WO2020143548A1 - 神经调节蛋白用于预防、治疗或延迟心肌损伤的方法和组合物 - Google Patents

神经调节蛋白用于预防、治疗或延迟心肌损伤的方法和组合物 Download PDF

Info

Publication number
WO2020143548A1
WO2020143548A1 PCT/CN2020/070299 CN2020070299W WO2020143548A1 WO 2020143548 A1 WO2020143548 A1 WO 2020143548A1 CN 2020070299 W CN2020070299 W CN 2020070299W WO 2020143548 A1 WO2020143548 A1 WO 2020143548A1
Authority
WO
WIPO (PCT)
Prior art keywords
nrg
day
administration
myocardial infarction
myocardial
Prior art date
Application number
PCT/CN2020/070299
Other languages
English (en)
French (fr)
Inventor
周明东
Original Assignee
上海泽生科技开发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海泽生科技开发股份有限公司 filed Critical 上海泽生科技开发股份有限公司
Priority to JP2021539453A priority Critical patent/JP2022516199A/ja
Priority to EP20738153.4A priority patent/EP3909599A4/en
Priority to AU2020206381A priority patent/AU2020206381A1/en
Priority to CA3125377A priority patent/CA3125377A1/en
Priority to US17/420,974 priority patent/US20220096599A1/en
Publication of WO2020143548A1 publication Critical patent/WO2020143548A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/4756Neuregulins, i.e. p185erbB2 ligands, glial growth factor, heregulin, ARIA, neu differentiation factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1883Neuregulins, e.g.. p185erbB2 ligands, glial growth factor, heregulin, ARIA, neu differentiation factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to the use of neuromodulin in the preparation of a medicament for the prevention, treatment or delay of mammalian myocardial damage, and at the same time the invention relates to a neuromodulin pharmaceutical preparation or composition for the prevention, treatment or delay of mammalian myocardial damage Administration method, administration frequency and dosage. More particularly, it relates to a method and composition of neuromodulin for preventing, treating or delaying myocardial injury and a method for administering a neuromodulin pharmaceutical preparation or composition for preventing, treating or delaying myocardial infarction in mammals, giving Drug frequency and dosage.
  • Cardiovascular diseases include various disease states such as heart failure, myocardial infarction, coronary atherosclerotic heart disease, arrhythmia, myocardial disease, heart valve disease , Infective endocarditis, heart cell disease, ischemic heart disease, congenital heart disease and the like. Cardiovascular diseases can cause damage to the heart muscle and affect the function of the heart, thereby affecting human health. Among them, myocardial infarction is a cardiovascular disease that seriously harms human health. With the continuous improvement of people's living standards, the incidence of ischemic myocardial infarction is also rising.
  • Myocardial infarction is myocardial ischemic necrosis, which is mostly based on coronary artery disease. Coronary blood supply is suddenly reduced or interrupted due to the continuous blockage of the coronary arteries, resulting in severe and persistent ischemia of the corresponding myocardium. Ischemic myocardial infarction can cause myocardial cell necrosis and scar formation, which in turn affects heart function.
  • myocardial infarction occurs, the coronary artery is occluded for 20-30 minutes, and there is a small amount of necrosis in the blood supplying myocardial cells.
  • the pathological process of myocardial infarction begins.
  • the amount of necrotic myocardium gradually increases over time.
  • Cardiomyocytes gradually showed coagulative necrosis, and myocardial interstitium was hyperemia and edema, accompanied by infiltration of a large number of inflammatory cells. After 6-12 hours, the myocardial necrosis process is nearly complete.
  • myocardial fibers are dissolved, phagocytosed by macrophages and gradually fibrosis, until the necrotic area is completely replaced by dense fibrous scars 6 weeks after the infarction, which is called old or healing myocardial infarction.
  • the normal function of the left ventricle will be significantly affected. If the heart suffers from ischemia to a large extent, the pumping function of the left ventricle will be impaired, cardiac output, stroke volume, blood pressure, and volume Increased, during the weeks following the infarction, the end diastolic volume increased.
  • Ventricular remodeling after myocardial infarction refers to the structural and morphological changes of the ventricular infarct zone and non-infarct zone after myocardial infarction: the changes in the infarct zone mainly include the expansion of the infarct, and the changes in the non-infarct zone are mainly the expansion of the ventricle.
  • the typical manifestation of myocardial remodeling is ventricular decompensated hypertrophy; increased ventricular weight, volume, and morphological changes can cause low ventricular pumping function and develop heart failure.
  • the basic mechanism leading to the development of heart failure is ventricular remodeling.
  • This symptom is a continuous and progressive change following myocardial infarction, and its severity determines the patient's cardiac function and prognosis.
  • Ventricular remodeling after myocardial infarction has become one of the major cardiovascular diseases that affect the heart function of patients and threaten the safety of public life.
  • the current main treatment methods include early reperfusion (including thrombolytic therapy and interventional therapy), angiotensin II receptor blockers, angiotensin converting enzyme inhibitors and Beta-blockers and other treatments can reduce infarct size, reduce recurrent myocardial ischemia, improve revascularization, reduce ventricular overdilation and reduce the occurrence of chronic heart failure.
  • the symptoms after myocardial infarction are closely related to the infarct size, location, and coronary collateral vessels.
  • the main symptoms include pain, fever, tachycardia, nausea, vomiting, hypotension, shock, and arrhythmia.
  • the main complications after myocardial infarction include: dysfunction or rupture of papillary muscle, heart rupture, ventricular aneurysm, embolism, and post-myocardial infarction syndrome.
  • Neuromodulin Neuromodulin (Neuregulin, NRG; Heregulin, HRG) belongs to the epidermal growth factor-like (EGF-like) family and is a class of structurally similar growth and differentiation factors, including NRG1, NRG2, NRG3 and NRG4 and their isomers , Exercise a series of biological functions: stimulate breast cancer cell differentiation and milk protein secretion (Lessor T et al. J Cell Biochem. 1998; 70 (4): 587-595); induce neurospinal cells to differentiate into Schwann cells ( Topilko P et al., Mol Cell Neurosci.
  • NRG receptors belong to the EGF receptor family, including EGFR, ErbB2, ErbB3 and ErbB4, and they play an important role in various cell functions such as cell growth, differentiation and survival. They belong to tyrosine kinase receptors, and are composed of extracellular ligand binding functional area, transmembrane area and intracellular tyrosine kinase functional area.
  • NRG binds to the extracellular region of ErbB3 or ErbB4, it causes its conformation to change, leading to the formation of ErbB3/ErbB4 or ErbB2/ErbB3 heterodimers or the formation of ErbB4/ErbB4 homodimers, and causes the phosphorylation of its C-terminal Change.
  • the phosphorylated C-terminus can further bind downstream signaling proteins in the cell, activate AKT and/or ERK signaling pathways, and eventually cause a series of cellular responses such as stimulating or inhibiting cell proliferation, cell differentiation, apoptosis, cell migration, or Cell adhesion.
  • AKT and/or ERK signaling pathways activate AKT and/or ERK signaling pathways, and eventually cause a series of cellular responses such as stimulating or inhibiting cell proliferation, cell differentiation, apoptosis, cell migration, or Cell adhesion.
  • ErbB2 and ErbB4 are mainly expressed in heart tissues (Zhao YY et al., Circ Res. 1999; 84(12): 1380-1387).
  • NRG-1 ⁇ can bind to ErbB3 and ErbB4 with higher affinity.
  • ErbB2 can form heterodimers with ErbB3 or ErbB4, and its affinity with ligands is higher than that of ErbB3 or ErbB4 homodimers with ligands.
  • Neurodevelopmental studies have confirmed that the formation of the sympathetic nervous system requires NRG-1 ⁇ , ErbB2, and ErbB3 signaling (Britsch S et al., Genes Dev.
  • NRG-1 ⁇ has been shown to enhance sarcomere formation in adult cardiomyocytes.
  • NRG-1 ⁇ EGF-like domains can significantly improve cardiac function and prevent the deterioration of cardiac function (Liu et al., J. Am. Coll. Cardiol. 2006; 48:1438-1447).
  • NRG has also shown therapeutic effects on patients with chronic heart failure caused by various causes, significantly improving their cardiac function (CN200910057390.5).
  • NRG-1 also shows significant protective effects on brain cells, inhibits brain cell apoptosis, enhances nerve function, and reduces infarct size (Li Q et al., Neurosci Lett. 2008; 443; (3): 155-159).
  • the present invention provides methods and compositions for the above needs. It is worth mentioning that the present invention particularly provides an optimized dosing frequency, the present invention particularly provides an optimized dosing dose, and the present invention particularly provides a preferred Method of administration. The invention further relates to the use of neuromodulator proteins in the preparation of a medicament for preventing, treating or delaying mammalian myocardial infarction injury. In the treatment of myocardial infarction, the present invention particularly provides an optimized dosing frequency, the present invention particularly provides an optimized dosing dose, and the present invention particularly provides a preferred Method of administration.
  • the present invention finds the use of neuregulin in the preparation of a medicament for preventing, treating or delaying mammalian myocardial damage.
  • the invention further relates to the use of neuromodulin in the preparation of a medicament for preventing, treating or delaying myocardial infarction injury in mammals.
  • the mammal is preferably a human.
  • Neuromodulin can improve cardiac function after cardiac injury and reduce cardiac remodeling.
  • cardiovascular diseases such as heart failure, myocardial infarction, coronary atherosclerotic heart disease, arrhythmia, myocarditis, valvular heart disease, infective endocarditis, heart cell disease, ischemic heart disease, congenital heart disease Diseases, etc. can cause myocardial damage.
  • myocardial damage occurs, it will affect the function of the heart and thus affect human health.
  • myocardial damage With the prolongation of coronary artery occlusion in patients with myocardial infarction, it is usually accompanied by apoptosis and necrosis of myocardial cells, infiltration of a large number of inflammatory cells, myocardial fibrosis and myocardial damage.
  • Myocardial infarction damage usually reduces heart function and affects human health.
  • the present invention is based on the scientific discovery that NRG is essential for heart development and also plays a very important role in maintaining the function of the adult heart; based on the scientific discovery that NRG can strengthen the formation of myocardial sarcomere and cytoskeleton and the connection between cells; Based on the scientific discovery that NRG can improve the heart function of animals or patients with heart failure in various animal models and clinical trials; based on the scientific discovery that NRG shows a protective effect on brain cells in animal models of cerebral ischemia-reperfusion; based on NRG in Scientific findings showing protective effects on brain cells in animal models of cardiac ischemia-reperfusion.
  • NRG, NRG polypeptides, NRG mutants or other complexes with NRG-like functions are within the scope of the present invention.
  • the first aspect of the present invention is to provide a pharmaceutical preparation for preventing, treating or delaying mammalian myocardial damage. Further provided is a pharmaceutical preparation for preventing, treating or delaying mammalian myocardial infarction injury. Among them, mammals are preferably humans.
  • the pharmaceutical preparation contains an effective amount of NRG or a functional fragment thereof, or a nucleic acid encoding NRG or a functional fragment thereof, or a substance that increases the yield and/or function of NRG, and a pharmaceutically acceptable carrier, excipient, and the like.
  • the pharmaceutical preparation can be used together with other drugs or treatment methods that can be used to prevent, treat or delay myocardial damage.
  • the use of the NRG pharmaceutical preparation can enhance the EF value of the left ventricle of the mammal.
  • the use of the NRG pharmaceutical preparation can reduce the left ventricular end-diastolic volume (LVEDV) or left ventricular end-systolic volume (LVESV).
  • the NRG pharmaceutical formulation is administered by subcutaneous infusion through a syringe or other device.
  • the NRG pharmaceutical formulation is administered by subcutaneous infusion using a pump, such as a syringe pump.
  • the syringe pump is a micropump.
  • the micropump is an insulin pump. It is worth mentioning that any pharmaceutically usable preparation is suitable for the present invention.
  • the pharmaceutical preparation contains neuromodulin as described above or contains neuromodulin and a pharmaceutically acceptable excipient, dilution or carrier.
  • the pharmaceutical preparations used in the present invention include, but are not limited to the contents in this application.
  • the second aspect of the present invention provides a method for preventing, treating or delaying mammalian myocardial damage. Further provided is a method for preventing, treating or delaying myocardial infarction injury in mammals. Among them, mammals are preferably humans. Including administration of an effective amount of NRG or a functional fragment thereof, or a nucleic acid encoding NRG or a functional fragment thereof, or a substance that increases the production and/or function of NRG to a mammal in need of or wish to prevent, treat or delay myocardial damage, so as to achieve prevention, The effect of treating or delaying myocardial injury.
  • Combining other drugs includes administering an effective amount of NRG or a functional fragment thereof, or a nucleic acid encoding NRG or a functional fragment thereof, or a substance that increases NRG production and/or function to a mammal in need of or wish to prevent, treat or delay myocardial infarction injury, So as to prevent, treat or delay myocardial infarction injury.
  • the third aspect of the present invention is to provide a composition for preventing, treating or delaying mammalian myocardial damage. Further provided is a composition for preventing, treating or delaying myocardial infarction injury in mammals. Among them, mammals are preferably humans.
  • the composition includes the neuromodulin provided by the present invention for preventing, treating or delaying mammalian myocardial injury, and other drugs for preventing, treating or delaying myocardial injury.
  • the composition includes an EGF-like functional domain, which has been shown to be sufficient to bind and activate receptors.
  • the neuromodulin of the present invention is a fragment of the NRG-1 ⁇ 2 isomer, which contains amino acid fragments 177-237. The amino acid sequence of the fragment is: SHLVKCAEKEKTFCVNGGECFMVKDLSNPSRYLCKCPNEFTGDRCQNYVMASFYKAEELYQ (SEQ ID NO :1).
  • the fourth aspect of the present invention is to provide a dosage of a neuromodulin pharmaceutical preparation for preventing, treating or delaying mammalian myocardial damage. Further provided is a dosage of a neuromodulin pharmaceutical preparation for preventing, treating or delaying mammalian myocardial infarction.
  • mammals are preferably humans.
  • the effective dose means that when the dose of NRG protein is administered to a mammal, it can bring about one or more beneficial effects. This beneficial effect may be an improvement in the cardiac function of a patient with myocardial injury, or to prevent further deterioration of his cardiac function, or delay the deterioration of cardiac function that may be caused by myocardial injury.
  • the dosage of the present invention for mammals is in the range of 0.1 ⁇ g/kg/day (protein/body weight) to 360 ⁇ g/kg/day (protein/body weight). In one embodiment, the dosage is in the range of 0.3 ⁇ g/kg/day (protein/body weight) to 50 ⁇ g/kg/day (protein/body weight); in one embodiment, the effective dose is 7.5 ⁇ g /kg/day; in one embodiment, the effective dose is 15 ⁇ g/kg/day; in another embodiment, the effective dose is 30 ⁇ g/kg/day.
  • the fifth aspect of the present invention provides a method for administering a neuromodulin pharmaceutical preparation for preventing, treating or delaying mammalian myocardial damage. Further provided is a method for preventing, treating or delaying the administration of a neuromodulin pharmaceutical preparation for mammalian myocardial infarction.
  • mammals are preferably humans.
  • the pharmaceutical preparation can be administered orally, rectally, topically, by inhalation, buccal (e.g. sublingual), parenteral (e.g. subcutaneous, intramuscular, intradermal or intravenous) Injection), transdermal administration, or other suitable administration methods.
  • the NRG protein is administered only once a day. In another embodiment, the NRG protein is administered multiple times a day.
  • the NRG protein is administered within one day. In another embodiment, the NRG protein within the tolerated dose range is administered within a few days or days. In another embodiment, the NRG protein is administered multiple times a day, for consecutive days. In another embodiment, the NRG protein is administered for 2 days per week, multiple times per day, for consecutive weeks. In another embodiment, the NRG protein is administered 2 days a week, subcutaneously 3 times a day, for consecutive weeks. In another embodiment, the NRG protein is injected subcutaneously three times a day for consecutive days. In another embodiment, the NRG protein is injected subcutaneously three times a day for 35 consecutive days. In another embodiment, the NRG protein is injected subcutaneously three times a day for 38 consecutive days.
  • the NRG protein is injected subcutaneously three times a day for 49 consecutive days. In another embodiment, the NRG protein is injected subcutaneously three times a day for 60 consecutive days. In another embodiment, the NRG protein is injected subcutaneously three times a day for continuous administration for more than 35 days. In another embodiment, the NRG protein is administered multiple times a day, for consecutive days, followed by slow withdrawal. In another embodiment, the NRG protein is administered multiple times a day, for consecutive days, followed by a slow withdrawal plan for 3 consecutive weeks, one day every other day for the first week; one day every two days for the second week ; In the 3rd week, give a medicine subcutaneously every three days.
  • the NRG protein is injected subcutaneously three times a day, and the drug is slowly withdrawn after continuous administration for more than 38 days.
  • the NRG protein is injected subcutaneously three times a day for 49 consecutive days, after which a slow drug withdrawal plan for 3 consecutive weeks is started, with one day of medication given every other day of the first week; one day of every other day given in the second week Medicine; give a medicine subcutaneously every three days every three weeks.
  • the NRG protein is administered multiple times a day, for consecutive days, followed by slowly decreasing the daily drug dosage.
  • the NRG protein is injected subcutaneously three times a day, for consecutive days, followed by a slowly decreasing daily dose of drug.
  • the NRG protein is injected subcutaneously three times a day for more than 60 days of continuous administration, followed by slowly decreasing the daily drug dosage.
  • the NRG protein is injected subcutaneously three times a day for 60 consecutive days, after which a slow withdrawal plan for 3 consecutive weeks is started, the daily dose for the first week is half of the continuous dose; the daily dose for the 2nd week The dose is one quarter of the continuous dose; the daily dose in week 3 is one eighth of the continuous dose.
  • the invention also provides a kit for preventing, treating or delaying mammalian myocardial damage.
  • a kit for preventing, treating or delaying myocardial infarction injury in mammals is further provided.
  • mammals are preferably humans. It contains one or more doses of the above-mentioned pharmaceutical preparations or compositions for preventing, treating or delaying myocardial damage, and instructions on how to use the pharmaceutical preparations or compositions.
  • the pharmaceutical preparation or composition provided by the present invention can be administered before, during or after the occurrence of heart disease. When used for prevention, it is generally administered before heart disease occurs. When used for treatment, it is generally administered when or after a heart disease occurs. In one embodiment, the pharmaceutical preparation or composition provided by the present invention is administered before it occurs. In another embodiment, the pharmaceutical preparation or composition provided by the present invention is administered when a myocardial infarction occurs. In another embodiment, the pharmaceutical preparation or composition provided by the present invention is administered after occurrence.
  • the pharmaceutical preparation or composition provided by the present invention can be administered orally, rectally, topically, by inhalation, orally (such as sublingual administration), parenterally (such as subcutaneous injection, Intramuscular injection, intradermal injection or intravenous injection), transdermal administration or other suitable administration methods.
  • the subcutaneous injection can be performed by syringe, pump (microsyringe pump) or other drug delivery device.
  • the dosage forms of the pharmaceutical preparations or compositions provided by the present invention include but are not limited to tablets, lozenges, cachets, dispersions, suspensions, solutions, capsules, ointments, and similar forms.
  • “Mammal” as used herein refers to non-primates (cattle, pig, horse, cat, dog, rat, mouse, etc.) or primates (monkey, human), more preferably human .
  • myocardial injury refers to a disease caused by heart disease such as heart failure, myocardial infarction, coronary atherosclerotic heart disease, arrhythmia, myocardial disease, valvular heart disease, infective endocarditis, and heart cell disease , Ischemic heart disease, myocardial damage caused by congenital heart disease, myocardial damage often leads to reduced heart function and affects human health.
  • the mechanism of myocardial damage involves the production of oxygen free radicals, calcium ion overload, inflammatory reaction caused by infiltration of neutrophil damage area, apoptosis or necrosis of myocardial cells, tissue metabolism disorder caused by energy supply disorder, and abnormal electrical signal transmission of the heart , The accumulation of cholesterol, the formation of atherosclerotic plaques and other multiple pathophysiological changes.
  • myocardial infarction injury refers to myocardial infarction injury refers to damage to tissues and organs after myocardial ischemia, mostly on the basis of coronary artery disease, coronary blood supply due to continuous blockage of coronary arteries Sudden reduction or interruption, resulting in severe and persistent ischemia of the corresponding myocardium.
  • the mechanism of damage involves the generation of oxygen free radicals, overload of calcium ions, inflammatory reaction caused by infiltration of neutrophil damage area, apoptosis or necrosis of myocardial cells, tissue metabolic disorders caused by energy supply disorders and other multiple pathophysiological changes.
  • Neuromodulin or “neuregulin” or “NRG” as used herein refers to a protein or polypeptide capable of binding and activating ErbB2, ErbB3, ErbB4 or its heterologous or homodimer, including isomers of neuromodulin EGF-like functional domains in neuromodulin, polypeptides containing EGF-like functional domains of neuromodulin, mutants or derivatives of neuromodulin, and other neuromodulin-like gene products capable of activating the above receptors.
  • Neuromodulators also include NRG-1, NRG-2, NRG-3 and NRG-4 proteins, polypeptides, fragments and complexes with NRG-like functions.
  • the neuromodulin is a protein or polypeptide that can bind to and activate ErbB2/ErbB4 or ErbB2/ErbB3 heterodimers.
  • the neuromodulin of the present invention is a fragment of the NRG-1 ⁇ 2 isomer, ie, the amino acid fragment 177-237, which contains the EGF-like functional domain .
  • the amino acid sequence of this fragment is: SHLVKCAEKEKTFCVNGGECFMVKDLSNPSRYLCKCPNEFTGDRCQNYVMASFYKAEELYQ (SEQ ID NO: 1).
  • the neuromodulin used in the present invention can activate the above receptors and regulate their biological functions, such as stimulating skeletal muscle cells to synthesize acetylcholine receptors; promoting cardiomyocyte differentiation, survival, and DNA synthesis.
  • Neuromodulators also include those that have conservative mutations that do not substantially affect biological function. It is well known to those of ordinary skill in the art that mutation of a single amino acid in a non-critical region generally does not cause changes in the biological function of the protein or polypeptide (see Watson et al., Molecular Biology of the Gene, 4th Edition, 1987, The Bejacmin /CummingsPub.co., p.224).
  • the neuromodulin used in the present invention can be isolated from natural sources, or obtained by recombinant technology, artificial synthesis, or other means.
  • EGF-like functional domain or “EGF-like domain” refers to a polypeptide fragment encoded by the neuregulin gene that can bind to and activate ErbB2, ErbB3, ErbB4 or its heterologous or homodimer, and
  • the EGF receptor binding regions described in the references have structural similarities: WO 00/64400; Holmes et al., Science, 256:1205-1210 (1992); U.S. Patent Nos. 5,530,109 and 5,716,930; Hijazi et al., Int. J. Oncol.
  • the EGF-like domain binds and activates ErbB2/ErbB4 or ErbB2/ErbB3 heterodimers.
  • the EGF-like domain comprises amino acids of the receptor binding region of NRG-1.
  • the EGF-like functional domain refers to amino acids 177-226, 177-237, or 177-240 of NRG-1.
  • the EGF-like domain comprises amino acids of the receptor binding region of NRG-2. In certain embodiments, the EGF-like domain comprises amino acids of the receptor binding region of NRG-3. In certain embodiments, the EGF-like domain comprises amino acids of the receptor binding region of NRG-4. In certain embodiments, the EGF-like functional domain contains the amino acid sequence described in US Patent 5,834,229: AlaGlu, Lys, Glu, Lys, Thr, Phe, Cys, Val, Asn, Gly, Gly, Glu, Cys, Phe, Met, Val, Lys, Asp, Leu, Ser, and AsnPro.
  • Neuromodulin can be made into oral administration, rectal administration, local administration, inhalation administration, oral administration (such as sublingual administration), parenteral administration (such as subcutaneous injection, intramuscular injection, intradermal administration) (Injection or intravenous injection), transdermal administration, or other suitable administration.
  • oral administration such as sublingual administration
  • parenteral administration such as subcutaneous injection, intramuscular injection, intradermal administration) (Injection or intravenous injection)
  • transdermal administration or other suitable administration.
  • the most appropriate route of administration depends on the nature and severity of the treatment condition, as well as the nature of the particular neuromodulin used.
  • Neuromodulin can be administered alone. Or more suitably, neuromodulin can be co-administered with some pharmaceutically acceptable carriers or excipients. Any suitable pharmaceutically acceptable carrier or excipient can be used in the current method (see eg Remington: The Science and Practice of Pharmacy, Alfonso R. Gennaro (Editor) Mack Publishing Company, April 1997).
  • a "pump” is a drug delivery device that is capable of subcutaneous infusion of therapeutic fluids, drugs, proteins, and/or other compositions, and has the property of continuous precise dosing.
  • the pump uses a subcutaneous catheter for continuous subcutaneous infusion.
  • the catheter can be placed externally or the catheter port can be embedded in the pump mechanism.
  • the micro-injection pump is a portable, convenient device that can accurately output liquid.
  • an insulin pump is a medical device used to administer insulin or other drugs in diabetes treatment or other treatments, and is also considered to be used for continuous subcutaneous insulin infusion therapy.
  • the insulin pump can be equipped with a disposable thin plastic tube or a catheter to allow insulin or other drugs to enter the tissue.
  • the catheter can be inserted subcutaneously and the position can be changed as needed.
  • the pump can be assembled in an external device that can be connected to the patient, or in a device that can be implanted in the patient.
  • External pumps include devices designed for use in fixed locations such as hospitals, clinics, or other similar locations, and further include devices that are not fixed or portable, such as pumps designed to be carried by patients, or the like.
  • the external pump includes a reservoir capable of storing a fluid medium, such as but not limited to a fluid medium containing neuromodulin.
  • the external pump can be connected to the patient via fluid flow, for example, through a suitable hollow tube.
  • the hollow tube can be connected to a hollow needle, which is used to pierce the patient's skin to deliver the medical solution.
  • the hollow tube can be directly connected to the patient through a cannula or the like.
  • the external pump can be worn or attached to or under the clothing of the patient.
  • Suitable pumps include but are not limited to microinjection pumps with tight infusion functions, such as MiniMedParadigm522 insulin pump, MiniMedParadigm722 insulin pump, MiniMedParadigm515 insulin pump, MiniMedParadigm715 insulin pump, MiniMedParadigm512R insulin pump, MiniMedParadigm712R insulin pump, MiniMedParadigm508 pump (Medtronic Corporation; Northridge, Canada), and other similar devices known to those skilled in the art.
  • microinjection pumps with tight infusion functions such as MiniMedParadigm522 insulin pump, MiniMedParadigm722 insulin pump, MiniMedParadigm515 insulin pump, MiniMedParadigm715 insulin pump, MiniMedParadigm512R insulin pump, MiniMedParadigm712R insulin pump, MiniMedParadigm508 pump (Medtronic Corporation; Northridge, Canada), and other similar devices known to those skilled in the art.
  • other drugs or treatment methods that can be used to prevent, treat, or delay myocardial injury refer to known drugs and devices that can be used to treat myocardial injury, and also include those that are known to treat myocardial infarction injury. Interventional treatment with drugs and devices.
  • drugs for the treatment of myocardial infarction include antiplatelet drugs (such as aspirin, clopidogrel, etc.), anticoagulant drugs (heparin, bivalirudin, etc.), thrombolytic agents (alteplase, teneplipase, urokinase, Recombinant human urokinase, etc.), lipid-lowering drugs (statins, cholesterol absorption inhibitors), angiotensin converting enzyme inhibitors/angiotensin II receptor inhibitors, beta blockers, calcium antagonists , Nitrate drugs, phosphatase inhibitors, diuretics, renin-angiotensin-aldosterone system (RAS) antagonists, myocardial energy optimizers, drugs to improve ischemic tissue metabolism, free radical scavengers, etc.
  • Interventional therapy includes coronary interventional therapy.
  • Figure 1 The results of cardiac ultrasonography of NRG with different doses of subcutaneous administration for a long time to treat acute myocardial infarction in rats
  • FIG. 2 The results of cardiac echocardiography of NRG with different administration frequencies and long-term subcutaneous administration in the treatment of acute myocardial infarction in rats
  • Figure 3 The therapeutic effect of withdrawal of NRG after long-term subcutaneous administration of NRG to withdraw the drug on acute myocardial infarction in rats
  • Figure 4 The therapeutic effect of withdrawal of NRG after subcutaneous administration of NRG for a long time after withdrawal of the drug on acute myocardial infarction in rats
  • Example 1 Treatment of acute myocardial infarction in rats with long-term subcutaneous administration of different doses of recombinant human Newland Green (rhNRG)-NRG dose-effect relationship experiment
  • rhNRG recombinant human Newland Green
  • Newland Green (NRG) finished products developed by Shanghai Zesheng Technology Development Co., Ltd.
  • Wistar rats provided by Shanghai Cypre-Bikai Laboratory Animal Co., Ltd.
  • Rats were anesthetized with isoflurane through a gas anesthesia machine, fixed on their backs after anesthesia, and disinfected with 75% alcohol skin after removing chest hair. After incision of the left anterior skin of the chest, the chest muscles were bluntly separated to expose the 4th and 5th ribs, and the intercostal muscles of the 4th and 5th ribs were bluntly separated with hemostatic forceps.
  • Heart observe lung inflation and heartbeat, fully expose the left atrial appendage and the pulmonary artery cone, and ligate the anterior descending branch of the left coronary artery with a surgical suture between the two. After the ligation, the heart was quickly reset, then the chest muscles and skin were sutured, put back in the cage after operation, and the state of the rats was closely observed.
  • the animal began to administer the drug the next day after the model of myocardial infarction.
  • the left lateral position was fixed on the surgical board.
  • the head of the rat was fixed in the breathing mask of the gas anesthesia machine, and isoflurane maintained the anesthesia.
  • the LVEDd, LVEDs and EF values of the vehicle group were 0.971 ⁇ 0.07cm, 0.832 ⁇ 0.08cm, 34.6 ⁇ 7.00%, and the NRG treatment 15 ⁇ g/kg group was 0.975 ⁇ 0.07cm, 0.794 ⁇ 0.10cm, 42.9 ⁇ 11.32%, 0.965 ⁇ 0.07cm, 0.808 ⁇ 0.11cm, 38.4 ⁇ 12.17% in NRG treated 7.5 ⁇ g/kg group, 0.994 ⁇ 0.08cm, 0.839 ⁇ 0.12cm in NRG treated 3.75 ⁇ g/kg group, 37.0 ⁇ 12.23%.
  • the medium- and high-dose NRG group can reduce the inner diameter of left ventricular diastole and end-systole.
  • the 60-day continuous high-medium and low-dose groups all improved cardiac function, and the three groups showed a dose-effect relationship. The results are shown in Table 2 and Figure 1.
  • Example 2 Treatment of acute myocardial infarction in rats with long-term subcutaneous administration of recombinant human Newland Green (rhNRG) at different administration frequencies
  • Newland Green (NRG) finished products developed by Shanghai Zesheng Technology Development Co., Ltd.
  • Wistar rats provided by Shanghai Cypre-Bikai Laboratory Animal Co., Ltd.
  • Rats were randomly divided into 4 groups according to body weight according to ligation survival: vehicle group (control group), NRG 30 ⁇ g/kg/Day group, NRG 30 ⁇ g/kg/BIW group, NRG 30 ⁇ g/kg/Day*7+QW group. Animals were started on the second day after the model of myocardial infarction. The first three groups and the first seven days of the fourth group were given subcutaneous injections three times on the day of dosing. The animals were weighed once and administered according to the body weight of the animals The dosage is 30 ⁇ g/kg/day, and the fourth group will be administered 1 day a week for the next four weeks. On the day of administration, a single needle is injected at 30ug/kg NRG.
  • the left lateral position was fixed on the surgical board.
  • the head of the rat was fixed in the breathing mask of the gas anesthesia machine, and isoflurane maintained the anesthesia.
  • the LVEDd, LVEDs and EF values of the control group were 0.925 ⁇ 0.084cm, 0.756 ⁇ 0.107cm, 42.5 ⁇ 10.174%; the NRG/30 ⁇ g/kg/Day group was 0.879 ⁇ 0.058cm, 0.694 ⁇ 0.077cm, 47.9 ⁇ 8.342%; 0.928 ⁇ 0.084cm, 0.746 ⁇ 0.110cm, 45.2 ⁇ 10.248% in NRG/30 ⁇ g/kg/BIW group; 0.931 ⁇ 0.070 in NRG/30 ⁇ g/kg/Day*7+QW group cm, 0.760 ⁇ 0.097cm, 42.7 ⁇ 9.892%.
  • NRG/30 ⁇ g/kg/Day can significantly reduce the inner diameter of left ventricular diastole and end-systole after continuous administration of NRG for 35 days; from the data of EF value, NRG/30 ⁇ g/kg/Day group and control group Compared with the control group, the NRG/30 ⁇ g/kg/BIW group showed an increasing trend; the NRG/30 ⁇ g/kg/Day*7+QW group was continuously administered in the first 7 days compared with the control group At that time, it has a certain improvement effect on cardiac function, which is an increasing trend compared with the blank group, and the maintenance effect of one needle every 7 days thereafter is general.
  • Table 4 and Figure 2 The results are shown in Table 4 and Figure 2.
  • Example 3 Reducing the frequency of administration of recombinant human Newland Green (rhNRG) after long-term subcutaneous administration The therapeutic effect of withdrawal of drugs on acute myocardial infarction in rats
  • Newland Green (NRG) finished products developed by Shanghai Zesheng Technology Development Co., Ltd.
  • Wistar rats provided by Shanghai Cypre-Bikai Laboratory Animal Co., Ltd.
  • Rats were randomly divided into 2 groups according to the survival of ligation, excipient group and NRG 30 ⁇ g/kg group, 19 in the excipient group, 18 in the NRG treatment group, and continued to administer daily daily on the second day after modeling It was administered subcutaneously three times, with a dose of 10 ⁇ g/kg/time, and cardiac ultrasonography was detected on day 14 after modeling. All animals were continuously administered until day38.
  • the animals in the NRG administration group were subjected to echocardiography. Based on the results of the echocardiography, the animals in the NRG treatment group were divided into two parts on average, half of them continued to be administered, and half were discontinued early. The vehicle group continued to administer.
  • the NRG continued dosing group carried out a gradual withdrawal plan for three consecutive weeks at day 49, one day every other day in the first week; one day every two days in the second week; and one day subcutaneously every three days in the third week;
  • the mode of administration is still subcutaneous administration 3 times a day, exactly the same as before.
  • clinical symptoms were observed. All animals are monitored for changes in cardiac function once weekly.
  • the left lateral position was fixed on the surgical board.
  • the head of the rat was fixed in the breathing mask of the gas anesthesia machine, and isoflurane maintained the anesthesia.
  • the LVEDd, LVEDs, and EF values of the vehicle group were 0.988 ⁇ 0.08cm, 0.850 ⁇ 0.10cm, 33.6 ⁇ 11.36%, and the NRG treatment group was 0.953 ⁇ 0.05cm, 0.767 ⁇ 0.06cm.
  • NRG can significantly reduce the inner diameter of the left ventricular diastole and end-systole, strengthen the contractile function of the heart, and reverse the remodeling process of the left ventricle; LVEDd, LVEDs, and EF values of the vehicle group after 49 days of continuous administration 1.020 ⁇ 0.10cm, 0.881 ⁇ 0.15cm, 33.1 ⁇ 14.55, the NRG half-stop group was 0.987 ⁇ 0.05cm, 0.807 ⁇ 0.06cm, 42.2 ⁇ 5.48%, and the NRG continued administration group was 0.973 ⁇ 0.07cm, 0.783 ⁇ 0.08 cm, 45.0 ⁇ 5.51%, indicating that the sudden withdrawal of NRG has a certain effect on the cardiac function of the rat; the subsequent half of the gradual withdrawal plan, the second week of withdrawal of the cardiogram, the early withdrawal group LVEDd, LVEDs, EF values 1.043 ⁇ 0.06cm, 0.887 ⁇ 0.06, 35.4 ⁇ 6.78%; the NRG step-by-step
  • Recombinant human Newland Green reduces the frequency of drug administration after prolonged subcutaneous administration. Withdrawal can improve cardiac function and reduce cardiac remodeling in rats after myocardial infarction.
  • Example 4 Treatment of acute myocardial infarction in rats with reduced dose after long-term subcutaneous administration of recombinant human Newland Green (rhNRG)
  • Newland Green (NRG) finished products developed by Shanghai Zesheng Technology Development Co., Ltd.
  • Wistar rats provided by Shanghai Cypre-Bikai Laboratory Animal Co., Ltd.
  • Rats were randomly divided into 2 groups according to the average ligation survival according to the average body weight, injected subcutaneously 3 times a day, the animal weight was weighed once, and the drug was administered according to the animal's body weight.
  • the left lateral position was fixed on the surgical board.
  • the head of the rat was fixed in the breathing mask of the gas anesthesia machine, and isoflurane maintained the anesthesia.
  • the LVEDd, LVEDs, and EF values of the vehicle group were 1.048 ⁇ 0.07cm, 0.910 ⁇ 0.09cm, 32.1 ⁇ 6.6%, and the NRG 30 ⁇ g/kg/Day treatment group was 0.981 ⁇ 0.08cm. , 0.794 ⁇ 0.08cm, 43.8 ⁇ 8.0%.
  • the NRG daily administration group can significantly reduce the inner diameter of the left ventricular diastole and end systole, which is extremely significant compared with the blank control group (p ⁇ 0.001).
  • the EF value of the NRG treatment group for 60 days of continuous administration was significantly increased, and there was a very significant difference compared with the blank group, P ⁇ 0.001.
  • the LVEDd, LVEDs and EF values of the blank control group were 1.038 ⁇ 0.07cm, 0.899 ⁇ 0.10cm, 32.4 ⁇ 9.5, and the NRG/30 ⁇ g/kg/Day group was 0.981 ⁇ 0.08cm, 0.799 ⁇ 0.08, 42.3 ⁇ 11.2%; After the end of three weeks of dose reduction, drug withdrawal was observed, and the first week of drug withdrawal was monitored by echocardiography.
  • the LVEDd, LVEDs, and EF values of the blank control group were 1.065 ⁇ 0.07cm, 0.942 ⁇ 0.10, 28.3 ⁇ 9.4%, respectively; NRG/30 ⁇ g/kg /Day group was 0.994 ⁇ 0.08cm, 0.826 ⁇ 0.10, 39.3 ⁇ 12.7%; until the 9th week after cardiac discontinuation, the LVEDd, LVEDs and EF values of the blank control group were 1.137 ⁇ 0.08cm, 1.006 ⁇ 0.08, 28.0 ⁇ 5.7 %; NRG/30 ⁇ g/kg/Day group was 1.104 ⁇ 0.08cm, 0.950 ⁇ 0.09, 33.4 ⁇ 7.6%, LVEDd and LVEDs of NRG daily administration group after nine weeks of drug withdrawal were still significantly different from the blank group; EF Compared with the blank group, the value still tends to increase. The results are shown in Tables 7, 8, 9 and Figure 4.
  • Recombinant human Newland Green (rhNRG) with the same dose and different frequencies has a certain therapeutic effect on myocardial infarction rats during continuous administration, saving cardiac function and improving ventricular remodeling in rats with acute myocardial infarction, and slowing heart failure after myocardial infarction
  • the progress of the drug has a significant improvement on the heart function of myocardial infarction rats for a long time after drug withdrawal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

一种神经调节蛋白用于预防、治疗或延迟哺乳动物心肌损伤的方法和组合物。一种减少心肌损伤的药物制剂或者组合物的给药方法,给药频率和给药剂量。通过大鼠心肌损伤模型,证明神经调节蛋白可以改善心肌梗死后的心脏功能,提示神经调节蛋白可以用于预防、治疗或延迟心肌梗死损伤。

Description

神经调节蛋白用于预防、治疗或延迟心肌损伤的方法和组合物 技术领域
本发明涉及神经调节蛋白在制备用于预防、治疗或延迟哺乳动物心肌损伤的药物中的用途,同时本发明涉及一种预防、治疗或延迟哺乳动物心肌损伤的神经调节蛋白药物制剂或者组合物的给药方法,给药频率和给药剂量。更为特别地,涉及神经调节蛋白用于预防、治疗或延迟心肌损伤的方法和组合物以及一种预防、治疗或延迟哺乳动物心肌梗死的神经调节蛋白药物制剂或者组合物的给药方法,给药频率和给药剂量。
背景技术
全球范围内,心血管对人们的生命和健康构成了严重威胁,心血管疾病包括多种疾病状态比如心力衰竭,心肌梗死,冠状动脉粥样硬化性心脏病,心律失常,心肌疾病,心脏瓣膜病,感染性心内膜炎,心胞疾病,缺血性心脏病,先天性心脏病等之类的。心血管疾病会导致心肌损伤并影响心脏的功能从而影响人类的健康。其中心肌梗死是一种严重危害人类健康的心血管疾病,随着人民生活水平的不断提高,缺血性心肌梗死的发病率也在不断上升。心肌梗死是心肌缺血性坏死,大多是在冠状动脉病变的基础上,由于冠状动脉的持续堵塞而导致的冠状动脉血供急剧减少或者中断,导致相应的心肌严重而持久的缺血所致。缺血性心肌梗死会导致心肌细胞坏死和瘢痕形成,进而影响心脏功能。
心肌梗死发生时,冠状动脉闭塞20-30分钟,受供血的心肌细胞即有少数的坏死,开始了心肌梗死的病理过程,随时间推移坏死的心肌量逐渐增加,2小时候后绝大部分受累的心肌细胞逐渐呈凝固性坏死,心肌间质则充血,水肿,伴随多量炎症细胞浸润。6-12小时后心肌坏死过程接近完成。1-2周后心肌纤维溶解,被巨噬细胞吞噬并逐渐纤维化,直到梗死后6周坏死区域完全被致密的纤维疤痕取代,称为陈旧性或愈合性心肌梗死。
心肌梗死后左心室的正常功能会受到明显的影响,如果心脏遭受缺血的范围较大,左心室的泵血功能会受到损害,心输出量,每搏输出量,血压降低,收缩末期的容积增加,在梗死后的数周时间里,舒张末期的容积增加。
心脏重构为心肌梗死后发生了一个重要的病理性行为。心肌梗死后心室重构是指心肌梗死后心室梗死区和非梗死区的结构及形态的改变:梗死区的变化主要包括梗死的扩展,非梗死区的变化主要表现为心室的扩大。心肌重构其典型表现是心室失代偿性肥厚;心室重量、容积增加及形态改变,可以引起心室泵血功能低下,并发展为心力衰竭。导致心力衰竭发生 发展的基本机制即为心室重塑。该症状是继于心肌梗死后的持续性、进行性变化,其严重程度决定着患者心功能状况及预后。心肌梗死后的心室重构成为影响患者心脏功能威胁公众生命安全的主要心血管疾病之一。
针对心肌梗死后的病人,目前主要的治疗方法包括对心肌梗死后患者进行早期再灌注(包括溶栓治疗和介入治疗)、血管紧张素Ⅱ受体阻滞剂、血管紧张素转换酶抑制剂和β-受体阻滞剂等治疗以缩小梗死面积、减少复发性心肌缺血、改善血运重建、减轻心室过度扩张而减少慢性心力衰竭的发生。
患者心肌梗死后的症状与梗死的面积、部位、冠状动脉侧支血管的情况密切相关,主要的症状包括疼痛、发热、心动过速、恶心、呕吐、低血压、休克、心律失常等。心肌梗死后的主要的并发症包括:乳头肌功能失调或者断裂、心脏破裂、心室壁瘤、栓塞以及心肌梗死后综合症等。
目前的药物或介入治疗大多只能缓解心梗患者的症状,却不能逆转心脏组织损伤。对于心梗后终末期状态的病人,心脏移植作为最终的治疗选择,虽能改善心脏状态,拯救濒临死亡的患者,但因供体来源稀缺、手术复杂、免疫排斥以及昂贵的治疗费用等因素的限制,在临床上很难得到广泛应用。
综上所述,心血管疾病导致的心肌损伤严重危害人类健康,特别是目前心肌梗死作为严重危害人类健康的致死性疾病,目前临床亟需更有安全有效的药物对其进行治疗。
神经调节蛋白(Neuregulin,NRG;Heregulin,HRG),属于表皮生长因子样(EGF-like)家族,是一类结构上相似的生长分化因子,包括NRG1、NRG2、NRG3和NRG4以及它们的异构体,行使了一系列的生物学作用:刺激乳腺癌细胞分化和乳蛋白的分泌(Lessor T等.J Cell Biochem.1998;70(4):587-595);诱导神经脊细胞分化为Schwann细胞(Topilko P等,Mol Cell Neurosci.1996;8(2-3):71-75);刺激骨骼肌细胞内乙酰胆碱受体的合成(Altiok N等,EMBO J.1995;14(17):4258-4266);以及促进心肌细胞成活和DNA合成(Zhao YY等,J Biol Chem.1998;273(17):10261-10269)。用NRG基因严重缺陷的小鼠胚胎做的活体研究证明NRG对于心脏和神经发育是必需的。
NRG的受体属于EGF受体家族,包括EGFR,ErbB2,ErbB3和ErbB4,它们在多种细胞功能比如细胞生长、分化和存活中发挥了重要的作用。它们属于络氨酸激酶受体,有胞外的配体结合功能区、跨膜区和胞内的络氨酸激酶功能区组成。当NRG结合到ErbB3或ErbB4的胞外区后,引起其构象改变从而导致ErbB3/ErbB4或ErbB2/ErbB3异二聚体的形成或ErbB4/ErbB4同二聚体的形成,并且引起其C末端的磷酸化。磷酸化的C末端可以进一步结合胞内的下游信号蛋白,激活AKT和(或)ERK信号通路,并最终引起一系列的细胞反应比如刺激 或抑制细胞增殖、细胞分化、细胞凋亡、细胞迁移或细胞黏附。在这些受体中,在心脏组织表达的主要是ErbB2和ErbB4(Zhao YY等,Circ Res.1999;84(12):1380-1387)。
已有的证据表明,NRG-1的EGF样结构域,包含50到64个氨基酸,足以结合并激活受体(Culouscou JM等,J Biol Chem.1995;270(21):12857-12863)。NRG-1β可以以较高的亲和力结合到ErbB3和ErbB4。而ErbB2可与ErbB3或ErbB4形成异源二聚体,其与配体的亲和力高于ErbB3或ErbB4同源二聚体与配体的亲和力。神经发育学的研究证实交感神经系统的形成需要NRG-1β、ErbB2和ErbB3的信号传导(Britsch S等,Genes Dev.1998;12(12):1825-1836)。而干扰NRG-1β或ErbB2或ErbB4的表达将由于心脏发育的缺陷引起胚胎死亡(Gassmann M等,Nature.1995;378(6555):390-394)。最近的研究强调,NRG-1β、ErbB2和ErbB4不仅对心脏发育至关重要,同时对成年心脏的功能维持也起到非常重要的作用(Kuramochi Y等,J Mol Cell Cardiol.2006;41(2):228-235)。NRG-1β被证明可以加强成年心肌细胞肌小节的形成。在多种心衰动物模型中发现,NRG-1βEGF样结构域的摄入可以显著提高心脏功能,防止心功能的恶化(Liu等,J Am Coll Cardiol.2006;48:1438-1447)。在临床试验中,NRG也显示了对各种病因引起的慢性心力衰竭患者的治疗作用,显著提高了其心脏功能(CN200910057390.5)。在大脑缺血再灌注动物模型中,NRG-1也显示了对脑细胞显著的保护性作用,抑制脑细胞凋亡,增强神经功能,减小梗死面积(Li Q等,Neurosci Lett.2008;443(3):155-159)。有证据表明,心脏缺血再灌注诱导了NRG-1的释放,激活心肌细胞NRG/ErbB信号通路(Kuramochi Y等,J Biol Chem.2004;279(49):51141-51147),NRG-1对心脏缺血再灌注损伤具有预防、治疗或者延迟的作用(WO2011091723)。
心肌损伤作为一种严重威胁人类健康的致死性疾病,NRG-1在心肌损伤中的给药方法,给药频率和给药剂量仍然没有被清楚的阐明。本发明提供了上述需求的方法和组合物。值得一提的是,本发明尤其特别的提供了一种优化后的给药频率,本发明尤其特别的提供了一种优化后的给药剂量,本发明尤其特别的是提供了一种优选的给药方法。本发明进一步涉及神经调节蛋白在制备用于预防、治疗或延迟哺乳动物心肌梗死损伤的药物中的用途。在治疗心肌梗死方面,本发明尤其特别的提供了一种优化后的给药频率,本发明尤其特别的提供了一种优化后的给药剂量,本发明尤其特别的是提供了一种优选的给药方法。
发明内容
A.发明概述
本发明发现神经调节蛋白在制备用于预防、治疗或延迟哺乳动物心肌损伤的药物中的用途。本发明进一步涉及神经调节蛋白在制备用于预防、治疗或延迟哺乳动物心肌梗死损伤的 药物中的用途。其中所述哺乳动物优选的是人。神经调节蛋白能够改善对心肌损伤后的心脏功能并减轻其心脏重构。
多种心血管疾病例如心力衰竭,心肌梗死,冠状动脉粥样硬化性心脏病,心律失常,心肌炎,心脏瓣膜病,感染性心内膜炎,心胞疾病,缺血性心脏病,先天性心脏病等会导致心肌损伤。发生心肌损伤时会影响心脏的功能从而影响人类的健康。其中心肌梗死患者发病时随着冠状动脉闭塞时间的延长,通常会伴随着心肌细胞凋亡坏死,大量炎症细胞浸润,心肌纤维化并导致心肌损伤。心肌梗死损伤通常会降低心脏功能并影响人类健康。
本发明是基于NRG对心脏发育至关重要,对成年心脏的功能维持也起到非常重要的作用的科学发现;基于NRG可以加强心肌细胞肌小节和细胞骨架以及细胞间连接的形成的科学发现;基于NRG在各种动物模型和临床试验中可以提高心衰动物或病人的心脏功能的科学发现;基于NRG在大脑缺血再灌注动物模型中显示对脑细胞的保护作用的科学发现;基于NRG在心脏缺血再灌注动物模型中显示对脑细胞的保护作用的科学发现。NRG,NRG多肽,NRG突变体或其它具有NRG样功能的复合物都属于本发明的范畴。
本发明的第一个方面,是提供了一种预防、治疗或延迟哺乳动物心肌损伤的药物制剂。进一步提供了一种预防、治疗或延迟哺乳动物心肌梗死损伤的药物制剂。其中哺乳动物优选的是人。该药物制剂包含有效量的NRG或其功能片段,或编码NRG或其功能片段的核酸,或提高NRG产量和/或功能的物质,以及药学上可以接受的载体、赋形剂等。该药物制剂可以和其它可用于预防、治疗或延缓心肌损伤的药物或者治疗方法一起使用。在某一实施例中,使用该NRG药物制剂能够增强哺乳动物左心室的EF值,在另一实施例中,使用该NRG药物制剂能够减少左室舒张末期容积(LVEDV)或左室收缩末期容积(LVESV)。在另一实施例中,该NRG药物制剂通过注射器或者其它装置经皮下输注给药。在另一实施例中,该NRG药物制剂通过使用一个泵,例如注射泵,经皮下输注给药。在一些实施例中,注射泵是微型泵。在进一步的实施例中,微型泵是一个胰岛素泵。值得一提的是,任何药物上可用的制剂均适用本发明,该药物制剂含有如上所述的神经调节蛋白或者包含神经调节蛋白和可药用的赋形剂、稀释或载体。本发明所采用的药物制剂包括但不限于本申请中的内容。
本发明的第二个方面,是提供了一种预防、治疗或延迟哺乳动物心肌损伤的方法。进一步提供了一种预防、治疗或延迟哺乳动物心肌梗死损伤的方法。其中哺乳动物优选的是人。包括对需要或希望预防、治疗或延迟心肌损伤的哺乳动物施用有效量的NRG或其功能片段,或编码NRG或其功能片段的核酸,或提高NRG产量和/或功能的物质,从而达到预防、治疗或延迟心肌损伤的效果。组合其它药物包括对需要或希望预防、治疗或延迟心肌梗死损伤的哺乳动物施用有效量的NRG或其功能片段,或编码NRG或其功能片段的核酸,或提高NRG产量 和/或功能的物质,从而达到预防、治疗或延迟心肌梗死损伤的效果。
本发明的第三个方面,是提供了一种用于预防、治疗或延迟哺乳动物心肌损伤的组合物。进一步提供了一种用于预防、治疗或延迟哺乳动物心肌梗死损伤的组合物。其中哺乳动物优选的是人。该组合物包含了本发明所提供的用于预防、治疗或延迟哺乳动物心肌损伤的神经调节蛋白,以及其它预防、治疗或延缓心肌损伤的药物。其中,所述的组合物包括EGF样功能域,该区已被证明足以结合并活化受体。特别地,作为例子,但并非为了限制的目的,本发明的神经调节蛋白是NRG-1β2异构体的一个片段,包含177-237位氨基酸片段,该片段的氨基酸序为:SHLVKCAEKEKTFCVNGGECFMVKDLSNPSRYLCKCPNEFTGDRCQNYVMASFYKAEELYQ(SEQ ID NO:1)。
本发明的第四个方面,是提供了一种用于预防、治疗或延迟哺乳动物心肌损伤神经调节蛋白药物制剂的给药剂量。进一步提供了一种用于预防、治疗或延迟哺乳动物心肌梗死神经调节蛋白药物制剂的给药剂量。其中哺乳动物优选的是人。该有效剂量是指将该剂量的NRG蛋白施用给哺乳动物时,可以带来一种或多种有益效果。该有益效果可以是心肌损伤的患者的心脏功能的改善,或者是防止其心脏功能的进一步恶化,或者延迟可能患有心肌损伤导致的心脏功能的恶化。本发明对于哺乳动物所述的剂量在0.1μg/kg/day(蛋白/体重)至360μg/kg/day(蛋白/体重)的范围内。在一个实施方案中,所述的剂量在0.3μg/kg/day(蛋白/体重)至50μg/kg/day(蛋白/体重)的范围内;在一个实施方案中,所述有效剂量为7.5μg/kg/day;在一个实施方案中,所述有效剂量为15μg/kg/day;在另一个实施方案中,所述有效剂量为30μg/kg/day.
本发明的第五个方面,是提供了一种用于预防、治疗或延迟哺乳动物心肌损伤神经调节蛋白药物制剂的给药方法。进一步提供了一种用于预防、治疗或延迟哺乳动物心肌梗死神经调节蛋白药物制剂的给药方法。其中哺乳动物优选的是人。该药物制剂可以通过口服给药、直肠给药、局部给药、吸入给药、口腔给药(如舌下给药)、非肠道给药(如皮下注射、肌肉注射、皮内注射或静脉注射)、经皮给药或者其他合适的给药方式进行施用。在一个实施方案中,NRG蛋白每天只被施用一次。在另一个实施方案中,NRG蛋白每天被施用多次。在一个实施方案中,NRG蛋白在一天内施用。在另一个实施方案中,该耐受剂量范围内的NRG蛋白在几天或者数日内施用。在另一个实施方案中,NRG蛋白每天被施用多次,连续施用多天。在另一个实施方案中,NRG蛋白每周被施用2天,每天被施用多次,连续多周施用。在另一个实施方案中,NRG蛋白每周被施用2天,每天被皮下施用3次,连续多周施用。在另一个实施方案中,NRG蛋白每天被皮下注射三次,连续施用多天。在另一个实施方案中,NRG蛋白每天被皮下注射三次,连续施用35天。在另一个实施方案中,NRG蛋白每天被皮下注射三次, 连续施用38天。在另一个实施方案中,NRG蛋白每天被皮下注射三次,连续施用49天。在另一个实施方案中,NRG蛋白每天被皮下注射三次,连续施用60天。在另一个实施方案中,NRG蛋白每天被皮下注射三次,连续施用35天以上。在另一个实施方案中,NRG蛋白每天被施用多次,连续施用多天,后续缓慢撤药。在另一个实施方案中,NRG蛋白每天被施用多次,连续施用多天,后续进行连续3周的缓慢撤药计划,第1周每隔一天给一天药;第2周隔两天给一天药;第3周每隔三天皮下给一天药。在另一个实施方案中,NRG蛋白每天被皮下注射三次,连续施用38天以上后缓慢撤药。在另一个实施方案中,NRG蛋白每天被皮下注射三次,连续施用49天,之后开始进行连续3周的缓慢撤药计划,第1周每隔一天给一天药;第2周隔两天给一天药;第3周每隔三天皮下给一天药。在另一个实施方案中,NRG蛋白每天被施用多次,连续施用多天,后续缓慢递减每天药物的给药剂量。在另一个实施方案中,NRG蛋白每天被皮下注射三次,连续施用多天,后续缓慢递减每天药物的给药剂量。在另一个实施方案中,NRG蛋白每天被皮下注射三次,连续施用60天以上,后续缓慢递减每天药物的给药剂量。在另一个实施方案中,NRG蛋白每天被皮下注射三次,连续施用60天,之后开始进行连续3周的缓慢撤药计划,第1周每天施用剂量为连续施用剂量的一半;第2周每天施用剂量为连续施用剂量的四分之一;第3周每天施用剂量为连续施用剂量的八分之一。
本发明还提供了一种用于预防、治疗或延迟哺乳动物心肌损伤的药盒。进一步提供了一种用于预防、治疗或延迟哺乳动物心肌梗死损伤的药盒。其中哺乳动物优选的是人。其中包含了一次或多次使用剂量的上述预防、治疗或延迟心肌损伤的药物制剂或组合物,以及如何使用该药物制剂或组合物的说明书。
本发明所提供的药物制剂或组合物,可以在心脏疾病发生前、发生时或发生后给予。当用于预防时,一般在心脏疾病发生前给药。当用于治疗时,一般在心脏疾病发生时或者发生后给药。在一个实施方案中,本发明所提供的药物制剂或组合物,在发生之前给药。在另一个实施方案中,本发明所提供的药物制剂或组合物,在心肌梗死发生时给药。在另一个实施方案中,本发明所提供的药物制剂或组合物,在发生后给药。
本发明所提供的药物制剂或者组合物,可以通过口服给药、直肠给药、局部给药、吸入给药、口腔给药(如舌下给药)、非肠道给药(如皮下注射、肌肉注射、皮内注射或静脉注射)、经皮给药或者其他合适的给药方式进行施用。其中皮下注射可以通过注射器,泵(微量注射泵)或者其它给药装置设备进行。本发明所提供的药物制剂或者组合物的剂型包括但不限于片剂、锭剂、扁囊剂、分散剂、悬浊液、溶液、胶囊、药膏和类似形态。
B.释义
除另有定义,这里使用的所有科技术语与本发明所属技术领域的普通技术人员理解含义 相同。所有专利文献、专利申请文献、公开的专利文献和其它出版物均作为参考。如本节阐述的定义与上述参考文献所述的定义不一致或相反时,以本节阐述的定义为准。
除非特别指明,在此所用“一个”的意思是“至少一个”或“一个或多于一个”。
此处所用“哺乳动物”,是指非灵长类动物(牛、猪、马、猫、狗、大鼠、小鼠等)或灵长类动物(猴、人),更为优选的是人。
此处所用“心肌损伤”是指由心脏病理性疾病例如心力衰竭,心肌梗死,冠状动脉粥样硬化性心脏病,心律失常,心肌疾病,心脏瓣膜病,感染性心内膜炎,心胞疾病,缺血性心脏病,先天性心脏病导致的心肌损伤,心肌损伤往往会导致心脏功能的降低从而影响人类的健康。心肌损伤的机理涉及氧自由基的产生,钙离子超载,中性粒细胞损伤区浸润导致的炎症反应,心肌细胞的凋亡或者坏死,能量供应失调导致的组织代谢失调,心脏电信号传导的异常,胆固醇的累积,动脉粥样硬化斑块的形成等多重病理生理改变。
此处所用“心肌梗死损伤”是指心肌梗死损伤是指心肌缺血后对组织和器官造成的损伤,大多是在冠状动脉病变的基础上,由于冠状动脉的持续堵塞而导致的冠状动脉血供急剧减少或者中断,导致相应的心肌严重而持久的缺血所致。其损伤的机理涉及氧自由基的产生,钙离子超载,中性粒细胞损伤区浸润导致的炎症反应,心肌细胞的凋亡或者坏死,能量供应失调导致的组织代谢失调等多重病理生理改变。
此处所用“神经调节蛋白”或“neuregulin”或“NRG”是指能够结合并激活ErbB2、ErbB3、ErbB4或其异源或同源二聚体的蛋白或多肽,包括神经调节蛋白的异构体、神经调节蛋白中的EGF样功能域、包含神经调节蛋白EGF样功能域的多肽、神经调节蛋白的突变体或衍生物以及其它能够激活上述受体的神经调节蛋白样的基因产物。神经调节蛋白还包括NRG-1,NRG-2,NRG-3和NRG-4蛋白、多肽、片段以及具有NRG样功能的复合物。优选的,神经调节蛋白是可以结合并激活ErbB2/ErbB4或ErbB2/ErbB3异源二聚体的蛋白或多肽。作为例子,但并非为了限制的目的,本发明的神经调节蛋白(重组人纽兰格林rhNRG)是NRG-1β2异构体的一个片段,即177-237位氨基酸片段,其中包含了EGF样功能域。该片段的氨基酸序列为:SHLVKCAEKEKTFCVNGGECFMVKDLSNPSRYLCKCPNEFTGDRCQNYVMASFYKAEELYQ(SEQ ID NO:1)。本发明所用神经调节蛋白可以激活上述受体并调节它们的生物学功能,比如刺激骨骼肌细胞合成乙酰胆碱受体;促进心肌细胞的分化、存活以及DNA合成。神经调节蛋白还包括那些具有并不实质性影响生物学功能的保守性突变的神经调节蛋白突变体。本技术领域中普通技术人员熟知,非关键区域的单个氨基酸的突变一般不会引起该蛋白或多肽的生物学功能的改变(参见Watson等人,Molecular Biology of the Gene,4th Edition,1987,The Bejacmin/Cummings Pub.co.,p.224)。本发明所用神经调节蛋白可以从天然的来源分离得到, 或者通过重组技术、人工合成或其它手段得到。
此处所用“EGF样功能域”或“EGF-like domain”是指由neuregulin基因所编码的可以结合并激活ErbB2、ErbB3、ErbB4或其异源或同源二聚体的多肽片段,并且与下述参考文献中描述的EGF受体结合区域具有结构相似性:WO 00/64400;Holmes等,Science,256:1205-1210(1992);美国专利5,530,109和5,716,930;Hijazi等,Int.J.Oncol.,13:1061-1067(1998);Chang等,Nature,387:509-512(1997);Carraway等,Nature,387:512-516(1997);Higashiyama等,J.Biochem.,122:675-680(1997);以及WO 97/09425。在某些实施方案中,EGF样功能域结合并激活ErbB2/ErbB4或ErbB2/ErbB3异源二聚体。在某些实施方案中,EGF样功能域包含NRG-1的受体结合区氨基酸。在某些实施方案中,EGF样功能域是指NRG-1的第177-226位、177-237位或177-240位氨基酸。在某些实施方案中,EGF样功能域包含NRG-2的受体结合区氨基酸。在某些实施方案中,EGF样功能域包含NRG-3的受体结合区氨基酸。在某些实施方案中,EGF样功能域包含NRG-4的受体结合区氨基酸。在某些实施方案中,EGF样功能域包含美国专利5,834,229中描述的氨基酸序列:Ala Glu Lys Glu Lys Thr Phe Cys Val Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro。
神经调节蛋白,可被制成口服给药、直肠给药、局部给药、吸入给药、口腔给药(如舌下给药)、非肠道给药(如皮下注射、肌肉注射、皮内注射或静脉注射)、经皮给药或者其他合适的给药方式的制剂。在所有给药方式中,最合适的给药途径取决于治疗状况的性质和严重程度,以及所使用特殊神经调节蛋白的性质。神经调节蛋白可以单独给药。或者更适宜的,神经调节蛋白可以与一些药物可接受的载体或赋形剂共同给药。任何适宜的药物可接受载体或赋形剂能够用于目前的方法(参见如Remington:The Science and Practice of Pharmacy,Alfonso R.Gennaro(Editor)Mack Publishing Company,April1997)。
此处所用的“泵”是一个给药装置,能够皮下输注治疗液体,药物,蛋白和/或其他组合物,具有连续精确定量给药的性能。泵采用一个皮下导管用于连续的皮下输注。导管可以置于外部或导管端口可嵌于泵的机械装置中。微量注射泵是一种能够精确输出液体、便携、便利的装置。例如,胰岛素泵是一种在糖尿病治疗或其他治疗中用于施用胰岛素或其他药物的医疗器械,也被认为用于连续皮下胰岛素输注治疗。胰岛素泵能够配置一个一次性薄塑料管或一个导管使胰岛素或其他药品进入组织。导管能够皮下插入并根据需要改变位置。泵能够装配在一个可连接病人的外部装置内,也可以装配在一个可植入病人体内的装置中。外置泵包含在固定地点如医院、诊所、或其他类似地方使用所设计的装置,进一步包含非固定或可便携使用的装置,比如设计成能够被病人携带的泵,或类似的东西。外置泵包含能够储存流体介质的储液器,例如但不限于包含神经调节蛋白的流体介质。
外置泵能够经液体流动与病人相连,比如,通过适当的中空管。中空管能够与中空针相连,中空针用于刺穿病人皮肤输送药液。可选择的,中空管可以直接通过一个插管或类似物直接与病人相连。外置泵能够穿戴或附着于病人衣服上或衣服下。适当的泵包括但不限具有紧密输注功能的微量注射泵,例如MiniMedParadigm522胰岛素泵,MiniMedParadigm722胰岛素泵,MiniMedParadigm515胰岛素泵,MiniMedParadigm715胰岛素泵,MiniMedParadigm512R胰岛素泵,MiniMed Paradigm712R胰岛素泵,MiniMedParadigm508胰岛素泵,MiniMedParadigm508R胰岛素泵(美敦力公司;加拿大北岭市),和其他为本领域技术人员所知的类似装置。
美国专利US11/211,095(申请日2005.8.23,公布号US2006/0264894,授权US7686787)和已公布的PCT申请WO01/70307(PCT/US01/09139),WO04/030716(PCT/US2003/028769,),WO04/030717(PCT/US2003/029019),WO2013075622(PCT/CN2012/084936),美国专利US2005/0065760(Method For Advising Patients Concerning Doses Of Insulin)和US6,589,229(Wearable Self-Contained Drug Infusion Device),描述了外置泵类型给药装置的例子,都通过引用整合于此。
此处所用“其它可用于预防、治疗或延缓心肌损伤的药物或者治疗方法”是指已知的可用于治疗心肌损伤的药物和器械介入治疗等,也包括已知的可用于治疗心肌梗死损伤的药物和器械介入治疗。其中治疗心肌梗死的药物包括抗血小板药物(例如阿司匹林,氯吡格雷等),抗凝药物(肝素,比伐卢定等),溶栓剂(阿替普酶,替奈普酶,尿激酶,重组人尿激酶原等),降脂药物(他汀类药物,胆固醇吸收抑制剂),血管紧张素转换酶抑制剂/血管紧张素II受体抑制剂,β受体阻滞剂,钙离子拮抗剂,硝酸酯类药物,磷酸酯酶抑制剂,利尿剂,肾素-血管紧张素-醛固酮系统(RAS)拮抗剂,心肌能量优化剂,改善缺血组织代谢的药物,自由基清除剂等。其中介入治疗包括冠状动脉介入治疗等。
附图说明
图1 NRG不同给药剂量皮下长时间给药治疗大鼠急性心梗药效实验心超结果
图2 NRG不同给药频率皮下长时间给药治疗大鼠急性心梗药效实验心超结果
图3 NRG皮下长时间给药后降低给药频率撤药对大鼠急性心梗的治疗作用
图4 NRG皮下长时间给药后降低给药剂量撤药对大鼠急性心梗的治疗作用
具体实施方式
实施例1:重组人纽兰格林(rhNRG)不同给药剂量皮下长时间给药对大鼠急性心梗的治疗作用-NRG量效关系研究实验
1.实验目的
在左侧冠脉结扎致心梗大鼠模型上,长时间皮下给予不同剂量的重组人纽兰格林(rhNRG)观察对急性心梗大鼠的治疗作用,探索NRG治疗大鼠急性心梗的量效关系。
2.受试药物
2.1赋形剂:上海泽生科技开发股份有限公司研制
2.2重组人纽兰格林(NRG)成品:上海泽生科技开发股份有限公司研制
3.实验动物
3.1品系、来源:Wistar大鼠,由上海西普尔-必凯实验动物有限公司提供
3.2性别、体重、合格证:雄性,200~270g
4.实验材料与设备
麻醉机异氟烷蒸发器 MSS INTERNATIONAL LTD
异氟烷100ml/瓶 瑞沃德生命科技有限公司
心脏超声检测仪 Vivid E95
宁波灵桥带线缝合针 宁波医用缝针有限公司
5.实验方法
5.1大鼠冠状动脉结扎致心力衰竭模型的建立
大鼠通过气体麻醉机用异氟烷麻醉,麻醉后仰卧固定,胸部去毛后用75%酒精皮肤消毒。胸部左前皮肤切开后,钝性分离胸部肌肉,暴露第4、5肋骨,用止血钳钝性分开4、5肋的肋间肌,双手配合挤压,使心脏从胸腔内挤出,充分暴露心脏,观察肺充气及心跳情况,充分暴露左心耳和肺动脉圆锥,于二者之间用手术缝线结扎左冠状动脉前降支。结扎后心脏快速复位,再缝合胸部肌肉和皮肤,术后放回笼内饲养,并密切观察大鼠状况。
5.2实验分组及给药
表1,实验动物分组及给药计划表
Figure PCTCN2020070299-appb-000001
动物心梗造模后第二天开始给药。
5.3观测指标
5.3.1心脏功能检测
通过气体麻醉机用4%异氟烷麻醉大鼠后,左侧卧位固定在手术板上。将大鼠头部固定在气体麻醉机的呼吸面罩内,异氟烷维持麻醉。胸部去毛,用75%酒精消毒后,涂抹耦合剂,用大鼠心超探头检测大鼠左心室回声信号。测量舒张末期及收缩末期左心室内径(D),计算左心室舒张末期及收缩末期容积EDV、ESV,并计算出射血分数(Ejection Fraction,EF)值,EF=(EDV-ESV)/EDV*100%。
5.3.2数据处理
所有实验数据用±SD表示。
6.实验结果
6.1心超结果
NRG连续给药60天心超检测,赋形剂组的LVEDd、LVEDs、EF值分别为0.971±0.07cm、0.832±0.08cm、34.6±7.00%,NRG治疗15μg/kg组为0.975±0.07cm、0.794±0.10cm、42.9±11.32%,NRG治疗7.5μg/kg组为0.965±0.07cm、0.808±0.11cm、38.4±12.17%,NRG治疗3.75μg/kg组为0.994±0.08cm、0.839±0.12cm、37.0±12.23%,从LVEDd、LVEDs数据看,NRG中高剂量组可缩小左心室舒张及收缩末期的内径。从EF值数据看,连续给药60天高中低剂量组均有改善心功能,三组之间呈现出量效关系。结果详见表2及图1。
表2、NRG不同给药剂量皮下长时间给药治疗60天大鼠心梗药效实验心超结果
Figure PCTCN2020070299-appb-000002
Figure PCTCN2020070299-appb-000003
7.结论
重组人纽兰格林治疗60天后,与空白对照组相比,NRG 5ug/kg,2.5ug/kg,1.25ug/kg每天三次皮下注射治疗组EF值改善,3个剂量具有一定的量效关系.
实施例2:重组人纽兰格林(rhNRG)不同给药频率皮下长时间给药对大鼠急性心梗的治疗作用
1.实验目的
在左侧冠脉结扎致心梗大鼠模型上,探索相同剂量,不同频率下长时间皮下给予重组人纽兰格林(rhNRG)对急性心梗大鼠的治疗作用。
2.受试药物
2.1赋形剂:上海泽生科技开发股份有限公司研制
2.2重组人纽兰格林(NRG)成品:上海泽生科技开发股份有限公司研制
3.实验动物
3.1品系、来源:Wistar大鼠,由上海西普尔-必凯实验动物有限公司提供
3.2性别、体重、合格证:雄性,200~270g
4.实验材料与设备
同实施例1中4.实验材料与设备
5.实验方法
5.1大鼠冠状动脉结扎致心力衰竭模型的建立
同实施例1中5.1大鼠冠状动脉结扎致心力衰竭模型的建立
5.2实验分组与给药
表3 实验动物分组及给药安排
Figure PCTCN2020070299-appb-000004
三批动物均是心脏冠脉结扎后立即随机分组给药。大鼠根据结扎存活情况按体重随机分成4组:赋形剂组(对照组),NRG 30μg/kg/Day组,NRG 30μg/kg/BIW组,NRG 30μg/kg/Day*7+QW组。动物心梗造模后第二天开始给药,前三组及第四组的前7天,与给药当天均采用皮下注射3次,称量动物体重1次,根据动物的体重进行给药,给药剂量是 30μg/kg/天,第四组的后面四周每周给药1天,给药当天采用单针注射30ug/kg的NRG。
5.3观测指标
5.3.1心脏功能检测
通过气体麻醉机用4%异氟烷麻醉大鼠后,左侧卧位固定在手术板上。将大鼠头部固定在气体麻醉机的呼吸面罩内,异氟烷维持麻醉。胸部去毛,用75%酒精消毒后,涂抹耦合剂,用大鼠心超探头检测大鼠左心室回声信号。测量舒张末期及收缩末期左心室内径(D),计算左心室舒张末期及收缩末期容积EDV、ESV,并计算出射血分数(Ejection Fraction,EF)值,EF=(EDV-ESV)/EDV*100%。心梗造摸后第1、2、3及5周分别心超检测大鼠的心功能。
5.3.2数据处理
所有实验数据用±SD表示。
6.实验结果
6.1心超结果
NRG连续给药35天心超检测,对照组组的LVEDd、LVEDs、EF值分别为0.925±0.084cm、0.756±0.107cm、42.5±10.174%;NRG/30μg/kg/Day组为0.879±0.058cm、0.694±0.077cm、47.9±8.342%;NRG/30μg/kg/BIW组为0.928±0.084cm、0.746±0.110cm、45.2±10.248%;NRG/30μg/kg/Day*7+QW组为0.931±0.070cm、0.760±0.097cm、42.7±9.892%。
NRG连续给药35天从LVEDd、LVEDs数据看,NRG/30μg/kg/Day能明显缩小左心室舒张及收缩末期的内径;从EF值数据看,NRG/30μg/kg/Day组与对照组组相比明显升高;NRG/30μg/kg/BIW组与对照组组相比呈升高趋势;NRG/30μg/kg/Day*7+QW组与对照组组相比在前7天连续给药时,对心功能有一定的改善作用,与空白组相比呈升高趋势,之后每7天一针的维持效果一般。结果详见表4,图2。
表4 NRG不同给药频率皮下长时间给药治疗大鼠心梗药效实验心超结果
Figure PCTCN2020070299-appb-000005
Figure PCTCN2020070299-appb-000006
Figure PCTCN2020070299-appb-000007
实施例3:重组人纽兰格林(rhNRG)皮下长时间给药后降低给药频率撤药对大鼠急性心梗的治疗作用
1.实验目的
在左侧冠脉结扎致心梗大鼠模型上,观察下长时间给予重组人纽兰格林(rhNRG)后降低给药频率撤药对急性心梗大鼠的治疗作用。
2.受试药物
2.1赋形剂:上海泽生科技开发股份有限公司研制
2.2重组人纽兰格林(NRG)成品:上海泽生科技开发股份有限公司研制
3.实验动物
3.1品系、来源:Wistar大鼠,由上海西普尔-必凯实验动物有限公司提供
3.2性别、体重、合格证:雄性,200~270g
4.实验材料与设备
同实施例1中4.实验材料与设备
5.实验方法
5.1大鼠冠状动脉结扎致心力衰竭模型的建立
同实施例1中5.1大鼠冠状动脉结扎致心力衰竭模型的建立
5.2实验分组及给药
心脏冠脉结扎后立即随机分组给药。大鼠根据结扎存活情况随机依次分成2组,赋形剂组和NRG 30μg/kg组,赋形剂组19只,NRG治疗组18只,造模以后第二天开始进行每天连续给药,每天皮下给药3次,给药剂量10μg/kg/次,造模后day14心超检测。所有动物连续给药至day38,NRG给药组动物进行心超检测,根据心超检测结果将NRG治疗组动物平均分为两部分,一半继续给药,一半进行早期停药。赋形剂组继续给药。NRG继续给药组在day49时进行连续3周的逐步停药计划,第1周每隔一天给一天药;第2周隔两天给一天药;第3周每隔三天皮下给一天药;给药方式仍然是每天皮下给药3次,与前面完全相同。NRG停药组则进行临床症状观察。所有动物每周一次心超监测心功能变化。
5.3观测指标
5.3.1心脏功能检测
通过气体麻醉机用4%异氟烷麻醉大鼠后,左侧卧位固定在手术板上。将大鼠头部固定在气体 麻醉机的呼吸面罩内,异氟烷维持麻醉。胸部去毛,用75%酒精消毒后,涂抹耦合剂,用大鼠心超探头检测大鼠左心室回声信号。测量舒张末期及收缩末期左心室内径(D),计算左心室舒张末期及收缩末期容积EDV、ESV,并计算出射血分数(Ejection Fraction,EF)值,EF=(EDV-ESV)/EDV*100%。
5.3.2数据处理
所有实验数据用±SD表示,采用GraphPad Prism 6软件进行单因素方差分析,P<0.05表明组间具有显著性差异,P<0.01表明组间具有极显著性差异。
6.实验结果
6.1心超结果
NRG连续给药35天心超检测,赋形剂组的LVEDd、LVEDs、EF值分别为0.988±0.08cm、0.850±0.10cm、33.6±11.36%,NRG治疗组为0.953±0.05cm、0.767±0.06cm、44.9±6.09%,NRG能显著缩小左心室舒张及收缩末期的内径,加强心脏的收缩功能,逆转左心室的重构过程;连续给药49天后赋形剂组的LVEDd、LVEDs、EF值分别为1.020±0.10cm、0.881±0.15cm、33.1±14.55,NRG一半停药组分别为0.987±0.05cm、0.807±0.06cm、42.2±5.48%,NRG继续给药组0.973±0.07cm、0.783±0.08cm、45.0±5.51%,说明NRG突然停药对大鼠的心功能产生了一定的影响;后续一半进行逐步停药计划,停药第二周心超检测,早期停药组LVEDd、LVEDs、EF值分别为1.043±0.06cm、0.887±0.06、35.4±6.78%;NRG逐步停药组为0.989±0.07cm、0.814±0.08、41.3±4.92%与赋形剂组相比有显著性差异,停药第三周心超检测,早期停药组LVEDd、LVEDs、EF值分别为1.010±0.06cm、0.842±0.06cm、38.9±5.04%;NRG逐步停药组为0.976±0.06cm、0.805±0.07cm、40.8±4.67%。与赋形剂组相比,NRG逐步停药对大鼠心功能的影响得到了缓解。结果详见表5、6,图3。
表5 NRG皮下长时间给药治疗35天大鼠心梗药效实验心超结果
Figure PCTCN2020070299-appb-000008
Figure PCTCN2020070299-appb-000009
***:治疗后各组与赋形剂组相比p<0.001; **:治疗后各组与赋形剂组相比p<0.01; *:治疗后各组与赋形剂组相比p<0.05
表6 NRG皮下长时间给药38天分组后大鼠心梗药效实验心超结果
Figure PCTCN2020070299-appb-000010
Figure PCTCN2020070299-appb-000011
***:治疗后各组与赋形剂组相比p<0.001; **:治疗后各组与赋形剂组相比p<0.01
*:治疗后各组与赋形剂组相比p<0.05
7.结论
重组人纽兰格林皮下长时间给药后降低给药频率撤药能够改善对心肌梗死后大鼠的心脏功能并减轻其心脏重构。
实施例4:重组人纽兰格林(rhNRG)皮下长时间给药后降低给药剂量撤药对大鼠急性心梗的治疗作用
1.实验目的
在左侧冠脉结扎致心梗大鼠模型上,观察下长时间给予重组人纽兰格林(rhNRG)后降低给药剂量撤药对急性心梗大鼠的治疗作用。
2.受试药物
2.1赋形剂:上海泽生科技开发股份有限公司研制
2.2重组人纽兰格林(NRG)成品:上海泽生科技开发股份有限公司研制
3.实验动物
3.1品系、来源:Wistar大鼠,由上海西普尔-必凯实验动物有限公司提供
3.2性别、体重、合格证:雄性,200~270g
4.实验材料与设备
同实施例1中4.实验材料与设备
5.实验方法
5.1大鼠冠状动脉结扎致心力衰竭模型的建立
同实施例1中5.1大鼠冠状动脉结扎致心力衰竭模型的建立
5.2实验分组及给药
5.3观测指标
心脏冠脉结扎后立即随机分组给药。大鼠根据结扎存活情况按体重均值随机分成2组,每天皮下注射3次,称量动物体重1次,根据动物的体重进行给药,造模后Day10开始心超检测,所有动物每10天进行一次心超检测,降剂量后每周进行一次心超检测,完全停药后每2周进行一次心超检测。所有动物连续给药到Day60,进行三周剂量递减的停药计划,第一周降剂量给药剂量是15μg/kg,第二周降剂量给药剂量是7.5μg/kg,第三周降剂量给药剂量是3.75μg/kg,进行三周的给药剂量递减后,停止给药观察临床症状。
5.3.1心脏功能检测
通过气体麻醉机用4%异氟烷麻醉大鼠后,左侧卧位固定在手术板上。将大鼠头部固定在气体麻醉机的呼吸面罩内,异氟烷维持麻醉。胸部去毛,用75%酒精消毒后,涂抹耦合剂,用大鼠心超探头检测大鼠左心室回声信号。测量舒张末期及收缩末期左心室内径(D),计算左心室舒张末期及收缩末期容积EDV、ESV,并计算出射血分数(Ejection Fraction,EF)值,EF=(EDV-ESV)/EDV*100%。
5.3.2数据处理
所有实验数据用±SD表示,采用GraphPad Prism 6软件进行单因素方差分析,P<0.05表明组间具有显著性差异,P<0.01表明组间具有极显著性差异。
6.实验结果
6.1心超结果
NRG连续给药60天心超检测,赋形剂组的LVEDd、LVEDs、EF值分别为1.048±0.07cm、0.910±0.09cm、32.1±6.6%,NRG 30μg/kg/Day治疗组为0.981±0.08cm、0.794±0.08cm、43.8±8.0%。从LVEDd、LVEDs数据看,NRG每天给药组可明显缩小左心室舒张及收缩末期的内径,与空白对照组相比有极显著性(p<0.001)。从EF值数据看,连续给药60天NRG治疗组EF值明显升高,与空白组相比有极显著性差异,P<0.001。60天后进行频率不变,剂量递减的治疗,第三周心超检测空白对照组的LVEDd、LVEDs、EF值分别为1.038±0.07cm、0.899±0.10cm、32.4±9.5,NRG/30μg/kg/Day组为0.981±0.08cm、0.799±0.08、42.3±11.2%;降剂量三周结束后进行停药观察,停药第一周心超检测,空白对照组LVEDd、LVEDs、EF值分别为1.065±0.07cm、0.942±0.10、28.3±9.4%;NRG/30μg/kg/Day组为0.994±0.08cm、 0.826±0.10、39.3±12.7%;直到停药后第九周心超检测,空白对照组LVEDd、LVEDs、EF值分别为1.137±0.08cm、1.006±0.08、28.0±5.7%;NRG/30μg/kg/Day组为1.104±0.08cm、0.950±0.09、33.4±7.6%,停药九周后NRG每天给药组LVEDd、LVEDs与空白组相比仍有显著性差异;EF值与空白组相比有仍有增高的趋势。结果详见表7,8,9及图4。
7.结论
重组人纽兰格林(rhNRG)相同剂量,不同频率对心梗大鼠在连续给药期间都有一定的治疗作用,挽救急性心肌梗死大鼠心脏功能和改善心室重构,减缓心梗后心衰的进展,停药后很长时间对心梗大鼠的心功能仍然具有显著的改善作用。
表7、NRG皮下长时间给药治疗60天大鼠心梗药效实验心超结果
Figure PCTCN2020070299-appb-000012
Figure PCTCN2020070299-appb-000013
***:治疗后各组与赋形剂组相比p<0.001; **:治疗后各组与赋形剂组相比p<0.01
*:治疗后各组与赋形剂组相比p<0.05
表8、NRG皮下长时间给药60天降剂量后三周大鼠心梗药效实验心超结果
Figure PCTCN2020070299-appb-000014
Figure PCTCN2020070299-appb-000015
***:治疗后各组与赋形剂组相比p<0.001; **:治疗后各组与赋形剂组相比p<0.01
*:治疗后各组与赋形剂组相比p<0.05
表9、NRG皮下长时间给药治疗81天停药后大鼠心梗药效实验心超结果
Figure PCTCN2020070299-appb-000016
Figure PCTCN2020070299-appb-000017
***:治疗后各组与赋形剂组相比p<0.001; **:治疗后各组与赋形剂组相比p<0.01
*:治疗后各组与赋形剂组相比p<0.05

Claims (10)

  1. 神经调节蛋白或其功能片断在制备药物中的应用,该药物用来预防、治疗或延迟哺乳动物的心肌损伤。
  2. 权利要求1所述的应用,其中所述的NRG选自NRG-1,NRG-2,NRG-3或NRG-4。
  3. 权利要求1所述的应用,其中所述的NRG是NRG-1。
  4. 权利要求1所述的应用,包括给哺乳动物施用其它可用于预防、治疗或延缓心肌梗死损伤的药物或者治疗方法。
  5. 权利要求1所述的应用,其中神经调节蛋白提高改善哺乳动物的心脏功能并减轻其心脏重构。
  6. 权利要求1所述的应用,其中所述的哺乳动物是人。
  7. 一种用于预防、治疗或延迟哺乳动物心肌损伤的组合物,其特征在于其含有有效剂量的NRG或功能片段。
  8. 一种预防、治疗或延迟哺乳动物的心肌损伤的方法,该方法包含皮下注射剂量在大约2.5ug/kg/day至50ug/kg/day的范围内神经调节蛋白。
  9. 一种预防、治疗或延迟哺乳动物的心肌损伤的方法,该方法包含每天被施用多次,连续施用多天的神经调节蛋白。
  10. 根据权利要求9所述的方法,该神经调节蛋白每天被施用多次,连续施用多天,后续缓慢撤药。
PCT/CN2020/070299 2019-01-07 2020-01-03 神经调节蛋白用于预防、治疗或延迟心肌损伤的方法和组合物 WO2020143548A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021539453A JP2022516199A (ja) 2019-01-07 2020-01-03 ニューレグリンを用いて心筋損傷を予防、治療、又は緩和するための方法及びそのための組成物
EP20738153.4A EP3909599A4 (en) 2019-01-07 2020-01-03 METHOD OF PREVENTING, TREATING OR DELAYING MYOCARDIAL DAMAGE USING NEUREGULIN AND COMPOSITION
AU2020206381A AU2020206381A1 (en) 2019-01-07 2020-01-03 Method for preventing, treating or delaying myocardial damage using neuregulin and composition
CA3125377A CA3125377A1 (en) 2019-01-07 2020-01-03 Method for preventing, treating or relieving myocardial injury using neuregulin and composition therefor
US17/420,974 US20220096599A1 (en) 2019-01-07 2020-01-03 Method for preventing, treating or delaying myocardial damage using neuregulin and composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910015257 2019-01-07
CN201910015257.7 2019-01-07
CN201911412811.1A CN111407881A (zh) 2019-01-07 2019-12-31 神经调节蛋白用于预防、治疗或延迟心肌损伤的方法和组合物
CN201911412811.1 2019-12-31

Publications (1)

Publication Number Publication Date
WO2020143548A1 true WO2020143548A1 (zh) 2020-07-16

Family

ID=71485079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070299 WO2020143548A1 (zh) 2019-01-07 2020-01-03 神经调节蛋白用于预防、治疗或延迟心肌损伤的方法和组合物

Country Status (7)

Country Link
US (1) US20220096599A1 (zh)
EP (1) EP3909599A4 (zh)
JP (1) JP2022516199A (zh)
CN (1) CN111407881A (zh)
AU (1) AU2020206381A1 (zh)
CA (1) CA3125377A1 (zh)
WO (1) WO2020143548A1 (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530109A (en) 1991-04-10 1996-06-25 Ludwig Institute For Cancer Research DNA encoding glial mitogenic factors
WO1997009425A1 (en) 1995-09-08 1997-03-13 President And Fellows Of Harvard College Cerebellum-derived growth factors, and uses related thereto
US5716930A (en) 1991-04-10 1998-02-10 Ludwig Institute For Cancer Research Glial growth factors
US5834229A (en) 1991-05-24 1998-11-10 Genentech, Inc. Nucleic acids vectors and host cells encoding and expressing heregulin 2-α
WO2000064400A2 (en) 1999-04-23 2000-11-02 Cambridge Neuroscience, Inc. Methods for treating congestive heart failure
WO2001070307A1 (en) 2000-03-23 2001-09-27 Minimed, Inc. Exchangeable electronic cards for infusion devices
US6589229B1 (en) 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device
WO2004030717A2 (en) 2002-09-30 2004-04-15 Insulet Corporation Dispenser components and methods for infusion device
WO2004030716A2 (en) 2002-09-30 2004-04-15 Insulet Corporation Components and methods for patient infusion device
CN1498656A (zh) * 2002-11-08 2004-05-26 上海泽生科技开发有限公司 神经调节蛋白用于心肌梗死治疗的方法和组合物
US20050065760A1 (en) 2003-09-23 2005-03-24 Robert Murtfeldt Method for advising patients concerning doses of insulin
US20060264894A1 (en) 2005-05-06 2006-11-23 Medtronic Minimed, Inc. Infusion device and method with disposable portion
CN101491670A (zh) * 2002-05-24 2009-07-29 上海泽生科技开发有限公司 神经调节蛋白用于心血管疾病治疗的方法和组合物
CN102139095A (zh) * 2010-01-29 2011-08-03 上海泽生科技开发有限公司 神经调节蛋白用于预防、治疗或延迟心脏缺血再灌注损伤的方法和组合物
CN102245189A (zh) * 2008-12-03 2011-11-16 阿莫塞特公司 改善梗死区灌注的组合物以及血管损伤修复方法
WO2013075622A1 (zh) 2011-11-21 2013-05-30 上海泽生科技开发有限公司 一种注射泵及其驱动系统
WO2017053794A1 (en) * 2015-09-25 2017-03-30 Sawyer Douglas B Methods for treating cardiac injury
CN110167564A (zh) * 2016-09-14 2019-08-23 新加坡科技研究局 调节tjp1表达以调节心脏细胞的再生

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394861A (zh) * 2005-12-30 2009-03-25 上海泽生科技开发有限公司 纽兰格林持续给药能改善心脏功能
CN103768582A (zh) * 2006-12-29 2014-05-07 上海泽生科技开发有限公司 纽兰格林持续给药能改善心脏功能
ES2748886T3 (es) * 2009-06-09 2020-03-18 Zensun Shanghai Science & Tech Co Ltd Métodos basados en Neuregulina para el tratamiento de la insuficiencia cardíaca
IL281376B (en) * 2013-03-06 2022-08-01 Acorda Therapeutics Inc Medicinal peptides of neuregulin for the treatment or prevention of heart failure
KR102357275B1 (ko) * 2013-05-22 2022-02-03 젠순 (상하이) 사이언스 앤드 테크놀로지 캄파니 리미티드 심부전을 치료하기 위한 뉴레귤린의 연장 방출
CN111407882A (zh) * 2014-10-17 2020-07-14 上海泽生科技开发股份有限公司 神经调节蛋白用于预防、治疗或延迟射血分数保留的心力衰竭的方法和组合物
JP2017125032A (ja) * 2017-02-20 2017-07-20 ゼンスン(シャンハイ)サイエンス アンド テクノロジー カンパニー リミテッド 糖尿病患者における心不全の治療用組成物

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716930A (en) 1991-04-10 1998-02-10 Ludwig Institute For Cancer Research Glial growth factors
US5530109A (en) 1991-04-10 1996-06-25 Ludwig Institute For Cancer Research DNA encoding glial mitogenic factors
US5834229A (en) 1991-05-24 1998-11-10 Genentech, Inc. Nucleic acids vectors and host cells encoding and expressing heregulin 2-α
WO1997009425A1 (en) 1995-09-08 1997-03-13 President And Fellows Of Harvard College Cerebellum-derived growth factors, and uses related thereto
WO2000064400A2 (en) 1999-04-23 2000-11-02 Cambridge Neuroscience, Inc. Methods for treating congestive heart failure
WO2001070307A1 (en) 2000-03-23 2001-09-27 Minimed, Inc. Exchangeable electronic cards for infusion devices
US6589229B1 (en) 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device
CN101491670A (zh) * 2002-05-24 2009-07-29 上海泽生科技开发有限公司 神经调节蛋白用于心血管疾病治疗的方法和组合物
WO2004030717A2 (en) 2002-09-30 2004-04-15 Insulet Corporation Dispenser components and methods for infusion device
WO2004030716A2 (en) 2002-09-30 2004-04-15 Insulet Corporation Components and methods for patient infusion device
CN1498656A (zh) * 2002-11-08 2004-05-26 上海泽生科技开发有限公司 神经调节蛋白用于心肌梗死治疗的方法和组合物
US20050065760A1 (en) 2003-09-23 2005-03-24 Robert Murtfeldt Method for advising patients concerning doses of insulin
US20060264894A1 (en) 2005-05-06 2006-11-23 Medtronic Minimed, Inc. Infusion device and method with disposable portion
US7686787B2 (en) 2005-05-06 2010-03-30 Medtronic Minimed, Inc. Infusion device and method with disposable portion
CN102245189A (zh) * 2008-12-03 2011-11-16 阿莫塞特公司 改善梗死区灌注的组合物以及血管损伤修复方法
CN102139095A (zh) * 2010-01-29 2011-08-03 上海泽生科技开发有限公司 神经调节蛋白用于预防、治疗或延迟心脏缺血再灌注损伤的方法和组合物
WO2011091723A1 (en) 2010-01-29 2011-08-04 Zensun (Shanghai) Science & Technology Limited Neuregulin based compositions and uses thereof for preventing, treating or delaying the myocardial ischemia-reperfusion injury
WO2013075622A1 (zh) 2011-11-21 2013-05-30 上海泽生科技开发有限公司 一种注射泵及其驱动系统
WO2017053794A1 (en) * 2015-09-25 2017-03-30 Sawyer Douglas B Methods for treating cardiac injury
CN110167564A (zh) * 2016-09-14 2019-08-23 新加坡科技研究局 调节tjp1表达以调节心脏细胞的再生

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Remington: The Science and Practice of Pharmacy", April 1997, MACK PUBLISHING COMPANY
ALTIOK N ET AL., EMBO.J., vol. 14, no. 17, 1995, pages 4258 - 4266
BRITSCH S ET AL., DIENES DEV., vol. 12, no. 12, 1998, pages 1825 - 1836
CARRAWAY ET AL., NATURE, vol. 387, 1997, pages 512 - 516
CULOUSOOU JM ET AL., J BIOL CHEM., vol. 270, no. 21, 1995, pages 12857 - 12863
GASSMANNM ET AL., NATURE, vol. 378, no. 6555, 1995, pages 390 - 394
HIGASHIYAMA ET AL., J. BIOCHEM., vol. 122, 1997, pages 675 - 680
HIJAZI ET AL., INT. J. ONCOL., vol. 13, 1998, pages 1061 - 1067
HOLMES ET AL., SCIENCE, vol. 256, 1992, pages 1205 - 1210
KURAMOCHI Y ET AL., J BIOL CHEM., vol. 279, no. 49, 2004, pages 51141 - 51147
KURAMOCHI Y ET AL., J MOL CELL CARDIAL., vol. 41, no. 2, 2006, pages 228 - 235
LESSOR T ET AL., JCELL BIOCHEM., vol. 70, no. 4, 1998, pages 587 - 595
LI Q ET AL., NEUROSCI LETT., vol. 443, no. 3, 2008, pages 155 - 159
LIU ET AL., J AM COLL CARDIOL., vol. 48, 2006, pages 1438 - 1447
See also references of EP3909599A4
TOPILKO ET AL., MOL CELL NEUROSCI, vol. 8, no. 2-3, 1996, pages 71 - 75
WATSON ET AL.: "Molecular Biology of the Gene", 1987, THE BEJACMIN /CUMMINGS PUB. CO., pages: 224
ZHAO YY ET AL., CIRC RES., vol. 84, no. 12, 1999, pages 1380 - 1387
ZHAO YY ET AL., I BIOL CHER., vol. 273, no. 17, 1998, pages 10261 - 10269

Also Published As

Publication number Publication date
CA3125377A1 (en) 2020-07-16
EP3909599A4 (en) 2022-09-28
JP2022516199A (ja) 2022-02-24
AU2020206381A1 (en) 2021-07-29
CN111407881A (zh) 2020-07-14
EP3909599A1 (en) 2021-11-17
US20220096599A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
US7186407B2 (en) Methods and compositions for the treatment of peripheral artery disease
US11179323B2 (en) Extended release of neuregulin for treating heart failure
CN106860855B (zh) 多肽及多肽衍生物在预防和治疗纤维化疾病中的应用
CN109384830B (zh) 多肽、多肽片段及其衍生物在防治纤维化疾病中的应用
JP5905833B2 (ja) 心筋虚血−再潅流障害の予防、処置または遅延のための、ニューレグリンを含む組成物およびその利用
JP2020193217A (ja) 駆出率が保たれた心不全を予防し、治療し、又は遅延させるための方法及びニューレグリン組成物
CN109276705B (zh) 治疗糖尿病患者心力衰竭的组份和方法
CN102026651B (zh) 达到所需胶质生长因子2血浆水平的方法
TW201704469A (zh) 用於治療cln2疾病之tpp1調配物及方法
US20220281916A1 (en) Polypeptide and use thereof
ZA200504774B (en) Method of treatment of myocardial infarction
CN101310779A (zh) 包含神经调节蛋白的装置及药物制剂
WO2020143548A1 (zh) 神经调节蛋白用于预防、治疗或延迟心肌损伤的方法和组合物
CN1403156A (zh) 人尿激肽原酶在制备治疗和预防脑梗塞药物中的应用
US20080200481A1 (en) Method of treatment of myocardial infarction
CN108888753B (zh) 酸性糖蛋白orm在制备治疗心力衰竭药物中的应用
US11865162B2 (en) Compositions and methods for treatment of uremic cardiomyopathy
Hermans et al. Variable effects of UM206 on the wound healing after myocardial infarction
CN103432681A (zh) 包含神经调节蛋白的药物制剂及装置
TW202206086A (zh) 醫藥組合物治療組織缺血狀況之用途
Zhao et al. Renal Denervation Ameliorates Cardiomyocyte Apoptosis in Myocardial Ischemia-reperfusion Injury
Shao et al. Unique Acupuncture Headache Protocol for Chronic Daily Headache
WO2005034985A1 (ja) 知的障害の改善剤
Tarrés et al. Severe hypotension following spinal anesthesia in a patient treated with risperidone
CN109125308A (zh) 秋水仙碱在预防和治疗缺血性脑血管疾病的新用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3125377

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021539453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020206381

Country of ref document: AU

Date of ref document: 20200103

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020738153

Country of ref document: EP

Effective date: 20210809