JP2004034592A - Method for manufacturing fiber reinforced composite material and fiber structure - Google Patents

Method for manufacturing fiber reinforced composite material and fiber structure Download PDF

Info

Publication number
JP2004034592A
JP2004034592A JP2002197201A JP2002197201A JP2004034592A JP 2004034592 A JP2004034592 A JP 2004034592A JP 2002197201 A JP2002197201 A JP 2002197201A JP 2002197201 A JP2002197201 A JP 2002197201A JP 2004034592 A JP2004034592 A JP 2004034592A
Authority
JP
Japan
Prior art keywords
fiber
yarn
laminated
composite material
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002197201A
Other languages
Japanese (ja)
Other versions
JP4019822B2 (en
Inventor
Ryuta Kamiya
神谷 隆太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2002197201A priority Critical patent/JP4019822B2/en
Publication of JP2004034592A publication Critical patent/JP2004034592A/en
Application granted granted Critical
Publication of JP4019822B2 publication Critical patent/JP4019822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a three-dimensional fiber reinforced composite material at a low cost. <P>SOLUTION: An x yarn layer 4 and a y yarn layer 5 formed by arranging continuous fibers in one direction are mutually multi-laminated and form a laminated fiber group 6 in biaxial orientation. The fiber structure 1 is provided with a non-cut region 2 in which continuous fibers of the laminated fiber group 6 combined by yarns 7 in the thickness direction and pulling-out prevention yarns 8 are not cut, and a cut region 3 in which the continuous fibers are cut. The cut region 3 is disposed at the part where deformation is necessary when forming to a product shape. Also, both end parts of the fiber structure 1 are the non-cut region 2. The cut region 3 is apt to deform since the binding force is weak because a part of respective yarns is cut. Accordingly, deformation at the time of forming is easy even when the three-dimensional fiber structure of the continuous fiber is used as a reinforcing material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化複合材の製造方法及び繊維構造体に関するものである。
【0002】
【従来の技術】
繊維強化複合材、特に繊維強化プラスチックは軽量・高強度であり、自動車ではスポイラーなどの構造材として広く利用されている。繊維強化複合材に使用される繊維としては、炭素繊維、ガラス繊維、ポリアラミド繊維などがある。
【0003】
最もよく用いられている連続繊維でない短繊維や長繊維を強化材とした繊維強化複合材は、繊維が切れており、その配向もコントロールが困難であるので、用途によっては強度的に不足する場合がある。また、チョップドファイバーを用いた不織布や牽切糸を用いた織物など、あらかじめ切断した繊維を用いた二次元繊維構造体を強化材とした繊維強化複合材は、短繊維や長繊維による繊維強化複合材よりも強度が高い。しかし、切断工程がコストアップとなる。また、最終製品の厚さが厚い場合、不織布や織物を複数枚積層して使用するため、厚さ方向の強度が弱く、曲げ強度も弱い。
【0004】
最終製品の厚さが厚く、さらに高強度を要求される場合には、連続繊維を用いた三次元繊維構造体を強化材とした繊維強化複合材が使用される。繊維が連続しており、さらに三次元的に構成されているので、非常に高強度である。
【0005】
繊維強化複合材は成形の際、部品形状に変形させる必要がある。二次元繊維構造体について従来は、変形をしやすくするため目の粗い織物を部分的に熱可塑性樹脂で融着させる方法がある。また、特開平8−337666号公報では、補強繊維をたて糸及びよこ糸とする2方向性織物を含む深絞り成形されたプリフォームが開示されている。このプリフォームは前記たて糸及びよこ糸の少なくとも一方に、熱可塑性ポリマーを、線状に、かつ連続または不連続に付着せしめ、かつ、その補強織物の2方向に伸びる織糸の最小交角が20〜40度であることを特徴とする。しかし、強化材として織物を使用する場合は、目を粗くしても拘束が存在するため、変形に限度があるとともに、配列方向が異なる糸(繊維)同士が干渉するため、繊維が真っ直ぐに配列されず、繊維強化複合材を高強度にするのが難しい。
【0006】
【発明が解決しようとする課題】
連続繊維を用いた三次元繊維構造体は二次元繊維構造体に比べてさらに部品形状に合わせて変形しにくい。そのため連続繊維を用いた三次元繊維構造体は、変形をする必要がないように、あらかじめ製品形状に合わせた形状で製作する必要があった。ところが、この場合製品形状ごとに繊維構造体の製造装置、治具等が必要となる為コストが高かった。
【0007】
本発明は以上の問題に鑑みてなされたものであって、第1の目的は三次元繊維強化複合材を低コストで製造できる三次元繊維強化複合材の製造方法を提供する事である。第2の目的は前記製造方法に適した繊維構造体を提供することである。
【0008】
【課題を解決するための手段】
前記の第1の目的を達成するため、請求項1に記載の発明は、連続繊維から成る繊維束を一方向に配列して糸層を形成し、前記糸層を積層して少なくとも2軸配向の積層繊維群を形成し、前記積層繊維群の全面に該積層繊維群の厚さ方向に結合糸を挿入して前記糸層を結合した後、変形が必要な部分と不要な部分を有する前記積層繊維群の、変形が必要な部分の領域の前記連続繊維の一部を切断して繊維構造体を製作し、次に、前記繊維構造体に熱可塑性樹脂を含浸させて板状の素材を形成し、前記素材を成形して複合材を形成している。ここで、「糸」とは、撚りが掛かった糸のみを意味するのではなく、多数本の繊維が束となって撚りが実質掛かっていない繊維束(所謂ロービング)をも含む。
【0009】
この発明では、結合糸によって結合された積層繊維群の全面のうち、変形の必要な部分の領域の連続繊維の一部を切断することで、前記領域で拘束力が低下する。従って、連続繊維の三次元繊維構造体を強化材としても成形の際の変形が容易となり、プレス加工等で所望の形状の繊維強化複合材が製作できる。よって、製品形状に合わせた形状の三次元繊維構造体を製作する必要がなくコストを抑えることができる。
【0010】
請求項2に記載の発明は、連続繊維から成る繊維束を一方向に配列して糸層を形成し、前記糸層を積層して少なくとも2軸配向の積層繊維群を形成し、前記積層繊維群の全面に該積層繊維群の厚さ方向に結合糸を挿入して前記糸層を結合した後、変形が必要な部分と不要な部分を有する前記積層繊維群の、変形が必要な部分の領域の前記連続繊維の一部を切断して繊維構造体を製作し、次に、前記繊維構造体を型に投入して製品形状とし、樹脂を含浸硬化させて複合材を形成している。ここで樹脂の硬化とは熱硬化や紫外線硬化等のように反応で硬化する事だけでなく、加熱によって軟化あるいは溶融した熱可塑性樹脂が冷却によって硬くなる事も含む。つまり前記樹脂は熱可塑性樹脂でも熱硬化性樹脂でもよい。従って、熱硬化性樹脂を使用することができ、さらに高強度な繊維強化複合材ができる。
【0011】
第2の目的を達成するため、請求項3に記載の発明は、連続繊維から成る繊維束が少なくとも2軸配向された積層繊維群が、前記積層繊維群の全面に該積層繊維群の厚さ方向に配列された結合糸で結合され、一部の領域の前記連続繊維が切断されている。従って、連続繊維の切断されている領域で拘束力が低下し変形が容易であり、請求項1及び請求項2の発明の製造方法に好適に使用できる。
【0012】
請求項4に記載の発明は、請求項3に記載の発明において、前記積層繊維群の全面に前記結合糸が均一に配列されている。従って、前記繊維構造体の製作が容易である。
【0013】
【発明の実施の形態】
(第1の実施の形態)
以下、本発明を熱可塑性樹脂をマトリックス樹脂とした繊維強化複合材の製造に具体化した一実施の形態を図1〜図3に従って説明する。
【0014】
はじめに繊維構造体について説明する。図1(b)に示すように、連続繊維から成る繊維束としてのx糸4aは一方向(図1(b)において紙面に垂直な方向)に配列されてx糸層4を形成している。同様に連続繊維から成る繊維束としてのy糸5aも一方向(図1(b)において左右方向)に配列されてy糸層5を形成している。x糸層4とy糸層5は交互に複数層積層されて2軸配向の積層繊維群6を形成している。2軸は互いに直交している。厚さ方向糸7は積層繊維群6の全面に、積層繊維群6の厚さ方向に均一に挿入され、配列されている。厚さ方向糸7は積層繊維群6の一方の面(図1(b)では下面)でU字に折り返されており、他方の面(図1(b)では上面)では厚さ方向糸7の配列ピッチだけ離れた挿入位置で再び積層繊維群6に挿入された状態で連続している。抜け止め糸8は厚さ方向糸7がU字に折り返されている部分に挿通されている。厚さ方向糸7と抜け止め糸8が締め付けられることにより、x糸層4とy糸層5が結合されている。厚さ方向糸7と抜け止め糸8によって結合された積層繊維群6のうち、一部の領域でx糸4a、y糸5a、厚さ方向糸7、抜け止め糸8の一部が切断されて切断領域3が形成されている。
【0015】
図1(a)に示すように繊維構造体1は、厚さ方向糸7と抜け止め糸8によって結合された積層繊維群6のx糸4a,y糸5a等が切断されていない非切断領域2と、x糸4a,y糸5a等が切断されている切断領域3とを備えている。切断領域3は製品形状に成形する際に変形が必要な部分に設けられている。また、繊維構造体1の両端部は非切断領域2となっている。切断領域3は、前記各糸の一部が切断されている為、非切断領域2に比べて拘束力が弱く変形しやすい。
【0016】
x糸4aとy糸5aと厚さ方向糸7と抜け止め糸8として連続繊維が使用されている。この実施の形態では連続繊維として炭素繊維が使用されている。炭素繊維はフィラメント数が3000〜24000本程度である。厚さ方向糸7の配列ピッチは3〜5mm程度である。繊維構造体1の厚さは5mm程度である。
【0017】
次に熱可塑性樹脂をマトリックス樹脂とした繊維強化複合材を製造する方法について説明する。
図2(a)、(b)に示すように、矩形状の枠体9にはその孔9aを囲むように多数のピン9bが設置されている。ピン9bのピッチはx糸4a及びy糸5aのピッチに合わせてある。
【0018】
図2(a)に示すように、x糸4aはピン9bと係合する状態で折り返されて一方向に配向されたx糸層4が形成される。次に図2(b)に示すように、y糸5aも同様にしてピン9bと係合する状態で折り返されてx糸4aと直交する一方向に配向されてy糸層5が形成される。これを所定の回数繰り返して積層繊維群6が形成される。図2(a),(b)では、x糸4a及びy糸5aの配列間隔が広く図示されているが、実際は隣接して配列されたx糸4a同士あるいはy糸5a同士が接触する状態で配列される。
【0019】
次に積層繊維群6に、例えば特開平8−218249号公報に開示されている方法により厚さ方向糸7が挿入される。詳述すれば、積層繊維群6の厚さ方向に、先端に孔を備え前記孔に厚さ方向糸7を掛止した図示しない挿入針を挿入する。挿入針は厚さ方向糸7が掛止された挿入針の孔が積層繊維群6を貫通するまで前進し挿入される。その後、挿入針はわずかに引き戻される。その結果、厚さ方向糸7はU字状のループを形成した状態となる。
【0020】
次に図示しない抜け止め糸針が前記U字状のループ内を通過し、積層繊維群6の端部まで到達した時点で停止する。この時抜け止め糸8が抜け止め糸針の先端に掛止される。そして、抜け止め糸針が引き戻され、抜け止め糸8が厚さ方向糸7のU字状ループ内に挿通された状態になる。その状態で挿入針が引き戻され、厚さ方向糸7により抜け止め糸8が締め付けられて各糸層が結合される。この工程が積層繊維群6の全面に均一に行われ、積層繊維群6の各糸層が厚さ方向糸7で結合された繊維構造体が製作される。
【0021】
次に、前記繊維構造体のうち、所望の製品形状に成形する際に変形が必要な部分となる領域に、前記挿入針に代えて取り付けられた切断針が複数回挿入・引戻しされる。切断針が挿入・引戻しされた回数に応じて前記領域のx糸4a、y糸5a、厚さ方向糸7、抜け止め糸8が切断されて、切断領域3が形成される。こうして非切断領域2と切断領域3から構成された繊維構造体1が製作される。ただし繊維構造体1の全ての領域が切断領域3となることは無い。
【0022】
前述のようにして得られた繊維構造体1に溶融含浸成形法など一般の含浸法で熱可塑性樹脂が含浸され、冷却されて成形用の板状の素材が形成される。次に前記素材は成形前に加熱され軟化された後、プレス成形機でプレス成形され、冷却されて、図3に示すように製品形状の繊維強化複合材10を得る。
【0023】
この実施の形態では以下の効果を有する。
(1) 積層繊維群6の各糸層が厚さ方向糸7で結合された繊維構造体の、変形が必要な部分の領域の連続繊維の一部が切断された繊維構造体1を強化材とした繊維強化複合材が製造される。従って、製品形状に合わせた形状の三次元繊維構造体を製作する必要がなくコストを抑えることができる。
【0024】
(2) 連続繊維は、切断針が積層繊維群6の各糸層が厚さ方向糸7で結合された繊維構造体に挿入・引戻しされることで切断される。従って、繊維構造体1の製造が容易である。
【0025】
(3) 切断領域3は切断針が挿入・引戻しされることで形成される。従って挿入・引戻しする回数によって切断領域3の拘束力を容易に調整できる。
(4) 切断領域3は挿入針に代えて取り付けられる切断針が挿入・引戻しされることで形成される。従って既存の設備が利用でき、製造が容易である。
【0026】
(5) 切断領域3のみ拘束力が低下しており、非切断領域2は連続繊維で構成され拘束力が保たれている。従って、繊維構造体1に樹脂が含浸されない状態においても繊維構造体1のハンドリング性がよい。
【0027】
(6) 繊維構造体1の両端部に非切断領域2が設けられている。従って、繊維構造体1に樹脂が含浸されない状態においても繊維構造体1のハンドリング性がよい。
【0028】
(7) 変形が必要な部分である切断領域3は拘束力が低下している。従って、プレス加工により部品形状に合わせて繊維構造体1が変形し、皺が発生しない。
【0029】
(8) 変形が必要な部分である切断領域3のみ拘束力が低下しており、非切断領域2は連続繊維で構成されている。従って、製品形状で連続繊維の三次元繊維構造体を強化材とした繊維強化複合材としての強度が保たれる。
【0030】
(第2の実施の形態)
次に第2の実施の形態を説明する。この実施の形態においては、繊維構造体1の構成・製造方法は前記実施の形態と同一で、成形の工程が大きく異なっている。前記の実施の形態と同様な部分は同一符号を付して詳しい説明を省略する。
【0031】
前記実施の形態により得られた繊維構造体1が成形型に投入され型閉めされる。この時変形が必要な部分の領域は切断領域3となっている為、繊維構造体1は型に合わせて変形し製品形状となる。次に熱硬化性樹脂が注入されて含浸された後、加熱硬化され、図3に示すように製品形状の繊維強化複合材10を得る。(RTM法:レジン・トランスファー・モールディング法)
この実施の形態では前記実施の形態の(1)〜(8)と同様な効果を有する他に、以下の効果を有する。
【0032】
(9) 熱硬化性樹脂を使用して成形できる。従って熱可塑性樹脂を使用した場合よりも高強度な繊維強化複合材を製造できる。
実施の形態は前記に限らず、例えば次のように構成してもよい。
【0033】
○ 強化繊維は炭素繊維でなくてもよい。例えば、ガラス繊維、ポリアラミド繊維、セラミック繊維等でもよい。
○ x糸4a、y糸5a、厚さ方向糸7及び抜け止め糸8として全て同じ繊維を使用するのではなく、糸によって異なる繊維を使用してもよい。例えば、繊維強化複合材10に要求される物性に対応して、x糸4aの繊維をy糸5aの繊維より強度の低いものとしてもよい。この場合、繊維強化複合材10を過剰品質とせずに製造コストを低減できる。
【0034】
○ 厚さ方向糸7は積層繊維群6の全面に均一に配列されなくてもよい。例えば、厚さ方向糸7を密にした領域は拘束力が強く、厚さ方向糸7を疎にした領域は拘束力が弱くなる。従って拘束力の調整ができる。
【0035】
○ 積層繊維群6は少なくとも2軸配向されていればよく、互いに直交するように配列されたx糸4aからなるx糸層4と、y糸5aからなるy糸層5の2種類の糸層で形成される必要はない。例えば、配列糸が互いに直交しない状態に配列された糸層で積層繊維群6を形成してもよい。
【0036】
○ 積層繊維群6を3軸以上の配向としてもよい。例えば、製品に必要とされる強度に応じてバイアス糸層を入れてもよい。
○ 繊維構造体は平板でなくてもよい。曲率が小さな曲面状に形成されたものでもよい。
【0037】
○ 抜け止め糸8を使用せずに、厚さ方向糸7のみで各糸層を一般的な縫合によって結合してもよい。
○ 厚さ方向糸7は、繊維構造体1の一端から他端まで連続した状態で配列されていなくてもよい。不連続であっても、各糸層を貫通して結合していればよい。
【0038】
○ 繊維強化複合材10を製造する場合、1枚の繊維構造体1で1個の繊維強化複合材10(製品)を形成することに限らない。製品形状あるいは要求性能に応じて、繊維構造体1を複数枚並べたり、重ねたりして成形してもよい。
【0039】
○ 切断領域3を形成するには、挿入針に代えて取り付けられた切断針でなくてもよい。例えば別工程でニードルパンチを施してもよい。また、針でなくても繊維構造体を破壊しない程度の小型刃物でもよい。
【0040】
○ 第1の実施の形態はプレス成形に限らない。例えば真空成形でもよい。シート状の繊維構造体1に熱可塑性樹脂を含浸させた後、成形する方法であればよい。
【0041】
○ 第2の実施の形態はRTM法に限らない。シート状の繊維構造体1に熱硬化性樹脂を含浸成形する方法であればよい。
○ 第2の実施の形態の繊維強化複合材10を構成するマトリックス樹脂は熱硬化性樹脂に限らず、熱可塑性樹脂であってもよい。この場合、樹脂を含浸した後の加熱が不要となり、自然冷却させればよい。
【0042】
○ 繊維強化複合材10としてマトリックスを樹脂以外のもの、例えば金属としてもよい。この場合、繊維構造体1を構成する繊維は、マトリックス金属の溶融温度で損傷しない炭素繊維やセラミック繊維等が使用される。
【0043】
前記実施の形態から把握できる技術的思想(発明)について以下に記載する。(1) 請求項3又は請求項4に記載の発明において、前記繊維構造体の長さ方向及び幅方向のうち少なくともいずれか一方の両端部の領域で連続繊維が非切断状態である。
【0044】
(2) 請求項3又は請求項4に記載の繊維構造体を強化材とした繊維強化複合材。
【0045】
【発明の効果】
以上詳述したように、請求項1及び請求項2の発明によれば、三次元繊維強化複合材を低コストで製造できる。また、請求項3及び請求項4の発明の繊維構造体は、請求項1及び請求項2の繊維強化複合材の製造方法に適している。
【図面の簡単な説明】
【図1】(a)は樹脂を含浸する前の繊維構造体の模式図、(b)は連続繊維が切断されていない領域の繊維構造体の模式断面図。
【図2】(a)はx糸層の配列状態を示す模式図、(b)はy糸層の配列状態を示す模式図。
【図3】繊維強化複合材の模式図。
【符号の説明】
1…繊維構造体、4…糸層としてのx糸層、4a…連続繊維から成る繊維束としてのx糸、5…糸層としてのy糸層、5a…連続繊維から成る繊維束としてのy糸、6…積層繊維群、7…結合糸としての厚さ方向糸、10…繊維強化複合材。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a fiber-reinforced composite material and a fiber structure.
[0002]
[Prior art]
Fiber-reinforced composite materials, particularly fiber-reinforced plastics, are lightweight and high-strength, and are widely used in automobiles as structural materials such as spoilers. The fibers used for the fiber-reinforced composite material include carbon fibers, glass fibers, polyaramid fibers and the like.
[0003]
The most frequently used fiber reinforced composites that use short fibers or long fibers that are not continuous fibers as reinforcements have broken fibers and their orientation is difficult to control. There is. In addition, fiber-reinforced composites that use a two-dimensional fiber structure that uses pre-cut fibers, such as non-woven fabrics using chopped fibers or woven fabrics using cut-off yarns, are fiber-reinforced composites using short fibers or long fibers. Higher strength than wood. However, the cutting step increases costs. When the thickness of the final product is large, a plurality of nonwoven fabrics or woven fabrics are used in a laminated state, so that the strength in the thickness direction is low and the bending strength is also low.
[0004]
When the thickness of the final product is large and high strength is required, a fiber-reinforced composite material using a three-dimensional fiber structure using continuous fibers as a reinforcing material is used. Since the fibers are continuous and are three-dimensionally configured, the strength is very high.
[0005]
The fiber-reinforced composite material must be deformed into a part shape during molding. Conventionally, there is a method of partially fusing a coarse woven fabric with a thermoplastic resin in order to easily deform the two-dimensional fiber structure. In addition, Japanese Patent Application Laid-Open No. 8-337666 discloses a deep-drawn preform including a bidirectional woven fabric having a warp and a weft as reinforcing fibers. This preform has a thermoplastic polymer linearly and continuously or discontinuously attached to at least one of the warp yarn and the weft yarn, and the minimum crossing angle of the yarn extending in two directions of the reinforcing fabric is 20 to 40. Degree. However, in the case of using a woven fabric as a reinforcing material, there is a restriction even if the mesh is coarsened, so there is a limit to deformation, and yarns (fibers) having different arrangement directions interfere with each other, so that the fibers are arranged straight. However, it is difficult to increase the strength of the fiber-reinforced composite material.
[0006]
[Problems to be solved by the invention]
A three-dimensional fiber structure using continuous fibers is less likely to be deformed in accordance with the part shape than a two-dimensional fiber structure. Therefore, a three-dimensional fiber structure using continuous fibers has to be manufactured in advance in a shape that matches the product shape so as not to need to be deformed. However, in this case, a manufacturing apparatus, a jig, and the like for a fiber structure are required for each product shape, so that the cost is high.
[0007]
The present invention has been made in view of the above problems, and a first object of the present invention is to provide a method for producing a three-dimensional fiber reinforced composite material capable of producing a three-dimensional fiber reinforced composite material at low cost. A second object is to provide a fiber structure suitable for the manufacturing method.
[0008]
[Means for Solving the Problems]
In order to achieve the first object, the invention according to claim 1 forms a yarn layer by arranging fiber bundles composed of continuous fibers in one direction, and laminates the yarn layers to at least biaxial orientation. After forming a laminated fiber group of the laminated fiber group, after inserting the binding yarn in the thickness direction of the laminated fiber group on the entire surface of the laminated fiber group and binding the yarn layers, the fiber layer has a portion that requires deformation and an unnecessary portion. A part of the continuous fiber in the area of the part where the deformation is required of the laminated fiber group is cut to produce a fibrous structure, and then the fibrous structure is impregnated with a thermoplastic resin to form a plate-like material. And forming the composite to form a composite. Here, the term "yarn" does not only mean a twisted yarn, but also includes a fiber bundle (so-called roving) in which a large number of fibers are bundled and twisting is not substantially applied.
[0009]
According to the present invention, by cutting a part of the continuous fibers in a region of a portion requiring deformation in the entire surface of the laminated fiber group bonded by the bonding yarn, the binding force is reduced in the region. Therefore, even when a three-dimensional fiber structure of continuous fibers is used as a reinforcing material, deformation during molding becomes easy, and a fiber-reinforced composite material having a desired shape can be manufactured by press working or the like. Therefore, there is no need to manufacture a three-dimensional fiber structure having a shape that matches the product shape, and costs can be reduced.
[0010]
The invention according to claim 2, wherein the fiber bundle formed of continuous fibers is arranged in one direction to form a yarn layer, and the yarn layers are laminated to form at least a biaxially oriented laminated fiber group, and the laminated fiber After inserting the binding yarn in the thickness direction of the laminated fiber group on the entire surface of the group and bonding the yarn layers, the laminated fiber group having a portion requiring deformation and an unnecessary portion A part of the continuous fiber in the region is cut to produce a fibrous structure, and then the fibrous structure is put into a mold to obtain a product shape, and is impregnated and cured with a resin to form a composite material. Here, the curing of the resin includes not only the curing by a reaction such as thermosetting or ultraviolet curing, but also the hardening of the thermoplastic resin which has been softened or melted by heating and cooled by heating. That is, the resin may be a thermoplastic resin or a thermosetting resin. Accordingly, a thermosetting resin can be used, and a fiber-reinforced composite material having higher strength can be obtained.
[0011]
In order to attain the second object, the invention according to claim 3 is characterized in that a laminated fiber group in which a fiber bundle composed of continuous fibers is at least biaxially oriented has a thickness of the laminated fiber group on the entire surface of the laminated fiber group. The continuous fibers in some regions are cut by the bonding yarns arranged in the directions. Therefore, the restraining force is reduced in the region where the continuous fiber is cut, and the deformation is easy, and it can be suitably used in the manufacturing method of the first and second aspects of the present invention.
[0012]
According to a fourth aspect of the present invention, in the third aspect, the binding yarns are uniformly arranged on the entire surface of the laminated fiber group. Therefore, it is easy to manufacture the fibrous structure.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
An embodiment in which the present invention is embodied in the production of a fiber-reinforced composite material using a thermoplastic resin as a matrix resin will be described with reference to FIGS.
[0014]
First, the fiber structure will be described. As shown in FIG. 1B, x yarns 4a as a fiber bundle made of continuous fibers are arranged in one direction (a direction perpendicular to the paper surface in FIG. 1B) to form an x yarn layer 4. . Similarly, the y yarns 5a as a fiber bundle made of continuous fibers are arranged in one direction (the left and right direction in FIG. 1B) to form the y yarn layer 5. The x-yarn layer 4 and the y-yarn layer 5 are alternately laminated in a plurality of layers to form a biaxially oriented laminated fiber group 6. The two axes are orthogonal to each other. The thickness direction yarns 7 are uniformly inserted and arranged on the entire surface of the laminated fiber group 6 in the thickness direction of the laminated fiber group 6. The thickness direction yarn 7 is folded back in a U-shape on one surface (the lower surface in FIG. 1B) of the laminated fiber group 6, and the thickness direction yarn 7 is folded on the other surface (the upper surface in FIG. 1B). At the insertion position separated by the arrangement pitch of, and is continuously inserted into the laminated fiber group 6 again. The retaining yarn 8 is inserted into a portion where the thickness direction yarn 7 is folded back into a U-shape. The x-layer 4 and the y-layer 5 are joined by tightening the thickness direction thread 7 and the retaining thread 8. In the laminated fiber group 6 joined by the thickness direction yarn 7 and the retaining yarn 8, the x yarn 4a, the y yarn 5a, the thickness direction yarn 7, and a part of the retaining yarn 8 are cut in some regions. Thus, a cutting region 3 is formed.
[0015]
As shown in FIG. 1A, the fibrous structure 1 has a non-cut area where the x yarns 4a, the y yarns 5a, etc. of the laminated fiber group 6 joined by the thickness direction yarns 7 and the retaining yarns 8 are not cut. 2 and a cutting area 3 where the x yarn 4a, the y yarn 5a, and the like are cut. The cutting region 3 is provided in a portion that needs to be deformed when forming into a product shape. Both ends of the fibrous structure 1 are non-cut regions 2. Since a part of each of the yarns is cut in the cutting area 3, the cutting force is weaker than that in the non-cutting area 2 and is easily deformed.
[0016]
Continuous fibers are used as the x yarn 4a, the y yarn 5a, the thickness direction yarn 7, and the retaining yarn 8. In this embodiment, carbon fibers are used as continuous fibers. The carbon fiber has about 3000 to 24000 filaments. The arrangement pitch of the thickness direction yarns 7 is about 3 to 5 mm. The thickness of the fibrous structure 1 is about 5 mm.
[0017]
Next, a method for producing a fiber-reinforced composite material using a thermoplastic resin as a matrix resin will be described.
As shown in FIGS. 2A and 2B, the rectangular frame 9 is provided with a large number of pins 9b so as to surround the hole 9a. The pitch of the pins 9b is matched with the pitch of the x yarn 4a and the y yarn 5a.
[0018]
As shown in FIG. 2A, the x yarn 4a is folded in a state of being engaged with the pin 9b to form the x yarn layer 4 oriented in one direction. Next, as shown in FIG. 2B, the y yarn 5a is similarly folded back in a state of being engaged with the pin 9b, and is oriented in one direction orthogonal to the x yarn 4a to form the y yarn layer 5. . This is repeated a predetermined number of times to form the laminated fiber group 6. 2 (a) and 2 (b), the arrangement intervals of the x yarns 4a and the y yarns 5a are broadly illustrated. However, in practice, the x yarns 4a or the y yarns 5a arranged adjacent to each other are in contact with each other. Are arranged.
[0019]
Next, the thickness direction thread 7 is inserted into the laminated fiber group 6 by a method disclosed in, for example, JP-A-8-218249. More specifically, in the thickness direction of the laminated fiber group 6, an insertion needle (not shown) having a hole at the tip and hooking the thickness direction thread 7 in the hole is inserted. The insertion needle is advanced and inserted until the hole of the insertion needle on which the thickness direction thread 7 is hooked penetrates the laminated fiber group 6. Thereafter, the insertion needle is withdrawn slightly. As a result, the thickness direction thread 7 is in a state of forming a U-shaped loop.
[0020]
Next, when a not-shown retaining thread needle passes through the U-shaped loop and reaches the end of the laminated fiber group 6, it stops. At this time, the retaining thread 8 is hooked on the tip of the retaining thread needle. Then, the retaining thread needle is pulled back, and the retaining thread 8 is inserted into the U-shaped loop of the thickness direction thread 7. In this state, the insertion needle is pulled back, the retaining thread 8 is tightened by the thickness direction thread 7, and the respective thread layers are joined. This process is performed uniformly over the entire surface of the laminated fiber group 6, and a fiber structure in which the yarn layers of the laminated fiber group 6 are joined by the thickness direction yarns 7 is manufactured.
[0021]
Next, a cutting needle attached in place of the insertion needle is inserted and retracted a plurality of times into a region of the fibrous structure which is a portion that needs to be deformed when forming into a desired product shape. The x yarn 4a, the y yarn 5a, the thickness direction yarn 7, and the retaining yarn 8 in the region are cut in accordance with the number of times the cutting needle has been inserted / retracted, and the cut region 3 is formed. Thus, the fibrous structure 1 composed of the non-cut area 2 and the cut area 3 is manufactured. However, not all areas of the fibrous structure 1 are cut areas 3.
[0022]
The fibrous structure 1 obtained as described above is impregnated with a thermoplastic resin by a general impregnation method such as a melt impregnation molding method, and cooled to form a plate-shaped material for molding. Next, the material is heated and softened before molding, then press-molded by a press molding machine, and cooled to obtain a fiber-reinforced composite material 10 in a product shape as shown in FIG.
[0023]
This embodiment has the following effects.
(1) The fiber structure 1 in which each of the yarn layers of the laminated fiber group 6 is bonded by the thickness direction yarn 7 and the fiber structure 1 in which a part of the continuous fiber is cut in the area where the deformation is required is used as the reinforcing material. A fiber-reinforced composite material is manufactured. Therefore, there is no need to manufacture a three-dimensional fiber structure having a shape that matches the product shape, and costs can be reduced.
[0024]
(2) The continuous fiber is cut by inserting and pulling back the cutting needle into the fiber structure in which each yarn layer of the laminated fiber group 6 is connected by the thickness direction yarn 7. Therefore, the production of the fibrous structure 1 is easy.
[0025]
(3) The cutting area 3 is formed by inserting and withdrawing the cutting needle. Therefore, the binding force of the cutting area 3 can be easily adjusted by the number of times of insertion / retraction.
(4) The cutting area 3 is formed by inserting / retracting a cutting needle attached in place of the insertion needle. Therefore, existing equipment can be used and manufacturing is easy.
[0026]
(5) Only the cutting region 3 has a reduced binding force, and the non-cutting region 2 is made of continuous fibers and has a binding force. Therefore, even when the fiber structure 1 is not impregnated with the resin, the handleability of the fiber structure 1 is good.
[0027]
(6) Non-cut areas 2 are provided at both ends of the fibrous structure 1. Therefore, even when the fiber structure 1 is not impregnated with the resin, the handleability of the fiber structure 1 is good.
[0028]
(7) The cutting area 3 which needs to be deformed has a reduced binding force. Therefore, the fibrous structure 1 is deformed in accordance with the component shape by the press working, and no wrinkles are generated.
[0029]
(8) Only the cutting region 3 where deformation is necessary has a reduced binding force, and the non-cutting region 2 is made of continuous fibers. Therefore, the strength as a fiber-reinforced composite material having a product shape and a three-dimensional fiber structure of continuous fibers as a reinforcing material is maintained.
[0030]
(Second embodiment)
Next, a second embodiment will be described. In this embodiment, the configuration and manufacturing method of the fibrous structure 1 are the same as those of the above-described embodiment, and the molding process is greatly different. The same parts as those in the above embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0031]
The fibrous structure 1 obtained according to the above embodiment is put into a molding die and closed. At this time, since the area of the portion that needs to be deformed is the cut area 3, the fibrous structure 1 is deformed according to the mold to have a product shape. Next, a thermosetting resin is injected and impregnated, and then heat-cured to obtain a fiber-reinforced composite material 10 having a product shape as shown in FIG. (RTM method: resin transfer molding method)
This embodiment has the following effects in addition to the effects similar to (1) to (8) of the above embodiment.
[0032]
(9) It can be molded using a thermosetting resin. Therefore, a fiber-reinforced composite material having higher strength than when a thermoplastic resin is used can be manufactured.
The embodiment is not limited to the above, and may be configured as follows, for example.
[0033]
○ The reinforcing fibers need not be carbon fibers. For example, glass fiber, polyaramid fiber, ceramic fiber and the like may be used.
The same fibers may not be used as the x yarn 4a, the y yarn 5a, the thickness direction yarn 7, and the retaining yarn 8, but different fibers may be used depending on the yarn. For example, the fiber of the x yarn 4a may be lower in strength than the fiber of the y yarn 5a in accordance with the physical properties required of the fiber reinforced composite material 10. In this case, the production cost can be reduced without making the fiber reinforced composite material 10 of excessive quality.
[0034]
The thickness direction yarns 7 need not be uniformly arranged on the entire surface of the laminated fiber group 6. For example, a region where the thickness direction yarns 7 are dense has a high binding force, and a region where the thickness direction yarns 7 are sparse has a low binding force. Therefore, the binding force can be adjusted.
[0035]
The laminated fiber group 6 only needs to be at least biaxially oriented, and has two types of yarn layers, an x yarn layer 4 composed of x yarns 4a and a y yarn layer 5 composed of y yarns 5a arranged orthogonally to each other. It does not need to be formed with For example, the laminated fiber group 6 may be formed of yarn layers in which the arranged yarns are not arranged orthogonally to each other.
[0036]
○ The laminated fiber group 6 may have three or more axes. For example, a bias yarn layer may be inserted according to the strength required for the product.
○ The fibrous structure need not be a flat plate. It may be a curved surface having a small curvature.
[0037]
O Without using the retaining thread 8, each thread layer may be joined by general sewing using only the thickness direction thread 7.
The thickness direction yarns 7 do not have to be arranged continuously from one end to the other end of the fibrous structure 1. Even if it is discontinuous, it is only necessary to penetrate and connect each yarn layer.
[0038]
In the case of manufacturing the fiber reinforced composite material 10, it is not limited to forming one fiber reinforced composite material 10 (product) with one fiber structure 1. A plurality of fibrous structures 1 may be arranged or stacked depending on the product shape or required performance.
[0039]
In order to form the cutting region 3, it is not necessary to use a cutting needle attached in place of the insertion needle. For example, needle punching may be performed in another step. In addition, a small blade that does not destroy the fibrous structure may be used instead of the needle.
[0040]
○ The first embodiment is not limited to press molding. For example, vacuum forming may be used. Any method may be used as long as the sheet-like fiber structure 1 is impregnated with a thermoplastic resin and then molded.
[0041]
The second embodiment is not limited to the RTM method. Any method may be used as long as the sheet-like fibrous structure 1 is impregnated with a thermosetting resin.
The matrix resin constituting the fiber reinforced composite material 10 of the second embodiment is not limited to a thermosetting resin, but may be a thermoplastic resin. In this case, heating after impregnating the resin is not required, and the resin may be naturally cooled.
[0042]
The matrix of the fiber reinforced composite material 10 may be other than resin, for example, metal. In this case, as the fibers constituting the fibrous structure 1, carbon fibers, ceramic fibers, and the like that are not damaged by the melting temperature of the matrix metal are used.
[0043]
The technical ideas (inventions) that can be grasped from the above embodiment will be described below. (1) In the invention according to claim 3 or 4, the continuous fibers are in a non-cut state in at least one of both end regions in the length direction and the width direction of the fibrous structure.
[0044]
(2) A fiber-reinforced composite material comprising the fiber structure according to claim 3 or 4 as a reinforcing material.
[0045]
【The invention's effect】
As described in detail above, according to the first and second aspects of the present invention, a three-dimensional fiber reinforced composite material can be manufactured at low cost. Further, the fiber structure according to the third and fourth aspects of the invention is suitable for the method for producing a fiber-reinforced composite material according to the first and second aspects.
[Brief description of the drawings]
FIG. 1A is a schematic diagram of a fiber structure before resin impregnation, and FIG. 1B is a schematic cross-sectional view of the fiber structure in a region where continuous fibers are not cut.
2A is a schematic diagram showing an arrangement state of an x yarn layer, and FIG. 2B is a schematic diagram showing an arrangement state of a y yarn layer.
FIG. 3 is a schematic view of a fiber-reinforced composite material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fiber structure, 4 ... x yarn layer as a yarn layer, 4a ... x yarn as a fiber bundle composed of continuous fibers, 5 ... y yarn layer as a yarn layer, 5a ... y as fiber bundle composed of continuous fibers Yarn, 6 ... Laminated fiber group, 7 ... Thickness direction yarn as binding yarn, 10 ... Fiber reinforced composite material.

Claims (4)

連続繊維から成る繊維束を一方向に配列して糸層を形成し、前記糸層を積層して少なくとも2軸配向の積層繊維群を形成し、前記積層繊維群の全面に該積層繊維群の厚さ方向に結合糸を挿入して前記糸層を結合した後、変形が必要な部分と不要な部分を有する前記積層繊維群の、変形が必要な部分の領域の前記連続繊維の一部を切断して繊維構造体を製作し、次に、前記繊維構造体に熱可塑性樹脂を含浸させて板状の素材を形成し、前記素材を成形して複合材を形成する繊維強化複合材の製造方法。A fiber bundle formed of continuous fibers is arranged in one direction to form a yarn layer, and the yarn layers are laminated to form a laminated fiber group of at least biaxial orientation. After inserting the binding yarn in the thickness direction and binding the yarn layers, the laminated fiber group having a portion requiring deformation and an unnecessary portion, a part of the continuous fibers in a region of a portion requiring deformation is removed. Cutting to produce a fibrous structure, then impregnating the fibrous structure with a thermoplastic resin to form a plate-like material, and molding the material to form a composite material, producing a fiber-reinforced composite material Method. 連続繊維から成る繊維束を一方向に配列して糸層を形成し、前記糸層を積層して少なくとも2軸配向の積層繊維群を形成し、前記積層繊維群の全面に該積層繊維群の厚さ方向に結合糸を挿入して前記糸層を結合した後、変形が必要な部分と不要な部分を有する前記積層繊維群の、変形が必要な部分の領域の前記連続繊維の一部を切断して繊維構造体を製作し、次に、前記繊維構造体を型に投入して製品形状とし、樹脂を含浸硬化させて複合材を形成する繊維強化複合材の製造方法。A fiber bundle formed of continuous fibers is arranged in one direction to form a yarn layer, and the yarn layers are laminated to form a laminated fiber group of at least biaxial orientation. After inserting the binding yarn in the thickness direction and binding the yarn layers, the laminated fiber group having a portion requiring deformation and an unnecessary portion, a part of the continuous fibers in a region of a portion requiring deformation is removed. A method for producing a fiber-reinforced composite material, in which a fiber structure is manufactured by cutting, and then the fiber structure is put into a mold to obtain a product shape, and impregnated and cured with a resin to form a composite material. 連続繊維から成る繊維束が少なくとも2軸配向された積層繊維群が、前記積層繊維群の全面に該積層繊維群の厚さ方向に配列された結合糸で結合され、一部の領域の前記連続繊維が切断されている繊維構造体。A laminated fiber group in which a fiber bundle composed of continuous fibers is at least biaxially oriented is bonded to the entire surface of the laminated fiber group by binding yarns arranged in the thickness direction of the laminated fiber group, and the continuous region A fibrous structure from which fibers have been cut. 前記積層繊維群の全面に前記結合糸が均一に配列されている請求項3に記載の繊維構造体。The fiber structure according to claim 3, wherein the binding yarns are uniformly arranged on the entire surface of the laminated fiber group.
JP2002197201A 2002-07-05 2002-07-05 Manufacturing method of fiber reinforced composite material Expired - Lifetime JP4019822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197201A JP4019822B2 (en) 2002-07-05 2002-07-05 Manufacturing method of fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197201A JP4019822B2 (en) 2002-07-05 2002-07-05 Manufacturing method of fiber reinforced composite material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007126457A Division JP4544266B2 (en) 2007-05-11 2007-05-11 Fiber reinforced composite

Publications (2)

Publication Number Publication Date
JP2004034592A true JP2004034592A (en) 2004-02-05
JP4019822B2 JP4019822B2 (en) 2007-12-12

Family

ID=31705033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197201A Expired - Lifetime JP4019822B2 (en) 2002-07-05 2002-07-05 Manufacturing method of fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP4019822B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015663A (en) * 2004-07-02 2006-01-19 Nitto Boseki Co Ltd Method for manufacturing fiber-reinforced resin structure, fiber-reinforced resin structure and composite base material
JP2007301838A (en) * 2006-05-11 2007-11-22 Fuji Heavy Ind Ltd Three-dimensional fiber-reinforced resin composite
JP2010046956A (en) * 2008-08-22 2010-03-04 Toyota Industries Corp Fiber structure, fiber reinforced composite material, production process of fiber structure, and production process of fiber reinforced composite material
JP2011512267A (en) * 2008-01-09 2011-04-21 ザ・ボーイング・カンパニー Composite parts with curved outer shape
JP2013522483A (en) * 2010-03-16 2013-06-13 アドバンスド マニュファクチャー テクノロジー センター、チャイナアカデミー オブ マシーネリー サイエンス アンド テクノロジー Three-dimensional weaving method for composite materials
US10391726B2 (en) 2016-04-25 2019-08-27 Hyundai Motor Company Composite layer, manufacturing method of the same, and composite layer lamination

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015663A (en) * 2004-07-02 2006-01-19 Nitto Boseki Co Ltd Method for manufacturing fiber-reinforced resin structure, fiber-reinforced resin structure and composite base material
JP4710264B2 (en) * 2004-07-02 2011-06-29 日東紡績株式会社 Method for producing fiber-reinforced resin structure, fiber-reinforced resin structure, and composite substrate
JP2007301838A (en) * 2006-05-11 2007-11-22 Fuji Heavy Ind Ltd Three-dimensional fiber-reinforced resin composite
JP2011512267A (en) * 2008-01-09 2011-04-21 ザ・ボーイング・カンパニー Composite parts with curved outer shape
JP2010046956A (en) * 2008-08-22 2010-03-04 Toyota Industries Corp Fiber structure, fiber reinforced composite material, production process of fiber structure, and production process of fiber reinforced composite material
JP2013522483A (en) * 2010-03-16 2013-06-13 アドバンスド マニュファクチャー テクノロジー センター、チャイナアカデミー オブ マシーネリー サイエンス アンド テクノロジー Three-dimensional weaving method for composite materials
US10391726B2 (en) 2016-04-25 2019-08-27 Hyundai Motor Company Composite layer, manufacturing method of the same, and composite layer lamination

Also Published As

Publication number Publication date
JP4019822B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
EP1842656B1 (en) Three-dimensional fiber structure and method for manufacturing three-dimensional fiber structure
JP4324649B2 (en) Fiber reinforced thermoplastic resin sheet, structural material using the same, and method for producing fiber reinforced thermoplastic resin sheet
US8840988B2 (en) Fiber preform made from reinforcing fiber bundles and comprising unidirectional fiber tapes, and composite component
KR101886877B1 (en) Woven preform, composite, and method of making thereof
EP2554348B1 (en) Method for laminating fiber-reinforced thermoplastic resin prepreg
JPH027825B2 (en)
JP6138045B2 (en) Method for producing high-weight carbon fiber sheet for RTM method and RTM method
US11173687B2 (en) Reinforced substrate for composite material, composite material, and method for manufacturing reinforced substrate for composite material
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
JP4544266B2 (en) Fiber reinforced composite
JP2004034592A (en) Method for manufacturing fiber reinforced composite material and fiber structure
WO2020031771A1 (en) Reinforced fiber tape material and production method therefor, fiber reinforced resin molded body and reinforced fiber layered body using reinforced fiber tape material
CN110191788B (en) Method for producing fiber-reinforced plastic
JP5990030B2 (en) Method for molding fiber reinforced plastic structure and method for producing reinforced fiber sheet for VaRTM
JP3915614B2 (en) Fiber structure and composite material having deformed portion
WO2021033740A1 (en) Frp product manufacturing method
JP2010047875A (en) Fibrous structural material, method for producing the same and method for producing fiber-reinforced composite material
JP6650296B2 (en) Substrate for fiber reinforced plastic, multilayer substrate for fiber reinforced plastic, preform for fiber reinforced plastic, and method for producing the same
CN114616090B (en) Carbon fiber tape material, and reinforcing fiber laminate and molded body using same
JP2010046956A (en) Fiber structure, fiber reinforced composite material, production process of fiber structure, and production process of fiber reinforced composite material
JP6729712B2 (en) Reinforcement base material for composite material, composite material, and method for manufacturing reinforcement base material for composite material
WO2014034606A1 (en) Three-dimensional fiber structure, prepreg using same and process for manufacturing three-dimensional fiber structure
JP2002248693A (en) Frp long molded object and method for manufacturing the same
JP2018001718A (en) Preform, method for producing preform, and fiber-reinforced plastic using the preform
JP2004009601A (en) Preform for fiber reinforced plastic and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5