WO2020144793A1 - Carbon fiber-reinforced plastic reinforcement plate, reinforcement plate-attached member, platform fence, and method for producing carbon fiber-reinforced plastic reinforcement plate - Google Patents

Carbon fiber-reinforced plastic reinforcement plate, reinforcement plate-attached member, platform fence, and method for producing carbon fiber-reinforced plastic reinforcement plate Download PDF

Info

Publication number
WO2020144793A1
WO2020144793A1 PCT/JP2019/000457 JP2019000457W WO2020144793A1 WO 2020144793 A1 WO2020144793 A1 WO 2020144793A1 JP 2019000457 W JP2019000457 W JP 2019000457W WO 2020144793 A1 WO2020144793 A1 WO 2020144793A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing plate
slits
carbon fiber
plate body
reinforced plastic
Prior art date
Application number
PCT/JP2019/000457
Other languages
French (fr)
Japanese (ja)
Inventor
広紀 小林
伊藤 洋平
和規 高垣
壮平 鮫島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019523123A priority Critical patent/JP6567231B1/en
Priority to CN201980066641.8A priority patent/CN113272118B/en
Priority to PCT/JP2019/000457 priority patent/WO2020144793A1/en
Publication of WO2020144793A1 publication Critical patent/WO2020144793A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B1/00General arrangement of stations, platforms, or sidings; Railway networks; Rail vehicle marshalling systems
    • B61B1/02General arrangement of stations and platforms including protection devices for the passengers
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F13/00Arrangements for obstructing or restricting traffic, e.g. gates, barricades ; Preventing passage of vehicles of selected category or dimensions

Definitions

  • the present invention relates to a carbon fiber reinforced plastic reinforcing plate, a member with the reinforcing plate having the reinforcing plate, a home fence using the member with the reinforcing plate, and a method for manufacturing the carbon fiber reinforced plastic reinforcing plate.
  • CFRP Carbon Fiber Reinforced Plastics
  • CFRP Carbon Fiber Reinforced Plastics
  • CFRP reinforcing plate may be attached to the member to be reinforced in order to increase the rigidity of the member to be reinforced.
  • the member to be reinforced include metal beams or metal columns.
  • the CFRP reinforcing plate which is adjusted to have high rigidity, has a lower linear expansion coefficient in the fiber direction than the metal reinforced member. Therefore, there is a problem that the reinforcing plate is damaged by the thermal stress when the temperature is changed.
  • thermoplastic resin molded body disclosed in Patent Document 1 cannot be applied to a molding method that does not use a prepreg, for example, a pultrusion molding method that is excellent in mass productivity, because a cut is made in the prepreg state. There are challenges.
  • the start point and the end point of the slit are provided only inside the reinforcing plate so that the reinforcing plate is not divided, a processing device having a complicated mechanism such as a three-dimensional processing machine is required, resulting in low productivity. ..
  • the present invention has been made to solve the above problems, and a carbon fiber reinforced plastic reinforcing plate capable of suppressing damage due to thermal stress while suppressing a decrease in productivity, and a manufacturing method thereof. Aim to get.
  • the carbon fiber reinforced plastic reinforcing plate according to the present invention includes a plurality of carbon fibers and a resin, a reinforcing plate main body in which at least a part of the carbon fibers are arranged along the longitudinal direction, , A plurality of slits that divide both the carbon fiber and the resin are provided, and the plurality of slits are provided in the range from the first end in the width direction of the reinforcing plate body to the center in the width direction.
  • the method for manufacturing a carbon fiber reinforced plastic reinforcing plate according to the present invention includes a step of molding an intermediate body including a plurality of carbon fibers and a resin, in which at least a part of the carbon fibers are arranged along the longitudinal direction, A plurality of first slits are provided in the range from the first end in the width direction of the intermediate body to the central portion in the width direction, and the first slits in the width direction of the intermediate body are spaced apart from the first slits. And a step of providing a plurality of second slits in the range from the end of 2 to the center in the width direction.
  • FIG. 3 is a plan view showing a member with a reinforcing plate according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1. It is a top view which expands and shows the III section of the reinforcing plate main body of FIG.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 3 is a side view showing a part of the apparatus for manufacturing the CFRP reinforcing plate according to the first embodiment. It is a top view which shows the intermediate body cut
  • FIG. 9 is a plan view showing a state in which the rotary grindstone of FIG. 8 is retracted to the outside of the intermediate body.
  • FIG. 9 is a perspective view which shows the platform fence which is the 1st application example of the member with a reinforcing plate of Embodiment 1.
  • It is sectional drawing which shows the cross section orthogonal to the longitudinal direction of the upper pipe of FIG.
  • It is sectional drawing which follows the XII-XII line of FIG.
  • Embodiment 1. 1 is a plan view showing a member with a reinforcing plate according to Embodiment 1 of the present invention.
  • 2 is a sectional view taken along the line II-II in FIG.
  • the member with a reinforcing plate according to the first embodiment includes a reinforcing plate 1 made of carbon fiber reinforced plastic, a member to be reinforced 2, and an adhesive 3.
  • the carbon fiber reinforced plastic reinforcing plate 1 that is, the CFRP reinforcing plate 1 has a strip-shaped reinforcing plate body 4.
  • the CFRP reinforcing plate 1 is composed of only the reinforcing plate body 4.
  • the reinforcing plate body 4 is attached to the member to be reinforced 2 with the adhesive 3.
  • the X-axis direction is the width direction of the reinforcing plate body 4 and the reinforced member 2.
  • the Y-axis direction is the longitudinal direction of the reinforcing plate body 4 and the reinforced member 2.
  • the Z-axis direction is the thickness direction of the reinforcing plate body 4 and the reinforced member 2.
  • the thickness of the reinforcing plate body 4 is the same for the entire reinforcing plate body 4. Further, the width of the reinforcing plate body 4 is also the same for the entire reinforcing plate body 4.
  • the reinforcing plate body 4 is provided with a plurality of linear slits 4a and 4b.
  • the plurality of slits 4a and 4b include a plurality of first slits 4a and a plurality of second slits 4b.
  • Each of the first slits 4a is continuously provided in the range from the widthwise first end 4c of the reinforcing plate body 4 to the widthwise central portion.
  • Each second slit 4b is continuously provided in a range from the second end portion 4d in the width direction of the reinforcing plate body 4 to the center portion in the width direction.
  • the first and second slits 4a and 4b are provided up to the center of the reinforcing plate body 4 in the width direction. Therefore, both the first and second slits 4a and 4b are present in the cross section parallel to the YZ plane at the center of the reinforcing plate body 4 in the width direction.
  • each second slit 4b is arranged at a distance from the first slit 4a.
  • the plurality of first slits 4a and the plurality of second slits 4b are arranged alternately and at equal pitches from the first end to the second end in the longitudinal direction of the reinforcing plate body 4. Has been done.
  • the cross-sectional shape of the reinforced member 2 orthogonal to the longitudinal direction is rectangular.
  • the reinforced member 2 is a hollow square pipe.
  • the reinforced member 2 is made of aluminum alloy.
  • the reinforcing plate body 4 is attached to the adhered surface 2a, which is one of the four outer surfaces of the reinforced member 2, so as to cover the entire adhered surface 2a.
  • FIG. 3 is an enlarged plan view showing a portion III of the reinforcing plate body 4 of FIG. 4 is a sectional view taken along the line IV-IV in FIG.
  • the reinforcing plate body 4 contains a plurality of carbon fibers 5 and a resin 6 as a matrix resin. At least some of the carbon fibers 5 are arranged along the longitudinal direction of the reinforcing plate body 4.
  • the plurality of slits 4a and 4b divide both the carbon fiber 5 and the resin 6.
  • the plurality of first slits 4a are inclined in the same direction with respect to the longitudinal direction of the reinforcing plate body 4 by the same angle.
  • each first slit 4a is inclined from the longitudinal direction of the reinforcing plate body 4 by an angle ⁇ with the counterclockwise direction as the positive direction.
  • the plurality of second slits 4b are inclined to the side opposite to the first slit 4a by the same angle as the first slit 4a with respect to the longitudinal direction of the reinforcing plate body 4.
  • each second slit 4b is inclined from the longitudinal direction of the reinforcing plate body 4 by an angle ⁇ with the counterclockwise direction being the positive direction.
  • the angle ⁇ is larger than 0 degrees and smaller than 90 degrees. Further, the angle ⁇ satisfies the following equation.
  • w is the width of the reinforcing plate body 4
  • t is the width of each of the first and second slits 4a and 4b
  • l is the pitch of the first and second slits 4a and 4b in the longitudinal direction of the reinforcing plate body 4. is there.
  • a cross section orthogonal to the longitudinal direction includes one of the first and second slits 4a and 4b at any position in the longitudinal direction.
  • first and second slits 4a and 4b divide the carbon fiber 5, it is possible to reduce the thermal stress due to the difference in thermal expansion coefficient between the CFRP reinforcing plate 1 and the reinforced member 2.
  • first and second slits 4a and 4b also divide the resin 6, the first and second slits 4a and 4b can be provided after the reinforcing plate body 4 is molded, and the productivity is excellent. There is.
  • the CFRP reinforcing plate 1 of the first embodiment it is possible to use the reinforcing plate main body 4 formed by a molding method that does not use a prepreg, for example, a pultrusion molding method that is excellent in mass productivity.
  • first and second slits 4a and 4b are formed from the ends of the reinforcing plate body 4 in the width direction. Therefore, it is possible to provide the first and second slits 4a and 4b by a two-dimensional processing method without using a three-dimensional processing machine, which is excellent in productivity.
  • the reinforcing effect cannot be obtained at the slit portion, and the rigidity in the direction of tearing the slit becomes low. Therefore, when the slit is inclined at a constant angle with respect to the longitudinal direction, the member with the reinforcing plate is twisted and deformed when an external force is applied.
  • all the first slits 4a are inclined in the same direction, and all the second slits 4b are inclined in the opposite side to the first slit 4a. Therefore, the twisting deformation is canceled out, and the symmetry of the member with the reinforcing plate can be maintained.
  • the inclination angle of each first slit 4a is ⁇
  • the inclination angle of each second slit 4b is ⁇ . Therefore, the torsional deformation of the member with the reinforcing plate can be more reliably canceled.
  • the member 2 to be reinforced can be uniformly reinforced in the entire longitudinal direction of the CFRP reinforcing plate 1, and the occurrence of local deformation can be suppressed. can do.
  • all the first and second slits 4a and 4b are linearly formed from the end of the reinforcing plate body 4 in the width direction. Therefore, the first and second slits 4a and 4b can be easily formed by machining. Further, it is not necessary to limit the size of the tool to the length of the first and second slits 4a and 4b or less, which is excellent in productivity.
  • the thickness of the reinforcing plate body 4 is the same for the entire reinforcing plate body 4. Therefore, the reinforcing plate body 4 can be molded by a molding method that cannot change the cross section.
  • the width of the reinforcing plate body 4 is the same in the entire reinforcing plate body 4, and the shape of the cross section orthogonal to the longitudinal direction of the reinforcing plate body 4 is the same in the entire reinforcing plate body 4. Therefore, the pultrusion method can be applied and the productivity is excellent.
  • the outer shape of the reinforcing plate main body 4 is a strip shape, the rigidity of the member to be reinforced 2 such as beams, ribs and columns can be improved over a longer distance.
  • each carbon fiber 5 may be selected according to the required mechanical characteristics, but here pitch-based carbon fibers are used.
  • each carbon fiber 5 is 600 GPa.
  • pitch-based carbon fibers having a longitudinal elastic modulus of more than 900 GPa fiber breakage may occur during the pultrusion process, resulting in low productivity.
  • the longitudinal elastic modulus is less than 400 GPa, the elastic modulus of the unidirectional CFRP plate begins to fall below that of iron. Therefore, the productivity is lower than that in the case where the thickness of the member to be reinforced is increased, and the advantage of using the CFRP reinforcing plate is lost.
  • the longitudinal elastic modulus is less than 200 GPa, the specific rigidity of the unidirectional CFRP plate starts to fall below the specific rigidity of iron, which is further unfavorable.
  • the longitudinal elastic modulus of each carbon fiber 5 is preferably 400 GPa or more and 900 GPa or less. As a result, when one-way CFRP is used, higher rigidity than that of iron can be obtained.
  • resin 6 epoxy, vinyl ester, unsaturated polyester, furan, polyurethane, polyimide, polyamide, polyether ether ketone, polyether sulfone, acrylonitrile, polypropylene, polyester, nylon, polycarbonate, acrylonitrile tadiene styrene, acrylonitrile styrene , Modified polyphenylene ether, polyethylene, polyacetal and the like.
  • the carbon fiber 5 and the resin 6 can be brought into good contact with each other.
  • thermosetting resin having excellent mechanical properties is suitable.
  • an epoxy resin having a glass transition temperature Tg of 130° C. is used, sufficient rigidity can be ensured and creep deformation can be suppressed to be small.
  • vinyl ester and unsaturated polyester are also preferable for the same reason.
  • the resin 6 may contain a filler to adjust at least one of elastic modulus, thermal expansion coefficient, and flame retardancy.
  • the reinforcing plate body 4 is made of a unidirectional member. Since all the carbon fibers 5 are arranged along the longitudinal direction of the reinforcing plate body 4, the unidirectional material has excellent mechanical properties and can realize high rigidity.
  • unidirectional materials have excellent productivity because they can be manufactured by a pultrusion method.
  • the direction of each carbon fiber 5 in the unidirectional material may include a processing error of about ⁇ 5 degrees.
  • the reinforcing plate body 4 may be made of, for example, an orthogonal laminated material, an oblique laminated material, or a pseudo isotropic laminated material other than the unidirectional material.
  • the molding method in this case include an autoclave method, an RTM (Resin Transfer Molding) method, a VaRTM (Vacuum assisted Resin Transfer Molding) method, and a press molding method.
  • Adhesive 3 is best acrylic adhesive, then epoxy adhesive. When an acrylic adhesive or an epoxy adhesive is used, a sufficient shearing force can be transmitted between the reinforced member 2 and the reinforcing plate body 4.
  • Cyanate resin is not suitable as the adhesive 3 because it easily peels off due to temperature change.
  • the silicone resin and the modified silicone resin have poor load transmission and are not suitable as the adhesive 3.
  • the adhesive 3 is attached to the entire surface of the reinforcing plate body 4 to be adhered to the member to be reinforced 2, so that the load transmission between the reinforcing plate body 4 and the member to be reinforced 2 is good.
  • the pitch l is less than 100 mm, the reinforcing effect will be impaired. Further, when the pitch 1 is set to be larger than 250 mm, peeling easily occurs due to temperature change. Note that here, a temperature change from ⁇ 30° C. to +60° C. is assumed.
  • the pitch l is preferably 100 mm or more and 250 mm or less. Accordingly, it is possible to suppress the occurrence of peeling due to the difference in thermal expansion with respect to the temperature change in the outdoor atmospheric environment.
  • the slit width t may be set in consideration of the desired rigidity and productivity, but it is preferably 0.6 mm or more and 2.0 mm or less, and is 1.0 mm here.
  • the width w of the reinforcing plate body 4 may be set according to the purpose, but is 30 mm here.
  • FIG. 5 is a side view showing a part of an apparatus for manufacturing the CFRP reinforcing plate 1 according to the first embodiment.
  • the device shown in FIG. 5 has a resin bath 21, a molding die 22, a take-up device 23, and a cutting machine 24.
  • the uncured resin 6 is stored in the resin bath 21.
  • the mold 22 has a cavity and a heating mechanism.
  • the cross-sectional shape of the cavity is the same as the cross-sectional shape orthogonal to the longitudinal direction of the intended reinforcing plate body 4.
  • the take-up device 23 grasps the intermediate body 13 of the reinforcing plate body 4 and takes it from the forming die 22.
  • the cutting machine 24 cuts the intermediate body 13 into a desired length.
  • the plurality of bobbins 11 are arranged in a rack (not shown).
  • a carbon fiber bundle 12 is wound around each bobbin 11.
  • Each carbon fiber bundle 12 is composed of a plurality of carbon fibers 5 so as to satisfy a target cross-sectional shape and a carbon fiber content rate.
  • the carbon fiber bundle 12 pulled out from the bobbin 11 is sent to the resin bath 21.
  • the carbon fiber bundle 12 is impregnated with the uncured resin 6.
  • the carbon fiber bundle 12 is drawn into the cavity of the molding die 22.
  • the uncured resin 6 is heated and cured by the heating mechanism. Thereby, the intermediate body 13 is molded.
  • the intermediate body 13 is collected by the collecting device 23.
  • the intermediate body 13 can be molded while the intermediate body 13 is continuously drawn at a constant speed by the take-up device 23.
  • the intermediate body 13 may be formed intermittently by repeatedly taking up and stopping the take-up device 23. In either case, it is necessary to secure a time for the resin 6 to be properly cured in the molding die 22.
  • the cross-sectional shape of the intermediate body 13 may be a shape according to the purpose, but is a rectangular cross section here.
  • the molded intermediate body 13 has a strip shape, and all the carbon fibers 5 are aligned along the longitudinal direction of the intermediate body 13.
  • FIG. 6 is a plan view showing the intermediate body 13 cut by the cutting machine 24 of FIG.
  • FIG. 7 is a plan view showing a state at the start of processing for forming the first and second slits 4a and 4b in the intermediate body 13 of FIG.
  • the first and second slits 4a and 4b are formed by moving the disk-shaped rotary grindstone 25 relative to the intermediate body 13.
  • the rotating grindstone 25 rotating at a constant speed is linearly advanced from the widthwise end of the intermediate body 13 at the angle described above. Then, as shown in FIG. 8, when the tip of the rotary grindstone 25 advances to the intermediate portion in the width direction of the intermediate body 13, the rotary grindstone 25 is retracted as it is, as shown in FIG. As a result, both the plurality of carbon fibers 5 and the resin 6 are ground at the same time, and the second slit 4b is formed in FIG.
  • All the second slits 4b can be formed by repeating such a process while feeding the intermediate body 13 in the longitudinal direction or changing the position of the rotary grindstone 25 in the longitudinal direction of the intermediate body 13. it can.
  • the slit 4a can be formed.
  • a step of forming a plurality of first slits 4a and a step of forming a plurality of second slits 4b are performed. It can also be carried out simultaneously.
  • the whetstone width of the rotary whetstone 25 may be selected according to the target slit width, but the smaller the whetstone width, the better the reinforcing effect. However, if the width of the grindstone is too small, the durability of the rotary grindstone 25 becomes problematic.
  • the width of the grindstone is preferably 0.5 mm or more and 1.8 mm or less.
  • the grindstone width is best 0.9 mm.
  • the molding process, the cutting process, and the slit forming process are described in this order, but the molding process, the slit forming process, and the cutting process may be performed in this order.
  • the method for manufacturing the CFRP reinforcing plate 1 according to the first embodiment includes the forming step of forming the intermediate body 13, the slit forming step of forming the first and second slits 4a and 4b, and the intermediate body 13. And a cutting step of cutting into a desired length.
  • the CFRP-made product is highly productive even in the pultrusion without using the prepreg.
  • the reinforcing plate 1 can be manufactured.
  • first and second slits 4a and 4b are formed by moving the rotary grindstone 25 relative to the intermediate body 13. Therefore, a multi-axis machining machine such as a machining center is not required, and the productivity is high.
  • FIG. 10 is a perspective view showing a platform fence which is a first application example of the member with the reinforcing plate of the first embodiment.
  • the platform fence of the first application example has a frame 31 and a platform door 32.
  • the frame 31 is installed upright on the platform.
  • a door pocket is formed in the frame 31.
  • the platform door 32 can move horizontally with respect to the frame 31. By housing the platform door 32 in the door pocket, the opening of the platform fence is opened, and it is possible to get on and off the train stopped at the station. Further, by closing the opening with the platform door 32, it is possible to prevent the person on the platform from falling into the track and the person on the platform from coming into contact with the train.
  • the platform door 32 is cantilevered by the frame 31.
  • the home door 32 has an upper pipe 33, a lower pipe 34, and a flat door panel 35.
  • the upper pipe 33 and the lower pipe 34 are structural members of the platform door 32.
  • the lower pipe 34 is arranged directly below the upper pipe 33.
  • the upper pipe 33 and the lower pipe 34 are arranged parallel to each other and horizontally.
  • the door panel 35 is fixed between the upper pipe 33 and the lower pipe 34.
  • FIG. 11 is a cross-sectional view showing a cross section orthogonal to the longitudinal direction of the upper pipe 33 of FIG.
  • FIG. 12 is a sectional view taken along line XII-XII in FIG.
  • Square pipes made of aluminum alloy are used as the upper pipe 33 and the lower pipe 34, respectively.
  • the CFRP reinforcing plate 1 shown in FIG. 1 is attached to the inner surface of the upper pipe 33. That is, in the first application example, the upper pipe 33 is the member to be reinforced. The member with the reinforcing plate in the first application example is configured by combining the upper pipe 33 and the CFRP reinforcing plate 1.
  • a guide rail 36 that guides the opening/closing operation of the platform door 32 is fixed to the lower surface of the upper pipe 33.
  • CFRP reinforcing plate 1 is attached to the inner surface of the upper pipe 33, a metal member such as the guide rail 36 can be directly attached to the outer surface of the upper pipe 33.
  • FIG. 13 is a front view showing a platform fence which is a second application example of the member with the reinforcing plate of the first embodiment.
  • the platform fence of the second application example has a frame 41 and a platform door 42.
  • the frame 41 has a first vertical pipe 43, a second vertical pipe 44, a first horizontal pipe 46, and a second horizontal pipe 47.
  • the first and second vertical pipes 43, 44 are installed upright on the platform with a space therebetween.
  • the first horizontal pipe 46 is horizontally fixed between the upper end of the first vertical pipe 43 and the upper end of the second vertical pipe 44.
  • the second horizontal pipe 47 is horizontally fixed between the intermediate portion of the first vertical pipe 43 and the intermediate portion of the second vertical pipe 44.
  • the outer shape of the platform door 42 is U-shaped.
  • the first end of the home door 42 is inserted into the first horizontal pipe 46.
  • the second end of the home door 42 is inserted into the second horizontal pipe 47.
  • the home door 42 is movable in the horizontal direction with respect to the frame 41.
  • each of the first vertical pipe 43, the second vertical pipe 44, the first horizontal pipe 46, and the second horizontal pipe 47 is a member to be reinforced.
  • the frame 31 and the lower pipe 34 in FIG. 10 may be the member to be reinforced.
  • the home door 42 of FIG. 13 may be used as the member to be reinforced.
  • not all of the first vertical pipe 43, the second vertical pipe 44, the first horizontal pipe 46, and the second horizontal pipe 47, but only some of them may be the members to be reinforced. That is, in the platform fence, by applying the member with the reinforcing plate to at least a part of the frame and the platform door, it is possible to reduce the weight and the strength of the platform fence.
  • the thickness and width of the reinforcing plate body may be appropriately changed according to the design in order to use the material efficiently.
  • the outer shape of the reinforcing plate body can be appropriately changed according to the shape of the member to be reinforced.
  • the reinforcing plate body may contain fibers other than carbon fibers, for example, glass fibers.
  • first slits and second slits may be alternately arranged from the first end to the second end in the longitudinal direction of the reinforcing plate body. Further, the first slits and the second slits do not necessarily have to be alternately arranged by the same number.
  • the member to be reinforced may be a member having no hollow portion instead of a pipe.
  • the member to be reinforced may be a member other than a beam and a pillar, for example, a rib.
  • the material of the reinforced member is not limited to the aluminum alloy.
  • the first and second slits are formed by the grinding process using the rotary grindstone, but the processing method is not limited to this.
  • the first and second slits can be formed with high productivity by cutting or water jet processing.
  • the member to be reinforced is not limited to the member of the home fence, and the carbon fiber reinforced plastic reinforcing plate of the present invention can be applied to all purposes.

Abstract

This carbon fiber-reinforced plastic reinforcement plate has a reinforcement plate body. The reinforcement plate body is provided with a plurality of slits that split both carbon fibers and a resin. The plurality of slits includes a plurality of first slits and a plurality of second slits. Each first slit is formed within a range from a first end of the reinforcement plate body in the width direction to the central part thereof in the width direction. Each second slit is spaced apart from the first slits and formed within a range from a second end of the reinforcement plate body in the width direction to the central part thereof in the width direction.

Description

炭素繊維強化プラスチック製補強板、補強板付き部材、ホーム柵、及び炭素繊維強化プラスチック製補強板の製造方法Carbon fiber reinforced plastic reinforcing plate, member with reinforcing plate, home fence, and method for manufacturing carbon fiber reinforced plastic reinforcing plate
 この発明は、炭素繊維強化プラスチック製補強板、その補強板を有する補強板付き部材、その補強板付き部材を用いたホーム柵、及び炭素繊維強化プラスチック製補強板の製造方法に関するものである。 The present invention relates to a carbon fiber reinforced plastic reinforcing plate, a member with the reinforcing plate having the reinforcing plate, a home fence using the member with the reinforcing plate, and a method for manufacturing the carbon fiber reinforced plastic reinforcing plate.
 炭素繊維強化プラスチック、即ちCFRP(Carbon Fiber Reinforced Plastics)は、軽量で剛性が高い材料である。このため、CFRP製の補強板を、被補強部材の剛性を高めるために、被補強部材に貼り付けることがある。被補強部材としては、例えば金属製の梁又は金属製の柱が挙げられる。 Carbon fiber reinforced plastic, or CFRP (Carbon Fiber Reinforced Plastics), is a lightweight and highly rigid material. Therefore, a CFRP reinforcing plate may be attached to the member to be reinforced in order to increase the rigidity of the member to be reinforced. Examples of the member to be reinforced include metal beams or metal columns.
 しかし、高剛性となるように調整されたCFRP製の補強板は、金属製の被補強部材に比べて、繊維方向の線膨張率が低い。このため、温度変化を受けた場合に、熱応力により補強板が損傷することが問題となる。 However, the CFRP reinforcing plate, which is adjusted to have high rigidity, has a lower linear expansion coefficient in the fiber direction than the metal reinforced member. Therefore, there is a problem that the reinforcing plate is damaged by the thermal stress when the temperature is changed.
 これに対して、熱可塑性樹脂成形体の成形前の中間体であるプリプレグに切り込みを入れ、強化繊維を切断することで、熱応力を逃がす方法が提案されている。また、その切り込みのパターンも、いくつか挙げられている(例えば、特許文献1参照)。 On the other hand, a method has been proposed in which a thermal stress is released by making a cut in a prepreg, which is an intermediate before molding of a thermoplastic resin molding, and cutting the reinforcing fiber. In addition, some patterns of the cut are given (for example, refer to Patent Document 1).
特開2017-144567号公報JP, 2017-144567, A
 特許文献1に示された従来の熱可塑性樹脂成形体では、プリプレグの状態のときに切り込みを入れるため、プリプレグを用いない成形方法、例えば、大量生産性に優れた引き抜き成形法には適用できないという課題がある。 The conventional thermoplastic resin molded body disclosed in Patent Document 1 cannot be applied to a molding method that does not use a prepreg, for example, a pultrusion molding method that is excellent in mass productivity, because a cut is made in the prepreg state. There are challenges.
 また、特許文献1のようなスリットを、成形後のCFRPに機械加工で設けると、補強板が分割され、被補強部材への貼り付け工程が増加するため、生産性が低い。 Further, when a slit as in Patent Document 1 is provided in a CFRP after molding by machining, the reinforcing plate is divided and the number of steps for attaching the member to the member to be reinforced increases, resulting in low productivity.
 また、補強板を分割しないように、補強板の縁部以外の内部のみにスリットの始点と終点とを設けると、三次元加工機等の複雑な機構の加工装置が必要となり、生産性が低い。 Further, if the start point and the end point of the slit are provided only inside the reinforcing plate so that the reinforcing plate is not divided, a processing device having a complicated mechanism such as a three-dimensional processing machine is required, resulting in low productivity. ..
 この発明は、上記のような課題を解決するためになされたものであり、生産性の低下を抑制しつつ、熱応力による損傷を抑制することができる炭素繊維強化プラスチック製補強板及びその製造方法を得ることを目的とする。 The present invention has been made to solve the above problems, and a carbon fiber reinforced plastic reinforcing plate capable of suppressing damage due to thermal stress while suppressing a decrease in productivity, and a manufacturing method thereof. Aim to get.
 この発明に係る炭素繊維強化プラスチック製補強板は、複数の炭素繊維と樹脂とを含み、少なくとも一部の炭素繊維が長手方向に沿って配置されている補強板本体を備え、補強板本体には、炭素繊維と樹脂との両方を分断する複数のスリットが設けられており、複数のスリットは、補強板本体の幅方向の第1の端部から幅方向の中央部までの範囲に設けられている複数の第1のスリットと、第1のスリットに対して間隔をおいて、補強板本体の幅方向の第2の端部から幅方向の中央部までの範囲に設けられている複数の第2のスリットとを含んでいる。
 この発明に係る炭素繊維強化プラスチック製補強板の製造方法は、複数の炭素繊維と樹脂とを含み、少なくとも一部の炭素繊維が長手方向に沿って配置されている中間体を成形する工程と、中間体の幅方向の第1の端部から幅方向の中央部までの範囲に複数の第1のスリットを設けるとともに、第1のスリットに対して間隔をおいて、中間体の幅方向の第2の端部から幅方向の中央部までの範囲に、複数の第2のスリットを設ける工程とを含んでいる。
The carbon fiber reinforced plastic reinforcing plate according to the present invention includes a plurality of carbon fibers and a resin, a reinforcing plate main body in which at least a part of the carbon fibers are arranged along the longitudinal direction, , A plurality of slits that divide both the carbon fiber and the resin are provided, and the plurality of slits are provided in the range from the first end in the width direction of the reinforcing plate body to the center in the width direction. A plurality of first slits, and a plurality of first slits provided in a range from the second end in the width direction of the reinforcing plate main body to the central portion in the width direction at intervals with respect to the first slit. 2 slits are included.
The method for manufacturing a carbon fiber reinforced plastic reinforcing plate according to the present invention includes a step of molding an intermediate body including a plurality of carbon fibers and a resin, in which at least a part of the carbon fibers are arranged along the longitudinal direction, A plurality of first slits are provided in the range from the first end in the width direction of the intermediate body to the central portion in the width direction, and the first slits in the width direction of the intermediate body are spaced apart from the first slits. And a step of providing a plurality of second slits in the range from the end of 2 to the center in the width direction.
 この発明の炭素繊維強化プラスチック製補強板及びその製造方法によれば、生産性の低下を抑制しつつ、熱応力による損傷を抑制することができる。 According to the carbon fiber reinforced plastic reinforcing plate and the manufacturing method thereof of the present invention, damage due to thermal stress can be suppressed while suppressing a decrease in productivity.
この発明の実施の形態1による補強板付き部材を示す平面図である。FIG. 3 is a plan view showing a member with a reinforcing plate according to Embodiment 1 of the present invention. 図1のII-II線に沿う断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 1. 図1の補強板本体のIII部を拡大して示す平面図である。It is a top view which expands and shows the III section of the reinforcing plate main body of FIG. 図3のIV-IV線に沿う断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 実施の形態1のCFRP製補強板を製造する装置の一部を示す側面図である。FIG. 3 is a side view showing a part of the apparatus for manufacturing the CFRP reinforcing plate according to the first embodiment. 図5の切断機により切断された中間体を示す平面図である。It is a top view which shows the intermediate body cut|disconnected by the cutting machine of FIG. 図6の中間体に第1及び第2のスリットを形成するための加工開始時の状態を示す平面図である。It is a top view which shows the state at the time of the process start for forming the 1st and 2nd slit in the intermediate body of FIG. 図7の回転砥石を中間体の幅方向の中間部まで前進させた状態を示す平面図である。It is a top view which shows the state which advanced the rotary grindstone of FIG. 7 to the intermediate part of the width direction of an intermediate body. 図8の回転砥石を中間体の外まで後退させた状態を示す平面図である。FIG. 9 is a plan view showing a state in which the rotary grindstone of FIG. 8 is retracted to the outside of the intermediate body. 実施の形態1の補強板付き部材の第1の適用例であるホーム柵を示す斜視図である。It is a perspective view which shows the platform fence which is the 1st application example of the member with a reinforcing plate of Embodiment 1. 図10の上部パイプの長手方向に直交する断面を示す断面図である。It is sectional drawing which shows the cross section orthogonal to the longitudinal direction of the upper pipe of FIG. 図11のXII-XII線に沿う断面図である。It is sectional drawing which follows the XII-XII line of FIG. 実施の形態1の補強板付き部材の第2の適用例であるホーム柵を示す正面図である。It is a front view which shows the platform fence which is the 2nd application example of the member with a reinforcing plate of Embodiment 1.
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1による補強板付き部材を示す平面図である。また、図2は、図1のII-II線に沿う断面図である。実施の形態1の補強板付き部材は、炭素繊維強化プラスチック製補強板1、被補強部材2、及び接着剤3を有している。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
Embodiment 1.
1 is a plan view showing a member with a reinforcing plate according to Embodiment 1 of the present invention. 2 is a sectional view taken along the line II-II in FIG. The member with a reinforcing plate according to the first embodiment includes a reinforcing plate 1 made of carbon fiber reinforced plastic, a member to be reinforced 2, and an adhesive 3.
 炭素繊維強化プラスチック製補強板1、即ちCFRP製補強板1は、短冊状の補強板本体4を有している。この例では、CFRP製補強板1は、補強板本体4のみにより構成されている。補強板本体4は、接着剤3により、被補強部材2に貼り付けられている。 The carbon fiber reinforced plastic reinforcing plate 1, that is, the CFRP reinforcing plate 1 has a strip-shaped reinforcing plate body 4. In this example, the CFRP reinforcing plate 1 is composed of only the reinforcing plate body 4. The reinforcing plate body 4 is attached to the member to be reinforced 2 with the adhesive 3.
 図1及び図2において、X軸方向は、補強板本体4及び被補強部材2の幅方向である。また、Y軸方向は、補強板本体4及び被補強部材2の長手方向である。また、Z軸方向は、補強板本体4及び被補強部材2の厚さ方向である。補強板本体4の厚さは、補強板本体4の全体で同じである。また、補強板本体4の幅も、補強板本体4の全体で同じである。 1 and 2, the X-axis direction is the width direction of the reinforcing plate body 4 and the reinforced member 2. The Y-axis direction is the longitudinal direction of the reinforcing plate body 4 and the reinforced member 2. The Z-axis direction is the thickness direction of the reinforcing plate body 4 and the reinforced member 2. The thickness of the reinforcing plate body 4 is the same for the entire reinforcing plate body 4. Further, the width of the reinforcing plate body 4 is also the same for the entire reinforcing plate body 4.
 補強板本体4には、直線状の複数のスリット4a,4bが設けられている。複数のスリット4a,4bは、複数の第1のスリット4aと、複数の第2のスリット4bとを含んでいる。 The reinforcing plate body 4 is provided with a plurality of linear slits 4a and 4b. The plurality of slits 4a and 4b include a plurality of first slits 4a and a plurality of second slits 4b.
 各第1のスリット4aは、補強板本体4の幅方向の第1の端部4cから幅方向の中央部までの範囲に連続して設けられている。各第2のスリット4bは、補強板本体4の幅方向の第2の端部4dから幅方向の中央部までの範囲に連続して設けられている。 Each of the first slits 4a is continuously provided in the range from the widthwise first end 4c of the reinforcing plate body 4 to the widthwise central portion. Each second slit 4b is continuously provided in a range from the second end portion 4d in the width direction of the reinforcing plate body 4 to the center portion in the width direction.
 この例では、第1及び第2のスリット4a,4bは、補強板本体4の幅方向の中心まで設けられている。このため、補強板本体4の幅方向の中心のYZ面に平行な断面には、第1及び第2のスリット4a,4bの両方が存在している。 In this example, the first and second slits 4a and 4b are provided up to the center of the reinforcing plate body 4 in the width direction. Therefore, both the first and second slits 4a and 4b are present in the cross section parallel to the YZ plane at the center of the reinforcing plate body 4 in the width direction.
 また、各第2のスリット4bは、第1のスリット4aに対して間隔をおいて配置されている。また、複数の第1のスリット4a及び複数の第2のスリット4bは、補強板本体4の長手方向の第1の端部から第2の端部へ向けて、交互に、かつ等ピッチで配置されている。 Also, each second slit 4b is arranged at a distance from the first slit 4a. In addition, the plurality of first slits 4a and the plurality of second slits 4b are arranged alternately and at equal pitches from the first end to the second end in the longitudinal direction of the reinforcing plate body 4. Has been done.
 被補強部材2の長手方向に直交する断面形状は、矩形である。また、被補強部材2は、中空の角パイプである。また、被補強部材2は、アルミニウム合金により構成されている。補強板本体4は、被補強部材2の4つの外面のうちの1面である被接着面2aに、被接着面2a全体を覆うように貼り付けられている。 The cross-sectional shape of the reinforced member 2 orthogonal to the longitudinal direction is rectangular. The reinforced member 2 is a hollow square pipe. The reinforced member 2 is made of aluminum alloy. The reinforcing plate body 4 is attached to the adhered surface 2a, which is one of the four outer surfaces of the reinforced member 2, so as to cover the entire adhered surface 2a.
 図3は、図1の補強板本体4のIII部を拡大して示す平面図である。また、図4は、図3のIV-IV線に沿う断面図である。補強板本体4は、複数の炭素繊維5と、マトリックス樹脂としての樹脂6とを含んでいる。少なくとも一部の炭素繊維5は、補強板本体4の長手方向に沿って配置されている。複数のスリット4a,4bは、炭素繊維5と樹脂6との両方を分断している。 FIG. 3 is an enlarged plan view showing a portion III of the reinforcing plate body 4 of FIG. 4 is a sectional view taken along the line IV-IV in FIG. The reinforcing plate body 4 contains a plurality of carbon fibers 5 and a resin 6 as a matrix resin. At least some of the carbon fibers 5 are arranged along the longitudinal direction of the reinforcing plate body 4. The plurality of slits 4a and 4b divide both the carbon fiber 5 and the resin 6.
 複数の第1のスリット4aは、補強板本体4の長手方向に対して、同じ方向へ同じ角度だけ傾斜している。図3では、各第1のスリット4aは、補強板本体4の長手方向から、反時計回りを正方向とした角度θだけ傾斜している。 The plurality of first slits 4a are inclined in the same direction with respect to the longitudinal direction of the reinforcing plate body 4 by the same angle. In FIG. 3, each first slit 4a is inclined from the longitudinal direction of the reinforcing plate body 4 by an angle θ with the counterclockwise direction as the positive direction.
 複数の第2のスリット4bは、補強板本体4の長手方向に対して、第1のスリット4aとは反対側へ、第1のスリット4aと同じ角度だけ傾斜している。図3では、各第2のスリット4bは、補強板本体4の長手方向から、反時計回りを正方向とした角度-θだけ傾斜している。 The plurality of second slits 4b are inclined to the side opposite to the first slit 4a by the same angle as the first slit 4a with respect to the longitudinal direction of the reinforcing plate body 4. In FIG. 3, each second slit 4b is inclined from the longitudinal direction of the reinforcing plate body 4 by an angle −θ with the counterclockwise direction being the positive direction.
 角度θは、0度よりも大きく、90度よりも小さい角度である。また、角度θは、次式を満たしている。なお、wは補強板本体4の幅、tは各第1及び第2のスリット4a,4bの幅、lは補強板本体4の長手方向の第1及び第2のスリット4a,4bのピッチである。 The angle θ is larger than 0 degrees and smaller than 90 degrees. Further, the angle θ satisfies the following equation. In addition, w is the width of the reinforcing plate body 4, t is the width of each of the first and second slits 4a and 4b, and l is the pitch of the first and second slits 4a and 4b in the longitudinal direction of the reinforcing plate body 4. is there.
 (w-t×cosθ)/l≦tanθ≦(w+t×cosθ)/l ・・・(1) (W−t×cos θ)/l≦tan θ≦(w+t×cos θ)/l...(1)
 この場合、図4に示すように、長手方向に直交する断面では、長手方向のいずれの位置においても、第1及び第2のスリット4a,4bのうちのどちらかが1つ含まれる。 In this case, as shown in FIG. 4, a cross section orthogonal to the longitudinal direction includes one of the first and second slits 4a and 4b at any position in the longitudinal direction.
 スリット幅tを十分に小さくした場合、次式の関係となり最も良い。 When the slit width t is made small enough, the relation of the following formula is obtained, which is the best.
 tanθ=w/l ・・・(2) Tan θ=w/l (2)
 このようなCFRP製補強板1では、全ての第1及び第2のスリット4a,4bが、補強板本体4の幅方向の中央部で止まっている。即ち、補強板本体4は、複数に分断されることなく、繋がっている。このため、被補強部材2に貼り付ける工程は、1回でよく、複数に分断される場合に比べて生産性に優れている。 In such a CFRP reinforcing plate 1, all the first and second slits 4a and 4b are stopped at the central portion of the reinforcing plate body 4 in the width direction. That is, the reinforcing plate body 4 is connected without being divided into a plurality of parts. Therefore, the step of attaching to the member to be reinforced 2 may be performed once, and is excellent in productivity as compared with the case of being divided into plural pieces.
 また、第1及び第2のスリット4a,4bが炭素繊維5を分断しているので、CFRP製補強板1と被補強部材2との熱膨張率差による熱応力を低減できる。 Further, since the first and second slits 4a and 4b divide the carbon fiber 5, it is possible to reduce the thermal stress due to the difference in thermal expansion coefficient between the CFRP reinforcing plate 1 and the reinforced member 2.
 また、第1及び第2のスリット4a,4bが樹脂6も分断しているので、補強板本体4の成形後に第1及び第2のスリット4a,4bを設けることができ、生産性に優れている。 In addition, since the first and second slits 4a and 4b also divide the resin 6, the first and second slits 4a and 4b can be provided after the reinforcing plate body 4 is molded, and the productivity is excellent. There is.
 一方、被補強部材2にスリットを設け、CFRP製補強板1にスリットを設けない場合でも、同様に熱応力を低減できる。しかし、この場合、補強板付き部材の熱膨張がCFRP製補強板1に近くなる。このため、被補強部材2を他の金属部材に取り付けると、熱応力が発生してしまう。 On the other hand, even if the reinforcing member 2 is provided with slits and the CFRP reinforcing plate 1 is not provided with slits, thermal stress can be similarly reduced. However, in this case, the thermal expansion of the member with the reinforcing plate becomes closer to that of the CFRP reinforcing plate 1. Therefore, when the reinforced member 2 is attached to another metal member, thermal stress is generated.
 これに対して、第1及び第2のスリット4a,4bを補強板本体4に設ける場合、補強板付き部材の熱膨張が、金属製の被補強部材2の熱膨張に近くなる。このため、被補強部材2を他の金属部材に取り付けても、熱応力が低減される。 On the other hand, when the first and second slits 4a and 4b are provided in the reinforcing plate body 4, the thermal expansion of the member with the reinforcing plate becomes close to that of the metal member 2 to be reinforced. Therefore, even if the reinforced member 2 is attached to another metal member, thermal stress is reduced.
 また、実施の形態1のCFRP製補強板1では、プリプレグを用いない成形方法、例えば大量生産性に優れた引き抜き成形法で成形された補強板本体4を用いることができる。 Further, in the CFRP reinforcing plate 1 of the first embodiment, it is possible to use the reinforcing plate main body 4 formed by a molding method that does not use a prepreg, for example, a pultrusion molding method that is excellent in mass productivity.
 また、第1及び第2のスリット4a,4bは、補強板本体4の幅方向の端部から形成されている。このため、三次元加工機を必要とせず、第1及び第2のスリット4a,4bを、二次元の加工方法で設けることができ、生産性に優れている。 Further, the first and second slits 4a and 4b are formed from the ends of the reinforcing plate body 4 in the width direction. Therefore, it is possible to provide the first and second slits 4a and 4b by a two-dimensional processing method without using a three-dimensional processing machine, which is excellent in productivity.
 このように、実施の形態1のCFRP製補強板1及び補強板付き部材によれば、生産性の低下を抑制しつつ、熱応力による損傷を抑制することができる。 As described above, according to the CFRP reinforcing plate 1 and the member with a reinforcing plate of the first embodiment, damage due to thermal stress can be suppressed while suppressing a decrease in productivity.
 また、一般に、補強板にスリットを設けると、スリットの部分では補強効果が得られず、スリットを引き裂く方向の剛性が低くなる。このため、スリットを長手方向に対して一定の角度で傾けると、補強板付き部材が外力を受けたときにねじり変形が起こってしまう。 Also, generally, if a slit is provided in the reinforcing plate, the reinforcing effect cannot be obtained at the slit portion, and the rigidity in the direction of tearing the slit becomes low. Therefore, when the slit is inclined at a constant angle with respect to the longitudinal direction, the member with the reinforcing plate is twisted and deformed when an external force is applied.
 これに対して、実施の形態1では、全ての第1のスリット4aが同じ方向へ傾斜しており、全ての第2のスリット4bが第1のスリット4aとは反対側へ傾斜している。このため、ねじり変形が打ち消され、補強板付き部材の対称性を維持することができる。 On the other hand, in the first embodiment, all the first slits 4a are inclined in the same direction, and all the second slits 4b are inclined in the opposite side to the first slit 4a. Therefore, the twisting deformation is canceled out, and the symmetry of the member with the reinforcing plate can be maintained.
 また、各第1のスリット4aの傾斜角度がθであり、各第2のスリット4bの傾斜角度が-θである。このため、補強板付き部材のねじり変形をより確実に打ち消すことができる。 The inclination angle of each first slit 4a is θ, and the inclination angle of each second slit 4b is −θ. Therefore, the torsional deformation of the member with the reinforcing plate can be more reliably canceled.
 また、θは、上記の式(1)を満たしているため、CFRP製補強板1の長手方向の全体で、被補強部材2を均等に補強することができ、局所的な変形の発生を抑制することができる。 Further, since θ satisfies the above formula (1), the member 2 to be reinforced can be uniformly reinforced in the entire longitudinal direction of the CFRP reinforcing plate 1, and the occurrence of local deformation can be suppressed. can do.
 一方、tanθが(w-t×cosθ)/lよりも小さいと、第1のスリット4aと第2のスリット4bとが同一断面に含まれることになる。このため、補強板付き部材の剛性が損なわれる。 On the other hand, if tan θ is smaller than (wt×cos θ)/l, the first slit 4a and the second slit 4b are included in the same cross section. Therefore, the rigidity of the member with the reinforcing plate is impaired.
 また、tanθが(w+t×cosθ)/lよりも大きいと、第1及び第2のスリット4a,4bのどちらも含まない断面が存在することになる。このため、変形が均等ではなくなり、破壊の起点となる箇所が生じる。 Also, if tan θ is larger than (w+t×cos θ)/l, there will be a cross section that does not include both the first and second slits 4a and 4b. For this reason, the deformation is not uniform, and a portion which becomes the starting point of the destruction occurs.
 また、スリット幅tを加味した式(2)を満たすことで、高い加工精度は不要となり、生産性がさらに向上する。 Also, by satisfying the equation (2) in which the slit width t is taken into consideration, high machining accuracy is not required and productivity is further improved.
 また、全ての第1及び第2のスリット4a,4bは、補強板本体4の幅方向の端部から直線状に形成されている。このため、第1及び第2のスリット4a,4bを、機械加工で容易に形成することができる。また、工具の大きさを第1及び第2のスリット4a,4bの長さ以下に制限する必要がなく、生産性に優れている。 Also, all the first and second slits 4a and 4b are linearly formed from the end of the reinforcing plate body 4 in the width direction. Therefore, the first and second slits 4a and 4b can be easily formed by machining. Further, it is not necessary to limit the size of the tool to the length of the first and second slits 4a and 4b or less, which is excellent in productivity.
 また、第1及び第2のスリット4a,4bを形成する際、始点及び終点で工具を多軸方向に動かす必要がなく、生産性に優れている。 Also, when forming the first and second slits 4a and 4b, it is not necessary to move the tool in the multi-axis direction at the start point and the end point, which is excellent in productivity.
 また、補強板本体4の厚さは、補強板本体4の全体で同じである。このため、補強板本体4は、断面を変化させることのできない成形方法で成形することができる。 Also, the thickness of the reinforcing plate body 4 is the same for the entire reinforcing plate body 4. Therefore, the reinforcing plate body 4 can be molded by a molding method that cannot change the cross section.
 また、補強板本体4の幅も補強板本体4の全体で同じであり、補強板本体4の長手方向に直交する断面の形状は、補強板本体4の全体で同じである。このため、引き抜き成形法を適用することができ、生産性に優れている。 Also, the width of the reinforcing plate body 4 is the same in the entire reinforcing plate body 4, and the shape of the cross section orthogonal to the longitudinal direction of the reinforcing plate body 4 is the same in the entire reinforcing plate body 4. Therefore, the pultrusion method can be applied and the productivity is excellent.
 また、補強板本体4の外形が短冊形状であるため、梁、リブ、柱等の被補強部材2の剛性を、より長い距離で向上させることができる。 Also, since the outer shape of the reinforcing plate main body 4 is a strip shape, the rigidity of the member to be reinforced 2 such as beams, ribs and columns can be improved over a longer distance.
 なお、各炭素繊維5は、必要な機械特性に応じて選定すればよいが、ここではピッチ系炭素繊維が用いられている。 Note that each carbon fiber 5 may be selected according to the required mechanical characteristics, but here pitch-based carbon fibers are used.
 また、各炭素繊維5の縦弾性率は、600GPaである。縦弾性率が900GPaよりも大きいピッチ系炭素繊維では、引き抜き成形の工程で繊維折れが発生することがあり、生産性が低くなる。 Also, the longitudinal elastic modulus of each carbon fiber 5 is 600 GPa. With pitch-based carbon fibers having a longitudinal elastic modulus of more than 900 GPa, fiber breakage may occur during the pultrusion process, resulting in low productivity.
 また、縦弾性率を400GPa未満とした場合、一方向CFRP板としたときの弾性率が鉄の弾性率を下回り始める。このため、被補強部材自体の厚さを増大させた場合に比べて、生産性が低く、CFRP製補強板を使用する利点が損なわれる。 Also, if the longitudinal elastic modulus is less than 400 GPa, the elastic modulus of the unidirectional CFRP plate begins to fall below that of iron. Therefore, the productivity is lower than that in the case where the thickness of the member to be reinforced is increased, and the advantage of using the CFRP reinforcing plate is lost.
 また、縦弾性率を200GPa未満とした場合、一方向CFRP板としたときの比剛性が鉄の比剛性を下回り始めるため、さらに好ましくない。 Further, if the longitudinal elastic modulus is less than 200 GPa, the specific rigidity of the unidirectional CFRP plate starts to fall below the specific rigidity of iron, which is further unfavorable.
 従って、各炭素繊維5の縦弾性率は、400GPa以上、900GPa以下とすることが好適である。これにより、一方向CFRPとしたときに、鉄よりも高い剛性が得られる。 Therefore, the longitudinal elastic modulus of each carbon fiber 5 is preferably 400 GPa or more and 900 GPa or less. As a result, when one-way CFRP is used, higher rigidity than that of iron can be obtained.
 また、樹脂6としては、エポキシ、ビニルエステル、不飽和ポリエステル、フラン、ポリウレタン、ポリイミド、ポリアミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、アクリロニトリル、ポリプロピレン、ポリエステル、ナイロン、ポリカーボネイト、アクリロニトリルタジエンスチレン、アクリロニトリルスチレン、変性ポリフェニレンエーテル、ポリエチレン、ポリアセタール等が挙げられる。 Further, as the resin 6, epoxy, vinyl ester, unsaturated polyester, furan, polyurethane, polyimide, polyamide, polyether ether ketone, polyether sulfone, acrylonitrile, polypropylene, polyester, nylon, polycarbonate, acrylonitrile tadiene styrene, acrylonitrile styrene , Modified polyphenylene ether, polyethylene, polyacetal and the like.
 樹脂6として、これらの樹脂のいずれかを用いることによって、炭素繊維5と樹脂6とを良好に密着させることができる。 By using any of these resins as the resin 6, the carbon fiber 5 and the resin 6 can be brought into good contact with each other.
 また、樹脂6としては、機械特性に優れる熱硬化性樹脂が適している。特に、ガラス転移温度Tgが130℃のエポキシ樹脂を用いた場合、十分な剛性を確保でき、かつクリープ変形を小さく抑えることができる。また、ビニルエステル、及び不飽和ポリエステルも、同様の理由で好ましい。また、樹脂6にフィラーを含有させて、弾性率、熱膨張率、及び難燃性の少なくともいずれか1つを調整してもよい。 Also, as the resin 6, a thermosetting resin having excellent mechanical properties is suitable. In particular, when an epoxy resin having a glass transition temperature Tg of 130° C. is used, sufficient rigidity can be ensured and creep deformation can be suppressed to be small. Further, vinyl ester and unsaturated polyester are also preferable for the same reason. Further, the resin 6 may contain a filler to adjust at least one of elastic modulus, thermal expansion coefficient, and flame retardancy.
 また、補強板本体4は、一方向材で構成することが好ましい。一方向材は、全ての炭素繊維5が補強板本体4の長手方向に沿って配置されているため、機械特性に優れており、高い剛性を実現できる。 Also, it is preferable that the reinforcing plate body 4 is made of a unidirectional member. Since all the carbon fibers 5 are arranged along the longitudinal direction of the reinforcing plate body 4, the unidirectional material has excellent mechanical properties and can realize high rigidity.
 また、一方向材は、引き抜き成形法で製造できるため、生産性にも優れている。なお、一方向材における各炭素繊維5の方向には、±5度程度の加工誤差が含まれてもよい。 Also, unidirectional materials have excellent productivity because they can be manufactured by a pultrusion method. The direction of each carbon fiber 5 in the unidirectional material may include a processing error of about ±5 degrees.
 また、補強板本体4は、一方向材以外の例えば直交積層材、斜交積層材、又は疑似等方積層材により構成してもよい。この場合の成形方法としては、オートクレーブ法、RTM(Resin Transfer Molding)法、VaRTM(Vacuum assisted Resin Transfer Molding)法、プレス成形法等が挙げられる。 Further, the reinforcing plate body 4 may be made of, for example, an orthogonal laminated material, an oblique laminated material, or a pseudo isotropic laminated material other than the unidirectional material. Examples of the molding method in this case include an autoclave method, an RTM (Resin Transfer Molding) method, a VaRTM (Vacuum assisted Resin Transfer Molding) method, and a press molding method.
 接着剤3としては、アクリル系接着剤が最も良く、次いでエポキシ系接着剤が良い。アクリル系接着剤又はエポキシ系接着剤を用いた場合、被補強部材2と補強板本体4との間で十分なせん断力を伝達できる。 Adhesive 3 is best acrylic adhesive, then epoxy adhesive. When an acrylic adhesive or an epoxy adhesive is used, a sufficient shearing force can be transmitted between the reinforced member 2 and the reinforcing plate body 4.
 シアネート樹脂は、温度変化に対して剥離を生じ易く、接着剤3としては適さない。シリコーン樹脂及び変性シリコーン樹脂は、荷重伝達が悪く、接着剤3としては適さない。 Cyanate resin is not suitable as the adhesive 3 because it easily peels off due to temperature change. The silicone resin and the modified silicone resin have poor load transmission and are not suitable as the adhesive 3.
 また、補強板本体4の被補強部材2に接着する面の全体に接着剤3が付着していることが好ましく、補強板本体4と被補強部材2との間の荷重伝達を良好にすることができる。 Further, it is preferable that the adhesive 3 is attached to the entire surface of the reinforcing plate body 4 to be adhered to the member to be reinforced 2, so that the load transmission between the reinforcing plate body 4 and the member to be reinforced 2 is good. You can
 接着剤3としてアクリル系接着剤を用いる場合、ピッチlを200mmとすると、荷重伝達が良好で、温度変化に対しても剥離が生じず、最も良い。 When using an acrylic adhesive as the adhesive 3, if the pitch 1 is 200 mm, load transfer is good and peeling does not occur even with temperature changes, which is the best.
 ピッチlを100mm未満とした場合、補強効果が損なわれる。また、ピッチlを250mmよりも大きくした場合、温度変化により剥離が生じ易くなる。なお、ここでは-30℃から+60℃までの温度変化を想定している。 If the pitch l is less than 100 mm, the reinforcing effect will be impaired. Further, when the pitch 1 is set to be larger than 250 mm, peeling easily occurs due to temperature change. Note that here, a temperature change from −30° C. to +60° C. is assumed.
 従って、ピッチlは、100mm以上、250mm以下とすることが好ましい。これにより、屋外の大気環境での温度変化に対して、熱膨張差による剥離の発生を抑制することができる。 Therefore, the pitch l is preferably 100 mm or more and 250 mm or less. Accordingly, it is possible to suppress the occurrence of peeling due to the difference in thermal expansion with respect to the temperature change in the outdoor atmospheric environment.
 また、スリット幅tは、目的の剛性と生産性とを考慮して設定すればよいが、0.6mm以上、2.0mm以下が望ましく、ここでは1.0mmである。 The slit width t may be set in consideration of the desired rigidity and productivity, but it is preferably 0.6 mm or more and 2.0 mm or less, and is 1.0 mm here.
 また、補強板本体4の幅wは、目的に応じて設定すればよいが、ここでは30mmである。 The width w of the reinforcing plate body 4 may be set according to the purpose, but is 30 mm here.
 次に、CFRP製補強板1の製造方法について説明する。図5は、実施の形態1のCFRP製補強板1を製造する装置の一部を示す側面図である。 Next, a method of manufacturing the CFRP reinforcing plate 1 will be described. FIG. 5 is a side view showing a part of an apparatus for manufacturing the CFRP reinforcing plate 1 according to the first embodiment.
 図5の装置は、レジンバス21、成形型22、引き取り装置23、及び切断機24を有している。レジンバス21には、未硬化の樹脂6が溜められている。成形型22は、キャビティ及び加熱機構を有している。キャビティの断面形状は、目的の補強板本体4の長手方向に直交する断面形状と同じである。 The device shown in FIG. 5 has a resin bath 21, a molding die 22, a take-up device 23, and a cutting machine 24. The uncured resin 6 is stored in the resin bath 21. The mold 22 has a cavity and a heating mechanism. The cross-sectional shape of the cavity is the same as the cross-sectional shape orthogonal to the longitudinal direction of the intended reinforcing plate body 4.
 引き取り装置23は、補強板本体4の中間体13を掴んで成形型22から引き取る。切断機24は、中間体13を目的の長さに切断する。 The take-up device 23 grasps the intermediate body 13 of the reinforcing plate body 4 and takes it from the forming die 22. The cutting machine 24 cuts the intermediate body 13 into a desired length.
 複数のボビン11は、図示しないラックに配置されている。各ボビン11には、炭素繊維束12が巻き取られている。各炭素繊維束12は、目的の断面形状と炭素繊維含有率とを満足するように、複数本の炭素繊維5で構成されている。 The plurality of bobbins 11 are arranged in a rack (not shown). A carbon fiber bundle 12 is wound around each bobbin 11. Each carbon fiber bundle 12 is composed of a plurality of carbon fibers 5 so as to satisfy a target cross-sectional shape and a carbon fiber content rate.
 ボビン11から引き出された炭素繊維束12は、レジンバス21に送られる。レジンバス21では、炭素繊維束12に未硬化の樹脂6が含浸される。この後、炭素繊維束12は、成形型22のキャビティに引き込まれる。成形型22では、加熱機構により未硬化の樹脂6が加熱され硬化される。これにより、中間体13が成形される。 The carbon fiber bundle 12 pulled out from the bobbin 11 is sent to the resin bath 21. In the resin bath 21, the carbon fiber bundle 12 is impregnated with the uncured resin 6. Then, the carbon fiber bundle 12 is drawn into the cavity of the molding die 22. In the molding die 22, the uncured resin 6 is heated and cured by the heating mechanism. Thereby, the intermediate body 13 is molded.
 中間体13は、引き取り装置23により引き取られる。中間体13の成形は、引き取り装置23により中間体13を一定速度で連続的に引き取りながら行うことができる。また、中間体13の成形は、引き取り装置23による引き取りと停止とを繰り返して、間欠的に行ってもよい。いずれの場合も、樹脂6が成形型22の中で適正に硬化される時間を確保する必要がある。 The intermediate body 13 is collected by the collecting device 23. The intermediate body 13 can be molded while the intermediate body 13 is continuously drawn at a constant speed by the take-up device 23. Moreover, the intermediate body 13 may be formed intermittently by repeatedly taking up and stopping the take-up device 23. In either case, it is necessary to secure a time for the resin 6 to be properly cured in the molding die 22.
 ここまでの工程を、ここでは成形工程と呼ぶ。中間体13の断面形状は、目的に応じた形状にすればよいが、ここでは長方形断面である。また、成形された中間体13は帯状であり、全ての炭素繊維5は、中間体13の長手方向に沿って引き揃えられている。 The process up to this point is called the molding process here. The cross-sectional shape of the intermediate body 13 may be a shape according to the purpose, but is a rectangular cross section here. In addition, the molded intermediate body 13 has a strip shape, and all the carbon fibers 5 are aligned along the longitudinal direction of the intermediate body 13.
 この後、中間体13は切断機24に送られ、目的の長さに切断される。図6は、図5の切断機24により切断された中間体13を示す平面図である。 After that, the intermediate body 13 is sent to the cutting machine 24 and cut into a desired length. FIG. 6 is a plan view showing the intermediate body 13 cut by the cutting machine 24 of FIG.
 図7は、図6の中間体13に第1及び第2のスリット4a,4bを形成するための加工開始時の状態を示す平面図である。第1及び第2のスリット4a,4bは、中間体13に対して、円板状の回転砥石25を相対的に移動させることにより形成される。 FIG. 7 is a plan view showing a state at the start of processing for forming the first and second slits 4a and 4b in the intermediate body 13 of FIG. The first and second slits 4a and 4b are formed by moving the disk-shaped rotary grindstone 25 relative to the intermediate body 13.
 一定速度で回転している回転砥石25を、中間体13の幅方向の端部から、前述した角度で直線的に前進させる。そして、図8に示すように、回転砥石25の先端が中間体13の幅方向の中間部まで進むと、図9に示すように、回転砥石25をそのまま後退させる。これにより、複数の炭素繊維5と樹脂6との両方が同時に研削され、図9では第2のスリット4bが形成されている。  The rotating grindstone 25 rotating at a constant speed is linearly advanced from the widthwise end of the intermediate body 13 at the angle described above. Then, as shown in FIG. 8, when the tip of the rotary grindstone 25 advances to the intermediate portion in the width direction of the intermediate body 13, the rotary grindstone 25 is retracted as it is, as shown in FIG. As a result, both the plurality of carbon fibers 5 and the resin 6 are ground at the same time, and the second slit 4b is formed in FIG.
 このような工程を、中間体13を長手方向に送りながら、又は中間体13の長手方向の回転砥石25の位置を変えながら、繰り返し行うことで、全ての第2のスリット4bを形成することができる。 All the second slits 4b can be formed by repeating such a process while feeding the intermediate body 13 in the longitudinal direction or changing the position of the rotary grindstone 25 in the longitudinal direction of the intermediate body 13. it can.
 また、同様の工程を、中間体13を裏返して行うか、又は中間体13の幅方向の反対側へ回転砥石25を移動させて行うことにより、図1に示すように、全ての第1のスリット4aを形成することができる。 In addition, by performing the same process by turning over the intermediate body 13 or by moving the rotary grindstone 25 to the opposite side in the width direction of the intermediate body 13, as shown in FIG. The slit 4a can be formed.
 また、中間体13の幅方向の両側に一対の回転砥石25を配置しておくことで、複数の第1のスリット4aを形成する工程と、複数の第2のスリット4bを形成する工程とを同時に実施することもできる。 In addition, by disposing a pair of rotary grindstones 25 on both sides of the intermediate body 13 in the width direction, a step of forming a plurality of first slits 4a and a step of forming a plurality of second slits 4b are performed. It can also be carried out simultaneously.
 回転砥石25の砥石幅は、目的のスリット幅に応じて選定すればよいが、砥石幅を小さくした方が、優れた補強効果が得られる。但し、砥石幅が小さ過ぎると、回転砥石25の耐久性に問題が生じる。 The whetstone width of the rotary whetstone 25 may be selected according to the target slit width, but the smaller the whetstone width, the better the reinforcing effect. However, if the width of the grindstone is too small, the durability of the rotary grindstone 25 becomes problematic.
 従って、砥石幅は0.5mm以上、1.8mm以下が好ましい。目的のスリット幅が1.0mmである場合、砥石幅は0.9mmが最も良い。 Therefore, the width of the grindstone is preferably 0.5 mm or more and 1.8 mm or less. When the target slit width is 1.0 mm, the grindstone width is best 0.9 mm.
 ここでは、成形工程、切断工程、スリット形成工程の順で説明したが、成形工程、スリット形成工程、切断工程の順で行ってもよい。 Here, the molding process, the cutting process, and the slit forming process are described in this order, but the molding process, the slit forming process, and the cutting process may be performed in this order.
 このように、実施の形態1のCFRP製補強板1の製造方法は、中間体13を成形する成形工程と、第1及び第2のスリット4a,4bを形成するスリット形成工程と、中間体13を目的の長さに切断する切断工程とを含んでいる。 As described above, the method for manufacturing the CFRP reinforcing plate 1 according to the first embodiment includes the forming step of forming the intermediate body 13, the slit forming step of forming the first and second slits 4a and 4b, and the intermediate body 13. And a cutting step of cutting into a desired length.
 このような製造方法によれば、成形後のCFRPからなる中間体13に第1及び第2のスリット4a,4bを形成するため、プリプレグを用いない引き抜き成形であっても、生産性高くCFRP製補強板1を製造できる。 According to such a manufacturing method, since the first and second slits 4a and 4b are formed in the intermediate body 13 made of CFRP after molding, the CFRP-made product is highly productive even in the pultrusion without using the prepreg. The reinforcing plate 1 can be manufactured.
 また、未硬化の樹脂6を含浸させた炭素繊維束12を、成形型22に引き込み、未硬化の樹脂6を加熱硬化させるので、連続で大量のCFRP製補強板1を生産することができる。 Further, since the carbon fiber bundle 12 impregnated with the uncured resin 6 is drawn into the molding die 22 and the uncured resin 6 is heat-cured, a large number of CFRP reinforcing plates 1 can be continuously produced.
 また、第1及び第2のスリット4a,4bは、中間体13に対して回転砥石25を相対的に移動させて形成される。このため、マシニングセンタ等の多軸加工機を必要とせず、生産性が高い。 Further, the first and second slits 4a and 4b are formed by moving the rotary grindstone 25 relative to the intermediate body 13. Therefore, a multi-axis machining machine such as a machining center is not required, and the productivity is high.
 次に、図10は、実施の形態1の補強板付き部材の第1の適用例であるホーム柵を示す斜視図である。第1の適用例のホーム柵は、フレーム31とホームドア32とを有している。フレーム31は、プラットホーム上に立てて設置されている。フレーム31内には、戸袋が形成されている。 Next, FIG. 10 is a perspective view showing a platform fence which is a first application example of the member with the reinforcing plate of the first embodiment. The platform fence of the first application example has a frame 31 and a platform door 32. The frame 31 is installed upright on the platform. A door pocket is formed in the frame 31.
 ホームドア32は、フレーム31に対して水平方向へ移動可能である。ホームドア32が戸袋に収容されることで、ホーム柵の開口部が開放され、駅に停車した列車への乗降が可能となる。また、ホームドア32により開口部を閉鎖することで、プラットホーム上の人の軌道への転落、及びプラットホーム上の人の列車との接触が防止される。 The platform door 32 can move horizontally with respect to the frame 31. By housing the platform door 32 in the door pocket, the opening of the platform fence is opened, and it is possible to get on and off the train stopped at the station. Further, by closing the opening with the platform door 32, it is possible to prevent the person on the platform from falling into the track and the person on the platform from coming into contact with the train.
 ホームドア32は、フレーム31により片持ちで支持されている。また、ホームドア32は、上部パイプ33、下部パイプ34、及び平板状のドアパネル35を有している。上部パイプ33及び下部パイプ34は、ホームドア32の構造部材である。 The platform door 32 is cantilevered by the frame 31. The home door 32 has an upper pipe 33, a lower pipe 34, and a flat door panel 35. The upper pipe 33 and the lower pipe 34 are structural members of the platform door 32.
 下部パイプ34は、上部パイプ33の真下に配置されている。上部パイプ33及び下部パイプ34は、互いに平行、かつ水平に配置されている。ドアパネル35は、上部パイプ33と下部パイプ34との間に固定されている。 The lower pipe 34 is arranged directly below the upper pipe 33. The upper pipe 33 and the lower pipe 34 are arranged parallel to each other and horizontally. The door panel 35 is fixed between the upper pipe 33 and the lower pipe 34.
 図11は、図10の上部パイプ33の長手方向に直交する断面を示す断面図である。また、図12は、図11のXII-XII線に沿う断面図である。上部パイプ33及び下部パイプ34としては、それぞれアルミニウム合金製の角パイプが用いられている。 11 is a cross-sectional view showing a cross section orthogonal to the longitudinal direction of the upper pipe 33 of FIG. FIG. 12 is a sectional view taken along line XII-XII in FIG. Square pipes made of aluminum alloy are used as the upper pipe 33 and the lower pipe 34, respectively.
 上部パイプ33の内面には、図1に示したCFRP製補強板1が貼り付けられている。即ち、第1の適用例では、上部パイプ33が被補強部材である。また、上部パイプ33とCFRP製補強板1とを組み合わせることで、第1の適用例における補強板付き部材が構成されている。 The CFRP reinforcing plate 1 shown in FIG. 1 is attached to the inner surface of the upper pipe 33. That is, in the first application example, the upper pipe 33 is the member to be reinforced. The member with the reinforcing plate in the first application example is configured by combining the upper pipe 33 and the CFRP reinforcing plate 1.
 上部パイプ33の下面には、ホームドア32の開閉動作を案内するガイドレール36が固定されている。 A guide rail 36 that guides the opening/closing operation of the platform door 32 is fixed to the lower surface of the upper pipe 33.
 このようなホーム柵では、上部パイプ33にCFRP製補強板1が固定されているので、ホームドア32の軽量化を図りつつ、ホームドア32の強度を向上させることができる。 In such a home fence, since the CFRP reinforcing plate 1 is fixed to the upper pipe 33, it is possible to improve the strength of the home door 32 while reducing the weight of the home door 32.
 また、上部パイプ33の自重による変形を抑制しつつ、広い開口部を開閉するホームドア32を実現することができる。 Also, it is possible to realize the home door 32 that opens and closes a wide opening while suppressing the deformation of the upper pipe 33 due to its own weight.
 また、CFRP製補強板1を上部パイプ33の内面に貼り付けたので、上部パイプ33の外面にガイドレール36等の金属部材を直接取り付けることができる。 Further, since the CFRP reinforcing plate 1 is attached to the inner surface of the upper pipe 33, a metal member such as the guide rail 36 can be directly attached to the outer surface of the upper pipe 33.
 次に、図13は、実施の形態1の補強板付き部材の第2の適用例であるホーム柵を示す正面図である。第2の適用例のホーム柵は、フレーム41とホームドア42とを有している。 Next, FIG. 13 is a front view showing a platform fence which is a second application example of the member with the reinforcing plate of the first embodiment. The platform fence of the second application example has a frame 41 and a platform door 42.
 フレーム41は、第1の縦パイプ43、第2の縦パイプ44、第1の横パイプ46、及び第2の横パイプ47を有している。第1及び第2の縦パイプ43,44は、互いに間隔をおいて、プラットホーム上に立てて設置されている。 The frame 41 has a first vertical pipe 43, a second vertical pipe 44, a first horizontal pipe 46, and a second horizontal pipe 47. The first and second vertical pipes 43, 44 are installed upright on the platform with a space therebetween.
 第1の横パイプ46は、第1の縦パイプ43の上端部と第2の縦パイプ44の上端部との間に水平に固定されている。第2の横パイプ47は、第1の縦パイプ43の中間部と第2の縦パイプ44の中間部との間に水平に固定されている。 The first horizontal pipe 46 is horizontally fixed between the upper end of the first vertical pipe 43 and the upper end of the second vertical pipe 44. The second horizontal pipe 47 is horizontally fixed between the intermediate portion of the first vertical pipe 43 and the intermediate portion of the second vertical pipe 44.
 ホームドア42の外形は、U字形である。ホームドア42の第1の端部は、第1の横パイプ46に挿入されている。ホームドア42の第2の端部は、第2の横パイプ47に挿入されている。ホームドア42は、フレーム41に対して水平方向へ移動可能である。 The outer shape of the platform door 42 is U-shaped. The first end of the home door 42 is inserted into the first horizontal pipe 46. The second end of the home door 42 is inserted into the second horizontal pipe 47. The home door 42 is movable in the horizontal direction with respect to the frame 41.
 第1の縦パイプ43、第2の縦パイプ44、第1の横パイプ46、及び第2の横パイプ47としては、それぞれアルミニウム合金製の角パイプが用いられている。図示は省略するが、第1の縦パイプ43、第2の縦パイプ44、第1の横パイプ46、及び第2の横パイプ47の内面には、それぞれ図1と同様のCFRP製補強板1が貼り付けられている。 Square aluminum pipes are used as the first vertical pipe 43, the second vertical pipe 44, the first horizontal pipe 46, and the second horizontal pipe 47, respectively. Although illustration is omitted, the CFRP reinforcing plate 1 similar to that in FIG. 1 is provided on the inner surfaces of the first vertical pipe 43, the second vertical pipe 44, the first horizontal pipe 46, and the second horizontal pipe 47, respectively. Is pasted.
 即ち、第2の適用例では、第1の縦パイプ43、第2の縦パイプ44、第1の横パイプ46、及び第2の横パイプ47のそれぞれが被補強部材である。 That is, in the second application example, each of the first vertical pipe 43, the second vertical pipe 44, the first horizontal pipe 46, and the second horizontal pipe 47 is a member to be reinforced.
 このようなホーム柵では、フレーム41の軽量化及び高強度化を図ることができる。 With such a home fence, the weight and strength of the frame 41 can be reduced.
 なお、図10のフレーム31及び下部パイプ34の少なくともいずれか一方を被補強部材としてもよい。また、図13のホームドア42を被補強部材としてもよい。また、第1の縦パイプ43、第2の縦パイプ44、第1の横パイプ46、及び第2の横パイプ47の全てではなく、一部のみを被補強部材としてもよい。即ち、ホーム柵において、フレーム及びホームドアの少なくとも一部に、補強板付き部材を適用することで、ホーム柵の軽量化及び高強度化を図ることができる。 Note that at least one of the frame 31 and the lower pipe 34 in FIG. 10 may be the member to be reinforced. Further, the home door 42 of FIG. 13 may be used as the member to be reinforced. Further, not all of the first vertical pipe 43, the second vertical pipe 44, the first horizontal pipe 46, and the second horizontal pipe 47, but only some of them may be the members to be reinforced. That is, in the platform fence, by applying the member with the reinforcing plate to at least a part of the frame and the platform door, it is possible to reduce the weight and the strength of the platform fence.
 また、補強板本体の厚さ及び幅は、効率的に材料を使用するために、設計に応じて適宜変化させてもよい。 Also, the thickness and width of the reinforcing plate body may be appropriately changed according to the design in order to use the material efficiently.
 また、補強板本体の外形は、被補強部材の形状に応じて適宜変更可能である。 Also, the outer shape of the reinforcing plate body can be appropriately changed according to the shape of the member to be reinforced.
 また、補強板本体は、炭素繊維以外の繊維、例えばガラス繊維を含んでもよい。 Also, the reinforcing plate body may contain fibers other than carbon fibers, for example, glass fibers.
 また、必ずしも全ての第1のスリットの傾斜角度を同じにしなくてもよい。同様に、必ずしも全ての第2のスリットの傾斜角度を同じにしなくてもよい。 Also, it is not necessary that all the first slits have the same inclination angle. Similarly, the inclination angles of all the second slits do not necessarily have to be the same.
 また、第1のスリット及び第2のスリットは、補強板本体の長手方向の第1の端部から第2の端部へ向けて、2つ以上ずつ交互に配置してもよい。また、第1のスリット及び第2のスリットは、必ずしも同数ずつ交互に配置しなくてもよい。 Moreover, two or more first slits and second slits may be alternately arranged from the first end to the second end in the longitudinal direction of the reinforcing plate body. Further, the first slits and the second slits do not necessarily have to be alternately arranged by the same number.
 また、被補強部材は、パイプではなく、中空部を持たない部材であってもよい。 Also, the member to be reinforced may be a member having no hollow portion instead of a pipe.
 また、被補強部材は、梁及び柱以外の部材、例えばリブであってもよい。 The member to be reinforced may be a member other than a beam and a pillar, for example, a rib.
 また、被補強部材の材料は、アルミニウム合金に限定されない。 Also, the material of the reinforced member is not limited to the aluminum alloy.
 また、実施の形態1では、回転砥石を用いた研削加工により第1及び第2のスリットを形成したが、加工方法はこれに限定されない。例えば、切削加工、又はウォータージェット加工でも、第1及び第2のスリットを生産性高く形成することができる。 Further, in the first embodiment, the first and second slits are formed by the grinding process using the rotary grindstone, but the processing method is not limited to this. For example, the first and second slits can be formed with high productivity by cutting or water jet processing.
 また、被補強部材は、ホーム柵の部材に限定されず、この発明の炭素繊維強化プラスチック製補強板は、あらゆる用途に適用できる。 Also, the member to be reinforced is not limited to the member of the home fence, and the carbon fiber reinforced plastic reinforcing plate of the present invention can be applied to all purposes.
 1 炭素繊維強化プラスチック製補強板、2 被補強部材、3 接着剤、4 補強板本体、4a 第1のスリット、4b 第2のスリット、5 炭素繊維、6 樹脂、13 中間体、25 回転砥石、31,41 フレーム、32,42 ホームドア。 1 carbon fiber reinforced plastic reinforcing plate, 2 reinforced member, 3 adhesive, 4 reinforcing plate body, 4a first slit, 4b second slit, 5 carbon fiber, 6 resin, 13 intermediate, 25 rotating whetstone, 31, 41 frame, 32, 42 platform door.

Claims (11)

  1.  複数の炭素繊維と樹脂とを含み、少なくとも一部の前記炭素繊維が長手方向に沿って配置されている補強板本体
     を備え、
     前記補強板本体には、前記炭素繊維と前記樹脂との両方を分断する複数のスリットが設けられており、
     前記複数のスリットは、
     前記補強板本体の幅方向の第1の端部から幅方向の中央部までの範囲に設けられている複数の第1のスリットと、
     前記第1のスリットに対して間隔をおいて、前記補強板本体の幅方向の第2の端部から幅方向の中央部までの範囲に設けられている複数の第2のスリットと
     を含んでいる炭素繊維強化プラスチック製補強板。
    A reinforcing plate body including a plurality of carbon fibers and a resin, wherein at least a part of the carbon fibers is arranged along the longitudinal direction,
    The reinforcing plate body is provided with a plurality of slits that divide both the carbon fiber and the resin,
    The plurality of slits,
    A plurality of first slits provided in a range from the first end in the width direction of the reinforcing plate body to the central portion in the width direction;
    A plurality of second slits provided at intervals from the first slit in the widthwise second end of the reinforcing plate body to the widthwise central portion. Reinforcing plate made of carbon fiber reinforced plastic.
  2.  前記第1のスリット及び前記第2のスリットは、前記補強板本体の長手方向の第1の端部から第2の端部へ向けて、交互に配置されている請求項1記載の炭素繊維強化プラスチック製補強板。 The carbon fiber reinforced according to claim 1, wherein the first slits and the second slits are alternately arranged from a first end portion in a longitudinal direction of the reinforcing plate body toward a second end portion. Reinforcement plate made of plastic.
  3.  前記複数の第1のスリットは、前記補強板本体の長手方向に対して、同じ方向へ傾斜しており、
     前記複数の第2のスリットは、前記補強板本体の長手方向に対して、前記第1のスリットとは反対側へ傾斜している請求項1又は請求項2に記載の炭素繊維強化プラスチック製補強板。
    The plurality of first slits are inclined in the same direction with respect to the longitudinal direction of the reinforcing plate body,
    The carbon fiber reinforced plastic reinforcement according to claim 1 or 2, wherein the plurality of second slits are inclined to a side opposite to the first slits with respect to a longitudinal direction of the reinforcing plate body. Board.
  4.  前記複数の第2のスリットは、前記補強板本体の長手方向に対して、前記複数の第1のスリットと同じ角度だけ前記複数の第1のスリットとは反対側へ傾斜しており、
     前記複数の第1のスリット及び前記複数の第2のスリットは、前記補強板本体の長手方向に等ピッチで配置されている請求項3記載の炭素繊維強化プラスチック製補強板。
    The plurality of second slits are inclined to the side opposite to the plurality of first slits by the same angle as the plurality of first slits with respect to the longitudinal direction of the reinforcing plate body,
    The carbon fiber reinforced plastic reinforcing plate according to claim 3, wherein the plurality of first slits and the plurality of second slits are arranged at equal pitches in a longitudinal direction of the reinforcing plate body.
  5.  前記補強板本体の幅をw、前記補強板本体の長手方向に対する各前記第1のスリットの傾斜角度をθ、各前記第1及び第2のスリットの幅をt、前記補強板本体の長手方向の前記第1及び第2のスリットのピッチをlとしたとき、
     (w-t×cosθ)/l≦tanθ≦(w+t×cosθ)/l
     を満たしている請求項4記載の炭素繊維強化プラスチック製補強板。
    The width of the reinforcing plate body is w, the inclination angle of each of the first slits with respect to the longitudinal direction of the reinforcing plate body is θ, the width of each of the first and second slits is t, and the longitudinal direction of the reinforcing plate body is When the pitch of the first and second slits of is
    (W−t×cos θ)/l≦tan θ≦(w+t×cos θ)/l
    The carbon fiber reinforced plastic reinforcing plate according to claim 4, wherein
  6.  前記補強板本体の長手方向の前記第1及び第2のスリットのピッチは、100mm以上、250mm以下である請求項1から請求項5までのいずれか1項に記載の炭素繊維強化プラスチック製補強板。 The carbon fiber reinforced plastic reinforcing plate according to any one of claims 1 to 5, wherein a pitch of the first and second slits in the longitudinal direction of the reinforcing plate main body is 100 mm or more and 250 mm or less. ..
  7.  請求項1から請求項6までのいずれか1項に記載の炭素繊維強化プラスチック製補強板、
     被補強部材、及び
     前記炭素繊維強化プラスチック製補強板を前記被補強部材に接着している接着剤
     を備えている補強板付き部材。
    A carbon fiber reinforced plastic reinforcing plate according to any one of claims 1 to 6,
    A member with a reinforcing plate, comprising: a member to be reinforced; and an adhesive that bonds the carbon fiber reinforced plastic reinforcing plate to the member to be reinforced.
  8.  前記接着剤は、アクリル系接着剤又はエポキシ系接着剤であり、
     前記炭素繊維は、ピッチ系炭素繊維であり、
     前記炭素繊維の縦弾性率は、400GPa以上、900GPa以下である請求項7記載の補強板付き部材。
    The adhesive is an acrylic adhesive or an epoxy adhesive,
    The carbon fiber is a pitch-based carbon fiber,
    The member with a reinforcing plate according to claim 7, wherein a longitudinal elastic modulus of the carbon fiber is 400 GPa or more and 900 GPa or less.
  9.  フレーム、及び
     前記フレームに対して移動可能なホームドア
     を備え、
     前記フレーム及び前記ホームドアの少なくとも一部に、請求項7又は請求項8に記載の補強板付き部材が用いられているホーム柵。
    A frame, and a platform door movable with respect to the frame,
    A home fence in which the member with a reinforcing plate according to claim 7 is used in at least a part of the frame and the platform door.
  10.  複数の炭素繊維と樹脂とを含み、少なくとも一部の前記炭素繊維が長手方向に沿って配置されている中間体を成形する工程と、
     前記中間体の幅方向の第1の端部から幅方向の中央部までの範囲に複数の第1のスリットを設けるとともに、前記第1のスリットに対して間隔をおいて、前記中間体の幅方向の第2の端部から幅方向の中央部までの範囲に、複数の第2のスリットを設ける工程と
     を含む炭素繊維強化プラスチック製補強板の製造方法。
    A step of molding an intermediate body containing a plurality of carbon fibers and a resin, wherein at least a part of the carbon fibers is arranged along the longitudinal direction;
    A plurality of first slits are provided in a range from a first end in the width direction of the intermediate body to a central portion in the width direction, and the width of the intermediate body is spaced from the first slits. And a step of providing a plurality of second slits in the range from the second end in the direction to the center in the width direction.
  11.  前記中間体に対して回転砥石を相対的に移動させることにより、前記中間体に前記第1及び第2のスリットを設ける請求項10記載の炭素繊維強化プラスチック製補強板の製造方法。 11. The method for manufacturing a carbon fiber reinforced plastic reinforcing plate according to claim 10, wherein the first and second slits are provided in the intermediate body by moving a rotary grindstone relative to the intermediate body.
PCT/JP2019/000457 2019-01-10 2019-01-10 Carbon fiber-reinforced plastic reinforcement plate, reinforcement plate-attached member, platform fence, and method for producing carbon fiber-reinforced plastic reinforcement plate WO2020144793A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019523123A JP6567231B1 (en) 2019-01-10 2019-01-10 Carbon fiber reinforced plastic reinforcing plate, member with reinforcing plate, home fence, and manufacturing method of carbon fiber reinforced plastic reinforcing plate
CN201980066641.8A CN113272118B (en) 2019-01-10 2019-01-10 Reinforcing plate made of carbon fiber reinforced plastic, member with reinforcing plate, platform fence and manufacturing method of reinforcing plate
PCT/JP2019/000457 WO2020144793A1 (en) 2019-01-10 2019-01-10 Carbon fiber-reinforced plastic reinforcement plate, reinforcement plate-attached member, platform fence, and method for producing carbon fiber-reinforced plastic reinforcement plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000457 WO2020144793A1 (en) 2019-01-10 2019-01-10 Carbon fiber-reinforced plastic reinforcement plate, reinforcement plate-attached member, platform fence, and method for producing carbon fiber-reinforced plastic reinforcement plate

Publications (1)

Publication Number Publication Date
WO2020144793A1 true WO2020144793A1 (en) 2020-07-16

Family

ID=67766614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000457 WO2020144793A1 (en) 2019-01-10 2019-01-10 Carbon fiber-reinforced plastic reinforcement plate, reinforcement plate-attached member, platform fence, and method for producing carbon fiber-reinforced plastic reinforcement plate

Country Status (3)

Country Link
JP (1) JP6567231B1 (en)
CN (1) CN113272118B (en)
WO (1) WO2020144793A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254227A (en) * 1996-03-26 1997-09-30 Nitto Boseki Co Ltd Thermoplastic resin-covered reinforcing fiber bundle and its preparation
JPH11165262A (en) * 1997-12-08 1999-06-22 Noritake Diamond Ind Co Ltd Cup shaped grinding wheel
WO2008099670A1 (en) * 2007-02-02 2008-08-21 Toray Industries, Inc. Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP2014097736A (en) * 2012-11-15 2014-05-29 Toho Tenax Co Ltd Platform door device
WO2014142061A1 (en) * 2013-03-11 2014-09-18 三菱レイヨン株式会社 Layered substrate and method for manufacturing same
JP2016003257A (en) * 2014-06-16 2016-01-12 東レ株式会社 Fiber-reinforced resin sheet, integrally molded product and method for producing them
US20160297167A1 (en) * 2015-04-13 2016-10-13 Howard E. Crawford, III Fiber-reinforced composite material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES178135Y (en) * 1972-02-23 1973-05-01 Moreno Borras PIECE FOR THE FORMATION OF WOODEN FLOORS.
US5721036A (en) * 1993-03-24 1998-02-24 Tingley; Daniel A. Aligned fiber reinforcement panel and method for making the same for use in structural wood members
US5362545A (en) * 1993-03-24 1994-11-08 Tingley Daniel A Aligned fiber reinforcement panel for structural wood members
GB2461872B (en) * 2008-07-14 2012-04-11 Innovation Ltd Const Concrete matrix structure
CN202202531U (en) * 2010-08-03 2012-04-25 张家铭 Groove-type solid wood intermediate plate and composite plate provided with same
JP2014104641A (en) * 2012-11-27 2014-06-09 Mitsubishi Rayon Co Ltd Laminate substrate and fiber-reinforced composite material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254227A (en) * 1996-03-26 1997-09-30 Nitto Boseki Co Ltd Thermoplastic resin-covered reinforcing fiber bundle and its preparation
JPH11165262A (en) * 1997-12-08 1999-06-22 Noritake Diamond Ind Co Ltd Cup shaped grinding wheel
WO2008099670A1 (en) * 2007-02-02 2008-08-21 Toray Industries, Inc. Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP2014097736A (en) * 2012-11-15 2014-05-29 Toho Tenax Co Ltd Platform door device
WO2014142061A1 (en) * 2013-03-11 2014-09-18 三菱レイヨン株式会社 Layered substrate and method for manufacturing same
JP2016003257A (en) * 2014-06-16 2016-01-12 東レ株式会社 Fiber-reinforced resin sheet, integrally molded product and method for producing them
US20160297167A1 (en) * 2015-04-13 2016-10-13 Howard E. Crawford, III Fiber-reinforced composite material

Also Published As

Publication number Publication date
CN113272118A (en) 2021-08-17
CN113272118B (en) 2023-01-17
JP6567231B1 (en) 2019-08-28
JPWO2020144793A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
JP4981801B2 (en) Guide device for apparatus for manufacturing fiber preforms by TFP process for composite parts
US8205654B2 (en) Composite laminated structure reinforced by inserting pins, a method and a apparatus for making the same and a method for making the apparatus
EP1685947B1 (en) Method for the manufacture of FRP composites
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
JP6220162B2 (en) Apparatus and method for manufacturing fiber reinforced plastic structure
CN112313055B (en) Prepreg and method for producing same, fiber-reinforced composite molded article and method for producing same, and method for producing preform
US11292160B2 (en) Bladder that changes stiffness based on temperature effects for manufacture of composite components
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
JP2008273176A (en) Manufacturing method for fiber-reinforced plastic
WO2020144793A1 (en) Carbon fiber-reinforced plastic reinforcement plate, reinforcement plate-attached member, platform fence, and method for producing carbon fiber-reinforced plastic reinforcement plate
US20170225383A1 (en) Method of manufacturing shaft-shape composite member
US11027534B2 (en) Fiber composite material and manufacturing method thereof
JP5028797B2 (en) Fiber reinforced plastic structure
JP2012167252A (en) Method for producing narrow prepreg, and fiber-reinforced plastic
EP3572201B1 (en) Method for manufacturing fiber-reinforced plastic
KR100730740B1 (en) The beam manufacturing method of the large-sized stage
US20040121138A1 (en) Composite panel
JP2004034592A (en) Method for manufacturing fiber reinforced composite material and fiber structure
JP7049104B2 (en) Manufacturing method of fiber reinforced plastic, fiber reinforced plastic structure and fiber reinforced plastic
KR102200964B1 (en) Fiber reinforced composite material and methode for manufacturing the same
JP2011251446A (en) Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure
JP2011251444A (en) Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure
JP2011251443A (en) Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure
JP2021134305A (en) Method for manufacturing fiber-reinforced base material, fiber-reinforced base material, and method for manufacturing shutter blade

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019523123

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908453

Country of ref document: EP

Kind code of ref document: A1