JP2010047875A - Fibrous structural material, method for producing the same and method for producing fiber-reinforced composite material - Google Patents

Fibrous structural material, method for producing the same and method for producing fiber-reinforced composite material Download PDF

Info

Publication number
JP2010047875A
JP2010047875A JP2008214457A JP2008214457A JP2010047875A JP 2010047875 A JP2010047875 A JP 2010047875A JP 2008214457 A JP2008214457 A JP 2008214457A JP 2008214457 A JP2008214457 A JP 2008214457A JP 2010047875 A JP2010047875 A JP 2010047875A
Authority
JP
Japan
Prior art keywords
fiber
resin
fiber layer
yarn
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008214457A
Other languages
Japanese (ja)
Inventor
Yoshiharu Yasui
義治 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2008214457A priority Critical patent/JP2010047875A/en
Publication of JP2010047875A publication Critical patent/JP2010047875A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase the productivity of a fibrous structural material for reinforcing a resin and a fiber-reinforced composite material. <P>SOLUTION: The fibrous structural material 11 is constituted by a plurality of reinforcing fiber layers 12, 13, 14, 15 consisting of fiber bundles 121, 131, 141, 151 for reinforcing the resin, a plurality of resin fiber layers 16, 17, 18, 19, 20 consisting of fiber bundles 161, 171, 181, 191, 201 made from a thermoplastic resin, fall off-stopping yarns 21 made from a thermoplastic resin and restricting yarns 22 made from a thermoplastic resin. On heating and compressing the fibrous structural material 11, the resin fiber layers 16-20, fall off-stopping yarns 21 and restricting yarns 22 are melted, and on solidifying the molten thermoplastic resin, the fiber-reinforced composite material 11A is formed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、樹脂強化用の繊維構造体、繊維構造体の製造方法、及び繊維構造体によって樹脂を強化した繊維強化複合材の製造方法に関する。   The present invention relates to a fiber structure for resin reinforcement, a method for producing a fiber structure, and a method for producing a fiber-reinforced composite material in which a resin is reinforced with a fiber structure.

炭素繊維、ガラス繊維、アラミド繊維等からなる繊維構造体を強化材として樹脂を強化した繊維強化複合材では、熱硬化性樹脂をマトリックス樹脂として採用するのが一般的であるが、成形に時間が掛かるために生産性が低いという問題がある。   In a fiber reinforced composite material in which a resin is reinforced using a fiber structure made of carbon fiber, glass fiber, aramid fiber, etc. as a reinforcing material, a thermosetting resin is generally used as a matrix resin, but time is required for molding. There is a problem that productivity is low because it takes.

特許文献1では、多軸織物基材と熱可塑性樹脂フィルムとをステッチ糸(拘束糸)によって縫合して一体化した多軸織物が開示されている。この多軸織物を加熱することによって熱可塑性樹脂フィルムが溶融し、溶融した熱可塑性樹脂が多軸織物基材中に浸透して複合シートが形成される。この複合シートを複数枚積層した物、あるいは1枚を金型内で加熱・プレスすることによって繊維強化複合材が得られる。
特開2006−291369号公報
Patent Document 1 discloses a multiaxial woven fabric in which a multiaxial woven fabric substrate and a thermoplastic resin film are integrated by stitching together with stitch yarns (constraint yarns). By heating the multiaxial woven fabric, the thermoplastic resin film is melted, and the molten thermoplastic resin penetrates into the multiaxial woven fabric substrate to form a composite sheet. A fiber reinforced composite material can be obtained by laminating a plurality of such composite sheets or by heating and pressing one in a mold.
JP 2006-291369 A

しかし、多軸織物基材と熱可塑性樹脂フィルムとをステッチ糸によって縫合する場合、熱可塑性樹脂フィルムの厚みが大きいと、多軸織物基材と熱可塑性樹脂フィルムとにステッチ糸を通すための挿入針を熱可塑性樹脂フィルムに通すことが困難になる。熱可塑性樹脂フィルムの厚みを小さくすれば、熱可塑性樹脂フィルムに挿入針を通しやすくなるが、その場合には熱可塑性樹脂フィルムの枚数が多くなる。この枚数増は、多軸織物基材と熱可塑性樹脂フィルムとを積層する工程の時間を増やし、生産性が悪くなる。   However, when stitching the multiaxial woven fabric base material and the thermoplastic resin film with stitch yarn, if the thickness of the thermoplastic resin film is large, the multiaxial woven fabric base material and the thermoplastic resin film are inserted to pass the stitch yarn. It becomes difficult to pass the needle through the thermoplastic resin film. If the thickness of the thermoplastic resin film is reduced, the insertion needle can be easily passed through the thermoplastic resin film. In this case, however, the number of thermoplastic resin films increases. This increase in the number of sheets increases the time for the step of laminating the multiaxial woven fabric base material and the thermoplastic resin film, and the productivity becomes worse.

本発明は、樹脂強化用の繊維構造体及び繊維強化複合材の生産性を高めることを目的とする。   An object of this invention is to improve the productivity of the fiber structure for resin reinforcement, and a fiber reinforced composite material.

請求項1乃至請求項5の本発明は、繊維で樹脂を強化した繊維強化複合材を製造するために用いられる樹脂強化用の繊維構造体を対象とし、請求項1の発明では、連続繊維からなる強化繊維層と、熱可塑性樹脂製の連続繊維からなる樹脂繊維層と、積層された前記強化繊維層と前記樹脂繊維層とを結合するための拘束糸とを備えている。   The first to fifth aspects of the present invention are directed to a fiber structure for resin reinforcement used for producing a fiber-reinforced composite material in which a resin is reinforced with fibers. A reinforcing fiber layer, a resin fiber layer made of continuous fibers made of thermoplastic resin, and a constraining yarn for bonding the laminated reinforcing fiber layer and the resin fiber layer.

樹脂強化とは、溶融した樹脂を強化繊維間に含浸させて、樹脂と繊維とを繊維強化複合材として一体化することである。拘束糸の挿入針は、樹脂繊維層を通り易く、熱可塑性樹脂製の連続繊維を配列して樹脂繊維層を形成するのは容易である。従って、繊維構造体の生産性が向上する。   Resin reinforcement is to impregnate a molten resin between reinforcing fibers to integrate the resin and fibers as a fiber-reinforced composite material. The insertion needle for the binding yarn is easy to pass through the resin fiber layer, and it is easy to form a resin fiber layer by arranging continuous fibers made of thermoplastic resin. Therefore, the productivity of the fiber structure is improved.

好適な例では、前記繊維構造体の最外層は、前記樹脂繊維層である。
樹脂繊維層を溶融して繊維強化複合材を形成したときの樹脂繊維層の表面の平滑が可能である。
In a preferred example, the outermost layer of the fiber structure is the resin fiber layer.
The surface of the resin fiber layer can be smoothed when the fiber reinforced composite material is formed by melting the resin fiber layer.

好適な例では、前記拘束糸は、熱可塑性樹脂製である。
樹脂繊維層を溶融して繊維強化複合材を形成したときに拘束糸も溶融するため、樹脂繊維層の表面の平滑性が高まる。
In a preferred example, the constraining yarn is made of a thermoplastic resin.
When the resin fiber layer is melted to form a fiber reinforced composite material, the binding yarn is also melted, so that the surface smoothness of the resin fiber layer is increased.

好適な例では、前記拘束糸の樹脂の融点は、前記樹脂繊維層の融点よりも高い。
樹脂繊維層を溶融した後でも暫くの間は拘束糸の溶融がない。これは、樹脂強化用の連続繊維の配列のずれの抑制に寄与する。
In a preferred example, the resin of the constraining yarn has a melting point higher than that of the resin fiber layer.
Even after the resin fiber layer is melted, the binding yarn does not melt for a while. This contributes to suppression of misalignment of the continuous fibers for resin reinforcement.

好適な例では、前記拘束糸に係合する抜け止め糸を備えている。
繊維構造体の最外側の繊維層の繊維配列方向と結合糸の縫合方向とが同じである場合には、この繊維層の外側で抜け止め糸を用いれば、拘束糸の抜けが防止される。
In a preferred example, a retaining thread that engages with the restraining thread is provided.
When the fiber arrangement direction of the outermost fiber layer of the fiber structure is the same as the stitching direction of the binding yarn, if the retaining thread is used outside the fiber layer, the restraining yarn is prevented from coming off.

請求項6乃至請求項8の発明は、繊維で樹脂を強化した繊維強化複合材を製造するために用いられる樹脂強化用の繊維構造体の製造方法を対象とし、請求項6の発明では、強化繊維層と樹脂繊維層とを積層する積層工程と、積層された前記強化繊維層と前記樹脂繊維層とを結合するように拘束糸を挿入する挿入工程とを備え、前記強化繊維層は、連続繊維を配列して形成され、前記樹脂繊維層は、熱可塑性樹脂製の連続繊維を配列して形成される。   The inventions according to claims 6 to 8 are directed to a method for producing a fiber structure for resin reinforcement used for producing a fiber reinforced composite material in which a resin is reinforced with fibers. A lamination step of laminating a fiber layer and a resin fiber layer; and an insertion step of inserting a constraining yarn so as to bond the laminated reinforcing fiber layer and the resin fiber layer. The resin fiber layer is formed by arranging continuous fibers made of thermoplastic resin.

連続繊維を配列して強化繊維層及び樹脂繊維層を形成する方法は、繊維構造体の生産性の向上に有利である。
好適な例では、前記拘束糸は、熱可塑性樹脂製である。
The method of arranging continuous fibers to form a reinforcing fiber layer and a resin fiber layer is advantageous for improving the productivity of the fiber structure.
In a preferred example, the constraining yarn is made of a thermoplastic resin.

樹脂繊維層の表面の平滑性が高まる。
好適な例では、前記拘束糸の樹脂の融点は、前記樹脂繊維層の融点よりも高い。
拘束糸の樹脂の融点を樹脂繊維層の融点よりも高くすると、樹脂強化用の連続繊維の配列のずれが抑制される。
The smoothness of the surface of the resin fiber layer is increased.
In a preferred example, the resin of the constraining yarn has a melting point higher than that of the resin fiber layer.
When the melting point of the resin of the constraining yarn is higher than the melting point of the resin fiber layer, the displacement of the continuous fibers for resin reinforcement is suppressed.

請求項9及び請求項10の発明は、繊維構造体によって樹脂を強化した繊維強化複合材の製造方法を対象とし、請求項9の発明では、強化繊維層と樹脂繊維層とを積層する積層工程と、積層された前記強化繊維層と前記樹脂繊維層とを結合するように拘束糸を挿入する挿入工程と、前記挿入工程を経て製造された繊維構造体を型内に配置する配置工程と、前記型内で加圧と加熱とを行なう加熱・加圧工程と、加熱・加圧された前記繊維構造体を冷却する冷却工程とを備える。   The inventions of claim 9 and claim 10 are directed to a method for producing a fiber reinforced composite material in which a resin is reinforced by a fiber structure. In the invention of claim 9, a lamination step of laminating a reinforcing fiber layer and a resin fiber layer. And an insertion step of inserting a constraining yarn so as to bond the laminated reinforcing fiber layer and the resin fiber layer, and an arrangement step of arranging the fiber structure manufactured through the insertion step in a mold, A heating / pressurizing step for performing pressurization and heating in the mold, and a cooling step for cooling the heated / pressurized fiber structure.

このような製造方法は、繊維強化複合材の生産性を高める。
好適な例では、前記拘束糸は、熱可塑性樹脂製であり、前記拘束糸の樹脂の融点は、前記樹脂繊維層の融点よりも高く、前記加熱・加圧工程は、少なくとも前記拘束糸の樹脂の融点以上に加熱する工程である。
Such a manufacturing method increases the productivity of the fiber-reinforced composite material.
In a preferred example, the constraining yarn is made of a thermoplastic resin, the melting point of the resin of the constraining yarn is higher than the melting point of the resin fiber layer, and the heating / pressurizing step includes at least the resin of the constraining yarn. It is the process of heating above the melting point.

このような加熱・加圧工程は、樹脂強化用の連続繊維の配列のずれの抑制に寄与する。   Such a heating / pressurizing step contributes to suppression of deviation in the arrangement of continuous fibers for resin reinforcement.

本発明は、樹脂強化用の繊維構造体及び繊維強化複合材の生産性を高めることができるという優れた効果を奏する。   The present invention has an excellent effect that the productivity of a fiber structure for resin reinforcement and the productivity of a fiber reinforced composite material can be increased.

以下、本発明を具体化した実施形態を図1〜図4に基づいて説明する。
図1(a)に示すように、繊維構造体11は、樹脂強化用の繊維束121,131,141,151からなる複数の強化繊維層12,13,14,15と、熱可塑性樹脂製の繊維束161,171,181,191,201からなる複数の樹脂繊維層16,17,18,19,20と、抜け止め糸21と、拘束糸22とから構成されている。抜け止め糸21及び拘束糸22は、熱可塑性樹脂製である。樹脂強化用の繊維束121〜151、熱可塑性樹脂製の繊維束161〜201、抜け止め糸21及び拘束糸22は、連続繊維からなる。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Embodiments of the invention will be described below with reference to FIGS.
As shown in FIG. 1 (a), the fiber structure 11 includes a plurality of reinforcing fiber layers 12, 13, 14, 15 composed of fiber bundles 121, 131, 141, 151 for resin reinforcement, and a thermoplastic resin. A plurality of resin fiber layers 16, 17, 18, 19, 20 including fiber bundles 161, 171, 181, 191, 201, a retaining thread 21, and a restraining thread 22 are included. The retaining thread 21 and the restraining thread 22 are made of a thermoplastic resin. The fiber bundles 121 to 151 for resin reinforcement, the fiber bundles 161 to 201 made of thermoplastic resin, the retaining yarn 21 and the restraining yarn 22 are made of continuous fibers.

強化繊維層12,13,14,15は、隣り合う熱可塑性樹脂製の樹脂繊維層16,17,18,19,20の間に配置されており、繊維構造体11の最外層は、樹脂繊維層16と樹脂繊維層20とである。拘束糸22は、繊維構造体11の厚み方向に繊維構造体11を貫通しており、拘束糸22は、樹脂繊維層16の外側で抜け止め糸21を跨ぐように折り返されている。つまり、拘束糸22は、強化繊維層12〜15と樹脂繊維層16〜20とを積層状態に結合する。   The reinforcing fiber layers 12, 13, 14, and 15 are disposed between adjacent thermoplastic resin resin fiber layers 16, 17, 18, 19, and 20, and the outermost layer of the fiber structure 11 is made of resin fibers. Layer 16 and resin fiber layer 20. The restraining yarn 22 penetrates the fiber structure 11 in the thickness direction of the fiber structure 11, and the restraining yarn 22 is folded back so as to straddle the retaining yarn 21 on the outside of the resin fiber layer 16. That is, the binding yarn 22 bonds the reinforcing fiber layers 12 to 15 and the resin fiber layers 16 to 20 in a laminated state.

図1(b)に示すように、繊維束121は、一方向に引き揃えられている。つまり、繊維束121は、その長さ方向が矢印Xで示す同じ方向(以下においてはX方向と記す)に揃うように配列されている。繊維束131は、その長さ方向が繊維束121の長さ方向(X方向)に対して斜交する矢印B1の方向(以下においてはB1方向と記す)に揃うように配列されている。繊維束141は、その長さ方向が繊維束121の長さ方向(X方向)に対して直交する矢印Yの方向(以下においてはY方向と記す)に揃うように配列されている。繊維束151は、その長さ方向が繊維束121の長さ方向Xに対して斜交する矢印B2の方向(以下においてはB2方向と記す)に揃うように配列されている。   As shown in FIG. 1B, the fiber bundle 121 is aligned in one direction. That is, the fiber bundles 121 are arranged so that their length directions are aligned in the same direction indicated by the arrow X (hereinafter referred to as the X direction). The fiber bundles 131 are arranged so that the length direction thereof is aligned with the direction of an arrow B1 (hereinafter referred to as the B1 direction) that is oblique to the length direction (X direction) of the fiber bundle 121. The fiber bundles 141 are arranged so that the length direction thereof is aligned with the direction of the arrow Y (hereinafter referred to as the Y direction) orthogonal to the length direction (X direction) of the fiber bundle 121. The fiber bundles 151 are arranged so that the length direction thereof is aligned with the direction of an arrow B2 that is oblique to the length direction X of the fiber bundle 121 (hereinafter referred to as the B2 direction).

繊維束161,171,181,191は、その長さ方向が繊維束121の長さ方向と同じ方向Xに揃うように配列されており、繊維束201は、その長さ方向が方向Yに揃うように配列されている。   The fiber bundles 161, 171, 181, and 191 are arranged so that the length direction thereof is aligned in the same direction X as the length direction of the fiber bundle 121, and the fiber bundle 201 is aligned in the length direction Y. Are arranged as follows.

繊維束121〜151としては、炭素繊維、ガラス繊維、アラミド繊維等の繊維束が用いられる。樹脂繊維層16〜20、抜け止め糸21及び拘束糸22の材質である熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ナイロン等を採用することができる。   As the fiber bundles 121 to 151, fiber bundles such as carbon fibers, glass fibers, and aramid fibers are used. As the thermoplastic resin that is the material of the resin fiber layers 16 to 20, the retaining thread 21, and the restraining thread 22, polyethylene, polypropylene, nylon, or the like can be used.

図1(d)は、繊維強化複合材の製造工程(繊維構造体11の製造工程を含む)のフローチャートである。以下に積層工程について説明する。
図2(a)に示すように、矩形状の枠体23に所定ピッチで立設された多数のピン24に繊維束161を折り返し係合させてX方向に引き揃えることによって樹脂繊維層16が形成される。樹脂繊維層16の形成後、図2(b)に示すように、ピン24に繊維束121を折り返し係合させてX方向に引き揃えることによって樹脂繊維層16の上に強化繊維層12が形成される。強化繊維層12の形成後、図2(c)に示すように、ピン24に繊維束171を折り返し係合させてX方向に引き揃えることによって樹脂繊維層17が形成される。
FIG.1 (d) is a flowchart of the manufacturing process (including the manufacturing process of the fiber structure 11) of a fiber reinforced composite material. The lamination process will be described below.
As shown in FIG. 2 (a), the resin fiber layer 16 is formed by folding and engaging the fiber bundle 161 with a large number of pins 24 erected on the rectangular frame body 23 at a predetermined pitch and aligning them in the X direction. It is formed. After the resin fiber layer 16 is formed, the reinforcing fiber layer 12 is formed on the resin fiber layer 16 by causing the fiber bundle 121 to be folded back and engaged with the pins 24 in the X direction as shown in FIG. 2B. Is done. After the formation of the reinforcing fiber layer 12, as shown in FIG. 2C, the resin fiber layer 17 is formed by causing the fiber bundles 171 to be folded and engaged with the pins 24 to be aligned in the X direction.

樹脂繊維層17の形成後、図3(a)に示すように、ピン24に繊維束131を折り返し係合させてB1方向に引き揃えることによって樹脂繊維層17の上に強化繊維層13が形成される。強化繊維層13の形成後、図3(b)に示すように、ピン24に繊維束181を折り返し係合させてX方向に引き揃えることによって樹脂繊維層18が形成される。樹脂繊維層18の形成後、図3(c)に示すように、ピン24に繊維束141を折り返し係合させてY方向に引き揃えることによって樹脂繊維層18の上に強化繊維層14が形成される。   After the formation of the resin fiber layer 17, as shown in FIG. 3A, the reinforcing fiber layer 13 is formed on the resin fiber layer 17 by causing the fiber bundle 131 to be folded and engaged with the pins 24 and aligned in the B1 direction. Is done. After the formation of the reinforcing fiber layer 13, as shown in FIG. 3B, the resin fiber layer 18 is formed by causing the fiber bundle 181 to be folded and engaged with the pins 24 to be aligned in the X direction. After the formation of the resin fiber layer 18, as shown in FIG. 3C, the reinforcing fiber layer 14 is formed on the resin fiber layer 18 by causing the fiber bundle 141 to be folded and engaged with the pins 24 and aligned in the Y direction. Is done.

強化繊維層14の形成後、図4(a)に示すように、ピン24に繊維束191を折り返し係合させてX方向に引き揃えることによって強化繊維層14の上に樹脂繊維層19が形成される。樹脂繊維層19の形成後、図4(b)に示すように、ピン24に繊維束151を折り返し係合させてB2方向に引き揃えることによって強化繊維層15が形成される。強化繊維層15の形成後、図4(c)に示すように、ピン24に繊維束201を折り返し係合させてY方向に引き揃えることによって強化繊維層15の上に樹脂繊維層20が形成される。   After the formation of the reinforcing fiber layer 14, as shown in FIG. 4A, the resin fiber layer 19 is formed on the reinforcing fiber layer 14 by causing the fiber bundle 191 to be folded and engaged with the pins 24 and aligned in the X direction. Is done. After the formation of the resin fiber layer 19, as shown in FIG. 4B, the reinforcing fiber layer 15 is formed by folding and engaging the fiber bundle 151 with the pin 24 and pulling it in the B2 direction. After the formation of the reinforcing fiber layer 15, as shown in FIG. 4C, the resin fiber layer 20 is formed on the reinforcing fiber layer 15 by causing the fiber bundle 201 to be folded and engaged with the pins 24 and aligned in the Y direction. Is done.

以上により積層工程が終了する。
次に、挿入工程について説明する。
例えば特開平8−218249号公報に開示されている方法により、拘束糸22が積層された樹脂繊維層16〜20及び強化繊維層12〜15に挿入される。つまり、挿入針の先端にある孔に拘束糸22を係止した状態で、繊維層12〜20の積層方向〔図1(a)に矢印Zで示す方向〕に挿入針が挿入され、挿入針の孔が樹脂繊維層16を貫通する位置まで挿入針が前進される。その後、挿入針が僅かに後退され、拘束糸22がU字状のループを形成した状態となる。次いで、抜け止め糸針が拘束糸22のU字状のループ内を通過され、繊維層12〜20の端部まで到達した時点で停止される。このとき、抜け止め糸21が抜け止め糸針の先端に係止される。そして、抜け止め糸針が引き戻され、抜け止め糸21が拘束糸22のU字状のループ内に挿通された状態となる。この状態で挿入針が引き戻される。これにより、抜け止め糸21が拘束糸22により締め付けられて繊維構造体11が製作される。
Thus, the lamination process is completed.
Next, the insertion process will be described.
For example, it is inserted into the resin fiber layers 16 to 20 and the reinforcing fiber layers 12 to 15 on which the constraining yarn 22 is laminated by a method disclosed in Japanese Patent Application Laid-Open No. 8-218249. That is, the insertion needle is inserted in the stacking direction of the fiber layers 12 to 20 (the direction indicated by the arrow Z in FIG. 1A) with the restraining thread 22 locked in the hole at the tip of the insertion needle. The insertion needle is advanced to a position where the hole passes through the resin fiber layer 16. Thereafter, the insertion needle is slightly retracted, and the restraining thread 22 is in a state of forming a U-shaped loop. Next, the retaining thread needle is stopped when it passes through the U-shaped loop of the restraining thread 22 and reaches the ends of the fiber layers 12 to 20. At this time, the retaining thread 21 is locked to the tip of the retaining thread needle. Then, the retaining thread needle is pulled back, and the retaining thread 21 is inserted into the U-shaped loop of the restraining thread 22. In this state, the insertion needle is pulled back. Thereby, the retaining thread 21 is fastened by the restraining thread 22, and the fiber structure 11 is manufactured.

以上により挿入工程が終了する。
製作された繊維構造体11は、固定型と可動型とを備えた加熱可能なプレス型(図示略)の固定型内に入れられる(配置工程)。
Thus, the insertion process is completed.
The manufactured fiber structure 11 is put into a fixed mold of a heatable press mold (not shown) having a fixed mold and a movable mold (arrangement step).

プレス型に入れられた繊維構造体11は、加熱されると共に、可動型のプレス動作によって加圧を受ける(加熱・加圧工程)。この場合の加熱温度は、樹脂繊維層16〜20、抜け止め糸21及び拘束糸22の材質である熱可塑性樹脂の溶融温度(融点)以上である。   The fiber structure 11 placed in the press die is heated and pressurized by a movable press operation (heating / pressurizing step). The heating temperature in this case is equal to or higher than the melting temperature (melting point) of the thermoplastic resin that is the material of the resin fiber layers 16 to 20, the retaining yarn 21, and the restraining yarn 22.

樹脂繊維層16〜20が完全に溶融するとみなされる時間が経過すると、加熱・加圧を受けた繊維構造体11は、プレス型内で冷却される(冷却工程)。加熱・加圧を受けた繊維構造体11が冷却されて熱可塑性樹脂が固化すると、図1(c)に示す繊維強化複合材11Aが形成される。図1(c)におけるPは、樹脂繊維層16〜20、抜け止め糸21及び拘束糸22が溶融して固化した熱可塑性樹脂を示す。   When the time when the resin fiber layers 16 to 20 are considered to be completely melted elapses, the heated and pressurized fiber structure 11 is cooled in the press mold (cooling step). When the fiber structure 11 that has been heated and pressurized is cooled and the thermoplastic resin is solidified, a fiber-reinforced composite material 11A shown in FIG. 1C is formed. P in FIG.1 (c) shows the thermoplastic resin which the resin fiber layers 16-20, the retainer thread | yarn 21, and the restraint thread | yarn 22 fuse | melted and solidified.

本実施形態では以下の効果が得られる。
(1)拘束糸22の挿入針は、樹脂繊維層16〜20と強化繊維層12〜15との積層構造体を挿通し易い。しかも、樹脂繊維層16〜20は、樹脂強化用の連続繊維(繊維束121〜151)を配列して強化繊維層12〜15を形成する過程で、熱可塑性樹脂製の連続繊維(繊維束161〜201)を配列して形成することができ、樹脂繊維層16〜20の形成が容易である。従って、繊維構造体11の生産性が向上する。
In the present embodiment, the following effects can be obtained.
(1) The insertion needle of the restraining yarn 22 is easy to insert the laminated structure of the resin fiber layers 16 to 20 and the reinforcing fiber layers 12 to 15. Moreover, the resin fiber layers 16 to 20 are made of continuous fibers (fiber bundles 161 made of thermoplastic resin in the process of forming the reinforcing fiber layers 12 to 15 by arranging continuous fibers (fiber bundles 121 to 151) for resin reinforcement. ˜201) can be formed and the resin fiber layers 16-20 can be easily formed. Therefore, the productivity of the fiber structure 11 is improved.

(2)繊維構造体11の最外層を樹脂繊維層16,20とした構成では、熱可塑性樹脂製の繊維(繊維束161〜201)をプレス型内で溶融して得られる繊維強化複合材11Aの表面の平滑が可能である。   (2) In the configuration in which the outermost layer of the fiber structure 11 is the resin fiber layers 16 and 20, a fiber reinforced composite material 11A obtained by melting thermoplastic resin fibers (fiber bundles 161 to 201) in a press die. It is possible to smooth the surface.

(3)拘束糸22及び抜け止め糸21を熱可塑性樹脂製とした構成では、樹脂繊維層16〜20を溶融して繊維強化複合材11Aを形成したときに拘束糸22及び抜け止め糸21も溶融するため、繊維強化複合材11Aの表面の平滑性が高まる。   (3) In the configuration in which the restraining yarn 22 and the retaining yarn 21 are made of a thermoplastic resin, the restraining yarn 22 and the retaining yarn 21 are also formed when the resin fiber layers 16 to 20 are melted to form the fiber reinforced composite material 11A. Since it melts, the smoothness of the surface of the fiber-reinforced composite material 11A increases.

(4)生産性に有利な繊維構造体11を加熱・加圧して繊維強化複合材11Aを製造する方法は、繊維強化複合材11Aの生産性を高める。
本発明では以下のような実施形態も可能である。
(4) The method of manufacturing the fiber reinforced composite material 11A by heating and pressurizing the fiber structure 11 advantageous for productivity increases the productivity of the fiber reinforced composite material 11A.
In the present invention, the following embodiments are also possible.

○前記した実施形態において、拘束糸22の材質である熱可塑性樹脂の溶融温度(融点)が樹脂繊維層16〜20の材質である熱可塑性樹脂の溶融温度(融点)よりも高くなるように、樹脂繊維層16〜20の材質である熱可塑性樹脂の種類と、拘束糸22の材質である熱可塑性樹脂の種類とを異ならせるようにしてもよい。このようにすれば、樹脂繊維層16〜20が溶融した後でも暫くの間は拘束糸22の溶融がない。これは、樹脂繊維層16〜20の溶融後の各強化繊維層12〜15の繊維の長さ方向を予め規定された方向(X方向、Y方向、B1方向あるいはB2方向)に維持する上で有効である。各強化繊維層12〜15の繊維の長さ方向が予め規定された方向に維持されないとすると、各強化繊維層12〜15の繊維の長さ方向を規定したことによる繊維強化複合材11Aの所望の物性を確保することができない。   In the above-described embodiment, the melting temperature (melting point) of the thermoplastic resin that is the material of the restraining yarn 22 is higher than the melting temperature (melting point) of the thermoplastic resin that is the material of the resin fiber layers 16 to 20. The type of the thermoplastic resin that is the material of the resin fiber layers 16 to 20 may be different from the type of the thermoplastic resin that is the material of the binding yarn 22. In this way, even after the resin fiber layers 16 to 20 are melted, the binding yarn 22 is not melted for a while. This is for maintaining the length direction of the fibers of the reinforcing fiber layers 12 to 15 after melting the resin fiber layers 16 to 20 in a predetermined direction (X direction, Y direction, B1 direction or B2 direction). It is valid. If the length direction of the fibers of each reinforcing fiber layer 12-15 is not maintained in a predetermined direction, the desired fiber-reinforced composite material 11A by defining the length direction of the fibers of each reinforcing fiber layer 12-15 The physical properties cannot be secured.

抜け止め糸21の材質である熱可塑性樹脂の溶融温度(融点)が樹脂繊維層16〜20の材質である熱可塑性樹脂の溶融温度(融点)よりも高くなるようにすれば、一層好ましい。   It is more preferable that the melting temperature (melting point) of the thermoplastic resin that is the material of the retaining thread 21 is higher than the melting temperature (melting point) of the thermoplastic resin that is the material of the resin fiber layers 16 to 20.

樹脂繊維層16〜20の材質である熱可塑性樹脂としてポリプロピレンを採用した場合には、拘束糸22及び抜け止め糸21の材質である熱可塑性樹脂としてナイロンを採用することができる。   When polypropylene is adopted as the thermoplastic resin that is the material of the resin fiber layers 16 to 20, nylon can be adopted as the thermoplastic resin that is the material of the restraining yarn 22 and the retaining yarn 21.

○繊維構造体の最外層が強化繊維層であってもよい。
○繊維の長さ方向が異なり、隣り合った一対の強化繊維層間に樹脂繊維層を介在しないようにしてもよい。
The outermost layer of the fiber structure may be a reinforcing fiber layer.
The length direction of the fibers may be different, and the resin fiber layer may not be interposed between a pair of adjacent reinforcing fiber layers.

○隣り合う一対の強化繊維層の繊維の長さ方向を同じにし、この一対の強化繊維層間に樹脂繊維層を介在するようにしてもよい。
○全ての樹脂繊維層の繊維の長さ方向を同じ方向(例えばX方向、Y方向、B1方向あるいはB2方向のいずれか)に統一してもよい。
A pair of adjacent reinforcing fiber layers may have the same fiber length direction, and a resin fiber layer may be interposed between the pair of reinforcing fiber layers.
O The length direction of the fibers of all the resin fiber layers may be unified in the same direction (for example, any one of the X direction, the Y direction, the B1 direction, or the B2 direction).

○樹脂繊維層の繊維の長さ方向をB1方向あるいはB2方向にしてもよい。
○強化繊維層間の結合を強くしたい場合には、結合糸の材質を樹脂強化用の繊維(炭素繊維、ガラス繊維、アラミド繊維等)と同質の繊維としてもよい。
The fiber length direction of the resin fiber layer may be the B1 direction or the B2 direction.
In the case where it is desired to strengthen the bond between the reinforcing fiber layers, the material of the bonding yarn may be the same fiber as the resin reinforcing fiber (carbon fiber, glass fiber, aramid fiber, etc.).

○抜け止め糸の材質を樹脂強化用の繊維(炭素繊維、ガラス繊維、アラミド繊維等)と同質の繊維としてもよい。
前記した実施形態から把握できる技術思想について以下にその効果と共に記載する。
○ The material of the retaining thread may be the same quality as the resin reinforcing fiber (carbon fiber, glass fiber, aramid fiber, etc.).
The technical idea that can be grasped from the above-described embodiment will be described below together with the effects thereof.

〔1〕前記抜け止め糸は、熱可塑性樹脂製である請求項5に記載の繊維構造体。
抜け止め糸も熱可塑性樹脂製とすれば、樹脂繊維層の表面の平滑性が高まる。
[1] The fiber structure according to claim 5, wherein the retaining thread is made of a thermoplastic resin.
If the retaining thread is also made of a thermoplastic resin, the smoothness of the surface of the resin fiber layer is enhanced.

実施形態を示し、(a)は、繊維構造体の側断面図。(b)は、繊維層の繊維の長さ方向を示すための模式図。(c)は、繊維強化複合材の側断面図。(d)は、繊維構造体の製造方法、及び繊維強化複合材の製造方法を示すフローチャート。Embodiment is shown, (a) is a sectional side view of a fiber structure. (B) is a schematic diagram for showing the length direction of the fiber of a fiber layer. (C) is a sectional side view of a fiber reinforced composite material. (D) is a flowchart which shows the manufacturing method of a fiber structure, and the manufacturing method of a fiber reinforced composite material. (a),(b),(c)は、樹脂繊維層及び強化繊維層の形成を説明するための平面図。(A), (b), (c) is a top view for demonstrating formation of a resin fiber layer and a reinforced fiber layer. (a),(b),(c)は、樹脂繊維層及び強化繊維層の形成を説明するための平面図。(A), (b), (c) is a top view for demonstrating formation of a resin fiber layer and a reinforced fiber layer. (a),(b),(c)は、樹脂繊維層及び強化繊維層の形成を説明するための平面図。(A), (b), (c) is a top view for demonstrating formation of a resin fiber layer and a reinforced fiber layer.

符号の説明Explanation of symbols

11…繊維構造体。11A…繊維強化複合材。12〜15…強化繊維層。121〜151…連続繊維である繊維束。16〜20…樹脂繊維層。161〜201…連続繊維である繊維束。21…抜け止め糸。22…拘束糸。   11 ... Fiber structure. 11A: Fiber reinforced composite material. 12-15 ... Reinforcing fiber layer. 121-151 ... Fiber bundles that are continuous fibers. 16-20 ... Resin fiber layer. 161-201 ... Fiber bundles that are continuous fibers. 21 ... Retaining thread. 22: Restraint thread.

Claims (10)

繊維で樹脂を強化した繊維強化複合材を製造するために用いられる樹脂強化用の繊維構造体において、
連続繊維からなる強化繊維層と、
熱可塑性樹脂製の連続繊維からなる樹脂繊維層と、
積層された前記強化繊維層と前記樹脂繊維層とを結合するための拘束糸とを備えた繊維構造体。
In a fiber structure for resin reinforcement used to produce a fiber-reinforced composite material in which resin is reinforced with fibers,
A reinforcing fiber layer composed of continuous fibers;
A resin fiber layer composed of continuous fibers made of thermoplastic resin;
A fiber structure comprising a constraining yarn for binding the laminated reinforcing fiber layer and the resin fiber layer.
前記繊維構造体の最外層は、前記樹脂繊維層である請求項1に記載の繊維構造体。   The fiber structure according to claim 1, wherein the outermost layer of the fiber structure is the resin fiber layer. 前記拘束糸は、熱可塑性樹脂製である請求項1及び請求項2のいずれか1項に記載の繊維構造体。   The fiber structure according to any one of claims 1 and 2, wherein the binding yarn is made of a thermoplastic resin. 前記拘束糸の樹脂の融点は、前記樹脂繊維層の融点よりも高い請求項3に記載の繊維構造体。   The fiber structure according to claim 3, wherein a melting point of the resin of the binding yarn is higher than a melting point of the resin fiber layer. 前記拘束糸に係合する抜け止め糸を備えている請求項1乃至請求項4のいずれか1項に記載の繊維構造体。   The fiber structure according to any one of claims 1 to 4, further comprising a retaining thread that engages with the restraining thread. 繊維で樹脂を強化した繊維強化複合材を製造するために用いられる樹脂強化用の繊維構造体の製造方法において、
強化繊維層と樹脂繊維層とを積層する積層工程と、
積層された前記強化繊維層と前記樹脂繊維層とを結合するように拘束糸を挿入する挿入工程とを備え、
前記強化繊維層は、連続繊維を配列して形成され、前記樹脂繊維層は、熱可塑性樹脂製の連続繊維を配列して形成される繊維構造体の製造方法。
In a method for producing a fiber structure for resin reinforcement used for producing a fiber-reinforced composite material in which resin is reinforced with fibers,
A laminating step of laminating the reinforcing fiber layer and the resin fiber layer;
An insertion step of inserting a constraining yarn so as to bond the laminated reinforcing fiber layer and the resin fiber layer;
The reinforcing fiber layer is formed by arranging continuous fibers, and the resin fiber layer is a method for producing a fiber structure formed by arranging continuous fibers made of thermoplastic resin.
前記拘束糸は、熱可塑性樹脂製である請求項6に記載の繊維構造体の製造方法。   The method for producing a fiber structure according to claim 6, wherein the constraining yarn is made of a thermoplastic resin. 前記拘束糸の樹脂の融点は、前記樹脂繊維層の融点よりも高い請求項7に記載の繊維構造体の製造方法。   The method for producing a fiber structure according to claim 7, wherein a melting point of the resin of the binding yarn is higher than a melting point of the resin fiber layer. 繊維構造体によって樹脂を強化した繊維強化複合材の製造方法において、
強化繊維層と樹脂繊維層とを積層する積層工程と、
積層された前記強化繊維層と前記樹脂繊維層とを結合するように拘束糸を挿入する挿入工程と、
前記挿入工程を経て製造された繊維構造体を型内に配置する配置工程と、
前記型内で加圧と加熱とを行なう加熱・加圧工程と、
加熱・加圧された前記繊維構造体を冷却する冷却工程とを備える繊維強化複合材の製造方法。
In the manufacturing method of the fiber reinforced composite material in which the resin is reinforced by the fiber structure,
A laminating step of laminating the reinforcing fiber layer and the resin fiber layer;
An insertion step of inserting a constraining yarn so as to bond the laminated reinforcing fiber layer and the resin fiber layer;
An arrangement step of arranging the fiber structure manufactured through the insertion step in a mold;
A heating / pressurizing step of performing pressurization and heating in the mold;
A method for producing a fiber-reinforced composite material, comprising: a cooling step for cooling the heated and pressurized fiber structure.
前記拘束糸は、熱可塑性樹脂製であり、前記拘束糸の樹脂の融点は、前記樹脂繊維層の融点よりも高く、前記加熱・加圧工程は、少なくとも前記拘束糸の樹脂の融点以上に加熱する工程である請求項9に記載の繊維強化複合材の製造方法。   The constraining yarn is made of a thermoplastic resin, and the melting point of the resin of the constraining yarn is higher than the melting point of the resin fiber layer, and the heating / pressurizing step is heated to at least the melting point of the resin of the constraining yarn. The method for producing a fiber-reinforced composite material according to claim 9, wherein the method is a step of:
JP2008214457A 2008-08-22 2008-08-22 Fibrous structural material, method for producing the same and method for producing fiber-reinforced composite material Pending JP2010047875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214457A JP2010047875A (en) 2008-08-22 2008-08-22 Fibrous structural material, method for producing the same and method for producing fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214457A JP2010047875A (en) 2008-08-22 2008-08-22 Fibrous structural material, method for producing the same and method for producing fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2010047875A true JP2010047875A (en) 2010-03-04

Family

ID=42065169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214457A Pending JP2010047875A (en) 2008-08-22 2008-08-22 Fibrous structural material, method for producing the same and method for producing fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2010047875A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088649A (en) * 2012-10-31 2014-05-15 Toyota Industries Corp Three-dimensional fiber structure
WO2017104481A1 (en) * 2015-12-14 2017-06-22 三菱レイヨン株式会社 Multiaxial-inlay knitted fabric base material production method, multiaxial-inlay knitted fabric base material, and fiber-reinforced composite material
JP2018165045A (en) * 2017-03-29 2018-10-25 東レ株式会社 Reinforced fiber laminate sheet and method of producing resin molding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182065A (en) * 2005-12-09 2007-07-19 Toray Ind Inc Multi-axial molding material, preform, frp, and manufacturing method for frp
JP2007291582A (en) * 2006-03-31 2007-11-08 Toyota Industries Corp Three dimensional fiber structure, composite material and method for producing three dimensional fiber structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182065A (en) * 2005-12-09 2007-07-19 Toray Ind Inc Multi-axial molding material, preform, frp, and manufacturing method for frp
JP2007291582A (en) * 2006-03-31 2007-11-08 Toyota Industries Corp Three dimensional fiber structure, composite material and method for producing three dimensional fiber structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088649A (en) * 2012-10-31 2014-05-15 Toyota Industries Corp Three-dimensional fiber structure
WO2017104481A1 (en) * 2015-12-14 2017-06-22 三菱レイヨン株式会社 Multiaxial-inlay knitted fabric base material production method, multiaxial-inlay knitted fabric base material, and fiber-reinforced composite material
JPWO2017104481A1 (en) * 2015-12-14 2017-12-21 三菱ケミカル株式会社 Multi-axis insertion knitted base material manufacturing method, multi-axis insertion knitted base material, and fiber-reinforced composite material
CN108368657A (en) * 2015-12-14 2018-08-03 三菱化学株式会社 Polyaxial manufacturing method, polyaxial insertion braided fabric base material and the fibre reinforced composites for being inserted into braided fabric base material
JP2018165045A (en) * 2017-03-29 2018-10-25 東レ株式会社 Reinforced fiber laminate sheet and method of producing resin molding

Similar Documents

Publication Publication Date Title
KR101295936B1 (en) Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and reinforced thermoplastic-resin multilayer molded article
JP5660563B2 (en) Method for laminating fiber reinforced thermoplastic resin prepreg
JP5250898B2 (en) Thermoplastic resin reinforced sheet material, production method thereof, and thermoplastic resin multilayer reinforced sheet material
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
CN107428033B (en) Sheet-like reinforcing fiber base material, preform, and fiber-reinforced resin molded article
JP6699752B2 (en) Reinforcement base material for composite material, composite material, and method for manufacturing reinforcement base material for composite material
JP2007291582A (en) Three dimensional fiber structure, composite material and method for producing three dimensional fiber structure
JP2010047875A (en) Fibrous structural material, method for producing the same and method for producing fiber-reinforced composite material
JP4544266B2 (en) Fiber reinforced composite
JPWO2020031771A1 (en) Reinforcing fiber tape material and its manufacturing method, reinforcing fiber laminate using reinforcing fiber tape material and fiber reinforced resin molded body
JP4019822B2 (en) Manufacturing method of fiber reinforced composite material
JP3915614B2 (en) Fiber structure and composite material having deformed portion
JP5614384B2 (en) Reinforcing fiber sheet, fiber-reinforced composite material, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite material
JP2010046956A (en) Fiber structure, fiber reinforced composite material, production process of fiber structure, and production process of fiber reinforced composite material
CN109923254B (en) Reinforcing base material for composite material, and method for producing reinforcing base material for composite material
JP2018165045A (en) Reinforced fiber laminate sheet and method of producing resin molding
KR20180068223A (en) Method for manufacturing fiber reinforced thermoplasticity-type tape, the fiber reinforced thermoplasticity-type tape
JP2017213817A (en) Fabric laminate
JP2012255222A (en) Fiber bundle sheet comprising reinforcing fibers
JP2017154471A (en) Preform for fiber-reinforced plastic and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403