WO2021035526A1 - 具有栅栏式h型定子的盘式马达 - Google Patents

具有栅栏式h型定子的盘式马达 Download PDF

Info

Publication number
WO2021035526A1
WO2021035526A1 PCT/CN2019/102805 CN2019102805W WO2021035526A1 WO 2021035526 A1 WO2021035526 A1 WO 2021035526A1 CN 2019102805 W CN2019102805 W CN 2019102805W WO 2021035526 A1 WO2021035526 A1 WO 2021035526A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
permanent magnets
shaped iron
type
shaped
Prior art date
Application number
PCT/CN2019/102805
Other languages
English (en)
French (fr)
Inventor
黄思伦
Original Assignee
深圳市善象智能科技企业(有限合伙)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市善象智能科技企业(有限合伙) filed Critical 深圳市善象智能科技企业(有限合伙)
Priority to PCT/CN2019/102805 priority Critical patent/WO2021035526A1/zh
Publication of WO2021035526A1 publication Critical patent/WO2021035526A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the invention relates to the field of electric energy recovery of an outer disc type motor and a generator, in particular to a disc type motor and a motor/generator with a barrier type H-type stator.
  • the structure of a disc motor is basically the same as that of an ordinary permanent magnet motor. It also includes a stator, a rotor, and a housing. The difference is that the rotor of the disc motor is usually a permanent magnet.
  • the excitation coil mounted on the stator core produces a magnetic field. Generate repulsive force and tensile force to drive the permanent magnet rotor to rotate. Because the permanent magnet rotor is magnetic, it passively interacts with the stator magnetic field. Therefore, between the stator and the rotor, not only a pulling force but also a repulsive force can be generated. Since it is a magnetic pulling force and a repulsive force, there is not only a large and small difference in quantity, but also a difference between positive and negative.
  • the starting current problem of the disc motor has not found an effective solution for a long time, which makes it difficult to improve the efficiency of the disc motor at high speed.
  • the disc motor 8 is known, although the structure of the disc outer rotor 81 is disclosed, there is no proper answer to the above-mentioned heat generation and energy consumption problems.
  • the number of permanent magnets 82 and the number of coil windings 83 has not been properly matched, which will also cause the magnetic circuit to not function uniformly. In each action cycle, it may cause uneven rotation of the power output.
  • Disc motors reduce the magnetic attraction, mainly by reducing the distance between the permanent magnet rotor and the stator core body, or by reducing the contact surface to increase the speed, and reducing the permanent magnet magnetic attraction of the rotor to reduce the starting current, but it is only suitable for High speed and low torque limit its application occasions. It can be deduced from the electromagnetic field theory that the torque per unit volume of the motor is directly proportional to the flux change under other conditions.
  • the starting current when the number of permanent magnets in the rotor is greater than a certain number, as the number of permanent magnets in the rotor increases, the contact surface between the permanent magnets and the stator core is reduced, and the starting current will be doubled, causing the stator
  • the reduction of the magnetic flux amplitude of the iron core is equivalent to the volume reduction of the stator iron core, and the output torque will not increase with the increase of the number of slots.
  • the permanent magnet motor needs to flow a larger current into the electromagnet of the magnetic circuit of the stator core body in the high-speed region, so that it generates a magnetic flux opposite to the permanent magnet magnetic flux. Because as the rotation speed of the motor accelerates, the induced voltage of the electromagnet of the magnetic circuit of the stator core body will rise to the upper limit of the power supply voltage, resulting in the rotation speed cannot continue to increase the rotation speed. However, the inflow of a larger current does not help increase the torque of the motor. The larger the final current used, the lower the efficiency. Therefore, how to increase the speed or reduce the amount of starting current has become the main research topic of today's disc motors.
  • Taiwan Invention Patent Publication No. L664794 Application No. 1071037978
  • Outer Disc Motor with Barrier Stator "Outer Disc Motor with Barrier Stator”
  • An object of the present invention is to provide a disc motor with a barrier H-shaped stator, which mainly reduces the contact surface between the permanent magnet of the rotor and the stator iron core body through the design of the upper and lower large slits of the H-shaped iron core body. , To reduce the starting current, while improving the efficiency of the high-speed area.
  • the technical means adopted are: to provide a disc motor with a barrier-type H-shaped stator, which at least includes:
  • a pivot extending in the axial direction
  • each disk-type outer rotor includes a disk body and an even number of permanent magnets, wherein the disk body is fixed to the pivot with its center perpendicularly, and the even number of permanent magnets are arranged on the disk body , And arranged on the disk body in a ring-shaped arrangement with the disk body as the center, wherein every two adjacent permanent magnets on each disk body are arranged with the same magnetic poles, and the permanent magnets in the disk bodies of the aforementioned two disk outer rotors The magnets are arranged opposite to each other with different magnetic poles;
  • a set of fence-type H-type stators including a plurality of H-shaped iron cores, each H-shaped iron core body has a large slit at the top and bottom, so that the body forms four corners up and down, and the H-shaped iron core body is located between the upper and lower large slits.
  • the motor coil windings are wound in a transverse manner, and a plurality of H-shaped iron cores are respectively centered on the above-mentioned pivot axis, and are evenly arranged parallel to each other along the axial direction.
  • each H-shaped iron core is respectively Closely correspond to the permanent magnets in the two disc-type outer rotors, and the number of the aforementioned H-type iron cores is greater than one and less than two times the number of the aforementioned permanent magnets, or the number of the H-type iron cores is less than 0.5 times the number of the aforementioned permanent magnets;
  • a rotor position sensing component for measuring the position of the permanent magnet of the disc-type outer rotor and outputting at least one position signal
  • An enabling controller provides an AC frequency drive signal to the motor coil windings according to the received position signal, and makes the frequency drive signals of every two adjacent motor coil windings have a uniform
  • the phase difference, and the sum of the aforementioned phase difference between all adjacent motor coil windings of the group of barrier stators is a non-zero integer multiple of 360 degrees.
  • the above-mentioned disc motor of the present invention with a barrier-type H-shaped stator mainly adopts a structure in which a set of barrier-type H-shaped stator cores are arranged between every two disk-shaped outer rotors arranged in parallel with each other, and the H-shaped stator core is used.
  • the upper and lower large slits of the core body are designed to magnetize the AC frequency drive signal of the coil on the stator iron core body.
  • the main magnetic flux of the H-shaped iron core is distorted and offset, which is effectively evenly concentrated on both sides and distributed in four
  • the angular magnetic pole tip increases the orthogonality between the main magnetic flux of the H-shaped iron core and the permanent magnet by an AC frequency drive signal, and maintains the magnetic flux offset to reduce the starting current and improve the efficiency of the high-speed area. It not only creates a favorable condition for the wide application of barrier-type H-type stator disk motors, but also has a larger orthogonal vector when operating at high speeds to reduce the magnetic attraction between the permanent magnets of the rotor and the stator core, and The effect of motor starting current reduction.
  • the set of barrier H-shaped stators includes a plurality of H-shaped iron cores, wherein each H-shaped iron core body has a top and bottom
  • the large slit makes the body form four corners, and the four corners are respectively wound with coils.
  • the upper and lower corners on one side are wound and connected to form motor coil windings in a horizontal manner, and the upper and lower corners are on the other side.
  • the coils are respectively wound into short-circuit coils.
  • Another object of the present invention is to provide a disc motor with a barrier-type H-shaped stator, which mainly penetrates the four corners formed by the upper and lower large slits of the H-shaped iron core body and is wound on the four corners respectively.
  • Coil, the two diagonal coils on one side are wound and connected in a transverse manner to form a motor coil winding, and the two diagonal coils on the other side are respectively wound into short-circuit coils; therefore, start on the motor rotor
  • the resultant magnetic flux flowing through the air gap between the stator and the rotor is either skewed magnetic flux or located on both sides of the magnetic pole, and this magnetic flux can effectively and concentrate the magnetic flux of the permanent magnet of the rotor to produce an orthogonal vector, so that the excitation
  • the magnetic flux is concentratedly distributed at the tips of the four angular magnetic poles to keep the magnetic flux offset, and then the permanent magnet rotor can be easily pushed to reduce the starting current when starting, and improve the cogging torque of the disc
  • the technical means adopted are: to provide a disc motor with a barrier-type H-shaped stator, which at least includes:
  • a pivot extending in the axial direction
  • each disk-type outer rotor includes a disk body and an even number of permanent magnets, wherein the disk body is fixed to the pivot with its center perpendicularly, and the even number of permanent magnets are arranged on the disk body , And arranged on the disk body in a ring-shaped arrangement with the disk body as the center, wherein every two adjacent permanent magnets on each disk body are arranged with the same magnetic poles, and the permanent magnets in the disk bodies of the aforementioned two disk outer rotors The magnets are arranged opposite to each other with the same magnetic poles;
  • a set of fence-type H-type stators including a plurality of H-shaped iron cores, each H-shaped iron core body has a large slit at the top and bottom, so that the body forms four corners, and the four corners are respectively wound with coils, one of which is opposite to each other.
  • the coils on the two corners of the corner are wound in a transverse manner to form the windings of the motor coils, and the two corners on the other side are respectively wound into short-circuit coils, and most of the H-shaped iron cores are centered on the above-mentioned pivot. And arranged in parallel with each other along the axial direction.
  • the two poles of the four corners of each H-shaped iron core are respectively close to the permanent magnets in the two disc-type outer rotors, and the number of the H-shaped iron cores is greater than that of the permanent magnets.
  • the number of magnets is one and less than two times, or the number of H-shaped iron cores is less than 0.5 times the number of permanent magnets;
  • a rotor position sensing component for measuring the position of the permanent magnet of the disc-type outer rotor and outputting at least one position signal
  • An enabling controller provides an AC frequency drive signal to the motor coil windings according to the received position signal, and makes the frequency drive signals of every two adjacent motor coil windings have a uniform
  • the phase difference, and the sum of the aforementioned phase difference between all adjacent motor coil windings of the group of barrier stators is a non-zero integer multiple of 360 degrees.
  • Another object of the present invention is to provide a disc motor/generator with a barrier H-shaped stator, which mainly penetrates the four corners formed by the upper and lower large slits of the H-shaped iron core body.
  • the coils are wound separately.
  • the two corner coils on one side are wound and connected in a transverse manner to form a motor coil winding, and the two corner coils on the other side are respectively wound into short-circuit coils.
  • the upper and lower large slits of the core body are wound with the generator coil winding in a longitudinal manner, so that the present invention has a motor coil winding and a generator coil winding on the H-shaped iron core of the stator.
  • the kinetic energy caused Magnetic induction can be effectively converted into electrical energy output and storage.
  • the magnetic resistance between the magnet and the iron core can be reduced, so as to achieve the purpose of reducing the starting current, improving the cogging torque, improving the efficiency of high-speed rotation, and recovering electrical energy.
  • the technical means adopted by the present invention is to provide a disc motor/generator with a barrier-type H-shaped stator, which at least includes:
  • a pivot extending in the axial direction
  • each disk-type outer rotor includes a disk body and an even number of permanent magnets, wherein the disk body is fixed to the pivot with its center perpendicularly, and the even number of permanent magnets are arranged on the disk body , And arranged on the disk body in a ring-shaped arrangement with the disk body as the center, wherein every two adjacent permanent magnets on each disk body are arranged with the same magnetic poles, and the permanent magnets in the disk bodies of the aforementioned two disk outer rotors The magnets are arranged opposite to each other with the same magnetic poles;
  • a set of fence-type H-type stators including a plurality of H-shaped iron cores, each H-shaped iron core body has a large slit up and down, so that the body forms four corners up and down, and the four corners are respectively wound with coils, one of which is The coils on the two diagonal corners are wound in a transverse manner to form motor coil windings, and the two diagonal coils on the other side are respectively wound into short-circuit coils.
  • the upper and lower large slits of the H-shaped iron core body are longitudinally wound. Winding the power generation coil windings, and a plurality of H-shaped iron cores are centered on the above-mentioned pivot axis, and are evenly arranged parallel to each other along the axial direction.
  • each H-shaped iron core is respectively close to correspond to the aforementioned two
  • the number of the aforementioned H-type iron cores is greater than one and less than two times the number of the aforementioned permanent magnets, or the number of the H-type iron cores is less than 0.5 times the number of the aforementioned permanent magnets;
  • a rotor position sensing component for measuring the position of the permanent magnet of the disc-type outer rotor and outputting at least one position signal
  • An enabling controller provides an AC frequency drive signal to the motor coil windings according to the received position signal, and makes the frequency drive signals of every two adjacent motor coil windings have a uniform Phase difference, and the sum of the aforementioned phase difference between all adjacent motor coil windings of the group of barrier stators is a non-zero integer multiple of 360 degrees;
  • a set of electric energy recovery circuits for receiving and storing the electric energy generated by the windings of the generating coils.
  • each H-shaped iron core is a plurality of oriented silicon steel sheets laminated into a circular or square column shape.
  • the barrier H-shaped stator further includes two non-magnetic stator bases that hold the H-shaped iron core.
  • the shortest distance between the tops of the four corners of the H-shaped iron core and the adjacent permanent magnets is smaller than the thickness of the disc body.
  • the present invention is a disk motor and motor/generator with a barrier H-shaped stator, it includes two disk-shaped outer rotors and a set of barrier H-shaped stators arranged in parallel with each other.
  • the ingenious interaction between the rotor and the stator The configuration and the series connection of a pivot shaft reduce the distance of the air gap on the one hand, so that the magnetic flux mainly passes through the H-shaped iron core and the permanent magnet to achieve a loop.
  • the upper and lower sides of the H-shaped iron core of the barrier H-shaped stator are large.
  • the slit part is wound with the winding of the generator coil in a longitudinal manner, so that when used as a generator, the magnetic path can still be kept unblocked, the magnetic resistance is reduced, and the power generation efficiency is thereby improved; and because the number of permanent magnets and H-shaped iron cores match each other, they form a common structure
  • the magnetic circuit is matched with frequency drive signals with specific phase difference to make the rotor run smoothly; especially, the number of combined H-shaped iron cores is more than one and less than two times the number of permanent magnets, or the number of H-shaped iron cores is less than With the structural feature of 0.5 times the number of permanent magnets, each permanent magnet is matched with a complete magnetic circuit, which effectively improves the energy conversion efficiency of the motor/generator, thereby achieving all the above-mentioned objectives.
  • Figure 1 is a schematic diagram of a known external rotor permanent magnet AC servo motor to illustrate the relative positional relationship between the motor stator and the rotor;
  • Figure 2 is a schematic diagram of the structure of a known disc motor to illustrate the relative relationship between the permanent magnet and the coil;
  • Figure 3 is a three-dimensional exploded schematic view of a preferred embodiment of the present invention to illustrate the relative positions of the pivot shaft, two disk-type outer rotors, disk body, permanent magnets, barrier H-shaped stator, H-shaped iron core, and stator base relationship;
  • Figure 4 is a schematic diagram of the H-shaped iron core being a circular column
  • Figure 5 is a schematic diagram of the H-shaped iron core being a square column
  • FIG. 6 is a schematic diagram of the relative relationship between the adjacent permanent magnets with the same polarity and different relative positions, and the H-shaped iron core body is located between the upper and lower large slits and the motor coil windings are wound transversely and the permanent magnets;
  • Fig. 7 is a schematic cross-sectional view of the change of the magnetic field generated inside the permanent magnet and the H-shaped iron core of Fig. 6;
  • Figure 8 shows that the adjacent permanent magnets have the same polarity and the relative position is different.
  • the H-shaped core body DB is wound on the same side angle body coil to form a motor coil winding, and the other side angle body AC coil is respectively wound into a short-circuit coil and a permanent magnet.
  • Figure 9 shows that the adjacent permanent magnets have the same polarity and the relative position is different.
  • the H-shaped iron core body AC is wound on the same side angle body coil to form a motor coil winding, and the other side angle body BD coil is respectively wound into a short-circuit coil and a permanent magnet.
  • Figure 10 shows the adjacent permanent magnets with the same polarity and the same polarity in the relative position.
  • the H-shaped iron core body CD diagonal coil is wound and connected to form a motor coil winding, and the other side diagonal AB coil is respectively wound into a short-circuit coil and Schematic diagram of the relative relationship of permanent magnets;
  • Figure 11 shows that the adjacent permanent magnets have the same polarity and the same polarity in the relative position.
  • the H-shaped iron core body AB is wound on the diagonal body to form a motor coil winding, and the other side of the diagonal body CD coil is wound around the short-circuit coil and the permanent magnet respectively.
  • Figure 12 shows the adjacent permanent magnets with the same polarity and the same polarity in the relative position.
  • the diagonal coils of the H-shaped iron core body are wound and connected to form motor coil windings, and the diagonal coils on the other side are respectively wound into short-circuit coils and permanent magnets.
  • FIG. 13 is a schematic cross-sectional view of the change of the magnetic field generated inside the permanent magnet and the H-shaped iron core of FIG. 12;
  • Figure 14 shows the adjacent permanent magnets with the same polarity and the same polarity in the relative position.
  • the diagonal coils of the H-shaped iron core body are wound and connected to form motor coil windings, and the diagonal coils on the other side are respectively wound into short-circuit coils.
  • FIG. 15 is a schematic cross-sectional view of the change of the magnetic field generated inside the permanent magnet and the H-shaped iron core of FIG. 14;
  • Figure 16 is a schematic diagram of the frequency-based driving signal provided by the sensing component and the intelligent controller to illustrate that the enabling controller receives the sensing component to measure the position signal of the permanent magnet, and provides the phase of the frequency-based driving signal received by the coil group adjacent to the AC frequency Poor relationship.
  • an outer disk motor 10 with a barrier H-shaped stator of the present invention has a pivot 11 extending in the axial direction, two disk outer rotors 12 arranged parallel to each other, and a set of barrier H Type stator 13; each disc outer rotor 12 includes a disc body 121 and an even number of permanent magnets 122; the barrier H-type stator 13 includes a plurality of H-shaped iron cores 131 and a motor wound around each H-shaped iron core 131 The coil winding 132.
  • the disc body 121 is in the shape of a circular disc, and six permanent magnets 122 are slightly elongated and curved; those skilled in the art can easily understand that even though the permanent magnets 122 here If it is changed to a horseshoe shape or rectangular shape, as long as it is arranged in the plate body 121 in the aforementioned manner, it will not hinder the implementation of the present invention.
  • the barrier H-shaped stator 13 includes 9 circular cylindrical H-shaped iron cores 131 of equal length, and the length of each H-shaped iron core 131 is 3.5 cm.
  • the H-shaped means The shape is similar to the English letter H; and as shown in FIGS. 4 and 5, the H-shaped iron core 131 may be round or square columnar, which will not hinder the implementation of this application.
  • the H-shaped iron core 131 is composed of a plurality of oriented silicon steel sheets.
  • a person of ordinary skill can choose arbitrarily, such as die-casting of iron powder or other conventional magnetic conductors as the H-shaped iron core. None of it will hinder the implementation of this application.
  • each of the aforementioned disk-type outer rotors 12 includes a disk body 121 and an even number of permanent magnets 122, wherein the disk body 121 is perpendicular to its center.
  • the even number of permanent magnets 122 are evenly arranged in a ring with the disk body 121 as the center, and are flatly embedded in the disk body 121, wherein every two adjacent permanent magnets 122 on the disk body 121
  • the permanent magnets 122 in the disk bodies of the two parallel disk outer rotors 12 are arranged with the same magnetic poles, and the permanent magnets 122 are opposite to each other with different magnetic poles.
  • the barrier H-shaped stator 13 includes a plurality of H-shaped iron cores 131, wherein the H-shaped iron core 131 is jointly held by two non-magnetic stator bases 133, and a plurality of H-shaped iron cores 131 are respectively centered on the pivot 11 and arranged in parallel with each other along the axial direction evenly between the two non-magnetic stator bases 133.
  • each H-shaped iron core 131 has large slits 134 up and down to form four corners 135.
  • the H-shaped iron core 131 is located between the upper and lower large slits 134.
  • the two poles of the four corner bodies 135 are respectively closely connected to the permanent magnets 122 in the two disk-type outer rotors 12, as shown in FIG.
  • the number of permanent magnets 122 is greater than one time and less than two times, or the number of H-shaped iron cores is less than 0.5 times the number of permanent magnets, so no matter where the permanent magnet 122 is rotated to any position, there can be some permanent magnets 122 corresponding to exactly two One adjacent H-shaped iron core 131, and two adjacent H-shaped iron cores 131 are respectively close to the N pole and S pole of the two permanent magnets 122, and the upper and lower two complete magnetic circuits, as shown in FIGS. 6 and 7.
  • the present invention also includes a sensing component 136 and an enabling controller 137 connected to the sensing component 136; wherein the sensing component 136 is a Hall component, but is not limited to this component.
  • the sensing component 136 is mainly used to measure the position of the permanent magnet 122 of the outer disc rotor 12, and can output the measured position signal to the enabling controller 138.
  • the enabling controller 138 can sense the The position signal of the component 136 provides an AC frequency drive signal to each motor coil winding 132, so that every two adjacent frequency drive signals of the motor coil winding 132 have a uniform phase difference.
  • the sum of the aforementioned phase differences between all adjacent motor coil windings 132 of the group-barrier H-shaped stator 13 is a non-zero integer multiple of 360 degrees.
  • FIG. 7 is a schematic cross-sectional view of the change of the magnetic field generated inside the permanent magnet and the H-shaped iron core of Fig. 6.
  • each H-shaped iron core 131 is located between the upper and lower large slits 134 to wind the motor coil winding 132 in a transverse manner for receiving an AC frequency drive signal to magnetize the H-shaped iron core 131 to generate the main magnetic field.
  • the magnetic pole of the permanent magnet 122 has just passed the end of the H-shaped iron core 131 corresponding to the angle body 135, and the H-shaped iron
  • the AC frequency drive signal of the motor coil winding 132 on the core 131 body produces a distortion offset of the main magnetic flux of the magnetized H-shaped iron core 131, which is effectively evenly concentrated on both sides and distributed on the magnetic pole tips of the four corners 135.
  • Increasing the orthogonality between the main magnetic flux of the H-shaped iron core 131 and the permanent magnet 122 of the AC frequency drive signal magnetization, and maintaining the magnetic flux offset reduces the starting current and improves the efficiency in the high-speed area.
  • it has a larger orthogonal vector to reduce the magnetic attraction between the disc permanent magnet 122 and the H-shaped iron core 131, so as to achieve the effect of reducing the motor starting current.
  • the magnetic poles of the lower permanent magnet 122 are the same as the magnetic poles of the lower permanent magnet 122, because the same magnetic poles repel each other.
  • the H-shaped iron core 131 pulls the permanent magnet 122 to rotate along the pivot 11, that is, the disk-type outer rotor 12 is magnetically driven to rotate by the fence-type H-shaped stator 13, and the permanent magnet 122 passes through the corresponding H-shaped iron After the ends of the four corners 135 of the core 131 body, the frequency-type driving signal of the excitation will gradually change phase, and the magnet will continue to operate again with the opposite magnetism.
  • the same pushing or pulling action is generated every 120 degrees on the circumference, so that the outer disk motor 10 can generate three times the pushing or pulling force in each phase.
  • the upper and lower permanent magnets 122 at the moment shown in FIG. 7, the magnetic lines of force travel through the motor coil 132 and return from the inside of the lower H-shaped iron core 131 and the adjacent H-shaped iron core 131 to form a complete magnetic circuit.
  • a set of H-shaped outer rotors 12 are arranged between every two disk-shaped outer rotors 12 arranged in parallel with each other.
  • the fence type H-shaped stator 13 structure formed by the H-shaped iron core 131 uses the large slits 134 of the H-shaped iron core 131 to form four corners 135.
  • Four sets of coils are wound on the four corners 135, and the four sets of coils are selected.
  • the two sets of coils are short-circuit coils 138, that is, the function of shading coils.
  • the short-circuited windings have fewer turns and can also be composed of copper rings to become resistive coils with high resistance and small inductance.
  • Two sets of coils are set as short-circuit coils 138, and the other two sets of coils are connected as motor coil windings 132 for receiving an AC frequency drive signal to magnetize the H-shaped iron core. Due to the mutual induction magnetic flux generated from the main magnetic field generated by the AC frequency drive signal from the two groups of unshort-circuited coils (motor coil windings 132), an induced voltage will be generated in the two groups of short-circuited coils 138. A short-circuit current will be generated. This short-circuit current is not synchronized with the excitation current generated by the other two sets of unshort-circuited coils (motor coil windings 132) receiving an AC frequency driving signal.
  • this induced potential causes two groups of short-circuited coils 138 to generate induced currents against the other two groups that are not short-circuited (motor coil windings 132) by receiving an alternating frequency drive signal to magnetize the main magnetic flux of the H-shaped iron core.
  • the magnetic flux changes, causing the magnetic flux in the short-circuited coil 138 to lag 90 degrees compared to the main magnetic flux magnetized by the two groups of unshort-circuited coils (motor coil windings 132) by receiving an AC frequency drive signal.
  • This lagging magnetic flux It is possible to change the phase of the main magnetic flux magnetized by the two groups of unshort-circuited coils (motor coil windings 132) by receiving an alternating frequency drive signal, that is, the magnetic flux of the short-circuited coil 138 and the two groups of un-short-circuited coils (motor coils). Winding 132) by receiving an AC frequency drive signal magnetized main magnetic flux to synthesize a skewed magnetic flux effect, which can make two groups of unshort-circuited coils (motor coil winding 132) receive an AC frequency drive signal magnetization The main magnetic flux direction is distorted.
  • the alternating magnetic field generated by the two sets of short-circuited coils 138 ideally lags behind the main magnetic field generated by the two sets of non-short-circuited coils (motor coil windings 132) by AC frequency driving signals and is phase-shifted by 90 degrees.
  • This will cause the magnetic fields of the two parts of the H-shaped iron core body to not be zero at the same time, and the short-circuit current of the short-circuit coil 138 generates a new magnetic field and cancels a part of the main magnetic field generated by the original AC frequency driving signal.
  • the main magnetic flux causes the main magnetic flux to change slowly, which in turn causes the main magnetic field of the angular magnetic pole tip of the stator core body to be slightly distorted and deformed, and indirectly causes the phase shift of the magnetic field.
  • the short-circuit coil 138 is arranged in the H-shaped iron core, it can be arranged on the four corners 135 among the two ends of the stator magnetic poles according to the disc motor.
  • the main magnetic pole core must be turned over to change the short-circuit position of the copper ring.
  • the permanent magnet 122 is adjacent to the same polarity, and the upper and lower relative positions are different in polarity, the short circuit must be short-circuited.
  • the coil 138 is set on the same side of the H-shaped iron core.
  • the copper rings A and C can be short-circuited, and the copper rings B and D are open; and when you want to rotate in the counterclockwise direction , As shown in Figure 9, open the A and C copper rings, and short the B and D copper rings.
  • the short-circuit coil 138 needs to be arranged on the diagonal side of the H-shaped iron core.
  • the main pole core must be turned over to change the short-circuit position of the copper ring.
  • Figure 12 shows that the permanent magnets are adjacent to the same polarity and the relative position is the same polarity.
  • the corner coils on one side of the H-shaped iron core body are wound and connected to form motor coil windings.
  • a corner coil on one side is wound into a schematic diagram of the relative relationship between the short-circuit coil and the permanent magnet.
  • Fig. 13 is a schematic cross-sectional view of the change of the magnetic field generated inside the permanent magnet and the H-shaped iron core.
  • each H-shaped iron core 131 has two corners 135 coils on one side diagonally wound to form motor coils 132, and the other side of the two diagonal corners 135 coils are wound into short-circuit coils 138 respectively.
  • the diagonal two sets of coils of the H-shaped iron core 131 are connected to form a motor coil winding 132 for receiving an AC frequency driving signal (not shown) to magnetize the aforementioned H-shaped iron core 131. Because the short-circuit current of the short-circuit coil 138 generates a new magnetic field and cancels a part of the main magnetic field generated by the original AC frequency driving signal, the main magnetic flux changes slowly, and the magnetic pole tip of the corner 135 of the H-shaped iron core 131 is caused.
  • the main magnetic field is slightly distorted and deformed, and indirectly causes the phase shift of the magnetic field.
  • the magnetic poles of the permanent magnet 122 of the disk outer rotor 12 above the axial direction are NS, SN, NS... from left to right.
  • the magnetic poles of the permanent magnets 122 of the disk-type outer rotor 12 located in the axially downward direction are arranged on the disk body 121 in a manner of NS, SN, NS... from left to right, as shown in FIG.
  • an H-shaped iron core 131 is driven to induce magnetic poles that are exactly different from the magnetic poles of the permanent magnets 122 of the upper disk outer rotor 12 that are close to each other, forming a closed magnetic field line, on the other hand, it is the same as the lower disk.
  • the magnetic poles of the permanent magnet 122 of the outer rotor 12 are opposite. Due to the attraction of different magnetic poles and the repulsion of the same magnetic poles, the H-shaped iron core 131 pulls the permanent magnet 122 to rotate along the pivot 11, that is, the disk outer rotor 12 is The above-mentioned fence-type H-shaped stator 13 is magnetically driven to rotate.
  • the same push or pull action is generated every 120 degrees on the circumference, so that each time phase of the above-mentioned outer disk motor 10 can generate three times The thrust or pull force.
  • the upper and lower permanent magnets 122 momentarily, the magnetic lines of force travel through the motor coil winding 132, and the inner cross bar under the H-shaped iron core 131 body and the adjacent H-shaped iron core 131 body return to form a complete magnetic field. Loop.
  • H-shaped iron cores 131 in this embodiment 9 pieces
  • 6 pieces no matter where the outer disc rotor 14 rotates to any position, there may be some permanent magnets 122 corresponding to two pieces.
  • Adjacent H-shaped iron cores 131, and two adjacent H-shaped iron cores 131 are close to their N poles and S poles respectively, so that the two permanent magnets 122 corresponding to each other on the upper and lower disc outer rotors 12 can be used respectively by
  • the internal crossbar of one H-shaped iron core 131 passes through its own H-shaped iron core 131 and returns to the other pole of the permanent magnet 122 to form two complete magnetic circuits up and down.
  • each H-shaped iron core 131 has an internal crossbar, so that the magnetic field lines of the permanent magnet 122 will densely pass through the H-shaped iron core 131, and the magnetic resistance is greatly reduced.
  • the number of the aforementioned H-shaped iron cores 131 of the present invention must be a positive integer that is radially symmetrically distributed with respect to the above-mentioned pivot 11, and the number is greater than the above-mentioned permanent magnet 122 The number is one time and less than two times, or the number of H-type iron cores is less than 0.5 times the number of the above-mentioned permanent magnets.
  • Figure 14 shows that the permanent magnets are adjacent to the same polarity and have the same polarity in relative positions.
  • the corner coils on one side of the H-shaped iron core body are wound and connected to form motor coil windings.
  • One side diagonal corner coil is wound into a short-circuit coil, and the upper and lower large slits of the body are longitudinally wound with a schematic diagram of the relative relationship between the power generation coil winding and the permanent magnet.
  • Fig. 15 is a schematic cross-sectional view of the change of the magnetic field generated inside the permanent magnet and the H-shaped iron core.
  • the upper and lower large slits 134 of each of the above-mentioned H-shaped iron cores 131 are wound with a generator coil winding 139, which receives the alternating mutual induction magnetic flux generated by the motor coil winding 132 to magnetize the aforementioned H-shaped iron core 131;
  • the power generating coil windings 139 arranged in the upper and lower large slits 134 of the H-shaped iron core 131 will cut the magnetic lines during the movement, recover part of the kinetic energy and convert it into electrical energy.
  • the induced electric potential causes the power generation coil winding 139 to generate induced current or load current to oppose the frequency drive signal of the motor coil winding 132 to magnetize the main magnetic flux of the H-shaped iron core 131.
  • the magnetic flux of the winding 132 lags 90 degrees from the main magnetic flux magnetized by the motor coil winding 132 by receiving an AC frequency drive signal, and the difference between the power generation coil winding 139 and the motor coil winding 132 is 90 degrees.
  • the motor magnetic flux and the generator magnetic flux can be designed to achieve the same phase, providing a complete magnetic flux path of the permanent magnet, so that the magnetic resistance is greatly reduced, and the rotation of the permanent magnet can periodically weaken the core during the excitation of the AC signal
  • the hysteresis phenomenon reduces the heat generation and energy consumption caused by the hysteresis phenomenon, so that the motor disclosed in the present invention generates low heat during operation and has high energy conversion efficiency, and achieves the above-mentioned object of the invention beyond the prior art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

一种具有栅栏式H型定子的盘式马达(10),包括枢轴(11)、盘式外转子(12)及栅栏式H型定子(13);栅栏式H型定子(13)每一H型铁芯(131)上下有大狭缝(134)形成四个角体(135),通过将外转子永磁体(122)与定子铁芯的接触面缩小,降低启动电流。又可在四个角体(135)缠绕线圈,其中任两组为短路线圈(138),另两组为连接的马达线圈绕组(132);通过位于磁极两侧或偏斜磁通,有效地集中正交向量,使激磁磁通集中分布于四个角体(135)磁极尖部,保持磁通偏移,降低启动电流、改善顿转转矩及提升高速旋转效率;另外,H型铁芯(131)除了有马达线圈绕组(132)外,还包含发电线圈绕组(139),达到电能回收目的。

Description

[根据细则37.2由ISA制定的发明名称] 具有栅栏式H型定子的盘式马达 技术领域
本发明涉及一种外盘式马达及发电机电能回收领域,特别指一种具有栅栏式H型式定子的盘式马达及马达/发电机。
背景技术
常见的永磁式交流伺服马达9,如图1所示,将永久磁铁91设置在马达外层的转子92处,而将电枢线圈绕组93设置于核心的定子94处,无论是电流经过电枢线圈绕组会因电阻而发热,或是在换相过程中发生电流跳接时的骤热,都难以轻易散出;且因受限于内外层包覆式的结构设计,使得面对输出扭力变更、安装空间限制等问题时,其应变的弹性也减少了。
盘式马达与普通永磁电机结构基本相同,也包括有:定子、转子和外壳,而区别在于盘式马达的转子通常是永磁体,安装在定子铁芯体上的激磁线圈产生磁场,对于转子产生斥力与拉力,驱动永磁体转子转动。因为永磁体转子带磁性,被动地与定子磁场作用。因此,定子与转子之间,不仅能够产生拉力且也产生斥力,既然是磁拉力与斥力,便不仅有大、小的量差异,且有正、负的区别。由于马达未启动时转子永磁体会吸住定子铁芯体,使得马达在启动时,定子铁芯体的线圈需要较大的启动电流来产生拉力与推力,以及运转时会产生较大的顿转转矩便成为难免。
盘式马达的启动电流问题,长期以来都未找到有效的解决办法,致使盘式马达在高速的效率难以提高。如第2图所示,已知盘式马达8,虽揭露有盘式外转子81的结构,但对上述的发热及耗能问题并无适当解答。此外,永久磁铁82和线圈绕组83的数目未曾妥善匹配,也将导致磁回路无法均匀作用,在每一作用周期中,都可能造成出力忽大忽小的转动不均匀状况。
盘式马达降低磁吸力,主要通过减少永磁体转子与定子铁芯体的间隔较大距离,或将接触面缩小来提高转速的设计,降低转子永磁体磁吸力来减少启动电流,但仅适用于高速且低扭力,限制其应用场合。从电磁场理论可推导出:电机单位体积力矩,在其它条件不变的情况下,与磁通变化量成正比。由于启动电流原因,转子永磁体数目大于一定数量后,随着转子永磁体数的增加因而降低转子永磁体与定子铁芯体之间的接触面缩小,其启动电流也会成倍降低,致使定子铁芯体的磁通幅值的减少量与定子铁芯体的 体积减少量相当,输出力矩不会随槽数的增加而增加。
改善定子铁芯体的磁路与永磁体在启动过程的磁吸力或启动电流,传统上增加永磁体与定子铁芯体的磁路的距离,亦即是增加空气隙的长度,其缺点即是因空气隙磁阻的增加会导致马达的效率降低且扭力降低。
又,永磁马达在高速区域需要向定子铁芯体的磁路的电磁铁中流入更大的电流,使其产生与永磁铁磁通相反的磁通。因为随着马达的旋转速度加快,定子铁芯体的磁路的电磁铁的感应电压将升至电源电压上限,导致转速无法继续增加转速。但是,流入更大的电流无益于马达扭矩的增加,最终使用的电流越大,效率越低。因此,如何提高速度或者降低启动电流量即成为当今的盘式马达主要研究课题。
有鉴于此,发明人本针对先前申请核准台湾发明专利公告号L664794号(申请号107103798)“具有栅栏式定子的外盘式马达”,详加设计与审慎评估后,终得确具实用性的本发明。
发明内容
本发明的一目的,为提供一种具有栅栏式H型定子的盘式马达,其主要透过H型铁芯本体上下大狭缝设计,将转子永磁体与定子铁芯体的将接触面缩小,达到降低启动电流,同时改善高速区域的效率。
为了要达到上述目的,其所采用的技术手段为:提供一种具有栅栏式H型定子的盘式马达,至少包括:
一根沿轴向延伸的枢轴;
二个彼此平行配置的盘式外转子,每一盘式外转子分别包括一个盘体及偶数个永久磁铁,其中盘体分别以其中心垂直固设于枢轴,偶数个永久磁铁设置于盘体,且以盘体为中心成环状排列设置在盘体上,其中每一盘体上的每两个相邻永久磁铁以相同磁极设置,而前述两个盘式外转子的盘体中的永久磁铁为相异磁极彼此相对设置;
一组栅栏式H型式定子,包括多数个H型铁芯,每一H型铁芯本体上下有大狭缝,使本体上下形成四个角体,其中H型铁芯本体位于上下大狭缝之间以横向方式缠绕马达线圈绕组,又多数个H型铁芯分别以上述枢轴为圆心,且沿着轴向彼此平行均匀排列,前述每一H型铁芯的四个角体的各自两极分别近接对应前述两个盘式外转子中的永久磁铁,又前述H型铁芯数目大于上述永久磁铁数目的一倍且低于二倍,或H型铁芯数目小于上述永久磁铁数目的0.5倍;
一个转子位置感测组件,供量测上述盘式外转子的永久磁铁位置,并输出至少一个位置信号;及
一个致能控制器,依据所收到的前述位置信号,提供交流的频率式驱动信号至上述马达线圈绕组,并使得每两相邻前述马达线圈绕组的频率式驱动信号间,分别具有一均匀的相位差,且该组栅栏式定子的所有相邻马达线圈绕组间的前述相位差总和为360度的非零整数倍。
上述本发明一种具有栅栏式H型定子的盘式马达,主要透过每二个彼此平行配置的盘式外转子之间设置一组栅栏式H型定子铁芯的结构,利用H型定子铁芯本体的上下大狭缝设计,将定子铁芯体上的线圈的交流的频率式驱动讯号磁化H型铁芯的主磁通产生畸变偏移,有效地均匀集中于两侧且分布于四个角磁极尖部,增大一交流的频率式驱动讯号磁化H型铁芯的主磁通与永磁体的正交量,以及保持磁通偏移,来降低启动电流,同时改善高速区域的效率。其不仅给栅栏式H型式定子的盘式马达的广泛应用创造一个有利条件,同时,在高速运转时,具有较大的正交向量,以降低转子永磁体与定子铁芯体的磁吸力,让马达启动电流降低的功效。
在上述一种具有栅栏式H型定子的盘式马达中,其进一步特征在于,所述一组栅栏H型式定子,包括多数个H型铁芯,其中所述每一H型铁芯本体上下有大狭缝,使本体形成四个角体,四个角体上分别缠绕线圈,其中一侧上下两个角体上线圈以横向方式缠绕连接成马达线圈绕组,另一侧上下两个角体上线圈则分别缠绕成短路线圈。
本发明另一目的,为提供一种具有栅栏式H型定子的盘式马达,其主要透过H型铁芯本体的上下大狭缝形成的四个角体,在四个角体上分别缠绕线圈,在其中一侧对角的两个角体上线圈以横向方式缠绕连接成马达线圈绕组,另一侧对角的两个角体上线圈则分别缠绕成短路线圈;因此,在马达转子启动过程中,流过定子与转子气隙的合成磁通都是偏斜磁通或位于磁极两侧的,且此磁通能有效地且集中与转子永磁体的磁通产生正交向量,使激磁磁通集中分布于四个角体磁极尖部,保持磁通偏移,进而可以轻易推动永磁体转子,达到降低启动时的启动电流,并且改善盘式马达的顿转转矩,以及提升盘式马达在高速的效率。
为了要达到上述目的,其所采用的技术手段为:提供一种具有栅栏式H型定子的盘式马达,至少包括:
一根沿轴向延伸的枢轴;
二个彼此平行配置的盘式外转子,每一盘式外转子分别包括一个盘体及偶数个永 久磁铁,其中盘体分别以其中心垂直固设于枢轴,偶数个永久磁铁设置于盘体,且以盘体为中心成环状排列设置在盘体上,其中每一盘体上的每两个相邻永久磁铁以相同磁极设置,而前述两个盘式外转子的盘体中的永久磁铁为相同磁极彼此相对设置;
一组栅栏式H型式定子,包括多数个H型铁芯,每一H型铁芯本体上下有大狭缝,使本体形成四个角体,四个角体上分别缠绕线圈,其中一侧对角两个角体上线圈以横向方式缠绕连接成马达线圈绕组,另一侧对角两个角体上线圈则分别缠绕成短路线圈,又多数个H型铁芯分别以上述枢轴为圆心,且沿着轴向彼此平行均匀排列,前述每一H型铁芯的四个角体的各自两极分别近接对应前述两个盘式外转子中的永久磁铁,又前述H型铁芯数目大于上述永久磁铁数目的一倍且低于二倍,或H型铁芯数目小于上述永久磁铁数目的0.5倍;
一个转子位置感测组件,供量测上述盘式外转子的永久磁铁位置,并输出至少一个位置信号;以及
一个致能控制器,依据所收到的前述位置信号,提供交流的频率式驱动信号至上述马达线圈绕组,并使得每两相邻前述马达线圈绕组的频率式驱动信号间,分别具有一均匀的相位差,且该组栅栏式定子的所有相邻马达线圈绕组间的前述相位差总和为360度的非零整数倍。
本发明再一目的,为提供一种具有栅栏式H型定子的盘式马达/发电机,其主要透过H型铁芯本体的上下大狭缝形成的四个角体,四个角体上分别缠绕线圈,其中一侧对角的两个角体上线圈以横向方式缠绕连接成马达线圈绕组,另一侧对角的两个角体上线圈则分别缠绕成短路线圈,且在H型铁芯本体上下大狭缝部位以纵向方式缠绕发电线圈绕组,使本发明在定子的H型铁芯上有马达线圈绕组及发电线圈绕组,在不变更马达单体的设计下,使得动能所引起的磁感应,可以被有效转换为电能输出储存,同时可以使磁铁和铁芯间的磁阻降低,达到降低启动电流、改善顿转转矩、提升高速旋转效率、以及电能回收的目的。
本发明为了要达到上述目的,其所采用的技术手段为:提供一种具有栅栏式H型定子的盘式马达/发电机,至少包括:
一根沿轴向延伸的枢轴;
二个彼此平行配置的盘式外转子,每一盘式外转子分别包括一个盘体及偶数个永久磁铁,其中盘体分别以其中心垂直固设于枢轴,偶数个永久磁铁设置于盘体,且以盘体为中心成环状排列设置在盘体上,其中每一盘体上的每两个相邻永久磁铁以相同磁极 设置,而前述两个盘式外转子的盘体中的永久磁铁为相同磁极彼此相对设置;
一组栅栏式H型式定子,包括多数个H型铁芯,每一H型铁芯本体上下有大狭缝,使本体上下形成四个角体,四个角体上分别缠绕线圈,其中一侧对角两个角体上线圈以横向方式缠绕连接成马达线圈绕组,另一侧对角两个角体上线圈则分别缠绕成短路线圈,在H型铁芯本体上下大狭缝部位以纵向方式缠绕发电线圈绕组,又多数个H型铁芯分别以上述枢轴为圆心,且沿着轴向彼此平行均匀排列,前述每一H型铁芯的四个角体的各自两极分别近接对应前述两个盘式外转子中的永久磁铁,又前述H型铁芯数目大于上述永久磁铁数目的一倍且低于二倍,或H型铁芯数目小于上述永久磁铁数目的0.5倍;
一个转子位置感测组件,供量测上述盘式外转子的永久磁铁位置,并输出至少一个位置信号;
一个致能控制器,依据所收到的前述位置信号,提供交流的频率式驱动信号至上述马达线圈绕组,并使得每两相邻前述马达线圈绕组的频率式驱动信号间,分别具有一均匀的相位差,且该组栅栏式定子的所有相邻马达线圈绕组间的前述相位差总和为360度的非零整数倍;以及
一组电能回收回路,供接收储存上述发电线圈绕组所产生的电能。
在上述一种具有栅栏式H型定子的盘式马达及马达/发电机中,其中每一H型铁芯为多个取向性硅钢片迭制成圆形或方形柱状。
在上述一种具有栅栏式H型定子的盘式马达及马达/发电机中,其中栅栏式H型定子更包括有二个固持H型铁芯的非导磁定子基座。
在上述一种具有栅栏式H型定子的盘式马达及马达/发电机中,其中H型铁芯的四个角体顶部与近接对应的上述永久磁铁的最短距离小于上述盘体厚度。
由于本发明一种具有栅栏式H型定子的盘式马达及马达/发电机,包括二个彼此平行配置的盘式外转子及一组栅栏式H型定子,藉由转子与定子相互间的巧妙配置及一根枢轴的串接,一方面减少空气隙的距离,使得磁通量主要经过H型铁芯和永久磁铁达成回路,另一方面在栅栏式H型定子的H型铁芯上的上下大狭缝部位以纵向方式缠绕发电线圈绕组,使得作为发电机时,磁通路仍能保持畅通,磁阻降低,发电效率藉此提升;且由于永久磁铁和H型铁芯的数目相互匹配,共同构成磁回路,搭配彼此具有特定相位差的频率式驱动讯号,让转子的运转顺畅;尤其,结合H型铁芯数目大于上述永久磁铁数目的一倍且低于二倍,或H型铁芯数目小于上述永久磁铁数目的0.5倍的结构特点,每一永久磁铁都恰好搭配一个完整磁回路,有效提升马达/发电机的能量转换效率,进而 达成以上所述所有目的。
附图说明
图1为已知外转子永磁式交流伺服马达示意图,用以说明马达定子与转子的相对位置关系;
图2为已知盘式马达架构示意图,用以说明其永久磁铁与线圈相对关系;
图3为本发明较佳实施例的立体分解示意图,用以说明枢轴、二个盘式外转子、盘体、永久磁铁、栅栏式H型定子、H型铁芯及定子基座的相对位置关系;
图4为H型铁芯为圆形柱状示意图;
图5为H型铁芯为方形柱状示意图;
图6为永久磁铁相邻相同极性且相对位置相异极性,H型铁芯本体位于上下大狭缝之间横向缠绕马达线圈绕组与永久磁铁的相对关系示意图;
图7为图6永久磁铁与H型铁芯内部产生的磁场变化剖视示意图;
图8为永久磁铁相邻相同极性且相对位置相异极性,H型铁芯本体D-B同侧角体线圈缠绕连接成马达线圈绕组,另一侧角体A-C线圈分别缠绕成短路线圈与永久磁铁的相对关系示意图;
图9为永久磁铁相邻相同极性且相对位置相异极性,H型铁芯本体A-C同侧角体线圈缠绕连接成马达线圈绕组,另一侧角体B-D线圈分别缠绕成短路线圈与永久磁铁的相对关系示意图;
图10为永久磁铁相邻相同极性且相对位置相同极性,H型铁芯本体C-D对角角体线圈缠绕连接成马达线圈绕组,另一侧对角角体A-B线圈分别缠绕成短路线圈与永久磁铁的相对关系示意图;
图11为永久磁铁相邻相同极性且相对位置相同极性,H型铁芯本体A-B对角角体缠绕连接成马达线圈绕组,另一侧对角角体C-D线圈分别缠绕短路线圈与永久磁铁的相对关系示意图;
图12为永久磁铁相邻相同极性且相对位置相同极性,H型铁芯本体对角角体线圈缠绕连接成马达线圈绕组,另一侧对角角体线圈分别缠绕成短路线圈与永久磁铁的相对关系示意图;
图13为图12永久磁铁与H型铁芯内部产生的磁场变化剖视示意图;
图14为永久磁铁相邻相同极性且相对位置相同极性,H型铁芯本体对角角体线圈 缠绕连接成马达线圈绕组,另一侧对角角体线圈分别缠绕成短路线圈,本体上下大狭缝部位纵向缠绕发电线圈绕组与永久磁铁的相对关系示意图;
图15为图14永久磁铁与H型铁芯内部产生的磁场变化剖视示意图;
图16为感测组件及智能控制器提供频率式驱动讯号示意图,用以说明致能控制器接收感测组件量测永久磁铁的位置信号,提供交流频率相邻线圈组所接收频率式驱动讯号相位差关系。
附图标记说明:
9-永磁式交流伺服马达;8-盘式马达;10-外盘式马达;82(91、122)-永久磁铁;12(81、92)-转子;83(93、132)-线圈绕组;13(94)-定子;11-枢轴;131-铁芯;121-盘体;133-基座;134-狭缝;135(A、B、C、D)-角体;136-感测组件;137-智能控制器;138-短路线圈;139-发电线圈绕组
具体实施方式
有关本发明的前述及其他技术内容、特点与功效,在以下配合参考附图的较佳实施例的详细说明中,将可清楚呈现;此外,在各实施例中,相同的组件将以相似的标号表示,另外轴向、纵向的定义为沿着附图的上下方向,横向的定义为沿着附图的左右方向。
如图3所示,本发明一种具有栅栏式H型定子的外盘式马达10,有一根沿轴向延伸的枢轴11、两个彼此平行配置的盘式外转子12、一组栅栏式H型式定子13;其中每一个盘式外转子12包括一个盘体121及偶数个永久磁铁122;栅栏式H型式定子13包括多数个H型铁芯131及缠绕在每一H型铁芯131的马达线圈绕组132。
在本实施例中,所述盘体121为圆形盘状,永久磁铁122以6个为略呈长扁弯弧形;在本领域的技术人员所能轻易理解,即使此处的永久磁铁122改采如马蹄形或长方形,只要依前述方式设置于盘体121中,均无碍于本发明的实施。
并且,在本实施例中,所述栅栏式H型式定子13包括9根等长度的圆形柱状H型铁芯131,且每一H型铁芯131的长度均为3.5公分,H型是指形状类似英文字母H;又如图4及图5所示,所述H型铁芯131可为圆形或方形柱状,均无碍于本申请实施。
另外,所述H型铁芯131为以多个取向性硅钢片构成,在本发明技术领域中,普通技术人员可以任意选择,例如铁粉压铸而成或其他惯用磁导体作为H型铁芯,均无碍 于本申请实施。
如图3所示,所述二个彼此平行配置的盘式外转子12,每一前述盘式外转子12分别包括一个盘体121及偶数个永久磁铁122,其中盘体121分别以其中心垂直固设于枢轴11,所述偶数个永久磁铁122以盘体121为中心成环状排均匀,且平坦嵌设于盘体121中,其中盘体121上的每两个相邻永久磁铁122以相同磁极设置,而两个平行的盘式外转子12的盘体中的永久磁铁122为相异磁极彼此相对设置。
如图3所示,所述栅栏式H型式定子13包括多数个H型铁芯131,其中H型铁芯131共同受二个非导磁定子基座133的固持,且多数个H型铁芯131分别以枢轴11为圆心,并沿着轴向彼此平行均匀排列设置在二个非导磁定子基座133中间。
如图3、图4及图5所示,每一H型铁芯131本体上下有大狭缝134,使其形成四个角体135,其中H型铁芯131本体位于上下大狭缝134之间以横向方式缠绕成马达线圈绕组132,所述四个角体135的各自两极分别近接对应两个盘式外转子12中的永久磁铁122,如图6所示;又H型铁芯131数目大于上述永久磁铁122数目的一倍且低于二倍,或H型铁芯数目小于上述永久磁铁数目的0.5倍,所以无论永久磁铁122转动至任何位置,都可以有部分永久磁铁122恰好对应两根相邻的H型铁芯131,且两根相邻的H型铁芯131分别接近两个永久磁铁122N极和S极,而上下两个完整磁回路,如图6及图7所示。
如图16所示,本发明还包括一个感测组件136及一个与感测组件136连接的致能控制器137;其中所述感测组件136为霍尔组件,但不限定为此组件,该感测组件136主要用以提供量测盘式外转子12的永久磁铁122位置,并可将量测的位置信号输出到致能控制器138,致能控制器138可依据所收到来自感测组件136的位置信号,提供一个交流的频率式驱动信号至每一个马达线圈绕组132,并使得每两相邻前述马达线圈绕组132的频率式驱动信号间,分别具有一均匀的相位差,且该组栅栏式H型定子13的所有相邻马达线圈绕组132间的前述相位差总和为360度的非零整数倍。
请参阅图6及图7所示,其中图6为永久磁铁相邻相同极性且相对位置相异极性,H型铁芯本体位于上下大狭缝之间横向缠绕马达线圈绕组与永久磁铁的相对关系示意图。图7为图6永久磁铁与H型铁芯内部产生的磁场变化剖视示意图。
如图所示,本发明在每一H型铁芯131位于上下大狭缝134之间以横向方式缠绕马达线圈绕组132,供接受一交流的频率式驱动信号磁化H型铁芯131产生主磁场;因在H型铁芯131作用之下,利用H型铁芯131本身的大狭缝134,在永久磁铁122的磁 极刚经过H型铁芯131对应角体135端部,且将H型铁芯131本体上的马达线圈绕组132的交流的频率式驱动讯号磁化H型铁芯131的主磁通产生畸变偏移,有效地均匀集中于两侧且分布于四个角体135磁极尖部,增大交流的频率式驱动讯号磁化H型铁芯131的主磁通与永久磁铁122的正交量,以及保持磁通偏移,来降低启动电流,同时改善高速区域的效率。此外,在高速运转时,具有较大的正交向量,以降低盘式永久磁铁122与H型铁芯131的磁吸力,达到让马达启动电流降低的功效。
如图7所示,当外盘式马达轴向上方的盘式外转子12的永久磁铁122的磁极自左至右以N-S、S-N、N-S…的方式排列设置于盘体121,相对地位于轴向下方的盘式外转子12的永久磁铁122的磁极自左至右以S-N、N-S、S-N、…方式排列设置于盘体121,配合图3所示,此时,若有一H型铁芯131被驱动感应出的磁极正好与相互近接的上方的盘式外转子12的永久磁铁122的磁极相异,共同形成封闭的磁力线,另一方面则与下方永久磁铁122磁极相同,因同磁极相斥,而由H型铁芯131牵引永久磁铁122沿着枢轴11旋转运动,也就是上述盘式外转子12被上述栅栏式H型定子13磁力驱动旋转,而且在永久磁铁122通过对应的H型铁芯131本体四个角体135端部后,励磁的频率式驱动讯号又会逐渐换相,改以相反的磁性再度推动磁铁继续运转。于本实施例中,会在圆周上每隔120度产生一处相同的推或拉的作用,使得上述外盘式马达10中每一时相可产生三倍的推力或拉力。上方与下方的永久磁铁122在图7所示瞬间,磁力线是行经马达线圈132,并且由下方H型铁芯131本体内部及相邻的H型铁芯131本体返回而构成完整磁回路。
请参阅图8到图11所示,在本发明一种具有栅栏式H型定子的盘式马达中,藉由每二个彼此平行配置的盘式外转子12之间设置一组由多数个H型铁芯131构成的栅栏式H型定子13结构,利用H型铁芯131本体的大狭缝134形成四个角体135,在四个角体135上缠绕四组线圈,在四组线圈选择其中两组线圈为短路线圈138,亦即是蔽极线圈(Shading Coil)功能,被选择短路的绕组具有匝数少且亦可以使用铜环组成,成为高电阻、小电感抗的电阻性线圈。
将其中两组线圈设为短路线圈138,且另两组线圈连接为马达线圈绕组132,供接受一交流的频率式驱动讯号磁化H型铁芯。由于从两组未被短路线圈(马达线圈绕组132)藉由交流的频率式驱动讯号产生的主磁场中所产生的互感磁通,将会在两组短路线圈138中产生感应电压,在经过短路会产生一个短路电流。这个短路电流与另两组未被短路的线圈(马达线圈绕组132)接受一交流的频率式驱动讯号所产生的激磁电流不 是同步。根据楞次定律,此感应电势使得两组短路线圈138产生感应电流反抗另两组未被短路线圈(马达线圈绕组132)通过接受一交流的频率式驱动讯号磁化H型铁芯的主磁通的磁通变化,故造成在短路线圈138的磁通相较于两组未被短路线圈(马达线圈绕组132)通过接受一交流的频率式驱动讯号磁化的主磁通滞后90度,此滞后磁通可以改变两组未被短路线圈(马达线圈绕组132)通过接受一交流的频率式驱动讯号磁化的主磁通的相位,亦即是短路线圈138的磁通与两组未被短路线圈(马达线圈绕组132)通过接受一交流的频率式驱动讯号磁化的主磁通合成一个偏斜磁通的效果,可使得两组未被短路线圈(马达线圈绕组132)通过接受一交流的频率式驱动讯号磁化的主磁通方向产生畸变。
由此可知,由两组短路线圈138所产生的交变磁场理想地与两组未被短路线圈(马达线圈绕组132)藉由交流的频率式驱动讯号产生的主磁场落后且相移90度,这将会导致H型铁芯体的两个部分的磁场不会同时为零,且这个短路线圈138的短路电流又产生新磁场且抵消一部份原來交流的频率式驱动讯号产生的主磁场,并导致主磁通变化迟缓,继而造成定子铁芯体的角体磁极尖部主磁场轻微扭曲变形,且间接造成磁场的相移现象。
如图8及图9所示,由于短路线圈138设于H型铁芯中,可根据盘式马达的设于定子磁极两端之中的四个角体135上。当永久磁铁磁路设计不同且马达需要转向时,必须将主磁极铁心翻面改变铜环短路放置位置,在永久磁铁122相邻相同极性,且上下相对位置相异极性时,必须将短路线圈138设在H型铁芯位于同一侧,短路欲顺时针方向旋转时,如图8所示,可将A、C铜环短路,而B、D铜环开路;而欲逆时针方向旋转时,如图9所示,则将A、C铜环开路,B、D铜环短路。
如图10及图11所示,在永久磁铁122相邻相同极性,且上下相对位置相同极性时,需要将短路线圈138设在H型铁芯位于对角侧,当马达的转向时,须将主磁极铁心翻面改变铜环短路放置位置,欲顺时针方向旋转时,如图10所示,可将A、B铜环短路,而C、D铜环开路;而欲逆时针方向旋转时,如图11所示,则将A、B铜环开路,C、D铜环短路。
由上得知,在盘式马达10的盘式外转子12启动过程中,流过定子13与盘式外转子12气隙的合成磁通都是位于偏斜磁通或磁极两侧的,可以有效地集中产生正交向量,且激磁磁通集中分布于四个角体135磁极尖部,保持磁通偏移,达到降低启动电流、改善盘式马达的顿转转矩、以及提升盘式马达在高速的效率,大幅提高性价比(性价比为性能/价格,为反映了单位付出所购得的商品性能)。
再请参阅图12及图13所示,其中图12为永久磁铁相邻相同极性且相对位置相同极性,H型铁芯本体一侧对角的角体线圈缠绕连接成马达线圈绕组,另一侧对角的角体线圈缠绕成短路线圈与永久磁铁的相对关系示意图。图13为永久磁铁与H型铁芯内部产生的磁场变化剖视示意图。
如图所示,每一H型铁芯131本体一侧对角两个角体135线圈缠绕成马达线圈132,另一侧对角两个角体135上线圈则分别缠绕成短路线圈138,在本实施例中,H型铁芯131对角的两组线圈连接成一马达线圈绕组132,供接受一交流的频率式驱动讯号(图未示)磁化前述H型铁芯131。由于这个短路线圈138的短路电流又产生新磁场且抵消一部份原來交流的频率式驱动讯号产生的主磁场,并导致主磁通变化迟缓,继而造成H型铁芯131的角体135磁极尖部主磁场轻微扭曲变形,且间接造成磁场的相移现象,如图13所示,上述轴向上方的盘式外转子12的永久磁铁122的磁极自左至右以N-S、S-N、N-S…方式排列设置于盘体121,而相对位于轴向下方的盘式外转子12的永久磁铁122的磁极自左至右以N-S、S-N、N-S…方式排列设置于盘体121,配合图3所示,此时,若有一H型铁芯131被驱动感应出的磁极正好与相互近接的上方盘式外转子12的永久磁铁122的磁极相异,共同形成封闭的磁力线,另一方面则与下方盘式外转子12的永久磁铁122的磁极相反,因异磁极相吸以及同磁极相斥,而由H型铁芯131牵引永久磁铁122沿着枢轴11旋转运动,也就是上述盘式外转子12被上述栅栏式H型定子13磁力驱动旋转,于本实施例中,会在圆周上每隔120度产生一处相同的推或拉的作用,使得上述外盘式马达10中每一时相可产生三倍的推力或拉力。在图13所示,上方与下方的永久磁铁122瞬间,磁力线是行经马达线圈绕组132,并且由H型铁芯131本体下方内部横杆及相邻的H型铁芯131本体返回而构成完整磁回路。
由于本实施例中的H型铁芯131数目(9支)为永久磁铁(6个)的1.5倍,所以无论盘式外转子14转动至任何位置,都可以有部分永久磁铁122恰好对应两根相邻的H型铁芯131,且两根相邻的H型铁芯131分别接近其N极和S极,使得上下方的盘式外转子12相互对应的两永久磁铁122,分别可以藉由其中一个H型铁芯131内部横杆通过自己H型铁芯131,返回该永久磁铁122的另一极而构成上下两个完整磁回路。
此外,每一H型铁芯131内部横杆,使得永久磁铁122的磁力线将密集通过H型铁芯131,磁阻因而大幅降低。当然,熟悉本领域人士可以理解,要构成上述对应的磁回路,本发明前述H型铁芯131的数目必须为相对于上述枢轴11呈现放射状对称分布的正整数,且数目大于上述永久磁铁122数目的一倍并低于二倍,或H型铁芯数目小于 上述永久磁铁数目的0.5倍。
再请参阅图14及图15所示,其中图14为永久磁铁相邻相同极性且相对位置相同极性,H型铁芯本体一侧对角的角体线圈缠绕连接成马达线圈绕组,另一侧对角的角体线圈缠绕成短路线圈,本体上下大狭缝部位纵向缠绕发电线圈绕组与永久磁铁的相对关系示意图。图15为永久磁铁与H型铁芯内部产生的磁场变化剖视示意图。
如图所示,每一上述H型铁芯131本体上下大狭缝134缠绕有一发电机线圈绕组139,接受马达线圈绕组132所产生的磁化前述H型铁芯131的交变互感磁通;在马达运转时,由于栅栏式H型定子13的旋转,会使得设置于H型铁芯131本体上下大狭缝134的发电线圈绕组139在运动过程中切割磁力线,回收部分动能并且转换为电能。
根据楞次定律,此感应电势使得发电线圈绕组139产生感应电流或负载电流反抗马达线圈绕组132的频率式驱动讯号磁化H型铁芯131的主磁通的磁通变化,故造成在发电机线圈绕组132的磁通相较于马达线圈绕组132通过接受一交流的频率式驱动讯号磁化的主磁通滞后90度,另因发电线圈绕组139与马达线圈绕组132互差90度。因此,马达磁通与发电机磁通可以设计达到同相位,提供永久磁铁完整的磁力线通路,让磁阻大幅降低,且永久磁铁的旋转移动可以周期性地减弱铁芯受交流电讯号励磁过程中的磁滞现象,让磁滞现象所带来的发热及能量耗损降低,藉此使得本发明所揭露的马达在运转过程中发热量低,能量转换效率高,达成超越现有技术的上述发明目的。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应仍属本发明专利涵盖的范围内。

Claims (10)

  1. 一种具有栅栏式H型定子的盘式马达,至少包括:
    一根沿轴向延伸的枢轴;
    二个彼此平行配置的盘式外转子,每一盘式外转子分别包括一个盘体及偶数个永久磁铁,其中盘体分别以其中心垂直固设于枢轴,偶数个永久磁铁设置于盘体,且以盘体为中心成环状排列设置在盘体上,其中每一盘体上的每两个相邻永久磁铁以相同磁极设置,而前述两个盘式外转子的盘体中的永久磁铁为相异磁极彼此相对设置;
    一组栅栏式H型式定子,包括多数个H型铁芯,每一H型铁芯本体上下有大狭缝,使本体上下形成四个角体,其中H型铁芯本体位于上下大狭缝之间以横向方式缠绕马达线圈绕组,又多数个H型铁芯分别以上述枢轴为圆心,且沿着轴向彼此平行均匀排列,前述每一H型铁芯的四个角体的各自两极分别近接对应前述两个盘式外转子中的永久磁铁,又前述H型铁芯数目大于上述永久磁铁数目的一倍且低于二倍,或H型铁芯数目小于上述永久磁铁数目的0.5倍;
    一个转子位置感测组件,供量测上述盘式外转子的永久磁铁位置,并输出至少一个位置信号;及
    一个致能控制器,依据所收到的前述位置信号,提供交流的频率式驱动信号至上述马达线圈绕组,并使得每两相邻前述马达线圈绕组的频率式驱动信号间,分别具有一均匀的相位差,且该组栅栏式定子的所有相邻马达线圈绕组间的前述相位差总和为360度的非零整数倍。
  2. 一种具有栅栏式H型定子的盘式马达,至少包括:
    一根沿轴向延伸的枢轴;
    二个彼此平行配置的盘式外转子,每一盘式外转子分别包括一个盘体及偶数个永久磁铁,其中盘体分别以其中心垂直固设于枢轴,偶数个永久磁铁设置于盘体,且以盘体为中心成环状排列设置在盘体上,其中每一盘体上的每两个相邻永久磁铁以相同磁极设置,而前述两个盘式外转子的盘体中的永久磁铁为相异磁极彼此相对设置;
    一组栅栏式H型式定子,包括多数个H型铁芯,每一H型铁芯本体上下有大狭缝,使本体上下形成四个角体,四个角体上分别缠绕线圈,其中一侧上下两个角体上线圈以横向方式缠绕连接成马达线圈绕组,另一侧上下两个角体上线圈则分别缠绕成短路线圈,又多数个H型铁芯分别以上述枢轴为圆心,且沿着轴向彼此平行均匀排列,前述每一H 型铁芯的四个角体的各自两极分别近接对应前述两个盘式外转子中的永久磁铁,又前述H型铁芯数目大于上述永久磁铁数目的一倍且低于二倍,或H型铁芯数目小于上述永久磁铁数目的0.5倍;
    一个转子位置感测组件,供量测上述盘式外转子的永久磁铁位置,并输出至少一个位置信号;及
    一个致能控制器,依据所收到的前述位置信号,提供交流的频率式驱动信号至上述马达线圈绕组,并使得每两相邻前述马达线圈绕组的频率式驱动信号间,分别具有一均匀的相位差,且该组栅栏式定子的所有相邻马达线圈绕组间的前述相位差总和为360度的非零整数倍。
  3. 一种具有栅栏式H型定子的盘式马达,至少包括:
    一根沿轴向延伸的枢轴;
    二个彼此平行配置的盘式外转子,每一盘式外转子分别包括一个盘体及偶数个永久磁铁,其中盘体分别以其中心垂直固设于枢轴,偶数个永久磁铁设置于盘体,且以盘体为中心成环状排列设置在盘体上,其中每一盘体上的每两个相邻永久磁铁以相同磁极设置,而前述两个盘式外转子的盘体中的永久磁铁为相同磁极彼此相对设置;
    一组栅栏式H型式定子,包括多数个H型铁芯,每一H型铁芯本体上下有大狭缝,使本体形成四个角体,四个角体上分别缠绕线圈,其中一侧对角两个角体上线圈以横向方式缠绕连接成马达线圈绕组,另一侧对角两个角体上线圈则分别缠绕成短路线圈,又多数个H型铁芯分别以上述枢轴为圆心,且沿着轴向彼此平行均匀排列,前述每一H型铁芯的四个角体的各自两极分别近接对应前述两个盘式外转子中的永久磁铁,又前述H型铁芯数目大于上述永久磁铁数目的一倍且低于二倍,或H型铁芯数目小于上述永久磁铁数目的0.5倍;
    一个转子位置感测组件,供量测上述盘式外转子的永久磁铁位置,并输出至少一个位置信号;及
    一个致能控制器,依据所收到的前述位置信号,提供交流的频率式驱动信号至上述马达线圈绕组,并使得每两相邻前述马达线圈绕组的频率式驱动信号间,分别具有一均匀的相位差,且该组栅栏式定子的所有相邻马达线圈绕组间的前述相位差总和为360度的非零整数倍。
  4. 根据权利要求1-3中任意一项所述的具有栅栏式H型定子的盘式马达,其中每一H型铁芯为多个取向性硅钢片迭制成圆形或方形柱状。还包括一个连接至上述栅栏式定子的马达外壳。
  5. 根据权利要求1-3中任意一项所述的具有栅栏式H型定子的盘式马达,其中栅栏式H型定子更包括有二个固持H型铁芯的非导磁定子基座。
  6. 根据权利要求1-3中任意一项所述的具有栅栏式H型定子的盘式马达,其中H型铁芯的四个角体顶部与近接对应的上述永久磁铁的最短距离小于上述盘体厚度。
  7. 一种具有栅栏式H型定子的盘式马达/发电机,至少包括:
    一根沿轴向延伸的枢轴;
    二个彼此平行配置的盘式外转子,每一盘式外转子分别包括一个盘体及偶数个永久磁铁,其中盘体分别以其中心垂直固设于枢轴,偶数个永久磁铁设置于盘体,且以盘体为中心成环状排列设置在盘体上,其中每一盘体上的每两个相邻永久磁铁以相同磁极设置,而前述两个盘式外转子的盘体中的永久磁铁为相同磁极彼此相对设置;
    一组栅栏式H型式定子,包括多数个H型铁芯,每一H型铁芯本体上下有大狭缝,使本体形成四个角体,四个角体上分别缠绕线圈,其中一侧对角两个角体上线圈以横向方式缠绕连接成马达线圈绕组,另一侧对角两个角体上线圈则分别缠绕成短路线圈,在H型铁芯本体上下大狭缝部位以纵向方式缠绕发电线圈绕组,又多数个H型铁芯分别以上述枢轴为圆心,且沿着轴向彼此平行均匀排列,前述每一H型铁芯的四个角体的各自两极分别近接对应前述两个盘式外转子中的永久磁铁,又前述H型铁芯数目大于上述永久磁铁数目的一倍且低于二倍,或H型铁芯数目小于上述永久磁铁数目的0.5倍;
    一个转子位置感测组件,供量测上述盘式外转子的永久磁铁位置,并输出至少一个位置信号;
    一个致能控制器,依据所收到的前述位置信号,提供交流的频率式驱动信号至上述马达线圈绕组,并使得每两相邻前述马达线圈绕组的频率式驱动信号间,分别具有一均匀的相位差,且该组栅栏式定子的所有相邻马达线圈绕组间的前述相位差总和为360度的非零整数倍;及
    一组电能回收回路,供接收储存上述发电线圈绕组所产生的电能。
  8. 根据权利要求7所述的具有栅栏式H型定子的盘式马达/发电机,其中每一H型铁芯为多个取向性硅钢片迭制成圆形或方形柱状。还包括一个连接至上述栅栏式定子的马达外壳。
  9. 根据权利要求7所述的具有栅栏式H型定子的盘式马达/发电机,其中栅栏式H型定子更包括有二个固持H型铁芯的非导磁定子基座。
  10. 根据权利要求7所述的具有栅栏式H型定子的盘式马达/发电机,其中H型铁芯的四个角体顶部与近接对应的上述永久磁铁的最短距离小于上述盘体厚度。
PCT/CN2019/102805 2019-08-27 2019-08-27 具有栅栏式h型定子的盘式马达 WO2021035526A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102805 WO2021035526A1 (zh) 2019-08-27 2019-08-27 具有栅栏式h型定子的盘式马达

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102805 WO2021035526A1 (zh) 2019-08-27 2019-08-27 具有栅栏式h型定子的盘式马达

Publications (1)

Publication Number Publication Date
WO2021035526A1 true WO2021035526A1 (zh) 2021-03-04

Family

ID=74684944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102805 WO2021035526A1 (zh) 2019-08-27 2019-08-27 具有栅栏式h型定子的盘式马达

Country Status (1)

Country Link
WO (1) WO2021035526A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210794A (ja) * 2004-01-21 2005-08-04 Fuji Electric Holdings Co Ltd リニア電磁アクチュエータ
CN205725401U (zh) * 2016-04-25 2016-11-23 宇生自然能源科技股份有限公司 电动机结构
CN106911198A (zh) * 2015-12-22 2017-06-30 宇生自然能源科技股份有限公司 分散式电磁装置
CN208028752U (zh) * 2018-01-26 2018-10-30 宇生自然能源科技股份有限公司 共磁复合式磁电装置
CN110138162A (zh) * 2018-02-02 2019-08-16 黄思伦 具有栅栏式定子的外盘式马达

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210794A (ja) * 2004-01-21 2005-08-04 Fuji Electric Holdings Co Ltd リニア電磁アクチュエータ
CN106911198A (zh) * 2015-12-22 2017-06-30 宇生自然能源科技股份有限公司 分散式电磁装置
CN205725401U (zh) * 2016-04-25 2016-11-23 宇生自然能源科技股份有限公司 电动机结构
CN208028752U (zh) * 2018-01-26 2018-10-30 宇生自然能源科技股份有限公司 共磁复合式磁电装置
CN110138162A (zh) * 2018-02-02 2019-08-16 黄思伦 具有栅栏式定子的外盘式马达

Similar Documents

Publication Publication Date Title
JP3921494B2 (ja) 自己始動ブラシレス電気モータ
CN105245073B (zh) 定子永磁型双凸极盘式电机
US20160172947A1 (en) Magnetic rotating apparatus, electric motor, and motor generator
Gao et al. Analysis of a novel consequent-pole flux switching permanent magnet machine with flux bridges in stator core
TW200929805A (en) Permanent magnet rotating machine
CN102593983A (zh) 旋转电机
WO2020199502A1 (zh) 一种定子同极型混合永磁记忆电机
CN103715848A (zh) 一种轴向磁场定子分割式磁通切换型记忆电机
CN104617726B (zh) 一种永磁交错式轴向磁场磁通切换型记忆电机
US20130134805A1 (en) Switched reluctance motor
JP2021182865A (ja) 電動モータ
CN102570648A (zh) 电励磁磁通反向电机
CN110112878A (zh) 一种交替极切向励磁游标永磁电机
CN110838779B (zh) 一种混合励磁绕线转子及混合励磁绕线式同步电机
CN107591979A (zh) 转子轴向磁化永磁开关磁阻电机
CN203278585U (zh) Halbach并列转子混合励磁同步电机
JP2008067561A (ja) 永久磁石形電動機
JPS6223536B2 (zh)
CN111030402B (zh) 方向性硅钢片轴向磁场电动机
RU2006106463A (ru) Роторная машина и электромагнитная машина
TWI664794B (zh) 具有柵欄式定子的外盤式馬達
WO2021035526A1 (zh) 具有栅栏式h型定子的盘式马达
TWI825120B (zh) 具有柵欄式h型定子的盤式馬達及馬達/發電機
JP4823425B2 (ja) Dcモータ
CN108808895A (zh) 一种π型混合励磁双凸极电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942830

Country of ref document: EP

Kind code of ref document: A1