WO2020147117A1 - 具有栅栏式定子的外盘式马达 - Google Patents

具有栅栏式定子的外盘式马达 Download PDF

Info

Publication number
WO2020147117A1
WO2020147117A1 PCT/CN2019/072360 CN2019072360W WO2020147117A1 WO 2020147117 A1 WO2020147117 A1 WO 2020147117A1 CN 2019072360 W CN2019072360 W CN 2019072360W WO 2020147117 A1 WO2020147117 A1 WO 2020147117A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
aforementioned
disc
fence
permanent magnets
Prior art date
Application number
PCT/CN2019/072360
Other languages
English (en)
French (fr)
Inventor
黄思伦
Original Assignee
深圳市善象智能科技企业(有限合伙)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市善象智能科技企业(有限合伙) filed Critical 深圳市善象智能科技企业(有限合伙)
Priority to PCT/CN2019/072360 priority Critical patent/WO2020147117A1/zh
Priority to JP2019568146A priority patent/JP2022517881A/ja
Publication of WO2020147117A1 publication Critical patent/WO2020147117A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors

Definitions

  • the invention relates to an outer disc motor, in particular to an outer disc motor with a fence-type stator.
  • the common permanent magnet type DC servo motor is to set the permanent magnet on the outer rotor, and set the armature coil on the stator of the core, no matter if the current passes through the armature coil, it will generate heat due to resistance, or during the commutation process.
  • the permanent magnet AC servo motor 9 has a stator with an armature coil 91 arranged on the outer layer of the motor, and a permanent magnet 93 is arranged on the rotor at the inner core of the armature coil 91. Therefore, heat dissipation is better, and Higher power to volume ratio.
  • some outer rotor motors overcome the heat dissipation problem of the armature coil, they are limited by the structural design of the inner and outer layers, which reduces the elasticity of strain when faced with problems such as output torque changes and installation space constraints.
  • An object of the present invention is to provide an outer disk motor with a fence stator. Through the ratio of the number of stator cores and permanent magnets of the rotor, the air gap is effectively reduced, the magnetic path is smooth, and the effect of reducing heat generation and energy consumption is achieved. .
  • Another object of the present invention is to provide an outer disk motor with a fence-type stator, which utilizes the phase difference between the clock-type drive signals and matches the ratio of the iron core and the permanent magnet to make the overall magnetic drive of the motor uniform and smooth.
  • Another object of the present invention is to provide an outer disk motor with a barrier stator.
  • the structure of the disk outer rotor prevents the stator with coil windings from being covered, which facilitates heat dissipation and smoothly extends the life of the motor assembly.
  • Another object of the present invention is to provide an outer disk motor with a barrier type stator.
  • the present invention discloses an outer disc motor with a fence stator, comprising: at least one pivot shaft extending along an axial direction; at least two disc outer rotors arranged in parallel with each other, each of the aforementioned disc outer rotors includes A disk body and an even number of permanent magnets, and the disk body is respectively fixed to the pivot axis perpendicularly with its symmetric center, the permanent magnets are respectively set on the disk body with two magnetic poles on the disk body, and each of the above
  • the point of the shortest distance between the permanent magnet and the pivot is located on a circle centered on the pivot, and every two adjacent permanent magnets are connected in series with the same polarity and are evenly arranged relative to the pivot, and
  • the different magnetic poles of the permanent magnets of at least two adjacent disk-type outer rotors are arranged opposite to each other; at least one set of barrier-type stators includes a plurality of elongated iron cores, and each of the aforementioned iron cores is parallel to each other along the
  • each of the iron cores of the aforementioned group of barrier stators has its two poles adjacent to the permanent Magnets, and the number of said iron cores is greater than one and less than two times the number of said permanent magnets, each of said iron cores is wound with a coil winding for receiving an AC clock drive signal to magnetize said iron; at least one rotor A position sensing element for measuring the position of the permanent magnet of the disc-type outer rotor and outputting at least one position signal; and an enabling controller to provide the aforementioned AC clock drive signal based on the received position signal To the above-mentioned coil windings, so that the clock drive signals of each two adjacent coil windings have a uniform phase difference, and the sum of the aforementioned phase differences between all adjacent coil windings of all the group of barrier stators is A non-zero integer multiple of 360 degrees.
  • each of the aforementioned iron cores is a plurality of silicon steel sheets.
  • the aforementioned outer disk motor with a fence-type stator wherein the fence-type stator further includes a non-magnetic stator base that holds the iron cores.
  • the aforementioned outer disk motor with a fence-type stator further includes a motor housing connected to the above-mentioned fence-type stator.
  • the length of the iron core is not more than 3.5 cm, and the overall thickness of the outer disk motor is not more than 6 cm.
  • the rotor position sensing element is a Hall element.
  • the aforementioned outer disc motor with a barrier stator further includes:
  • a set of auxiliary fence stators arranged between one of the two disc outer rotors and the auxiliary disc outer rotor.
  • the auxiliary fence stator and the fence stator have the same structure and are in a co-pivot configuration.
  • the stator is also magnetized by the enabling controller.
  • the shortest distance between the iron core and the permanent magnet corresponding to the proximity is smaller than the thickness of the disk body.
  • an outer disc motor with a barrier stator of the present application includes at least two outer disc rotors arranged in parallel with each other and at least one set of barrier stators, through the ingenious arrangement of the outer rotor and the stator, and at least one pivot
  • the distance between the air gap is reduced, so that the magnetic flux mainly passes through the iron core and the permanent magnet to achieve a loop, and the magnetic resistance is greatly reduced; on the other hand, the number of permanent magnets and iron cores match each other to form a magnetic circuit together.
  • the clock drive signal with a specific phase difference allows the rotor to run smoothly; in addition, the outer disk motor is easy to dissipate heat, and the service life of the motor components is prolonged.
  • auxiliary disk outer rotor and the auxiliary fence stator are expanded, so that the present invention does not require
  • the output torque can be flexibly adjusted to meet the requirements of the installation space; in particular, every two adjacent permanent magnets on the outer rotor are arranged in the same polarity and opposite to the aforementioned pivot Evenly arranged, and the different magnetic poles of the permanent magnets of the two adjacent disk-type outer rotors are arranged opposite to each other, and each iron core of the barrier-type stator is respectively adjacent to the permanent magnets of the two disk-type outer rotors with its respective two poles.
  • each permanent magnet is fitted with a complete magnetic circuit, which effectively improves the motor energy conversion efficiency, and achieves the effect of reducing heat generation and reducing energy consumption , And then achieve all the above objectives.
  • FIG. 1 is a schematic side view of the structure of a conventional motor with an outer rotor to illustrate the relative positional relationship between the stator and the rotor of the motor.
  • FIG. 2 is a schematic diagram of the structure of a disc motor in the prior art to illustrate its main components and their relative relationships.
  • Fig. 3 is a partial three-dimensional exploded schematic view of the first preferred embodiment of the outer disc motor with a barrier stator according to the present invention, illustrating the structure of the disc body and permanent magnets of the rotor.
  • FIG. 4 is a partial perspective exploded schematic view of the embodiment of FIG. 3, illustrating the relative relationship between the non-magnetic stator base of the stator and the iron core-coil.
  • Fig. 5 is a schematic diagram of the permanent magnet and iron core-coil three-dimensional combination of Fig. 4.
  • Fig. 6 is a perspective exploded schematic view of the permanent magnet and iron core-coil of Fig. 5.
  • Fig. 7 is a schematic diagram of the actuated wheel of Fig. 3 applied to the electric bicycle.
  • Fig. 8 is a schematic diagram of the actuated wheel of Fig. 3 applied to the single-fork electric bicycle.
  • FIG. 9 is a schematic diagram of the clock driving signal provided by the enabling controller in the embodiment of FIG. 3, illustrating the phase difference relationship of the clock driving signal received by adjacent coil windings.
  • Fig. 10 is a schematic side view of the magnetic field line distribution of the permanent magnet in the embodiment of Fig. 3.
  • FIG. 11 is a partial three-dimensional exploded schematic view of the second preferred embodiment of the outer disk motor with a fence-type stator according to the present invention.
  • the aforementioned outer disk motor 1 has a pivot 12 extending in the axial direction for convenience.
  • the aforementioned axial direction is defined here as being along the upper and lower directions of the drawing, and two outer disc rotors 14 arranged parallel to each other.
  • Each outer disc rotor 14 includes a disc body 141 and an even number of permanent magnets 143.
  • six permanent magnets 143 are taken as an example.
  • the disc main body 141 in this example is a circular disc, and is fixed to the pivot 12 vertically with its symmetric center.
  • the aforementioned permanent magnets 143 are all slightly elongated and curved and flatly embedded in the disc body 141, and the two magnetic poles N and S of each permanent magnet 143 are not only arranged at the disc body 141, In addition, two adjacent permanent magnets 143 are arranged in such a way that the N poles are close in two phases or the S poles are close in two phases.
  • the permanent magnet 143 itself is in the shape of a curved arc, and the curved shape of the magnet is such that the magnets and magnetic poles are uniformly arranged on a circle 121 with the pivot 12 as the center.
  • the two disk outer rotors 14 are arranged oppositely The method is to set the different magnetic poles of the permanent magnet 143 to face each other.
  • the outer disc motor 1 further includes a set of barrier stators 16, which in this example includes 9 elongated iron cores 161 of equal length, and each of the iron cores 161 has a length of 3.5 cm.
  • the iron core 161 in this example is illustrated as being composed of a plurality of silicon steel sheets, thereby reducing the effect of eddy current, and being held together by a non-magnetic stator base 165.
  • a non-magnetic stator base 165 a non-magnetic stator base 165.
  • those of ordinary skill in the technical field of the present invention can arbitrarily choose, for example, iron powder die-casting or other conventional magnetic conductors as the iron core, which will not hinder the implementation of this application.
  • Each of the aforementioned iron cores 161 are arranged parallel to each other along the above-mentioned axial direction, and are evenly distributed at a circular tube 123 centered on the pivot axis 12. Since the iron cores 161 are evenly arranged, each iron core 161 and The angle between the connecting line of the pivot shaft 12 and the connecting line of the adjacent iron core 161 and the pivot shaft 12 is 30 degrees, and the two poles of each iron core 161 are respectively close to the above-mentioned permanent magnets corresponding to the aforementioned two disc-type outer rotors 14 143.
  • the number of iron cores 161 in this example is 1.5 times that of the permanent magnets 143, no matter where the permanent magnet 143 rotates to any position, it can exactly correspond to two iron cores 161, and the two iron cores 161 are respectively close to their N poles. With the S pole, the two permanent magnets 143 corresponding to each other on the upper and lower disc outer rotor 14 can form a complete magnetic circuit through the two iron cores 161 here.
  • the overall thickness of the motor in this example is not more than 6 cm, the actual thickness is only about 5 cm, and the thickness of the disc outer rotor 14 is about 0.5 cm, making the gap between the iron core 161 and the permanent magnets 143 quite narrow It is small and narrower than the thickness of the disc outer rotor 14 so that the part of the magnetic circuit that passes through the air is very short.
  • the magnetic lines of force of the permanent magnet 143 will densely pass through the iron core 161, and the magnetic resistance is greatly reduced.
  • the number of the aforementioned iron cores of the present invention must be a positive integer that is radially symmetrically distributed with respect to the aforementioned pivot axis, and the number is greater than twice the number of the aforementioned permanent magnets. Less than twice.
  • Each of the iron cores 161 is wound with a coil winding 163 for receiving an AC clock drive signal S1 to magnetize the iron core 161; when a certain magnetic pole of the permanent magnet 143 has just passed the corresponding end of the iron core 161, The end of the core forms the same magnetism as the magnetic pole to exert the thrust of the same polarity repulsively, and provides the attraction force of the different polarities when the opposite magnetic poles are close; until the next magnetic pole is close, the end of the iron core 161 is magnetic It begins to weaken and returns to zero, and then changes phases, and then uses the opposite magnetism to push the next magnetic pole to continue running.
  • the rotor position sensing element 18 measures and outputs a position signal to the enabling controller 20, and the enabling controller 20 provides an AC time based on the received position signal.
  • the pulse drive signal S1 is transmitted to the coil winding 163 of the barrier stator 16, so that the clock drive signals S1 of every two adjacent coil windings 163 have a uniform phase difference, and all the barriers of the barrier stator 16
  • the sum of the aforementioned phase differences between all adjacent coil windings 163 is a non-zero integer multiple of 360 degrees. Therefore, each iron core 161 will be driven by a clock drive signal matching the rotation speed of the disc outer rotor 14, and the clock drive signals received by adjacent iron cores 161 will be 120 degrees in this example.
  • the phase difference so that every three iron cores away from each other, the fourth iron core receives the same clock drive signal as the first iron core, and after surrounding nine iron cores, the total phase difference in this example Is 180 degrees.
  • the above-mentioned rotor position sensing element 18 is exemplified as a Hall element, and a person of ordinary skill in the art to which the present invention belongs can select other suitable elements for simple conversion.
  • the fence stator 16 further includes a non-magnetic stator base 165 to hold each iron core 161, and the non-magnetic stator base 165 is further provided with a set of ball bearings on the upper and lower ends of the figure. (Not shown in the figure), so that the above-mentioned pivot 12 pivots smoothly in the non-magnetic stator base 165.
  • the disc-type outer rotor 14 and the barrier-type stator 16 can be relatively pivotally combined. As shown in Fig. 7, because the motor in this example is used as the actuating wheel of an electric bicycle, the disc outer rotor 14 can be directly coupled to the tire casing of the wheel, and the non-magnetic stator base 165 is further connected to a motor housing 3.
  • the magnetic poles of the permanent magnet 143 of the disk outer rotor 14 are arranged in series in the manner of SN, NS, SN, ... from left to right.
  • the disk body 141, the magnetic poles of the permanent magnets 143 of the disk-type outer rotor 14 located relatively below the above-mentioned axial direction, are arranged in series on the disk body 141 in a manner of NS, SN, NS,... from left to right. .
  • an iron core 161 is driven to induce a magnetic pole that is exactly the same as the magnetic pole of the permanent magnet 143 corresponding to the proximity, the iron core 161 pushes the permanent magnet 143 to move along the tangential direction of the circle 121 due to the repulsion of the magnetic poles. That is, the disc-type outer rotor 14 is pushed to rotate by the fence-type stator 16.
  • the same push or pull action is generated every 120 degrees on the circumference of the circle 121, so that every One phase can produce three times the thrust or pull.
  • the ratio of the number of iron cores 161 to the number of permanent magnets 143 is 3:2, that is, every three iron cores 161 correspond to two permanent magnets 143, and a total of 3 sets of such corresponding combinations are formed around the disk body 141.
  • the shortest distance between the iron core 161 and the adjacent permanent magnet 143 is smaller than the thickness of the disk body, so that the corresponding iron core 161 and the permanent magnet 143 form a good magnetic flux circuit.
  • the permanent magnet 143 rotates with the rotor to commutate the induced magnetic poles in the iron core 161.
  • the magnetic field lines of the permanent magnet 143 pass through the iron core 161, causing hysteresis loss (Hysteresis Losses) are reduced, thereby reducing the heating of the magnetic conductor, which also reduces the consumption of electric energy, and thus the overall conversion efficiency of the motor increases.
  • the disc-type outer rotor 14 When the disc-type outer rotor 14 is pushed to rotate by the fence-type stator 16, the original corresponding relationship between the iron core 161 and the permanent magnet 143 is misaligned and changed. The repulsive force of the same pole received by the original magnetic pole is gradually changed by the rotation of the rotor. A magnetic pole receives the gravitational force of different magnetic poles.
  • the rotor position sensing element 18 will sense the change in the position of the permanent magnet 143 of the disc outer rotor 14, and further output a position signal to the enabling controller 20. , To prompt the enabling controller 20 to determine whether the disc-type outer rotor 14 has a rotational speed change based on the received position signal, and to determine whether the frequency of the AC clock drive signal needs to be increased or decreased.
  • the magnetic poles of the permanent magnets 143 facing each other with opposite polarities are respectively installed at the positions where the magnetic poles of the permanent magnet 143 face the fence stator 16
  • a concentrating magnet 145 as shown in FIG. 6 is a flat cylindrical permanent magnet in this example. Each concentrating magnet 145 is attracted to the magnetic pole of the corresponding permanent magnet, and acts as a channel for magnetic lines of force, further reducing The air gap between the permanent magnet 143 and the iron core 161 is narrowed to reduce the magnetic resistance and improve the conversion efficiency.
  • the magnetic focusing magnet is not necessary to be installed.
  • the distance between the permanent magnet 143' and the iron core 161 arranged along the virtual circular tube 123' is reduced, so that the magnetic assembly between the rotor and the barrier stator 16' is reduced.
  • the above-mentioned permanent magnets only need to be evenly arranged in pairs, and are not limited to 6, and the number of iron cores in the barrier stator only needs to be an integer between one and two times the number of the above-mentioned permanent magnets. That is, the key is that the above-mentioned clock drive signals have a total phase difference of an integral multiple of 360 degrees, and the phase difference between every two adjacent coils is the same as each other and varies with the rotation speed.
  • this embodiment is more along the coaxial direction of the pivot axis under the disk outer rotor at the bottom of the original figure.
  • the iron core 161" of the auxiliary fence-type stator and the permanent magnet 143" of the auxiliary disc-type outer rotor are shown here to increase the overall torque output.
  • a complete magnetic flux path of the permanent magnet can be provided, so that the magnetic resistance is greatly reduced, and the rotating movement of the permanent magnet can periodically weaken the hysteresis phenomenon during the excitation of the iron core by the alternating current signal.
  • the heat generation and energy consumption caused by the hysteresis phenomenon are reduced, so that the motor disclosed in the present invention generates low heat during operation and has high energy conversion efficiency, achieving the above-mentioned invention goals beyond the prior art.

Abstract

一种具有栅栏式定子的外盘式马达,包括一枢轴(12);多个平行配置的盘式外转子(14、81),分别包括一盘本体(141)及偶数个永久磁铁(93、143、143'、143''),盘本体(141)中心垂直固设于枢轴(12),且相邻的永久磁铁(93、143、143'、143'')以同极性相对方式均匀排列,盘式外转子(14、81)的永久磁铁(93、143、143'、143'')的相异磁极则彼此相对,栅栏式定子(16、16'),包括多个长条状铁芯(161、161'、161''),分别平行上述轴向均匀排列分布于一个以枢轴(12)为心的圆管,并以两极分别对应前述永久磁铁(93、143、143'、143''),铁芯数目大于永久磁铁(93、143、143'、143'')一倍且低于两倍;及一个致能控制器(20),提供交流时脉式驱动信号,使得每两相邻的时脉式驱动信号具有一均匀相位差,栅栏式定子(16、16')的前述相位差总和为360度的非零整数倍。

Description

具有栅栏式定子的外盘式马达 技术领域
本发明涉及一种外盘式马达,尤其是一种具有栅栏式定子的外盘式马达。
背景技术
常见的永磁式直流伺服马达,是把永久磁铁设置在外围的转子,而将电枢线圈设置在核心的定子处,无论是电流经过电枢线圈会因为电阻而发热,或是在换相过程中发生电流跳接时的骤热,都难以轻易散出;如果是应用于直接驱动系统时,转子处的高热将传导至传动轴,长久使用下,会逐渐导致传动轴的变形;相对的,如图1所示的永磁式交流伺服马达9,其具有电枢线圈91的定子设置于马达外层,永久磁铁93则设置于电枢线圈91内侧核心的转子,因此散热较佳,且有较高的功率体积比。部分外转子马达,虽然克服了电枢线圈的散热问题,但受限于内外层包覆式的结构设计,使得面对输出扭力变更与安装空间限制等问题时,其应变的弹性也减少了。
另方面,由于马达运行主要是依赖磁力的异极相吸和同极相斥,磁力线的分布在马达运行中占有决定性的影响。因为空气的磁阻甚高,如果永磁装置和线圈中的铁芯,在封闭回路中所占途径比例越低,经过的空气区域越长,磁阻将大幅升高,磁通因而分散,效率也随之降低。一种现有盘式发电机8,如图2所示,虽披露有盘式外转子81的马达结构,但对上述的发热及耗能问题并无适当解答。此外,永久磁铁和线圈83的数目未曾妥善匹配,也将导致磁回路无法均匀作用,在每一作用周期中可能造成出力忽大忽运转不均匀状况。
如何让永久磁铁的磁极和铁芯的间隙缩小,并且构成适当的磁回路,让磁通量集中在预期通路中避免发散,并且妥善运用时变的驱动信号,形成电磁铁和永久磁铁有效率地交互作用,由此提升马达的能量转换效率,就是本发明所要解决的问题。
发明内容
本发明的一目的,在提供一种具有栅栏式定子的外盘式马达,通过定子铁芯与转子永久磁铁的数目比例,确保空气间隙有效缩减,磁通路顺畅,达到减少发热及降低耗能的功效。
本发明另一目的,在提供一种具有栅栏式定子的外盘式马达,利用时脉式驱动信号间的相位差,配合铁芯和永久磁铁的比例配置,让马达整体磁力驱动均匀,运转顺畅。
本发明再一目的,在提供一种具有栅栏式定子的外盘式马达,通过盘式外转子的结构使具有线圈绕组的定子不被包覆,易于散热而顺利延长马达组件的寿命。
本发明又一目的,在提供一种具有栅栏式定子的外盘式马达,通过每两个彼此平行配置的盘式外转子之间设置一组栅栏式定子的结构,可以依需要向前述外盘式转子的两外侧同轴扩充,达到不变更马达单体的规格设计,而能弹性因应输出扭力与安装空间的需求。
本发明披露的一种具有栅栏式定子的外盘式马达,包括:至少一根沿一轴向延伸的枢轴;至少两个彼此平行配置的盘式外转子,每一前述盘式外转子分别包括一个盘本体及偶数个永久磁铁,且前述盘本体分别以其对称中心垂直固设于上述枢轴,前述永久磁铁分别以两磁极设置于上述盘本体的方式设置于上述盘本体,且每一前述永久磁铁与上述枢轴最短距离点共同位于一个以上述枢轴为圆心的圆上,每两个相邻的前述永久磁铁以相同极性相对接的方式串联并相对上述枢轴均匀排列,以及前述至少两个近接的盘式外转子的前述永久磁铁的相异磁极彼此相对设置;至少一组栅栏式定子,包括多个长条状铁芯,每一前述铁芯分别沿着平行上述轴向彼此平行排列,且均匀分布于一个以上述枢轴为圆心的圆管处,前述该组栅栏式定子的每一前述铁芯,分别以各自的两极分别近接对应前述两个盘式外转子的上述永久磁铁,以及前述铁芯数目大于上述永久磁铁数目的一倍且低于两倍,每一前述铁芯分别缠绕有一线圈绕组,供接受一交流的时脉式驱动信号磁化前述铁芯;至少一个转子位置感测元件,供量测上述盘式外转子的永久磁铁位置,并输出至少一个位置信号;及一个致能控制器,依据所收到的前述位置信号,提供上述交流的时脉式驱动信号至上述线圈绕组,并使得每两相邻前述线圈绕组的时脉式驱动信号间,分别具 有一均匀的相位差,且所有该组栅栏式定子的所有相邻线圈绕组间的前述相位差总和为360度的非零整数倍。
前述的具有栅栏式定子的外盘式马达,其中每一上述铁芯为多个硅钢片。
前述的具有栅栏式定子的外盘式马达,其中上述栅栏式定子还包括一个固持上述各铁芯的非导磁定子基座。
前述的具有栅栏式定子的外盘式马达,还包括一个连接至上述栅栏式定子的马达外壳。
前述的具有栅栏式定子的外盘式马达,其中上述铁芯的长度不大于3.5厘米,且上述外盘式马达的整体厚度不大于6厘米。
前述的具有栅栏式定子的外盘式马达,其中上述转子位置感测元件为霍尔元件。
前述的具有栅栏式定子的外盘式马达,还包括:
一个平行上述盘式外转子且与前述盘式外转子结构相同并且呈共枢轴配置的辅助盘式外转子,前述辅助盘式外转子设置于上述两个盘式外转子的外侧;
一组设置于前述两个盘式外转子之一和上述辅助盘式外转子间的辅助栅栏式定子,该辅助栅栏式定子和上述栅栏式定子结构相同且呈共枢轴配置,该辅助栅栏式定子并受上述致能控制器致能磁化。
前述的具有栅栏式定子的外盘式马达,其中上述铁芯与近接对应的上述永久磁铁的最短距离小于上述盘本体厚度。
由于本申请一种具有栅栏式定子的外盘式马达包含了至少两个彼此平行配置的盘式外转子及至少一组栅栏式定子,通过外转子与定子相互间的巧妙配置及至少一根枢轴的串接,一方面减少空气隙的距离,使得磁通量主要经过铁芯和永久磁铁达成回路,磁阻被大幅降低;另方面由于永久磁铁和铁芯的数目相互匹配,共同构成磁回路,搭配彼此具有特定相位差的时脉式驱动信号,让转子的运转顺畅;加以外盘式马达散热容易,马达组件寿命得以延长,进一步通过辅助盘式外转子及辅助栅栏式定子的扩充,使得本发明不需变更马达单体的规格设计,就能弹性调整输出扭力与因应安装空间的需求;尤其,通过外转子上的每两个相邻的永久磁铁以相同极性相对接的方式设置并相对前 述枢轴均匀排列,且每两个近接的盘式外转子的永久磁铁的相异磁极彼此相对设置,以及栅栏式定子的每一铁芯分别以各自的两极分别近接对应两个盘式外转子的永久磁铁,结合铁芯数目大于永久磁铁数目的一倍且低于两倍的结构特点,每一永久磁铁都恰好搭配一个完整磁回路,有效提升马达能量转换效率,并且达成减少发热及降低耗能的功效,进而达成以上所述所有目的。
附图说明
图1为现有具有外转子的马达的结构侧视示意图,用以说明马达定子与转子的相对位置关系。
图2为现有技术盘式电动机的架构示意图,用以说明其主要构成元件及其相对关系。
图3为本发明具有栅栏式定子的外盘式马达第一较佳实施例的部分立体分解示意图,说明转子的盘本体和永久磁铁结构。
图4为图3实施例的部分立体分解示意图,说明定子的非导磁定子基座和铁芯-线圈的相对关系立体示意图。
图5为图4的永久磁铁和铁芯-线圈立体组合示意图。
图6为图5的永久磁铁和铁芯-线圈立体分解示意图。
图7为图3应用于电动单车的致动车轮示意图。
图8为图3应用于单叉电动单车的致动车轮示意图。
图9为图3实施例致能控制器提供的时脉式驱动信号示意图,说明相邻线圈绕组所接收时脉式驱动信号相位差关系。
图10为图3实施例永久磁铁的磁力线分布侧视示意图。
图11为本发明具有栅栏式定子的外盘式马达第二较佳实施例的部分立体分解示意图。
附图标记说明:
20-致能控制器;12-枢轴;121-圆;123(123’)-圆管;14(81)-盘式外转子;141-盘本体;93(143、143’、143”)-永久磁铁;145-聚磁磁铁;16(16’)-栅栏式定子;161(161’、161”)-铁芯;163-线圈绕组;165-非导磁定子基座;18-转子位置感测组件;21-前叉;3-马达外壳;9-永磁式交流伺服马达;91-电枢线圈;8-盘式发电机;83-线圈;1-外盘式 马达。
具体实施方式
有关本发明的前述及其他技术内容、特点与功效,在以下配合参考附图的较佳实施例的详细说明中,将可清楚呈现;此外,在各实施例中,相同的元件将以相似的标号表示。
本申请一种具有栅栏式定子的外盘式马达的第一较佳实施例,请一并参考图3至6所示,前述外盘式马达1具有一根沿轴向延伸的枢轴12,为便于说明,此处定义前述轴向方向为沿着附图的上下方向,以及两个彼此平行配置的盘式外转子14,每一个盘式外转子14分别包括一个盘本体141及偶数个永久磁铁143,在本例中是以6个永久磁铁143为例。且本例中的盘本体141都是圆形盘状,分别以其对称中心垂直固设于上述枢轴12。
前述永久磁铁143在本例中均为略呈长扁弯弧形平坦嵌设于上述盘本体141中,并且每个永久磁铁143的两磁极N、S,不仅都设置于上述盘本体141处,并且相邻的两个永久磁铁143,都是以N极两两相接近或S极两两相接近的方式设置。如本领域的技术人员所能轻易理解,即使此处的永久磁铁改采其如马蹄形或长方形,只要依前述方式设置于盘本体141,仍无碍于本发明的实施,且由于本例中的永久磁铁143本身为弯弧状,磁铁的弯弧形状恰使得各磁铁和磁极都共同位于一个以上述枢轴12为圆心的圆121上均匀排列,此外,前述两个盘式外转子14的相对设置方式,是以永久磁铁143的相异磁极彼此相对地方式设置。
上述外盘式马达1还包含一组栅栏式定子16,该组栅栏式定子16在本例中包括9根等长度的长条状铁芯161,且每一上述铁芯161的长度均为3.5厘米,本例中的铁芯161例释为以多个硅钢片构成,由此降低涡电流作用,并共同受一个非导磁定子基座165的固持。当然,本发明技术领域中普通技术人员可以任意选择例如铁粉压铸而成或其他惯用磁导体作为铁芯,均无碍于本申请实施。每一前述铁芯161分别沿平行上述轴向彼此平行排列,且均匀分布于一个以上述枢轴12为圆心的圆管123处,由于各铁芯161间均匀配置,因此每一铁芯161和 枢轴12连线,和相邻铁芯161与枢轴12连线间的夹角分别为30度,且每一铁芯161的两极分别近接对应前述两个盘式外转子14的上述永久磁铁143,由于本例中的铁芯161数目为永久磁铁143的1.5倍,所以无论永久磁铁143转动至任何位置,都可以恰好对应两根铁芯161,且两根铁芯161分别接近其N极和S极,使得上下方的盘式外转子14相互对应的两根永久磁铁143正好可以通过此处的两根铁芯161构成一个完整磁回路。
尤其如本例中的马达整体厚度不大于6厘米,实际上厚度仅约5厘米左右,盘式外转子14的厚度则约0.5厘米,使得铁芯161相比于永久磁铁143间的间隙相当窄小,比盘式外转子14的厚度更窄,使得磁回路中行经空气的部分甚短,永久磁铁143的磁力线将密集通过铁芯161,磁阻因而大幅降低。当然,熟悉本领域人士可以理解,要构成上述对应的磁通路,本发明前述铁芯的数目必须为相对于上述枢轴呈现放射状对称分布的正整数,且数目大于上述永久磁铁数目的一倍并低于两倍。
每一上述铁芯161分别缠绕有一线圈绕组163,供接受一交流的时脉式驱动信号S1磁化前述铁芯161;在永久磁铁143的某磁极刚经过铁芯161的对应端部时,在铁芯端部形成和该磁极相同的磁性,以发挥同极性相斥的推力,且在相反磁极接近时提供异极性相吸的引力;直到次一磁极接近,则铁芯161的端部磁性开始减弱而至归零,随后换相,改以相反的磁性再度推动次一磁极继续运转。由于永久磁铁143的数目并不等于铁芯161的数目,要产生最大的推动扭矩,不仅必须准确获得盘式外转子14的永久磁铁143位置,还要对每一线圈绕组163提供具有相位差的时脉式驱动信号。
因此,通过如图9所示的转子位置感测元件18量测并输出一个位置信号到致能控制器20,而致能控制器20则依据所收到的前述位置信号,提供一个交流的时脉式驱动信号S1至栅栏式定子16的线圈绕组163,进而使得每两相邻线圈绕组163的时脉式驱动信号Sl间,分别具有一均匀的相位差,且所有该组栅栏式定子16的所有相邻线圈绕组163间的前述相位差总和为360度的非零整数倍。因此,各铁芯161将受到与盘式外转子14转速相匹配的时脉式驱动信号所驱动,且相邻 铁芯161所收到的时脉式驱动信号间分别存在如本例中120度的相位差,使得每相距三根铁芯后,第四根铁芯所受的时脉式驱动信号将等同于第一根铁芯,而环绕九根铁芯后,本例中的相位差的总和为180度。于本例中,上述转子位置感测元件18例释为霍尔元件,本发明所属技术领域普通技术人员可选用其他适合的元件进行简单变换。
在本例中,栅栏式定子16更包括一个非导磁定子基座165,藉以固持住每一铁芯161,而非导磁定子基座165更在附图上下两端分别设置有一组滚珠轴承(图未示),由此让上述枢轴12在非导磁定子基座165中顺利枢转。并且让盘式外转子14和栅栏式定子16可相对枢转地组合。如图7所示,因为本例中的马达是作为电动单车的致动车轮,盘式外转子14直接可结合至车轮的外胎,而非导磁定子基座165则进一步连接一马达外壳3,再连接至电动单车的前叉21,以保护该栅栏式定子(图未示)不会因外力意外碰撞或接触而使铁芯161或线圈绕组163受损或短路烧毁。当然,该前叉即使改为后叉,或改为如图8的单侧的前叉21,均无碍于本发明的实施。
请一并参考图9所示,当上述外盘式马达1位于上述轴向上方的盘式外转子14的永久磁铁143的磁极自左至右以S-N、N-S、S-N、…的方式对接串联排列于盘本体141,则相对地位于上述轴向下方的盘式外转子14的永久磁铁143的磁极自左至右以将相对设置而以N-S、S-N、N-S、…的方式对接串联排列于盘本体141。此时,若有一铁芯161被驱动感应出的磁极正好与近接对应的上述永久磁铁143的磁极相同,因磁极相斥而由铁芯161推动永久磁铁143沿着上述圆121的切线方向运动,也就是上述盘式外转子14被上述栅栏式定子16推动旋转,于本例,就会在圆121周上每隔120度产生一处相同的推或拉作用,使得上述外盘式马达1中每一时相可产生三倍的推力或拉力。
本例中前述铁芯161数目与永久磁铁143数目比值为3:2,亦即每三个前述铁芯161分别对应二个永久磁铁143,环绕盘本体141一周共形成有3组此种对应组合,且如图10所示,上述铁芯161与近接对应的上述永久磁铁143的最短距离小于上述盘本体厚度,使对应的上述铁芯161与上述永久磁铁143形成良好的磁通回路。同时考量时脉式驱动信号导人的情况,永久磁铁143随转子旋转,将恰好在铁芯161 中的感应磁极换相时,通过永久磁铁143的磁力线行经铁芯161,使得磁滞损耗(Hysteresis Losses)降低,进而减少磁导体发热,也使得电能的消耗降低,马达整体转换效率因而上升。
当上述盘式外转子14受上述栅栏式定子16推动旋转,铁芯161与永久磁铁143原先建立的对应关系发生错位改变,原先磁极所受到的同极斥力,逐渐因为转子的旋转,改由次一磁极受到相异磁极的引力,此时,上述转子位置感测元件18将感测到盘式外转子14的永久磁铁143位置的改变,更进一步输出一个上述位置信号到上述致能控制器20,促使致能控制器20依据所收到的位置信号,研判盘式外转子14是否有转速变化,并决定交流时脉式驱动信号的频率是否需配合提高或降低。
在本实施例中,为更进一步减少空气隙的距离,并且让永久磁铁的磁力线集中,因此在每两个极性相对的彼此近接永久磁铁143的磁极面向栅栏式定子16的位置,分别安装有一个如图6所示的聚磁磁铁145,在本例中为一扁圆柱型永久磁铁,每一个聚磁磁铁145都是和对应永久磁铁的磁极相吸,并且承担作为磁力线的通道,进一步缩窄由永久磁铁143至铁芯161间的空气隙,降低磁阻而提升转换效率。
当然,此聚磁磁铁并非必须设置,为简化结构降低制造成本,也可以如图l1本发明第二较佳实施例所示,将上述永久磁铁143’和相邻永久磁铁间的间细缩窄,且同时减少永久磁铁143’和沿着虚拟的圆管123’布设的铁芯161间的距离,使得转子和栅栏式定子16’间磁组降低。此外,上述的永久磁铁仅需为成对均匀设置,并未局限于6个,而栅栏式定子中的铁芯数,仅需符合数目介于上述永久磁铁数目的一倍至两倍间的整数即可,关键在于上述时脉式驱动信号,彼此间的相位差总和为360度的整数倍,且每两相邻线圈间的相位差都是彼此相同,且随转速变更。
尤其,当单纯由两片盘式外转子和一组栅栏式定子所构成的马达出力不足时,本实施例更在原先附图下方的盘式外转子下,更沿着枢轴的同轴方向,增加一组与前述盘式外转子和上述栅栏式定子结构相同并且呈共枢轴配置的辅助栅栏式定子和辅助盘式外转子,该辅助栅栏式定子并受上述致能控制器致能磁化,为便于理解,此处仅绘示出 辅助栅栏式定子的铁芯161”及辅助盘式外转子的永久磁铁143”,就此增加整体的扭力输出。由于上述铁芯与线圈的数目配置,可以提供永久磁铁完整的磁力线通路,让磁阻大幅降低,且永久磁铁的旋转移动可以周期性地减弱铁芯受交流电信号励磁过程中的磁滞现象,让磁滞现象所带来的发热及能量耗损降低,由此使得本发明所披露的马达在运转过程中发热量低,能量转换效率高,达成超越现有技术的上述发明目的。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应仍属本发明专利涵盖的范围内。

Claims (8)

  1. 一种具有栅栏式定子的外盘式马达,包括:
    至少一根沿一轴向延伸的枢轴;
    至少两个彼此平行配置的盘式外转子,每一前述盘式外转子分别包括一个盘本体及偶数个永久磁铁,且前述盘本体分别以其对称中心垂直固设于上述枢轴,前述永久磁铁分别以两磁极设置于上述盘本体的方式设置于上述盘本体,且每一前述永久磁铁与上述枢轴最短距离点共同位于一个以上述枢轴为圆心的圆上,每两个相邻的前述永久磁铁以相同极性相对接的方式串联并相对上述枢轴均匀排列,以及前述至少两个近接的盘式外转子的前述永久磁铁的相异磁极彼此相对设置;
    至少一组栅栏式定子,包括多个长条状铁芯,每一前述铁芯分别沿着平行上述轴向彼此平行排列,且均匀分布于一个以上述枢轴为圆心的圆管处,前述该组栅栏式定子的每一前述铁芯,分别以各自的两极分别近接对应前述两个盘式外转子的上述永久磁铁,以及前述铁芯数目大于上述永久磁铁数目的一倍且低于两倍,每一前述铁芯分别缠绕有一线圈绕组,供接受一交流的时脉式驱动信号磁化前述铁芯;
    至少一个转子位置感测元件,供量测上述盘式外转子的永久磁铁位置,并输出至少一个位置信号;及
    一个致能控制器,依据所收到的前述位置信号,提供上述交流的时脉式驱动信号至上述线圈绕组,并使得每两相邻前述线圈绕组的时脉式驱动信号间,分别具有一均匀的相位差,且所有该组栅栏式定子的所有相邻线圈绕组间的前述相位差总和为360度的非零整数倍。
  2. 根据权利要求1所述的具有栅栏式定子的外盘式马达,其中每一上述铁芯为多个硅钢片。
  3. 根据权利要求1所述的具有栅栏式定子的外盘式马达,其中上述栅栏式定子还包括一个固持上述各铁芯的非导磁定子基座。
  4. 根据权利要求1所述的具有栅栏式定子的外盘式马达,还包括一个连接至上述栅栏式定子的马达外壳。
  5. 根据权利要求1所述的具有栅栏式定子的外盘式马达,其中上述铁芯的长度不大于3.5厘米,且上述外盘式马达的整体厚度不大于6厘米。
  6. 根据权利要求1所述的具有栅栏式定子的外盘式马达,其中上述转子位置感测元件为霍尔元件。
  7. 根据权利要求1所述的具有栅栏式定子的外盘式马达,还包括:
    一个平行上述盘式外转子且与前述盘式外转子结构相同并且呈共枢轴配置的辅助盘式外转子,前述辅助盘式外转子设置于上述两个盘式外转子的外侧;
    一组设置于前述两个盘式外转子之一和上述辅助盘式外转子间的辅助栅栏式定子,该辅助栅栏式定子和上述栅栏式定子结构相同且呈共枢轴配置,该辅助栅栏式定子并受上述致能控制器致能磁化。
  8. 根据权利要求1所述的具有栅栏式定子的外盘式马达,其中上述铁芯与近接对应的上述永久磁铁的最短距离小于上述盘本体厚度。
PCT/CN2019/072360 2019-01-18 2019-01-18 具有栅栏式定子的外盘式马达 WO2020147117A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/072360 WO2020147117A1 (zh) 2019-01-18 2019-01-18 具有栅栏式定子的外盘式马达
JP2019568146A JP2022517881A (ja) 2019-01-18 2019-01-18 フェンス式ステータを有するアウターディスク型モーター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072360 WO2020147117A1 (zh) 2019-01-18 2019-01-18 具有栅栏式定子的外盘式马达

Publications (1)

Publication Number Publication Date
WO2020147117A1 true WO2020147117A1 (zh) 2020-07-23

Family

ID=71613067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072360 WO2020147117A1 (zh) 2019-01-18 2019-01-18 具有栅栏式定子的外盘式马达

Country Status (2)

Country Link
JP (1) JP2022517881A (zh)
WO (1) WO2020147117A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112065854A (zh) * 2020-09-17 2020-12-11 淮阴工学院 一种新结构的组合式三自由度混合磁轴承

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143276A (ja) * 2003-11-10 2005-06-02 Equos Research Co Ltd アキシャルギャップ回転電機
CN203387385U (zh) * 2013-08-15 2014-01-08 南京信息工程大学 一种拼装式磁极的轴向磁场无铁心永磁电机
JP2018007304A (ja) * 2016-06-27 2018-01-11 株式会社神戸製鋼所 アキシャルギャップ型回転電機及びその製造方法
CN108809022A (zh) * 2017-04-28 2018-11-13 南方科技大学 一种盘式发电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143276A (ja) * 2003-11-10 2005-06-02 Equos Research Co Ltd アキシャルギャップ回転電機
CN203387385U (zh) * 2013-08-15 2014-01-08 南京信息工程大学 一种拼装式磁极的轴向磁场无铁心永磁电机
JP2018007304A (ja) * 2016-06-27 2018-01-11 株式会社神戸製鋼所 アキシャルギャップ型回転電機及びその製造方法
CN108809022A (zh) * 2017-04-28 2018-11-13 南方科技大学 一种盘式发电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112065854A (zh) * 2020-09-17 2020-12-11 淮阴工学院 一种新结构的组合式三自由度混合磁轴承

Also Published As

Publication number Publication date
JP2022517881A (ja) 2022-03-11

Similar Documents

Publication Publication Date Title
JP5248499B2 (ja) 電動機
CN103715848B (zh) 一种轴向磁场定子分割式磁通切换型记忆电机
CN103490573B (zh) 一种轴向磁场磁通切换型表贴式永磁记忆电机
CN209170080U (zh) 径向充磁永磁转子倍极式开关磁阻电机
WO2020199502A1 (zh) 一种定子同极型混合永磁记忆电机
CN107181382B (zh) 一种转子错角定子隔磁式轴向永磁辅助双凸极电机
TW201737602A (zh) 一種盤型電動馬達、電力驅動載具以及控制電動馬達之方法
CN109713818A (zh) 径向充磁永磁转子倍极式开关磁阻电机
TWI664794B (zh) 具有柵欄式定子的外盤式馬達
WO2020147117A1 (zh) 具有栅栏式定子的外盘式马达
CN110138161B (zh) 具有栅栏式定子的外盘式马达
CN111030402B (zh) 方向性硅钢片轴向磁场电动机
CN102299599B (zh) 一种定子永磁体高速电机
CN113036962B (zh) 一种低成本轻量化的交替极永磁电机
CN209267286U (zh) 两相永磁开关磁阻电机
TWI679831B (zh) 具有多永久磁鐵對順向外轉子的馬達/馬達-發電機
KR100468983B1 (ko) 전동 차량용 축방향 자속 브러시리스 직류전동기
TW202008685A (zh) 具有欄杆式定子的盤式馬達/發電機
EP0027448B1 (en) Electromechanical machine
JPH04247A (ja) 電動機
WO2021035526A1 (zh) 具有栅栏式h型定子的盘式马达
KR200230732Y1 (ko) 전동 차량용 축방향 자속 브러시리스 직류전동기
CN201041981Y (zh) 永磁能机
TW202008683A (zh) 具有牛角式鐵芯的外轉子發電機
CN114142701B (zh) 一种基于同向电磁极耦合的背靠背多重励磁混合发电机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019568146

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019824228

Country of ref document: EP

Effective date: 20210818

122 Ep: pct application non-entry in european phase

Ref document number: 19824228

Country of ref document: EP

Kind code of ref document: A1