控制信道对应的时间参数,解调参考信号的端口集合个数M1,控制信道所在的控制信道区域类型,控制信道所在的控制信道区域对应的时间参数,控制信道对应的频域资源索引,控制信道的控制信道单元索引,控制信道的控制资源组索引;其中,发送资源是接收第一通信节点发送的信号的通信链路中,第一通信节点采用的发送资源,第一通信节点的发送资源,发送资源包括以下资源类型至少之一:发送波束资源,发送端口资源,发送预编码矩阵资源,发送时间资源,发送频域资源,发送序列资源,其中,发送资源是第一通信节点发送信号所采用的资源。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,发送资源满足以下特征至少之一:发送资源和解调参考信号端口之间存在一一对应关系;发送资源和解调参考信号端口集合之间存在一一对应关系;多个发送资源对应一个相同的解调参考信号端口;当第二通信节点对应的发送资源改变时,第二参考信号端口集合进行相应的改变。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,控制信道的解调参考信号端口集合满足如下特征之一:控制信道的解调参考信号端口集合在不同的时间单元是可变的;控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,控制信道的解调参考信号端口集合通过如下方式之一获取:检测第二参考信号端口集合中的参考信号,根据参考信号的接收性能,在第二参考信号端口集合中选择一个或者多个参考信号端口构成控制信道的解调参考信号端口集合;在第二参考信号端口集合的每个参考信号端口上检测控制信道,检测成功的参考信号集合构成控制信道的解调参考信号端口集合;控制信道的解调参考信号端口集合根据第一通信节点发送的信令信息获取。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,确定控制信道的解调参考信号端口集合包括:假设一个或者多个其他控制信道可能占有第三参考信号端口集合中的端口,第三参考信号端口集合为第二参考信号端口集合和控制信道解调参考信号端口集合的差集。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,在控制信道所在的控制信道区域不同的情况下,控制信道的解调参考信号的确定方法不同,和/或控制信道的检测方法不同,和/或控制信道的解调参考信号的最小发送单元不同。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,确定控制信道的解调参考信号端口集合包括以下至少之一:在第一控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合,在第二控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合的真子集;第一控制信道区域中控制信道的解调参考信号是固定的,不随时间改变;第二控制信道区域中控制信道的解调参考信号是随时间变化的;第一控制信道区域中控制信道的解调参考信号是固定的,不随频域资源而改变;第二控制信道区 域中控制信道的解调参考信号是随频域资源变化的;第一控制信道区域中,仅根据控制信道的解调参考信号包括的端口个数可以确定控制信道的解调参考信号端口,在第二控制信道区域中,根据控制信道的解调参考信号包括的端口个数不能确定控制信道的解调参考信号端口;在第一控制信道区域上,假设其他控制信道不占有控制信道占有的时频资源,在第二控制信道区域上,假设其他控制信道占有控制信道占有的时频资源。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,不同控制信道区域中控制信道的解调参考信号端口满足如下特征至少之一:不同控制区域中控制信道的解调参考信号端口数相同;一个控制信道区域中控制信道的解调参考信号端口集合是另一个控制区域控制信道的解调参考信号端口集合的子集。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,不同控制信道区域满足如下特征至少之一:不同控制信道区域的交集为空;不同控制信道区域属于相同时间单元;不同控制信道区域通过时分,和/或频分,和/或码分方式复用;不同控制信道区域并集在频域和系统带宽相同;不同控制信道区域的并集合在频域和第二通信节点的带宽相同。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,控制信道区域满足如下特征至少之一:根据时间单元的时间参数信息获取时间单元包含的控制信道区域类型;第一通信节点发送的配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,控制信道的解调参考信号满足如下特征至少之一:在第一控制信道区域中,假设第一通信节点只在发送控制信道的时间单元中发送控制信道的解调参考信号;在第二控制信道区域中,假设第一通信节点在约定的时间单元和发送控制信道的时间单元中发送控制信道的解调参考信号,假设在约定的时间单元中第一通信节点可能没有发送第二通信节点的控制信道。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,控制信道的解调参考信号的最小发送单元还满足如下特征至少之一:最小发送单元为一个或者多个控制信道资源组;最小发送单元为一个或者多个控制信道单元;最小发送单元为一个或者多个候选控制信道所占的资源;、最小发送单元为一个相同聚合度的一个搜索空间所占的资源;最小发送单元为第二 通信节点的所有聚合度的所有搜索控制所占的资源;最小发送单元为控制信道区域。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,在第一预定时间单元中,不同控制区域的相同参考信号端口是准共位置的,在第二预定时间单元之外的时间单元中,不同控制区域的相同参考信号端口不具有准共位置关系。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
S1,确定控制信道的解调参考信号端口集合,其中,控制信道的解调参考信号端口是第二参考信号端口集合的子集;在确定的解调参考信号端口上向第二通信节点发送控制信道;其中,通过以下方式至少之一确定第二参考信号端口集合:第二参考信号端口集合是固定的,第二参考信号端口集合根据向第二通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,控制信道的解调参考信号端口集合根据以下信息至少之一获取:第二通信节点对应的发送资源信息,控制信道对应的时间参数,解调参考信号的端口集合个数M1,控制信道所在的控制信道区域类型,控制信道所在的控制信道区域对应的时间参数,控制信道对应的频域资源索引,控制信道的控制信道单元索引,控制信道的控制资源组索引;其中,发送资源是向第二通信节点发送的信号的通信链路中,第一通信节点采用的发送资源,向第二通信节点的发送资源,发送资源包括以下资源类型至少之一:发送波束资源,发送端口资源,发送预编码矩阵资源,发送时间资源,发送频域资源,发送序列资源,其中,发送资源是向第二通信节点发送信号所采用的资源。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,发送资源满足以下特征至少之一:发送资源和解调参考信号端口之间存在一一对应关系;发送资源和解调参考信号端口集合之间存在一一对应关系;多个发送资源对应一个相同的解调参考信号端口;当第二通信节点对应的发送资源改变时,第二参考信号端口集合进行相应的改变。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,控制信道的解调参考信号端口集合满足如下特征之一:控制信道的解 调参考信号端口集合在不同的时间单元是可变的;控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,确定控制信道的解调参考信号端口集合包括:向第二通信节点发送信令信息,其中,信令信息包括控制信道的解调参考信号端口信息。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,控制信道所在的控制信道区域不同,控制信道的解调参考信号的确定方法不同,和/或控制信道的发送方法不同。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,在控制信道所在的控制信道区域不同的情况下,确定控制信道的解调参考信号端口集合包括如下方法至少之一:在第一控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合,在第二控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合的真子集;第一控制信道区域中控制信道的解调参考信号是固定的,不随时间改变;第二控制信道区域中控制信道的解调参考信号是随时间变化的;第一控制信道区域中,根据控制信道的解调参考信号包括的端口个数可以确定控制信道的解调参考信号端口,在第二控制信道区域中,根据控制信道的解调参考信号包括的端口个数不能确定控制信道的解调参考信号端口;在第一控制信道区域上,假设其他控制信道不占有控制信道占有的时频资源,在第二控制信道区域上,假设其他控制信道占有控制信道占有的时频资源。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,不同控制信道区域中控制信道的解调参考信号端口满足如下特征至少之一:不同控制区域中控制信道的解调参考信号端口数相同;一个控制信道区域中控制信道的解调参考信号端口集合是另一个控制区域控制信道的解调参考信号端口集合的子集。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,不同控制信道区域满足如下特征至少之一:不同控制信道区域的交集为空;不同控制信道区域属于相同时间单元;不同控制信道区域时域重叠;不同控制信道区域通过时分,和/或频分,和/或码分方式复用;不同控制信道区域并集占满系统带宽。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,控制信道区域通过如下方式确定:根据时间单元的时间参数信息获取时间单元包含的控制信道区域。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,确定控制信道的解调参考信号端口集合包括:向第二通信节点发送配置信息,其中,配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,确定控制信道的解调参考信号端口集合包括:在第一控制信道区域中,只在发送控制信道的时间单元中发送控制信道的解调参考信号;在第二控制信道区域中,在约定的时间单元和发送控制信道的时间单元中发送控制信道的解调参考信号,在约定的时间单元中可能没有发送第二通信节点的控制信道。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一控制区域的参考信号发送的最小单元和第二控制区域的参考信号发送的最小发送单元不同。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,不同控制信道区域的最小发送单元还满足如下特征至少之一:第一控制信道区域内搜索空间中的候选控制信道所占的资源为最小发送单元;第一控制信道区域内相同聚合度的一个搜索空间所占的资源为最小发送单元;第一控制信道区域内所有聚合度的所有搜索空间所占的资源为最小发送单元;第二控制信道区域内参考信号发送的最小单元是第二控制信道区域;第二控制信道区域内参考信号发送的最小单元是整个系统带宽。
在一实施例中,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,在第一预定时间单元中,不同控制区域的相同参考信号端口是准共位置的,在第二预定时间单元之外的时间单元中,不同控制区域的相同参考信号端口不具有准共为值关系。
在一实施例中,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:接收第一通信节点发送的信号,其中,信号的第一资源单元为第二资源单元的K倍,K为自然数;其中,第一资源单元用于确定信号的相关传输参数, 第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一资源单元包括如下单元至少之一:信号的预编码资源块组,信号的最小发送单元,信号对应的第一参考信号的资源单元,确定信号发送图样的最小资源单元。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在接收第一通信节点发送的信号之后,还包括:根据信号的相关传输参数获取信号的信道估计值。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一参考信号满足以下特征至少之一:信号和第一参考信号是准共位置quasi co-location的;信号的信道特性信息根据第一参考信号的信道特性信息获得;第一参考信号的端口集合是信号的解调参考信号端口集合的子集;第一参考信号的端口所用序列集合是信号的解调参考信号所用的序列集合的子集;第一参考信号的端口集合与信号的解调参考信号端口集合的交集为空;信号所占的频域资源是第一参考信号所占的频域资源的子集;信号所占的时域资源是第一参考信号所占的时域资源的子集。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:信号包括至少之一:控制信道信号,解调参考信号,测量参考信号,数据信道信号。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:信号的第一资源单元至少根据以下之一确定:根据信号对应的第二资源单元确定;根据第二通信节点对应的带宽确定;根据第二通信节点的控制域带宽确定;根据信号对应的资源映射方式确定。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:第一资源单元的频域资源是第二资源单元的频域资源的K倍;第一资源单元的时域资源是第二资源单元的时域资源的K倍;第一资源单元包括的时频资源个数 是第二资源单元包括的时频资源个数的K倍。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:当信号为解调参考信号和/或测量参考信号的情况下,确定信号发送图样的最小资源单元包括:信号的发送图样根据最小资源单元确定,信号的发送图样包括以下至少之一:信号占有的时域资源,信号占用的频域资源,信号占有的码域资源。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:接收第一通信节点发送的用于信号包括:接收第一通信节点通知的第一资源单元的相关信息,根据第一资源单元的相关信息得到第二资源单元的相关信息;接收第一通信节点通知的第二资源单元的相关信息,根据第二资源单元的相关信息得到第一资源单元的相关信息。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:根据以下信息至少之一确定第二资源单元所占的时域/频域/码域资源:时域参数,第二通信节点的标识信息,第二通信节点对应的带宽信息,广播信道所在的频域信息。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一资源单元所占的频域/码域资源根据时域信息确定。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:根据以下方式至少之一确定K值,还包括:接收第一通信节点通知的K值;根据系统带宽确定K值;根据第二通信节点对应的带宽信息确定K值;根据信号的资源映射方式确定K值;根据第二通信节点反馈的发送资源个数确定K值。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:接收第一通信节点发送的用于信号包括:接收第一通信节点通知的第二资源单元的类型,第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:向第二通信节点发送信号,其中,信号的 第一资源单元为第二资源单元的K倍,K为自然数;其中,第一资源单元用于确定信号的相关传输参数,第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,控制信道子带,第二通信节点带宽资源,信号占有的资源,物理资源块PRB。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一资源单元包括至少之一:信号的预编码资源块组,信号的最小发送单元,信号对应的第一参考信号的资源单元,确定信号发送图样的最小资源单元。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:向第二通信节点发送信号包括:根据信号的相关传输参数向第二通信节点发送信号。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一参考信号满足以下特征至少之一:信号和第一参考信号是准共位置quasi co-location的;信号的信道特性信息根据第一参考信号的信道特性信息获得;第一参考信号的端口集合是信号的解调参考信号端口集合的子集;第一参考信号的端口所用序列集合是信号的解调参考信号所用的序列集合的子集;第一参考信号的端口集合与信号的解调参考信号端口集合的交集为空;信号所占的频域资源是第一参考信号所占的频域资源的子集;信号所占的时域资源是第一参考信号所占的时域资源的子集。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:信号包括至少之一:控制信道信号,解调参考信号,测量参考信号,数据信道信号。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:信号的第一资源单元至少根据以下之一确定:根据信号对应的第二资源单元确定;根据第二通信节点对应的带宽确定;根据第二通信节点的控制域带宽确定;根据信号对应的资源映射方式确定。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:第一资源单元的频域资源是第二资源单元的频域资源的K倍;第一资源单元的时 域资源是第二资源单元的时域资源的K倍;第一资源单元包括的时频资源个数是第二资源单元包括的时频资源个数的K倍。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:当信号为解调参考信号和/或测量参考信号的情况下,确定信号发送图样的最小资源单元包括:信号的发送图样根据最小资源单元确定,信号的发送图样包括以下至少之一:信号占有的时域资源,信号占有的频域资源,信号占有的码域资源。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在向第二通信节点发送用于信道估计的信号包括:向第二通信节点通知的第一资源单元的相关信息,通过第一资源单元的相关信息通知第二资源单元的相关信息;向第二通信节点通知的第一资源单元的相关信息,通过第二资源单元的相关信息通知第一资源单元的相关信息;
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在向第二通信节点发送用于信道估计的信号之前,根据以下信息至少之一确定第二资源单元所占的时域/频域/码域资源:时域信息,第二通信节点的标识信息,第二通信节点对应的带宽信息,广播信道所在的频域信息。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一资源单元所占的频域/码域资源根据时域信息确定。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:根据如下方式至少之一确定K值,还包括:根据将K值通知给第二通信节点的方式,根据系统带宽确定K值;根据第二通信节点对应的带宽信息确定K值;根据信号的资源映射方式确定K值;根据第二通信节点反馈的发送资源个数确定K值。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:向第二通信节点发送信号包括:向第二通信节点通知的第二资源单元的类型,第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,第二通信节点需要检测的公共搜索空间,第二通信节点的所有搜索空间,一个控制信道子带,第二通信节点对应的带宽资源,信号占有的资源,一个物理资源块PRB。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为 存储用于执行以下步骤的程序代码:确定控制信道的解调参考信号端口集合,其中,控制信道的解调参考信号端口集合是第二参考信号端口集合的子集;在确定的控制信道解调参考信号端口上接收控制信道;其中,通过以下方式至少之一确定第二参考信号端口集合:第二参考信号端口集合是固定的,第二参考信号端口集合根据第一通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:控制信道的解调参考信号端口集合根据以下信息至少之一获取:第二通信节点对应的发送资源信息,控制信道对应的时间参数,解调参考信号的端口集合个数M1,控制信道所在的控制信道区域类型,控制信道所在的控制信道区域对应的时间参数,控制信道对应的频域资源索引,控制信道的控制信道单元索引,控制信道的控制资源组索引;其中,发送资源是接收第一通信节点发送的信号的通信链路中,第一通信节点采用的发送资源,第一通信节点的发送资源,发送资源包括以下资源类型至少之一:发送波束资源,发送端口资源,发送预编码矩阵资源,发送时间资源,发送频域资源,发送序列资源,其中,发送资源是第一通信节点发送信号所采用的资源。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:发送资源满足以下特征至少之一:发送资源和解调参考信号端口之间存在一一对应关系;发送资源和解调参考信号端口集合之间存在一一对应关系;多个发送资源对应一个相同的解调参考信号端口;当第二通信节点对应的发送资源改变时,第二参考信号端口集合进行相应的改变。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:控制信道的解调参考信号端口集合满足如下特征之一:控制信道的解调参考信号端口集合在不同的时间单元是可变的;控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:控制信道的解调参考信号端口集合通过如下方式之一获取:检测第二参考信号端口集合中的参考信号,根据参考信号的接收性能,在第二参考信号端口集合中选择一个或者多个参考信号端口构成控制信道的解调参考信号端口集合;在第二参考信号端口集合的每个参考信号端口上检测控制信道,检测成功的参考信号集合构成控制信道的解调参考信号端口集合;控制信道的解调参考 信号端口集合根据第一通信节点发送的信令信息获取。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定控制信道的解调参考信号端口集合包括:假设一个或者多个其他控制信道可能占有第三参考信号端口集合中的端口,第三参考信号端口集合为第二参考信号端口集合和控制信道解调参考信号端口集合的差集。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在控制信道所在的控制信道区域不同的情况下,控制信道的解调参考信号的确定方法不同,和/或控制信道的检测方法不同,和/或控制信道的解调参考信号的最小发送单元不同。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定控制信道的解调参考信号端口集合包括以下至少之一:在第一控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合,在第二控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合的真子集;第一控制信道区域中控制信道的解调参考信号是固定的,不随时间改变;第二控制信道区域中控制信道的解调参考信号是随时间变化的;第一控制信道区域中控制信道的解调参考信号是固定的,不随频域资源而改变;第二控制信道区域中控制信道的解调参考信号是随频域资源变化的;第一控制信道区域中,仅根据控制信道的解调参考信号包括的端口个数可以确定控制信道的解调参考信号端口,在第二控制信道区域中,根据控制信道的解调参考信号包括的端口个数不能确定控制信道的解调参考信号端口;在第一控制信道区域上,假设其他控制信道不占有控制信道占有的时频资源,在第二控制信道区域上,假设其他控制信道占有控制信道占有的时频资源。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:不同控制信道区域中控制信道的解调参考信号端口满足如下特征至少之一:不同控制区域中控制信道的解调参考信号端口数相同;一个控制信道区域中控制信道的解调参考信号端口集合是另一个控制区域控制信道的解调参考信号端口集合的子集。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:不同控制信道区域满足如下特征至少之一:不同控制信道区域的交集为空;不同控制信道区域属于相同时间单元;不同控制信道区域通过时分,和/或频分,和/或码分方式复用;不同控制信道区域并集在频域和系统带宽相同;不 同控制信道区域的并集合在频域和第二通信节点的带宽相同。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:控制信道区域满足如下特征至少之一:根据时间单元的时间参数信息获取时间单元包含的控制信道区域类型;第一通信节点发送的配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:控制信道的解调参考信号满足如下特征至少之一:在第一控制信道区域中,假设第一通信节点只在发送控制信道的时间单元中发送控制信道的解调参考信号;在第二控制信道区域中,假设第一通信节点在约定的时间单元和发送控制信道的时间单元中发送控制信道的解调参考信号,假设在约定的时间单元中第一通信节点可能没有发送第二通信节点的控制信道。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:控制信道的解调参考信号的最小发送单元还满足如下特征至少之一:最小发送单元为一个或者多个控制信道资源组;最小发送单元为一个或者多个控制信道单元;最小发送单元为一个或者多个候选控制信道所占的资源;、最小发送单元为一个相同聚合度的一个搜索空间所占的资源;最小发送单元为第二通信节点的所有聚合度的所有搜索控制所占的资源;最小发送单元为控制信道区域。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在第一预定时间单元中,不同控制区域的相同参考信号端口是准共位置的,在第二预定时间单元之外的时间单元中,不同控制区域的相同参考信号端口不具有准共位置关系。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:确定控制信道的解调参考信号端口集合,其中,控制信道的解调参考信号端口是第二参考信号端口集合的子集;在确定的解调参考信号端口上向第二通信节点发送控制信道;其中,通过以下方式至少之一确定第二参考信号端口集合:第二参考信号端口集合是固定的,第二参考信号端口集合根据向第二通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:控制信道的解调参考信号端口集合根据以下信息至少之一获取:第二通 信节点对应的发送资源信息,控制信道对应的时间参数,解调参考信号的端口集合个数M1,控制信道所在的控制信道区域类型,控制信道所在的控制信道区域对应的时间参数,控制信道对应的频域资源索引,控制信道的控制信道单元索引,控制信道的控制资源组索引;其中,发送资源是向第二通信节点发送的信号的通信链路中,第一通信节点采用的发送资源,向第二通信节点的发送资源,发送资源包括以下资源类型至少之一:发送波束资源,发送端口资源,发送预编码矩阵资源,发送时间资源,发送频域资源,发送序列资源,其中,发送资源是向第二通信节点发送信号所采用的资源。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:发送资源满足以下特征至少之一:发送资源和解调参考信号端口之间存在一一对应关系;发送资源和解调参考信号端口集合之间存在一一对应关系;多个发送资源对应一个相同的解调参考信号端口;当第二通信节点对应的发送资源改变时,第二参考信号端口集合进行相应的改变。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:控制信道的解调参考信号端口集合满足如下特征之一:控制信道的解调参考信号端口集合在不同的时间单元是可变的;控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定控制信道的解调参考信号端口集合包括:向第二通信节点发送信令信息,其中,信令信息包括控制信道的解调参考信号端口信息。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:控制信道所在的控制信道区域不同,控制信道的解调参考信号的确定方法不同,和/或控制信道的发送方法不同。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在控制信道所在的控制信道区域不同的情况下,确定控制信道的解调参考信号端口集合包括如下方法至少之一:在第一控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合,在第二控制信道区域中,控制信道的解调参考信号是第二参考信号端口集合的真子集;第一控制信道区域中控制信道的解调参考信号是固定的,不随时间改变;第二控制信道区域中控制信道的解调参考信号是随时间变化的;第一控制信道区域中,根据控制信道的解调参考信号包括的端口个数可以确定控制信道的解调参考信号端口,在第二控制信 道区域中,根据控制信道的解调参考信号包括的端口个数不能确定控制信道的解调参考信号端口;在第一控制信道区域上,假设其他控制信道不占有控制信道占有的时频资源,在第二控制信道区域上,假设其他控制信道占有控制信道占有的时频资源。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:不同控制信道区域中控制信道的解调参考信号端口满足如下特征至少之一:不同控制区域中控制信道的解调参考信号端口数相同;一个控制信道区域中控制信道的解调参考信号端口集合是另一个控制区域控制信道的解调参考信号端口集合的子集。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:不同控制信道区域满足如下特征至少之一:不同控制信道区域的交集为空;不同控制信道区域属于相同时间单元;不同控制信道区域时域重叠;不同控制信道区域通过时分,和/或频分,和/或码分方式复用;不同控制信道区域并集占满系统带宽。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:控制信道区域通过如下方式确定:根据时间单元的时间参数信息获取时间单元包含的控制信道区域。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定控制信道的解调参考信号端口集合包括:向第二通信节点发送配置信息,其中,配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定控制信道的解调参考信号端口集合包括:在第一控制信道区域中,只在发送控制信道的时间单元中发送控制信道的解调参考信号;在第二控制信道区域中,在约定的时间单元和发送控制信道的时间单元中发送控制信道的解调参考信号,在约定的时间单元中可能没有发送第二通信节点的控制信道。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一控制区域的参考信号发送的最小单元和第二控制区域的参考信号发送的最小发送单元不同。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:不同控制信道区域的最小发送单元还满足如下特征至少之一:第一控制 信道区域内搜索空间中的候选控制信道所占的资源为最小发送单元;第一控制信道区域内相同聚合度的一个搜索空间所占的资源为最小发送单元;第一控制信道区域内所有聚合度的所有搜索空间所占的资源为最小发送单元;第二控制信道区域内参考信号发送的最小单元是第二控制信道区域;第二控制信道区域内参考信号发送的最小单元是整个系统带宽。
在一实施例中,在本实施例中,处理器根据存储介质中已存储的程序代码执行:在第一预定时间单元中,不同控制区域的相同参考信号端口是准共位置的,在第二预定时间单元之外的时间单元中,不同控制区域的相同参考信号端口不具有准共为值关系。
在一实施例中,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
工业实用性
本公开的信号接收、发送方法、控制信道的接收、发送方法及装置,通过接收第一通信节点发送的信号,其中,信号的第一资源单元为第二资源单元的K倍,K为自然数,由于用于信道估计的信号的第一资源单元为上述给出的第二资源单元的K倍,根据该信号进行信道估计使得信道估计更准确,因此,可以解决相关技术中采用以DMRS为解调参考信号的控制信道发送机制和/或波束机制发送信号过程中,提高信道估计的准确性的问题。

Claims (68)

  1. 一种信号接收方法,包括:
    接收第一通信节点发送的信号,其中,所述信号的第一资源单元为第二资源单元的K倍,所述K为自然数;
    其中,所述第一资源单元用于确定所述信号的传输参数,所述第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,一个控制信道子带,所述第二通信节点对应的带宽资源,所述信号占有的资源,一个物理资源块。
  2. 根据权利要求1所述的方法,其中,所述第一资源单元包括如下单元至少之一:所述信号的预编码资源块组,所述信号的最小发送单元,所述信号对应的第一参考信号的资源单元,确定所述信号发送图样的最小资源单元。
  3. 根据权利要求1所述的方法,其中,在接收所述第一通信节点发送的信号之后,还包括:根据所述信号的相关传输参数获取所述信号的信道估计值。
  4. 根据权利要求2所述的方法,其中,所述第一参考信号满足以下至少之一:
    所述信号和所述第一参考信号是准共位置的;
    所述信号的信道特性信息根据所述第一参考信号的信道特性信息获得;
    所述第一参考信号的端口集合是所述信号的解调参考信号端口集合的子集;
    所述第一参考信号的端口所用序列集合是所述信号的解调参考信号所用的序列集合的子集;
    所述第一参考信号的端口集合与所述信号的解调参考信号端口集合的交集为空;
    所述信号所占的频域资源是所述第一参考信号所占的频域资源的子集;
    所述信号所占的时域资源是所述第一参考信号所占的时域资源的子集。
  5. 根据权利要求1所述的方法,其中,所述信号的第一资源单元根据以下至少之一确定:
    根据所述信号对应的第二资源单元确定;
    根据所述第二通信节点对应的带宽确定;
    根据所述第二通信节点的控制域带宽确定;
    根据所述信号对应的资源映射方式确定。
  6. 根据权利要求1所述的方法,其中,所述信号的第一资源单元为第二资源单元的K倍包括如下至少之一:
    所述第一资源单元的频域资源是所述第二资源单元的频域资源的K倍;
    所述第一资源单元的时域资源是所述第二资源单元的时域资源的K倍;
    所述第一资源单元包括的时频资源个数是所述第二资源单元包括的时频资源个数的K倍。
  7. 根据权利要求2所述的方法,其中,当所述信号为解调参考信号和/或测量参考信号的情况下,所述信号的发送图样根据所述最小资源单元确定,所述信号的发送图样包括以下至少之一:所述信号占有的时域资源,所述信号占用的频域资源,所述信号占有的码域资源。
  8. 根据权利要求2所述的方法,其中,接收所述第一通信节点发送的信号包括:接收所述第一通信节点通知的所述第一资源单元的相关信息,根据所述第一资源单元的相关信息得到所述第二资源单元的相关信息;和/或接收所述第一通信节点通知的所述第二资源单元的相关信息,根据所述第二资源单元的相关信息得到所述第一资源单元的相关信息。
  9. 根据权利要求2所述的方法,其中,所述第一资源单元所占的频域或码域资源根据所述第一资源单元的时域信息确定。
  10. 根据权利要求1所述的方法,其中,根据以下方式至少之一确定所述K值:
    接收所述第一通信节点通知的所述K值;
    根据系统带宽确定所述K值;
    根据所述第二通信节点对应的带宽信息确定所述K值;
    根据所述信号的资源映射方式确定所述K值;
    根据所述第二通信节点反馈的发送资源个数确定所述K值;
    根据所述第二资源单元中包括的可用于控制信道传输的时频资源个数确定所述K值。
  11. 根据权利要求1所述的方法,其中,接收所述第一通信节点通知的所述第二资源单元的类型,所述第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二 通信节点的所有搜索空间,一个控制信道子带,所述第二通信节点对应的带宽资源,所述信号占有的资源,一个物理资源块。
  12. 根据权利要求2所述的方法,其中,
    所述预编码资源块组包括K个第二资源单元,其中,所述K的值根据控制信道的聚合度确定。
  13. 根据权利要求2所述的方法,其中,所述信号至少在所述最小发送单元中发送。
  14. 根据权利要求2所述的方法,其中,所述最小发送单元中的参考信号用于所述最小发送单元中的所有候选控制信道的解调,
  15. 根据权利要求2所述的方法,所述信号的发送图样由所述信号的最小单元确定。
  16. 一种信号发送方法,包括:
    向第二通信节点发送信号,其中,所述信号的第一资源单元为第二资源单元的K倍,所述K为自然数;
    其中,所述第一资源单元用于确定所述信号的传输参数,所述第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道一个聚合度下的搜索空间,所述第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,控制信道子带,所述第二通信节点带宽资源,所述信号占有的资源,物理资源块。
  17. 根据权利要求16所述的方法,其中,所述第一资源单元包括至少之一:所述信号的预编码资源块组,所述信号的最小发送单元,所述信号对应的第一参考信号的资源单元,确定所述信号发送图样的最小资源单元。
  18. 根据权利要求16所述的方法,其中,向所述第二通信节点发送信号包括:根据所述信号的相关传输参数向所述第二通信节点发送所述信号。
  19. 根据权利要求17所述的方法,其中,所述第一参考信号满足以下至少之一:
    所述信号和所述第一参考信号是准共位置的;
    所述信号的信道特性信息根据所述第一参考信号的信道特性信息获得;
    所述第一参考信号的端口集合是所述信号的解调参考信号端口集合的子集;
    所述第一参考信号的端口所用序列集合是所述信号的解调参考信号所用的 序列集合的子集;
    所述第一参考信号的端口集合与所述信号的解调参考信号端口集合的交集为空;
    所述信号所占的频域资源是所述第一参考信号所占的频域资源的子集;
    所述信号所占的时域资源是所述第一参考信号所占的时域资源的子集。
  20. 根据权利要求16所述的方法,其中,所述信号的第一资源单元根据以下至少之一确定:
    根据所述信号对应的第二资源单元确定;
    根据所述第二通信节点对应的带宽确定;
    根据所述第二通信节点的控制域带宽确定;
    根据所述信号对应的资源映射方式确定。
  21. 根据权利要求16所述的方法,其中,所述信号的第一资源单元为第二资源单元的K倍包括如下至少之一:
    所述第一资源单元的频域资源是所述第二资源单元的频域资源的K倍;
    所述第一资源单元的时域资源是所述第二资源单元的时域资源的K倍;
    所述第一资源单元包括的时频资源个数是所述第二资源单元包括的时频资源个数的K倍。
  22. 根据权利要求17所述的方法,其中,当所述信号为解调参考信号和/或测量参考信号的情况下,所述信号的发送图样根据所述最小资源单元确定,所述信号的发送图样包括以下至少之一:所述信号占有的时域资源,所述信号占有的频域资源,所述信号占有的码域资源。
  23. 根据权利要求17所述的方法,其中,在向所述第二通信节点发送信号包括:
    向所述第二通信节点通知所述第一资源单元的相关信息,通过所述第一资源单元的相关信息通知所述第二资源单元的相关信息,和/或,
    向所述第二通信节点通知所述第一资源单元的相关信息,通过所述第二资源单元的相关信息通知所述第一资源单元的相关信息。
  24. 根据权利要求17所述的方法,其中,所述第一资源单元所占的频域/码域资源根据所述第一资源单元的时域信息确定。
  25. 根据权利要求16所述的方法,其中,根据如下方式至少之一确定所述K值,还包括:
    将所述K值通知给所述第二通信节点;
    根据系统带宽确定所述K值;
    根据所述第二通信节点对应的带宽信息确定所述K值;
    根据所述信号的资源映射方式确定所述K值;
    根据所述第二通信节点反馈的发送资源个数确定所述K值;
    根据所述第二资源单元中包括的可用于控制信道传输的时频资源个数确定所述K值。
  26. 根据权利要求16所述的方法,其中,向第二通信节点发送信号包括:向所述第二通信节点通知所述第二资源单元的类型,所述第二资源单元的类型包括:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,一个控制信道子带,所述第二通信节点对应的带宽资源,所述信号占有的资源,一个物理资源块。
  27. 根据权利要求17所述的方法,其中,
    所述预编码资源块组包括K个第二资源单元,其中,所述K的值根据控制信道的聚合度确定。
  28. 根据权利要求17所述的方法,其中,所述信号至少在所述最小发送单元中发送。
  29. 根据权利要求17所述的方法,其中,所述最小发送单元中的参考信号用于所述最小发送单元中的所有候选控制信道的解调,
  30. 根据权利要求17所述的方法,所述信号的发送图样由所述信号的最小单元确定。
  31. 一种控制信道的接收方法,包括:
    确定控制信道的解调参考信号端口集合,其中,所述控制信道的解调参考信号端口集合是第二参考信号端口集合的子集;
    在所述确定的控制信道解调参考信号端口上接收所述控制信道;
    其中,通过以下方式至少之一确定所述第二参考信号端口集合:所述第二参考信号端口集合是固定的,所述第二参考信号端口集合根据第一通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
  32. 根据权利要求31所述的方法,其中,所述控制信道的解调参考信号 端口集合根据以下信息至少之一确定:第二通信节点对应的发送资源信息,所述控制信道对应的时间参数,所述解调参考信号的端口集合个数M1,所述控制信道所在的控制信道区域类型,所述控制信道所在的控制信道区域对应的时间参数,所述控制信道对应的频域资源索引,所述控制信道的控制信道单元索引,所述控制信道的控制资源组索引,接收第一通信节点发送的信令信息,其中所述信令信息中包括所述控制信道解调参考信号的相关信息。
  33. 根据权利要求32所述的方法,其中,所述发送资源满足以下特征至少之一:
    所述发送资源和解调参考信号端口之间存在一一对应关系;
    所述发送资源和解调参考信号端口集合之间存在一一对应关系;
    所述多个发送资源对应一个相同的解调参考信号端口;
    当第二通信节点对应的发送资源改变时,所述第二参考信号端口集合进行相应的改变。
  34. 根据权利要求31所述的方法,其中,所述控制信道的解调参考信号端口集合满足如下特征之一:
    所述控制信道的解调参考信号端口集合在不同的时间单元是可变的;
    所述控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
  35. 根据权利要求31所述的方法,其中,所述控制信道的解调参考信号端口集合通过如下方式之一确定:
    检测所述第二参考信号端口集合中的参考信号,根据所述参考信号的接收性能,在所述第二参考信号端口集合中选择一个或者多个参考信号端口构成所述控制信道的解调参考信号端口集合;
    在所述第二参考信号端口集合的每个参考信号端口上检测控制信道,检测成功的参考信号集合构成所述控制信道的解调参考信号端口集合;
    所述控制信道的解调参考信号端口集合根据所述第一通信节点发送的信令信息获取。
  36. 根据权利要求31所述的方法,其中,确定控制信道的解调参考信号端口集合包括:
    当一个或者多个除所述控制信道以外的其他控制信道占有第三参考信号端口集合中的端口,则所述第三参考信号端口集合为所述第二参考信号端口集合和所述控制信道解调参考信号端口集合的差集。
  37. 根据权利要求31所述的方法,其中,在所述控制信道所在的控制信道区域不同的情况下,所述控制信道的解调参考信号的确定方法不同,和/或所述控制信道的检测方法不同,和/或所述控制信道的解调参考信号的最小发送单元不同。
  38. 根据权利要求31或者37所述的方法,确定控制信道的解调参考信号端口集合包括以下至少之一:
    在第一控制信道区域中,所述控制信道的解调参考信号是所述第二参考信号端口集合,在第二控制信道区域中,所述控制信道的解调参考信号是所述第二参考信号端口集合的真子集;
    所述第一控制信道区域中所述控制信道的解调参考信号是固定的,;所述第二控制信道区域中所述控制信道的解调参考信号是随时间变化的;
    所述第一控制信道区域中所述控制信道的解调参考信号是固定的,;所述第二控制信道区域中所述控制信道的解调参考信号是随频域资源变化的;
    所述第一控制信道区域中,仅根据所述控制信道的解调参考信号包括的端口个数确定所述控制信道的解调参考信号端口,在所述第二控制信道区域中,根据所述控制信道的解调参考信号包括的端口个数不能确定所述控制信道的解调参考信号端口;
    在所述第一控制信道区域上,当除所述控制信道之外的其他控制信道不占有所述控制信道占有的时频资源,则在所述第二控制信道区域上,由其他控制信道占有所述控制信道占有的时频资源。
  39. 根据权利要求37所述的方法,其中,不同控制信道区域中所述控制信道的解调参考信号端口满足如下特征至少之一:
    不同控制信道区域中所述控制信道的解调参考信号端口数相同;
    一个控制信道区域中所述控制信道的解调参考信号端口集合是另一个控制信道区域中所述控制信道的解调参考信号端口集合的子集。
  40. 根据权利要求37所述的方法,其中,不同控制信道区域满足如下特征至少之一:
    不同控制信道区域的交集为空;
    不同控制信道区域属于相同时间单元;
    不同控制信道区域能够复用;
    不同控制信道区域的并集在频域和系统带宽内相同;
    不同控制信道区域的并集在频域和所述第二通信节点的带宽内相同。
  41. 根据权利要求31或者37所述的方法,其中,控制信道区域满足如下特征至少之一:
    根据时间单元的时间参数信息获取所述时间单元包含的控制信道区域类型;
    所述第一通信节点发送的配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
  42. 根据权利要求37所述的方法,其中,所述控制信道的解调参考信号满足如下特征至少之一:
    在第一控制信道区域中,第一通信节点只在发送所述控制信道的时间单元中发送所述控制信道的解调参考信号;
    在第二控制信道区域中,第一通信节点在约定的时间单元和发送所述控制信道的时间单元中发送所述控制信道的解调参考信号,在所述约定的时间单元中所述第一通信节点不发送所述第二通信节点的所述控制信道。
  43. 根据权利要求11所述的方法,其中,所述控制信道的解调参考信号的所述最小发送单元还满足如下特征至少之一:
    所述最小发送单元为一个或者多个控制信道资源组;
    所述最小发送单元为一个或者多个控制信道单元;
    所述最小发送单元为一个或者多个候选控制信道所占的资源;
    所述最小发送单元为一个相同聚合度的一个搜索空间所占的资源;
    所述最小发送单元为所述第二通信节点的所有聚合度的所有搜索控制所占的资源;
    所述最小发送单元为所述控制信道区域。
  44. 一种控制信道的发送方法,包括:
    确定控制信道的解调参考信号端口集合,其中,所述控制信道的解调参考信号端口是第二参考信号端口集合的子集;
    在所述确定的解调参考信号端口上向所述第二通信节点发送所述控制信道;
    其中,通过以下方式至少之一确定所述第二参考信号端口集合:所述第二参考信号端口集合是固定的,所述第二参考信号端口集合根据向第二通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考 信号端口集合获取。
  45. 根据权利要求44所述的方法,其中,所述控制信道的解调参考信号端口集合根据以下信息至少之一确定:第二通信节点对应的发送资源信息,所述控制信道对应的时间参数,所述解调参考信号的端口集合个数M1,所述控制信道所在的控制信道区域类型,所述控制信道所在的控制信道区域对应的时间参数,所述控制信道对应的频域资源索引,所述控制信道的控制信道单元索引,所述控制信道的控制资源组索引。
  46. 根据权利要求45所述的方法,其中,所述发送资源满足以下特征至少之一:
    所述发送资源和解调参考信号端口之间存在一一对应关系;
    所述发送资源和解调参考信号端口集合之间存在一一对应关系;
    所述多个发送资源对应一个相同的解调参考信号端口;
    当第二通信节点对应的发送资源改变时,所述第二参考信号端口集合进行相应的改变。
  47. 根据权利要求44所述的方法,其中,所述控制信道的解调参考信号端口集合满足如下特征之一:
    所述控制信道的解调参考信号端口集合在不同的时间单元是可变的;
    所述控制信道的解调参考信号端口集合在不同的频域资源中是可变的。
  48. 根据权利要求44所述的方法,其中,确定控制信道的解调参考信号端口集合包括:
    向所述第二通信节点发送信令信息,其中,所述信令信息包括所述控制信道的解调参考信号端口相关信息。
  49. 根据权利要求44所述的方法,其中,所述控制信道所在的控制信道区域不同的情况下,所述控制信道的解调参考信号的确定方法不同,和/或所述控制信道的发送方法不同,和/或控制信道解调参考信号的最小发送单元不同。
  50. 根据权利要求49所述的方法,其中,在所述控制信道所在的控制信道区域不同的情况下,确定所述控制信道的解调参考信号端口集合包括如下方法至少之一:
    在第一控制信道区域中,所述控制信道的解调参考信号是所述第二参考信号端口集合,在第二控制信道区域中,所述控制信道的解调参考信号是所述第二参考信号端口集合的真子集;
    所述第一控制信道区域中所述控制信道的解调参考信号是固定的,;所述第二控制信道区域中所述控制信道的解调参考信号是随时间变化的;
    所述第一控制信道区域中,根据所述控制信道的解调参考信号包括的端口个数确定所述控制信道的解调参考信号端口,在所述第二控制信道区域中,根据所述控制信道的解调参考信号包括的端口个数不能确定所述控制信道的解调参考信号端口;
    在所述第一控制信道区域上,除所述控制信道之外的其他控制信道不占有所述控制信道占有的时频资源,在所述第二控制信道区域上,除所述控制信道之外的其他控制信道占有所述控制信道占有的时频资源。
  51. 根据权利要求49所述的方法,其中,不同控制信道区域中所述控制信道的解调参考信号端口满足如下特征至少之一:
    不同控制信道区域中所述控制信道的解调参考信号端口数相同;
    一个控制信道区域中所述控制信道的解调参考信号端口集合是另一个控制信道区域中所述控制信道的解调参考信号端口集合的子集。
  52. 根据权利要求49所述的方法,其中,不同控制信道区域满足如下特征至少之一:
    不同控制信道区域的交集为空;
    不同控制信道区域属于相同时间单元;
    不同控制信道区域时域重叠;
    不同控制信道区域能够复用;
    不同控制信道区域的并集占满系统带宽。
  53. 根据权利要求49所述的方法,其中,控制信道区域通过如下方式确定:根据时间单元的时间参数信息获取所述时间单元包含的控制信道区域。
  54. 根据权利要求44所述的方法,其中,确定控制信道的解调参考信号端口集合包括:
    向所述第二通信节点发送配置信息,其中,所述配置信息指示不同控制信道区域所在的时间单元,和/或不同控制信道区域所在的时频资源。
  55. 根据权利要求49所述的方法,其中,确定控制信道的解调参考信号端口集合包括:
    在第一控制信道区域中,只在发送所述控制信道的时间单元中发送所述控制信道的解调参考信号;
    在第二控制信道区域中,在约定的时间单元和发送所述控制信道的时间单元中发送所述控制信道的解调参考信号,在所述约定的时间单元中不发送所述第二通信节点的所述控制信道。
  56. 根据权利要求49所述的方法,其中,不同控制信道区域的所述最小发送单元还满足如下特征至少之一:
    所述最小发送单元为一个或者多个控制信道资源组;
    所述最小发送单元为一个或者多个控制信道单元;
    所述最小发送单元为一个或者多个候选控制信道所占的资源;、
    所述最小发送单元为一个相同聚合度的一个搜索空间所占的资源;
    所述最小发送单元为所述第二通信节点的所有聚合度的所有搜索控制所占的资源;
    所述最小发送单元为所述控制信道区域。
  57. 一种信号接收装置,包括:
    第一接收模块,设置为接收第一通信节点发送的信号,其中,所述信号的第一资源单元为所述信号的第二资源单元的K倍,所述K为自然数;
    其中,所述第一资源单元设置为确定所述信号的传输参数,所述第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道的一个聚合度下的搜索空间,第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,一个控制信道子带,所述第二通信节点对应的带宽资源,所述信号占有的资源,一个物理资源块。
  58. 根据权利要求57所述的装置,其中,所述第一资源单元包括如下单元至少之一:所述信号的预编码资源块组,所述信号的最小发送单元,所述信号对应的第一参考信号的资源单元,确定所述信号发送图样的最小资源单元。
  59. 根据权利要求57所述的装置,其中,所述信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:
    所述第一资源单元的频域资源是所述第二资源单元的频域资源的K倍;
    所述第一资源单元的时域资源是所述第二资源单元的时域资源的K倍;
    所述第一资源单元包括的时频资源个数是所述第二资源单元包括的时频资源个数的K倍。
  60. 根据权利要求57所述的装置,其中,根据以下方式至少之一确定所 述K值,还包括:
    接收所述第一通信节点通知的所述K值;
    根据系统带宽确定所述K值;
    根据所述第二通信节点对应的带宽信息确定所述K值;
    根据所述信号的资源映射方式确定所述K值;
    根据所述第二通信节点反馈的发送资源个数确定所述K值;
    根据所述第二资源单元中包括的可用于控制信道传输的时频资源个数确定所述K值。
  61. 一种信号发送装置,包括:
    第一发送模块,设置为向第二通信节点发送信号,其中,所述信号的第一资源单元为所述信号的第二资源单元的K倍,所述K为自然数;
    其中,所述第一资源单元设置为确定所述信号的相关传输参数,所述第二资源单元包括以下至少之一:控制信道资源组,控制信道单元,候选控制信道,控制信道一个聚合度下的搜索空间,所述第二通信节点的专有搜索空间,所述第二通信节点需要检测的公共搜索空间,所述第二通信节点的所有搜索空间,控制信道子带,所述第二通信节点带宽资源,所述信号占有的资源,物理资源块。
  62. 根据权利要求61所述的装置,其中,所述信号的第一资源单元为第二资源单元的K倍包括如下特征至少之一:
    所述第一资源单元的频域资源是所述第二资源单元的频域资源的K倍;
    所述第一资源单元的时域资源是所述第二资源单元的时域资源的K倍;
    所述第一资源单元包括的时频资源个数是所述第二资源单元包括的时频资源个数的K倍。
  63. 根据权利要求61所述的装置,其中,根据如下方式至少之一确定和/或通知所述K值,还包括:
    将所述K值通知给所述第二通信节点,
    根据系统带宽确定所述K值;
    根据所述第二通信节点对应的带宽信息确定所述K值;
    根据所述信号的资源映射方式确定所述K值;
    根据所述第二通信节点反馈的发送资源个数确定所述K值;
    根据所述第二资源单元中包括的可用于控制信道传输的时频资源个数确定 所述K值。
  64. 一种控制信道的接收装置,包括:
    第一确定模块,设置为确定控制信道的解调参考信号端口集合,其中,所述控制信道的解调参考信号端口集合是第二参考信号端口集合的子集;
    第二接收模块,设置为在所述确定的控制信道解调参考信号端口上接收所述控制信道;
    其中,通过以下方式至少之一确定所述第二参考信号端口集合:所述第二参考信号端口集合是固定的,所述第二参考信号端口集合根据第一通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
  65. 根据权利要求64所述的装置,其中,所述控制信道的解调参考信号满足如下特征至少之一:
    在第一控制信道区域中,假设第一通信节点只在发送所述控制信道的时间单元中发送所述控制信道的解调参考信号;
    在第二控制信道区域中,假设第一通信节点在约定的时间单元和发送所述控制信道的时间单元中发送所述控制信道的解调参考信号,假设在所述约定的时间单元中所述第一通信节点可能没有发送所述第二通信节点的所述控制信道。
  66. 一种控制信道的发送装置,包括:
    第二确定模块,设置为确定控制信道的解调参考信号端口集合,其中,所述控制信道的解调参考信号端口是第二参考信号端口集合的子集;
    第二发送模块,设置为在所述确定的解调参考信号端口上向所述第二通信节点发送所述控制信道;
    其中,通过以下方式至少之一确定所述第二参考信号端口集合:所述第二参考信号端口集合是固定的,所述第二参考信号端口集合根据向第二通信节点发送的信令信息获取,根据广播信道的解调参考信号集合获取,根据测量参考信号端口集合获取。
  67. 根据权利要求66所述的装置,其中,所述第二确定模块,还用于在第一控制信道区域中,只在发送所述控制信道的时间单元中发送所述控制信道的解调参考信号;在第二控制信道区域中,在约定的时间单元和发送所述控制信道的时间单元中发送所述控制信道的解调参考信号,在所述约定的时间单元 中可能没有发送所述第二通信节点的所述控制信道。
  68. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至15任一项所述方法的步骤,或者实现权利要求16至30任一项所述方法的步骤,或者实现权利要求31至43任一项所述方法的步骤,或者实现权利要求44至56任一项所述方法的步骤。
PCT/CN2017/120336 2017-01-09 2017-12-29 信号接收、发送方法、控制信道的接收、发送方法、装置及存储介质 WO2018127027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710014271.6A CN108289017B (zh) 2017-01-09 2017-01-09 信号接收、发送方法、控制信道的接收、发送方法及装置
CN201710014271.6 2017-01-09

Publications (1)

Publication Number Publication Date
WO2018127027A1 true WO2018127027A1 (zh) 2018-07-12

Family

ID=62789224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120336 WO2018127027A1 (zh) 2017-01-09 2017-12-29 信号接收、发送方法、控制信道的接收、发送方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN108289017B (zh)
WO (1) WO2018127027A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932800A (zh) * 2019-11-29 2020-03-27 北京邮电大学 一种宽频带多用户场景的联合检测方法及装置
WO2020147695A1 (zh) * 2019-01-18 2020-07-23 华为技术有限公司 一种信号发送、接收方法及设备
US20220046624A1 (en) * 2020-08-06 2022-02-10 Qualcomm Incorporated Beam-based initial transmissions, re-transmissions, and search spaces

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831140A4 (en) * 2018-08-02 2022-03-23 ZTE Corporation SYSTEMS AND METHODS FOR DETERMINING CHANNEL OWNERSHIP ASSUMPTION
CN111867019B (zh) * 2019-04-30 2022-04-08 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
WO2022078373A1 (zh) * 2020-10-14 2022-04-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114499791A (zh) * 2020-10-27 2022-05-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114374484B (zh) * 2020-10-14 2024-04-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159621A1 (ko) * 2015-03-27 2016-10-06 삼성전자 주식회사 대규모 안테나 시스템에서 자원 할당 장치 및 방법
WO2016167630A1 (ko) * 2015-04-17 2016-10-20 삼성전자주식회사 무선 통신 시스템에서 기준 신호들을 송신하기 위한 장치 및 방법
CN106169948A (zh) * 2015-05-22 2016-11-30 华硕电脑股份有限公司 在无线通信系统中执行参考信号传输的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316581B (zh) * 2010-06-29 2014-12-31 华为技术有限公司 一种预编码资源组的分配方法和设备
WO2012114666A1 (ja) * 2011-02-22 2012-08-30 パナソニック株式会社 中継局、基地局、及び通信方法
CN102958183B (zh) * 2011-08-18 2015-09-09 华为技术有限公司 传输增强下行控制信道的方法、设备和系统
CN103200684B (zh) * 2012-01-09 2016-01-13 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
CN103326839B (zh) * 2012-03-22 2016-12-07 华为技术有限公司 增强的物理下行控制信道的发送、接收方法和装置
EP2892275B1 (en) * 2012-08-30 2020-02-19 LG Electronics Inc. -1- Method and apparatus for estimating channel in wireless communication system
WO2014123317A1 (ko) * 2013-02-07 2014-08-14 엘지전자 주식회사 무선 통신 시스템에서 채널 및 간섭 측정 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159621A1 (ko) * 2015-03-27 2016-10-06 삼성전자 주식회사 대규모 안테나 시스템에서 자원 할당 장치 및 방법
WO2016167630A1 (ko) * 2015-04-17 2016-10-20 삼성전자주식회사 무선 통신 시스템에서 기준 신호들을 송신하기 위한 장치 및 방법
CN106169948A (zh) * 2015-05-22 2016-11-30 华硕电脑股份有限公司 在无线通信系统中执行参考信号传输的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on QCL Assumptions for NR", 3GPP TSG RAN WG1 MEETING #87, R1-1611806, 18 November 2016 (2016-11-18), XP051175775 *
SAMSUNG: "MIMO for 5G New Radio Interface: Sub-6GHz", 3GPP TSG RAN WG1 #84BIS, R1-162182, 15 April 2016 (2016-04-15), XP051080019 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147695A1 (zh) * 2019-01-18 2020-07-23 华为技术有限公司 一种信号发送、接收方法及设备
CN110932800A (zh) * 2019-11-29 2020-03-27 北京邮电大学 一种宽频带多用户场景的联合检测方法及装置
US20220046624A1 (en) * 2020-08-06 2022-02-10 Qualcomm Incorporated Beam-based initial transmissions, re-transmissions, and search spaces

Also Published As

Publication number Publication date
CN108289017A (zh) 2018-07-17
CN108289017B (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2018127027A1 (zh) 信号接收、发送方法、控制信道的接收、发送方法、装置及存储介质
US11483800B2 (en) Method and device for resource allocation and sidelink communication
US11564205B2 (en) Method and apparatus for configuring DMRS information in V2X system
JP6993415B2 (ja) 無線通信システムにおけるデータを送受信する方法及びそのために装置
WO2018177262A1 (zh) 传输参数确定方法及装置、存储介质
CN109495974B (zh) 信息传输方法和装置
CN110447188B (zh) 无线通信系统中解码利用发射分集方法发射v2x信号的方法以及使用该方法的终端
JP7357048B2 (ja) V2x通信のためのリソース割り当て及び帯域幅部分非活性タイマー処理方法及び装置
WO2018171800A1 (zh) 参考信号的处理方法及装置
JP6770202B2 (ja) 無線通信システムにおいてデータを送受信する方法及びそのための装置
CN103907325B (zh) 在无线通信系统中允许终端执行随机接入步骤的方法及其装置
WO2019029378A1 (zh) 参考信号配置信息的指示方法、基站及终端
CN107404365B (zh) 发送和接收控制信息的方法及装置
JP2018507659A (ja) 無線インターフェース技術、装置、および通信システムを使用するための方法
KR102617246B1 (ko) 다중 반송파 사이드링크 통신을 위한 동기화 기준 소스를 선택 및 동기화 정보를 전송하는 방법 및 장치
CN109831827B (zh) 数据传输方法、终端和基站
EP4002945A1 (en) Method for configuring sidelink resource in communication system
JP2022549993A (ja) 動的スペクラム共有を伴う非コヒーレント共同送信のためのレートマッチング
CN109152017B (zh) 一种传输块大小的确定方法和装置
JP2022531427A (ja) 複数の送信/受信ポイント(trp)上でトランスポートブロック(tb)を繰り返す方法
CN112567828A (zh) 在无线通信系统中传送和接收侧链路同步信号的方法和装置
EP3903438A1 (en) Configuration and resource allocation for downlink demodulation reference signals
JP6028854B2 (ja) 信号を送信する方法及びシステム
CN112714497B (zh) 一种传输块尺寸确定方法及装置
US11856566B2 (en) Method and apparatus for transmitting reference signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889645

Country of ref document: EP

Kind code of ref document: A1