WO2021027893A1 - 一种dmrs端口确定方法及通信装置 - Google Patents

一种dmrs端口确定方法及通信装置 Download PDF

Info

Publication number
WO2021027893A1
WO2021027893A1 PCT/CN2020/108979 CN2020108979W WO2021027893A1 WO 2021027893 A1 WO2021027893 A1 WO 2021027893A1 CN 2020108979 W CN2020108979 W CN 2020108979W WO 2021027893 A1 WO2021027893 A1 WO 2021027893A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
dmrs port
ports
port set
random access
Prior art date
Application number
PCT/CN2020/108979
Other languages
English (en)
French (fr)
Inventor
柴晓萌
吴艺群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20851423.2A priority Critical patent/EP4013175A4/en
Priority to JP2022508965A priority patent/JP7379663B2/ja
Publication of WO2021027893A1 publication Critical patent/WO2021027893A1/zh
Priority to US17/671,313 priority patent/US11843454B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and a communication device for determining a demodulation reference signal (DMRS) port.
  • DMRS demodulation reference signal
  • the random access (RA) process of the terminal device can also be called the random access channel (RACH) process.
  • RACH random access channel
  • terminal devices need to enter from the idle state or inactive state of the radio resource control (radio resource control, RRC) through random access Only in the RRC connection state can various bearers be established with the network equipment, and then communicate with the network equipment.
  • RRC radio resource control
  • the random access process of terminal equipment usually adopts a 4-step physical random access channel (4-step RACH) process.
  • the four-step random access process includes the terminal equipment sending a random access preamble ( preamble), the network device sends a random access response to the terminal device, the terminal device sends uplink data to the network device, and the network device sends conflict resolution information to the terminal device.
  • a two-step random access (2-Step RACH) process is proposed. In the two-step random access process, only the terminal device sends the random access preamble and uplink to the network device. Data, the network device sends a random access response to the terminal device in two steps.
  • the terminal device that has sent the random access preamble carries the information of the sent random access preamble, and the terminal device will respond according to the random access response.
  • the DMRS port indicated in sends uplink data.
  • all terminal devices send random access preamble and uplink data to the network device through the same configuration. Therefore, each terminal device may use the same DMRS port Sending uplink data on the same resource will cause collisions of DMRS ports used by a large number of terminal devices to send uplink data, which affects the effect of random access.
  • the embodiments of the present application provide a DMRS port determination method and a communication device to solve the problem of collision of DMRS ports used by a large number of terminal devices to send uplink data during two-step random access, which affects the effect of random access.
  • the DMRS can also be other reference signals used to demodulate data.
  • the embodiment of this application takes the DMRS as an example for description; the random access preamble can also be other sequences used for random access. Take the access preamble as an example.
  • an embodiment of the present application provides a method for determining a DMRS port, which is applied to a terminal device, and includes: receiving configuration information sent by a network device, where the configuration information includes DMRS configuration information and indication information of a DMRS port set.
  • the DMRS configuration information is used to configure multiple DMRS ports, and the indication information of the DMRS port set is used to indicate one or more available DMRS ports among the multiple DMRS ports; a target DMRS port is determined in the DMRS port set .
  • the network device can configure the terminal device for random access.
  • the physical uplink shared channel (PUSCH) can be used for the set of DMRS ports corresponding to the random access preamble.
  • the terminal equipment selects a target DMRS port from the set of DMRS ports corresponding to the random access preamble configured by the network equipment, as the DMRS port corresponding to the random access preamble, avoiding all terminal equipment using the same DMRS specified in the protocol Ports cause collisions of DMRS ports on which a large number of terminal devices send uplink data, which affects the effect of random access.
  • the determining a target DMRS port in the DMRS port set includes: determining a random access preamble; and determining a target in the DMRS port set according to the random access preamble DMRS port.
  • the terminal device selects a target DMRS port corresponding to the determined random access preamble from the set of DMRS ports according to the determined random access preamble, which is beneficial to further avoid collisions of DMRS ports through which a large number of terminal devices send uplink data. Affect the effect of random access.
  • the indication information of the DMRS port set includes a bitmap, or parameter K, or parameter M and parameter N, or index number; wherein, the bitmap is used to indicate the multiple DMRS ports DMRS port distribution in the DMRS port set; the parameter K is used to indicate that the first K DMRS ports of the multiple DMRS ports according to the preset DMRS port sequence belong to the DMRS port set; the parameter M and the parameter N is used to indicate that the multiple DMRS ports follow the preset DMRS port sequence, and the M DMRS ports starting from the Nth DMRS port belong to the DMRS port set; the index number is used to indicate that the multiple DMRS ports correspond to A DMRS port set in a plurality of preset DMRS port sets.
  • the realization of the indication information of the DMRS port set is enriched, and it is convenient to select the indication information of the DMRS port set containing corresponding information according to the communication system and communication conditions to indicate the available DMRS ports in the DMRS port set.
  • the indication information of the DMRS port set is used to indicate that the first K DMRS ports of the multiple DMRS ports according to a preset DMRS port sequence belong to the DMRS port set.
  • the indication information of the DMRS port set is the number of DMRS ports, and the DMRS port set is the same as the number of DMRS ports among multiple preset DMRS port sets corresponding to the multiple DMRS ports.
  • the realization of the indication information of the DMRS port set is enriched, and it is convenient to select the indication information of the DMRS port set containing corresponding information according to the communication system and communication conditions to indicate the available DMRS ports in the DMRS port set.
  • the indication information of the DMRS port set is the identifier of one or more DMRS code division multiplexing CDM groups, and the DMRS port set is the one or more DMRS ports in the multiple DMRS ports.
  • the identification of the CDM group indicates the port set, which can save signaling overhead.
  • the realization of the indication information of the DMRS port set is enriched, and it is convenient to select the indication of the DMRS port set containing the corresponding information according to the communication system and communication conditions.
  • the configuration information includes indication information of multiple DMRS port sets
  • the frequency domain resources occupied by DMRS ports in different DMRS port sets do not overlap.
  • the determining a target DMRS port in the DMRS port set according to the random access preamble includes: according to a preset mapping sequence of the random access preamble and the DMRS port, A target DMRS port corresponding to the random access preamble is determined in the DMRS port set.
  • the corresponding target DMRS port is selected to improve the random access The stability of the entry.
  • an embodiment of the present application provides a communication device that has the function of implementing the foregoing first aspect or any one of the possible design methods in the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor, and the memory is used to store a program executed by the processor.
  • the program is executed by the processor, the device can execute the first aspect or any of the first aspects.
  • the device may be a terminal device.
  • an embodiment of the present application provides a computer-readable storage medium that stores computer instructions, and when the computer instructions are executed by a communication device, the communication device executes the first aspect or the first aspect described above. Aspects of the method described in any possible design.
  • the embodiments of the present application provide a computer program product containing instructions that, when it runs on a communication device, enables the communication device to execute the first aspect or any possible design of the first aspect.
  • FIG. 1 is a schematic diagram of a communication architecture in an embodiment of this application.
  • 2A is a schematic diagram of a DMRS pilot type 1 and a DMRS resource with a single preamble in an embodiment of the application;
  • 2B is a schematic diagram of a DMRS pilot type 1 DMRS resource with dual preamble symbols in an embodiment of this application;
  • 3A is a schematic diagram of a DMRS pilot type 2 with a single preamble symbol in an embodiment of the application;
  • FIG. 3B is a schematic diagram of DMRS resources of a DMRS pilot type 2 and dual preamble symbols in an embodiment of this application;
  • Figure 4 is one of the schematic diagrams of a random access process in an embodiment of this application.
  • Figure 5 is a second schematic diagram of a random access process in an embodiment of this application.
  • FIG. 6 is one of the schematic diagrams of a DMRS port determination process in an embodiment of the application.
  • FIG. 7 is a schematic diagram of the distribution of a set of multiple DMRS ports in an embodiment of the application.
  • FIG. 8 is a second schematic diagram of a DMRS port determination process in an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device in an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a terminal device in an embodiment of the application.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as: 5G systems, new radio (NR) systems, LTE systems, long term evolution-advanced (LTE-A) systems, etc.
  • the system can also be extended to related cellular systems such as wireless fidelity (WiFi), worldwide interoperability for microwave access (wimax), and 3GPP, as well as future communication systems, such as 6G System etc.
  • the communication system architecture applied in the embodiment of the present application may be as shown in FIG. 1, including a network device and multiple terminal devices. In FIG. 1, three terminal devices are taken as an example.
  • the terminal device 1-the terminal device 3 can send data to the network device separately or at the same time. It should be noted that the embodiment of the present application does not limit the number of terminal devices and network devices in the communication system shown in FIG. 1.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • the "plurality" involved in this application is two or more.
  • information information
  • signal signal
  • message messages
  • channel channel
  • the meanings to be expressed are the same when the differences are not emphasized. of. " ⁇ (of)”, “corresponding (relevant)” and “corresponding” can sometimes be used together. It should be pointed out that the meanings to be expressed are the same when the difference is not emphasized.
  • Terminal devices including devices that provide users with voice and/or data connectivity, such as handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the terminal device can communicate with a radio access network (RAN), and exchange voice and/or data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) etc.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, handheld, and computer-built mobile devices.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • vehicle-mounted terminal equipment for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU).
  • OBU on-board unit
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • Network equipment can refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network.
  • the network device may be a node in a radio access network, may also be called a base station, or may also be called a radio access network (RAN) node (or device).
  • RAN radio access network
  • the network equipment are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit) , BBU), or wireless fidelity (Wifi) access point (AP), etc.
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node. This structure splits the protocol layer of the eNB in the long-term evolution (LTE) system. Some of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are distributed in the DU. Centralized control of DU.
  • DMRS port is a logical antenna port distinguished by demodulation reference signal.
  • DMRS ports are multiplexed by frequency-division multiplexing (FDM) + code division multiplexing (CDM), and each DMRS CDM group passes orthogonal cover code (OCC) Multiplexing is divided into multiple DMRS ports.
  • FDM frequency-division multiplexing
  • CDM code division multiplexing
  • OOCC orthogonal cover code
  • Multiplexing is divided into multiple DMRS ports.
  • the NR system supports two DMRS types (DMRS type 1 and DMRS type 2).
  • DMRS has a single front-loaded symbol and a double front-loaded symbol.
  • DMRS type 1 single-front-loaded symbol supports up to 4 DMRS ports
  • DMRS type 1 dual pre-symbol supports up to 8 DMRS ports
  • DMRS type 2 single pre-symbol supports up to 6 DMRS ports
  • DMRS type 2 dual pre-symbols supports up to 12 DMRS ports
  • two DMRS types The multiplexing and configuration methods are described as follows:
  • the DMRS port is divided into two DMRS CDM groups.
  • DMRS CDM groups For an example, see Figure 2A for a (single) pre-symbol DMRS (corresponding to the orthogonal frequency division multiplexing numbered 2 (orthogonal frequency division multiplexing, OFDM symbol, horizontal axis in the figure), the subcarriers of the OFDM symbol (vertical axis in the figure) are divided into two groups, that is, the subcarriers of the OFDM symbol are divided into two DMRS CDM groups, Each DMRS CDM group corresponds to 2 DMRS ports multiplexed by a single OFDM symbol through OCC.
  • DMRS CDM group 0 corresponds to the DMRS resource particles (REs) of antenna port 0/1
  • DMRS CDM group 1 corresponds to the antenna DMRS REs of port 2/3
  • DMRS CDM group 0 corresponds to DMRS port 0 and DMRS port 1
  • DMRS CDM group 1 corresponds to DMRS port 2 and DMRS port 3.
  • the subcarriers of the OFDM symbol are divided into two groups, that is, the subcarriers of the OFDM symbol are divided into two DMRS CDM groups, and each DMRS CDM group corresponds to two OFDM symbols are multiplexed by OCC with 4 DMRS ports.
  • DMRS CDM group 0 corresponds to DMRS REs of antenna port 0/1/4/5
  • DMRS CDM group 1 corresponds to antenna port 2/3/6 DMRS REs of /7
  • DMRS CDM group 0 corresponds to DMRS port 0, DMRS port 1, DMRS port 4, and DMRS port 5.
  • DMRS CDM group 1 corresponds to DMRS port 2, DMRS port 3, DMRS port 6, and DMRS port 7.
  • the DMRS port is divided into three DMRS CDM groups.
  • the subcarriers of the OFDM symbol are Divided into three groups, that is, the sub-carriers of the OFDM symbol are divided into three DMRS CDM groups, and each DMRS CDM group corresponds to 2 DMRS ports multiplexed by a single OFDM symbol through OCC.
  • DMRS CDM group 0 corresponds to DMRS REs of antenna port 0/1
  • DMRS CDM group 1 corresponds to DMRS REs of antenna port 2/3
  • DMRS CDM group 2 corresponds to DMRS REs of antenna port 4/5, that is, DMRS CDM group 0 corresponds to DMRS port 0 and DMRS Port 1
  • DMRS CDM group 1 corresponds to DMRS port 2 and DMRS port 3
  • DMRS CDM group 2 corresponds to DMRS port 4 and DMRS port 5.
  • the subcarriers of the OFDM symbol are divided into three groups, that is, the subcarriers of the OFDM symbol are divided into three DMRS CDM groups, and each DMRS CDM group corresponds to dual OFDM symbols and multiplexed by OCC.
  • DMRS CDM group 0 corresponds to DMRS REs of antenna port 0/1/6/7
  • DMRS CDM group 1 corresponds to DMRS REs of antenna port 2/3/8/9
  • DMRS CDM Group 2 is the DMRS REs corresponding to antenna ports 4/5/10/11, that is, DMRS CDM group 0 corresponds to DMRS port 0, DMRS port 1, DMRS port 6, and DMRS port 7,
  • DMRS CDM group 1 corresponds to DMRS port 2, DMRS port 3.
  • DMRS CDM group 2 corresponds to DMRS port 4, DMRS port 5, DMRS port 10 and DMRS port 11.
  • transform precoding transform precoding
  • DFT-s-OFDM discrete Fourier spread orthogonal frequency division multiplexing
  • DMRS DMRS type 1
  • DMRS type 2 DMRS type 2
  • n 0,1,...
  • the resource mapping formula of DMRS under DFT-s-OFDM waveform is as follows:
  • n 0,1,...
  • Configuration type 1 represents DMRS type 1
  • Configuration type 2 represents DMRS type 2
  • k is the frequency domain position
  • l is the time domain position
  • is the frequency domain offset
  • w f (k′) and w t (l′) Represents the orthogonal cover code (OCC) in frequency domain and time domain
  • OCC orthogonal cover code
  • j represents the PUSCH layer index
  • represents the total number of PUSCH layers
  • r(2n+k′) represents the DMRS sequence
  • the values of k′ and l′ refer to Table 6.4 .1.1.3-1 and Table 6.4.1.1.3-2.
  • Table 6.4.1.1.3-1 Parameters for PUSCH DM-RS configuration type 1 (PUSCH DMRS type 1 parameters)
  • Table 6.4.1.1.3-2 Parameters for PUSCH DM-RS configuration type 2 (PUSCH DMRS type 2 parameters)
  • the network equipment will clearly indicate one or more DMRS ports used by the user for PUSCH transmission.
  • the specific indication method is to indicate the antenna port indication through the RRC message or DCI.
  • Each configuration above except for the antenna port indication information corresponds to a DMRS port indication table in the 3GPP protocol TS 38.212, as shown in the following table 7.3.
  • 1.1.2-15 shows the CP-OFDM waveform, DMRS type 1, the maximum length of the DMRS time domain is 2 preamble symbols, and the rank number is 4 DMRS port indication table.
  • the antenna port indication information is used to indicate the The specific entries in the DMRS port indication table. For example, when the antenna port indication information is 0, it indicates that the user cannot map data on the two DMRS CDM groups.
  • the actual pre-DMRS time domain length is 1 symbol. After the actual random access , The DMRS port used for PUSCH transmission is 0 ⁇ 3.
  • Table 7.3.1.1.2-15 is as follows:
  • Random access (RA) process The random access process is divided into a four-step random access process and a two-step random access process.
  • the two-step random access process includes: Step 1: The terminal device sends a random access preamble to the network device; Step 2: After the network device receives the random access preamble, it sends a random access response to the terminal device ( random access response, RAR), the random access response may include random access preamble, uplink data timing advance, configuration information of uplink resources used to send uplink data, and temporary cell radio network temporary identifier (cell radio network temporary identifier) , C-RNTI) and other parameters; Step 3: The terminal device receives the random access response, if the random access preamble indicated by the sequence number of the random access preamble in the random access response is the same as the terminal device to the network device in step one If the random access preambles sent are the same, the terminal device determines that the random access response is for the terminal device, and the terminal device sends uplink data to
  • the two-step random access process includes: Step 1: The terminal device sends a message A (MsgA) to the network device, and MsgA contains the random access preamble and uplink data; Step 2: The network device receives the message sent by the terminal device After the MsgA, send MsgB to the terminal device, and MsgB can be used to send random access response and conflict resolution.
  • MsgA message A
  • MsgB contains the random access preamble and uplink data
  • MsgB contains the random access preamble and uplink data
  • a terminal device in an idle state or an inactive state When a terminal device in an idle state or an inactive state enters the RRC connected state through a four-step random access process, it needs to communicate with the network device at least four signaling interactions.
  • URLLC ultra-reliable and low latency communications
  • mMTC large-scale machine type communications
  • terminal devices need to complete a four-step random access process each time and enter the RRC connection state to send data. Then return to the idle state or inactive state again, not only the delay is high, but the signaling overhead is also serious.
  • the number of signaling interactions required for the two-step random access process is reduced, the signaling overhead is reduced, and the delay is also reduced, which is suitable for application scenarios with low delay requirements.
  • the terminal device is still like the four-step random access process, all terminal devices send random access preamble and uplink data to the network device through the same configuration, and each terminal device may use the same DMRS port in Sending uplink data on the same resource will cause collisions of the DMRS ports used by a large number of terminal devices to send uplink data, which will affect the effect of random access.
  • This application aims to solve the problem of a large number of terminal devices sending uplink data during two-step random access. The collision of the used DMRS port affects the effect of random access.
  • Figure 6 is a schematic diagram of a DMRS port determination process provided by an embodiment of the application, and the process includes:
  • a terminal device receives configuration information sent by a network device, where the configuration information includes DMRS configuration information and indication information of a DMRS port set.
  • the DMRS configuration information sent by the network device is used to determine the DMRS port(s) that the network device configures for the terminal device that may be selected into the DMRS port set, and each of the DMRS ports that may be selected into the DMRS port set
  • DMRS ports that may be selected into the DMRS port set are referred to as “candidate DMRS ports” in the following.
  • the candidate DMRS ports configured by the DMRS configuration information refer to all DMRS ports predefined by the protocol under the DMRS configuration information; the indication information of the DMRS port set is used to determine one or more candidate DMRS ports configured by the network device for the terminal device.
  • Two available DMRS ports (which can be used for DMRS ports associated with random access preambles) constitute a DMRS port set.
  • the DMRS configuration information may include DMRS type configuration information and DMRS time domain length configuration information.
  • it may also include one of DMRS sequence configuration information, DMRS additional location configuration information, and DMRS CDM group configuration information for which data is not available.
  • the DMRS type configuration information is used to indicate the DMRS type, such as DMRS type 1 and DMRS type 2
  • the DMRS time domain length configuration information is used to indicate the DMRS time domain length, such as a single preamble (the preamble is a specific OFDM symbol).
  • DMRS sequence configuration information is used to indicate the information required for DMRS sequence generation
  • DMRS additional position configuration information is used to indicate additional occupied OFDM symbols in addition to the preamble, as indicated In addition to the preamble, the DMRS also occupies the OFDM symbol numbered 11
  • the DMRS CDM group configuration information for which data is not available is used to indicate which DMRS CDM groups correspond to REs that cannot map data.
  • DMRS port set indication information DMRS type configuration information, DMRS time domain length configuration information, DMRS sequence configuration information, DMRS additional location configuration information, data unavailable DMRS CDM group configuration information and other information can be carried out Joint coding means that multiple pieces of information in the above information are indicated through one parameter.
  • the terminal device can determine each candidate DMRS port configured by the network device for itself and the resource of each candidate DMRS port (resources are time domain resources and/ Or frequency domain resources and/or code domain resources).
  • the DMRS configuration information is DMRS type 1
  • DMRS time domain length is a single preamble
  • the terminal device can determine that the candidate DMRS port configured by the network device for the terminal device conforms to DMRS type 1, DMRS time domain length DMRS port 0, DMRS port 1, DMRS port 2 and DMRS port 3 with a single prefix.
  • the network device may send configuration information to the terminal device through broadcast or multicast messages, or through RRC messages, downlink control information (DCI) messages, etc.
  • DCI downlink control information
  • the terminal device After the terminal device determines the candidate DMRS port configured by the network device for itself according to the DMRS configuration information sent by the network device, it can determine that it belongs to the DMRS port set from the candidate DMRS ports configured by the network device for itself according to the indication information of the DMRS port set One or more available DMRS ports.
  • the indication information of the DMRS port set may include one of bitmap, parameter K, parameter M and parameter N, and index number, or it may be the number of DMRS ports, or the number of DMRS CDM groups. For the identification, etc., as long as one or more available DMRS ports belonging to the DMRS port set can be indicated from the candidate DMRS ports configured by the network device for the terminal device, it will be described below with reference to specific implementations.
  • the indication information of the DMRS port set includes one of bitmap, parameter K, parameter M, parameter N, and index number.
  • the indication information of the DMRS port set includes a bitmap, and the bitmap is used to indicate the DMRS port distribution belonging to the DMRS port set among the candidate DMRS ports configured by the network device for the terminal device.
  • the length (number of bits) of the bitmap can be the same as the number of candidate DMRS ports configured by the network device for the terminal device, and the first bit of the bitmap indicates the candidate DMRS configured by the network device for the terminal device. Whether the DMRS port with serial number 0 in the port is available, and so on, the second bit of the bitmap indicates whether the DMRS port with serial number 1 among the candidate DMRS ports configured by the network device for the terminal device is available..., the DMRS port can be indicated by 1 specifically , Through 0 to indicate that the DMRS port is not available.
  • DMRS time domain length as single prefix as an example, that is, the candidate DMRS ports configured by the network device for the terminal device are DMRS port 0, DMRS port 1, and DMRS port 2.
  • DMRS port 3 the bitmap included in the DMRS port set indication information is "1010"
  • the terminal device determines that DMRS port 0 and DMRS port 2 are available DMRS ports, and the DMRS port set is ⁇ DMRS port 0, DMRS port 2 ⁇ .
  • the length of the bitmap can be the same as the maximum number of candidate DMRS ports configured by the network device for the terminal device.
  • the length of the bitmap can be set to 12 bits, if a bit of the bitmap does not correspond to a network device configured for the terminal device For the candidate DMRS port, set this bit of the bitmap to 0, that is, if a bit of the bitmap is "0", it means that the candidate DMRS port corresponding to the bit is not available, or the corresponding candidate DMRS port is empty.
  • the indication information of the DMRS port set includes a parameter K, which is used to indicate that the candidate DMRS ports configured by the network device for the terminal device belong to the DMRS port set according to the preset DMRS port sequence.
  • the preset DMRS port sequence may be determined by the network device and sent to the terminal device through a broadcast or multicast message, or it may be pre-defined by the protocol. Among them, the preset DMRS port sequence can be the ascending sequence of the DMRS port sequence number.
  • the DMRS port sequence is "0, 1, 2, 3 ,4,5,6,7,8,9,10,11", where each number in the DMRS port sequence represents the DMRS port whose port number is that number, such as "0" for "DMRS port 0", the following is also There are similar descriptions, and no additional explanation is needed; the preset DMRS port sequence can also be in ascending order by DMRS CDM group serial number, and then in ascending order by DMRS port serial number, with DMRS configuration information being DMRS type 1, DMRS time domain length being double
  • the DMRS port sequence is "0, 1, 4, 5, 2, 3, 6, 7"; of course, the preset DMRS port sequence can also be DMRS ports between different DMRS CDM groups according to DMRS CDM The group serial number and the DMRS port serial number are alternately mapped in ascending order.
  • the candidate DMRS ports configured by the network device for the terminal device are sorted as "0, 1, 4, 5, 2, 3, 6, 7" according to the preset DMRS port sequence, and the terminal device determines that the network device is the terminal device configuration
  • the first 4 DMRS ports of the candidate DMRS ports are available according to the preset DMRS port sequence, and belong to the DMRS port set.
  • the terminal device determines that DMRS port 0, DMRS port 1, DMRS port 4, and DMRS port 5 are available DMRS ports, and the DMRS port set is ⁇ DMRS port 0, DMRS port 1, DMRS port 4, DMRS port 5 ⁇ .
  • the indication information of the DMRS port set includes the parameter M and the parameter N.
  • the parameter M and the parameter N are used to instruct the network device to configure the candidate DMRS port for the terminal device according to the preset DMRS port sequence, starting from the Nth DMRS port
  • the M DMRS ports belong to the DMRS port set.
  • the DMRS configuration information is DMRS type 2
  • DMRS time domain length is double preamble
  • the preset DMRS port sequence is DMRS ports between different DMRS CDM groups in ascending order of DMRS CDM group number and DMRS port number in ascending order
  • the candidate DMRS ports configured by the network device for the terminal device are sorted as "0, 2, 4, 1, 3, 5, 6, 8, according to the preset DMRS port order, 10, 7, 9, 11"
  • the terminal device determines that the candidate DMRS port configured by the network device for the terminal device is available according to the preset DMRS port sequence, starting from the third DMRS port (DMRS port 4), and belongs to the DMRS port set.
  • the terminal device determines that DMRS port 4, DMRS port 1, DMRS port 3, and DMRS port 5 are available DMRS ports, and the DMRS port set is ⁇ DMRS port 4, DMRS port 1, DMRS port 3, DMRS port 5 ⁇ .
  • the indication information of the DMRS port set includes an index number, and the index number is used to indicate a DMRS port set among multiple preset DMRS port sets corresponding to the candidate DMRS port configured by the network device for the terminal device.
  • the DMRS port set index table is pre-defined for different DMRS types and/or DMRS time domain lengths in the network equipment and terminal equipment, or configured by the network equipment and broadcast or multicast.
  • the message is sent to a DMRS port collection index table configured for different DMRS types and/or DMRS time domain lengths respectively by the terminal device.
  • each entry corresponds to a preset DMRS port set, and each entry corresponds to an index number.
  • the DMRS port collection index table is as follows:
  • DMRS type 1 DMRS time domain length is a single prefix
  • DMRS type 1 DMRS time domain length is double preamble
  • DMRS type 2 DMRS time domain length is single preamble
  • DMRS type 2 DMRS time domain length is double preamble
  • the DMRS port set index table 1 is used to configure the network equipment for the terminal equipment DMRS type 1, when the DMRS time domain length is a candidate DMRS port with a single prefix symbol, it indicates the DMRS port Set;
  • DMRS port set index table 2 is used to configure DMRS type 1, DMRS time domain length is the candidate DMRS port with double pre-symbols for network equipment for terminal equipment, indicating the DMRS port set;
  • DMRS port set index table 3 is used to check When the network device configures the terminal device with DMRS type 2 and the DMRS time domain length is a candidate DMRS port with a single prefix, it indicates the DMRS port set;
  • the DMRS port set index table 4 is used to configure DMRS type 2, DMRS for the terminal device for the network device When the length of the time domain is a candidate DMRS port with a double preamble, it indicates the DMRS port set.
  • the candidate DMRS ports configured by the network equipment for terminal equipment are DMRS port 0 and DMRS port 1.
  • the terminal device determines that the candidate DMRS port configured by the network device for the terminal corresponds to the DMRS port set index table 1, and determines that DMRS port 0 and DMRS port 1 are available DMRS ports according to the index number "1" , DMRS port set is ⁇ DMRS port 0, DMRS port 1 ⁇ .
  • the indication information of the DMRS port set is the number of DMRS ports, or the identification of one or more DMRS CDM groups.
  • the indication information of the DMRS port set is the number of DMRS ports, and the DMRS port set is the DMRS port matching the number of DMRS ports among multiple preset DMRS port sets corresponding to candidate DMRS ports configured by the network device for the terminal device set.
  • a set of DMRS ports matching each possible number of DMRS ports is defined in advance for different DMRS types and/or DMRS time domain lengths in the network equipment and terminal equipment; or configured by the network equipment And send to the terminal device through broadcast or multicast messages.
  • each entry corresponds to a preset DMRS port set, and each entry corresponds to a DMRS port number.
  • the DMRS port number matching table is as follows:
  • DMRS type 1 DMRS time domain length is a single prefix
  • DMRS type 1 DMRS time domain length is double preamble
  • DMRS type 2 DMRS time domain length is single preamble
  • DMRS port 1 0 2 0, 1 3 0, 2, 4 4 1, 3, 5, 7 5 0, 2, 4, 6, 8 6 0, 2, 4, 7, 9, 11 7 0, 1, 2, 3, 4, 5, 6 8 1, 3, 5, 7, 9, 11, 10, 8 9 0,1,6,7,2,3,8,9,4 10 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 12 0,1,2,3,4,5,6,7,8,9,10,11
  • DMRS type 2 DMRS time domain length is double preamble
  • the DMRS port number matching table 1 is used to configure the network equipment for the terminal equipment DMRS type 1, when the DMRS time domain length is a candidate DMRS port with a single prefix, it indicates the DMRS port Set;
  • DMRS port number matching table 2 is used to configure DMRS type 1, DMRS time domain length for the terminal equipment for the terminal equipment, indicating the DMRS port set;
  • DMRS port number matching table 3 is used to match
  • the network device configures the terminal device with DMRS type 2 and the DMRS time domain length is a candidate DMRS port with a single prefix, it indicates the set of DMRS ports;
  • the number of DMRS ports matching table 4 is used to configure DMRS type 2 and DMRS for the terminal device for the network device When the length of the time domain is a candidate DMRS port with a double preamble, it indicates the DMRS port set.
  • the network equipment is configured with DMRS port 0, DMRS port 1, and DMRS port for the terminal equipment.
  • the DMRS port set is ⁇ DMRS port 0, DMRS port 1, DMRS port 4, DMRS port 5, DMRS port 2 ⁇ .
  • the indication information of the DMRS port set is the identity of one or more DMRS CDM groups, and the DMRS port set is the candidate DMRS port configured by the network device for the terminal device, which corresponds to the identity of the one or more DMRS CDM groups DMRS port set composed of multiple DMRS ports.
  • the ID of the DMRS CDM group may be the sequence number of the DMRS CDM group, for example, the ID of the DMRS CDM group 0 is "0".
  • the network device taking the DMRS configuration information as DMRS type 1, the DMRS time domain length as a single preamble, and the indication information of the DMRS port set as the identifier "0" of DMRS CDM group 0, the network device is configured for the terminal device
  • the candidate DMRS ports are DMRS port 0, DMRS port 1, DMRS port 2, and DMRS port 3.
  • the terminal device determines that the DMRS port 0 and DMRS port 1 corresponding to DMRS CDM group 0 are available according to the identifier "0" of DMRS CDM group 0 DMRS port, DMRS port set is ⁇ DMRS port 0, DMRS port 1 ⁇ .
  • the DMRS configuration information is DMRS type 1
  • the DMRS time domain length is double preamble
  • the indication information of the DMRS port set is still the identifier "0" of DMRS CDM group 0
  • the network device is configured for the terminal device
  • the candidate DMRS ports are DMRS port 0, DMRS port 1, DMRS port 2, DMRS port 3, DMRS port 4, DMRS port 5, DMRS port 6, and DMRS port 7.
  • the terminal equipment is determined according to the identification "0" of DMRS CDM group 0
  • DMRS port 0, DMRS port 1, DMRS port 4, and DMRS port 5 corresponding to DMRS CDM group 0 are available DMRS ports.
  • the set of DMRS ports is ⁇ DMRS port 0, DMRS port 1, DMRS port 4, DMRS port 5 ⁇ .
  • the configuration information sent by the network device may include indication information of multiple DMRS port sets, which is used to instruct the terminal device to determine different DMRS port sets.
  • Each DMRS port set in the multiple DMRS port sets corresponds to a PUSCH resource configuration.
  • the configuration information sent by the network device includes indication information for multiple DMRS port sets
  • the DMRS ports in different DMRS port sets The occupied frequency domain resources do not overlap, or there is no intersection between different DMRS port sets.
  • the DMRS configuration information is DMRS type 1
  • DMRS time domain length is a single prefix symbol
  • the DMRS port set indication information included in the configuration information A of DMRS port set A is the identifier "0" of DMRS CDM group 0,
  • the DMRS port set indication information included in the configuration information B of set B is the identifier "1" of DMRS CDM group 1 as an example.
  • the network device is configured with DMRS port 0, DMRS port 1, and DMRS port 2 for the terminal device.
  • DMRS port 3 the terminal device determines the DMRS port set A ⁇ DMRS port 0, DMRS port 1 ⁇ according to the identifier "0" of DMRS CDM group 0, and determines the DMRS according to the identifier "1" of DMRS CDM group 1
  • Port set B ⁇ DMRS port 2, DMRS port 3 ⁇ DMRS port set A ⁇ DMRS port 0, DMRS port 1 ⁇ and DMRS port set B ⁇ DMRS port 2, DMRS port 3 ⁇ do not include the same DMRS port, and the occupied frequency domain resources do not overlap.
  • the terminal device determines a random access preamble.
  • the configuration information sent by the network device may also include random access preamble configuration information.
  • the random access preamble configuration information includes random access preamble time domain resource configuration information, and/or frequency domain resource configuration information, and/or code domain Resource configuration information.
  • the time-domain resource configuration information and frequency-domain resource configuration information of the random access preamble can determine the periodic physical random access channel (PRACH) time-frequency resources.
  • PRACH physical random access channel
  • a PRACH cycle contains multiple PRACH time-frequency resources.
  • the code domain resource configuration information of the random access preamble one or more random access preambles can be determined on each PRACH time-frequency resource, such as each PRACH time-frequency resource 64 random access preambles can be determined from the above.
  • the terminal device performs the random access process, it will select a PRACH time-frequency resource from multiple PRACH time-frequency resources according to preset rules, and set it on the PRACH time-frequency resource. Select (determine) a random access preamble.
  • the terminal device determines one or more target DMRS ports in the DMRS port set according to the random access preamble.
  • the terminal device can randomly determine one or more target DMRS ports in the DMRS port set as a random access preamble. Access the target DMRS port corresponding to the preamble. If the configuration information includes the indication information of multiple DMRS port sets, after determining the random access preamble, the terminal device can randomly select a target DMRS port set from the multiple DMRS port sets, and randomly determine one or Multiple target DMRS ports are used as target DMRS ports corresponding to the random access preamble.
  • the terminal device may also use a preset mapping relationship (or mapping rule) between the random access preamble and the DMRS port And determining one or more target DMRS ports corresponding to the random access preamble in the DMRS port set.
  • a preset mapping relationship or mapping rule
  • the mapping relationship between the random access preamble and the DMRS port may be determined according to the mapping sequence of the random access preamble and the DMRS port.
  • the mapping sequence of the random access preamble and the DMRS port includes the mapping sequence of the random access preamble and
  • the mapping sequence of DMRS ports, the mapping sequence of random access preambles, and the mapping sequence of DMRS ports can be determined by the network device and sent to the terminal device through broadcast or multicast messages, or it can be pre-defined by the protocol. Among them, the mapping order of DMRS ports can be ascending by DMRS CDM group serial number, and then ascending DMRS port serial number.
  • the DMRS port set is ⁇ DMRS port 0, DMRS port 1, DMRS port 2, DMRS port 3, DMRS port 4.
  • DMRS port 5 ⁇ DMRS configuration information is DMRS type 2 as an example, DMRS port 0 and DMRS port 1 are DMRS CDM group 0, DMRS port 2 and DMRS port 3 are DMRS CDM group 1, DMRS port 4 and DMRS port 5
  • DMRS CDM group 0 determine the mapping sequence of DMRS ports in the DMRS port set as "0, 1, 2, 3, 4, 5".
  • the mapping sequence of the random access preamble may be in ascending order according to the random access preamble sequence number, then ascending order according to the PRACH frequency domain resource sequence number (number), and finally PRACH time domain resource sequence number (number) in ascending order.
  • the random access preamble associated with the DMRS port set is a random access preamble with sequence number "0, 1, 2" on PRACH time-frequency resource 0, and each random access preamble corresponds to a DMRS port, then the random access Incoming preamble 0 corresponds to DMRS port 0, and so on, if the random access preamble determined by the terminal device is random access preamble 2, then the determined target DMRS port is DMRS port 2; similarly, if each random access preamble corresponds to multiple DMRS port, if corresponding to two DMRS ports, random access preamble 0 corresponds to DMRS port 0 and DMRS port 1, and so on, random access preamble 1 corresponds to DMRS port 2 and DMRS port
  • the DMRS port mapping sequence also includes the sequence of the DMRS sequence, which can be in the ascending sequence of the DMRS port number first, and then in the ascending sequence of the DMRS sequence, or According to the ascending order of the DMRS sequence first, and then the ascending order of the DMRS port sequence number, this application scheme is not limited.
  • the configuration information sent by the network device may also include the configuration information of the DMRS CDM group whose data is not available after random access, which is used to indicate which resources (time domain resources and frequency domain resources) corresponding to the DMRS CDM group are not available for sending data.
  • the indication information of the DMRS CDM group whose data cannot be used is the name or identifier of the DMRS CDM group 1, and the terminal device determines that data cannot be mapped on the resources of the DMRS CDM group 1 (no data).
  • FIG. 8 is a schematic diagram of another DMRS port determination process provided by an embodiment of the application, and the process includes:
  • a terminal device receives configuration information sent by a network device, where the configuration information includes DMRS configuration information and indication information of DMRS port set.
  • the terminal device determines one or more target DMRS ports in the DMRS port set.
  • a terminal device When a terminal device uses a DMRS port, it may randomly determine one or more target DMRS ports in the DMRS port set, or may determine one or more target DMRS ports in the DMRS port set according to a preset determination rule. Exemplary: when sending uplink, the terminal device can randomly determine one or more target DMRS ports in the DMRS port set for sending uplink data. It can also be determined in the DMRS port set according to the preset mapping sequence of the synchronization signal block (SSB) and the DMRS port, and the SSB selected by the terminal device before sending uplink data (such as the SSB corresponding to the determined random access preamble) One or more target DMRS ports are used to send uplink data.
  • SSB synchronization signal block
  • an embodiment of the present application further provides a communication device 900 that may include a transceiver unit 901 and a processing unit 902.
  • the communication device may be used to execute the steps performed by the terminal device in the DMRS port determination method corresponding to FIG. 6.
  • the transceiving unit 901 is configured to receive configuration information sent by a network device.
  • the configuration information includes DMRS configuration information and indication information of a DMRS port set.
  • the DMRS configuration information is used to configure multiple DMRS ports.
  • the set indication information is used to indicate one or more available DMRS ports among the multiple DMRS ports;
  • the processing unit 902 is configured to determine a target DMRS port in the DMRS port set.
  • the processing unit 902 when determining a target DMRS port in the DMRS port set, is specifically configured to determine a random access preamble; according to the random access preamble, in the DMRS A target DMRS port is determined in the port set.
  • the indication information of the DMRS port set includes a bitmap, or parameter K, or parameter M and parameter N, or index number; wherein,
  • the bitmap is used to indicate the distribution of DMRS ports belonging to the DMRS port set among the multiple DMRS ports;
  • the parameter K is used to indicate that the first K DMRS ports of the multiple DMRS ports according to a preset DMRS port sequence belong to the DMRS port set;
  • the parameter M and the parameter N are used to indicate that the multiple DMRS ports follow a preset DMRS port sequence, and the M DMRS ports starting from the Nth DMRS port belong to the DMRS port set;
  • the index number is used to indicate a DMRS port set in a plurality of preset DMRS port sets corresponding to the plurality of DMRS ports.
  • the indication information of the DMRS port set is the number of DMRS ports, and the DMRS port set is the same as the number of DMRS ports among multiple preset DMRS port sets corresponding to the multiple DMRS ports.
  • the indication information of the DMRS port set is the identifier of one or more DMRS code division multiplexing CDM groups, and the DMRS port set is the one or more DMRS ports in the multiple DMRS ports.
  • the configuration information includes indication information of multiple DMRS port sets, the frequency domain resources occupied by DMRS ports in different DMRS port sets do not overlap.
  • the processing unit 902 determines a target DMRS port in the DMRS port set according to the random access preamble, it is specifically configured to determine a target DMRS port according to the preset random access preamble and the DMRS port. In the mapping sequence, a target DMRS port corresponding to the random access preamble is determined in the DMRS port set.
  • an embodiment of the present application also provides a terminal device, as shown in FIG. 10, the terminal device can be applied to the system shown in FIG. The function of the device.
  • FIG. 10 only shows the main components of the terminal device.
  • the terminal device 1000 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiments, such as , According to the reference signal instruction information, send uplink data, etc.
  • the memory is mainly used to store software programs and data, for example, to store the corresponding relationship between the instruction information and the combination information described in the foregoing embodiments.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and/or a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. , Execute the software program and process the data of the software program.
  • the processor in FIG. 10 can integrate the functions of the baseband processor and the central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as buses. In another embodiment, the processor in FIG. 10 may also be a baseband processor.
  • the terminal device may include multiple baseband processors to adapt to different network standards, and the terminal device may include multiple central The processor enhances its processing capability, and the various components of the terminal device can be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function can be regarded as the transceiving unit 1001 of the terminal device 1000, for example, to support the terminal device to perform the receiving function and the transmitting function.
  • the processor with processing function is regarded as the processing unit 1002 of the terminal device 1000.
  • the terminal device 1000 includes a transceiver unit 1001 and a processing unit 1002.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 1001 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1001 can be regarded as the sending unit, that is, the transceiver unit 1001 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processing unit 1002 may be used to execute the instructions stored in the memory to control the transceiver unit 1001 to receive signals and/or send signals, and complete the functions of the terminal device in the foregoing method embodiment.
  • the function of the transceiver unit 1001 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • an embodiment of the present application also provides a computer readable medium, the storage medium stores computer instructions, and when the computer instructions are executed by a terminal device, the terminal device.
  • the DMRS port determination method described in any of the foregoing method embodiments is implemented.
  • an embodiment of the present application also provides a computer program product, which when the computer instruction is executed by a terminal device, causes the terminal device to implement the method described in any of the above-mentioned method embodiments.
  • DMRS port determination method when the computer instruction is executed by a terminal device, causes the terminal device to implement the method described in any of the above-mentioned method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) etc.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures
  • Any connection can suitably become a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , Fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • Disk and disc include compact discs (CD), laser discs, optical discs, digital versatile discs (DVD), floppy discs and Blu-ray discs. Disks usually copy data magnetically, while discs The laser is used to optically copy data. The above combination should also be included in the protection scope of the computer-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种DMRS端口确定方法及通信装置,以解决在两步随机接入时,大量终端设备发送上行数据使用的DMRS端口发生碰撞,影响随机接入效果的问题。该方法包括:终端设备接收网络设备发送的配置信息,所述配置信息包括DMRS配置信息和DMRS端口集合的指示信息,所述DMRS配置信息用于配置多个DMRS端口,所述DMRS端口集合的指示信息用于指示所述多个DMRS端口中一个或多个可用的DMRS端口;所述终端设备在所述DMRS端口集合中确定一个目标DMRS端口。

Description

一种DMRS端口确定方法及通信装置
相关申请的交叉引用
本申请要求在2019年08月14日提交中国专利局、申请号为201910748987.8、申请名称为“一种DMRS端口确定方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种解调参考信号(demodulation reference signal,DMRS)端口确定方法及通信装置。
背景技术
终端设备的随机接入(random access,RA)过程,也可称随机接入信道(random access channel,RACH)过程。在长期演进(long term evolution,LTE)、新无线(new radio,NR)等系统中终端设备需要通过随机接入从无线资源控制(radio resource control,RRC)空闲态或非激活(inactive)态进入RRC连接态,才能与网络设备建立起各种承载,进而与网络设备进行通信。目前,终端设备的随机接入过程通常采用四步随机接入(4-step physical random access channel,4-step RACH)过程,四步随机接入过程包括终端设备向网络设备发送随机接入前导(preamble),网络设备向终端设备发送随机接入响应,终端设备向网络设备发送上行数据和网络设备向终端设备发送冲突解决信息。为了支持低时延场景下的随机接入,提出了两步随机接入(2-Step RACH)过程,在两步随机接入过程中,仅有终端设备向网络设备发送随机接入前导和上行数据,网络设备向终端设备发送随机接入响应两个步骤。
然而,在四步随机接入过程中,仅有已发送随机接入前导的终端设备收到的随机接入响应携带该已发送随机接入前导的信息,该终端设备才根据该随机接入响应中所指示的DMRS端口发送上行数据,在两步随机接入过程时,所有的终端设备通过同一配置向网络设备发送随机接入前导和上行数据,因此,各个终端设备可能会使用相同的DMRS端口在相同的资源上发送上行数据,会导致大量终端设备发送上行数据所使用的DMRS端口发生碰撞,影响随机接入的效果。
发明内容
本申请实施例提供一种DMRS端口确定方法及通信装置,用以解决在两步随机接入时,大量终端设备发送上行数据使用的DMRS端口发生碰撞,影响随机接入效果的问题。
应该理解,DMRS还可以是其他用于解调数据的参考信号,本申请实施例以DMRS为例进行说明;随机接入前导还可以是其他用于随机接入的序列,本申请实施例以随机接入前导为例进行说明。
第一方面,本申请实施例提供了一种DMRS端口确定方法,应用于终端设备,包括:接收网络设备发送的配置信息,所述配置信息包括DMRS配置信息和DMRS端口集合的 指示信息,所述DMRS配置信息用于配置多个DMRS端口,所述DMRS端口集合的指示信息用于指示所述多个DMRS端口中一个或多个可用的DMRS端口;在所述DMRS端口集合中确定一个目标DMRS端口。在本申请实施例中,在随机接入时,网络设备可以为终端设备配置随机接入过程中,物理上行共享信道(physical uplink shared channel,PUSCH)可用于随机接入前导对应的DMRS端口的集合,终端设备在网络设备配置的可用于随机接入前导对应的DMRS端口的集合中,选择一个目标DMRS端口,作为随机接入前导对应DMRS端口,避免了所有终端设备都采用协议规定的相同的DMRS端口,导致大量终端设备发送上行数据的DMRS端口发生碰撞,影响随机接入的效果的问题。
在一种可能的设计中,所述在所述DMRS端口集合中确定一个目标DMRS端口,包括:确定一个随机接入前导;根据所述随机接入前导,在所述DMRS端口集合中确定一个目标DMRS端口。上述设计中,终端设备根据确定的随机接入前导,在DMRS端口集合中选择与确定的随机接入前导对应的一个目标DMRS端口,有利于进一步避免大量终端设备发送上行数据的DMRS端口发生碰撞,影响随机接入的效果。
在一种可能的设计中,所述DMRS端口集合的指示信息包括位图、或参数K、或参数M和参数N、或索引号;其中,所述位图用于指示所述多个DMRS端口中属于所述DMRS端口集合的DMRS端口分布;所述参数K用于指示所述多个DMRS端口按照预设DMRS端口顺序的前K个DMRS端口属于所述DMRS端口集合;所述参数M和参数N用于指示所述多个DMRS端口按照预设DMRS端口顺序,从第N个DMRS端口开始的M个DMRS端口属于所述DMRS端口集合;所述索引号用于指示所述多个DMRS端口对应的多个预设DMRS端口集合中的一个DMRS端口集合。上述设计中,丰富了DMRS端口集合的指示信息的实现,便于根据通信系统和通信条件,选择包含相应信息的DMRS端口集合的指示信息,指示DMRS端口集合中可用的DMRS端口。
在一种可能的设计中,所述DMRS端口集合的指示信息用于指示所述多个DMRS端口按照预设DMRS端口顺序的前K个DMRS端口属于所述DMRS端口集合。
在一种可能的设计中,所述DMRS端口集合的指示信息为DMRS端口数量,所述DMRS端口集合为所述多个DMRS端口对应的多个预设DMRS端口集合中,与所述DMRS端口数量所匹配的DMRS端口集合。上述设计中,丰富了DMRS端口集合的指示信息的实现,便于根据通信系统和通信条件,选择包含相应信息的DMRS端口集合的指示信息,指示DMRS端口集合中可用的DMRS端口。
在一种可能的设计中,所述DMRS端口集合的指示信息为一个或多个DMRS码分复用CDM组的标识,所述DMRS端口集合为所述多个DMRS端口中,与所述一个或多个DMRS CDM组的标识所对应的多个DMRS端口所构成的DMRS端口集合。上述设计中,通过CDM组的标识指示端口集合,可以节约信令开销,此外,丰富了DMRS端口集合的指示信息的实现,便于根据通信系统和通信条件,选择包含相应信息的DMRS端口集合的指示信息,指示DMRS端口集合中可用的DMRS端口。
在一种可能的设计中,如果所述配置信息包括多个DMRS端口集合的指示信息,不同DMRS端口集合中的DMRS端口所占用的频域资源不重叠。上述设计中,有利于保证不同DMRS端口集合的DMRS端口之间的正交性,降低不同DMRS端口集合的DMRS端口之间的干扰。
在一种可能的设计中,所述根据所述随机接入前导,在所述DMRS端口集合中确定一 个目标DMRS端口,包括:根据预设的随机接入前导与DMRS端口的映射顺序,在所述DMRS端口集合中确定所述随机接入前导所对应的一个目标DMRS端口。上述设计中,有利于在选择与随机接入前导对应的目标DMRS端口时,根据对不同随机接入前导间对应的目标DMRS端口的正交性的需求,选择相应的目标DMRS端口,提高随机接入的稳定性。
第二方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面或者第一方面的任一种可能的设计中方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序,当程序被处理器执行时,所述装置可以执行上述第一方面或者第一方面的任一种可能的设计中所述的方法。
在一个可能的设计中,该装置可以为终端设备。
第三方面,本申请实施例提供一种计算机可读存储介质,所述存储介质存储有计算机指令,当所述计算机指令被通信装置执行时,使得所述通信装置执行上述第一方面或者第一方面的任一种可能的设计中所述的方法。
第四方面,本申请实施例供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得所述通信装置可以执行上述第一方面或者第一方面的任意一种可能的设计中的方法。
附图说明
图1为本申请实施例中一种通信架构示意图;
图2A为本申请实施例中一种DMRS导频类型1、单前置符号的DMRS资源示意图;
图2B为本申请实施例中一种DMRS导频类型1、双前置符号的DMRS资源示意图;
图3A为本申请实施例中一种DMRS导频类型2、单前置符号的DMRS资源示意图;
图3B为本申请实施例中一种DMRS导频类型2、双前置符号的DMRS资源示意图;
图4为本申请实施例中一种随机接入过程示意图之一;
图5为本申请实施例中一种随机接入过程示意图之二;
图6为本申请实施例中一种DMRS端口确定过程示意图之一;
图7为本申请实施例中一种多DMRS端口集合分布示意图;
图8为本申请实施例中一种DMRS端口确定过程示意图之二;
图9为本申请实施例中一种通信装置结构示意图;
图10为本申请实施例中一种终端设备结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:5G系统,新无线(new radio,NR)系统,LTE系统,长期演进高级(long term evolution-advanced,LTE-A)系统等通信系统中,也可以扩展到如无线保真(wireless fidelity,WiFi)、全球微波互联接入(worldwide interoperability for microwave access,wimax)、以及3GPP等相关的蜂窝系统中,及未来的 通信系统,如6G系统等。具体的,本申请实施例所应用的通信系统架构可以如图1所示,包括网络设备和多个终端设备,图1中以三个终端设备为例。终端设备1-终端设备3可以分别或者同时向网络设备发送数据,需要说明的是,本申请实施例中不限定图1中所示通信系统中终端设备以及网络设备的个数。
另外,需要理解,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例和权利要求书及附图中的术语“包括”和“具有”不是排他的。例如,包括了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,还可以包括没有列出的步骤或模块。本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。本申请中涉及的“多个”为两个或两个以上。
此外,本申请实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
在介绍本申请实施例之前,首先对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以与无线接入网(radio access network,RAN)进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫 描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
2)网络设备,可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。所述网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。目前,一些网络设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,所述网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
3)DMRS端口,是通过解调参考信号区分的逻辑天线端口。DMRS端口采用频分复用(frequency-division multiplexing,FDM)+码分复用(code division multiplexing,CDM)的方式进行复用,每个DMRS CDM组通过正交覆盖码(orthogonal cover code,OCC)复用分为多个DMRS端口。NR系统支持两种DMRS类型(DMRS类型1和DMRS类型2),DMRS有单前置(Front-loaded)符号和双前置符号之分,DMRS类型1、单前置符号最大支持4个DMRS端口;DMRS类型1、双前置符号最大支持8个DMRS端口;DMRS类型2、单前置符号最大支持6个DMRS端口;DMRS类型2、双前置符号最大支持12个DMRS端口;两种DMRS类型的复用和配置方式具体描述如下:
对于DMRS类型1的参考信号,DMRS端口被划分为两个DMRS CDM组,示例的,参见图2A所示,针对一个(单)前置符号的DMRS(对应编号为2的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、图中横轴),该OFDM符号的子载波(图中纵轴)被分为两组,即该OFDM符号的子载波被划分为两个DMRS CDM组,每个DMRS CDM组对应单OFDM符号通过OCC方式复用的2个DMRS端口,参见图2A所示,DMRS CDM组0对应天线端口0/1的DMRS资源粒子(REs),DMRS CDM组1对应天线端口2/3的DMRS REs,即DMRS CDM组0对应DMRS端口0和DMRS端口1,DMRS CDM 组1对应DMRS端口2和DMRS端口3;如图2B所示,针对两个(双)前置符号S(对应编号为2和3的OFDM符号)的DMR,该OFDM符号的子载波被分为两组,即该OFDM符号的子载波被划分为两个DMRS CDM组,每个DMRS CDM组对应双OFDM符号通过OCC方式复用的4个DMRS端口,参见如图2B所示,DMRS CDM组0对应天线端口0/1/4/5的DMRS REs,DMRS CDM组1对应天线端口2/3/6/7的DMRS REs,即DMRS CDM组0对应DMRS端口0、DMRS端口1、DMRS端口4和DMRS端口5,DMRS CDM组1对应DMRS端口2、DMRS端口3、DMRS端口6和DMRS端口7。
DMRS类型2,DMRS端口被划分为三个DMRS CDM组,示例的,参见图3A所示,针对一个(单)前置符号(对应编号为2的OFDM)的DMRS,该OFDM符号的子载波被分为三组,即该OFDM符号的子载波被划分为三个DMRS CDM组,每个DMRS CDM组对应单OFDM符号通过OCC方式复用的2个DMRS端口,参见图3A所示,DMRS CDM组0对应天线端口0/1的DMRS REs,DMRS CDM组1对应天线端口2/3的DMRS REs,DMRS CDM组2对应天线端口4/5的DMRS REs,即DMRS CDM组0对应DMRS端口0和DMRS端口1,DMRS CDM组1对应DMRS端口2和DMRS端口3,DMRS CDM组2对应DMRS端口4和DMRS端口5;参见图3B所示,针对两个(双)前置符号(对应编号为2和3的OFDM符号)的DMRS,该OFDM符号的子载波被分为三组,即该OFDM符号的子载波被划分为三个DMRS CDM组,每个DMRS CDM组对应双OFDM符号通过OCC方式复用的4个OFDM端口,参见图3B所示,DMRS CDM组0对应天线端口0/1/6/7的DMRS REs,DMRS CDM组1对应天线端口2/3/8/9的DMRS REs,DMRS CDM组2为对应天线端口4/5/10/11的DMRS REs,即DMRS CDM组0对应DMRS端口0、DMRS端口1、DMRS端口6和DMRS端口7,DMRS CDM组1对应DMRS端口2、DMRS端口3、DMRS端口8和DMRS端口9,DMRS CDM组2对应DMRS端口4、DMRS端口5、DMRS端口10和DMRS端口11。需要说明的是,上述DMRS端口的划分,仅用于帮助理解本申请的方案,不对本申请的方案做任何限定,即可以还有其它的划分方案。
另外,如果变换预编码(transform precoding)被使能,即使用离散傅里叶扩展正交频分复用(discrete Fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)波形时,仅可使用DMRS类型1,如果变换预编码(transform precoding)没被使能,即使用循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)波形时,可以使用DMRS类型1或DMRS类型2。
4)DMRS配置,其中CP-OFDM波形下DMRS的资源映射公式如下:
Figure PCTCN2020108979-appb-000001
Figure PCTCN2020108979-appb-000002
k′=0,1
Figure PCTCN2020108979-appb-000003
n=0,1,...
j=0,1,...,υ-1
DFT-s-OFDM波形下DMRS的资源映射公式如下:
Figure PCTCN2020108979-appb-000004
k=4n+2k′+Δ
k′=0,1
Figure PCTCN2020108979-appb-000005
n=0,1,...
其中,Configuration type 1表示DMRS类型1、Configuration type 2表示DMRS类型2、k为频域位置,l为时域位置,Δ为频域偏置,w f(k′)和w t(l′)分别表示频域和时域的正交覆盖码(orthogonal cover code,OCC),
Figure PCTCN2020108979-appb-000006
表示进行预编码以及物理资源映射操作之前的中间量,j表示PUSCH层索引,υ表示PUSCH总层数,r(2n+k′)表示DMRS序列,k′、l′取值参照下表Table 6.4.1.1.3-1和Table 6.4.1.1.3-2。
通过下表Table 6.4.1.1.3-1(对应DMRS类型1)和Table 6.4.1.1.3-2(对应DMRS类型2),可以确定DMRS类型1或DMRS类型2中每个DMRS端口的参数,进而根据上述DMRS的资源映射公式,确定出每个DMRS端口的资源。
Table 6.4.1.1.3-1:Parameters for PUSCH DM-RS configuration type 1(PUSCH的DMRS类型1的参数)
Figure PCTCN2020108979-appb-000007
Table 6.4.1.1.3-2:Parameters for PUSCH DM-RS configuration type 2(PUSCH的DMRS类型2的参数)
Figure PCTCN2020108979-appb-000008
Figure PCTCN2020108979-appb-000009
另外,现有NR系统中,无论是动态调度还是免授权传输,网络设备都会明确的指示用户PUSCH传输所使用的一个或者多个DMRS端口,具体的指示方法是通过RRC消息或者DCI指示天线端口指示信息、波形、DMRS类型、DMRS时域最大长度和通道(rank)数,以上除了天线端口指示信息外的每种配置都对应于3GPP协议TS 38.212中的一个DMRS端口指示的表格,如下表7.3.1.1.2-15所示的为CP-OFDM波形下,DMRS类型1,DMRS时域最大长度为2前置符号,rank数为4的DMRS端口指示表格,天线端口指示信息用于指示在确定的DMRS端口指示表格中具体的表项,例如天线端口指示信息为0时,指示用户在两个DMRS CDM组上都不能映射数据,实际的前置DMRS时域长度为1符号,实际随机接入后,PUSCH传输所使用的DMRS端口为0~3。表7.3.1.1.2-15如下所示:
Table 7.3.1.1.2-15:Antenna port(s),transform precoder is disabled,dmrs-Type=1,maxLength=2,rank=4(天线端口,禁用转换预编码(CP-OFDM波形),DMRS类型=1,DMRS时域最大长度=2,通道数=4)
Figure PCTCN2020108979-appb-000010
5)随机接入(RA)过程,随机接入过程分为四步随机接入过程和两步随机接入过程。参照图4所示,两步随机接入过程包括:步骤一:终端设备向网络设备发送随机接入前导;步骤二:网络设备接收到随机接入前导后,向终端设备发送随机接入响应(random access response,RAR),随机接入响应中可以包括随机接入前导、上行数据定时提前量、用于发送上行数据的上行资源的配置信息以及临时的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)等参数;步骤三:终端设备接收随机接入响应,如果该随机接入响应中的随机接入前导的序列编号所指示的随机接入前导与步骤一中终端设备向网 络设备发送的随机接入前导相同,则终端设备确定该随机接入响应是针对该终端设备的,终端设备根据随机接入响应的指示向网络设备发送上行数据,如在协议规定的PUSCH的DMRS端口上发送上行数据;步骤四:网络设备接收到终端设备发送的上行数据,向终端设备发送冲突解决消息,网络设备在冲突解决消息中将携带唯一标识指定接入成功的终端设备,而其它没有接入成功的终端设备将重新发起随机接入。
参照图5所示,两步随机接入过程包括:步骤一:终端设备向网络设备发送消息A(MsgA),MsgA中包含随机接入前导和上行数据;步骤二:网络设备接收到终端设备发送的MsgA后,向终端设备发送MsgB,MsgB可用于发送随机接入响应和冲突解决。
处于空闲态或inactive态的终端设备通过四步随机接入过程进入RRC连接态时,需要与网络设备进行通信至少需要完成四次信令交互。对于高可靠低时延通信(ultra-reliable and low latency communications,URLLC)业务,四次信令交互会产生较高的时延,不利于URLLC低时延的要求。对于大规模机器通信(massive machine type communications,mMTC)业务,由于大部分业务都是零星的小包,终端设备每一次都需要完整的进行一次四步随机接入过程进入RRC连接态才能发送一次数据,然后再次返回空闲态或inactive态,不仅时延较高,信令开销也比较严重。而两步随机接入过程需要的信令交互次数减少,降低了信令开销,也降低了时延,适用于有低时延要求的应用场景。
然而对于两步随机接入过程,终端设备如果仍如四步随机接入过程,所有终端设备通过同一配置向网络设备发送随机接入前导和上行数据,各个终端设备可能会使用相同的DMRS端口在相同的资源上发送上行数据,会导致大量终端设备发送上行数据所使用的DMRS端口发生碰撞,影响随机接入的效果,本申请旨在解决在两步随机接入时,大量终端设备发送上行数据所使用的DMRS端口发生碰撞,影响随机接入效果的问题。
下面结合附图详细说明本申请实施例。
【实施例一】
图6为本申请实施例提供的一种DMRS端口确定过程示意图,该过程包括:
S601:终端设备接收网络设备发送的配置信息,所述配置信息包括DMRS配置信息和DMRS端口集合的指示信息。
在本申请实施例中,网络设备发送的DMRS配置信息用于确定网络设备为终端设备配置的可能被选入DMRS端口集合的DMRS端口(多个),以及每个可能被选入DMRS端口集合的DMRS端口的资源,为了便于描述以下将“可能被选入DMRS端口集合的DMRS端口”称为“候选DMRS端口”。其中DMRS配置信息配置的候选DMRS端口指的是该DMRS配置信息下协议预定义的所有DMRS端口;DMRS端口集合的指示信息用于从网络设备为终端设备配置的候选DMRS端口中确定出一个或多个可用的DMRS端口(可用于与随机接入前导关联的DMRS端口)构成DMRS端口集合。
示例的,DMRS配置信息可以包括DMRS类型配置信息和DMRS时域长度配置信息,当然了还可以包括DMRS序列配置信息、DMRS额外位置配置信息、数据不可用的DMRS CDM组配置信息等信息中的一种或多种。具体的,DMRS类型配置信息用于指示DMRS类型,如DMRS类型1和DMRS类型2;DMRS时域长度配置信息用于指示DMRS时域长度,如单前置符号(前置符号为特定的OFDM符号,后续不再重复赘述)或双前置符号;DMRS序列配置信息用于指示DMRS序列生成所需要的信息;DMRS额外位置配置信息用于指示除前置符号外,额外占用的OFDM符号,如指示DMRS除了前置符号外还占用 编号为11的OFDM符号;数据不可用的DMRS CDM组配置信息用于指示哪些DMRS CDM组对应的RE上不能映射数据。
其中,DMRS端口集合的指示信息、DMRS类型配置信息、DMRS时域长度配置信息、DMRS序列配置信息、DMRS额外位置配置信息、数据不可用的DMRS CDM组配置信息等信息中的多个信息可以进行联合编码,既通过一个参数指示上述信息中的多个信息。
终端设备可以根据DMRS配置信息,如DMRS类型配置信息和DMRS时域长度配置信息等,确定网络设备为自身配置的每个候选DMRS端口及每个候选DMRS端口的资源(资源为时域资源和/或频域资源和/或码域资源)。参照图2A所示,DMRS配置信息为DMRS类型1、DMRS时域长度为单前置符号,则终端设备可以确定出网络设备为终端设备配置的候选DMRS端口为符合DMRS类型1、DMRS时域长度为单前置符号的DMRS端口0、DMRS端口1、DMRS端口2和DMRS端口3。
作为一种示例,网络设备可以通过广播或者组播消息,或者通过RRC消息、下行控制信息(downlink control information,DCI)消息等方式,将配置信息发送给终端设备。
终端设备根据网络设备发送的DMRS配置信息,确定网络设备为自身配置的候选DMRS端口后,即可根据DMRS端口集合的指示信息,从网络设备为自身配置的候选DMRS端口中确定出属于DMRS端口集合的一个或多个可用的DMRS端口。
在本申请实施例中,DMRS端口集合的指示信息可以包括位图、参数K、参数M和参数N、索引号中的一种,也可以为DMRS端口数量、或一个或多个DMRS CDM组的标识等,只要能从网络设备为终端设备配置的候选DMRS端口中指示出属于DMRS端口集合的一个或多个可用的DMRS端口即可,下面结合具体实现方式进行说明。
方式一:DMRS端口集合的指示信息包括位图、参数K、参数M和参数N、索引号中的一种。
(1)DMRS端口集合的指示信息包括位图(bitmap),所述位图用于指示网络设备为终端设备配置的候选DMRS端口中属于DMRS端口集合的DMRS端口分布。
在一种可能的实施中,位图的长度(位数)可以与网络设备为终端设备配置的候选DMRS端口数量相同,位图的第一位(bit)指示网络设备为终端设备配置的候选DMRS端口中序号为0的DMRS端口是否可用,依次类推位图的第二位指示网络设备为终端设备配置的候选DMRS端口中序号为1的DMRS端口是否可用……,具体可以通过1指示DMRS端口可用,通过0指示DMRS端口不可用。参照图2A所示,以DMRS配置信息为DMRS类型1、DMRS时域长度为单前置符号为例,即网络设备为终端设备配置的候选DMRS端口为DMRS端口0、DMRS端口1、DMRS端口2和DMRS端口3,DMRS端口集合的指示信息包括的位图为“1010”,则终端设备确定DMRS端口0、DMRS端口2是可用的DMRS端口,DMRS端口集合为{DMRS端口0,DMRS端口2}。
在另一种可能的实施中,位图的长度可以与网络设备为终端设备配置的最大候选DMRS端口数量相同,参照图3B所示,在DMRS类型2、DMRS时域长度为双前置符号时,网络设备为终端设备配置的候选DMRS端口的数量最大,DMRS端口的数量为12个,可以将位图的长度设置为12位,如果位图某一位未对应有网络设备为终端设备配置的候选DMRS端口,则将位图的该位设置为0,即如果位图的某一位为“0”,表示该位对应的候选DMRS端口不可用,或对应的候选DMRS端口为空。
(2)DMRS端口集合的指示信息包括参数K,所述参数K用于指示网络设备为终端 设备配置的候选DMRS端口按照预设DMRS端口顺序的前K个DMRS端口属于DMRS端口集合。
作为一种示例,预设DMRS端口顺序可以由网络设备确定并通过广播或组播消息等发送给终端设备,也可以由协议预先规定。其中,预设DMRS端口顺序可以为DMRS端口序号升序的顺序,以DMRS配置信息为DMRS类型2、DMRS时域长度为双前置符号为例,则DMRS端口顺序为“0,1,2,3,4,5,6,7,8,9,10,11”,其中DMRS端口顺序中每个数字代表端口序号为该数字的DMRS端口,如“0”代表“DMRS端口0”,下述也存在相似描述,不再进行额外说明;预设DMRS端口顺序也可以为先按DMRS CDM组序号升序、再按DMRS端口序号升序的顺序,以DMRS配置信息为DMRS类型1、DMRS时域长度为双前置符号为例,则DMRS端口顺序为“0,1,4,5,2,3,6,7”;当然了预设DMRS端口顺序还可以为不同DMRS CDM组间的DMRS端口按照DMRS CDM组序号升序以及DMRS端口序号升序交替映射,以DMRS配置信息为DMRS类型2、DMRS时域长度为双前置符号为例,则DMRS端口顺序为“0,2,4,1,3,5,6,8,10,7,9,11”。
参照图2B所示,以DMRS配置信息为DMRS类型1、DMRS时域长度为双前置符号,预设DMRS端口顺序为先按DMRS CDM组序号升序、再按DMRS端口序号升序的顺序,K=4为例,网络设备为终端设备配置的候选DMRS端口按照预设DMRS端口顺序的排序为“0,1,4,5,2,3,6,7”,终端设备确定网络设备为终端设备配置的候选DMRS端口按照预设DMRS端口顺序的前4个DMRS端口可用,属于DMRS端口集合。即终端设备确定DMRS端口0、DMRS端口1、DMRS端口4、DMRS端口5是可用的DMRS端口,DMRS端口集合为{DMRS端口0、DMRS端口1、DMRS端口4、DMRS端口5}。
(3)DMRS端口集合的指示信息包括参数M和参数N,所述参数M和参数N用于指示网络设备为终端设备配置的候选DMRS端口按照预设DMRS端口顺序,从第N个DMRS端口开始的M个DMRS端口属于DMRS端口集合。
参照图3B所示,以DMRS配置信息为DMRS类型2、DMRS时域长度为双前置符号,预设DMRS端口顺序为不同DMRS CDM组间的DMRS端口按照DMRS CDM组序号升序以及DMRS端口序号升序交替映射,M=4、N=3为例,则网络设备为终端设备配置的候选DMRS端口按照预设DMRS端口顺序的排序为“0,2,4,1,3,5,6,8,10,7,9,11”,终端设备确定网络设备为终端设备配置的候选DMRS端口按照预设DMRS端口顺序从第3个DMRS端口(DMRS端口4)开始的4个DMRS端口可用,属于DMRS端口集合。即终端设备确定DMRS端口4、DMRS端口1、DMRS端口3、DMRS端口5是可用的DMRS端口,DMRS端口集合为{DMRS端口4、DMRS端口1、DMRS端口3、DMRS端口5}。
(4)DMRS端口集合的指示信息包括索引号,所述索引号用于指示网络设备为终端设备配置的候选DMRS端口对应的多个预设DMRS端口集合中的一个DMRS端口集合。
在一种可能的实施中,在网络设备和终端设备中预先针对不同的DMRS类型和/或DMRS时域长度分别预先定义了DMRS端口集合索引表,或由网络设备配置并通过广播或组播等消息发送给终端设备针对不同的DMRS类型和/或DMRS时域长度分别配置的DMRS端口集合索引表。在不同的DMRS类型和/或DMRS时域长度对应的DMRS端口集合索引表中每一个表项对应一个预设DMRS端口集合,每一个表项与一个索引号对应。示例的,DMRS端口集合索引表如下所示:
索引号(Index) DMRS端口(DMRS
0 0,1
1 2,3
2 0,2
DMRS端口集合索引表1
(DMRS类型1、DMRS时域长度为单前置符号)
Index DMRS ports
0 0,1,4,5
1 2,3,6,7
2 0,2
DMRS端口集合索引表2
(DMRS类型1、DMRS时域长度为双前置符号)
Index DMRS ports
0 0,1
1 2,3
2 4,5
3 0,2,4
DMRS端口集合索引表3
(DMRS类型2、DMRS时域长度为单前置符号)
Index DMRS ports
0 0,1,6,7
1 2,3,8,9
2 4,5,10,11
3 0,2,4
DMRS端口集合索引表4
(DMRS类型2、DMRS时域长度为双前置符号)
参照DMRS端口集合索引表1-4所示,其中DMRS端口集合索引表1用于对网络设备为终端设备配置DMRS类型1、DMRS时域长度为单前置符号的候选DMRS端口时,指示DMRS端口集合;DMRS端口集合索引表2用于对网络设备为终端设备配置DMRS类型1、DMRS时域长度为双前置符号的候选DMRS端口时,指示DMRS端口集合;DMRS端口集合索引表3用于对网络设备为终端设备配置DMRS类型2、DMRS时域长度为单前 置符号的候选DMRS端口时,指示DMRS端口集合;DMRS端口集合索引表4用于对网络设备为终端设备配置DMRS类型2、DMRS时域长度为双前置符号的候选DMRS端口时,指示DMRS端口集合。
参照图2A所示,以DMRS配置信息为DMRS类型1、DMRS时域长度为双前置符号,索引号为1为例,网络设备为终端设备配置的候选DMRS端口为DMRS端口0、DMRS端口1、DMRS端口2和DMRS端口3,终端设备确定网络设备为终端配置的候选DMRS端口对应DMRS端口集合索引表1,并根据索引号“1”,确定DMRS端口0和DMRS端口1是可用的DMRS端口,DMRS端口集合为{DMRS端口0,DMRS端口1}。
方式二:DMRS端口集合的指示信息为DMRS端口数量,或为一个或多个DMRS CDM组的标识。
(1)DMRS端口集合的指示信息为DMRS端口数量,DMRS端口集合为网络设备为终端设备配置的候选DMRS端口对应的多个预设DMRS端口集合中,与所述DMRS端口数量所匹配的DMRS端口集合。
在一种可能的实施中,在网络设备和终端设备中预先针对不同的DMRS类型和/或DMRS时域长度分别定义了与每种可能的DMRS端口数量匹配的DMRS端口集合;或者由网络设备配置并通过广播或组播等消息发送给终端设备有针对不同的DMRS类型和/或DMRS时域长度分别配置的与每种可能的DMRS端口数量匹配的DMRS端口集合;在本申请实施例中,以DMRS端口数量匹配表的形式为例,来示例在不同的DMRS类型和/或DMRS时域长度下,与每种可能的DMRS端口数量匹配的DMRS端口集合。其中,在不同的DMRS类型和/或DMRS时域长度对应的DMRS端口数量匹配表中,每一个表项对应一个预设DMRS端口集合,每一个表项与一个DMRS端口数量对应。示例的,DMRS端口数量匹配表如下所示:
DMRS端口数量 DMRS端口
1 0
2 0,1
3 0,1,2
4 0,1,2,3
DMRS端口数量匹配表1
(DMRS类型1、DMRS时域长度为单前置符号)
DMRS端口数量 DMRS端口
1 0
2 0,1
3 0,1,4
4 0,1,4,5
5 0,1,4,5,2
6 0,1,4,5,2,3
7 0,1,4,5,2,3,6
8 0,1,4,5,2,3,6,7
DMRS端口数量匹配表2
(DMRS类型1、DMRS时域长度为双前置符号)
DMRS端口数量 DMRS端口
1 0
2 0,1
3 0,1,2
4 0,1,2,3
5 0,1,2,3,4
6 0,1,2,3,4,5
DMRS端口数量匹配表3
(DMRS类型2、DMRS时域长度为单前置符号)
DMRS端口数量 DMRS端口
1 0
2 0,1
3 0,2,4
4 1,3,5,7
5 0,2,4,6,8
6 0,2,4,7,9,11
7 0,1,2,3,4,5,6
8 1,3,5,7,9,11,10,8
9 0,1,6,7,2,3,8,9,4
10 2,3,4,5,6,7,8,9,10,11
11 1,2,3,4,5,6,7,8,9,10,11
12 0,1,2,3,4,5,6,7,8,9,10,11
DMRS端口数量匹配表4
(DMRS类型2、DMRS时域长度为双前置符号)
参照DMRS端口数量匹配表1-4所示,其中DMRS端口数量匹配表1用于对网络设备为终端设备配置DMRS类型1、DMRS时域长度为单前置符号的候选DMRS端口时,指示DMRS端口集合;DMRS端口数量匹配表2用于对网络设备为终端设备配置DMRS类型1、DMRS时域长度为双前置符号的候选DMRS端口时,指示DMRS端口集合;DMRS端口数量匹配表3用于对网络设备为终端设备配置DMRS类型2、DMRS时域长度为单前置符号的候选DMRS端口时,指示DMRS端口集合;DMRS端口数量匹配表4用于对网络设备为终端设备配置DMRS类型2、DMRS时域长度为双前置符号的候选DMRS端口时,指示DMRS端口集合。
参照图2B所示,以DMRS配置信息为DMRS类型1、DMRS时域长度为双前置符号,DMRS端口数量为5为例,网络设备为终端设备配置了DMRS端口0、DMRS端口1、DMRS 端口2、DMRS端口3、DMRS端口4、DMRS端口5、DMRS端口6、DMRS端口7,终端设备确定网络设备为终端配置的候选DMRS端口对应DMRS端口数量匹配表2,并根据DMRS端口数量“5”,终端设备确定DMRS端口0、DMRS端口1、DMRS端口4、DMRS端口5和DMRS端口2是可用的DMRS端口,DMRS端口集合为{DMRS端口0,DMRS端口1,DMRS端口4,DMRS端口5,DMRS端口2}。
(2)DMRS端口集合的指示信息为一个或多个DMRS CDM组的标识,DMRS端口集合为网络设备为终端设备配置的候选DMRS端口中,与所述一个或多个DMRS CDM组的标识所对应的多个DMRS端口所构成的DMRS端口集合。
在一种可能的实施中,DMRS CDM组的标识可以为DMRS CDM组的序号,如DMRS CDM组0的标识为“0”。参照图2A所示,以DMRS配置信息为DMRS类型1、DMRS时域长度为单前置符号,DMRS端口集合的指示信息为DMRS CDM组0的标识“0”为例,网络设备为终端设备配置的候选DMRS端口为DMRS端口0、DMRS端口1、DMRS端口2和DMRS端口3,终端设备根据DMRS CDM组0的标识“0”,确定DMRS CDM组0对应的DMRS端口0和DMRS端口1是可用的DMRS端口,DMRS端口集合为{DMRS端口0,DMRS端口1}。
参照图2B所示,如果DMRS配置信息为DMRS类型1、DMRS时域长度为双前置符号,DMRS端口集合的指示信息仍为DMRS CDM组0的标识“0”,网络设备为终端设备配置的候选DMRS端口为DMRS端口0、DMRS端口1、DMRS端口2、DMRS端口3、DMRS端口4、DMRS端口5、DMRS端口6、DMRS端口7,终端设备根据DMRS CDM组0的标识“0”,确定DMRS CDM组0对应的DMRS端口0、DMRS端口1、DMRS端口4和DMRS端口5是可用的DMRS端口,DMRS端口集合为{DMRS端口0,DMRS端口1,DMRS端口4,DMRS端口5}。
另外,在一种可能的实施中,网络设备发送的配置信息可以包括多个DMRS端口集合的指示信息,用于指示终端设备确定不同的DMRS端口集合。所述多个DMRS端口集合中的每一个DMRS端口集合都对应一个PUSCH资源配置。
可选的,为了降低DMRS端口之间的干扰,保证DMRS端口之间的正交性,在网络设备发送的配置信息包括多个DMRS端口集合的指示信息时,不同DMRS端口集合中的DMRS端口所占用的频域资源不重叠,或者,不同DMRS端口集合不存在交集。
示例的,以DMRS配置信息为DMRS类型1、DMRS时域长度为单前置符号,DMRS端口集合A的配置信息A包括的DMRS端口集合指示信息为DMRS CDM组0的标识“0”,DMRS端口集合B的配置信息B包括的DMRS端口集合指示信息为DMRS CDM组1的标识“1”为例,参照图7所示,网络设备为终端设备配置了DMRS端口0、DMRS端口1、DMRS端口2、DMRS端口3、DMRS端口4,终端设备根据DMRS CDM组0的标识“0”,确定DMRS端口集合A{DMRS端口0,DMRS端口1},根据DMRS CDM组1的标识“1”,确定DMRS端口集合B{DMRS端口2,DMRS端口3}。DMRS端口集合A{DMRS端口0,DMRS端口1}和DMRS端口集合B{DMRS端口2,DMRS端口3}间不包含相同的DMRS端口,占用的频域资源不重叠。
S602:所述终端设备确定一个随机接入前导。
网络设备发送的配置信息还可以包括随机接入前导的配置信息,随机接入前导的配置信息包含随机接入前导的时域资源配置信息,和/或频域资源配置信息,和/或码域资源配 置信息,以NR系统为例,随机接入前导的时域资源配置信息和频域资源配置信息可以确定出周期性的物理随机接入信道(physical random access channel,PRACH)时频资源,每个PRACH周期内包含多个PRACH时频资源,根据随机接入前导的码域资源配置信息,每个PRACH时频资源上可以确定出一个或多个随机接入前导,如每个PRACH时频资源上可以确定出64个随机接入前导,终端设备在执行随机接入过程时,会根据预设的规则从多个PRACH时频资源中选择一个PRACH时频资源,并在该PRACH时频资源上选择(确定)一个随机接入前导。
S603:所述终端设备根据所述随机接入前导,在所述DMRS端口集合中确定一个或多个目标DMRS端口。
在一种可能的实施中,如果配置信息仅包括一个DMRS端口集合的指示信息,终端设备在确定随机接入前导后,可以在DMRS端口集合中随机确定一个或多个目标DMRS端口,作为与随机接入前导对应的目标DMRS端口。如果配置信息包括多个DMRS端口集合的指示信息,终端设备在确定随机接入前导后,可以在多个DMRS端口集合中随机选择一个目标DMRS端口集合,并在目标DMRS端口集合中随机确定一个或多个目标DMRS端口,作为与随机接入前导对应的目标DMRS端口。
在另一种可能的实施中,在DMRS端口集合中确定与随机接入前导对应的目标DMRS端口时,终端设备还可以根据预设的随机接入前导与DMRS端口的映射关系(或映射规则),在所述DMRS端口集合中确定所述随机接入前导所对应的一个或多个目标DMRS端口。
作为一种示例,随机接入前导与DMRS端口的映射关系可以是根据随机接入前导与DMRS端口的映射顺序确定的,随机接入前导与DMRS端口的映射顺序包括随机接入前导的映射顺序和DMRS端口的映射顺序,随机接入前导的映射顺序和DMRS端口的映射顺序可以由网络设备确定并通过广播或组播消息等发送给终端设备,也可以由协议预先规定。其中,DMRS端口的映射顺序可以为先按DMRS CDM组序号升序、再按DMRS端口序号升序的顺序,以DMRS端口集合为{DMRS端口0,DMRS端口1,DMRS端口2,DMRS端口3,DMRS端口4,DMRS端口5},DMRS配置信息为DMRS类型2为例,DMRS端口0和DMRS端口1为DMRS CDM组0,DMRS端口2和DMRS端口3为DMRS CDM组1,DMRS端口4和DMRS端口5为DMRS CDM组0,确定DMRS端口集合中的DMRS端口的映射顺序为“0,1,2,3,4,5”。随机接入前导的映射顺序可以为先按随机接入前导序号升序,再按PRACH频域资源序号(编号)升序,最后PRACH时域资源序号(编号)升序的顺序。例如,与该DMRS端口集合关联的随机接入前导为PRACH时频资源0上序号为“0,1,2”的随机接入前导,且每个随机接入前导对应一个DMRS端口,则随机接入前导0对应DMRS端口0,依次类推,如果终端设备确定的随机接入前导为随机接入前导2,则确定的目标DMRS端口为DMRS端口2;同理如果每个随机接入前导对应多个DMRS端口,如对应两个DMRS端口,则随机接入前导0对应DMRS端口0和DMRS端口1,依次类推,随机接入前导1对应DMRS端口2和DMRS端口3,随机接入前导2对应DMRS端口4和DMRS端口5。
在另一种可能的实施中,DMRS配置信息配置了多个DMRS序列,则DMRS端口的映射顺序还包括DMRS序列的顺序,可以是先按DMRS端口序号升序,再按DMRS序列升序,也可以是先按DMRS序列升序,再按DMRS端口序号升序,本申请方案不做限定。
此外,网络设备发送的配置信息还可以包括随机接入后,数据不可用的DMRS CDM 组的配置信息,用于指示哪些DMRS CDM组对应的资源(时域资源和频域资源)不可用于发送数据。例如:数据不能使用的DMRS CDM组的指示信息为DMRS CDM组1的名称或标识,终端设备确定在DMRS CDM组1的资源上不能映射数据(无数据)。
图8为本申请实施例提供的另一种DMRS端口确定过程示意图,该过程包括:
S801:终端设备接收网络设备发送的配置信息,所述配置信息包括DMRS配置信息和DMRS端口集合的指示信息。
在本申请实施例中,关于DMRS配置信息和DMRS端口集合的指示信息可以参照上述图6所示DMRS端口确定过程中的描述,重复之处不再进行赘述。
S802:所述终端设备在所述DMRS端口集合中确定一个或多个目标DMRS端口。
终端设备在使用DMRS端口时,可以随机在DMRS端口集合中确定一个或多个目标DMRS端口,也可以根据预设的确定规则,在DMRS端口集合中确定一个或多个目标DMRS端口。示例的:在发送上行时,终端设备可以随机在DMRS端口集合中确定一个或个目标DMRS端口用于发送上行数据。也可以根据预设的同步信号块(SSB)与DMRS端口的映射顺序,及终端设备在发送上行数据前选择的SSB(如与确定的随机接入前导对应的SSB),在DMRS端口集合中确定一个或多个目标DMRS端口用于发送上行数据。
【实施例二】
基于与上述DMRS端口确定方法相同的构思,如图9所示,本申请实施例还提供了一种通信装置900,该通信装置900可包括收发单元901和处理单元902。
在一种可能的实施中,通信装置可用于执行图6对应的DMRS端口确定方法中终端设备执行的步骤。
具体的,收发单元901,用于接收网络设备发送的配置信息,所述配置信息包括DMRS配置信息和DMRS端口集合的指示信息,所述DMRS配置信息用于配置多个DMRS端口,所述DMRS端口集合的指示信息用于指示所述多个DMRS端口中一个或多个可用的DMRS端口;
处理单元902,用于在所述DMRS端口集合中确定一个目标DMRS端口。
在一种可能的设计中,所述处理单元902,在所述DMRS端口集合中确定一个目标DMRS端口时,具体用于确定一个随机接入前导;根据所述随机接入前导,在所述DMRS端口集合中确定一个目标DMRS端口。
在一种可能的设计中,所述DMRS端口集合的指示信息包括位图、或参数K、或参数M和参数N、或索引号;其中,
所述位图用于指示所述多个DMRS端口中属于所述DMRS端口集合的DMRS端口分布;
所述参数K用于指示所述多个DMRS端口按照预设DMRS端口顺序的前K个DMRS端口属于所述DMRS端口集合;
所述参数M和参数N用于指示所述多个DMRS端口按照预设DMRS端口顺序,从第N个DMRS端口开始的M个DMRS端口属于所述DMRS端口集合;
所述索引号用于指示所述多个DMRS端口对应的多个预设DMRS端口集合中的一个DMRS端口集合。
在一种可能的设计中,所述DMRS端口集合的指示信息为DMRS端口数量,所述DMRS端口集合为所述多个DMRS端口对应的多个预设DMRS端口集合中,与所述DMRS 端口数量所匹配的DMRS端口集合。
在一种可能的设计中,所述DMRS端口集合的指示信息为一个或多个DMRS码分复用CDM组的标识,所述DMRS端口集合为所述多个DMRS端口中,与所述一个或多个DMRS CDM组的标识所对应的多个DMRS端口所构成的DMRS端口集合。
在一种可能的设计中,如果所述配置信息包括多个DMRS端口集合的指示信息,不同DMRS端口集合中的DMRS端口所占用的频域资源不重叠。
在一种可能的设计中,所述处理单元902根据所述随机接入前导,在所述DMRS端口集合中确定一个目标DMRS端口时,具体用于根据预设的随机接入前导与DMRS端口的映射顺序,在所述DMRS端口集合中确定所述随机接入前导所对应的一个目标DMRS端口。
基于与上述DMRS端口确定方法相同的构思,本申请实施例还提供一种终端设备,如图10所示,该终端设备可适用于图1所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图10仅示出了终端设备的主要部件。如图10所示,终端设备1000包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作,如,根据参考信号指示信息,发送上行数据等。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述指示信息与组合信息的对应关系等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图10中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。在另一实施例中,图10中的处理器也可以是基带处理器,本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程 序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备1000的收发单元1001,例如,用于支持终端设备执行接收功能和发送功能。将具有处理功能的处理器视为终端设备1000的处理单元1002。如图10所示,终端设备1000包括收发单元1001和处理单元1002。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1001中用于实现接收功能的器件视为接收单元,将收发单元1001中用于实现发送功能的器件视为发送单元,即收发单元1001包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理单元1002可用于执行该存储器存储的指令,以控制收发单元1001接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元1001的功能可以考虑通过收发电路或者收发的专用芯片实现。
基于与上述DMRS端口确定方法相同的构思,本申请实施例还提供了一种计算机可读介质,所述存储介质存储有计算机指令,当所述计算机指令被终端设备执行时,使得所述终端设备实现上述任一方法实施例所述的DMRS端口确定方法。
基于与上述DMRS端口确定方法相同的构思,本申请实施例还提供了一种计算机程序产品,当所述计算机指令被终端设备执行时,使得所述终端设备实现上述任一方法实施例所述的DMRS端口确定方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分, 仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种解调参考信号DMRS端口确定方法,其特征在于,包括:
    接收网络设备发送的配置信息,所述配置信息包括DMRS配置信息和DMRS端口集合的指示信息,所述DMRS配置信息用于配置多个DMRS端口,所述DMRS端口集合的指示信息用于指示所述多个DMRS端口中一个或多个可用的DMRS端口;
    在所述DMRS端口集合中确定一个目标DMRS端口。
  2. 如权利要求1所述的方法,其特征在于,所述在所述DMRS端口集合中确定一个目标DMRS端口,包括:
    确定一个随机接入前导;
    根据所述随机接入前导,在所述DMRS端口集合中确定一个目标DMRS端口。
  3. 如权利要求1所述的方法,其特征在于,所述DMRS端口集合的指示信息包括位图、或参数M和参数N、或索引号;其中,
    所述位图用于指示所述多个DMRS端口中属于所述DMRS端口集合的DMRS端口分布;
    所述参数M和参数N用于指示所述多个DMRS端口按照预设DMRS端口顺序,从第N个DMRS端口开始的M个DMRS端口属于所述DMRS端口集合;
    所述索引号用于指示所述多个DMRS端口对应的多个预设DMRS端口集合中的一个DMRS端口集合。
  4. 如权利要求1所述的方法,其特征在于,所述DMRS端口集合的指示信息用于指示所述多个DMRS端口按照预设DMRS端口顺序的前K个DMRS端口属于所述DMRS端口集合。
  5. 如权利要求4所述的方法,其特征在于,所述DMRS端口集合的指示信息包括参数K,所述参数K用于指示所述多个DMRS端口按照预设DMRS端口顺序的前K个DMRS端口属于所述DMRS端口集合。
  6. 如权利要求1所述的方法,其特征在于,所述DMRS端口集合的指示信息为DMRS端口数量,所述DMRS端口集合为所述多个DMRS端口对应的多个预设DMRS端口集合中,与所述DMRS端口数量所匹配的DMRS端口集合。
  7. 如权利要求1所述的方法,其特征在于,所述DMRS端口集合的指示信息为一个或多个DMRS码分复用CDM组的标识,所述DMRS端口集合为所述多个DMRS端口中,与所述一个或多个DMRS CDM组的标识所对应的多个DMRS端口所构成的DMRS端口集合。
  8. 如权利要求1-7任一项所述的方法,其特征在于,如果所述配置信息包括多个DMRS端口集合的指示信息,不同DMRS端口集合中的DMRS端口所占用的频域资源不重叠。
  9. 如权利要求2-8任一项所述的方法,其特征在于,所述根据所述随机接入前导,在所述DMRS端口集合中确定一个目标DMRS端口,包括:
    根据预设的随机接入前导与DMRS端口的映射顺序,在所述DMRS端口集合中确定所述随机接入前导所对应的一个目标DMRS端口。
  10. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于接收网络设备发送的配置信息,所述配置信息包括DMRS配置信息和 DMRS端口集合的指示信息,所述DMRS配置信息用于配置多个DMRS端口,所述DMRS端口集合的指示信息用于指示所述多个DMRS端口中一个或多个可用的DMRS端口;
    处理单元,用于在所述DMRS端口集合中确定一个目标DMRS端口。
  11. 如权利要求10所述的通信装置,其特征在于,所述处理单元,在所述DMRS端口集合中确定一个目标DMRS端口时,具体用于确定一个随机接入前导;根据所述随机接入前导,在所述DMRS端口集合中确定一个目标DMRS端口。
  12. 如权利要求10所述的通信装置,其特征在于,所述DMRS端口集合的指示信息包括位图、或参数M和参数N、或索引号;其中,
    所述位图用于指示所述多个DMRS端口中属于所述DMRS端口集合的DMRS端口分布;
    所述参数M和参数N用于指示所述多个DMRS端口按照预设DMRS端口顺序,从第N个DMRS端口开始的M个DMRS端口属于所述DMRS端口集合;
    所述索引号用于指示所述多个DMRS端口对应的多个预设DMRS端口集合中的一个DMRS端口集合。
  13. 如权利要求10所述的通信装置,其特征在于,所述DMRS端口集合的指示信息用于指示所述多个DMRS端口按照预设DMRS端口顺序的前K个DMRS端口属于所述DMRS端口集合。
  14. 如权利要求13所述的通信装置,其特征在于,所述DMRS端口集合的指示信息包括参数K,所述参数K用于指示所述多个DMRS端口按照预设DMRS端口顺序的前K个DMRS端口属于所述DMRS端口集合。
  15. 如权利要求10所述的通信装置,其特征在于,所述DMRS端口集合的指示信息为DMRS端口数量,所述DMRS端口集合为所述多个DMRS端口对应的多个预设DMRS端口集合中,与所述DMRS端口数量所匹配的DMRS端口集合。
  16. 如权利要求10所述的通信装置,其特征在于,所述DMRS端口集合的指示信息为一个或多个DMRS码分复用CDM组的标识,所述DMRS端口集合为所述多个DMRS端口中,与所述一个或多个DMRS CDM组的标识所对应的多个DMRS端口所构成的DMRS端口集合。
  17. 如权利要求10-16任一项所述的通信装置,其特征在于,如果所述配置信息包括多个DMRS端口集合的指示信息,不同DMRS端口集合中的DMRS端口所占用的频域资源不重叠。
  18. 如权利要求11-17任一项所述的通信装置,其特征在于,所述处理单元根据所述随机接入前导,在所述DMRS端口集合中确定一个目标DMRS端口时,具体用于根据预设的随机接入前导与DMRS端口的映射顺序,在所述DMRS端口集合中确定所述随机接入前导所对应的一个目标DMRS端口。
  19. 一种通信装置,其特征在于,包括存储器和处理器;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1-9任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机指令,当所述计算机指令被通信装置执行时,使得所述通信装置执行如权利要求1-9任一项所述的方 法。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,当所述计算机指令被通信装置执行时,使得所述通信装置执行如权利要求1-9任一项所述的方法。
PCT/CN2020/108979 2019-08-14 2020-08-13 一种dmrs端口确定方法及通信装置 WO2021027893A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20851423.2A EP4013175A4 (en) 2019-08-14 2020-08-13 DMRS PORT DETERMINATION METHOD AND COMMUNICATION APPARATUS
JP2022508965A JP7379663B2 (ja) 2019-08-14 2020-08-13 Dmrsポート決定方法および通信装置
US17/671,313 US11843454B2 (en) 2019-08-14 2022-02-14 DMRS port determining method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910748987.8A CN112399627B (zh) 2019-08-14 2019-08-14 一种dmrs端口确定方法及通信装置
CN201910748987.8 2019-08-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/671,313 Continuation US11843454B2 (en) 2019-08-14 2022-02-14 DMRS port determining method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2021027893A1 true WO2021027893A1 (zh) 2021-02-18

Family

ID=74570552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108979 WO2021027893A1 (zh) 2019-08-14 2020-08-13 一种dmrs端口确定方法及通信装置

Country Status (5)

Country Link
US (1) US11843454B2 (zh)
EP (1) EP4013175A4 (zh)
JP (1) JP7379663B2 (zh)
CN (1) CN112399627B (zh)
WO (1) WO2021027893A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130361A1 (en) * 2022-01-07 2023-07-13 Lenovo (Beijing) Limited Methods and apparatus of resource mapping for dmrs ports
WO2023197147A1 (en) * 2022-04-12 2023-10-19 Apple Inc. Dmrs port configuration for cp-ofdm
WO2023206197A1 (en) * 2022-04-28 2023-11-02 Apple Inc. Dmrs design with cdm group expansion
WO2024016220A1 (en) * 2022-07-20 2024-01-25 Lenovo (Beijing) Limited Methods and apparatuses to facilitate larger number of dmrs ports

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944847A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 导频符号承载及处理方法、装置
CN108347324A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 通信方法和网络设备
CN108882314A (zh) * 2017-05-12 2018-11-23 北京三星通信技术研究有限公司 多端口数据传输的方法及设备
CN110034904A (zh) * 2018-01-11 2019-07-19 维沃移动通信有限公司 相位跟踪参考信号关联指示及发送方法、网络设备和终端
CN110034895A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 信息指示、确定方法及装置、计算机存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632193B (zh) * 2017-03-24 2023-05-09 华为技术有限公司 一种资源指示方法及网络设备、终端设备
KR102422915B1 (ko) * 2017-07-31 2022-07-19 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터 전송 방법 및 단말 기기
CN109391413B (zh) * 2017-08-10 2022-05-10 华为技术有限公司 信息传输的方法和通信装置
CN108809609B (zh) * 2017-08-11 2019-07-09 华为技术有限公司 一种dmrs指示和接收方法,发射端和接收端
CN109391359B (zh) * 2017-08-11 2022-05-10 华为技术有限公司 用于数据传输的方法、网络设备和终端设备
CN108111283B (zh) * 2017-11-03 2021-12-14 中兴通讯股份有限公司 一种参考信号的传输方法及设备
CN109802807B (zh) * 2017-11-17 2020-07-28 电信科学技术研究院 信息指示、资源确定方法及装置、计算机存储介质
CN109995497B (zh) * 2018-02-14 2020-08-07 华为技术有限公司 下行控制信息传输方法
US20220132595A1 (en) * 2019-02-15 2022-04-28 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system, and apparatus for supporting same
EP3994946A1 (en) * 2019-08-04 2022-05-11 Convida Wireless, LLC Apparatus, system and method for performing two-step rach
WO2021025610A1 (en) * 2019-08-08 2021-02-11 Telefonaktiebolaget Lm Ericsson (Publ) Pusch dmrs design in 2-step random access

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944847A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 导频符号承载及处理方法、装置
CN108347324A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 通信方法和网络设备
CN108882314A (zh) * 2017-05-12 2018-11-23 北京三星通信技术研究有限公司 多端口数据传输的方法及设备
CN110034904A (zh) * 2018-01-11 2019-07-19 维沃移动通信有限公司 相位跟踪参考信号关联指示及发送方法、网络设备和终端
CN110034895A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 信息指示、确定方法及装置、计算机存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP PROTOCOL: TS 38.212
NOKIA, NOKIA SHANGHAI BELL: "On Enhancements to Initial Access Procedures for NR-U", 3GPP TSG RAN WG1 MEETING #96BIS; R1-1904222, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 7 April 2019 (2019-04-07), Xi’an, China; 20190408 - 20190412, XP051699551 *

Also Published As

Publication number Publication date
CN112399627A (zh) 2021-02-23
EP4013175A1 (en) 2022-06-15
JP7379663B2 (ja) 2023-11-14
US20220166584A1 (en) 2022-05-26
US11843454B2 (en) 2023-12-12
JP2022544303A (ja) 2022-10-17
EP4013175A4 (en) 2022-08-31
CN112399627B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2021027893A1 (zh) 一种dmrs端口确定方法及通信装置
EP3065497B1 (en) Method and apparatus for transmitting d2d signals
WO2020221320A1 (zh) 一种随机接入前导发送方法及通信装置
WO2018156862A1 (en) Access point (ap) to access point (ap) ranging for passive locationing
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
WO2014020903A1 (en) Method for component carrier configuration, base station and user equipment
WO2020147695A1 (zh) 一种信号发送、接收方法及设备
KR20210126727A (ko) 랜덤 액세스 방법, 디바이스, 및 시스템
CN107872838B (zh) 中继指示方法及接入点ap
JP2020523902A (ja) 通信方法、ネットワークデバイス、およびユーザ機器
WO2020164639A1 (zh) 一种随机接入方法、设备及系统
WO2020147728A1 (zh) 一种通信方法及设备
WO2021017773A1 (zh) 上报信道状态信息的方法和装置
WO2018036182A1 (zh) 一种数据通信的方法、装置及系统
CN108123781A (zh) 一种信息指示方法、接收方法及装置
US20220303074A1 (en) Communication method and apparatus
WO2020073986A1 (zh) 信息处理的方法和装置
WO2021056587A1 (zh) 一种通信方法及装置
WO2021062815A1 (zh) 调制解调参考信号的配置信息获取方法、配置方法及装置
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备
WO2021134702A1 (zh) 一种通信方法及装置
JP2023522532A (ja) 初期アクセス信号またはチャネルを伝送する方法、デバイス、およびシステム
WO2020199897A1 (zh) 一种通信方法及设备
WO2023035991A1 (zh) 一种资源配置方法及装置
WO2023011620A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508965

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020851423

Country of ref document: EP

Effective date: 20220314