WO2020147578A1 - 发送信道信息的方法和装置与接收信道信息的方法和装置 - Google Patents

发送信道信息的方法和装置与接收信道信息的方法和装置 Download PDF

Info

Publication number
WO2020147578A1
WO2020147578A1 PCT/CN2019/130410 CN2019130410W WO2020147578A1 WO 2020147578 A1 WO2020147578 A1 WO 2020147578A1 CN 2019130410 W CN2019130410 W CN 2019130410W WO 2020147578 A1 WO2020147578 A1 WO 2020147578A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
dmrs port
ports
dmrs ports
port group
Prior art date
Application number
PCT/CN2019/130410
Other languages
English (en)
French (fr)
Inventor
焦淑蓉
花梦
周涵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19910383.9A priority Critical patent/EP3902176A4/en
Publication of WO2020147578A1 publication Critical patent/WO2020147578A1/zh
Priority to US17/376,521 priority patent/US20210344462A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to the field of communications, and in particular to a method and device for sending channel information, and a method and device for receiving channel information.
  • terminal equipment can obtain channel state information (channel state information) that characterizes channel quality by measuring the DMRS sent on at least one demodulation reference signal (DMRS) port. state information, CSI).
  • the terminal device reports the acquired CSI to a network device, and the network device selects a DMRS port meeting the channel quality requirement from the at least one DMRS port according to the received CSI to send downlink data.
  • the channel quality of the at least one DMRS port may suddenly deteriorate, which is not conducive for the network device to select a downlink data channel that meets the channel quality requirement to send downlink data.
  • This application provides a method and device for sending channel information, and a method and device for receiving channel information.
  • the present application provides a method for sending channel information.
  • the method includes: receiving configuration information from a network device, the configuration information is used to configure Q DMRS ports for measurement, where Q is a positive integer; Receive indication information, which is used to indicate M DMRS ports carrying downlink data among the Q DMRS ports used for measurement, where M is a positive integer, and Q>M; sending channels of P DMRS ports to the network device Information, the P DMRS ports belong to Q DMRS ports used for measurement, and P is a positive integer.
  • the DRMS ports that can be measured by the terminal device are not limited to all The M DMRS ports that carry downlink data; on the other hand, the channel information of the P DMRS ports that the terminal device reports to the network device is not limited to the M DMRS ports, but is used as the downlink data receiver
  • the terminal equipment makes its own decision.
  • the reported channel information of the P DMRS ports can reflect the terminal device's channel measurement strategy, and after the network device obtains the terminal device's channel measurement strategy, even if the channel quality suddenly deteriorates , It is also beneficial for the network equipment to select a downlink channel that meets the channel quality requirements as much as possible.
  • the terminal device can report these uncarried downlink data
  • the channel information of the DMRS ports that meet the channel quality requirements for example, the identifiers of these DMRS ports, so that the network device can transmit downlink data through the DMRS ports that meet the channel quality requirements.
  • the P DMRS ports belong to P1 DMRS port groups, and the number of DMRS ports included in each DMRS port group in the P1 DMRS port groups is M.
  • the terminal device may use every two DMRS ports as a DMRS port group to report channel information.
  • the network device when the network device is switching the DMRS port that carries the downlink data, it can select a DMRS port group from the DMRS port group reported by the terminal device. There is no need to select a number of DMRS ports from multiple DMRS ports and then connect these DMRS ports.
  • a DMRS port group that carries downlink data it reduces the burden of network equipment selection and the communication delay between the network equipment and the terminal equipment.
  • the P1 DMRS port groups include at least a first DMRS port group and a second DMRS port group, and the first DMRS port group and the second DMRS port group correspond to different code division multiplexing (CDM) groups.
  • CDM code division multiplexing
  • the terminal device reports the channel information of the DMRS ports belonging to different CDM groups, which can reduce the redundancy of the information information of the DMRS ports belonging to the same CDM group among the P DMRS ports.
  • the P1 DMRS port groups are the DMRS port groups with the best channel quality among the DMRS port groups to which the Q DMRS ports belong.
  • the channel quality of each DMRS port in this DMRS port group is greater than a certain threshold.
  • P1 DMRS port groups include one DMRS port group to which M DMRS ports carrying downlink data belong, and P1-1 DMRS port groups with the best channel quality among the DMRS port groups to which other DMRS ports belong, and others
  • the DMRS port is a DMRS port excluding the M DMRS ports carrying downlink data among the Q DMRS ports used for measurement.
  • the above solution can enable the network device to determine whether it is necessary to switch the DMRS port currently carrying the downlink data based on the channel quality and the communication delay caused by switching the DMRS port . For example, although the DMRS port currently carrying downlink data is not the DMRS port with the best channel quality, but the communication delay caused by switching the DMRS port is greater than the communication delay caused by the poor channel quality, the network device can choose to continue to use the current bearer DMRS port for downlink data to communicate.
  • the channel information includes the number of P1 DMRS port groups.
  • the channel information reported by the terminal equipment may only include the number of the P1 DMRS port group, which has the advantage of less data reported .
  • the channel information further includes at least one of the channel quality indicator CQI of the P1 DMRS port group and the modulation and coding strategy MCS information of the P1 port group.
  • the channel information may also include one or more types of CSI to provide more detailed data for the network device to determine a better downlink channel.
  • this application provides a method for receiving channel information, the method comprising: sending configuration information to a terminal device, the configuration information is used to configure Q DMRS ports for measurement, where Q is a positive integer; Send indication information, the indication information is used to indicate M DMRS ports carrying downlink data among the Q DMRS ports used for measurement, M is a positive integer, and Q>M; receiving channels of P DMRS ports from the terminal device Information, P DMRS ports belong to Q DMRS ports used for measurement, and P is a positive integer.
  • the technical solution of the second aspect is executed by a network device, and corresponds to the technical solution of the first aspect, and has a technical solution similar or identical to the first aspect.
  • a network device corresponds to the technical solution of the first aspect, and has a technical solution similar or identical to the first aspect.
  • the P DMRS ports belong to P1 DMRS port groups, and the number of DMRS ports included in any DMRS port group in the P1 DMRS port groups is M.
  • the terminal device can use every two DMRS ports as a DMRS port group to report channel information.
  • the network device needs to switch the DMRS port carrying downlink data, it can Selecting a DMRS port group from the DMRS port group reported by the terminal device, there is no need to select several DMRS ports from multiple DMRS ports and then use these several DMRS ports as the DMRS port group for carrying downlink data, thereby reducing the number of network equipment to select Burden and communication delay.
  • the P1 DMRS port groups include a first DMRS port group and a second DMRS port group, and the first DMRS port group and the second DMRS port group correspond to different CDM groups.
  • the channel quality of all DMRS ports in the CDM group may be the same. Does not meet the channel quality requirements.
  • the terminal equipment reports the channel information of the DMRS ports belonging to different CDM groups, which is beneficial for the network equipment to select the DMRS port with better channel quality, and can also reduce the information redundancy reported (that is, there is no need to report the P DMRS ports belonging to the same CDM DMRS port information of the group).
  • the P1 DMRS port groups are the DMRS port groups with the best channel quality among the DMRS port groups to which the Q DMRS ports belong.
  • the DMRS port group with the best channel quality described in this application means that the channel quality of all DMRS ports in this DMRS port group is greater than a certain preset threshold.
  • P1 DMRS port groups include one DMRS port group to which M DMRS ports carrying downlink data belong, and P1-1 DMRS port groups with the best channel quality among the DMRS port groups to which other DMRS ports belong, and others
  • the DMRS port is a DMRS port excluding the M DMRS ports carrying downlink data among the Q DMRS ports used for measurement.
  • the network device can determine whether it is necessary to switch the DMRS port currently carrying the downlink data based on the channel quality and the communication delay caused by the switching of the DMRS port. For example, although the DMRS port currently carrying downlink data is not the DMRS port with the best channel quality, but the communication delay caused by switching the DMRS port is greater than the communication delay caused by the poor channel quality, the network device can choose to continue to use the current bearer DMRS port for downlink data to communicate.
  • the channel information includes the number of P1 DMRS port groups.
  • the channel information reported by the terminal equipment may only include the number of the P1 DMRS port group, which has the advantage of less data reported .
  • the channel information further includes at least one of the channel quality indicator CQI of the P1 DMRS port group and the modulation and coding strategy MCS information of the P1 port group.
  • the channel information may also include one or more types of CSI to provide more detailed data for the network device to determine a better downlink channel.
  • the present application provides a device for sending channel information, which can implement the functions corresponding to the method involved in the first aspect above, and the functions can be implemented by hardware or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the device includes a processor configured to support the device to perform the method related to the first aspect described above.
  • the device may also include a memory for coupling with the processor and storing program instructions and data.
  • the apparatus further includes a transceiver, and the transceiver is used to support communication between the apparatus and the network device.
  • the transceiver may include an independent receiver and an independent transmitter, or the transceiver may include a circuit that integrates a transceiver function.
  • the present application provides a device for receiving channel information, which can implement the functions corresponding to the methods involved in the second aspect above, and the functions can be implemented by hardware or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the apparatus includes a processor configured to support the apparatus to perform the method related to the second aspect described above.
  • the device may also include a memory for coupling with the processor and storing program instructions and data.
  • the apparatus further includes a transceiver, and the transceiver is used to support communication between the apparatus and the terminal device.
  • the transceiver may include an independent receiver and an independent transmitter, or the transceiver may include a circuit that integrates a transceiver function.
  • the present application provides a computer-readable storage medium in which a computer program is stored.
  • the processor is caused to execute the method described in the first aspect.
  • the present application provides a computer-readable storage medium in which a computer program is stored.
  • the processor is caused to perform the method described in the second aspect.
  • the present application provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed by a processor, the processor is caused to execute the method described in the first aspect.
  • the present application provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed by a processor, causing the processor to execute the method described in the second aspect.
  • Figure 1 is a schematic diagram of a communication system suitable for the present application.
  • Fig. 2 is a schematic diagram of a method for sending channel information provided by the present application.
  • Fig. 3 is a schematic structural diagram of a communication device provided by the present application.
  • Fig. 4 is a schematic structural diagram of a terminal device provided by the present application.
  • Fig. 5 is a schematic structural diagram of a network device provided by the present application.
  • FIG. 1 is a schematic diagram of a communication system suitable for the present application.
  • the communication system 100 includes a network device 110 and a terminal device 120.
  • the terminal device 120 communicates with the network device 110 through electromagnetic waves.
  • the terminal device 120 may include a variety of handheld devices, in-vehicle device having a wireless communication function, wearable device, computing device, or other processing device connected to a wireless modem, for example, the Third Generation Partnership Project (3 rd Generation partnership project (3GPP) defined user equipment (UE), mobile station (mobile station, MS), soft terminal, home gateway, set-top box, etc.
  • 3GPP Third Generation Partnership Project
  • UE mobile station
  • MS mobile station
  • soft terminal home gateway
  • set-top box set-top box
  • the network device 110 may be a base station defined by 3GPP, for example, a base station (gNB) in a 5G communication system.
  • the network device 110 may also be a non-3GPP (non-3GPP) access network device, such as an access gateway (access gateway (AGF)).
  • Network devices can also be relay stations, access points, vehicle-mounted devices, wearable devices, and other types of devices.
  • the network device 110 may send at least one DMRS (one DMRS corresponds to one DMRS port) to the terminal device 120, and the terminal device 120 performs channel estimation according to the at least one DMRS to obtain the channel information of the at least one DMRS port, and compares all The channel information is reported to the network device 110, and the network device 110 may select, according to the channel information, a DMRS port meeting the channel quality requirement among the at least one DMRS port to send downlink data.
  • DMRS one DMRS corresponds to one DMRS port
  • the channel information of a DMRS port is used to indicate the characteristics of the channel where the DMRS port is located, such as the number of the DMRS port, and the channel information may also be channel state information (CSI), such as channel quality indicator (channel quality indicator, The value of CQI), the rank indicator (RI) of the channel matrix or the precoding matrix indicator (PMI).
  • CSI channel state information
  • channel quality indicator channel quality indicator
  • RI rank indicator
  • PMI precoding matrix indicator
  • the foregoing meeting the channel quality requirement can be interpreted as: the channel quality meets a certain preset threshold, for example, the value of the channel quality indicator is greater than the preset threshold, or the channel capacity determined according to Shannon's theorem is greater than the preset threshold.
  • the terms "downlink data” and "PDSCH” are often used equivalently unless otherwise specified.
  • the method of reporting channel information is based on the measurement of the DMRS port of the downlink data channel (for example, the physical downlink shared channel (PDSCH)) to obtain the channel of the DMRS port information.
  • the terminal device 120 reports the channel information to the network device 110 on the report resource indicated by the downlink control information (DCI).
  • the report resource is, for example, a physical uplink control channel (PUCCH) resource.
  • DMRS port There are two configuration types for the port that sends DMRS (ie, DMRS port), namely configuration type 1 and configuration type 2, where the former corresponds to 8 ports p (1000 ⁇ 1007), and the latter corresponds to 12
  • the network device 110 can configure which configuration type the terminal device 120 uses through high-level parameters (for example, dmrs-Type).
  • Table 1 shows the configuration content of configuration type 1.
  • is used to indicate the frequency domain position offset of the DMRS, and the unit of the offset is 1 subcarrier.
  • w f (k') is a frequency domain orthogonal code
  • w t (l') is a time domain orthogonal code.
  • Table 1 includes two groups of ports corresponding to different CDM groups, one group of ports is 1000, 1001, 1004, and 1005, and the other group of ports is 1002, 1003, 1006, and 1007.
  • the UE can consider that the channel characteristics experienced by the signals received on the ports corresponding to the same CDM group (for example, 1000, 1001, 1004, and 1005) are quasi co-located, such as Doppler Frequency shift, Doppler spread, average delay, delay spread, etc.
  • w f (k′) are different, that is, the time-frequency resource positions of the DMRS of these two ports are the same, and orthogonality is achieved through frequency-domain orthogonal codes.
  • the terminal device can distinguish the DMRS of the two ports belonging to the same CDM group according to the frequency domain orthogonal code, thereby obtaining the data transmitted on the two ports respectively.
  • w t (l') is different, that is, the time-frequency resource positions of the DMRS of these two ports are the same, and orthogonality is achieved through time-domain orthogonal codes.
  • the terminal device can distinguish the DMRS of the two ports according to the time-domain orthogonal code, thereby obtaining the data transmitted on the two ports respectively.
  • Table 2 shows the configuration content of configuration type 2. Among them, the meanings of the parameters in Table 2 are the same as those in Table 1. The difference between Table 2 and Table 1 is that Table 2 has 4 more ports than Table 1, and Table 2 is configured with 12 ports that can send DMRS. , The 12 ports correspond to 3 CDM groups.
  • DMRS is sent on the same DMRS port along with the physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the number of ports and port numbers used by DMRS and PDSCH are the same.
  • the number is indicated in the physical downlink control channel (PDCCH) corresponding to the PDSCH.
  • the indication field is Antenna port(s).
  • the size of the indication field is 4 to 6 bits and is determined by the parameters dmrs-Type and maxLength .
  • Table 3 shows the 4 PDSCH DMRS ports supported by the terminal device when the DMRS type (dmrs-Type) is 1, and the maximum length (maxLength) is 1, (ie, ports 0 to 3 shown in the third column), where the parameters dmrs-Type represents the configuration type of the DMRS, and the parameter maxLength represents the maximum number of front-loaded DMRS symbols.
  • the value of the DMRS port is abbreviated, that is, "0" means 1000, and "1" means 1001.
  • Table 3 includes 16 indexes, that is, values 0-15, which means that the size of the Antenna port(s) field is 4 bits.
  • the network device 110 configures 8 DMRS ports for the terminal device 120, and the network device 110 can also indicate the current PDSCH actually used by the 4-bit Antenna port(s) field in the PDCCH DMRS port.
  • the 4 bits are 0000, it corresponds to the value 0 in Table 3, which means that only one DMRS port is currently transmitting DMRS and PDSCH, that is, port 1000; when the above 4 bits are 0010, it corresponds to Table 3.
  • the "value” 2, which means that there are currently two ports transmitting DMRS and PDSCH, that is, ports 1000 and 1001.
  • the second column in Table 3 "Number of DMRS CDM group(s) without data" means that there is no terminal device 120 on the resource corresponding to the DMRS port in the number of CDM groups. However, the network device 110 may use these resources to send information of other terminal devices that are different from the terminal device 120, such as PDSCH and DMRS that carry other terminal devices. The terminal device 120 can ignore the reception of the information carried on the time-frequency resources corresponding to these DMRS ports, but can perform rate matching defined by 3GPP on the time-frequency resources corresponding to these DMRS ports.
  • the values 1, 2, and 3 of "Number of DMRS CDM groups without data" correspond to CDM groups ⁇ 0 ⁇ , ⁇ 0,1 ⁇ , ⁇ 0,1,2 ⁇ respectively.
  • the terminal device 120 determines to use the CDM group ⁇ 0 ⁇ Receive information. It can be seen from Table 1 that the ports corresponding to the CDM group ⁇ 0 ⁇ are 1000, 1001, 1004, and 1005.
  • the terminal device 120 determines that currently only the time-frequency resource corresponding to port 1000 carries the network device 110
  • the DMRS and PDSCH sent to the terminal device 120, the time-frequency resources corresponding to the other three ports (1001, 1004 and 1005) do not carry the DMRS and PDSCH sent by the network device 110 to the terminal device 120, and the terminal device 120 ignores the other three ports
  • each codeword corresponds to a modulation and coding scheme (MCS) and a hybrid automatic repeat request (hybrid automatic).
  • MCS modulation and coding scheme
  • hybrid automatic repeat request hybrid automatic
  • HARQ hybrid automatic repeat request
  • each HARQ process corresponds to a HARQ identifier.
  • code word 0 corresponds to HARQ process X
  • terminal device 120 in HARQ process X feeds back acknowledgement (ACK) to the network device to indicate that the PDSCH is correctly received
  • HARQ process X it feeds back denial information to the network device ( non-acknowledgement, NACK) to indicate that the PDSCH was not received correctly.
  • codeword 1 corresponds to HARQ process Y
  • terminal device 120 uses a similar feedback method in HARQ process Y.
  • Table 3 corresponds to the case where the network device configuration uses a single code word to send. In this case, codeword 0 is enabled; codeword 1 is disabled. When the network device is configured to be able to use two code words to send, such as the port configuration shown in Table 4.
  • Table 4 shows the 8 PDSCH DMRS ports (that is, ports 0-7) supported by the terminal device when the DMRS type (dmrs-Type) is 1, and the maximum length (maxLength) is 2, where the value of the DMRS port is abbreviated, That is, "0" means 1000, and "1" means 1001.
  • Table 4 includes 32 indexes, that is, values 0-31, which means that the size of the Antenna port(s) field is 5 bits.
  • the network device 110 configures Table 4 for the terminal device 120 (that is, the network device can use up to two code words to send PDSCH)
  • the network device 110 and the terminal device 120 are 1 code according to the actual number of code words currently used. Word or 2 code words determine which part of Table 4 is used. Wherein, when the network device 110 and the terminal device 120 use one codeword for transmission, the content on the left of Table 4 is used; when the network device 110 and the terminal device 120 use two codewords for transmission, the content on the right of Table 4 is used.
  • Table 5 shows that when dmrs-Type is 2, maxLength is 1, the 6 PDSCH DMRS ports supported by the terminal device (that is, ports 0 to 5 shown in the third column), where the value of the DMRS port is abbreviated, that is, "0" means 1000, and "1" means 1001.
  • the meaning of each parameter in Table 5 is the same as the meaning of the corresponding parameter in Table 3 and Table 4.
  • Table 6 shows that when dmrs-Type is 2, maxLength is 2, the 12 PDSCH DMRS ports supported by the terminal device (that is, ports 0-11 shown in the third column), where the value of the DMRS port is abbreviated, that is, "0" means 1000, and "1" means 1001.
  • the meaning of each parameter in Table 6 is the same as the meaning of the corresponding parameter in Table 3 and Table 4.
  • FIG. 2 shows a method 200 for sending channel information provided by the present application, which may be executed by a terminal device 120.
  • terminal equipment and “network equipment” are no longer accompanied by reference signs.
  • the method 200 includes:
  • S210 Receive configuration information from a network device, where the configuration information is used to configure Q DMRS ports for measurement, where Q is a positive integer.
  • the DMRS port is the antenna port that carries the DMRS.
  • An antenna port is a logical port, not a physical antenna, and corresponds to a group of time-frequency resources.
  • the channel characteristics for example, large-scale channel characteristics
  • the receiving end may consider that the channel characteristics of these signals are the same or can be derived from each other when demodulating these signals. Based on this definition, the receiving end can obtain the downlink data on a certain antenna port by measuring the DMRS of this antenna port.
  • the network device can use the following configuration methods to configure Q DMRS ports for measurement.
  • the several configuration methods described below are only examples and do not limit the method for configuring Q DMRS ports for measurement by the network device.
  • the network device can configure the terminal device with the DMRS port used for measurement through the combination of the high-level parameters dmrs-Type and maxLength.
  • the network device can configure the terminal device with a DMRS port for measurement only through the high-level parameter dmrs-Type.
  • the network device can also configure Q DMRS ports for measurement for the terminal device through new signaling.
  • the terminal device does not necessarily measure all of the Q DMRS ports.
  • the terminal device may select Q1 DMRS ports from the Q DMRS ports according to preset rules or instructions from the network device.
  • the Q1 DMRS ports selected by the terminal device may include M DMRS ports that carry downlink data.
  • the network device can indicate the M DMRS ports through DCI.
  • the terminal device may perform S220 to determine the M DMRS ports that carry downlink data.
  • S220 Receive indication information from the network device, where the indication information is used to indicate M DMRS ports carrying downlink data among the Q DMRS ports used for measurement, where M is a positive integer, and Q>M.
  • the DMRS port that carries downlink data is the antenna port that carries DMRS and downlink data. Since this antenna port has both DMRS and PDSCH, it is also called PDSCH DMRS port.
  • the number M of DMRS ports carrying downlink data is generally less than or equal to the number of PDSCH DMRS ports supported by the terminal device.
  • the above-mentioned indication information is, for example, DCI, and the network device may indicate the DMRS port carrying downlink data through the Antenna port(s) field in the DCI.
  • the network device can use 4 bits in the DCI to indicate the M DMRS ports that the terminal device currently carries downlink data; if the network device instructs the terminal device to use Table 4, the network device also The 5 bits in the DCI can be used to indicate the M DMRS ports that the terminal device currently carries downlink data.
  • the terminal device can determine the Q DMRS ports used for measurement according to the code division multiplexing (CDM) group of the M DMRS ports that carry downlink data, except for the M DMRS ports that carry downlink data. , Referred to as "other DMRS ports").
  • CDM code division multiplexing
  • Option 1 The network device determines other DMRS ports according to the antenna port indication field in the DCI.
  • the CDM group corresponding to the PDSCH DMRS port configured in the antenna port indication field in the DCI ie, the DMRS CDM group without data
  • Table 1 is only an example, and the CDM group corresponding to the PDSCH DMRS port is not limited to this.
  • the terminal device can determine the number of DMRS CDM groups without data (Number of DMRS CDM group(s) without data) according to the communication protocol as 1, that is , CDM group 0 in Table 1. Among them, the DMRS port carrying downlink data is 1000.
  • the DMRS ports corresponding to CDM group 0 are 1000, 1001, 1004, and 1005.
  • the 4 DMRS ports are the candidate DMRS ports that the network device instructs the terminal device to measure this time, and 1000 is the DMRS port that carries the downlink data.
  • 1001, 1004 and 1005 are other DMRS ports.
  • the terminal device can determine according to the communication protocol that the number of DMRS CDM groups with no data is 2, that is, CDM group 0 and CDM group 1 in Table 1 . Among them, the DMRS port carrying downlink data is 1000.
  • the DMRS ports corresponding to CDM group 0 are 1000, 1001, 1004, and 1005, and the DMRS ports corresponding to CDM group 1 are 1002, 1003, 1006, and 1007.
  • the 8 DMRS ports are the network equipment indicating that the terminal equipment is here.
  • the candidate DMRS port for one measurement, 1000 is the DMRS port carrying downlink data, and 1001, 1002, 1003, 1004, 1005, 1006 and 1007 are other DMRS ports.
  • the terminal can measure the DMRS port and the DMRS port that carries the downlink data.
  • DMRS ports corresponding to CDM group 1 such as 1000, 1002, 1003, 1006, and 1007, that is, Q1 is equal to 5; further, if the network is configured with the value of Q1, for example, when Q1 is equal to 4, the terminal device can measure and carry downlink data
  • the DMRS port and the three other DMRS ports corresponding to CDM group 1, for example, measure 1000, 1003, 1006, and 1007; when the protocol preset rules or the network device does not limit the type of DMRS port that the terminal device can measure, the terminal can measure 1000 ⁇ 1007, that is, Q1 is equal to 8; further, if the network is configured with the value of Q1, such as Q1 4, the terminal device can measure the DMRS port carrying the downlink data and three other DMRS ports, for example, measure 1000, 1001, and 1006 And 1007.
  • Option 2 The terminal device determines other DMRS ports according to the high-level parameters (dmrs-Type) and the antenna port indication field in the DCI.
  • the difference between option two and option one is that the option two scheme semi-statically configures the DMRS port used for measurement through a high-level parameter (dmrs-Type), and DCI is only used to indicate the DMRS port carrying the downlink data; while the option one scheme is The DCI dynamically indicates the DMRS port used for measurement each time and the DMRS port carrying downlink data.
  • the DMRS ports configured by the network device for measurement are all the DMRS ports shown in Table 1. Among them, ports 1000, 1001, 1004, and 1005 belong to CDM group 0, and ports 1002, 1003, 1006 and 1007 belong to CDM group 1.
  • the terminal device can determine the number of DMRS CDM groups without data (Number of DMRS CDM group(s) without data) according to the communication protocol as 1, that is , CDM group 0 in Table 1.
  • the DMRS port carrying downlink data is 1000. Therefore, when the protocol preset rules or the network device instructs to measure other DMRS ports corresponding to CDM groups that are different from CDM group 0 (ie, the CDM group corresponding to the DMRS port that carries the downlink data), the terminal device can only measure the downlink data that carries the downlink data.
  • the DMRS ports that can be used for measurement are 1000 ⁇ 1011, of which ports 1000, 1001, 1006, and 1007 belong to CDM group 0, and ports 1002, 1003, 1008 , 1009 belongs to CDM group 1, and ports 1004, 1005, 1010, and 1011 belong to CDM group 2.
  • the terminal device can determine the number of DMRS CDM groups without data (Number of DMRS CDM group(s) without data) according to the communication protocol as 1, that is , CDM group 0 in Table 2.
  • the DMRS port carrying downlink data is 1000. Therefore, when the protocol preset rules or the network device instructs to measure other DMRS ports corresponding to CDM groups that are different from CDM group 0 (ie, the CDM group corresponding to the DMRS port that carries the downlink data), the terminal device can only measure the downlink data that carries the downlink data.
  • the terminal device can measure the DMRS port that carries the downlink data and the three other DMRS ports corresponding to CDM groups 1 and 2, for example, measure 1000, 1003, 1006 and 1007.
  • the terminal device measures all the DMRS ports configured by the network device that can be used for measurement.
  • the above has described in detail how the network device configures the DMRS port for measurement and how the terminal device determines the DMRS port for measurement.
  • the specific method for the terminal device to measure the DMRS port can refer to the method of measuring the DMRS port in the prior art. It's concise, so I won't repeat it here.
  • the terminal device After the terminal device measures the DMRS port, it can perform S220 to report channel information to the network device.
  • S230 Send channel information of P DMRS ports to the network device, where the DMRS ports included in the P DMRS ports belong to Q DMRS ports used for measurement, and P is a positive integer.
  • the specific value of P may be indicated by DCI or configured by radio resource control (radio resource control, RRC) signaling, or may be preset by a communication protocol.
  • the P DMRS ports finally reported by the terminal device may include M DMRS ports carrying downlink data, or may not include M DMRS ports carrying downlink data. For example, when the channel quality of M DMRS ports carrying downlink data is poor , The terminal device may not report the M DMRS ports that carry downlink data.
  • the number of DMRS ports Q measured by the terminal equipment is greater than the number M of DMRS ports carrying downlink data, if the channel quality of the M DMRS ports carrying downlink data is poor, and the Q DMRS ports do not carry downlink data. If the channel quality is better, the terminal device can report the number of the DMRS port that does not carry downlink data, so that the network device can transmit the downlink data through the DMRS port with better channel quality. Therefore, compared to the prior art solution that only measures M DMRS ports carrying downlink data, the method provided in this application expands the number of candidate DRMS ports, and network equipment has a higher probability of selecting DMRS ports with better channel quality. (For example, a DMRS port corresponding to a beam in a specific direction) to communicate.
  • the terminal device can also report the channel information to the network device in the form of a port group, that is, group Q DMRS ports for measurement according to M to obtain X DMRS port groups,
  • the number of DMRS ports included in each DMRS port group is M
  • the finally reported P1 DMRS port groups are all or part of the X DMRS port groups.
  • the specific value of P1 can be configured by DCI or high-level signaling (such as RRC signaling).
  • Whether to report signal information in the form of a port or a port group to report channel information can be configured by DCI or high-level signaling, or specified by a protocol .
  • the number of ports in each DMRS port group may not be equal to M, but other values configured by the network device or other values specified by the communication protocol.
  • the network device may instruct the terminal device to report the DMRS port or DMRS port group corresponding to different CDM groups, or it may be a protocol stipulating that the terminal device report the DMRS port or DMRS port group corresponding to different CDM groups.
  • the P1 DMRS port groups reported by the terminal device include a first DMRS port group and a second DMRS port group, and the first DMRS port group and the second DMRS port group correspond to different CDM groups.
  • the network device can select a DMRS port that does not carry downlink data with a better channel quality to transmit the downlink data. Therefore, the method 200 can avoid the communication quality degradation caused by the poor channel quality of the DMRS port carrying the downlink data.
  • the method 200 can reuse existing RRC signaling when measuring the DMRS port carrying downlink data, without additional RRC signaling to configure time-frequency resources required for channel measurement.
  • the terminal equipment measures other DMRS ports in the same CDM group as the DMRS port carrying downlink data, no additional time-frequency resources are required; when the terminal equipment measures other DMRS ports in a different CDM group corresponding to the DMRS port carrying downlink data Time, only a small amount of time-frequency resources are occupied, which is also the advantage of the method 200 compared with the prior art.
  • the protocol can specify or the network device can instruct the terminal device to report the channel information of the P DMRS ports or P1 DMRS port groups with the best channel quality, and the P1 DMRS port groups are the channels in the X DMRS port groups.
  • the best quality P1 DMRS port group can specify
  • the channel quality of the P1 DMRS port groups can best be interpreted as: the CQI value of each DMRS group in the P1 DMRS port groups is greater than a certain preset threshold or the channel capacity of each DMRS group is greater than a certain threshold.
  • the network device is configured with 8 DMRS ports, that is, ⁇ 1000,1001,1002,1003,1004,1005,1006,1007 ⁇ , where 1000 and 1001 are two DMRS ports that carry downlink data.
  • the two DMRS The port acts as a DMRS port group.
  • the network device also indicates that the number of DMRS ports used for measurement is 6, and the terminal device can choose to measure the following 3 groups of DMRS ports: ⁇ 1000,1001 ⁇ , ⁇ 1002,1003 ⁇ and ⁇ 1004,1005 ⁇ .
  • the channel quality of the DMRS port group ⁇ 1000,1001 ⁇ is the worst, the channel quality of the DMRS port group ⁇ 1002,1003 ⁇ is poor, and the channel quality of the DMRS port group ⁇ 1004,1005 ⁇ is the best.
  • the two reported by the terminal equipment The DMRS port groups are: ⁇ 1002,1003 ⁇ and ⁇ 1004,1005 ⁇ .
  • the protocol can specify or the network device can instruct the terminal device to report the channel information of the DMRS port that carries the downlink data, that is, regardless of the channel quality of the DMRS port that carries the downlink data, it needs to report the channel that carries the downlink data.
  • the channel information of the DMRS port, or the channel information of the port group corresponding to the DMRS port that carries the downlink data is reported. That is, the P1 DMRS port groups reported by the terminal device include one DMRS port group to which M DMRS ports carrying downlink data belong, and P1-1 DMRS port groups with the best channel quality among the DMRS port groups to which other DMRS ports belong .
  • the network device is configured with 8 DMRS ports, that is, ⁇ 1000,1001,1002,1003,1004,1005,1006,1007 ⁇ , the 8 DMRS ports are all DMRS ports used for measurement, among them, 1000 and 1001 There are two DMRS ports that carry downlink data, ⁇ 1000,1001 ⁇ is a DMRS port group, and the remaining 6 DMRS ports are divided into 3 DMRS port groups. For brevity, the port number is used to indicate the channel quality corresponding to the port below.
  • the channel quality of the above 4 DMRS port groups is: ⁇ 1006,1007 ⁇ > ⁇ 1002,1003 ⁇ > ⁇ 1004,1005 ⁇ > ⁇ 1000,1001 ⁇ , where the channel quality of the DMRS port group ⁇ 1000,1001 ⁇ is the worst , The channel quality of the DMRS port group ⁇ 1006,1007 ⁇ is the best, the 3 DMRS port groups reported by the terminal device are: ⁇ 1000,1001 ⁇ , ⁇ 1006,1007 ⁇ and ⁇ 1002,1003 ⁇ .
  • the network device is configured with 8 DMRS ports, that is, ⁇ 1000,1001,1002,1003,1004,1005,1006,1007 ⁇ .
  • the 8 DMRS ports are all DMRS ports for measurement, where 1000 is
  • the 8 DMRS ports are divided into 8 DMRS port groups, that is, each DMRS port group includes one DMRS port.
  • the channel measurement results of the above 8 DMRS port groups are: ⁇ 1006 ⁇ > ⁇ 1007 ⁇ > ⁇ 1002 ⁇ > ⁇ 1003 ⁇ > ⁇ 1004 ⁇ > ⁇ 1005 ⁇ > ⁇ 1000 ⁇ > ⁇ 1001 ⁇ , where the DMRS port group ⁇ The channel quality of 1001 ⁇ is the worst, and the channel quality of the DMRS port group ⁇ 1006 ⁇ is the best.
  • the 4 DMRS port groups reported by the terminal device are: ⁇ 1006 ⁇ , ⁇ 1007 ⁇ , ⁇ 1002 ⁇ , and ⁇ 1000 ⁇ .
  • the protocol may specify or the network may instruct the terminal device to report the channel information of the DMRS port or DMRS port group whose channel quality reaches a threshold.
  • the threshold may be an absolute threshold specified by the protocol or network configuration, or It can be a relative threshold specified by the protocol or network configuration. For example, for a DMRS port measured by a terminal device, when its channel quality exceeds an absolute threshold, or its channel quality exceeds the channel quality of a DMRS port carrying data and reaches a relative threshold, the terminal device reports the channel information of these DMRS ports. If the required DMRS port or DMRS port group is not met, the terminal device only reports the channel information of the DMRS port or DMRS port group that carries downlink data.
  • the channel information reported by the terminal device may only include the number of P DMRS ports or the number of P1 DMRS port groups, which has the advantage of less data to be reported.
  • the terminal device may also report the modulation and coding strategy (MCS) information of P DMRS ports or P1 DMRS port groups, that is, indicate the amount of change in the MCS format used in the next downlink data transmission, Or, it indicates the index of the MCS format used in the next downlink data transmission.
  • MCS modulation and coding strategy
  • the channel information may also include some or all types of CSI in the prior art, so as to provide more detailed data for the network device to determine a better downlink channel.
  • the channel information may also include: P1 channel quality indicator (CQI) of the DMRS port group, precoding matrix indicator (PMI), CSI-RS resource indicator (CSI-RS resource indicator, CRI) ), at least one of SSB resource indicator (SSB resource indicator, SSBRI), rank indicator (rank indicator, RI), and layer 1 received reference signal power (layer 1-Reference signal received power, L1-RSRP).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CSI-RS resource indicator CRI
  • SSB resource indicator SSB resource indicator
  • SSBRI rank indicator
  • layer 1 received reference signal power layer 1-Reference signal received power
  • the above mainly describes the method of sending channel information provided by this application from the perspective of the terminal device.
  • the processing procedure of the network device corresponds to the processing procedure of the terminal device.
  • the terminal device receives information from the network device, which means that the network device sends The information; the terminal device sends information to the network device, which means that the network device receives the information from the terminal device. Therefore, even if the processing procedure of the network device is not clearly stated in the above individual places, those skilled in the art can clearly understand the processing procedure of the network device based on the processing procedure of the terminal device.
  • the communication device includes a hardware structure and/or a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the present application may divide the functional unit of the communication device according to the above method example.
  • each function may be divided into various functional units, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or software function unit. It should be noted that the division of the units in this application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • Fig. 3 shows a schematic structural diagram of a communication device provided by the present application.
  • the communication device 300 may be used to implement the methods described in the foregoing method embodiments.
  • the communication device 300 may be a chip, a network device, or a terminal device.
  • the communication device 300 includes one or more processors 301, and the one or more processors 301 can support the communication device 300 to implement the method in the method embodiment corresponding to FIG. 2.
  • the processor 301 may be a general-purpose processor or a dedicated processor.
  • the processor 301 may be a central processing unit (CPU) or a baseband processor.
  • the baseband processor can be used to process communication data (for example, the configuration information described above), and the CPU can be used to control communication devices (for example, network equipment, terminal equipment, or chips), execute software programs, and process software programs. data.
  • the communication device 300 may further include a transceiving unit 305 for inputting (receiving) and outputting (transmitting) signals.
  • the communication device 300 may be a chip, and the transceiver unit 305 may be an input and/or output circuit of the chip, or the transceiver unit 305 may be a communication interface of the chip, and the chip may be used as a terminal device or a network device or other wireless communication. Components of equipment.
  • the communication device 300 may include one or more memories 302 on which the program 304 is stored.
  • the program 304 may be executed by the processor 301 to generate instructions 303, so that the processor 301 executes the method described in the above method embodiments according to the instructions 303.
  • the memory 302 may also store data.
  • the processor 301 can also read data stored in the memory 302 (for example, Table 1 to Table 6). The data can be stored in the same storage address as the program 304, or the data can be stored in a different location from the program 304. The storage address.
  • the processor 301 and the memory 302 may be provided separately, or may be integrated together, for example, integrated on a single board or a system-on-chip (SOC).
  • SOC system-on-chip
  • the communication device 300 may further include a transceiver unit 305 and an antenna 306.
  • the transceiver unit 305 may be called a transceiver, a transceiver circuit, or a transceiver, and is used to implement the transceiver function of the communication device through the antenna 306.
  • the processor 301 is configured to send configuration information to the terminal device through the transceiver unit 305 and the antenna 306, the configuration information is used to configure Q DMRS ports for measurement, and Q DMRS ports for measurement.
  • the configuration information is used to configure Q DMRS ports for measurement, and Q DMRS ports for measurement.
  • Q is a positive integer
  • M is a positive integer
  • Q>M is a possible design.
  • the processor 301 is further configured to receive channel information of P DMRS ports from the terminal device through the transceiver unit 305 and the antenna 306, the P DMRS ports belong to Q DMRS ports for measurement, and P is a positive integer.
  • the processor 301 is configured to receive configuration information from the network device through the transceiver unit 305 and the antenna 306.
  • the configuration information is used to configure Q DMRS ports for measurement and Q DMRS ports for measurement.
  • the port includes M DMRS ports that carry downlink data, Q is a positive integer, M is a positive integer, and Q>M.
  • the processor 301 is further configured to send channel information of P DMRS ports to the network device through the transceiver unit 305 and the antenna 306, the P DMRS ports belong to Q DMRS ports for measurement, and P is a positive integer.
  • the processor 301 may be a CPU, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices , For example, discrete gates, transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • This application also provides a computer program product, which when executed by the processor 301 implements the communication method described in any method embodiment in this application.
  • the computer program product may be stored in the memory 302, for example, a program 304, and the program 304 is finally converted into an executable object file that can be executed by the processor 301 after preprocessing, compilation, assembly, and linking.
  • the present application also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program When the computer program is executed by a computer, the communication method described in any method embodiment in the present application is implemented.
  • the computer program may be a high-level language program or an executable target program.
  • the computer-readable storage medium is, for example, the memory 302.
  • the memory 302 may be a volatile memory or a non-volatile memory, or the memory 302 may include both a volatile memory and a non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (random access memory, RAM), which acts as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • FIG. 4 shows a schematic structural diagram of a terminal device provided by the present application.
  • the terminal device 400 can be applied to the system shown in FIG. 1 to implement the functions of the terminal device in the foregoing method embodiments.
  • FIG. 4 shows only the main components of the terminal device.
  • the terminal device 400 includes a processor, a memory, a control circuit, an antenna, and input/output devices.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device.
  • the processor receives configuration information through an antenna and a control circuit, and generates first time information according to the configuration information, and then transmits the first time information through the control circuit and the antenna.
  • the memory is mainly used to store programs and data, for example, to store communication protocols and the above configuration information.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the input/output device is, for example, a touch screen or a keyboard, and is mainly used to receive data input by the user and output data to the user.
  • the processor can read the program in the memory, interpret and execute the instructions contained in the program, and process the data in the program.
  • the processor performs baseband processing on the information to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing to obtain the radio frequency signal, and passes the radio frequency signal through the antenna in the form of electromagnetic waves Send outside.
  • the electromagnetic wave carrying information ie, radio frequency signal
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into information And process the information.
  • FIG. 4 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or storage device, etc., which is not limited in this application.
  • the processor in Figure 4 can integrate the functions of the baseband processor and the CPU.
  • the baseband processor and the CPU can also be independent processors, using technologies such as buses. interconnected.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple CPUs to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be called a baseband processing circuit or a baseband processing chip.
  • the CPU may also be called a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or may be stored in the memory in the form of a program, and the processor executes the program in the memory to realize the baseband processing function.
  • an antenna and a control circuit with a transceiver function can be regarded as the transceiver unit 401 of the terminal device 400, which is used to support the terminal device to implement the receiving function in the method embodiment, or to support the terminal device to implement the method embodiment Send function in.
  • the processor with processing function is regarded as the processing unit 402 of the terminal device 400.
  • the terminal device 400 includes a transceiver unit 401 and a processing unit 402.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver, and so on.
  • the device used to implement the receiving function in the transceiver unit 401 can be regarded as a receiving unit, and the device used to implement the sending function in the transceiver unit 401 can be regarded as a sending unit, that is, the transceiver unit 401 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 402 may be used to execute a program stored in the memory to control the transceiver unit 401 to receive signals and/or send signals to complete the functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiver unit 401 may be implemented by a transceiver circuit or a dedicated transceiver chip.
  • FIG. 5 is a schematic structural diagram of a network device provided by the present application.
  • the network device may be, for example, a base station.
  • the base station can be applied to the system shown in FIG. 1 to implement the functions of the network device in the above method embodiment.
  • the base station 500 may include one or more radio frequency units, such as a remote radio unit (RRU) 501 and at least one baseband unit (BBU) 502.
  • the BBU 502 may include a distributed unit (distributed unit (DU)), and may also include a DU and a centralized unit (CU).
  • DU distributed unit
  • CU centralized unit
  • the RRU501 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, and it may include at least one antenna 5011 and a radio frequency unit 5012.
  • the RRU501 is mainly used for the transceiver of radio frequency signals and the conversion between radio frequency signals and baseband signals, for example, for supporting the base station to implement the sending and receiving functions in the method embodiments.
  • the BBU502 is mainly used for baseband processing and control of base stations.
  • the RRU501 and BBU502 can be physically set together, or physically separated, that is, a distributed base station.
  • BBU502 can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum and so on.
  • the BBU 502 can be used to control the base station to perform the operation flow on the network device in the above method embodiments.
  • the BBU502 can be composed of one or more single boards. Multiple single boards can jointly support a radio access network with a single access indication (for example, a long term evolution (LTE) network), and can also support different access standards. Wireless access network (such as LTE network and 5G network).
  • the BBU 502 also includes a memory 5021 and a processor 5022.
  • the memory 5021 is used to store necessary instructions and data.
  • the memory 5021 stores various finger information in the foregoing method embodiment.
  • the processor 5022 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow in the foregoing method embodiment.
  • the memory 5021 and the processor 5022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the disclosed system, device, and method may be implemented in other ways. For example, some features of the method embodiments described above can be ignored or not implemented.
  • the device embodiments described above are only schematic. The division of units is only a division of logical functions. In actual implementation, there may be another division manner. Multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling.
  • the coupling includes electrical, mechanical, or other forms of connection.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and inherent logic, and should not be applied to the embodiments of this application
  • the implementation process constitutes no limitation.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes the related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, separate There are three cases of B.
  • the character “/” in this article generally indicates that the related objects before and after it are in an “or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种发送或接收信道信息的方法,在该方法中,网络设备为终端设备配置Q个用于测量的DMRS端口,Q个用于测量的DMRS端口包括M个能够承载下行数据的DMRS端口,Q>M,并基于终端设备发送的P个DMRS端口上的信道信息来选择合适的DMRS端口发送下行数据,该P个DMRS端口属于Q个用于测量的DMRS端口。由于终端设备测量的DMRS端口的数量Q大于承载下行数据的DMRS端口的数量M,因此,上述方法使得网络设备在选择下行信道时有更多的选择余地,可以避免因承载下行数据的DMRS端口的信道质量较差而导致的通信质量下降。

Description

发送信道信息的方法和装置与接收信道信息的方法和装置
本申请要求于2019年01月16日提交中国专利局、申请号为201910041688.0、申请名称为“发送信道信息的方法和装置与接收信道信息的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种发送信道信息的方法和装置,以及一种接收信道信息的方法和装置。
背景技术
在第五代(the fifth generation,5G)移动通信系统中,终端设备可以通过测量至少一个解调参考信号(demodulation reference signal,DMRS)端口上发送的DMRS来获取表征信道质量的信道状态信息(channel state information,CSI)。终端设备将获取的所述CSI上报给网络设备,网络设备根据接收到的所述CSI从所述至少一个DMRS端口中选择满足信道质量要求的DMRS端口发送下行数据。
然而,所述至少一个DMRS端口的信道质量可能突然恶化,不利于网络设备选择出满足信道质量要求的下行数据信道来发送下行数据。
发明内容
本申请提供了一种发送信道信息的方法和装置,以及一种接收信道信息的方法和装置。
第一方面,本申请提供了一种发送信道信息的方法,该方法包括:从网络设备接收配置信息,该配置信息用于配置Q个用于测量的DMRS端口,Q为正整数;从网络设备接收指示信息,该指示信息用于指示Q个用于测量的DMRS端口中的M个承载下行数据的DMRS端口,M为正整数,并且,Q>M;向网络设备发送P个DMRS端口的信道信息,该P个DMRS端口属于Q个用于测量的DMRS端口,P为正整数。
应用第一方面提供的技术方案,一方面,由于终端设备被配置测量的DMRS端口的数量Q大于承载下行数据的DMRS端口的数量M,因而,可供所述终端设备测量的DRMS端口不限于所述M个承载下行数据的DMRS端口;另一方面,所述终端设备向所述网络设备上报的这P个DMRS端口的信道信息不限于所述M个DMRS端口,而是由作为下行数据接收方的终端设备自行决策。因此,上报的P个DMRS端口的信道信息能够体现出所述终端设备对信道测量的策略,而所述网络设备在获取所述终端设备对信道测量的策略后,即使在信道质量突然恶化的情况,也有利于所述网络设备尽可能选择出满足信道质量要求的下行信道。
例如,若承载下行数据的M个DMRS端口的信道质量不能满足信道质量要求,而Q 个DMRS端口中存在未承载下行数据但满足信道质量要求的DMRS端口,则终端设备可以上报这些未承载下行数据但满足信道质量要求的DMRS端口的信道信息(例如这些DMRS端口的标识),以便于网络设备通过满足信道质量要求的DMRS端口传输下行数据。
可选地,P个DMRS端口属于P1个DMRS端口组,P1个DMRS端口组中每一个DMRS端口组包含的DMRS端口的数量为M。
例如,当前承载下行数据的DMRS端口的数量为2,则终端设备可以将每两个DMRS端口作为一个DMRS端口组上报信道信息。这样,当网络设备在切换承载下行数据的DMRS端口时,可以从终端设备上报的DMRS端口组中选择一个DMRS端口组,无需在多个DMRS端口中先挑选出若干DMRS端口再将这若干DMRS端口作为承载下行数据的DMRS端口组,从而减小了网络设备的进行挑选的负担以及网络设备和终端设备之间的通信时延。
可选地,P1个DMRS端口组至少包括第一DMRS端口组和第二DMRS端口组,第一DMRS端口组与第二DMRS端口组对应不同的码分复用(code division multiplexing,CDM)组。
由于属于同一个CDM组的DMRS端口所占用的时频资源是相同的,因此,当该CDM组中的一个DMRS端口不满足信道质量要求时,该CDM组中所有的DMRS端口的信道质量可能都不满足信道质量要求。因此,终端设备上报属于不同CDM组的DMRS端口的信道信息,可以减少所述P个DMRS端口中属于同一CDM组的DMRS端口的信息信息的冗余。
可选地,P1个DMRS端口组为Q个DMRS端口所属的DMRS端口组中信道质量最好的DMRS端口组。本申请中描述的信道质量最好的DMRS端口组,一种可选的解释是这个DMRS端口组中各个DMRS端口的信道质量大于某个门限。信道质量最好的DMRS端口组可以为一个或至少两个。
可选地,P1个DMRS端口组包括M个承载下行数据的DMRS端口所属的一个DMRS端口组,以及,其它DMRS端口所属的DMRS端口组中信道质量最好的P1-1个DMRS端口组,其它DMRS端口为Q个用于测量的DMRS端口中除M个承载下行数据的DMRS端口以外的DMRS端口。
由于切换承载下行数据的DMRS端口会带来通信时延的增大,因此,上述方案可以使得网络设备基于信道质量与切换DMRS端口带来的通信时延判断是否需要切换当前承载下行数据的DMRS端口。例如,当前承载下行数据的DMRS端口虽然不是信道质量最好的DMRS端口,但切换DMRS端口带来的通信时延大于信道质量较差带来的通信时延,则网络设备可以选择继续使用当前承载下行数据的DMRS端口进行通信。
可选地,信道信息包括P1个DMRS端口组的编号。
由于DMRS端口占用的频域资源对于终端设备和网络设备来说都是已知的,因此,终端设备上报的信道信息可以仅包括P1个DMRS端口组的编号,从而具有上报数据量较少的优点。
可选地,信道信息还包括P1个DMRS端口组的信道质量指示CQI和P1个端口组的调制编码策略MCS信息中的至少一个。
上述CQI和MCS信息属于不同类型的CSI。在本实施例提供的方案中,信道信息还可以包含一种或多种类型CSI,为网络设备确定较好的下行信道提供更详细的数据。
第二方面,本申请提供了一种接收信道信息的方法,该方法包括:向终端设备发送配置信息,该配置信息用于配置Q个用于测量的DMRS端口,Q为正整数;向终端设备发送指示信息,该指示信息用于指示Q个用于测量的DMRS端口中的M个承载下行数据的DMRS端口,M为正整数,并且,Q>M;从终端设备接收P个DMRS端口的信道信息,P个DMRS端口属于Q个用于测量的DMRS端口,P为正整数。
第二方面的技术方案由网络设备执行,且与第一方面的技术方案对应,具有与第一方面相似或相同的技术方案,具体可参考第一方面。
可选地,P个DMRS端口属于P1个DMRS端口组,P1个DMRS端口组中任意一个DMRS端口组包含的DMRS端口的数量为M。
例如,当前承载下行数据的DMRS端口的数量为2,则终端设备可以将每两个DMRS端口作为一个DMRS端口组上报信道信息,这样,当网络设备需要切换承载下行数据的DMRS端口时,可以从终端设备上报的DMRS端口组中选择一个DMRS端口组,无需在多个DMRS端口中先挑选出若干DMRS端口再将这若干DMRS端口作为承载下行数据的DMRS端口组,从而减小了网络设备进行挑选的负担以及通信时延。
可选地,P1个DMRS端口组包括第一DMRS端口组和第二DMRS端口组,第一DMRS端口组与第二DMRS端口组对应不同的CDM组。
由于属于同一个CDM组的DMRS端口所占用的时频资源是相同的,因此,当该CDM组中的一个DMRS端口不满足信道质量要求时,该CDM组中所有的DMRS端口的信道质量可能都不满足信道质量要求。终端设备上报属于不同CDM组的DMRS端口的信道信息,有利于网络设备选择出信道质量更好的DMRS端口,也可以减少上报的信息冗余(即,无需上报P个DMRS端口的中属于同一CDM组的DMRS端口的信息)。
可选地,P1个DMRS端口组为Q个DMRS端口所属的DMRS端口组中信道质量最好的DMRS端口组。本申请中描述的信道质量最好的DMRS端口组,指的是这个DMRS端口组中所有DMRS端口的信道质量均大于某个预设门限。信道质量最好的DMRS端口组可以为一个或至少两个。
可选地,P1个DMRS端口组包括M个承载下行数据的DMRS端口所属的一个DMRS端口组,以及,其它DMRS端口所属的DMRS端口组中信道质量最好的P1-1个DMRS端口组,其它DMRS端口为Q个用于测量的DMRS端口中除M个承载下行数据的DMRS端口以外的DMRS端口。
由于切换承载下行数据的DMRS端口会带来通信时延的增大,因此,网络设备可以基于信道质量与切换DMRS端口带来的通信时延判断是否需要切换当前承载下行数据的DMRS端口。例如,当前承载下行数据的DMRS端口虽然不是信道质量最好的DMRS端口,但切换DMRS端口带来的通信时延大于信道质量较差带来的通信时延,则网络设备可以选择继续使用当前承载下行数据的DMRS端口进行通信。
可选地,信道信息包括P1个DMRS端口组的编号。
由于DMRS端口占用的频域资源对于终端设备和网络设备来说都是已知的,因此,终端设备上报的信道信息可以仅包括P1个DMRS端口组的编号,从而具有上报数据量较 少的优点。
可选地,信道信息还包括P1个DMRS端口组的信道质量指示CQI和P1个端口组的调制编码策略MCS信息中的至少一个。
上述CQI和MCS信息属于不同类型的CSI,在本实施例提供的方案中,信道信息还可以包含一种或多种类型的CSI,为网络设备确定较好的下行信道提供更详细的数据。
第三方面,本申请提供了一种发送信道信息的装置,该装置可以实现上述第一方面所涉及的方法所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第一方面所涉及的方法。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存有程序指令和数据。可选地,该装置还包括收发器,该收发器用于支持该装置与网络设备之间的通信。其中,所述收发器可以包括独立的接收器和独立的发射器,或者,所述收发器可以包括集成收发功能的电路。
第四方面,本申请提供了一种接收信道信息的装置,该装置可以实现上述第二方面所涉及的方法所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第二方面所涉及的方法。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存有程序指令和数据。可选地,该装置还包括收发器,该收发器用于支持该装置与终端设备之间的通信。其中,所述收发器可以包括独立的接收器和独立的发射器,或者,所述收发器可以包括集成收发功能的电路。
第五方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第一方面所述的方法。
第六方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第二方面所述的方法。
第七方面,本申请提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第一方面所述的方法。
第八方面,本申请提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第二方面所述的方法。
附图说明
图1是一种适用于本申请的通信系统的示意图。
图2是本申请提供的一种发送信道信息的方法的示意图。
图3是本申请提供的一种通信装置的结构示意图。
图4是本申请提供的一种终端设备的结构示意图。
图5是本申请提供的一种网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先介绍本申请的应用场景,图1是一种适用于本申请的通信系统的示意图。
通信系统100包括网络设备110和终端设备120。终端设备120通过电磁波与网络设备110进行通信。
在本申请中,终端设备120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如,第三代合作伙伴计划(3 rd generation partnership project,3GPP)所定义的用户设备(user equipment,UE),移动台(mobile station,MS),软终端,家庭网关,机顶盒等等。
网络设备110可以是3GPP所定义的基站,例如,5G通信系统中的基站(gNB)。网络设备110也可以是非3GPP(non-3GPP)的接入网设备,例如接入网关(access gateway,AGF)。网络设备还可以是中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
在通信系统100中,网络设备110可以向终端设备120发送至少一个DMRS(一个DMRS对应一个DMRS端口),终端设备120根据至少一个DMRS分别进行信道估计获得至少一个DMRS端口的信道信息,并将所述信道信息上报给网络设备110,网络设备110可以根据所述信道信息选择所述至少一个DMRS端口中满足信道质量要求的DMRS端口发送下行数据。其中,一个DMRS端口的信道信息用于表明这个DMRS端口所在信道的特征,例如DMRS端口的编号,信道信息还可以是信道状态信息(channel state information,CSI),如信道质量指示(channel quality indicator,CQI)的值,信道矩阵的秩指示(rank indicator,RI)或预编码矩阵指示(precoding matrix indicator,PMI)。上述满足信道质量要求可以被解释为:信道质量满足满足某一预设门限,例如,信道质量指示的值大于预设门限,或者根据香农定理确定的信道容量大于预设门限。需要说明的是,由于下行数据通常承载在PDSCH上,因此,如果没有特别说明,术语“下行数据”和“PDSCH”常被等同使用。
传统技术中,上报信道信息(如前述的CSI)的方法是基于下行数据信道(例如,物理下行共享信道(physical downlink shared channel,PDSCH))的DMRS端口的测量,从而获得所述DMRS端口的信道信息。随后,终端设备120在下行控制信息(downlink control information,DCI)指示的上报资源上将信道信息报给网络设备110,该上报资源例如是物理上行控制信道(physical uplink control channel,PUCCH)资源。
下面对DMRS的配置方式和使用方式做简要介绍。
发送DMRS的端口(即,DMRS端口)的配置类型(configuration type)有两种,分别为配置类型1和配置类型2,其中,前者对应8个端口p(1000~1007),后者对应12个端口p(1000~1011),网络设备110可以通过高层参数(例如dmrs-Type)配置终端设备120使用哪种配置类型。
表1示出了配置类型1的配置内容。
表1
Figure PCTCN2019130410-appb-000001
Figure PCTCN2019130410-appb-000002
表1中,Δ用于指示DMRS的频域位置偏移,偏移量的单位是1个子载波。w f(k′)为频域正交码,w t(l′)为时域正交码。
表1包括两组对应不同CDM组的端口,一组端口为1000、1001、1004和1005,另一组端口为1002、1003、1006和1007。UE可以认为对应相同CDM组的端口(例如,1000、1001、1004和1005)上接收到的信号所经历的信道特性是准共址(quasi co-located)的,这些信道特性比如:多普勒频移、多普勒扩展、平均延迟、延迟扩展等。
例如,端口1000和1001对应的其它参数都相同,仅w f(k′)不同,也就是说,这两个端口的DMRS的时频资源位置相同,通过频域正交码来实现正交。终端设备能够根据频域正交码区分出属于同一CDM组的这两个端口的DMRS,从而分别获取这两个端口上传输的数据。
又例如,端口1000和1004对应的其它参数都相同,仅w t(l′)不同,也就是说,这两个端口的DMRS的时频资源位置相同,通过时域正交码来实现正交。终端设备能够根据时域正交码区分出这两个端口的DMRS,从而分别获取这两个端口上传输的数据。
表2示出了配置类型2的配置内容。其中,表2中参数的含义与表1中参数的含义相同,表2与表1的不同之处在于表2比表1多了4个端口,表2一共配置了12个能够发送DMRS的端口,该12个端口对应3个CDM组。
表2
Figure PCTCN2019130410-appb-000003
在5G标准的R15版本中,DMRS是伴随着物理下行共享信道(physical downlink shared channel,PDSCH)在同一DMRS端口发送的,DMRS与PDSCH使用的端口数量和端口 号相同,并且,该端口数量和端口号在与该PDSCH对应的物理下行控制信道(physical downlink control channel,PDCCH)中指示,指示域为Antenna port(s),该指示域的大小为4~6比特,由参数dmrs-Type和maxLength决定。
表3
Figure PCTCN2019130410-appb-000004
表3示出了DMRS类型(dmrs-Type)为1,最大长度(maxLength)为1时,终端设备支持的4个PDSCH DMRS端口(即第三列所示的端口0~3),其中,参数dmrs-Type表示DMRS的配置类型,参数maxLength表示前置(front-loaded)DMRS的最大符号数。DMRS端口的值为简写,即,“0”表示1000,“1”表示1001。表3包括16个索引(index),即,值0-15,这意味着Antenna port(s)域的大小是4比特。
由表1可知,当dmrs-Type=1时,网络设备110为终端设备120配置了8个DMRS端口,网络设备110还可以通过PDCCH中的4比特Antenna port(s)域指出当前PDSCH实际使用的DMRS端口。比如,当该4比特为0000时,对应表3中的值(value)0,表示当前仅有一个DMRS端口在发送DMRS和PDSCH,也就是端口1000;当上述4比特为0010时,对应表3中的“值”=2,表示当前有两个端口在发送DMRS和PDSCH,也就是端口1000和1001。
表3中的第二列内容“无数据的DMRS CDM组的数量(Number of DMRS CDM group(s)without data)”表示:所述数量的CDM组中DMRS端口对应的资源上没有承载终端设备120的PDSCH和DMRS,但是网络设备110可能会用这些资源发送不同于终端设备120的其它终端设备的信息,例如承载其它终端设备的PDSCH和DMRS。终端设备120可以忽略这些DMRS端口对应时频资源上承载的信息的接收,但可对这些DMRS端口对应的时频资源进行3GPP所定义的速率匹配。“无数据的DMRS CDM组的数量”的取值1、2、 3分别对应CDM组{0}、{0,1}、{0,1,2}。例如,当4比特Antenna port(s)域指示的值为表3中第一列的0时,“无数据的DMRS CDM组的数量”的取值为1,终端设备120确定使用CDM组{0}接收信息。由表1可知,CDM组{0}对应的端口为1000、1001、1004和1005,基于表3的第三列的内容,终端设备120确定当前只有端口1000对应的时频资源上承载网络设备110向终端设备120发送的DMRS和PDSCH,另外三个端口(1001、1004和1005)对应的时频资源上不承载网络设备110向终端设备120发送的DMRS和PDSCH,终端设备120忽略另外三个端口对应的时频资源上承载的信息,但终端设备120可以对这三个端口对应的时频资源进行速率匹配。
在传统技术中,网络设备最多可以采用两个码字(codeword)发送PDSCH,每一个码字分别对应一种调制和编码策略(modulation and coding scheme,MCS)以及一个混合自动重传请求(hybrid automatic repeat request,HARQ)进程,每个HARQ进程对应一个HARQ标识。例如,码字0对应HARQ进程X,终端设备120在HARQ进程X中通过向网络设备反馈确认信息(acknowledgement,ACK)来指示正确接收到PDSCH,在HARQ进程X中通过向网络设备反馈否认信息(non-acknowledgement,NACK)来指示没有正确接收到所述PDSCH。类似的,码字1对应HARQ进程Y,终端设备120在HARQ进程Y中使用类似反馈方式。
表3对应的是网络设备配置采用单码字发送的情况。这种情况下码字0使能(enabled);码字1被去使能(disabled)。当网络设备配置了能够采用两个码字发送的情况,如表4所示的端口配置。
表4
Figure PCTCN2019130410-appb-000005
Figure PCTCN2019130410-appb-000006
表4示出了DMRS类型(dmrs-Type)为1,最大长度(maxLength)为2时,终端设备支持的8个PDSCH DMRS端口(即端口0~7),其中,DMRS端口的值为简写,即,“0”表示1000,“1”表示1001。表4包括32个索引,即,值0-31,这意味着Antenna port(s)域的大小是5比特。
当网络设备110为终端设备120配置了表4时(即网络设备能够使用最多两个码字发送PDSCH的情况),网络设备110和终端设备120根据当前实际使用的码字的数量是1个码字还是2个码字确定使用表4的哪个部分。其中,当网络设备110和终端设备120使用一个码字传输时,使用表4的左侧内容;当网络设备110和终端设备120使用两个码字传输时,使用表4的右侧内容。
下面再举出两种DMRS端口配置的例子。
表5
Figure PCTCN2019130410-appb-000007
Figure PCTCN2019130410-appb-000008
表5示出了dmrs-Type为2,maxLength为1时,终端设备支持的6个PDSCH DMRS端口(即第三列所示的端口0~5),其中,DMRS端口的值为简写,即,“0”表示1000,“1”表示1001。表5中各个参数的含义与表3和表4中相应的参数的含义相同。
表6
Figure PCTCN2019130410-appb-000009
Figure PCTCN2019130410-appb-000010
Figure PCTCN2019130410-appb-000011
表6示出了dmrs-Type为2,maxLength为2时,终端设备支持的12个PDSCH DMRS端口(即第三列所示的端口0~11),其中,DMRS端口的值为简写,即,“0”表示1000,“1”表示1001。表6中各个参数的含义与表3和表4中相应的参数的含义相同。
图2示出了本申请提供的一种发送信道信息的方法200,可以由终端设备120执行。为了简洁,以下“终端设备”和“网络设备”不再附带附图标记。
如图2所示,该方法200包括:
S210,从网络设备接收配置信息,该配置信息用于配置Q个用于测量(for measurement)的DMRS端口,Q为正整数。
DMRS端口即承载DMRS的天线端口。天线端口是一种逻辑端口,并非物理天线,对应一组时频资源。在这组资源上,通过这组资源所发送的信号的信道特征(例如,大尺度信道特性)相同或能够相互推导出。因此,无论这些信号是否是通过相同的物理天线发送,接收端(例如本申请中的终端设备)在解调这些信号时可以认为其信道特征相同或者能够相互推导出。基于这种定义,接收端可以根据对某个天线端口的DMRS进行测量获取这个天线端口上的下行数据。
网络设备可以采用下列配置方式配置Q个用于测量的DMRS端口。下面所述的几种配置方式仅是举例说明,并非对网络设备配置Q个用于测量的DMRS端口的方法进行限定。
例如,网络设备可以通过高层参数dmrs-Type和maxLength的组合为终端设备配置用 于测量的DMRS端口。网络设备可以向终端设备发送高层参数“dmrs-Type=1,maxLength=1”,则终端设备确定当前配置的Q个用于测量的DMRS端口为{1000,1001,1002,1003},即Q等于4;网络设备还可以向终端设备发送高层参数“dmrs-Type=1,maxLength=2”,则终端设备确定当前配置的Q个用于测量的DMRS端口为{1000,1001,1002,1003,1004,1005,1006,1007},即Q等于8。
又例如,网络设备可以仅通过高层参数dmrs-Type为终端设备配置用于测量的DMRS端口。网络设备可以通过PDSCH DMRS configuration type=1配置Q个用于测量的DMRS端口,即,{1000,1001,1002,1003,1004,1005,1006,1007},即Q等于8;网络设备也可以通过PDSCH DMRS configuration type=2配置Q个用于测量的DMRS端口,即,{1000,1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011},即Q等于12。
网络设备也可以通过新的信令为终端设备配置Q个用于测量的DMRS端口。
需要说明的是,终端设备并不一定会测量Q个DMRS端口的全部,终端设备可以根据预设规则或者网络设备的指示从Q个DMRS端口中选择Q1个DMRS端口。
终端设备所选择的Q1个DMRS端口可以包含M个承载下行数据的DMRS端口。网络设备可以通过DCI来指示该M个DMRS端口。
终端设备可以执行S220确定承载M个承载下行数据的DMRS端口。
S220,从网络设备接收指示信息,该指示信息用于指示Q个用于测量的DMRS端口中的M个承载下行数据的DMRS端口,M为正整数,并且,Q>M。
承载下行数据的DMRS端口即承载DMRS和下行数据的天线端口,由于这个天线端口上既有DMRS又有PDSCH,故而又称为PDSCH DMRS端口。承载下行数据的DMRS端口的数量M通常小于或等于终端设备所支持的PDSCH DMRS端口的数量。上述指示信息例如是DCI,网络设备可以通过DCI中的Antenna port(s)域指示承载下行数据的DMRS端口。
例如,如果网络设备指示终端设备使用表3,则网络设备可以通过DCI中的4个比特指示终端设备当前承载下行数据的M个DMRS端口;如果网络设备指示终端设备使用表4,则网络设备还可以通过DCI中的5个比特指示终端设备当前承载下行数据的M个DMRS端口。
终端设备可以根据M个承载下行数据的DMRS端口的码分复用(code division multiplexing,CDM)组确定Q个用于测量的DMRS端口中除M个承载下行数据的DMRS端口以外的DMRS端口(以下,简称为“其它DMRS端口”)。
选项一,网络设备根据DCI中的天线端口指示域确定其它DMRS端口。DCI中的天线端口指示域所配置的PDSCH DMRS端口对应的CDM组(即,无数据的DMRS CDM组)如表1所示。表1仅是举例说明,PDSCH DMRS端口对应的CDM组不限于此。
当DCI中的天线端口指示域为表3中的值“0”时,终端设备可以根据通信协议确定无数据的DMRS CDM组的数量(Number of DMRS CDM group(s)without data)为1,即,表1中的CDM组0。其中,承载下行数据的DMRS端口为1000。
由表1可知,CDM组0对应的DMRS端口为1000、1001、1004和1005,该4个DMRS端口即网络设备指示终端设备在这一次测量的备选DMRS端口,1000为承载下行数据的DMRS端口,1001、1004和1005为其它DMRS端口。由于其它DMRS端口对应的CDM 组与承载下行数据的DMRS端口对应的CDM组相同,因此,当协议预设规则或者网络设备限定测量与CDM组0(即,承载下行数据的DMRS端口对应的CDM组)不同的CDM组所对应的其它DMRS端口时,终端设备可以仅测量承载下行数据的DMRS端口,即,测量1000,即Q1等于1;当协议预设规则或者网络设备未限制终端设备测量的DMRS端口的类型时,终端可以测量1000、1001、1004和1005,即Q1等于4;进一步的,如果网络设备配置了Q1的取值,比如Q1=2,则终端设备可以测量承载下行数据的DMRS端口和一个其它DMRS端口,例如,测量1000和1004。
当DCI中的天线端口指示域为表3中的值“3”时,终端设备可以根据通信协议确定无数据的DMRS CDM组的数量为2,即,表1中的CDM组0和CDM组1。其中,承载下行数据的DMRS端口为1000。
由表1可知,CDM组0对应的DMRS端口为1000、1001、1004和1005,CDM组1对应的DMRS端口为1002、1003、1006和1007,该8个DMRS端口即网络设备指示终端设备在这一次测量的备选DMRS端口,1000为承载下行数据的DMRS端口,1001、1002、1003、1004、1005、1006和1007为其它DMRS端口。当协议预设规则或者网络设备限定测量与CDM组0(即,承载下行数据的DMRS端口对应的CDM组)不同的CDM组所对应的其它DMRS端口时,终端可以测量承载下行数据的DMRS端口和CDM组1对应的其它DMRS端口,例如1000、1002、1003、1006和1007,即Q1等于5;进一步的,如果网络配置了Q1的取值,比如Q1等于4时,终端设备可以测量承载下行数据的DMRS端口和CDM组1对应的三个其它DMRS端口,例如,测量1000、1003、1006和1007;当协议预设规则或者网络设备未限制终端设备测量的DMRS端口的类型时,终端可以测量1000~1007,即Q1等于8;进一步的,如果网络配置了Q1的取值,比如Q1=4,终端设备可以测量承载下行数据的DMRS端口和三个其它DMRS端口,例如,测量1000、1001、1006和1007。
选项二,终端设备根据高层参数(dmrs-Type)和DCI中的天线端口指示域确定其它DMRS端口。选项二与选项一的区别在于,选项二的方案通过高层参数(dmrs-Type)半静态配置了用于测量的DMRS端口,DCI仅用于指示承载下行数据的DMRS端口;而选项一的方案是通过DCI动态指示每次用于测量的DMRS端口以及承载下行数据的DMRS端口。
当高层参数(dmrs-Type)为1时,网络设备配置的用于测量的DMRS端口为表1所示全部DMRS端口,其中端口1000、1001、1004、1005属于CDM组0,端口1002、1003、1006、1007属于CDM组1。
当DCI中的天线端口指示域为表3中的值“0”时,终端设备可以根据通信协议确定无数据的DMRS CDM组的数量(Number of DMRS CDM group(s)without data)为1,即,表1中的CDM组0。其中,承载下行数据的DMRS端口为1000。因此,当协议预设规则或者网络设备指示测量与CDM组0(即,承载下行数据的DMRS端口对应的CDM组)不同的CDM组所对应的其它DMRS端口时,终端设备可以仅测量承载下行数据的DMRS端口和CDM组1中的端口,即,测量1000、1002、1003、1006、1007,即Q1=5,进一步的,如果网络配置了Q1的取值,比如Q1=4,终端设备可以测量承载下行数据的DMRS端口和CDM组1对应的三个其它DMRS端口,例如,测量1000、1003、1006和1007; 当协议预设规则或者网络设备未限制终端设备测量的DMRS端口的类型时,终端设备可以CDM组0和1中的所有DMRS端口,即,测量1000~1007,即Q1=8,进一步的,如果网络配置了Q1的取值,比如Q1=4,终端设备可以测量承载下行数据的DMRS端口和三个其它DMRS端口,例如,测量1000~1003。
又比如,当高层参数(dmrs-Type)为2时,根据表2,可用于测量的DMRS端口为1000~1011,其中端口1000、1001、1006、1007属于CDM组0,端口1002、1003、1008、1009属于CDM组1,端口1004、1005、1010、1011属于CDM组2。
当DCI中的天线端口指示域为表5中的值“0”时,终端设备可以根据通信协议确定无数据的DMRS CDM组的数量(Number of DMRS CDM group(s)without data)为1,即,表2中的CDM组0。其中,承载下行数据的DMRS端口为1000。因此,当协议预设规则或者网络设备指示测量与CDM组0(即,承载下行数据的DMRS端口对应的CDM组)不同的CDM组所对应的其它DMRS端口时,终端设备可以仅测量承载下行数据的DMRS端口和CDM组1、2中的端口,即,测量1000、1002、1003、1008、1009、1004、1005、1010、1011,即Q1=9。进一步地,如果网络配置了Q1的取值,比如Q1=4,终端设备可以测量承载下行数据的DMRS端口和CDM组1和2对应的三个其它DMRS端口,例如,测量1000、1003、1006和1007。当协议预设规则或者网络设备未限制终端设备测量的DMRS端口的类型时,终端设备可以CDM组0、1和2中的所有DMRS端口,即,测量1000~1011,即Q1=12,进一步的,如果网络配置了Q1的取值,比如Q1=4,终端设备可以测量承载下行数据的DMRS端口和三个其它DMRS端口,例如,测量1000~1003。
当Q1等于Q时,终端设备测量网络设备配置的全部可用于测量的DMRS端口。
上文对网络设备如何配置用于测量的DMRS端口以及终端设备如何确定用于测量的DMRS端口进行了详细说明,终端设备测量DMRS端口的具体方法可以参照现有技术中测量DMRS端口的方法,为了简洁,在此不再赘述。
终端设备测量DMRS端口之后,可以执行S220向网络设备上报信道信息。
S230,向网络设备发送P个DMRS端口的信道信息,该P个DMRS端口所包含的DMRS端口属于Q个用于测量的DMRS端口,P为正整数。
上述P的具体数值可以由DCI指示或者无线资源控制(radio resource control,RRC)信令配置,也可以由通信协议预先设定。终端设备最终上报的P个DMRS端口可能包括M个承载下行数据的DMRS端口,也可能不包括M个承载下行数据的DMRS端口,例如,当M个承载下行数据的DMRS端口的信道质量较差时,终端设备可以不上报M个承载下行数据的DMRS端口。
由于终端设备测量的DMRS端口的数量Q大于承载下行数据的DMRS端口的数量M,若承载下行数据的M个DMRS端口的信道质量较差,而Q个DMRS端口中不承载下行数据的DMRS端口的信道质量较好,则终端设备可以上报不承载下行数据的DMRS端口的编号,以便于网络设备通过信道质量更好的DMRS端口传输下行数据。因此,相比于现有技术仅测量M个承载下行数据的DMRS端口的方案,本申请提供的方法扩大了候选DRMS端口的数量,网络设备有更高的概率选择到信道质量较好的DMRS端口(例如,对应特定方向的波束的DMRS端口)进行通信。
除了上报每个DMRS端口的信道信息外,终端设备也可以按照端口组的形式向网络 设备上报信道信息,即,根据M对Q个用于测量的DMRS端口进行分组,得到X个DMRS端口组,每个DMRS端口组包含的DMRS端口的数量为M,最终上报的P1个DMRS端口组为X个DMRS端口组的全部或部分。其中,P1的具体数值可以由DCI或者高层信令(例如RRC信令)配置,以端口的形式上报信号信息还是以端口组的形式上报信道信息可以由DCI或者高层信令配置,或者由协议规定。
可选地,每个DMRS端口组中的端口数量也可以不等于M,而是由网络设备配置的其它数值或者是通信协议规定的其它数值。
网络设备可以指示终端设备上报对应不同CDM组的DMRS端口或者DMRS端口组,也可以是协议规定终端设备上报对应不同CDM组的DMRS端口或者DMRS端口组。
例如,终端设备上报的P1个DMRS端口组包括第一DMRS端口组和第二DMRS端口组,第一DMRS端口组与第二DMRS端口组对应不同的CDM组。
由于终端设备测量的DMRS端口包含未承载下行数据的DMRS端口,当承载下行数据的DMRS端口的信道质量较差时,网络设备可以选择信道质量较好的未承载下行数据的DMRS端口传输下行数据,因此,方法200可以避免因承载下行数据的DMRS端口的信道质量较差导致的通信质量下降。
相比于通过CSI-RS测量信道质量的方法,方法200在测量承载下行数据的DMRS端口时可以复用现有的RRC信令,无需额外的RRC信令配置信道测量所需的时频资源。此外,当终端设备测量与承载下行数据的DMRS端口对应相同CDM组的其它DMRS端口时,无需占用额外的时频资源;当终端设备测量与承载下行数据的DMRS端口对应不同CDM组的其它DMRS端口时,仅占用少量的时频资源,这也是方法200相比于现有技术的优越之处。
作为一个可选的示例,协议可以规定或者网络设备可以指示终端设备上报信道质量最好的P个DMRS端口或者P1个DMRS端口组的信道信息,P1个DMRS端口组为X个DMRS端口组中信道质量最好的P1个DMRS端口组。
上述P1个DMRS端口组的信道质量最好可以被解释为:这P1个DMRS端口组中每个DMRS组CQI的值大于某个预设门限或者每个DMRS组的信道容量大于某个门限。
例如,网络设备配置了8个DMRS端口,即,{1000,1001,1002,1003,1004,1005,1006,1007},其中,1000和1001为两个承载下行数据的DMRS端口,该两个DMRS端口作为一个DMRS端口组。网络设备还指示用于测量的DMRS端口的数量为6,则终端设备可以选择测量以下3组DMRS端口:{1000,1001}、{1002,1003}和{1004,1005}。其中,DMRS端口组{1000,1001}的信道质量最差,DMRS端口组{1002,1003}的信道质量较差,DMRS端口组{1004,1005}的信道质量最好,终端设备上报的两个DMRS端口组为:{1002,1003}和{1004,1005}。
作为另一个可选的示例,协议可以规定或者网络设备可以指示终端设备上报承载下行数据的DMRS端口的信道信息,即,无论承载下行数据的DMRS端口的信道质量如何,都需要上报承载下行数据的DMRS端口的信道信息,或者,上报承载下行数据的DMRS端口对应的端口组的信道信息。即,终端设备上报的P1个DMRS端口组包括M个承载下行数据的DMRS端口所属的一个DMRS端口组,以及,其它DMRS端口所属的DMRS端口组中信道质量最好的P1-1个DMRS端口组。
例如,网络设备配置了8个DMRS端口,即,{1000,1001,1002,1003,1004,1005,1006,1007},该8个DMRS端口均为用于测量的DMRS端口,其中,1000和1001为两个承载下行数据的DMRS端口,{1000,1001}为一个DMRS端口组,其余6个DMRS端口被分为3个DMRS端口组。为了简洁,下面以端口号表示该端口对应的信道质量。
上述4个DMRS端口组的信道质量为:{1006,1007}>{1002,1003}>{1004,1005}>{1000,1001},其中,DMRS端口组{1000,1001}的信道质量最差,DMRS端口组{1006,1007}的信道质量最好,则终端设备上报的3个DMRS端口组为:{1000,1001}、{1006,1007}和{1002,1003}。
又例如,网络设备配置了8个DMRS端口,即,{1000,1001,1002,1003,1004,1005,1006,1007},该8个DMRS端口均为用于测量的DMRS端口,其中,1000为承载下行数据的DMRS端口,该8个DMRS端口被分为8个DMRS端口组,即,每个DMRS端口组包含一个DMRS端口。
上述8个DMRS端口组的信道测量结果为:{1006}>{1007}>{1002}>{1003}>{1004}>{1005}>{1000}>{1001},其中,DMRS端口组{1001}的信道质量最差,DMRS端口组{1006}的信道质量最好,则终端设备上报的4个DMRS端口组为:{1006}、{1007}、{1002}和{1000}。
作为另一个可选的示例,协议可以规定或者网络可以指示终端设备上报信道质量达到门限的DMRS端口或DMRS端口组的信道信息,所述门限可以是协议规定或者网络配置的绝对门限值,也可以是协议规定或者网络配置的相对门限值。例如,对于终端设备测量的DMRS端口,当其信道质量超过绝对门限,或者其信道质量超过承载数据的DMRS端口的信道质量并且达到相对门限时,终端设备上报这些DMRS端口的信道信息。如果没有达到要求的DMRS端口或者DMRS端口组,则终端设备只上报承载下行数据的DMRS端口或者DMRS端口组的信道信息。
由于DMRS端口占用的频域资源在下行数据传输之前由网络设备向终端设备配置,在下行数据传输时对于终端设备和网络设备来说都是已知的。因此,终端设备上报的信道信息可以仅包括P个DMRS端口的编号或者P1个DMRS端口组的编号,从而具有上报数据量较少的优点。可选地,终端设备还可以上报P个DMRS端口或者P1个DMRS端口组的调制编码策略(modulation and coding scheme,MCS)信息,即,指示下一次下行数据传输时采用的MCS格式的变化量,或者,指示下一次下行数据传输时采用的MCS格式的索引。此外,信道信息还可以包含现有技术中部分类型或全部类型CSI,为网络设备确定较好的下行信道提供更详细的数据。例如,信道信息还可以包括:P1个DMRS端口组的信道质量指示(channel quality indicator,CQI),预编码矩阵指示(precoding matrix indicator,PMI),CSI-RS资源指示(CSI-RS resource indicator,CRI),SSB资源指示(SSB resource indicator,SSBRI),秩指示(rank indicator,RI)和层1接收参考信号功率(layer 1-Reference signal received power,L1-RSRP)中的至少一个。
上文主要从终端设备的角度描述了本申请提供的发送信道信息的方法,网络设备的处理过程与终端设备的处理过程具有对应关系,例如,终端设备从网络设备接收信息,意味着网络设备发送了该信息;终端设备向网络设备发送信息,意味着网络设备从终端设备接收该信息。因此,即使上文个别地方未明确写明网络设备的处理过程,本领域技术人员也 可以基于终端设备的处理过程清楚地了解网络设备的处理过程。
上文详细介绍了本申请提供的发送信道信息的方法和接收信道信息的方法的示例。可以理解的是,通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图3示出了本申请提供的一种通信装置的结构示意图。通信装置300可用于实现上述方法实施例中描述的方法。该通信装置300可以是芯片、网络设备或终端设备。
通信装置300包括一个或多个处理器301,该一个或多个处理器301可支持通信装置300实现图2所对应方法实施例中的方法。处理器301可以是通用处理器或者专用处理器。例如,处理器301可以是中央处理器(central processing unit,CPU)或基带处理器。基带处理器可以用于处理通信数据(例如,上文所述的配置信息),CPU可以用于对通信装置(例如,网络设备、终端设备或芯片)进行控制,执行软件程序,处理软件程序的数据。通信装置300还可以包括收发单元305,用以实现信号的输入(接收)和输出(发送)。
例如,通信装置300可以是芯片,收发单元305可以是该芯片的输入和/或输出电路,或者,收发单元305可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
通信装置300中可以包括一个或多个存储器302,其上存有程序304,程序304可被处理器301运行,生成指令303,使得处理器301根据指令303执行上述方法实施例中描述的方法。可选地,存储器302中还可以存储有数据。可选地,处理器301还可以读取存储器302中存储的数据(例如,表1至表6),该数据可以与程序304存储在相同的存储地址,该数据也可以与程序304存储在不同的存储地址。
处理器301和存储器302可以单独设置,也可以集成在一起,例如,集成在单板或者系统级芯片(system on chip,SOC)上。
通信装置300还可以包括收发单元305以及天线306。收发单元305可以称为收发机、收发电路或者收发器,用于通过天线306实现通信装置的收发功能。
在一种可能的设计中,处理器301用于通过收发单元305以及天线306向终端设备发送配置信息,该配置信息用于配置Q个用于测量的DMRS端口,Q个用于测量的DMRS端口包括M个承载下行数据的DMRS端口,Q为正整数,M为正整数,并且,Q>M。
处理器301还用于通过收发单元305以及天线306从终端设备接收P个DMRS端口的信道信息,P个DMRS端口属于Q个用于测量的DMRS端口,P为正整数。
发送配置信息以及接收信道信息的具体方式可以参见上述方法实施例中的相关描述。
在另一种可能的设计中,处理器301用于通过收发单元305以及天线306从网络设备接收配置信息,该配置信息用于配置Q个用于测量的DMRS端口,Q个用于测量的DMRS端口包括M个承载下行数据的DMRS端口,Q为正整数,M为正整数,并且,Q>M。
处理器301还用于通过收发单元305以及天线306向网络设备发送P个DMRS端口的信道信息,P个DMRS端口属于Q个用于测量的DMRS端口,P为正整数。
接收配置信息以及发送信道信息的具体方式可以参见上述方法实施例中的相关描述。
应理解,上述方法实施例的各步骤可以通过处理器301中的硬件形式的逻辑电路或者软件形式的指令完成。处理器301可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器301执行时实现本申请中任一方法实施例所述的通信方法。
该计算机程序产品可以存储在存储器302中,例如是程序304,程序304经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器301执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的通信方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器302。存储器302可以是易失性存储器或非易失性存储器,或者,存储器302可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
在通信装置300为终端设备的情况下,图4示出了本申请提供的一种终端设备的结构示意图。该终端设备400可适用于图1所示的系统中,实现上述方法实施例中终端设备的功能。为了便于说明,图4仅示出了终端设备的主要部件。
如图4所示,终端设备400包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及用于对整个终端设备进行控制。例如,处理器通过天线和控制电路接收配置信息,并根据配置信息生成第一时间信息,随后通过控制电路和天线发送第一时间信息。存储器主要用于存储程序和数据,例如存储通信协议和上述配置信息。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输 入输出装置例如是触摸屏或键盘,主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器中的程序,解释并执行该程序所包含的指令,处理程序中的数据。当需要通过天线发送信息时,处理器对待发送的信息进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后得到射频信号,并将射频信号通过天线以电磁波的形式向外发送。当承载信息的电磁波(即,射频信号)到达终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为信息并对该信息进行处理。
本领域技术人员可以理解,为了便于说明,图4仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限定。
作为一种可选的实现方式,图4中的处理器可以集成基带处理器和CPU的功能,本领域技术人员可以理解,基带处理器和CPU也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个CPU以增强其处理能力,终端设备的各个部件可以通过各种总线连接。基带处理器也可以被称为基带处理电路或者基带处理芯片。CPU也可以被称为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以程序的形式存储在存储器中,由处理器执行存储器中的程序以实现基带处理功能。
在本申请中,可以将具有收发功能的天线和控制电路视为终端设备400的收发单元401,用于支持终端设备实现方法实施例中的接收功能,或者,用于支持终端设备实现方法实施例中的发送功能。将具有处理功能的处理器视为终端设备400的处理单元402。如图4所示,终端设备400包括收发单元401和处理单元402。收发单元也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元401中用于实现接收功能的器件视为接收单元,将收发单元401中用于实现发送功能的器件视为发送单元,即收发单元401包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器402可用于执行存储器存储的程序,以控制收发单元401接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元401的功能可以考虑通过收发电路或者收发专用芯片实现。
在通信装置300为网络设备的情况下,图5是本申请提供的一种网络设备的结构示意图,该网络设备例如可以为基站。如图5所示,该基站可应用于如图1所示的系统中,实现上述方法实施例中网络设备的功能。基站500可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)501和至少一个基带单元(baseband unit,BBU)502。其中,BBU502可以包括分布式单元(distributed unit,DU),也可以包括DU和集中单元(central unit,CU)。
RRU501可以称为收发单元、收发机、收发电路或者收发器,其可以包括至少一个天线5011和射频单元5012。RRU501主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于支持基站实现方法实施例中的发送功能和接收功能。BBU502主要用于进行基带处理,对基站进行控制等。RRU501与BBU502可以是物理上设置在一起的,也可 以物理上分离设置的,即分布式基站。
BBU502也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如,BBU502可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
BBU502可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(例如,长期演进(long term evolution,LTE)网),也可以分别支持不同接入制式的无线接入网(如LTE网和5G网)。BBU502还包括存储器5021和处理器5022,存储器5021用于存储必要的指令和数据。例如,存储器5021存储上述方法实施例中的各种指信息。处理器5022用于控制基站进行必要的动作,例如,用于控制基站执行上述方法实施例中的操作流程。存储器5021和处理器5022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种发送信道信息的方法,其特征在于,包括:
    从网络设备接收配置信息,所述配置信息用于配置Q个用于测量的解调参考信号DMRS端口,所述Q为正整数;
    从所述网络设备接收指示信息,所述指示信息用于指示所述Q个用于测量的DMRS端口中的M个承载下行数据的DMRS端口,所述M为正整数,并且,Q>M;
    向所述网络设备发送P个DMRS端口的信道信息,所述P个DMRS端口属于所述Q个用于测量的DMRS端口,所述P为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述P个DMRS端口属于P1个DMRS端口组,所述P1个DMRS端口组中任意一个DMRS端口组包含的DMRS端口的数量为M。
  3. 根据权利要求2所述的方法,其特征在于,所述P1个DMRS端口组包括第一DMRS端口组和第二DMRS端口组,所述第一DMRS端口组与所述第二DMRS端口组对应不同的码分复用CDM组。
  4. 根据权利要求2或3所述的方法,其特征在于,所述P1个DMRS端口组为所述Q个DMRS端口所属的DMRS端口组中信道质量最好的DMRS端口组。
  5. 根据权利要求2或3所述的方法,其特征在于,所述P1个DMRS端口组包括所述M个承载下行数据的DMRS端口所属的一个DMRS端口组,以及,其它DMRS端口所属的DMRS端口组中信道质量最好的P1-1个DMRS端口组,所述其它DMRS端口为所述Q个用于测量的DMRS端口中除所述M个承载下行数据的DMRS端口以外的DMRS端口。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述信道信息包括所述P1个DMRS端口组的编号。
  7. 根据权利要求6所述的方法,其特征在于,所述信道信息还包括所述P1个DMRS端口组的信道质量指示CQI,所述P1个端口组的调制编码策略MCS信息,或,所述CQI和所述MCS信息的组合。
  8. 一种接收信道信息的方法,其特征在于,包括:
    向终端设备发送配置信息,所述配置信息用于配置Q个用于测量的解调参考信号DMRS端口,所述Q为正整数;
    向所述终端设备发送指示信息,所述指示信息用于指示所述Q个用于测量的DMRS端口中的M个承载下行数据的DMRS端口,所述M为正整数,并且,Q>M;
    从所述终端设备接收P个DMRS端口的信道信息,所述P个DMRS端口属于所述Q个用于测量的DMRS端口,所述P为正整数。
  9. 根据权利要求8所述的方法,其特征在于,所述P个DMRS端口属于P1个DMRS端口组,所述P1个DMRS端口组中任意一个DMRS端口组包含的DMRS端口的数量为M。
  10. 根据权利要求9所述的方法,其特征在于,所述P1个DMRS端口组包括第一 DMRS端口组和第二DMRS端口组,所述第一DMRS端口组与所述第二DMRS端口组对应不同的码分复用CDM组。
  11. 根据权利要求9或10所述的方法,其特征在于,所述P1个DMRS端口组为所述Q个DMRS端口所属的DMRS端口组中信道质量最好的DMRS端口组。
  12. 根据权利要求9或10所述的方法,其特征在于,所述P1个DMRS端口组包括所述M个承载下行数据的DMRS端口所属的一个DMRS端口组,以及,其它DMRS端口所属的DMRS端口组中信道质量最好的P1-1个DMRS端口组,所述其它DMRS端口为所述Q个用于测量的DMRS端口中除所述M个承载下行数据的DMRS端口以外的DMRS端口。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述信道信息包括所述P1个DMRS端口组的编号。
  14. 根据权利要求13所述的方法,其特征在于,所述信道信息还包括所述P1个DMRS端口组的信道质量指示CQI,所述P1个端口组的调制编码策略MCS信息,或者,所述CQI和所述MCS的组合。
  15. 一种发送信道信息的装置,其特征在于,包括接收单元和发送单元,
    所述接收单元用于:从网络设备接收配置信息,所述配置信息用于配置Q个用于测量的解调参考信号DMRS端口,所述Q为正整数;从所述网络设备接收指示信息,所述指示信息用于指示所述Q个用于测量的DMRS端口中的M个承载下行数据的DMRS端口,所述M为正整数,并且,Q>M;
    所述发送单元用于:向所述网络设备发送P个DMRS端口的信道信息,所述P个DMRS端口属于所述Q个用于测量的DMRS端口,所述P为正整数。
  16. 根据权利要求15所述的装置,其特征在于,所述P个DMRS端口属于P1个DMRS端口组,所述P1个DMRS端口组中任意一个DMRS端口组包含的DMRS端口的数量为M。
  17. 根据权利要求16所述的装置,其特征在于,所述P1个DMRS端口组包括第一DMRS端口组和第二DMRS端口组,所述第一DMRS端口组与所述第二DMRS端口组对应不同的码分复用CDM组。
  18. 根据权利要求16或17所述的装置,其特征在于,所述P1个DMRS端口组为所述Q个DMRS端口所属的DMRS端口组中信道质量最好的DMRS端口组。
  19. 根据权利要求16或17所述的装置,其特征在于,所述P1个DMRS端口组包括所述M个承载下行数据的DMRS端口所属的一个DMRS端口组,以及,其它DMRS端口所属的DMRS端口组中信道质量最好的P1-1个DMRS端口组,所述其它DMRS端口为所述Q个用于测量的DMRS端口中除所述M个承载下行数据的DMRS端口以外的DMRS端口。
  20. 根据权利要求16至19中任一项所述的装置,其特征在于,所述信道信息包括所述P1个DMRS端口组的编号。
  21. 根据权利要求20所述的装置,其特征在于,所述信道信息还包括所述P个DMRS端口组的信道质量指示CQI,所述P1个端口组的调制编码策略MCS信息,或者,所述CQI和所述MCS的组合。
  22. 一种接收信道信息的装置,其特征在于,包括发送单元和接收单元,
    所述发送单元用于:向终端设备发送配置信息,所述配置信息用于配置Q个用于测量的解调参考信号DMRS端口,所述Q为正整数;向所述终端设备发送指示信息,所述指示信息用于指示所述Q个用于测量的DMRS端口中的M个承载下行数据的DMRS端口,所述M为正整数,并且,Q>M;
    所述接收单元用于:从所述终端设备接收P个DMRS端口的信道信息,所述P个DMRS端口属于所述Q个用于测量的DMRS端口,所述P为正整数。
  23. 根据权利要求22所述的装置,其特征在于,所述P个DMRS端口属于P1个DMRS端口组,所述P1个DMRS端口组中任意一个DMRS端口组包含的DMRS端口的数量为M。
  24. 根据权利要求23所述的装置,其特征在于,所述P1个DMRS端口组包括第一DMRS端口组和第二DMRS端口组,所述第一DMRS端口组与所述第二DMRS端口组对应不同的码分复用CDM组。
  25. 根据权利要求23或24所述的装置,其特征在于,所述P1个DMRS端口组为所述Q个DMRS端口所属的DMRS端口组中信道质量最好的DMRS端口组。
  26. 根据权利要求23或24所述的装置,其特征在于,所述P1个DMRS端口组包括所述M个承载下行数据的DMRS端口所属的一个DMRS端口组,以及,其它DMRS端口所属的DMRS端口组中信道质量最好的P1-1个DMRS端口组,所述其它DMRS端口为所述Q个用于测量的DMRS端口中除所述M个承载下行数据的DMRS端口以外的DMRS端口。
  27. 根据权利要求23至26中任一项所述的装置,其特征在于,所述信道信息包括所述P1个DMRS端口组的编号。
  28. 根据权利要求27所述的装置,其特征在于,所述信道信息还包括所述P1个DMRS端口组的信道质量指示CQI,所述P1个端口组的调制编码策略MCS信息中,或者,所述CQI和所述MCS的组合。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储了计算机程序,当所述计算机程序被处理器执行时,使得处理器执行权利要求1至7中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储了计算机程序,当所述计算机程序被处理器执行时,使得处理器执行权利要求8至14中任一项所述的方法。
PCT/CN2019/130410 2019-01-16 2019-12-31 发送信道信息的方法和装置与接收信道信息的方法和装置 WO2020147578A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19910383.9A EP3902176A4 (en) 2019-01-16 2019-12-31 METHOD AND DEVICE FOR SENDING TAX INFORMATION, AND METHOD AND DEVICE FOR RECEIVING TAX INFORMATION
US17/376,521 US20210344462A1 (en) 2019-01-16 2021-07-15 Channel information sending method and apparatus and channel information receiving method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910041688.0 2019-01-16
CN201910041688.0A CN111447047B (zh) 2019-01-16 2019-01-16 发送信道信息的方法和装置与接收信道信息的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/376,521 Continuation US20210344462A1 (en) 2019-01-16 2021-07-15 Channel information sending method and apparatus and channel information receiving method and apparatus

Publications (1)

Publication Number Publication Date
WO2020147578A1 true WO2020147578A1 (zh) 2020-07-23

Family

ID=71614334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130410 WO2020147578A1 (zh) 2019-01-16 2019-12-31 发送信道信息的方法和装置与接收信道信息的方法和装置

Country Status (4)

Country Link
US (1) US20210344462A1 (zh)
EP (1) EP3902176A4 (zh)
CN (1) CN111447047B (zh)
WO (1) WO2020147578A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019191999A1 (zh) * 2018-04-04 2019-10-10 华为技术有限公司 一种资源确定方法、指示方法及装置
US11626914B2 (en) * 2020-05-27 2023-04-11 Qualcomm Incorporated Demodulation reference signal configuration selection and reporting
CN114205909A (zh) * 2020-09-18 2022-03-18 华为技术有限公司 一种通信方法及通信装置
US20220095145A1 (en) * 2020-09-23 2022-03-24 Qualcomm Incorporated Measurement report for mixed downlink reference signal reporting
CN113746574B (zh) * 2021-07-30 2023-01-24 苏州浪潮智能科技有限公司 一种信息交互方法、系统及设备
CN116419408A (zh) * 2021-12-28 2023-07-11 维沃移动通信有限公司 参考信号端口指示方法、终端及网络侧设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761401A (zh) * 2011-04-29 2012-10-31 上海贝尔股份有限公司 反馈信道信息的方法
WO2018127141A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种参考信号传输方法及装置
CN108282210A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信息发送方法、接收方法及装置
CN108282807A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 信道质量信息的测量、选择和上报方法及装置
WO2018204774A1 (en) * 2017-05-04 2018-11-08 Ntt Docomo, Inc. User equipment and method of channel state information (csi) acquisition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045762B (zh) * 2010-12-02 2013-07-24 大唐移动通信设备有限公司 一种上报信道状态的方法及装置
CN102170335B (zh) * 2011-05-03 2016-09-28 中兴通讯股份有限公司 信道状态信息上报方法及装置
CN108540995B (zh) * 2017-03-03 2020-10-02 维沃软件技术有限公司 一种信道状态检测方法、网络设备及用户设备
CN115442018A (zh) * 2017-03-23 2022-12-06 创新技术实验室株式会社 用于传送和接收解调参考信号的方法和装置
US10554359B2 (en) * 2017-03-25 2020-02-04 Lg Electronics Inc. Method of receiving phase tracking reference signal by user equipment in wireless communication system and device for supporting same
CN110149643A (zh) * 2018-02-11 2019-08-20 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
CN112771807A (zh) * 2018-09-28 2021-05-07 苹果公司 来自多个基站的解调参考信号传输
US11159270B2 (en) * 2018-11-08 2021-10-26 Qualcomm Incorporated Separately communicating demodulation reference signal-based channel information for multiple transmit receive points
US20220085929A1 (en) * 2018-12-26 2022-03-17 Telefonaktiebolaget Lm Ericsson (Publ) Configuration and resource allocation for downlink demodulation reference signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761401A (zh) * 2011-04-29 2012-10-31 上海贝尔股份有限公司 反馈信道信息的方法
WO2018127141A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种参考信号传输方法及装置
CN108282210A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信息发送方法、接收方法及装置
CN108282807A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 信道质量信息的测量、选择和上报方法及装置
WO2018204774A1 (en) * 2017-05-04 2018-11-08 Ntt Docomo, Inc. User equipment and method of channel state information (csi) acquisition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902176A4

Also Published As

Publication number Publication date
CN111447047A (zh) 2020-07-24
EP3902176A4 (en) 2022-04-27
EP3902176A1 (en) 2021-10-27
US20210344462A1 (en) 2021-11-04
CN111447047B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2020147578A1 (zh) 发送信道信息的方法和装置与接收信道信息的方法和装置
US11128416B2 (en) Feedback information transmission method and apparatus
WO2020143752A1 (zh) 信息传输的方法和通信装置
WO2020034857A1 (zh) Csi报告配置方法、终端设备和网络设备
US11889513B2 (en) Communication method and apparatus
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
WO2020199856A1 (zh) 信息传输的方法和通信装置
WO2019137441A1 (zh) 一种通信方法及装置
AU2017405379A1 (en) Wireless communication method and apparatus
KR102230746B1 (ko) 통신 방법, 네트워크 디바이스, 단말 디바이스, 컴퓨터 판독 가능형 저장 매체, 컴퓨터 프로그램 제품, 프로세싱 장치 및 통신 시스템
US20210219302A1 (en) Information Determining Method And Apparatus
WO2018171564A1 (zh) 一种信道质量指示反馈的方法及设备
WO2019080107A1 (zh) 传输物理上行控制信道pucch的方法、终端设备和网络设备
US20220150930A1 (en) Transmission mode determining method, information configuration method, and device
WO2021003620A1 (zh) 下行信号传输的方法和设备
US11432295B2 (en) Communication method and communications apparatus
WO2021159257A1 (zh) 一种信息配置方法及装置、终端
WO2020057375A1 (zh) 一种资源配置方法及通信装置
US20240090006A1 (en) Wireless communication method and network device
WO2018171742A1 (zh) 无线通信的方法和装置
WO2020233500A1 (zh) 一种通信方法及通信装置
WO2020221261A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019910383

Country of ref document: EP

Effective date: 20210721