WO2020147273A1 - 一种点蒸发源以及蒸镀设备 - Google Patents

一种点蒸发源以及蒸镀设备 Download PDF

Info

Publication number
WO2020147273A1
WO2020147273A1 PCT/CN2019/095195 CN2019095195W WO2020147273A1 WO 2020147273 A1 WO2020147273 A1 WO 2020147273A1 CN 2019095195 W CN2019095195 W CN 2019095195W WO 2020147273 A1 WO2020147273 A1 WO 2020147273A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible body
evaporation source
heating
crucible
point evaporation
Prior art date
Application number
PCT/CN2019/095195
Other languages
English (en)
French (fr)
Inventor
姚松
甘帅燕
王亚
宋建华
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2020147273A1 publication Critical patent/WO2020147273A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source

Definitions

  • the present application relates to the technical field of manufacturing of display devices, in particular to a point evaporation source and evaporation equipment.
  • Organic light-emitting diodes are devices that use organic thin film layers forming pn junctions to combine the holes injected into the anode and electrons from the cathode to emit light. It has the advantages of fast response speed, light weight, good flexibility, wide viewing angle, and low power consumption. A new generation of display technology with great development prospects.
  • the technical problem to be solved by the present application is to overcome the defect of uneven film thickness evaporated by a point evaporation source, and provide a point evaporation source and evaporation equipment.
  • a point evaporation source which includes:
  • the inner wall of the crucible body is in the form of a rotating body, and the generatrix of the rotating body conforms to the following function:
  • the axis of the rotating body is a vertical straight line passing through the vertex of the function curve.
  • the heating assembly for heating the crucible body, and the heating assembly includes a heating wire arranged in contact with the outer surface of the crucible body.
  • the heating wire is configured as a mesh heating structure.
  • the mesh heating structure is configured to gradually increase the mesh size in the direction from the top to the bottom.
  • the crucible body has a uniform thickness.
  • the mesh size of the mesh heating structure is the same.
  • the crucible body is configured to gradually increase in thickness from the top to the bottom thereof.
  • it also includes a heat conducting layer at least arranged between the heating wire and the outer surface of the crucible body.
  • the heat conductive layer has a planar structure formed by pressing boron nitride.
  • An evaporation equipment comprising a plurality of point evaporation sources as described above.
  • the crucible body is erected on the annular support.
  • the opening has a larger divergence angle, so that the evaporation material molecules have a larger movement range when they are evaporated and ejected from the opening of the crucible body, which is more helpful for the material molecules Dispersely move to the surface of the substrate to achieve large-area spraying; at the same time, due to the large opening, the movement of the molecules is relatively dispersed, which can correspondingly reduce the deposition thickness above the center of the evaporation source and increase the deposition at the edge of the evaporation source.
  • the thickness is conducive to the uniformity of the deposited film.
  • a point evaporation source provided by another aspect of the present application further includes a heating component for heating the crucible body, the heating component includes a heating wire arranged on the outer surface of the crucible body; wherein the heating wire is configured as a mesh heating structure
  • the mesh heating structure is configured to gradually increase the mesh size along the direction from its top to the bottom; the crucible body has a uniform thickness; or the mesh size of the mesh heating structure is the same, and the crucible body is structured along the direction from its top to the bottom The thickness gradually increases. Since the crucible body has an inverted cone structure, it corresponds to less evaporation material in the bottom of the crucible, and corresponds to more evaporation material in the top of the crucible.
  • the crucible body is provided with a uniform thickness and
  • the mesh heating structure is configured to gradually increase the mesh size in the direction from its top to the bottom, or the mesh size of the mesh heating structure is the same and the crucible body is configured to gradually increase in thickness from the top to the bottom thereof, thereby making The evaporation material on the top and bottom of the crucible is evenly heated.
  • the evaporation equipment provided by the present application has all the advantages brought by the point evaporation source because it has the above-mentioned point evaporation source.
  • Fig. 1 is a schematic diagram of film thickness distribution on a conventional point source evaporation substrate
  • Figure 2 is a schematic diagram of the evaporation structure of a point evaporation source
  • Figure 3 is a schematic diagram of the evaporation principle of a point evaporation source
  • FIG. 4 is a schematic diagram of the structure of the crucible body of the first embodiment of this application.
  • FIG. 5 is a schematic diagram of the structure of the heating assembly in the first embodiment of this application.
  • FIG. 6 is a schematic diagram of the structure of the crucible body according to another embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a heating assembly in another embodiment of the application.
  • This application describes an evaporation equipment, as shown in Figures 1 and 2, which includes a point evaporation source 2 and a ring-shaped support (not shown in the figure).
  • the point evaporation source 2 is located below the substrate 1, and the minute spherical evaporation source capable of evaporating the same amount of material from all directions is called the point evaporation source.
  • FIG. 4 shows the crucible body 3, which is erected on a ring-shaped support (not shown in the figure).
  • FIG. 5 shows the heating component 4 and the heat conducting layer 5, and the heating component 4 is used to heat the crucible body 3.
  • the heating assembly 4 includes a heating wire 41 and a power supply system 42.
  • the heating wire 41 is provided on the outer surface of the crucible body 3 to heat it, and the power supply system 42 is electrically connected to the heating wire 41 to supply power.
  • the generatrix of the rotating body is a function curve of the above function in the interval -90° ⁇ 90°
  • the axis of the rotating body is a vertical straight line passing the apex of the above function curve
  • the inner wall of the crucible body 3 is defined by the above generatrix A curved surface formed by rotating around the axis of a rotating body.
  • the crucible body 3 with the above-mentioned specific bowl-shaped structure has an opening with a specific shape, which has a larger divergence angle, so that The evaporation material molecules have a large movement range when they are evaporated and ejected from the opening of the crucible body 3, which is more helpful for the material molecules to move to the surface of the substrate in a dispersed manner to achieve large-area spraying; at the same time, due to the large opening, the movement of the molecules is relatively large. Dispersion can correspondingly reduce the deposition thickness above the center position of the evaporation source and increase the deposition thickness corresponding to the edge position of the evaporation source, which is beneficial to the uniformity of deposition and film formation.
  • the crucible body 3 in this embodiment has a uniform thickness.
  • the heating wire 41 is attached to the outer surface of the crucible body 3, and the heating wire 41 is configured as a mesh heating structure. Since there is less evaporation material in the bottom of the crucible and more evaporation material in the top of the crucible, As shown in FIG. 5, the mesh heating structure in this embodiment is configured to gradually increase the mesh size from the top to the bottom, so that the evaporation material on the top and bottom of the crucible is evenly heated.
  • the overall temperature difference of the vapor deposition material is ensured to be small, thereby preventing the vapor deposition material from splashing and stably forming an optical thin film on the optical substrate, thereby improving the uniformity of film formation.
  • a thermal conductive layer 5 may be provided on the inner side or both sides of the heating wire 41. Wherein this embodiment is provided with a thermally conductive layer 5 on both the inner and outer sides of the heating wire 41.
  • the thermally conductive layer 5 is a planar structure pressed by boron nitride.
  • the thermal conductive layer 5 located inside the heating wire 41 and the crucible body 3 The outer surface is attached, and the heat conduction layer is provided to further ensure that the crucible body 3 is heated evenly.
  • the heating wire 41 in this embodiment can be any one of nickel-chromium alloy, nickel-chromium-iron alloy or iron-chromium-aluminum alloy.
  • nickel-chromium alloy and nickel-chromium-iron alloy have high and stable resistivity, corrosion resistance, and surface resistance. Good oxidation performance; iron-chromium-aluminum alloy has high resistivity, low temperature coefficient of resistance, and long high temperature resistance life. They are all preferred heating materials in heating components.
  • the crucible body 3 in this embodiment can be formed by a CNC machine tool after being pressed and sintered by a mold.
  • the crucible body can also be a crucible with a hollow sandwich structure, that is, a hollow insulation layer is formed between the inner wall surface and the outer surface of the crucible body, which is more conducive to uniform heating of the inner surface of the crucible .
  • the manufacturing process of the crucible is the same as the prior art, so it will not be repeated here.
  • the crucible body 3 may also be configured to gradually increase in thickness from the top to the bottom.
  • the heating wire 41 is in the mesh heating structure The size of each mesh is the same.
  • a crucible body 3 with a gradually changing thickness is provided so that the vapor deposition material on the top and bottom of the crucible is evenly heated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种点蒸发源(2),其包括:坩埚本体(3),所述坩埚本体(3)的内壁为旋转体的形式,所述旋转体的母线符合以下函数:y=cos 3θ,其中-90°≤θ≤90°;所述旋转体的轴为经过所述函数曲线的顶点的竖直直线。使得坩埚表面的蒸镀材料分子到达蒸发温度的时间点不同,进而改变蒸镀材料分子到达基板(1)表面的时间,由此对基板(1)上材料的沉积膜层的厚度进行补偿,减少对应于蒸发源中心位置的沉积厚度,增加对应于蒸发源边缘位置的沉积厚度;有利于沉积成膜的均匀性。

Description

一种点蒸发源以及蒸镀设备 技术领域
本申请涉及显示装置的制造技术领域,具体涉及一种点蒸发源以及蒸镀设备。
背景技术
有机发光二极管是利用形成p-n结的有机薄膜层,注入阳极的空穴与阴极的电子结合后发光的器件,具有响应速度快,重量轻,柔韧性好,视角广,低功耗等优点,是极具发展前景的新一代显示技术。
为了满足大型OLED显示屏、OLED高分辨率手机显示的消费需求及量产效率最大化,通常使用基于大面积玻璃的量产工艺,在制作过程中最重要的工艺是有机薄膜及无机薄膜蒸镀的工艺。主要采用真空蒸镀工艺,将装有粉末或是颗粒状蒸镀材料的点蒸发源(Point Source)放置在真空设备内部,参见附图1为常规点蒸发源蒸镀示意图,将装在蒸发源内部的蒸镀材料进行蒸发喷出使之在基板表面上形成有机或无机薄膜。目前现有技术中的点蒸发源蒸镀无法获得均匀的膜层结构。
申请内容
因此,本申请要解决的技术问题在于克服点蒸发源蒸镀的膜厚不均的缺陷,提供一种点蒸发源以及蒸镀设备。
为此,本申请的技术方案如下:
一种点蒸发源,其包括:
坩埚本体,所述坩埚本体的内壁为旋转体的形式,所述旋转体的母线符合 以下函数:
y=cos 3θ,其中-90°≤θ≤90°;
所述旋转体的轴为经过所述函数曲线的顶点的竖直直线。
进一步地,还包括给所述坩埚本体加热的加热组件,所述加热组件包括贴合所述坩埚本体的外表面设置的加热丝。
进一步地,所述加热丝构造为网状加热结构。
进一步地,所述网状加热结构构造为沿从其顶部到底部的方向网眼尺寸逐渐增大。
进一步地,所述坩埚本体具有均匀的厚度。
进一步地,所述网状加热结构的网眼尺寸相同。
进一步地,所述坩埚本体构造为沿从其顶部到底部的方向厚度逐渐增大。
进一步地,还包括至少设于所述加热丝与所述坩埚本体外表面之间的导热层。
进一步地,所述导热层为由氮化硼压制而成的面状结构。
一种蒸镀设备,其包括若干如上述任一所述的点蒸发源。
进一步地,还包括环状支架,所述坩埚本体架设于所述环状支架上。
本申请技术方案,具有如下优点:
1.根据本申请的一个方面提供的一种点蒸发源,其包括:坩埚本体,坩埚本体的内壁为旋转体的形式,旋转体的母线符合以下函数:y=cos 3θ,其中-90°≤θ≤90°;旋转体的轴为经过函数曲线的顶点的竖直直线。因本申请的坩埚本体具有特定形状的敞口,该敞口具有较大的发散角,使得蒸镀材料分子从坩埚本体的敞口内蒸发喷出时的运动范围较大,更有助于材料分子分散地运动至基板表面,实现大面积喷涂;同时由于敞口较大,分子的运动相对分散,可相应的减少对应于蒸发源中心位置上方的沉积厚度,增加对应于蒸发源边缘位置处的沉积厚度,有利于沉积成膜的均匀性。
2.本申请的另一个方面提供的一种点蒸发源,还包括给坩埚本体加热的加 热组件,加热组件包括贴合坩埚本体的外表面设置的加热丝;其中加热丝构造为网状加热结构,网状加热结构构造为沿从其顶部到底部的方向网眼尺寸逐渐增大;坩埚本体具有均匀的厚度;或者网状加热结构的网眼尺寸相同,坩埚本体构造为沿从其顶部到底部的方向厚度逐渐增大。由于坩埚本体为倒锥状结构,对应于坩埚底部内的蒸镀材料较少,对应于坩埚顶部内的蒸镀材料较多,因此本申请的一个实施例中将坩埚本体设有均匀的厚度且网状加热结构构造为沿从其顶部到底部的方向网眼尺寸逐渐增大,或者网状加热结构的网眼尺寸相同且坩埚本体构造为沿从其顶部到底部的方向厚度逐渐增大,由此使得坩埚内顶部和底部的蒸镀材料均匀受热。
3.本申请提供的一种蒸镀设备,由于其具备上述点蒸发源,因此具备该点蒸发源所带来的一切优点。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为常规点源蒸镀的基板上的膜厚分布示意图;
图2为点蒸发源蒸镀结构示意图;
图3为点蒸发源蒸镀原理示意图;
图4为本申请的第一种实施方式的坩埚本体结构示意图;
图5为本申请的第一种实施方式中的加热组件结构示意图;
图6为本申请的另一种实施方式的坩埚本体结构示意图;
图7为本申请的另一种实施方式中的加热组件结构示意图。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
本申请记载了一种蒸镀设备,如图1和2所示,其包括点蒸发源2和环状支架(未在图中示出)。其中点蒸发源2位于基板1的下方,其中将能够从各个方向蒸发等量材料的微小球状蒸发源称为点蒸发源。
本实施例中的用于蒸镀的点蒸发源,参见附图4、5所示。附图4示出了坩埚本体3,坩埚本体3架设于环状支架(未在图中示出)上。附图5示出了加热组件4和导热层5,加热组件4用于给坩埚本体3加热。如图5所示,加热组件4包括加热丝41和电源系统42,其中加热丝41设于坩埚本体3的外表面对其进行加热,电源系统42与加热丝41电连接对其进行供电。
其中如附图3所示,申请人发现在生产制造过程中蒸汽入射角度θ成为影响成膜均匀性的主要因素,通过将坩埚本体3的内壁设为旋转体的形式,参见附图4,其中旋转体的母线符合以下函数:
y=cos 3θ,其中-90°≤θ≤90°;
即旋转体的母线为上述函数在区间-90°≤θ≤90°内的一段函数曲线,旋转体的轴为经过上述函数曲线的顶点的竖直直线,坩埚本体3的内壁即为由上述母线围绕旋转体的轴旋转形成的曲面。
当在本实施例中的碗状坩埚本体3内加入蒸镀材料后,通过上述特定碗状结构的坩埚本体3,因其具有特定形状的敞口,该敞口具有较大的发散角,使得蒸镀材料分子从坩埚本体3的敞口内蒸发喷出时的运动范围较大,更有助于材料分子分散地运动至基板表面,实现大面积喷涂;同时由于敞口较大,分子的运动相对分散,可相应的减少对应于蒸发源中心位置上方的沉积厚度,增加对应于蒸发源边缘位置处的沉积厚度,有利于沉积成膜的均匀性。
如图5所示,本实施例中的坩埚本体3具有均匀的厚度。加热丝41贴合坩埚本体3的外表面设置,其中加热丝41构造为网状加热结构,由于对应于坩埚底部内的蒸镀材料较少,对应于坩埚顶部内的蒸镀材料较多,因此如附图5所示,本实施例中网状加热结构构造为沿从其顶部到底部的方向网眼尺寸逐渐增大,以使得坩埚内顶部和底部的蒸镀材料均匀受热。确保在加热蒸镀材料时蒸镀材料的整体温差较小,从而防止蒸镀材料飞溅,能够稳定地向光学基板形成光学薄膜,由此提高成膜的均匀性。
参见附图5所示,为确保加热组件4加热的均匀性可在加热丝41的内侧或内外两侧设有导热层5。其中本实施例在加热丝41的内外两侧均设有导热层5,导热层5为由氮化硼压制而成的面状结构,其中位于加热丝41内侧的导热层5与坩埚本体3的外表面贴合,通过设置导热层进一步确保了坩埚本体3的受热均匀。
本实施例中的加热丝41可采用镍铬合金、镍铬铁合金或铁铬铝合金中的任意一种,其中镍铬合金、镍铬铁合金有较高而稳定的电阻率,耐腐蚀,表面抗氧化性能好;铁铬铝合金电阻率高,电阻温度系数小,耐高温寿命长,均为加热组件中优选的发热材料。
本实施例中的坩埚本体3可经过模具压制烧结后通过数控机床精车加工成型。当然,作为可替换的实施方式,坩埚本体也可为带有中空夹层结构的坩埚,即坩埚本体的内壁表面和外表面之间形成有中空的保温层,更有利于坩埚内表面面的均匀受热。其中坩埚的制造工艺与现有技术相同,在此不做赘述。
作为可替换的实施方式,如图6所示,坩埚本体3也可构造为沿从其顶部到底部的方向厚度逐渐增大,此时如图7所示,加热丝41的网状加热结构内的各个网眼尺寸均相同。同样地,该设置方式通过设置有厚度逐渐变化的坩埚本体3以使得坩埚内顶部和底部的蒸镀材料均匀受热。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其 它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请的保护范围之中。

Claims (11)

  1. 一种点蒸发源,其中,包括:
    坩埚本体,所述坩埚本体的内壁为旋转体的形式,所述旋转体的母线符合以下函数:
    y=cos 3θ,其中-90°≤θ≤90°;
    所述旋转体的轴为经过所述函数曲线的顶点的竖直直线。
  2. 根据权利要求1所述的一种点蒸发源,其中:还包括给所述坩埚本体加热的加热组件,所述加热组件包括贴合所述坩埚本体的外表面设置的加热丝。
  3. 根据权利要求2所述的一种点蒸发源,其中:所述加热丝构造为网状加热结构。
  4. 根据权利要求3所述的一种点蒸发源,其中:所述网状加热结构构造为沿从其顶部到底部的方向网眼尺寸逐渐增大。
  5. 根据权利要求4所述的一种点蒸发源,其中:所述坩埚本体具有均匀的厚度。
  6. 根据权利要求3所述的一种点蒸发源,其中:所述网状加热结构的网眼尺寸相同。
  7. 根据权利要求6所述的一种点蒸发源,其中:所述坩埚本体构造为沿从其顶部到底部的方向厚度逐渐增大。
  8. 根据权利要求5或7所述的一种点蒸发源,其中:还包括至少设于所述加热丝与所述坩埚本体外表面之间的导热层。
  9. 根据权利要求8所述的一种点蒸发源,其中,所述导热层为由氮化硼压制而成的面状结构。
  10. 一种蒸镀设备,其中:包括若干如权利要求1-9任意一项所述的点蒸发源。
  11. 根据权利要求10所述的一种蒸镀设备,其中:还包括环状支架,所述 坩埚本体架设于所述环状支架上。
PCT/CN2019/095195 2019-01-17 2019-07-09 一种点蒸发源以及蒸镀设备 WO2020147273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920081047.3U CN209619438U (zh) 2019-01-17 2019-01-17 一种点蒸发源以及蒸镀设备
CN201920081047.3 2019-01-17

Publications (1)

Publication Number Publication Date
WO2020147273A1 true WO2020147273A1 (zh) 2020-07-23

Family

ID=68450393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095195 WO2020147273A1 (zh) 2019-01-17 2019-07-09 一种点蒸发源以及蒸镀设备

Country Status (2)

Country Link
CN (1) CN209619438U (zh)
WO (1) WO2020147273A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017071A (ja) * 1984-06-14 1985-01-28 Matsushita Electric Ind Co Ltd 蒸発源用容器
TW419528B (en) * 1997-08-18 2001-01-21 Kempten Elektroschmelz Gmbh Ceramic flash TV evaporator
CN1940123A (zh) * 2005-09-30 2007-04-04 三星Sdi株式会社 蒸发源部件及使用该部件的真空沉积装置
US20100031878A1 (en) * 2008-08-11 2010-02-11 Scott Wayne Priddy Vacuum Deposition Sources Having Heated Effusion Orifices
CN108713262A (zh) * 2015-12-18 2018-10-26 铣益系统有限责任公司 用于金属薄膜沉积的坩埚及用于金属薄膜沉积的蒸发源
CN208293071U (zh) * 2018-03-26 2018-12-28 江阴市光科真空机械有限公司 防爆冲的蒸镀坩埚

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017071A (ja) * 1984-06-14 1985-01-28 Matsushita Electric Ind Co Ltd 蒸発源用容器
TW419528B (en) * 1997-08-18 2001-01-21 Kempten Elektroschmelz Gmbh Ceramic flash TV evaporator
CN1940123A (zh) * 2005-09-30 2007-04-04 三星Sdi株式会社 蒸发源部件及使用该部件的真空沉积装置
US20100031878A1 (en) * 2008-08-11 2010-02-11 Scott Wayne Priddy Vacuum Deposition Sources Having Heated Effusion Orifices
CN108713262A (zh) * 2015-12-18 2018-10-26 铣益系统有限责任公司 用于金属薄膜沉积的坩埚及用于金属薄膜沉积的蒸发源
CN208293071U (zh) * 2018-03-26 2018-12-28 江阴市光科真空机械有限公司 防爆冲的蒸镀坩埚

Also Published As

Publication number Publication date
CN209619438U (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN201751427U (zh) 一种线性蒸发源
US8366831B2 (en) Evaporation source
CN104078626B (zh) 用于oled材料蒸镀的加热装置
CN102899609B (zh) 掩膜板、制造有机发光显示面板的蒸镀装置及其方法
CN104928628A (zh) 一种蒸镀坩埚
CN106148893B (zh) 一种蒸镀装置及蒸镀方法、基板
US9328961B2 (en) Crucible of coating machine
CN105132861A (zh) 一种蒸镀掩膜版以及蒸镀设备
WO2015013987A1 (zh) 具有导热装置的坩埚
CN103966555B (zh) 蒸镀源加热装置
CN209957886U (zh) 一种平面蒸发的蒸发源
TWI452157B (zh) 一種面型蒸鍍源及其蒸鍍方法與系統
CN110890397A (zh) 一种阵列基板
WO2017156827A1 (zh) 导热装置与蒸镀坩埚
WO2020147273A1 (zh) 一种点蒸发源以及蒸镀设备
CN104694883A (zh) 一种坩埚
KR20150113742A (ko) 증발원 및 이를 포함하는 증착장치
CN209957884U (zh) 一种平面蒸发的坩埚装置
CN212247190U (zh) 一种坩埚蒸发装置
JP2019534937A (ja) 坩堝、蒸着装置及び蒸着システム
US20140191200A1 (en) Apparatus and Method for Making OLED Lighting Device
CN108598132A (zh) 显示基板的制作方法、掩膜板的制作方法、显示装置
CN106898663A (zh) 一种太阳能电池、太阳能电池的制作方法及用电设备
CN109321883B (zh) 一种蒸镀机
CN219239746U (zh) 一种蒸镀结构及蒸镀装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909841

Country of ref document: EP

Kind code of ref document: A1