JP2011251443A - Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure - Google Patents

Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure Download PDF

Info

Publication number
JP2011251443A
JP2011251443A JP2010125841A JP2010125841A JP2011251443A JP 2011251443 A JP2011251443 A JP 2011251443A JP 2010125841 A JP2010125841 A JP 2010125841A JP 2010125841 A JP2010125841 A JP 2010125841A JP 2011251443 A JP2011251443 A JP 2011251443A
Authority
JP
Japan
Prior art keywords
fiber bundle
fiber
gripping
gripping mechanism
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010125841A
Other languages
Japanese (ja)
Inventor
Tsukasa Arai
司 新井
Jiro Sadanobu
治朗 定延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2010125841A priority Critical patent/JP2011251443A/en
Publication of JP2011251443A publication Critical patent/JP2011251443A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To precisely provide a composite material structure enhanced in strength and rigidity with high productivity.SOLUTION: The continuous fiber composite material structure is composed of continuous fiber bundles arranged in a state substantially parallel to each other and thermoplastic resin and has a twist. The structure includes a part having a twist ratio of 1/(20×d) (where d is the width of the structure in a direction crossing the orientation direction of continuous fibers at a right angle before the twist is imparted) or higher (A), and (B) and (A) and satisfying that the sum total of the twist angles of the part having the twist ratio of 1/(20×d) or higher is 60° or higher (B) with respect to a skeletal line connecting centers in the width direction of the structure in a direction crossing the orientation direction of the continuous fiber bundles at a right angle without buckling the continuous fiber bundles.

Description

本発明は捩れを有する連続繊維複合材料構造体およびその製造方法、ならびにそれを用いた複合成形体に関するものである。   The present invention relates to a continuous fiber composite material structure having a twist, a method for producing the structure, and a composite molded body using the structure.

近年、車両用パネルを含む多くの場面で軽量化の観点から樹脂製パネルが多く提案されている。樹脂製パネルの剛性を高める為の手段として樹脂を肉厚にしたり強化材を大量に用いたりすることは本来の目的である軽量化を損なう。これを克服する方法として、強度・剛性に優れる連続繊維をテープ状あるいは板状に成型して、部品への入力が大きい部分に局所的に配置する局所補強構造が提案されている。実際のパネル部品は意匠性や締結成立性のために一般には3次元の形状を持つ場合が多く、それに対する局所補強構造体は部品の面に沿った形状であることでより有効に補強効果を発現する。そのためにはテープ状・板状の構造体が被補強体の局所的な捩れや特定の曲率で成型されていることが必要であるが、ガラス繊維や炭素繊維のような塑性変形をしない、伸びない繊維を補強繊維とする場合には、テープ状・板状の構造体では、一般にしわや座屈の発生なしに捩じれた構造を作ることは困難であった。捩じれた構造や曲がった構造を持つ補強構造体の製造方法として特許文献1に挙げたようにドライファイバーを湾曲したモールドの周方向に連続して配置してドライプリフォームを作製し、レジン・トランスファー・モールディング(RTM)法などにより樹脂含浸を行い成形する方法があるが、ドライプリフォーミングは手作業で行われまた熱硬化性樹脂の反応完結に長時間が必要であることから、工業的な量産には不向きであった。   In recent years, many resin panels have been proposed from the viewpoint of weight reduction in many scenes including vehicle panels. Increasing the thickness of the resin or using a large amount of reinforcing material as a means for increasing the rigidity of the resin panel impairs the original purpose of weight reduction. As a method for overcoming this, a local reinforcing structure has been proposed in which continuous fibers excellent in strength and rigidity are formed into a tape shape or a plate shape and are locally disposed in a portion where input to a part is large. Actual panel parts generally have a three-dimensional shape due to their design and fastening feasibility, and the local reinforcement structure for the panel part has a shape along the surface of the part, so that the reinforcement effect is more effective. To express. For that purpose, it is necessary that the tape-like / plate-like structure is molded with local twist or specific curvature of the reinforced body, but it does not undergo plastic deformation like glass fiber or carbon fiber, and stretches. In the case of using a non-reinforcing fiber as a reinforcing fiber, it is generally difficult to produce a twisted structure without wrinkles or buckling in a tape-like / plate-like structure. As a manufacturing method of a reinforcing structure having a twisted structure or a bent structure, a dry preform is continuously arranged in a circumferential direction of a curved mold as described in Patent Document 1, and a resin, transfer, There is a method of molding by impregnating resin by molding (RTM) method, etc., but dry preforming is done manually and it takes a long time to complete reaction of thermosetting resin. Was unsuitable.

特許第4309748号公報Japanese Patent No. 4309748

本発明の目的は連続繊維と熱可塑性樹脂からなる連続繊維複合材料構造体であって、繊維配向方向に捩れを持ち、強度および剛性の高い連続繊維複合材料構造体を精度良く高い生産性で提供することにある。本発明のほかの目的として、連続繊維複合材料構造体を補強構造体として、樹脂成型体と複合することにより、軽量化及び剛性に優れた複合成形体を提供することがある。   An object of the present invention is a continuous fiber composite material structure composed of continuous fibers and a thermoplastic resin, and provides a continuous fiber composite material structure having high strength and rigidity with twist in the fiber orientation direction with high productivity. There is to do. Another object of the present invention is to provide a composite molded body excellent in weight reduction and rigidity by combining a continuous fiber composite material structure as a reinforcing structure with a resin molded body.

本発明は捩れ、さらには曲率を持った連続繊維複合材料構造体を実現するものである。
すなわち、本発明は互いに実質的に平行に配列した連続繊維束と熱可塑性樹脂とからなる捩れを有する構造体であって、連続繊維束は座屈する事無く、連続繊維束の配向方向に直行する方向における構造体の幅方向の中心部を結んだ骨格線について、下記(A)および(B)
(A)1/(20×d)以上の捩率(rad/mm)を有する部分を含み、
(B)1/(20×d)以上の捩率(rad/mm)を有する部分の捩れ角の合計が60度以上である
(dは捩れを付与する前の、連続繊維の配向方向に直行する方向における構造体の幅、mm)
を満足することを特徴とする連続繊維複合材料構造体、およびその製造方法、該連続繊維複合材料構造体を補強構造体として複合してなる複合成形体である。
さらには捩れおよび曲率を有する連続繊維複合材料構造体、およびその製造方法、該連続繊維複合材料構造体を補強構造体として複合してなる複合成形体である。
The present invention realizes a continuous fiber composite material structure having a twist and a curvature.
That is, the present invention is a structure having a twist composed of a continuous fiber bundle and a thermoplastic resin arranged substantially parallel to each other, and the continuous fiber bundle goes straight in the orientation direction of the continuous fiber bundle without buckling. (A) and (B) below for the skeleton line connecting the center of the width direction of the structure in the direction
(A) including a portion having a torsion (rad / mm) of 1 / (20 × d) or more,
(B) The total twist angle of the portion having a twist rate (rad / mm) of 1 / (20 × d) or more is 60 degrees or more (d is perpendicular to the orientation direction of the continuous fiber before imparting twist. Width of structure in direction
Satisfying the requirements, a continuous fiber composite material structure, a method for producing the continuous fiber composite material structure, and a composite molded body obtained by combining the continuous fiber composite material structure as a reinforcing structure.
Further, there are a continuous fiber composite material structure having twist and curvature, a manufacturing method thereof, and a composite molded body formed by combining the continuous fiber composite material structure as a reinforcing structure.

本発明により繊維方向に捩れ、さらには曲率を持った強度および剛性の高い連続繊維と熱可塑性樹脂からなる連続繊維複合材料構造体が精度良く経済的に提供できる。また、該連続繊維複合材料構造体を用いることで軽量化及び剛性に優れた複合成形体を提供でき、バックドア、サイドドア、フェンダー、フロントフード、ルーフ、またはフロアパン等の軽量化及び剛性に優れた車両用パネルが提供できる。また、これらの構造体は熱可塑性樹脂から成るため、高い生産性で製造することができる。   According to the present invention, it is possible to provide a continuous fiber composite material structure made of a continuous fiber and a thermoplastic resin, which is twisted in the fiber direction and has a curvature and high strength and rigidity, with high accuracy and economically. In addition, by using the continuous fiber composite material structure, it is possible to provide a composite molded body excellent in weight reduction and rigidity, and to reduce the weight and rigidity of a back door, a side door, a fender, a front hood, a roof, or a floor pan. An excellent vehicle panel can be provided. Further, since these structures are made of a thermoplastic resin, they can be manufactured with high productivity.

捩れを有する構造体例の概略図Schematic of example structure with twist 捩れおよび特定の曲率を有する構造体例の概略図Schematic of example structure with twist and specific curvature 本発明の製造方法において捩れを付与する機構の一例を示す概略図Schematic which shows an example of the mechanism which provides twist in the manufacturing method of this invention. 本発明の製造方法において捩れ及び曲率を付与する機構の一例を示す概略図Schematic which shows an example of the mechanism which provides a twist and a curvature in the manufacturing method of this invention. 骨格線の分割及び各角度を示す図Diagram showing division of skeletal lines and angles 捩れ付与工程の各手順を示す簡易モデル図Simplified model diagram showing each step of twisting process 複合成形体の一例を示す概略図Schematic showing an example of a composite molded body 複合成形体の一例を示す概略図Schematic showing an example of a composite molded body

以下、本発明を詳細に説明する。
本発明は連続繊維と熱可塑性樹脂からなる、捩れ、さらには曲率を持った連続繊維複合材料構造体ならびにその製造方法およびそれを用いた軽量化及び剛性に優れた連続繊維複合成形体に関するものである。
Hereinafter, the present invention will be described in detail.
The present invention relates to a continuous fiber composite material structure comprising continuous fibers and a thermoplastic resin, having a twist, and further having a curvature, a manufacturing method thereof, and a continuous fiber composite molded body excellent in weight reduction and rigidity using the same. is there.

[連続繊維複合材料構造体]
本発明は、互いに実質的に平行に配列した連続繊維と熱可塑性樹脂からなり、捩れを有する構造体である。捩れを付与する前の、連続繊維の配向方向に直行する方向における構造体の幅をd(単位mm)で表す。構造体の幅が変化する場合には構造体の長手方向に渡って幅を平均したものをdとする。
[Continuous fiber composite material structure]
The present invention is a structure having a twist made of continuous fibers and a thermoplastic resin arranged substantially parallel to each other. The width of the structure in the direction perpendicular to the orientation direction of the continuous fiber before the twist is given is represented by d (unit: mm). When the width of the structure changes, the average of the width over the longitudinal direction of the structure is defined as d.

連続繊維束は座屈する事無く、構造体の幅方向の中心部を結んだ骨格線は特定の捩れを有する部分を含むことを特徴とする。特定の捩れとは、下記(A)および(B)
(A)1/(20×d)以上の捩率(rad/mm)を有する部分を含み、
(B)1/(20×d)以上の捩率(rad/mm)を有する部分の捩れ角の合計が60度以上である
を満足する。
The continuous fiber bundle is characterized in that the skeleton line connecting the central portions in the width direction of the structure includes a portion having a specific twist without buckling. Specific twists are the following (A) and (B)
(A) including a portion having a torsion (rad / mm) of 1 / (20 × d) or more,
(B) The total twist angle of the portion having a torsion (rad / mm) of 1 / (20 × d) or more is satisfied to be 60 degrees or more.

本発明において、連続繊維が互いに実質的に平行とは構造体を構成する連続繊維の90%以上が構造体の骨格線に対して45度以下の角度で配置されていることを言う。本発明における座屈とは構造体が局所的に不連続に折れ曲がったり、皺になっている状態である。   In the present invention, continuous fibers are substantially parallel to each other means that 90% or more of the continuous fibers constituting the structure are arranged at an angle of 45 degrees or less with respect to the skeleton line of the structure. The buckling in the present invention is a state in which the structure is locally discontinuously bent or wrinkled.

本発明における捩れを有する連続繊維複合材料構造体の模式図を図1に示す。捩率は1/(20×d)以上であり、構造体全体における捩れ角の合計が60度以上であることを特徴とする。捩率の範囲制限は特にないが、具体的には1/(20×d)以上、1/(0.1×d)以下である。捩率はより好ましくは1/(20×d)以上、1/d以下である。   A schematic view of a continuous fiber composite material structure having twist in the present invention is shown in FIG. The twist rate is 1 / (20 × d) or more, and the total twist angle in the entire structure is 60 degrees or more. Although there is no particular limitation on the torsion range, specifically, it is 1 / (20 × d) or more and 1 / (0.1 × d) or less. The twist is more preferably 1 / (20 × d) or more and 1 / d or less.

捩れ角の合計の範囲制限は特にないが、具体的には60度以上720度以下である。より好ましくは60度以上360度以下である。1つの捩れ角は好ましくは60〜120度、より好ましくは60〜90度である。連続繊維複合材料構造体中の捩れを有する部位の個数は好ましくは1〜6、より好ましくは1〜4である。   Although there is no particular limitation on the total range of twist angles, specifically, it is 60 degrees or more and 720 degrees or less. More preferably, it is 60 degrees or more and 360 degrees or less. One twist angle is preferably 60 to 120 degrees, more preferably 60 to 90 degrees. The number of portions having twist in the continuous fiber composite material structure is preferably 1 to 6, more preferably 1 to 4.

本発明の連続繊維複合材料構造体はさらには特定の曲率を有することも好ましい。本発明において特定の曲率とは、構造体の中心部を結んだ骨格線が、さらに下記(C)および(D)
(C)1/(20×d)以上の曲率(rad/mm)を有する部分を含み、
(D)1/(20×d)以上の曲率(rad/mm)を有する部分の中心角の合計が30度以上である
を満足することをいう。本発明における捩れおよび特定の曲率を有する連続繊維複合材料構造体の模式図を図2に示す。曲率の範囲がこれより外れると連続繊維複合材料構造体中の連続繊維が折れてしまうことがある。好ましい曲率は、具体的には1/(20×d)以上、1/(0.01×d)以下である。曲率はより好ましくは1/(20×d)以上、1/(0.1×d)以下である。
The continuous fiber composite material structure of the present invention preferably further has a specific curvature. In the present invention, the specific curvature means that the skeleton line connecting the center of the structure is further represented by the following (C) and (D)
(C) including a portion having a curvature (rad / mm) of 1 / (20 × d) or more,
(D) Satisfies that the sum of the central angles of the portions having a curvature (rad / mm) of 1 / (20 × d) or more is 30 degrees or more. FIG. 2 shows a schematic diagram of a continuous fiber composite material structure having twist and specific curvature in the present invention. If the curvature range is out of this range, the continuous fibers in the continuous fiber composite material structure may break. A preferable curvature is specifically 1 / (20 × d) or more and 1 / (0.01 × d) or less. The curvature is more preferably 1 / (20 × d) or more and 1 / (0.1 × d) or less.

曲率を有する部分の中心角の合計の制限は特にないが、具体的には30度以上720度以下である。より好ましくは30度以上360度以下である。1つの曲率を有する部分の中心角は好ましくは30〜120度、より好ましくは30〜90度である。連続繊維複合材料構造体中の特定の曲率を有する部位は好ましくは1〜6、より好ましくは1〜4である。
本発明の複合材料構造体の幅と長さは後述するような各種用途に合わせて適宜選択される。
Although there is no particular limitation on the total central angle of the portion having the curvature, specifically, it is 30 degrees or more and 720 degrees or less. More preferably, it is 30 degrees or more and 360 degrees or less. The central angle of the portion having one curvature is preferably 30 to 120 degrees, more preferably 30 to 90 degrees. The site | part which has a specific curvature in a continuous fiber composite material structure becomes like this. Preferably it is 1-6, More preferably, it is 1-4.
The width and length of the composite material structure of the present invention are appropriately selected according to various uses as described later.

[連続繊維について]
本発明における連続繊維として、天然繊維もしくは化学繊維を用いる事が出来る。具体的には、綿、麻、ジュート、ウール、絹、ポリ乳酸繊維、ポリアミド繊維、ポリエステル繊維、ポリオレフィン繊維、アクリル繊維、パラ系アラミド繊維、メタ系アラミド繊維、ボロン繊維、アゾール繊維、アルミナ繊維、ガラス繊維、炭素繊維などが挙げられる。
[About continuous fibers]
Natural fibers or chemical fibers can be used as continuous fibers in the present invention. Specifically, cotton, hemp, jute, wool, silk, polylactic acid fiber, polyamide fiber, polyester fiber, polyolefin fiber, acrylic fiber, para-aramid fiber, meta-aramid fiber, boron fiber, azole fiber, alumina fiber, Examples thereof include glass fiber and carbon fiber.

連続繊維束は比弾性率2.5×108cm以上の繊維からなることが好ましい。さらには比弾性率5.0×108cm以上の繊維からなることが好ましい。ここで比弾性率は次式で計算する。
比弾性率(cm)=繊維のヤング率(GPa)/ 繊維の密度(g/cm3)/9.8×10
The continuous fiber bundle is preferably made of fibers having a specific elastic modulus of 2.5 × 10 8 cm or more. Further, it is preferably made of fibers having a specific elastic modulus of 5.0 × 10 8 cm or more. Here, the specific elastic modulus is calculated by the following equation.
Specific modulus (cm) = Young's modulus of fiber (GPa) / Fiber density (g / cm 3 ) /9.8×10 8

連続繊維束の繊維径についてとくに制限はないが、好ましくは1μmから20μmである。
連続繊維複合材料構造体中、末端を除き連続繊維は切断されることなく複合されている。
連続繊維複合材料構造体は幅方向に曲率を持たない形状も、曲率をもつ形状もとることができる。
The fiber diameter of the continuous fiber bundle is not particularly limited, but is preferably 1 μm to 20 μm.
In the continuous fiber composite material structure, the continuous fibers are combined without being cut except at the ends.
The continuous fiber composite material structure can take a shape having no curvature in the width direction.

[マトリクス樹脂について]
連続繊維複合材料構造体を構成するマトリクスとしては、熱可塑性樹脂およびそれらの組成物である。具体的には、ポリカーボネート樹脂、ポリエステル樹脂、ポリオレフィン系樹脂、アクリル樹脂、ポリ乳酸、ポリアミド樹脂、ASA樹脂、ABS樹脂、ポリエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキサイド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリアミドイミド樹脂等が挙げられる。なかでも好ましくは、ポリカーボネート樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂である。
該連続繊維複合材料構造体中の連続繊維の含有量は、樹脂100体積部に対し10〜300体積部が好ましい。さらには40〜150体積部が好ましい。
[Matrix resin]
As a matrix which comprises a continuous fiber composite material structure, they are a thermoplastic resin and those compositions. Specifically, polycarbonate resin, polyester resin, polyolefin resin, acrylic resin, polylactic acid, polyamide resin, ASA resin, ABS resin, polyether ketone resin, polyether imide resin, polyphenylene ether resin, polyphenylene oxide resin, polysulfone resin , Polyethersulfone resin, polyetherimide resin, polyetheretherketone resin, polyphenylene sulfide resin, polyamideimide resin and the like. Of these, polycarbonate resin, polyester resin, polyolefin resin, and polyamide resin are preferable.
The continuous fiber content in the continuous fiber composite material structure is preferably 10 to 300 parts by volume with respect to 100 parts by volume of the resin. Furthermore, 40-150 volume parts is preferable.

[連続繊維複合材料構造体の製造方法]
本発明の連続繊維複合材料構造体の好ましい製造方法について述べる。本発明は該製造方法も包含する。本発明方法により、精度良く、効率的に、安定して製造することが可能である。
[Production method of continuous fiber composite material structure]
A preferred method for producing the continuous fiber composite material structure of the present invention will be described. The present invention also includes the production method. According to the method of the present invention, it is possible to manufacture with high accuracy, efficiency and stability.

本発明方法は(1)個別の繊維巻き出し装置から、熱可塑性樹脂を含浸した繊維、もしくは熱可塑性樹脂と連続繊維が混合された繊維を複数本引き出して平行に引き揃え繊維束を得る工程と、(2)引きそろえた繊維束をそれと直行する方向に把持する繊維束把持機構により把持する工程と、(3)繊維束を把持した状態で繊維束把持機構を、一定量並進移動させ、かつ設定された捩り回転させることで繊維束内の繊維各部の経路長を調整する捩り工程と、(4)繊維束把持機構が繊維束を把持する部分で、繊維束を幅方向に固定する工程と、(5)固定した繊維束を加圧し所定の幅の構造体に成形する工程を有する連続繊維複合材料構造体の製造方法である。   The method of the present invention includes (1) a step of drawing a plurality of fibers impregnated with a thermoplastic resin or a mixture of thermoplastic resin and continuous fibers from individual fiber unwinding devices to obtain a bundle of fibers that are aligned in parallel; (2) a step of gripping the aligned fiber bundle by a fiber bundle gripping mechanism that grips the aligned fiber bundle in a direction perpendicular thereto; and (3) a translation of the fiber bundle gripping mechanism in a state where the fiber bundle is gripped, and A twisting step of adjusting the path length of each part of the fiber in the fiber bundle by rotating the set twist; and (4) a step of fixing the fiber bundle in the width direction at a portion where the fiber bundle gripping mechanism grips the fiber bundle; (5) A method for producing a continuous fiber composite material structure including a step of pressurizing a fixed fiber bundle to form a structure having a predetermined width.

以下各工程について述べる。工程(1)は個別の繊維巻き出し装置から熱可塑性樹脂を含浸した連続繊維束、もしくは熱可塑性樹脂と連続繊維が混合された繊維束を複数本引き出して平行に引き揃える工程である。ここで熱可塑性樹脂を含浸した連続繊維束を用いる場合、上述したとおり複合材料構造体中の連続繊維の好ましい含有量を満たすように含浸させた連続繊維束を用いる。
熱可塑性樹脂と連続繊維が混合された繊維束を用いる場合も同様に、複合材料構造体中の連続繊維の好ましい含有量を満たすよう混合した繊維束を用いる。
Each step will be described below. Step (1) is a step of drawing out a plurality of continuous fiber bundles impregnated with thermoplastic resin from individual fiber unwinding devices or a plurality of fiber bundles in which thermoplastic resin and continuous fibers are mixed and aligning them in parallel. When the continuous fiber bundle impregnated with the thermoplastic resin is used here, the continuous fiber bundle impregnated so as to satisfy the preferable content of the continuous fibers in the composite material structure is used as described above.
Similarly, when using a fiber bundle in which a thermoplastic resin and continuous fibers are mixed, a fiber bundle mixed so as to satisfy a preferable content of continuous fibers in the composite material structure is used.

工程(2)は引きそろえた繊維束をそれと直行する方向に把持する繊維束把持機構を用いた把持工程である。ここで用いられる繊維把持機構はゴム板など摩擦係数の大きく柔軟性を持つ素材で形成される事が好ましい。把持部での繊維のすべり及び繊維の損傷を防ぐ事が出来るからである。   Step (2) is a gripping step using a fiber bundle gripping mechanism that grips the aligned fiber bundles in a direction perpendicular thereto. The fiber gripping mechanism used here is preferably formed of a material having a large friction coefficient and flexibility such as a rubber plate. This is because it is possible to prevent fiber slippage and fiber damage at the grip portion.

工程(3)は繊維束を把持した状態で繊維束把持機構を、一定量並進移動させ、かつ設定された捩り回転させることで繊維束内の繊維各部の経路長を調整し捩りを付与する工程である。ここで用いられる機構の一例を図3に示す。繊維把持機構で繊維束を把持し、中心が繊維束中点上に位置している環状のレール上を把持機構が移動することで捩り回転を行う。   In the step (3), the fiber bundle gripping mechanism is translated by a certain amount in a state where the fiber bundle is gripped, and the twisted rotation is set to adjust the path length of each part of the fiber in the fiber bundle and to apply the twist. It is. An example of the mechanism used here is shown in FIG. The fiber bundle is gripped by the fiber gripping mechanism, and the gripping mechanism moves on an annular rail whose center is located on the midpoint of the fiber bundle, thereby performing torsional rotation.

工程(4)は繊維束把持機構が繊維束を把持する部分で、繊維束を幅方向に固定する工程である。ここで用いられる繊維束を幅方向に固定する方法としては、熱溶着、超音波溶着、ホットメルト接着剤などの接着剤を用いての接着などが挙げられる。   Step (4) is a step in which the fiber bundle gripping mechanism grips the fiber bundle, and is a step of fixing the fiber bundle in the width direction. Examples of the method for fixing the fiber bundle used in the width direction include adhesion using an adhesive such as thermal welding, ultrasonic welding, and hot melt adhesive.

工程(5)は固定した繊維束を加圧し所定の幅の構造体に成形する工程である。加圧し、成形する方法としてホットプレス、加熱ローラーを用いたプレス、加熱機構とローラーによるプレスが挙げられる。   Step (5) is a step of pressing the fixed fiber bundle to form a structure having a predetermined width. Examples of the method of pressurizing and forming include a hot press, a press using a heating roller, and a press using a heating mechanism and a roller.

以下、前記工程(3)と(4)について好ましい手順(a)〜(e)について述べる。
手順(a)では形成しようとする連続繊維複合材料構造体の幅方向の中心線を結んだ曲線上に、d/10より短い間隔で分割する点を設け、構造体の一端末から別の端末に向かって0から順番に番号をつける。このとき末端にある点の番号をNとする。分割する間隔の制限は特にないが、具体的にはd/1000より長く、d/10より短いことが好ましい。より好ましくはd/500より長く、d/10より短い間隔とする。また、均等に分割しても良いし、直線を大きく分割しても良い。
Hereinafter, preferable procedures (a) to (e) will be described for the steps (3) and (4).
In step (a), on the curve connecting the center line in the width direction of the continuous fiber composite material structure to be formed, points to be divided at intervals shorter than d / 10 are provided, and one end of the structure is changed to another end. Number from 0 in order. At this time, N is the number of the point at the end. Although there is no restriction | limiting in particular in the space | interval which divides | segments, Specifically, it is preferable that it is longer than d / 1000 and shorter than d / 10. More preferably, the interval is longer than d / 500 and shorter than d / 10. Moreover, it may divide equally and a straight line may be divided | segmented largely.

手順(b)では第k-1番目の点と第k番目の点を結んだ線分をAとしその長さをB(k)とし、形成しようとする連続繊維複合材料構造体に関し、線分A上に立てた陪法線をDとし、法線Dk+1とDのなす角度をP(k)とする。図5に骨格線の分割及び各角度の説明を示す。 In step (b), a line segment connecting the (k−1) -th point and the k-th point is A k and its length is B (k). Let D k be the normal line raised on the minute A k , and let P (k) be the angle formed by the normal lines D k + 1 and D k . FIG. 5 shows the division of the skeleton line and the explanation of each angle.

手順(c)〜(e)の捩れ付与工程の各手順を図6に示す。捩れ付与工程では引きそろえた繊維の繊維方向と直交する方向を「把持方向」、繊維束把持部における繊維束の幅方向の中央部を「繊維束中点」、繊維方向と把持方向を含む面を「繊維束面」とするとき、繊維束把持位置で繊維束を繊維束把持機構で把持し(図中(I))、まずB(1)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ(図中(II))、次に繊維束面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度P(1)/2だけ回転させたのち(図中(III))、繊維束を幅方向に固定する(図中(IV))。   Each procedure of the twist provision process of procedure (c)-(e) is shown in FIG. In the twist imparting step, the direction perpendicular to the fiber direction of the aligned fibers is the “gripping direction”, the center of the fiber bundle width direction in the fiber bundle gripping portion is the “fiber bundle midpoint”, and the surface includes the fiber direction and the gripping direction Is the “fiber bundle surface”, the fiber bundle is gripped by the fiber bundle gripping mechanism at the fiber bundle gripping position ((I) in the figure), and the fiber gripping mechanism is first moved from the fiber bundle gripping position by the length of B (1). Next, the fiber bundle gripping mechanism is rotated by an angle P (1) / 2 around an axis that passes through the fiber bundle midpoint and goes straight in the gripping direction within the fiber bundle surface (II in the figure). After that ((III) in the figure), the fiber bundle is fixed in the width direction ((IV) in the figure).

手順(d)では繊維束把持機構から繊維束を解放し、繊維束把持機構を繊維把持位置に戻し、その位置で新たに繊維束を把持し(図中(V))、B(2)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ、次に繊維側面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度(P(1)+P(2))/2だけ回転させたのち、繊維束を幅方向に固定する。   In step (d), the fiber bundle is released from the fiber bundle gripping mechanism, the fiber bundle gripping mechanism is returned to the fiber gripping position, a new fiber bundle is gripped at that position ((V) in the figure), and B (2) The fiber gripping mechanism is translated from the fiber bundle gripping position by the length, and then the fiber bundle gripping mechanism is angled (P (1) + P) around an axis that goes straight in the gripping direction through the fiber bundle midpoint within the fiber side surface. (2) After rotating by / 2, the fiber bundle is fixed in the width direction.

手順(e)では手順(d)と同様の操作をさらにN−2回繰り返す。但し手順(d)の操作の後のm回目の操作においては、繊維束把持機構から繊維束を解放し、繊維束把持機構を繊維把持位置に戻し、その位置で新たに繊維束を把持し、B(m+2)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ、次に繊維側面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度(P(m+1)+P(m+2))/2だけ回転させたのち、繊維束を幅方向に固定するものとする。   In step (e), the same operation as in step (d) is repeated N-2 times. However, in the m-th operation after the operation of step (d), the fiber bundle is released from the fiber bundle gripping mechanism, the fiber bundle gripping mechanism is returned to the fiber gripping position, and the fiber bundle is newly gripped at that position. The fiber gripping mechanism is translated from the fiber bundle gripping position by the length of B (m + 2), and then the fiber bundle gripping mechanism is angled around an axis that passes through the fiber bundle midpoint in the fiber side surface and goes straight in the gripping direction. After rotating by P (m + 1) + P (m + 2)) / 2, the fiber bundle is fixed in the width direction.

次に、捩れおよび特定の曲率を持った複合材料構造体の製造方法について述べる。捩れおよび特定の曲率を持った複合材料構造体は上記の捩れを持った複合材料構造体の製造方法における捩り工程(3)を、捩りおよび曲げ工程(3)’とするものである。すなわち(1)個別の繊維巻き出し装置から、熱可塑性樹脂を含浸した繊維もしくは熱可塑性樹脂と連続繊維が混合された繊維、を複数本引き出して平行に引き揃えて繊維束を得る工程と、(2)引きそろえた繊維束を、それと垂直方向に把持する繊維束把持機構により把持する工程と、(3)’繊維束を把持した状態で繊維束把持機構を、一定量並進移動させ、かつ設定された捩り回転および面内回転させることで繊維束内の繊維各部の経路長を調整する捩りおよび曲げ工程と、(4)繊維束把持機構が繊維束を把持する部分で、繊維束を幅方向に固定する工程と、(5)固定した繊維束を加圧し所定の幅の構造体に成形する工程により好ましく製造することができる。   Next, a method for manufacturing a composite material structure having a twist and a specific curvature will be described. In the composite material structure having a twist and a specific curvature, the twisting step (3) in the manufacturing method of the composite material structure having the twist is a twisting and bending step (3) '. (1) A step of drawing a plurality of fibers impregnated with thermoplastic resin or a mixture of thermoplastic resin and continuous fibers from individual fiber unwinding apparatuses and drawing them in parallel to obtain a fiber bundle; 2) A process of gripping the aligned fiber bundle by a fiber bundle gripping mechanism that grips the bundle in the vertical direction; and (3) 'Translating and setting the fiber bundle gripping mechanism by a certain amount while holding the fiber bundle. A twisting and bending step of adjusting the path length of each part of the fiber in the fiber bundle by rotating and twisting in the plane, and (4) a portion in which the fiber bundle gripping mechanism grips the fiber bundle in the width direction And (5) pressurizing the fixed fiber bundle and molding it into a structure having a predetermined width.

工程(3)’と(4)について好ましくは、上述の手順(a)以降に、下記の手順(b)’から(e)’を行う。ここで用いられる機構の一例を図4に示す。
手順(b)’では第k-1番目の点と第k番目の点を結んだ線分をAとしその長さをB(k)とし、形成しようとする連続繊維複合材料構造体に関し、線分A上に立てた陪法線をDとし、法線Dk+1とDのなす角度をP(k)とし、線分Ak+1と線分Aのなす角度をT(k)とする。
For the steps (3) ′ and (4), the following steps (b) ′ to (e) ′ are preferably performed after the above step (a). An example of the mechanism used here is shown in FIG.
In step (b) ′, the line segment connecting the (k−1) -th point and the k-th point is A k and the length is B (k), and the continuous fiber composite material structure to be formed is line a and陪法line stood on k and D k, the angle between the normal line D k + 1 and D k and P (k), the line segment a k + 1 and the angle between the line segment a k T (k) And

手順(c)’では繊維束把持位置で繊維束を繊維束把持機構で把持し、まずB(1)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ、繊維束中点を中心として繊維束面内で、繊維束把持機構を角度T(1)/2だけ回転させ、次に繊維束面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度P(1)/2だけ回転させたのち、繊維束を幅方向に固定する。   In step (c) ′, the fiber bundle is gripped by the fiber bundle gripping mechanism at the fiber bundle gripping position, and first, the fiber gripping mechanism is translated from the fiber bundle gripping position by the length of B (1), and the center of the fiber bundle is centered. In the fiber bundle surface, the fiber bundle gripping mechanism is rotated by an angle T (1) / 2, and then the fiber bundle gripping mechanism is rotated around an axis that passes through the fiber bundle midpoint in the fiber bundle surface and goes straight in the gripping direction. Is rotated by an angle P (1) / 2, and then the fiber bundle is fixed in the width direction.

手順(d)’では繊維束把持機構から繊維束を解放し、繊維束把持機構を繊維把持位置に戻し、その位置で新たに繊維束を把持し、B(2)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ、繊維束中点を中心として繊維束面内で、繊維束把持機構を角度(T(1)+T(2))/2だけ回転させ、次に繊維側面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度(P(1)+P(2))/2だけ回転させたのち、繊維束を幅方向に固定する。   In step (d) ′, the fiber bundle is released from the fiber bundle gripping mechanism, the fiber bundle gripping mechanism is returned to the fiber gripping position, a new fiber bundle is gripped at that position, and the fiber bundle is gripped by the length of B (2). The fiber gripping mechanism is translated from the position, the fiber bundle gripping mechanism is rotated by an angle (T (1) + T (2)) / 2 within the fiber bundle surface around the fiber bundle midpoint, and then within the fiber side surface Then, the fiber bundle gripping mechanism is rotated by an angle (P (1) + P (2)) / 2 around an axis passing through the middle point of the fiber bundle and perpendicular to the gripping direction, and then the fiber bundle is fixed in the width direction.

手順(e)’では手順(d)’ と同様の操作をさらにN−2回繰り返す。但し(d)’の操作の後のm回目の操作においては、繊維束把持機構から繊維束を解放し、繊維束把持機構を繊維把持位置に戻し、その位置で新たに繊維束を把持し、B(m+2)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ、繊維束中点を中心として繊維束面内で、繊維束把持機構を角度(T(m+1)+T(m+2))/2だけ回転させ、次に繊維側面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度(P(m+1)+P(m+2))/2だけ回転させたのち、繊維束を幅方向に固定するものとする。   In step (e) ', the same operation as in step (d)' is repeated N-2 times. However, in the m-th operation after the operation of (d) ′, the fiber bundle is released from the fiber bundle gripping mechanism, the fiber bundle gripping mechanism is returned to the fiber gripping position, and the fiber bundle is newly gripped at that position. The fiber gripping mechanism is translated from the fiber bundle gripping position by the length of B (m + 2), and the fiber bundle gripping mechanism is angled (T (m + 1) + T (m + 2)) within the fiber bundle plane around the fiber bundle midpoint. / 2, and then the fiber bundle gripping mechanism was rotated by an angle (P (m + 1) + P (m + 2)) / 2 around an axis passing through the fiber bundle midpoint and orthogonal to the gripping direction within the fiber side surface. After that, the fiber bundle is fixed in the width direction.

また本発明において骨格線が閉曲線である場合、末端同士で継ぎ目が発生する。継ぎ目が負荷応力の大きい場所に発生しないようにすると共に、多層積層する場合は剛性低下防止のために継ぎ目をずらすように構造体を製造するか、または末端Nで切断せずに再度末端0から上記手順を繰り返して積層を行うことが好ましい。   In the present invention, when the skeleton line is a closed curve, a seam is generated between the ends. In order to prevent the seam from being generated at a place where a large load stress is applied, in the case of multilayer lamination, the structure is manufactured so as to shift the seam in order to prevent a decrease in rigidity, or from the terminal 0 again without cutting at the terminal N. It is preferable to perform lamination by repeating the above procedure.

[複合成形体]
本発明の連続繊維複合材料構造体を補強構造体として、樹脂成型体と複合することにより、複合成形体とすることができる。本発明は連続繊維複合材料構造体を補強構造体ととして、樹脂成型体と複合してなる複合成形体も包含する。本発明における連続繊維複合成形体の模式図を図7に示す。
[Composite molded body]
By combining the continuous fiber composite material structure of the present invention with a resin molded body as a reinforcing structure, a composite molded body can be obtained. The present invention also includes a composite molded body obtained by combining a continuous fiber composite material structure as a reinforcing structure with a resin molded body. A schematic diagram of the continuous fiber composite molded body in the present invention is shown in FIG.

本発明の連続繊維複合成形体に用いられる樹脂成形体を構成する樹脂は、熱可塑性樹脂もしくは熱硬化性樹脂であり、好ましくは熱可塑性樹脂及びそれらの組成物である。具体的には、ポリカーボネート樹脂、ポリオレフィン系樹脂、アクリル樹脂、ポリ乳酸、ポリアミド樹脂、ASA樹脂、ABS樹脂、ポリエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキサイド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリアミドイミド樹脂、ポリカーボネート樹脂とポリエステル樹脂の組成物、ポリカーボネートとABS樹脂との組成物、ポリフェニレンエーテル樹脂とポリアミド樹脂の組成物、ポリアミド樹脂とABS樹脂の組成物、ポリエステル樹脂とポリアミド樹脂の組成物、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、ポリウレタン樹脂、ポリイミド樹脂等が挙げられるが特に制限はない。   The resin constituting the resin molded body used in the continuous fiber composite molded body of the present invention is a thermoplastic resin or a thermosetting resin, preferably a thermoplastic resin and a composition thereof. Specifically, polycarbonate resin, polyolefin resin, acrylic resin, polylactic acid, polyamide resin, ASA resin, ABS resin, polyether ketone resin, polyether imide resin, polyphenylene ether resin, polyphenylene oxide resin, polysulfone resin, polyether Sulfone resin, polyetherimide resin, polyetheretherketone resin, polyphenylene sulfide resin, polyamideimide resin, composition of polycarbonate resin and polyester resin, composition of polycarbonate and ABS resin, composition of polyphenylene ether resin and polyamide resin, Composition of polyamide resin and ABS resin, composition of polyester resin and polyamide resin, phenol resin, epoxy resin, unsaturated polyester resin, melamine resin, Polyurethane resin, polyimide resin is not particularly limited.

該樹脂成型体は射出成型、ブロー成型、ホットプレス・コールドプレスを含む圧縮成型、真空成型、圧空成型などで成型することができる。
複合材料構造体と樹脂成形体との複合方法としては、インサート工法、アウトサート工法、接着剤による接合、機械的な接合、嵌め合い、フック、ファスナーなどの方法が挙げられる。
The resin molding can be molded by injection molding, blow molding, compression molding including hot press / cold press, vacuum molding, pressure molding or the like.
Examples of the composite method of the composite material structure and the resin molded body include an insert method, an outsert method, an adhesive bonding method, a mechanical bonding method, a fitting method, a hook method, and a fastener method.

本発明の複合成形体において、樹脂成型体として繊維強化樹脂からなる繊維強化樹脂成形体とすることができる。繊維強化樹脂成形体に用いられる強化繊維としてはガラス繊維、ポリエステル繊維、ポリオレフィン繊維、炭素繊維、パラ系アラミド繊維、メタ系アラミド繊維、ボロン繊維、アゾール繊維、アルミナ繊維が挙げられるが特に制限はない。   In the composite molded body of the present invention, a fiber reinforced resin molded body made of a fiber reinforced resin can be used as the resin molded body. Examples of the reinforcing fiber used in the fiber reinforced resin molded article include glass fiber, polyester fiber, polyolefin fiber, carbon fiber, para-aramid fiber, meta-aramid fiber, boron fiber, azole fiber, and alumina fiber, but there is no particular limitation. .

該繊維強化樹脂成形体を構成するマトリクス樹脂は、熱可塑性樹脂もしくは熱硬化性樹脂であり、好ましくは熱可塑性樹脂及びそれらの組成物である。具体的には、ポリカーボネート樹脂、ポリエステル樹脂、ポリオレフィン系樹脂、アクリル樹脂、ポリ乳酸、ポリアミド樹脂、ASA樹脂、ABS樹脂、ポリエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキサイド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリアミドイミド樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、ポリウレタン樹脂、ポリイミド樹脂等が挙げられるが特に制限はない。
該繊維強化樹脂成形体を構成する繊維強化材料中の強化繊維の含有量は、樹脂100体積部に対し10〜100体積部が好ましい。さらには樹脂100体積部に対し10〜50体積部が好ましい。
The matrix resin constituting the fiber-reinforced resin molded body is a thermoplastic resin or a thermosetting resin, preferably a thermoplastic resin or a composition thereof. Specifically, polycarbonate resin, polyester resin, polyolefin resin, acrylic resin, polylactic acid, polyamide resin, ASA resin, ABS resin, polyether ketone resin, polyether imide resin, polyphenylene ether resin, polyphenylene oxide resin, polysulfone resin , Polyethersulfone resin, polyetherimide resin, polyetheretherketone resin, polyphenylene sulfide resin, polyamideimide resin, phenol resin, epoxy resin, unsaturated polyester resin, melamine resin, polyurethane resin, polyimide resin, etc. There is no limit.
The content of the reinforcing fiber in the fiber reinforced material constituting the fiber reinforced resin molded body is preferably 10 to 100 parts by volume with respect to 100 parts by volume of the resin. Furthermore, 10-50 volume parts is preferable with respect to 100 volume parts of resin.

該繊維強化樹脂成形体中の強化繊維は、その形態は問わない。短繊維でも、長繊維でも、連続繊維でも良い。短繊維とは繊維長が0.1〜10mm、長繊維とは繊維長が10mm〜100mm、連続繊維とは繊維長が100mm以上のものである。短繊維や長繊維の場合は、チョップドストランド等を用いて抄紙されたペーパーであってもよい。連続繊維の場合は、織編物、ストランドの一方方向配列シート状物及び多軸織物等のシート状、または不織布状でマトリックス樹脂中に含有されていることも好ましい。なお、多軸織物とは、一般に、一方向に引き揃えた繊維強化材の束をシート状にして角度を変えて積層したもの(多軸織物基材)を、ポリアミド糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通して、積層体の表面と裏面の間を表面方向に沿って往復しステッチした織物をいう。該繊維強化樹脂成形体を構成する繊維強化材料は、強化繊維がランダムに分散したものあるいは特定の繊維配向をしたものでもよく、繊維が面配向したものあるいは一軸配向したもの、あるいはそれらの組み合わせ、あるいはそれらの積層体であることが好ましい。
該繊維強化樹脂成型体は射出成型、ブロー成型、ホットプレス・コールドプレスを含む圧縮成型、真空成型、圧空成型などで成型することができる。
The form of the reinforcing fiber in the fiber reinforced resin molded product is not limited. Short fibers, long fibers, or continuous fibers may be used. Short fibers are fibers having a fiber length of 0.1 to 10 mm, long fibers are fibers having a length of 10 to 100 mm, and continuous fibers are fibers having a fiber length of 100 mm or more. In the case of short fibers or long fibers, paper made using chopped strands or the like may be used. In the case of continuous fibers, it is also preferable that they are contained in the matrix resin in the form of a woven or knitted fabric, a sheet of a unidirectionally arranged strand and a sheet of a multiaxial woven fabric, or a nonwoven fabric. In addition, a multiaxial woven fabric is generally a polyamide yarn, a polyester yarn, or a glass fiber made by laminating a bundle of fiber reinforcements aligned in one direction into a sheet and changing the angle (multiaxial woven fabric base material). This refers to a woven fabric that is stitched by stitches such as yarns, penetrates the laminate in the thickness direction, and reciprocates between the front and back surfaces of the laminate along the surface direction. The fiber reinforced material constituting the fiber reinforced resin molding may be one in which reinforcing fibers are randomly dispersed or one having a specific fiber orientation, one in which fibers are plane-oriented or one-axis oriented, or a combination thereof, Or it is preferable that it is those laminated bodies.
The fiber-reinforced resin molding can be molded by injection molding, blow molding, compression molding including hot press / cold press, vacuum molding, pressure molding, or the like.

本発明の複合材料構造体を補強構造体として、複合成形体とするとき、以下の(i)および(ii)を満たすことが好ましい。
構造体の投影面積が最大となる投射角で投影したときの、全構造体の投射面積をS1とし、同じ投射角で投影したときの補強構造体のみの投射面積をS2とするとき
0.60>S2/S1>0.04 (i)
構造体の投影面積が最大となる投射角で投影したとき、全構造体の投影図の図心に関する極二次モーメントをJ1、同じ投射角で投影したときの補強構造体のみの投影図の全構造体の図心に関する極二次モーメントをJ2としたとき
0.95>J2/J1>0.15 (ii)
極二次モーメントは二次極モーメントともいい、次式(iii)に示すように図心からの距離の二乗(r)を対象の全面積に渡って積分したものである。
Ip=∫(r×dA) ・・・(iii)
(Ipは極二次モーメント、rは微小面積(dA)と図心との距離)
実際の計算においては(iii)は差分化により求めてもよい。
When the composite material structure of the present invention is used as a reinforcing structure and a composite molded body, the following (i) and (ii) are preferably satisfied.
When the projected area of the entire structure is projected at the projection angle that maximizes the projected area of the structure is S1, the projected area of only the reinforcing structure when projected at the same projected angle is S2, and 0.60. > S2 / S1> 0.04 (i)
When projecting at the projection angle that maximizes the projected area of the structure, J2 is the polar second moment related to the centroid of the projection of all structures, and all of the projections of the reinforcing structure only when projected at the same projection angle. 0.92> J2 / J1> 0.15 where J2 is the polar second moment related to the centroid of the structure (ii)
The pole second moment is also called a second pole moment, and is obtained by integrating the square of the distance (r 2 ) from the centroid as shown in the following equation (iii) over the entire area of the object.
Ip = ∫ (r 2 × dA) (iii)
(Ip is the polar second moment, r is the distance between the minute area (dA) and the centroid)
In actual calculation, (iii) may be obtained by subtraction.

補強構造体が複数の分離した補強構造体の集合である場合、全ての補強構造体の投影面積を合算したものをS2、また全ての補強構造体の全構造体の図心に関する極二次モーメントを合算したものをJ2とする。   When the reinforcing structure is a set of a plurality of separated reinforcing structures, the sum of the projected areas of all the reinforcing structures is S2, and the polar second moment with respect to the centroids of all the reinforcing structures J2 is the sum of.

(i)式においてS2/S1が0.60以上の場合は補強繊維の使用量が多大となり経済性及び軽量性が損なわれることがある。またS2/S1が0.04以下の場合は複合成形体の剛性が不足することがある。S2/S1の好ましい範囲は0.2以上0.6以下である。さらには0.3以上0.5以下が好ましい。   In the formula (i), when S2 / S1 is 0.60 or more, the use amount of the reinforcing fiber becomes large, and the economical efficiency and the lightness may be impaired. When S2 / S1 is 0.04 or less, the rigidity of the composite molded body may be insufficient. A preferable range of S2 / S1 is 0.2 or more and 0.6 or less. Furthermore, 0.3 or more and 0.5 or less are preferable.

(ii)式においてJ2/J1が0.95以上の場合は、(i)式のS2/S1が0.6未満であっても強化繊維が過剰に使用されており経済性において好ましくなく、J2/J1が0.15以下では、S2/S1が0.05より大きい場合であっても、複合成形体の剛性が不足することがある。J2/J1の好ましい範囲は0.20以上0.95以下である。特に強化繊維が炭素繊維の場合は0.25以上0.95以下であることが好ましい。   In the formula (ii), when J2 / J1 is 0.95 or more, even if S2 / S1 in the formula (i) is less than 0.6, the reinforcing fiber is excessively used, which is not preferable in terms of economy. When / J1 is 0.15 or less, even if S2 / S1 is greater than 0.05, the rigidity of the composite molded body may be insufficient. A preferable range of J2 / J1 is 0.20 or more and 0.95 or less. In particular, when the reinforcing fiber is carbon fiber, it is preferably 0.25 or more and 0.95 or less.

本発明の複合成形体において、樹脂成型体が繊維強化樹脂からなる繊維強化樹脂成形体の場合はS2/S1は0.04以上0.55以下が好ましく、J2/J1は0.15以上0.90以下が好ましい。   In the composite molded body of the present invention, when the resin molded body is a fiber reinforced resin molded body made of a fiber reinforced resin, S2 / S1 is preferably 0.04 or more and 0.55 or less, and J2 / J1 is 0.15 or more and 0.00. 90 or less is preferable.

本発明の複合成形体よりバックドア、サイドドア、フェンダー、フロントフード、ルーフ、およびフロアパンからなる群から選ばれる車両用パネルが提供できる。
車両用パネル部品は窓部などガラス部分を有していても良く、パネルにおける窓部の占める割合及び形状は問わない。また、車両用パネル部品は固定された金属部品などを有していても良い。この場合、全構造体には窓部及び固定された金属部品も含める。
A vehicle panel selected from the group consisting of a back door, a side door, a fender, a front hood, a roof, and a floor pan can be provided from the composite molded body of the present invention.
The vehicle panel component may have a glass portion such as a window portion, and the proportion and shape of the window portion in the panel are not limited. Moreover, the vehicle panel component may have a fixed metal component or the like. In this case, the entire structure also includes a window and a fixed metal part.

以下、本発明を実施例により更に具体的に説明するが、本発明はこれにより何等限定を受けるものでは無い。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention does not receive any limitation by this.

[実施例1]
形成しようとする捩りを有する連続繊維複合材料構造体は、幅は50mm、厚みは0.5mm、捩率は0.0028rad/mm、捩れ角の合計は80度、長さは500mmである。1/(20×d)は、0.001rad/mmである。幅方向の中心線を結んだ曲線上に、5mmの間隔で分割する点を設け、構造体の一端末から別の端末に向かって0から99までの番号をつけた。この時、線分の長さB(k)は5mmであり、法線のなす角度P(k)は0.8度であった。
連続繊維としては炭素繊維、東邦テナックス(株)製テナックスSTS40(登録商標)比弾性率14×10cm、熱可塑性樹脂としてナイロン6樹脂(三菱エンジニアリングプラスチック(株)製、ノバミッド(登録商標)1010C2)を用いた。個別の繊維巻き出し装置から、連続繊維の含有量が樹脂100体積部に対して50体積部となるように熱可塑性樹脂を含浸した繊維束を30本を引き出して平行に引き揃えた。引きそろえた複合繊維束を図3に示す製造装置を用いて繊維束把持機構により把持した。
[Example 1]
The continuous fiber composite material structure having a twist to be formed has a width of 50 mm, a thickness of 0.5 mm, a twist rate of 0.0028 rad / mm, a total twist angle of 80 degrees, and a length of 500 mm. 1 / (20 × d) is 0.001 rad / mm. On the curve connecting the center lines in the width direction, points to be divided at intervals of 5 mm were provided, and numbers from 0 to 99 were assigned from one end of the structure toward another end. At this time, the length B (k) of the line segment was 5 mm, and the angle P (k) formed by the normal line was 0.8 degrees.
Carbon fiber as the continuous fiber, Tenax STS40 (registered trademark) specific modulus 14 × 10 8 cm manufactured by Toho Tenax Co., Ltd., Nylon 6 resin (manufactured by Mitsubishi Engineering Plastics, Novamid (registered trademark) 1010C2) as the thermoplastic resin ) Was used. Thirty fiber bundles impregnated with the thermoplastic resin were drawn out from the individual fiber unwinding apparatus so that the continuous fiber content was 50 parts by volume with respect to 100 parts by volume of the resin, and were aligned in parallel. The aligned composite fiber bundle was gripped by the fiber bundle gripping mechanism using the manufacturing apparatus shown in FIG.

5mmだけ繊維束把持位置から繊維把持機構を並進移動させ、次に繊維束面内で繊維束中点をとおり把持方向に直行する軸の周りに繊維束把持機構を角度0.4度だけ回転させたのち、超音波溶着機を用いて繊維束を幅方向に固定した。(α)繊維束把持機構から繊維束を解放し、繊維束把持機構を繊維把持位置に戻し、その位置で新たに繊維束を把持し、5mmの長さだけ繊維束把持位置から繊維把持機構を並進移動させ、次に繊維側面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度0.8度だけ回転させたのち、超音波溶着機を用いて繊維束を幅方向に固定した。(α)と同様の操作を97回繰り返すことで所定の構造をもつ連続繊維複合材料構造体を製造した。成形した捩れを有する連続繊維複合材料構造体は座屈する事無く精度良く製造することが出来、剛性的にも問題ないことを確認した。   The fiber gripping mechanism is translated from the fiber bundle gripping position by 5 mm, and then the fiber bundle gripping mechanism is rotated by an angle of 0.4 degrees around an axis that passes through the midpoint of the fiber bundle and goes straight in the gripping direction within the fiber bundle surface. After that, the fiber bundle was fixed in the width direction using an ultrasonic welder. (Α) Release the fiber bundle from the fiber bundle gripping mechanism, return the fiber bundle gripping mechanism to the fiber gripping position, grip a new fiber bundle at that position, and move the fiber gripping mechanism from the fiber bundle gripping position by a length of 5 mm. After translation, and then rotating the fiber bundle gripping mechanism by an angle of 0.8 degrees around the axis that passes through the fiber bundle midpoint and goes straight in the gripping direction within the fiber side surface, the fiber is then used with an ultrasonic welder. The bundle was fixed in the width direction. The same operation as (α) was repeated 97 times to produce a continuous fiber composite material structure having a predetermined structure. It was confirmed that the continuous fiber composite material structure having a twisted shape can be manufactured with high accuracy without buckling, and that there is no problem in rigidity.

[実施例2]
形成しようとする捩りを有する連続繊維複合材料構造体は、幅50mm、厚み0.5mm、捩率0.0047rad/mm、捩れ角の合計は40度、長さ150mmである。幅方向の中心線を結んだ曲線上に、5mm間隔で分割する点を設け、構造体の一端末から別の端末にむかって0から29までの番号をつけた。この時、線分の長さB(k)は5mmであり、法線のなす角度P(k)は0.4度であった。
実施例1と同様の使用材料および作製方法により構造体を得た。成形した捩れを有する連続繊維複合材料構造体は座屈する事無く精度良く製造する事が出来、剛性的にも問題ない事を確認した。
[Example 2]
The continuous fiber composite material structure having a twist to be formed has a width of 50 mm, a thickness of 0.5 mm, a twist rate of 0.0047 rad / mm, a total twist angle of 40 degrees, and a length of 150 mm. On the curve connecting the center lines in the width direction, points to be divided at intervals of 5 mm were provided, and numbers from 0 to 29 were assigned from one end of the structure to another. At this time, the length B (k) of the line segment was 5 mm, and the angle P (k) formed by the normal line was 0.4 degrees.
A structure was obtained using the same materials and manufacturing method as in Example 1. It was confirmed that the continuous fiber composite material structure having a molded twist can be manufactured with high accuracy without buckling, and there is no problem in rigidity.

[実施例3]
形成しようとする捩れおよび曲率を有する連続繊維複合材料構造体は、幅は20mm、厚みは1.0mm、捩率は0.0028rad/mm、捩れ角の合計は160度、曲率は0.004rad/mm、曲率を有する部分の中心角の合計は230度、長さは1000mmである。幅方向の中心線を結んだ曲線上に、2mmの間隔で分割する点を設け、構造体の一端末から別の端末に向かって0から499までの番号をつけた。この時、線分の長さB(k)は2mmであり、法線のなす角度P(k)は0.32度、線分のなす角度T(k)は0.458度であった。
個別の繊維巻き出し装置から、連続繊維の含有量が樹脂100体積部に対して50体積部となるように熱可塑性樹脂を含浸した繊維束20本を引き出して平行に引き揃えた。連続繊維として東邦テナックス(株)製テナックスSTS40(登録商標)、熱可塑性樹脂としてナイロン6樹脂を用いた。引きそろえた複合繊維束を図4に示す製造装置を用いて繊維束把持機構により把持した。
[Example 3]
The continuous fiber composite material structure having the twist and curvature to be formed has a width of 20 mm, a thickness of 1.0 mm, a twist of 0.0028 rad / mm, a total twist angle of 160 degrees, and a curvature of 0.004 rad / mm, the sum of the central angles of the portions having curvature is 230 degrees, and the length is 1000 mm. On the curve connecting the center lines in the width direction, points to be divided at intervals of 2 mm were provided, and numbers from 0 to 499 were assigned from one terminal of the structure toward another terminal. At this time, the length B (k) of the line segment was 2 mm, the angle P (k) formed by the normal line was 0.32 degrees, and the angle T (k) formed by the line segment was 0.458 degrees.
Twenty fiber bundles impregnated with the thermoplastic resin were drawn out from individual fiber unwinding devices so that the continuous fiber content was 50 parts by volume with respect to 100 parts by volume of the resin, and were aligned in parallel. Tenax STS40 (registered trademark) manufactured by Toho Tenax Co., Ltd. was used as the continuous fiber, and nylon 6 resin was used as the thermoplastic resin. The aligned composite fiber bundle was gripped by the fiber bundle gripping mechanism using the manufacturing apparatus shown in FIG.

2mmだけ繊維束把持位置から繊維把持機構を並進移動させ、次に繊維束面内で繊維束中点をとおり把持方向に直行する軸の周りに繊維束把持機構を角度0.16度だけ回転させ、繊維束中点を中心として繊維束面内で繊維束把持機構を角度0.229度だけ回転させたのち、超音波溶着機を用いて繊維束を幅方向に固定した。(β)繊維束把持機構から繊維束を解放し、繊維束把持機構を繊維把持位置に戻し、その位置で新たに繊維束を把持し、2mmの長さだけ繊維束把持位置から繊維把持機構を並進移動させ、次に繊維側面内で繊維束中点をとおり把持方向に直行する軸の周りに繊維束把持機構を角度0.32度だけ回転させ、繊維束中点を中心として繊維束面内で繊維束把持機構を角度0.458度だけ回転させたのち、超音波溶着機を用いて繊維束を幅方向に固定した。(β)と同様の操作を497回繰り返すことで所定の構造をもつ連続繊維複合材料構造体を製造した。成形した捩れと曲率を有する連続繊維複合材料構造体は座屈する事無く精度良く製造することが出来、剛性的にも問題ないことを確認した。   The fiber gripping mechanism is translated from the fiber bundle gripping position by 2 mm, and then the fiber bundle gripping mechanism is rotated by an angle of 0.16 degrees around an axis that passes through the fiber bundle midpoint and goes straight in the gripping direction within the fiber bundle surface. Then, after rotating the fiber bundle gripping mechanism by an angle of 0.229 degrees within the fiber bundle plane around the middle point of the fiber bundle, the fiber bundle was fixed in the width direction using an ultrasonic welder. (Β) The fiber bundle is released from the fiber bundle gripping mechanism, the fiber bundle gripping mechanism is returned to the fiber gripping position, a new fiber bundle is gripped at that position, and the fiber gripping mechanism is moved from the fiber bundle gripping position by a length of 2 mm. Then, the fiber bundle gripping mechanism is rotated by an angle of 0.32 degrees around an axis that passes through the fiber bundle midpoint within the fiber side surface and goes straight in the gripping direction, and within the fiber bundle plane around the fiber bundle midpoint. Then, after rotating the fiber bundle gripping mechanism by an angle of 0.458 degrees, the fiber bundle was fixed in the width direction using an ultrasonic welding machine. By repeating the same operation as (β) 497 times, a continuous fiber composite material structure having a predetermined structure was produced. It was confirmed that the continuous fiber composite material structure having the twist and curvature formed can be manufactured with high accuracy without buckling and there is no problem in rigidity.

[実施例4]
形成しようとする捩れおよび曲率を有する連続繊維複合材料構造体は、幅20mm、厚み0.5mm、捩率0.0049rad/mm、捩れ角の合計は140度、曲率は0.008rad/mm、曲率を有する部分の中心角の合計は230度、長さは500mmである。幅方向の中心線を結んだ曲線上に、2mmの間隔で分割する点を設け、構造体の一端末から別の端末に向かって0から249までの番号をつけた。この時、線分の長さB(k)は2mmであり、法線のなす角度P(k)は0.56度、線分のなす角度T(k)は0.92であった。
実施例3と同様の使用材料および作製方法により構造体を得た。成形した捩れおよび曲率を有する連続繊維複合材料構造体は座屈する事無く精度良く製造する事が出来、剛性的にも問題ない事を確認した。
[Example 4]
The continuous fiber composite material structure having a twist and a curvature to be formed has a width of 20 mm, a thickness of 0.5 mm, a twist of 0.0049 rad / mm, a total twist angle of 140 degrees, a curvature of 0.008 rad / mm, and a curvature. The sum of the central angles of the portions having the length is 230 degrees and the length is 500 mm. On the curve connecting the center lines in the width direction, points to be divided at intervals of 2 mm were provided, and numbers from 0 to 249 were assigned from one terminal of the structure toward another terminal. At this time, the length B (k) of the line segment was 2 mm, the angle P (k) formed by the normal line was 0.56 degrees, and the angle T (k) formed by the line segment was 0.92.
A structure was obtained using the same materials and production method as in Example 3. It was confirmed that the continuous fiber composite material structure having a twisted and curved shape can be manufactured with high accuracy without buckling and there is no problem in rigidity.

[実施例5]
実施例1で作製した連続繊維複合材料構造体を、該複合材料構造体と同様の捩れを持ち、厚さ2mm、幅50mm、長さ550mmのポリカーボネート樹脂の成形体に、全面に接着剤(Sikaflex(登録商標)−255Extra)を厚み2mmで接着し、複合成形体を得た。連続繊維複合材料構造体の補強がある場合はない場合と比較して剛性が2.2倍となった。
[Example 5]
The continuous fiber composite material structure produced in Example 1 was twisted in the same manner as the composite material structure, and a polycarbonate resin molded body having a thickness of 2 mm, a width of 50 mm, and a length of 550 mm was bonded to the entire surface with an adhesive (Sikaflex). (Registered trademark) -255Extra) was bonded at a thickness of 2 mm to obtain a composite molded body. The rigidity was 2.2 times that in the case where there was no reinforcement of the continuous fiber composite material structure.

[実施例6]
成形体の材質をポリカーボネート樹脂の代わりにエポキシ樹脂およびガラス繊維からなる繊維強化樹脂組成物(組成物中ガラス繊維は45体積%)とした以外は実施例5と同様に、実施例1で得られた連続繊維複合材料構造体を用いた複合成形体を得た。連続繊維複合材料構造体の補強がある場合はない場合と比較して剛性が1.9倍となった。
[Example 6]
It is obtained in Example 1 in the same manner as in Example 5 except that the material of the molded body is a fiber reinforced resin composition composed of epoxy resin and glass fiber instead of polycarbonate resin (45% by volume of glass fiber in the composition). A composite molded body using the continuous fiber composite material structure was obtained. The rigidity was 1.9 times that in the case where there was no reinforcement of the continuous fiber composite material structure.

[実施例7]
図8に示す窓部を有する自動車のバックドアを作製した。樹脂成形体(15)としてポリプロプレン((株)プライムポリマー製プライムポリプロJ105G)を用いた。
補強構造体(17)は図4に概略を示す製造装置を用い、連続繊維として炭素繊維(東邦テナックス(株)製、テナックスSTS40、比弾性率14×10cm)の一方向材とし、炭素繊維100体積部に対してナイロン6(三菱エンジニアリングプラスチック(株)製、ノバミッド(登録商標)1010C2)100体積部で、図8に示すように配置した。幅は20mm、厚みは1.0mm、捩れを有する部分の捩率は0.004rad/mm、捩れおよび曲率を有する部分は4箇所、捩れ角、捩れ角の合計は360度、曲率を有する部分の曲率は0.004rad/mm、曲率を有する部分の中心角はそれぞれ90度、曲率を有する部分の中心角の合計は360度、長さは3568mmとする捩れと特定の曲率を有する連続繊維複合材料構造体を用いた。
[Example 7]
An automobile back door having the window shown in FIG. 8 was produced. Polypropylene (Prime Polypro J105G manufactured by Prime Polymer Co., Ltd.) was used as the resin molding (15).
The reinforcing structure (17) is a carbon fiber (manufactured by Toho Tenax Co., Ltd., Tenax STS40, specific modulus of elasticity 14 × 10 8 cm) as a continuous fiber using the production apparatus shown in FIG. The nylon 6 (Mitsubishi Engineering Plastics Co., Ltd., Novamid (registered trademark) 1010C2) 100 parts by volume with respect to 100 parts by volume of the fibers was arranged as shown in FIG. The width is 20 mm, the thickness is 1.0 mm, the torsion of the part with twist is 0.004 rad / mm, the part with torsion and curvature is 4 places, the torsion angle, the sum of the torsion angles is 360 degrees, the part with the curvature A continuous fiber composite material having a twist and a specific curvature with a curvature of 0.004 rad / mm, a central angle of the curved portion of 90 degrees, a total of the central angles of the curved portions of 360 degrees, and a length of 3568 mm A structure was used.

連続繊維複合材料構造体の作製手順は以下のとおりであった。構造体の幅方向の中心線を結んだ曲線状に、2mmの間隔で分割する点を設け、構造体の一端末から別の端末に向かって0から1783までの番号をつけた。
0から250まで、446から696まで、892から1142まで及び1338から1588までの線分の長さは2mmであり、法線のなす角度及び線分のなす角度は0度であった。また、250から446まで、696から892まで、1142から1338まで及び1588から1783までの線分の長さは2mmであり、法線のなす角度及び線分のなす角度は0.46度であった。
樹脂成形体(15)と補強構造体(17)の境界には弾性層としてウレタン系弾性接着剤(Sikaflex(登録商標)−255Extra、弾性率0.003GPa)を厚み2mmで全面に配置した。
全構造体の投射面積をS1とし、同じ投射角で投影したときの補強構造体のみの投射面積をS2とするときS2/S1の値は0.3であった。全構造体の投影図の図心に関する極二次モーメントをJ1、同じ投射角で投影したときの補強構造体のみの投影図の全構造体の図心に関する極二次モーメントをJ2としたときJ2/J1の値は0.4であった。作製したバックドアは、同形状の鋼製のバックドア(下記比較例1)と窓部を除いた重量比較で、50%の軽量化を達成した。作製したバックドアのねじり剛性および曲げ剛性を測定した。結果を表1に示す。
The procedure for producing the continuous fiber composite material structure was as follows. Points that are divided at intervals of 2 mm were provided in a curved line connecting the center lines in the width direction of the structure, and numbers from 0 to 1783 were assigned from one end of the structure to another.
The lengths of the line segments from 0 to 250, 446 to 696, 892 to 1142, and 1338 to 1588 were 2 mm, and the angle formed by the normal line and the angle formed by the line segment were 0 degrees. Also, the lengths of the line segments from 250 to 446, from 696 to 892, from 1142 to 1338, and from 1588 to 1783 are 2 mm, and the angle between the normal line and the angle between the line segments is 0.46 degrees. It was.
A urethane-based elastic adhesive (Sikaflex (registered trademark) -255 Extra, elastic modulus 0.003 GPa) as an elastic layer was disposed on the entire surface at the boundary between the resin molded body (15) and the reinforcing structure (17).
The value of S2 / S1 was 0.3 when the projected area of all structures was S1, and the projected area of only the reinforcing structure when projected at the same projection angle was S2. J2 is the polar second moment related to the centroid of the projection of the entire structure, and J2 is the polar second moment related to the centroid of the entire structure of the projection of only the reinforcing structure when projected at the same projection angle. The value of / J1 was 0.4. The manufactured back door achieved a 50% weight reduction by comparing the weight of the steel back door (Comparative Example 1 below) with the same shape excluding the window. The torsional rigidity and bending rigidity of the manufactured back door were measured. The results are shown in Table 1.

[比較例1]
実施例7と同形状の鋼製のバックドアのねじり剛性および曲げ剛性を測定した。結果を表1に示す。
[Comparative Example 1]
The torsional rigidity and bending rigidity of the steel back door having the same shape as in Example 7 were measured. The results are shown in Table 1.

[比較例2]
補強構造体(17)を配置しない以外は実施例7と同じバックドアパネルのねじり剛性および曲げ剛性を測定した。結果を表1に示す。
[Comparative Example 2]
The torsional rigidity and bending rigidity of the same back door panel as in Example 7 were measured except that the reinforcing structure (17) was not arranged. The results are shown in Table 1.

表1から明らかなように本発明の複合成形体の車両用パネル部品は、同形状の鋼製パネルにはやや劣るが十分なねじり剛性および曲げ剛性を有する。   As is apparent from Table 1, the vehicle panel component of the composite molded body of the present invention has sufficient torsional rigidity and bending rigidity, although it is slightly inferior to the steel panel of the same shape.

1 連続繊維の配向方向
2 連続繊維複合材料構造体
3 構造体の幅d
4 骨格線
11a 繊維束把持機構
11b 繊維束把持機構
12 捩率付与用繊維把持機構移動レール
13 曲率付与用繊維把持機構移動シリンダ
14 繊維束固定機構
15 樹脂成形体
16 窓部
17 連続繊維複合材料構造体
1 orientation direction of continuous fibers 2 continuous fiber composite material structure 3 width d of structure
4 Skeletal line 11a Fiber bundle gripping mechanism 11b Fiber bundle gripping mechanism 12 Torsion imparting fiber gripping mechanism moving rail 13 Curvature imparting fiber gripping mechanism moving cylinder 14 Fiber bundle fixing mechanism 15 Resin molded body 16 Window 17 Continuous fiber composite material structure body

Claims (13)

互いに実質的に平行に配列した連続繊維束と熱可塑性樹脂とからなる捩れを有する構造体であって、連続繊維束は座屈する事無く、連続繊維束の配向方向に直行する方向における構造体の幅方向の中心部を結んだ骨格線について、下記(A)および(B)
(A)1/(20×d)以上の捩率(rad/mm)を有する部分を含み、
(B)1/(20×d)以上の捩率(rad/mm)を有する部分の捩れ角の合計が60度以上である
(dは捩れを付与する前の、連続繊維の配向方向に直行する方向における構造体の幅、mm)
を満足することを特徴とする連続繊維複合材料構造体。
A structure having a twist composed of a continuous fiber bundle and a thermoplastic resin arranged substantially parallel to each other, and the continuous fiber bundle is not buckled, and the structure in a direction perpendicular to the orientation direction of the continuous fiber bundle. The following (A) and (B) about the skeleton line connecting the central part in the width direction
(A) including a portion having a torsion (rad / mm) of 1 / (20 × d) or more,
(B) The total twist angle of the portion having a twist rate (rad / mm) of 1 / (20 × d) or more is 60 degrees or more (d is perpendicular to the orientation direction of the continuous fiber before imparting twist. Width of structure in direction
A continuous fiber composite material structure characterized by satisfying
連続繊維が比弾性率2.5×10cm以上の繊維からなることを特徴とする請求項1に記載の連続繊維複合材料構造体。 The continuous fiber composite material structure according to claim 1, wherein the continuous fibers are made of fibers having a specific elastic modulus of 2.5 x 10 8 cm or more. 構造体の幅方向の中心部を結んだ骨格線について、さらに下記(C)および(D)
(C)1/(20×d)以上の曲率(rad/mm)を有する部分を含み、
(D)1/(20×d)以上の曲率(rad/mm)を有する部分の中心角の合計が30度以上である
を満足することを特徴とする請求項1または請求項2に記載の連続繊維複合材料構造体。
Regarding the skeleton line connecting the central portions in the width direction of the structure, the following (C) and (D)
(C) including a portion having a curvature (rad / mm) of 1 / (20 × d) or more,
(D) The sum of the central angles of the portions having a curvature (rad / mm) of 1 / (20 × d) or more is satisfied to be 30 degrees or more. Continuous fiber composite material structure.
(1)個別の繊維巻き出し装置から、熱可塑性樹脂を含浸した繊維もしくは熱可塑性樹脂と連続繊維が混合された繊維を複数本引き出して平行に引き揃えて繊維束を得る工程と、(2)引きそろえた繊維束を、それと垂直方向に把持する繊維束把持機構により把持する工程と、(3)繊維束を把持した状態で繊維束把持機構を、一定量並進移動させ、かつ設定された捩り回転させることで繊維束内の繊維各部の経路長を調整する捩り工程と、(4)繊維束把持機構が繊維束を把持する部分で、繊維束を幅方向に固定する工程と、(5)固定した繊維束を加圧し所定の幅の構造体に成形する工程
を備えることを特徴とする請求項1または2に記載の連続繊維複合材料構造体の製造方法。
(1) A step of drawing a plurality of fibers impregnated with a thermoplastic resin or a mixture of thermoplastic resins and continuous fibers from individual fiber unwinding apparatuses and drawing them in parallel to obtain a fiber bundle; (2) A step of gripping the aligned fiber bundle by a fiber bundle gripping mechanism that grips the fiber bundle in a direction perpendicular thereto, and (3) the fiber bundle gripping mechanism is translated by a certain amount in a state of gripping the fiber bundle, and set torsion A twisting step of adjusting the path length of each part of the fiber in the fiber bundle by rotating, (4) a step of fixing the fiber bundle in the width direction at a portion where the fiber bundle gripping mechanism grips the fiber bundle, and (5) The method for producing a continuous fiber composite material structure according to claim 1 or 2, further comprising a step of pressurizing the fixed fiber bundle to form a structure having a predetermined width.
(3)と(4)の工程において、以下の(a)から(e)の手順によって行うことを特徴とする請求項4に記載の連続繊維複合材料構造体の製造方法。
(a)形成しようとする連続繊維複合材料構造体の幅方向の中心線を結んだ曲線上に、d/10より短い間隔で分割する点を設け、構造体の一端末から別の端末に向かって0から順番に番号をつけ、このとき末端にある点の番号をNとする、
(b)第k-1番目の点と第k番目の点を結んだ線分をAとしその長さをB(k)とし、形成しようとする連続繊維複合材料構造体に関し、線分A上に立てた陪法線をDとし、法線Dk+1とDのなす角度をP(k)とする、
(c)引きそろえた繊維の繊維方向と直交する方向を「把持方向」、繊維束把持部における繊維束の幅方向の中央部を「繊維束中点」、繊維方向と把持方向を含む面を「繊維束面」とするとき、繊維束把持位置で繊維束を繊維束把持機構で把持し、まずB(1)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ、次に繊維束面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度P(1)/2だけ回転させたのち、繊維束を幅方向に固定する、
(d)繊維束把持機構から繊維束を解放し、繊維束把持機構を繊維把持位置に戻し、その位置で新たに繊維束を把持し、B(2)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ、次に繊維側面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度(P(1)+P(2))/2だけ回転させたのち、繊維束を幅方向に固定する、
(e)(d)と同様の操作をさらにN−2回繰り返す。但し(d)の操作の後のm回目の操作においては、繊維束把持機構から繊維束を解放し、繊維束把持機構を繊維把持位置に戻し、その位置で新たに繊維束を把持し、B(m+2)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ、次に繊維側面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度(P(m+1)+P(m+2))/2だけ回転させたのち、繊維束を幅方向に固定するものとする。
5. The method for producing a continuous fiber composite material structure according to claim 4, wherein the steps (3) and (4) are performed by the following procedures (a) to (e).
(A) On the curve connecting the center lines in the width direction of the continuous fiber composite material structure to be formed, points to be divided at intervals shorter than d / 10 are provided, and the structure is directed from one end to another end. Number in order from 0, and let N be the number of the point at the end,
(B) A line segment connecting the k-1th point and the kth point is A k and its length is B (k). The power normal standing on k is Dk, and the angle between the normals Dk + 1 and Dk is P (k).
(C) A direction perpendicular to the fiber direction of the aligned fibers is a “gripping direction”, a center portion in the width direction of the fiber bundle in the fiber bundle gripping portion is a “fiber bundle midpoint”, and a surface including the fiber direction and the gripping direction When the “fiber bundle surface” is set, the fiber bundle is grasped by the fiber bundle grasping mechanism at the fiber bundle grasping position, and the fiber grasping mechanism is first translated from the fiber bundle grasping position by the length of B (1), and then the fiber. After rotating the fiber bundle gripping mechanism by an angle P (1) / 2 around an axis that passes through the middle point of the fiber bundle in the bundle plane and goes straight in the gripping direction, the fiber bundle is fixed in the width direction.
(D) Release the fiber bundle from the fiber bundle gripping mechanism, return the fiber bundle gripping mechanism to the fiber gripping position, grip a new fiber bundle at that position, and fiber from the fiber bundle gripping position by the length of B (2) The gripping mechanism is translated, and then the fiber bundle gripping mechanism is rotated by an angle (P (1) + P (2)) / 2 around an axis that passes through the fiber bundle midpoint and goes straight in the gripping direction within the fiber side surface. After that, fix the fiber bundle in the width direction,
(E) Repeat the same operation as (d) N-2 times. However, in the m-th operation after the operation of (d), the fiber bundle is released from the fiber bundle gripping mechanism, the fiber bundle gripping mechanism is returned to the fiber gripping position, and a new fiber bundle is gripped at that position. The fiber gripping mechanism is translated from the fiber bundle gripping position by the length of (m + 2), and then the fiber bundle gripping mechanism is angled around an axis that passes through the fiber bundle midpoint and goes straight in the gripping direction within the fiber side surface (P After rotating by (m + 1) + P (m + 2)) / 2, the fiber bundle is fixed in the width direction.
(1)個別の繊維巻き出し装置から、熱可塑性樹脂を含浸した繊維もしくは熱可塑性樹脂と連続繊維が混合された繊維を複数本引き出して平行に引き揃えて繊維束を得る工程と、(2)引きそろえた繊維束を、それと垂直方向に把持する繊維束把持機構により把持する工程と、(3)’繊維束を把持した状態で繊維束把持機構を、一定量並進移動させ、かつ設定された捩り回転および面内回転させることで繊維束内の繊維各部の経路長を調整する捩りおよび曲げ工程と、(4)繊維束把持機構が繊維束を把持する部分で、繊維束を幅方向に固定する工程と、(5)固定した繊維束を加圧し所定の幅の構造体に成形する工程
を備えることを特徴とする請求項3に記載の連続繊維複合材料構造体の製造方法。
(1) A step of drawing a plurality of fibers impregnated with a thermoplastic resin or a mixture of thermoplastic resins and continuous fibers from individual fiber unwinding apparatuses and drawing them in parallel to obtain a fiber bundle; (2) A step of gripping the aligned fiber bundle by a fiber bundle gripping mechanism that grips the bundle in a direction perpendicular thereto, and (3) 'the fiber bundle gripping mechanism is translated by a certain amount in a state where the fiber bundle is gripped and set. A twisting and bending process for adjusting the path length of each part of the fiber in the fiber bundle by twisting and rotating in the plane; (4) The fiber bundle is fixed in the width direction at the part where the fiber bundle gripping mechanism grips the fiber bundle. The method for producing a continuous fiber composite material structure according to claim 3, comprising the step of: (5) pressurizing the fixed fiber bundle to form a structure having a predetermined width.
(3)’と(4)の工程において、以下の(a)から(e)の手順によって行うことを特徴とする請求項6に記載の連続繊維複合材料構造体の製造方法。
(a)形成しようとする連続繊維複合材料構造体の幅方向の中心線を結んだ曲線上に、d/10より短い間隔で分割する点を設け、構造体の一端末から別の端末に向かって0から順番に番号をつけ、このとき末端にある点の番号をNとする、
(b)’第k-1番目の点と第k番目の点を結んだ線分をAとしその長さをB(k)とし、形成しようとする連続繊維複合材料構造体に関し、線分A上に立てた陪法線をDとし、法線Dk+1とDのなす角度をP(k)とし、線分Ak+1と線分Aのなす角度をT(k)とする、
(c)’引きそろえた繊維の繊維方向と直交する方向を「把持方向」、繊維束把持部における繊維束の幅方向の中央部を「繊維束中点」、繊維方向と把持方向を含む面を「繊維束面」とするとき、繊維束把持位置で繊維束を繊維束把持機構で把持し、まずB(1)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ、繊維束中点を中心として繊維束面内で、繊維束把持機構を角度T(1)/2だけ回転させ、次に繊維束面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度P(1)/2だけ回転させたのち、繊維束を幅方向に固定する、
(d)’繊維束把持機構から繊維束を解放し、繊維束把持機構を繊維把持位置に戻し、その位置で新たに繊維束を把持し、B(2)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ、繊維束中点を中心として繊維束面内で、繊維束把持機構を角度(T(1)+T(2))/2だけ回転させ、次に繊維側面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度(P(1)+P(2))/2だけ回転させたのち、繊維束を幅方向に固定する、
(e)’(d)と同様の操作をさらにN−2回繰り返す。但し(d)の操作の後のm回目の操作においては、繊維束把持機構から繊維束を解放し、繊維束把持機構を繊維把持位置に戻し、その位置で新たに繊維束を把持し、B(m+2)の長さだけ繊維束把持位置から繊維把持機構を並進移動させ、繊維束中点を中心として繊維束面内で、繊維束把持機構を角度(T(m+1)+T(m+2))/2だけ回転させ、次に繊維側面内で繊維束中点をとおり把持方向に直行する軸の周りに、繊維束把持機構を角度(P(m+1)+P(m+2))/2だけ回転させたのち、繊維束を幅方向に固定するものとすることを特徴とする請求項6に記載の連続繊維複合材料構造体の製造方法。
The method for producing a continuous fiber composite material structure according to claim 6, wherein the steps (3) ′ and (4) are performed by the following procedures (a) to (e).
(A) On the curve connecting the center lines in the width direction of the continuous fiber composite material structure to be formed, points to be divided at intervals shorter than d / 10 are provided, and the structure is directed from one end to another end. Number in order from 0, and let N be the number of the point at the end,
(B) 'A line segment connecting the (k−1) -th point and the k-th point is A k and the length is B (k). the陪法line stood on a k and D k, the angle between the normal line D k + 1 and D k and P (k), the angle between the line segment a k + 1 and the line segment a k and T (k) ,
(C) 'The direction perpendicular to the fiber direction of the aligned fibers is the' gripping direction ', the center in the width direction of the fiber bundle in the fiber bundle gripping portion is the' fiber bundle midpoint ', and the plane including the fiber direction and the gripping direction Is the “fiber bundle surface”, the fiber bundle is grasped by the fiber bundle grasping mechanism at the fiber bundle grasping position, and the fiber grasping mechanism is first translated from the fiber bundle grasping position by the length of B (1). Rotate the fiber bundle gripping mechanism by an angle T (1) / 2 within the fiber bundle plane around the midpoint, and then around an axis that goes straight in the gripping direction through the fiber bundle midpoint within the fiber bundle plane, After rotating the fiber bundle gripping mechanism by an angle P (1) / 2, the fiber bundle is fixed in the width direction.
(D) 'The fiber bundle is released from the fiber bundle gripping mechanism, the fiber bundle gripping mechanism is returned to the fiber gripping position, a new fiber bundle is gripped at that position, and the length of B (2) is changed from the fiber bundle gripping position. The fiber gripping mechanism is translated, the fiber bundle gripping mechanism is rotated by an angle (T (1) + T (2)) / 2 within the fiber bundle surface around the middle point of the fiber bundle, and then the fiber is moved within the fiber side surface. After rotating the fiber bundle gripping mechanism by an angle (P (1) + P (2)) / 2 around an axis passing through the midpoint of the bundle and orthogonal to the gripping direction, the fiber bundle is fixed in the width direction.
(E) 'Repeat the same operation as (d) N-2 times. However, in the m-th operation after the operation of (d), the fiber bundle is released from the fiber bundle gripping mechanism, the fiber bundle gripping mechanism is returned to the fiber gripping position, and a new fiber bundle is gripped at that position. The fiber gripping mechanism is translated from the fiber bundle gripping position by the length of (m + 2), and the fiber bundle gripping mechanism is moved at an angle (T (m + 1) + T (m + 2)) / After rotating the fiber bundle gripping mechanism by an angle (P (m + 1) + P (m + 2)) / 2 around an axis that passes through the fiber bundle midpoint and goes straight in the gripping direction within the fiber side surface. The method for producing a continuous fiber composite material structure according to claim 6, wherein the fiber bundle is fixed in the width direction.
樹脂成型体と、請求項1〜3のいずれかに記載の連続繊維複合材料構造体からなる補強構造体とを複合してなる複合成形体。   A composite molded body obtained by combining a resin molded body and a reinforcing structure composed of the continuous fiber composite material structure according to any one of claims 1 to 3. 樹脂成型体が繊維強化樹脂からなることを特徴とする請求項8に記載の複合成形体。   The composite molded body according to claim 8, wherein the resin molded body is made of a fiber reinforced resin. 以下の(i)、および(ii)を同時に満たすことを特徴とする請求項8〜9のいずれかに記載の複合成形体。
樹脂成形体の投影面積が最大となる投射角で投影したときの、複合成型体の投射面積をS1とし、同じ投射角で投影したときの連続繊維補強構造体のみの投射面積をS2とするとき
0.60>S2/S1>0.04 (i)
樹脂成形体の投影面積が最大となる投射角で投影したとき、複合成型体の投影図の図心に関する極二次モーメントをJ1、同じ投射角で投影したときの連続繊維補強構造体のみの投影図の全構造体の図心に関する極二次モーメントをJ2とするとき
0.95>J2/J1>0.15 (ii)
The composite molded body according to any one of claims 8 to 9, wherein the following (i) and (ii) are simultaneously satisfied.
When the projected area of the composite molded body when projected at the projection angle that maximizes the projected area of the resin molded body is S1, and the projected area of only the continuous fiber reinforced structure when projected at the same projection angle is S2. 0.60> S2 / S1> 0.04 (i)
When projecting at the projection angle that maximizes the projection area of the resin molding, J1 is the polar second moment related to the centroid of the projection of the composite molding, and only the continuous fiber reinforced structure is projected at the same projection angle. 0.95> J2 / J1> 0.15 where J2 is the polar second moment with respect to the centroid of all structures in the figure (ii)
補強構造体の強化繊維が炭素繊維であって、上記J2/J1が0.30以上0.90以下である請求項10に記載の複合成形体。   The composite molded article according to claim 10, wherein the reinforcing fibers of the reinforcing structure are carbon fibers, and the J2 / J1 is 0.30 or more and 0.90 or less. 請求項8〜11のいずれかに記載の複合成形体を用いた車両用パネル。   The vehicle panel using the composite molded object in any one of Claims 8-11. バックドア、サイドドア、フェンダー、フロントフード、ルーフ、またはフロアパンである請求項12に記載の車両用パネル。   The vehicle panel according to claim 12, which is a back door, a side door, a fender, a front hood, a roof, or a floor pan.
JP2010125841A 2010-06-01 2010-06-01 Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure Pending JP2011251443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010125841A JP2011251443A (en) 2010-06-01 2010-06-01 Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010125841A JP2011251443A (en) 2010-06-01 2010-06-01 Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure

Publications (1)

Publication Number Publication Date
JP2011251443A true JP2011251443A (en) 2011-12-15

Family

ID=45415792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010125841A Pending JP2011251443A (en) 2010-06-01 2010-06-01 Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure

Country Status (1)

Country Link
JP (1) JP2011251443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023237A1 (en) * 2014-07-04 2016-01-08 Peugeot Citroen Automobiles Sa COMPOSITE COMPOSITE SIDE SHOCK REINFORCEMENT FOR A MOTOR VEHICLE DOOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023237A1 (en) * 2014-07-04 2016-01-08 Peugeot Citroen Automobiles Sa COMPOSITE COMPOSITE SIDE SHOCK REINFORCEMENT FOR A MOTOR VEHICLE DOOR

Similar Documents

Publication Publication Date Title
US5529826A (en) Fabric-faced thermoplastic composite panel
JP5011613B2 (en) Preform and molding method
JP6946666B2 (en) Reinforced fiber laminated sheet and fiber reinforced resin molded product
CA2580751A1 (en) Textile core sandwich structures
KR102267884B1 (en) Hybrid type fiber reinforced composite material
JP4613298B2 (en) Composite sheet and composite material having smooth surface using the same
JP2010214704A (en) Base material for preform using binder including superfine fiber, and method of manufacturing the same
CN114008256B (en) Roving and fabric for fiber reinforced composites
JP6667554B2 (en) Resin composition for FRP, FRP sheet and molded article
JP5966969B2 (en) Manufacturing method of prepreg
JP2011251446A (en) Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure
JP5624871B2 (en) Method for producing flat fiber reinforced plastic wire sheet
JP2005336407A (en) Composite material excellent in surface smoothness
JP2011251443A (en) Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure
JP4759303B2 (en) Composite material using multiaxial fabric
JP2007090811A (en) Member of fiber-reinforced plastic and manufacturing method of the same
JP2011251444A (en) Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure
JP4402477B2 (en) Tubular laminate comprising non-woven fabric and method for producing the same
JP4558398B2 (en) Composite material with smooth surface
JP2011251445A (en) Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure
JP2005271350A (en) Cover member made of carbon fiber-reinforced plastic
JP4173949B2 (en) Fiber reinforced plastic molded article having a three-layer structure and method for producing the same
JP2021055202A (en) Reinforcement-fiber stitch base material, preform member, and fiber-reinforced composite material, and method of fabricating them
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP5415320B2 (en) Fiber-reinforced resin sheet and fiber-reinforced resin molded body using the same