WO2020143132A1 - 用于检测9个na亚型aiv的引物组合及其应用 - Google Patents

用于检测9个na亚型aiv的引物组合及其应用 Download PDF

Info

Publication number
WO2020143132A1
WO2020143132A1 PCT/CN2019/084036 CN2019084036W WO2020143132A1 WO 2020143132 A1 WO2020143132 A1 WO 2020143132A1 CN 2019084036 W CN2019084036 W CN 2019084036W WO 2020143132 A1 WO2020143132 A1 WO 2020143132A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
gene
subtype
avian influenza
influenza virus
Prior art date
Application number
PCT/CN2019/084036
Other languages
English (en)
French (fr)
Inventor
谢芝勋
罗思思
黄娇玲
谢志勤
谢丽基
张民秀
李孟
王盛
李丹
曾婷婷
张艳芳
范晴
邓显文
Original Assignee
广西壮族自治区兽医研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西壮族自治区兽医研究所 filed Critical 广西壮族自治区兽医研究所
Priority to US16/649,078 priority Critical patent/US11279973B2/en
Publication of WO2020143132A1 publication Critical patent/WO2020143132A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the invention belongs to the field of biotechnology, and specifically relates to primer combinations and applications for detecting 9 NA subtypes AIV.
  • Avian influenza virus belongs to Orthomyxoviridae type A influenza. According to the different antigenicity of HA and NA, 16 HA subtypes and 9 NA subtypes have been found in birds. In recent years, the 17th and 18th in bats have been found. HA subtypes and 10 and 11 NA subtypes. In 1997, there was a death case of human infection with H5N1 subtype AIV in Hong Kong, and an outbreak occurred, which caused people to talk about the color change of poultry and caused serious economic losses to the breeding industry. In recent years, there have been reports of AIV-infected human cases. In 2013, cases of H7N9 infection and death were found in the Yangtze River Delta region of China, and spread in most parts of the country, causing 5 waves of infection. At present, there are still H7N9 Reports of infected people pose a serious threat to public health security. H10N8 and H6N1 have also been reported for the first time.
  • AIV is a segmented virus, which is divided into 8 gene fragments. Different subtypes of AIV have the ability to exchange gene fragments with each other, thereby generating AIV with unknown pathogenicity. Therefore, AIV monitoring is of great significance for the effective prevention and control of the disease, and it is necessary to establish a rapid detection method of AIV as a technical reserve.
  • the epidemiological investigation of AIV is usually to collect samples to inoculate SPF embryos for virus isolation. The HA and HI tests identify the H subtype, and the N subtype identification method is very limited.
  • the traditional method for detecting NA subtype AIV is mainly the neuraminidase inhibition test (NI), which is the gold standard detection method recommended by the International Bureau of Veterinary Disease, but it is time-consuming and requires specific positive sera.
  • NI neuraminidase inhibition test
  • the GeXP System Gene Expression Profiler Genetic Analysis System
  • multiplex PCR amplification uses a combination of fluorescently labeled universal primers and specific chimeric primers (that is, the gene-specific primers are linked to the universal primer sequence at the 5'end) to initiate multiplex system amplification.
  • the reverse specific chimeric primer is combined with the original template to perform reverse transcription reaction, and then the second strand of cDNA is synthesized from the forward specific chimeric primer, and thereafter, the forward and reverse chimeric primer
  • the specific sequence uses the cDNA as a template to initiate a PCR reaction, and the complementary sequences of the universal primers are amplified separately; then the fluorescently labeled universal primers that are dominant in the reaction system are combined with their complementary sequences to initiate subsequent amplification.
  • the universal primers and the reaction system The base sequences with fluorescent labels are complementary, the PCR products are separated by GeXP capillary electrophoresis, the PCR products with fluorescent labels are detected by GeXP detection window, and the amplification is calculated based on the migration time of the detected fragments and the standard molecular fragments (DNA SizeStandard, DSS) The length of the fragment and the intensity of the fluorescent signal represent the amplified content of the isolated fragment.
  • the object of the present invention is to provide a primer combination for detecting 9 NA subtypes AIV and its application.
  • the present invention protects a primer combination, including the following 10 primer pairs:
  • Primer pair AIV-M consists of forward primer and reverse primer, the forward primer is (a1), (a2), (a3) or (a4), and the reverse primer is (b1), (b2), (b3) Or (b4);
  • the gene-specific primers are shown as nucleotides 19 to 38 of sequence 1 of the sequence listing;
  • the gene-specific primers are shown as nucleotides 20 to 39 of sequence 2 of the sequence listing;
  • the primer pair N1 is composed of a forward primer and a reverse primer.
  • the forward primer is (i1), (i2), (i3), or (i4)
  • the reverse primer is (j1), (j2), (j3), or ( j4);
  • the gene-specific primers are shown as nucleotides 19 to 38 of sequence 3 of the sequence listing;
  • the gene-specific primers are shown as nucleotides 20 to 38 of sequence 4 of the sequence listing;
  • the primer pair N2 is composed of a forward primer and a reverse primer, the forward primer is (k1), (k2), (k3) or (k4), and the reverse primer is (l1), (l2), (l3) or ( l4);
  • the gene-specific primers are shown as nucleotides 19 to 35 of sequence 5 of the sequence listing;
  • the gene-specific primers are shown as nucleotides 20 to 36 of sequence 6 in the sequence listing;
  • the primer pair N3 is composed of a forward primer and a reverse primer.
  • the forward primer is (m1), (m2), (m3), or (m4)
  • the reverse primer is (n1), (n2), (n3), or ( n4);
  • the gene-specific primers are shown as nucleotides 19 to 41 of sequence 7 in the sequence listing;
  • the gene-specific primers are shown as nucleotides 20 to 41 of sequence 8 of the sequence listing;
  • the primer pair N4 is composed of a forward primer and a reverse primer, the forward primer is (o1), (o2), (o3) or (o4), and the reverse primer is (p1), (p2), (p3) or ( p4);
  • the gene-specific primers are shown as nucleotides 19 to 40 of sequence 9 in the sequence listing;
  • the gene-specific primers are shown as nucleotides 20 to 39 of sequence 10 in the sequence listing;
  • the primer pair N5 is composed of a forward primer and a reverse primer.
  • the forward primer is (q1), (q2), (q3), or (q4)
  • the reverse primer is (r1), (r2), (r3), or ( r4);
  • the gene-specific primers are shown as nucleotides 19 to 38 of sequence 11 in the sequence listing;
  • the gene-specific primers are shown as nucleotides 20 to 40 of sequence 12 in the sequence listing;
  • the primer pair N6 is composed of a forward primer and a reverse primer.
  • the forward primer is (s1), (s2), (s3), or (s4)
  • the reverse primer is (t1), (t2), (t3), or ( t4);
  • the gene-specific primers are shown as nucleotides 19 to 43 of sequence 13 in the sequence listing;
  • the gene-specific primers are shown as nucleotides 20 to 44 of sequence 14 in the sequence listing;
  • the primer pair N7 is composed of a forward primer and a reverse primer, the forward primer is (u1), (u2), (u3) or (u4), and the reverse primer is (v1), (v2), (v3) or ( v4);
  • the gene-specific primers are shown as nucleotides 19 to 38 of sequence 15 in the sequence listing;
  • the gene-specific primers are shown as nucleotides 20 to 39 of sequence 16 in the sequence listing;
  • the primer pair N8 is composed of a forward primer and a reverse primer, the forward primer is (w1), (w2), (w3) or (w4), and the reverse primer is (x1), (x2), (x3) or ( x4);
  • the gene-specific primers are shown as nucleotides 19 to 38 of sequence 17 in the sequence listing;
  • the gene-specific primers are shown as nucleotides 20 to 40 of sequence 18 in the sequence listing;
  • the primer pair N9 is composed of a forward primer and a reverse primer, the forward primer is (y1), (y2), (y3) or (y4), and the reverse primer is (z1), (z2), (z3) or ( z4);
  • the gene-specific primers are shown as nucleotides 19 to 39 of sequence 19 in the sequence listing;
  • the gene-specific primers are shown as nucleotides 20 to 39 of sequence 20 in the sequence listing.
  • the molar amounts of various primers are equal.
  • the primer combination consists of the 10 primer pairs.
  • the invention also protects the application of the primer combination as follows (I), (II), (III), (IV), (V), (VI), (VII) or (VIII):
  • test sample contains avian influenza virus, and if it contains avian influenza virus, the N subtype of the avian influenza virus it contains;
  • kit (VI) preparing a kit; the function of the kit is to identify whether the virus to be tested is an avian influenza virus, and if it is an avian influenza virus, its N subtype;
  • kits Preparation of a kit; the function of the kit is to identify the N subtype of the avian influenza virus contained in the test sample;
  • kits Preparation of a kit; the function of the kit is to identify whether the sample to be tested contains an avian influenza virus, and if it contains an avian influenza virus, the N subtype of the avian influenza virus it contains.
  • the N subtype is N1 subtype, N2 subtype, N3 subtype, N4 subtype, N5 subtype, N6 subtype, N7 subtype, N8 subtype or N9 subtype.
  • the present invention also protects a kit containing the primer combination; the function of the kit is as follows (I), (II), (III) or (IV):
  • the N subtype is N1 subtype, N2 subtype, N3 subtype, N4 subtype, N5 subtype, N6 subtype, N7 subtype, N8 subtype or N9 subtype.
  • the invention also protects the preparation method of the kit, including the step of mixing and packaging all primers.
  • the invention also protects a method, including the following steps:
  • the virus to be tested is avian influenza virus
  • the virus to be tested is N1 subtype avian influenza virus
  • the virus to be tested is N2 subtype avian influenza virus
  • the virus to be tested is N3 subtype avian influenza virus
  • the virus to be tested is N4 subtype avian influenza virus
  • the virus to be tested is N5 subtype avian influenza virus
  • the virus to be tested is N6 subtype avian influenza virus
  • the virus to be tested is N7 subtype avian influenza virus
  • the virus to be tested is N8 subtype avian influenza virus
  • the virus to be tested is N9 subtype avian influenza virus
  • the purpose of the method is to identify whether the virus to be tested is an avian influenza virus, and if it is an avian influenza virus, to which N subtype it belongs.
  • the invention also protects a method, including the following steps:
  • the sample to be tested contains avian influenza virus
  • test sample contains N1 subtype avian influenza virus
  • the sample to be tested contains N2 subtype avian influenza virus
  • the sample to be tested contains N3 subtype avian influenza virus
  • test sample contains N4 subtype avian influenza virus
  • the sample to be tested contains N5 subtype avian influenza virus
  • the sample to be tested contains N6 subtype avian influenza virus
  • the sample to be tested contains N7 subtype avian influenza virus
  • the sample to be tested contains N8 subtype avian influenza virus
  • test sample contains N9 subtype avian influenza virus
  • the purpose of the method is to identify whether the test sample contains the avian influenza virus, and if it contains the avian influenza virus, the N subtype of the avian influenza virus it contains.
  • FIG. 1 is the result of simultaneously detecting 10 target fragments in the 10-fold reaction system when the template solution 1 is used in Example 4.
  • FIG. 1 is the result of simultaneously detecting 10 target fragments in the 10-fold reaction system when the template solution 1 is used in Example 4.
  • RNA/DNA extraction kit Dalian Bao Biological Company.
  • GeXP System is a product of American Beckman Company.
  • GeXP startup kit, capillary array, loading buffer, DNA size, standard Kit-400 Bases, separation buffer and separation gel are all products of AB Sciex.
  • NanoDrop ND-1000 nucleic acid trace detector is a product of Thermo.
  • the primer pair AIV-M consists of a forward primer (sequence 1 of the sequence listing) and a reverse primer (sequence 2 of the sequence listing), and is used to identify avian influenza viruses.
  • the primer pair N1 is composed of a forward primer (sequence 3 of the sequence listing) and a reverse primer (sequence 4 of the sequence listing), and is used to identify the N1 subtype avian influenza virus.
  • the primer pair N2 is composed of a forward primer (sequence 5 of the sequence listing) and a reverse primer (sequence 6 of the sequence listing), which is used to identify the N2 subtype avian influenza virus.
  • the primer pair N3 is composed of a forward primer (sequence 7 of the sequence listing) and a reverse primer (sequence 8 of the sequence listing), and is used to identify the N3 subtype avian influenza virus.
  • the primer pair N4 is composed of a forward primer (sequence 9 in the sequence listing) and a reverse primer (sequence 10 in the sequence listing), which is used to identify the N4 subtype avian influenza virus.
  • the primer pair N5 is composed of a forward primer (sequence 11 in the sequence listing) and a reverse primer (sequence 12 in the sequence listing), which is used to identify the N5 subtype avian influenza virus.
  • the primer pair N6 is composed of a forward primer (sequence 13 in the sequence listing) and a reverse primer (sequence 14 in the sequence listing), and is used to identify the N6 subtype avian influenza virus.
  • the primer pair N7 is composed of a forward primer (sequence 15 in the sequence listing) and a reverse primer (sequence 16 in the sequence listing), which is used to identify the N7 subtype avian influenza virus.
  • the primer pair N8 is composed of a forward primer (sequence 17 in the sequence listing) and a reverse primer (sequence 18 in the sequence listing), which is used to identify the N8 subtype avian influenza virus.
  • the primer pair N9 is composed of a forward primer (sequence 19 in the sequence listing) and a reverse primer (sequence 20 in the sequence listing), which is used to identify the N9 subtype avian influenza virus.
  • each primer and the amplified fragment size of each primer pair are shown in Table 1.
  • Each forward primer has the same GeXP universal primer, see underline.
  • Each reverse primer has the same GeXP universal primer, see underline.
  • R represents A or G
  • Y represents C or T
  • W represents A or T.
  • * depending on the actual strain detected and the error of the GeXP system such as GenomeLabTM GeXP Genetic Analysis Analysis System capillary electrophoresis instrument, the actual amplification length detected using the above primer pairs can fluctuate by 3bp up and down based on the length of the expected amplification product .
  • kit EasyPure DNA/RNA Kit (Beijing Quanshijin Biotechnology Co., Ltd., catalog number ER201) to extract RNA from chicken embryo allantoic fluid of the following virus strains (to extract negative chicken embryos) according to the kit instructions.
  • RNA obtained from the allantoic fluid is a negative control sample
  • Avian influenza virus strains A/Sparrow/Guangxi/GXs-1/2012 (H1N2 subtype), A/Chicken/GuangXi/DX/2008 (H9N2 subtype), A/Duck/GuangXi/N42/2009 (H3N2 subtype), A/Duck/HK/77/76 (H2N3 subtype), A/Duck/HK/876/80 (H10N3 subtype), A/Turkey/Ontario /6118/68 (H8N4 subtype), A/Duck/Guangxi/GXd-1/2009 (H6N5 subtype), A/Duck/HK/862/80 (H12N5 subtype), A/Duck/Guangxi/070D/ 2010 (subtype H4N6), A/Duck/Guangxi/GXd-6/2010 (subtype H6N8), A/Duck/PA/2099/12 (subtype H
  • Avian influenza virus strain A /pigeon/Guangxi/020P/2009 (H3N6 subtype) (documented in the following documents: Tingting Liu, Zhixun Xie, Guoli Wang, et al. Avian Influenza Virus with Hemagglutinin-Neuraminidase Combinat ion H3N6, Isolated from Domestic Pigeon in Guangxi, Southern China [J].
  • RNA samples obtained in step 1 were reverse transcribed according to the following reaction system (50 ⁇ L) and reaction conditions to obtain cDNA; DEPC water was used as a negative control.
  • RNA 35 ⁇ L, 50pmol Random Primer (9mer) 1.4 ⁇ L react at 70°C for 10min, immediately ice bath 5min, then add 5 ⁇ Reverse Transcriptase Buffer 10 ⁇ L, 10mM DNTP Mixture 2 ⁇ L, 40U/ ⁇ L Ribonuclease Inhibitor 0.6 ⁇ L, 200U/ ⁇ L-MV ReverseTranscriptase 1 ⁇ L.
  • Reverse transcription reagents Random Primer (9mer), dNTP Mixture, Ribonuclease Inhibitor, M-MLV Reverse Transcriptase are all purchased from Dalian TaKaRa Company, catalog numbers are D3802, D4019, D2313A, D2641A.
  • H5N9 subtype Avian influenza virus strains A/Chicken/QT35/98 (H5N9 subtype), A/Duck/42846/07 (H7N7 subtype), H7N9 field samples (H7N9 subtype), Duck/HK/47/76 ( H7N2 subtype), Duck/Guangxi/1/04 (H5N1 subtype) are samples retained in the form of cDNA, and have been confirmed by HA gene sequencing (H5N9, H7N7, H7N9 are described in the following documents: Luo Sisi, Xie Zhixun, Xie Liji, etc. .Establishment of RT-LAMP visual detection method for H7 subtype and N9 subtype avian influenza virus[J].
  • H5N1 and H7N2 are described in the following documents: Zhixun Xie, Yao- shan Pang, Jiabo Liu, et al. A multiplex RT-PCR for detection of type A fluevirus virus and differential differentiation of avian H5, H7, and H9hemagglutinin subtypes[J]. Molecular and CellularProbes, 2006, 20(3-4): 245- 249).
  • Step 2 Take the cDNA obtained in Step 1 as a template, use the test primer pair to perform GeXP single PCR, and then use GeXP System (GeXP capillary electrophoresis system) for detection and analysis.
  • GeXP System GeXP capillary electrophoresis system
  • the primer pairs tested were: the primer pairs prepared in Example 1.
  • Reaction system (20 ⁇ L): 5 ⁇ PCR Buffer 4 ⁇ L, primer solution 2 ⁇ L, 25 mM MgCl 2 aqueous solution 4 ⁇ L, JumpStart Taq DNA Polymerase 1 ⁇ L, template cDNA 2 ⁇ L, add dH 2 O to 20 ⁇ L.
  • 5 ⁇ PCR Buffer contains GeXP universal primer pair, purchased from Shanghai Aibocaisi Analytical Instrument Trade Co., Ltd., catalog number A85017. JumpStart Taq DNA Polymerase was purchased from Sigma, catalog number D4184.
  • the primer solution provides two effective components for the forward primer and reverse primer of the test primer pair.
  • the final concentration of the forward primer is 20nM
  • the final concentration of the reverse primer is 20nM
  • the content of JumpStart Taq DNA Polymerase is 2.5U
  • the content of template cDNA is 1pg-10pg.
  • the primer pair AIV-M showed a target peak of 163 bp for all subtypes of avian influenza viruses.
  • the primer pair AIV-M did not achieve effective amplification for Newcastle disease virus, infectious bronchitis virus, or avian reovirus, and did not show any peaks.
  • the primer pair N1 achieved specific amplification for both the H6N1 subtype avian influenza virus and the H5N1 subtype avian influenza virus, and both showed a target peak of 249 bp.
  • the primer pair N1 did not achieve effective amplification for each of the other viruses and did not show any peaks.
  • the primer pair N2 achieved specific amplification for H1N2 subtype avian influenza virus, H9N2 subtype avian influenza virus, H3N2 subtype avian influenza virus and H7N2 subtype avian influenza virus, and all showed the target peak of 285 bp.
  • the primer pair N2 did not effectively amplify each other virus and did not show any peaks.
  • the primer pair N3 achieved specific amplification for the H2N3 subtype avian influenza virus, H10N3 subtype avian influenza virus and H16N3 subtype avian influenza virus, and showed the target peak of 220 bp.
  • the primer pair N3 did not effectively amplify each other virus and did not show any peaks.
  • the primer pair N4 achieved specific amplification for the H8N4 subtype avian influenza virus, showing a target peak of 152 bp.
  • the primer pair N4 did not effectively amplify each other virus and did not show any peaks.
  • the primer pair N5 achieved specific amplification for the H6N5 subtype avian influenza virus, H12N5 subtype avian influenza virus, H13N5 subtype avian influenza virus and H14N5 subtype avian influenza virus, showing a target peak of 300 bp.
  • the primer pair N5 did not effectively amplify each other virus and did not show any peaks.
  • the primer pair N6 achieved specific amplification for the H4N6 subtype avian influenza virus and the H3N6 subtype avian influenza virus, and showed a target peak of 240 bp.
  • the primer pair N6 did not achieve effective amplification for each of the other viruses and did not show any peaks.
  • the primer pair N7 achieved specific amplification for the H7N7 subtype avian influenza virus, showing a target peak of 198 bp.
  • the primer pair N7 did not effectively amplify each other virus and did not show any peaks.
  • the primer pair N8 specifically amplified the H6N8 subtype avian influenza virus, and showed a target peak of 177 bp.
  • the primer pair N8 did not effectively amplify each other virus and did not show any peaks.
  • the primer pair N9 achieved specific amplification for the H11N9 subtype avian influenza virus, H15N9 subtype avian influenza virus, H5N9 subtype avian influenza virus, and H7N9 subtype avian influenza virus, showing the target peak of 210 bp.
  • the primer pair N9 did not effectively amplify each other virus and did not show any peaks.
  • Step 2 Take the cDNA obtained in Step 1 as a template, use the test primer pair to perform GeXP multiple PCR, and then use GeXP System (GeXP capillary electrophoresis system) for detection and analysis.
  • GeXP System GeXP capillary electrophoresis system
  • the primer combination consisted of 10 primer pairs designed in Example 1.
  • Reaction system (20 ⁇ L): GenomeLab GeXP Start Kit 5 ⁇ PCR Buffer 4 ⁇ L, primer combination solution 2 ⁇ L, 25 mM MgCl 2 aqueous solution 4 ⁇ L, Taq DNA Polymerase 1 ⁇ L, template cDNA 2 ⁇ L, add dH 2 O to 20 ⁇ L.
  • GenomeLab GeXP Start Kit 5 ⁇ PCR Buffer Contains GeXP general primer pairs, purchased from Shanghai Aibo Caisi Analytical Instrument Trading Co., Ltd., catalog number A85017.
  • the primer combination solution provides the 10 primer pairs described.
  • the final concentration of each forward primer is 20nM
  • the final concentration of each reverse primer is 20nM
  • the content of Taq DNA Polymerase is 2.5U
  • the content of template cDNA is 1pg-10pg.
  • the primer combination did not achieve effective amplification and did not show any peaks.
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 285 bp (corresponding to primer pair N2).
  • the primer combination achieved specific amplification, showing a 163 bp target peak (corresponding to primer pair AIV-M) and a 285 bp target peak (corresponding to primer pair N2).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 285 bp (corresponding to primer pair N2).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 220 bp (corresponding to primer pair N3).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 220 bp (corresponding to primer pair N3).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 152 bp (corresponding to primer pair N4).
  • the primer combination achieved specific amplification, showing a 163 bp target peak (corresponding to primer pair AIV-M) and a 300 bp target peak (corresponding to primer pair N5).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 300 bp (corresponding to primer pair N5).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 240 bp (corresponding to primer pair N6).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 177 bp (corresponding to primer pair N8).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 210 bp (corresponding to primer pair N9).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 300 bp (corresponding to primer pair N5).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 300 bp (corresponding to primer pair N5).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 210 bp (corresponding to primer pair N9).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 220 bp (corresponding to primer pair N3).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 249 bp (corresponding to primer pair N1).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 240 bp (corresponding to primer pair N6).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 210 bp (corresponding to primer pair N9).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 198 bp (corresponding to primer pair N7).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 249 bp (corresponding to primer pair N1).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 210 bp (corresponding to primer pair N9).
  • the primer combination achieved specific amplification, showing a target peak of 163 bp (corresponding to primer pair AIV-M) and a target peak of 285 bp (corresponding to primer pair N2).
  • the 10 kinds of plasmids prepared in step 1 were mixed to prepare a template solution.
  • the concentrations of the 10 plasmids are all 103 copies/ ⁇ L.
  • the concentration of the 10 kinds of plasmids is 10 2 copies/ ⁇ L.
  • the concentrations of the 10 plasmids are all 10 1 copies/ ⁇ L.
  • Step 3 Take the template solution obtained in Step 2 and perform GeXP multiplex PCR using primer combinations.
  • the reaction system is the same as Example 3.
  • step three After completing step three, take the PCR product and use GeXP System (GeXP capillary electrophoresis system) for detection and analysis.
  • GeXP System GeXP capillary electrophoresis system
  • Template solution 1 the concentration of the recombinant plasmids pGEM-T-N1 was 10 3 copies / ⁇ L, a concentration of the recombinant plasmids pGEM-T-N2 was 10 107 copies / ⁇ L.
  • Template solution 2 concentrations of recombinant plasmid pGEM-T-N2 was 104 copies / ⁇ L, a concentration of the recombinant plasmids pGEM-T-N7 was 10 2 copies / ⁇ L, a concentration of the recombinant plasmids pGEM-T-N9 of 106 copies / ⁇ L.
  • step 2 Take the template solution obtained in step 1, and perform GeXP multiplex PCR using primer combination.
  • the reaction system is the same as in Example 3.
  • Example 3 Each test virus was repeated 6 times at different times, and the method was the same as in Example 3.
  • the primer pair N4-D was used instead of the primer pair N4, and the others were the same as in Example 3.
  • the primer pair N4-D consists of the following forward and reverse primers (the expected amplified fragment is 142bp):
  • Reverse primer GTACGACTCACTATAGGGA CCATATCTDCCYTTCCCATT.
  • primer pair N2 and primer pair N5 cannot be effectively detected.
  • the primer pair N3-D was used instead of the primer pair N3, and the others were the same as in Example 3.
  • the primer pair N3-D consists of the following forward and reverse primers (the expected amplified fragment is 147bp):
  • Reverse primer GTACGACTCACTATAGGGA GTCAATGGAGGACCYGGAGT.
  • primer pair N5 and primer pair N6 cannot be effectively detected.
  • primer pair AIV-M-D instead of primer pair AIV-M
  • primer pair N4-D instead of primer pair N4
  • primer pair N7-D instead of primer pair N7. Others are the same as in Example 3.
  • the primer pair AIV-M-D consists of the following forward and reverse primers (expected amplification fragment is 263bp):
  • Reverse primer GTACGACTCACTATAGGGA GCCACTTCTGTGGTCACCGT.
  • the primer pair N4-D consists of the following forward and reverse primers (the expected amplified fragment is 154bp):
  • Reverse primer GTACGACTCACTATAGGGA ACCGGTTGTTTCTCCTCTAAT.
  • the primer pair N7-D consists of the following forward primers and reverse primers (expected amplification fragment is 199bp):
  • Reverse primer GTACGACTCACTATAGGGA GTTTCTAATGGTWGTCCCTTG.
  • primer pair N1, primer pair N3, primer pair N5 and primer pair N6 cannot be effectively detected.
  • the inventors of the present invention provided 10 pairs of specific primers, and performed specificity and sensitivity to the multiple reaction system of the primer combination formed by 10 pairs of primers. , Interference, stability verification and clinical sample testing.
  • the 10-fold reaction system can correspondingly amplify a single, several randomly mixed, and nine mixed nucleic acid templates, which is in line with the expected design. Strong specificity, no cross-reaction to the common avian disease pathogen Newcastle disease virus, infectious bronchitis virus, etc. Simultaneous Identification of 10 kinds of target gene detection limit of 102 copies / ⁇ L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种用于检测9个NA亚型AIV的引物组合及其应用。一种引物组合,包括10个引物对(20种引物),20种引物依次如序列表的序列1至序列20所示。应用引物组合配套GeXP检测方法鉴定9个NA亚型,具有高通量、快速、省时省力的优点,为快速鉴别9个不同的NA亚型AIV提供了有效方法,应用前景广阔。

Description

用于检测9个NA亚型AIV的引物组合及其应用 技术领域
本发明属于生物技术领域,具体涉及用于检测9个NA亚型AIV的引物组合及其应用。
背景技术
禽流感病毒(AIV)属于正粘病毒科A型流感,根据HA和NA抗原性不同,目前,已在禽类发现16个HA亚型和9个NA亚型,近年,在蝙蝠发现第17、18个HA亚型和10、11个NA亚型。1997年香港出现人类感染H5N1亚型AIV死亡病例,并爆发疫情,使人“谈禽色变”,给养殖业造成严重的经济损失。近年来,AIV感染人的病例陆续有报道,2013年,在我国长三角地区发现H7N9感染人并致死的案例,并在全国大部分地区扩散开来,引起5波的感染,目前,仍有H7N9感染人的报道,给公共卫生安全造成严重的威胁。H10N8、H6N1也有首次感染人的报道。
AIV是分节段的病毒,分为8个基因片段,不同亚型AIV具有相互交换基因片段的能力,从而产生致病性未知的AIV。因此,AIV的监测对于有效防控该病具有重要意义,建立AIV的快速检测方法作为技术储备十分必要。目前,AIV的流行病学调查,通常是采集样品接种SPF胚进行病毒分离,通过HA和HI试验鉴定出H亚型,N亚型的鉴别方法非常有限。传统检测NA亚型AIV的方法主要是神经氨酸酶抑制试验(NI),是国际兽疫局推荐的金标准检测方法,但耗时并需要特定的阳性血清。
GeXP系统(Gene Expression Profiler Genetic Analysis System)多重PCR扩增采用荧光标记通用引物和特异性嵌合引物(即基因特异性引物5’端连接通用引物序列)相结合引发多重体系扩增。PCR反应之初,先由反向特异性嵌合引物与原始模板结合进行逆转录反应,再由正向特异性嵌合引物合成cDNA的第二链,此后,由正、反向嵌合引物的特异性序列以cDNA为模板启动PCR反应,分别扩增出通用引物的互补序列;再由反应体系中占主导地位的荧光标记通用引物,与其互补序列结合,引发后续扩增,通用引物与反应体系中带有荧光标记的碱基序列互补,PCR产物经GeXP毛细管电泳分离,含有荧光标记的PCR产物经GeXP检测窗口检测,依据检测片段与标准分子片段(DNA SizeStandard,DSS)迁移时间计算出扩增片段的长度,荧光信号强度代表该分离片段的扩增含量。
发明公开
本发明的目的是提供一种用于检测9个NA亚型AIV的引物组合及其应用。
本发明保护一种引物组合,包括如下10个引物对:
引物对AIV-M由正向引物和反向引物组成,正向引物为(a1)、(a2)、(a3)或(a4),反向引物为(b1)、(b2)、(b3)或(b4);
(a1)序列表的序列1所示;
(a2)序列表的序列1第19至38位核苷酸所示;
(a3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(a4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(a3)和/或(a4)中,基因特异性引物如序列表的序列1第19至38位核苷酸所示;
(b1)序列表的序列2所示;
(b2)序列表的序列2第20至39位核苷酸所示;
(b3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(b4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(b3)和/或(b4)中,基因特异性引物如序列表的序列2第20至39位核苷酸所示;
引物对N1由正向引物和反向引物组成,正向引物为(i1)、(i2)、(i3)或(i4),反向引物为(j1)、(j2)、(j3)或(j4);
(i1)序列表的序列3所示;
(i2)序列表的序列3第19至38位核苷酸所示;
(i3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(i4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(i3)和/或(i4)中,基因特异性引物如序列表的序列3第19至38位核苷酸所示;
(j1)序列表的序列4所示;
(j2)序列表的序列4第20至38位核苷酸所示;
(j3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(j4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(j3)和/或(j4)中,基因特异性引物如序列表的序列4第20至38位核苷酸所示;
引物对N2由正向引物和反向引物组成,正向引物为(k1)、(k2)、(k3)或(k4),反向引物为(l1)、(l2)、(l3)或(l4);
(k1)序列表的序列5所示;
(k2)序列表的序列5第19至35位核苷酸所示;
(k3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(k4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(k3)和/或(k4)中,基因特异性引物如序列表的序列5第19至35位核苷酸所示;
(l1)序列表的序列6所示;
(l2)序列表的序列6第20至36位核苷酸所示;
(l3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(l4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(l3)和/或(l4)中,基因特异性引物如序列表的序列6第20至36位核苷酸所示;
引物对N3由正向引物和反向引物组成,正向引物为(m1)、(m2)、(m3)或(m4),反向引物为(n1)、(n2)、(n3)或(n4);
(m1)序列表的序列7所示;
(m2)序列表的序列7第19至41位核苷酸所示;
(m3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(m4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(m3)和/或(m4)中,基因特异性引物如序列表的序列7第19至41位核苷酸所示;
(n1)序列表的序列8所示;
(n2)序列表的序列8第20至41位核苷酸所示;
(n3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(n4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(n3)和/或(n4)中,基因特异性引物如序列表的序列8第20至41位核苷酸所示;
引物对N4由正向引物和反向引物组成,正向引物为(o1)、(o2)、(o3)或(o4),反向引物为(p1)、(p2)、(p3)或(p4);
(o1)序列表的序列9所示;
(o2)序列表的序列9第19至40位核苷酸所示;
(o3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(o4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(o3)和/或(o4)中,基因特异性引物如序列表的序列9第19至40位核苷酸所示;
(p1)序列表的序列10所示;
(p2)序列表的序列10第20至39位核苷酸所示;
(p3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(p4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(p3)和/或(p4)中,基因特异性引物如序列表的序列10第20至39位核苷酸所示;
引物对N5由正向引物和反向引物组成,正向引物为(q1)、(q2)、(q3)或(q4),反向引物为(r1)、(r2)、(r3)或(r4);
(q1)序列表的序列11所示;
(q2)序列表的序列11第19至38位核苷酸所示;
(q3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(q4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(q3)和/或(q4)中,基因特异性引物如序列表的序列11第19至38位核苷酸所示;
(r1)序列表的序列12所示;
(r2)序列表的序列12第20至40位核苷酸所示;
(r3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(r4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(r3)和/或(r4)中,基因特异性引物如序列表的序列12第20至40位核苷酸所示;
引物对N6由正向引物和反向引物组成,正向引物为(s1)、(s2)、(s3)或(s4),反向引物为(t1)、(t2)、(t3)或(t4);
(s1)序列表的序列13所示;
(s2)序列表的序列13第19至43位核苷酸所示;
(s3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(s4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(s3)和/或(s4)中,基因特异性引物如序列表的序列13第19至43位核苷酸所示;
(t1)序列表的序列14所示;
(t2)序列表的序列14第20至44位核苷酸所示;
(t3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(t4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(t3)和/或(t4)中,基因特异性引物如序列表的序列14第20至44位核苷酸所示;
引物对N7由正向引物和反向引物组成,正向引物为(u1)、(u2)、(u3)或(u4),反向引物为(v1)、(v2)、(v3)或(v4);
(u1)序列表的序列15所示;
(u2)序列表的序列15第19至38位核苷酸所示;
(u3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(u4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(u3)和/或(u4)中,基因特异性引物如序列表的序列15第19至38位核苷酸所示;
(v1)序列表的序列16所示;
(v2)序列表的序列16第20至39位核苷酸所示;
(v3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(v4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(v3)和/或(v4)中,基因特异性引物如序列表的序列16第20至39位核苷酸所示;
引物对N8由正向引物和反向引物组成,正向引物为(w1)、(w2)、(w3)或(w4),反向引物为(x1)、(x2)、(x3)或(x4);
(w1)序列表的序列17所示;
(w2)序列表的序列17第19至38位核苷酸所示;
(w3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(w4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(w3)和/或(w4)中,基因特异性引物如序列表的序列17第19至38位核苷酸所示;
(x1)序列表的序列18所示;
(x2)序列表的序列18第20至40位核苷酸所示;
(x3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(x4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(x3)和/或(x4)中,基因特异性引物如序列表的序列18第20至40位核苷酸所示;
引物对N9由正向引物和反向引物组成,正向引物为(y1)、(y2)、(y3)或(y4),反向引物为(z1)、(z2)、(z3)或(z4);
(y1)序列表的序列19所示;
(y2)序列表的序列19第19至39位核苷酸所示;
(y3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(y4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(y3)和/或(y4)中,基因特异性引物如序列表的序列19第19至39位核苷酸所示;
(z1)序列表的序列20所示;
(z2)序列表的序列20第20至39位核苷酸所示;
(z3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
(z4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
(z3)和/或(z4)中,基因特异性引物如序列表的序列20第20至39位核苷酸所示。
所述引物组合中,各种引物的摩尔量均相等。
所述引物组合由所述10个引物对组成。
本发明还保护所述引物组合的应用,为如下(Ⅰ)、(Ⅱ)、(Ⅲ)、(Ⅳ)、(Ⅴ)、(Ⅵ)、(Ⅶ)或(Ⅷ):
(Ⅰ)鉴定待测禽流感病毒所属的N亚型;
(Ⅱ)鉴定待测病毒是否为禽流感病毒,如果是禽流感病毒其所属的N亚型;
(Ⅲ)鉴定待测样本含有的禽流感病毒所属的N亚型;
(Ⅳ)鉴定待测样本是否含有禽流感病毒,如果含有禽流感病毒其所含有 的禽流感病毒所属的N亚型;
(Ⅴ)制备试剂盒;所述试剂盒的功能为鉴定待测禽流感病毒所属的N亚型;
(Ⅵ)制备试剂盒;所述试剂盒的功能为鉴定待测病毒是否为禽流感病毒,如果是禽流感病毒其所属的N亚型;
(Ⅶ)制备试剂盒;所述试剂盒的功能为鉴定待测样本含有的禽流感病毒所属的N亚型;
(Ⅷ)制备试剂盒;所述试剂盒的功能为鉴定待测样本是否含有禽流感病毒,如果含有禽流感病毒其所含有的禽流感病毒所属的N亚型。
所述应用中;所述N亚型为N1亚型、N2亚型、N3亚型、N4亚型、N5亚型、N6亚型、N7亚型、N8亚型或N9亚型。
本发明还保护一种试剂盒,含有所述引物组合;所述试剂盒的功能为如下(Ⅰ)、(Ⅱ)、(Ⅲ)或(Ⅳ):
(Ⅰ)鉴定待测禽流感病毒所属的N亚型;
(Ⅱ)鉴定待测病毒是否为禽流感病毒,如果是禽流感病毒其所属的N亚型;
(Ⅲ)鉴定待测样本含有的禽流感病毒所属的N亚型;
(Ⅳ)鉴定待测样本是否含有禽流感病毒,如果含有禽流感病毒其所含有的禽流感病毒所属的N亚型。
所述试剂盒中:所述N亚型为N1亚型、N2亚型、N3亚型、N4亚型、N5亚型、N6亚型、N7亚型、N8亚型或N9亚型。
本发明还保护所述试剂盒的制备方法,包括将所有引物混合包装的步骤。
本发明还保护一种方法,包括如下步骤:
以待测病毒的cDNA为模板,采用所述引物组合进行GeXP多重PCR,然后采用GeXP System进行检测分析;
如果显示163bp±3bp范围内的峰,待测病毒为禽流感病毒;
如果显示249bp±3bp范围内的峰,待测病毒为N1亚型禽流感病毒;
如果显示285bp±3bp范围内的峰,待测病毒为N2亚型禽流感病毒;
如果显示220bp±3bp范围内的峰,待测病毒为N3亚型禽流感病毒;
如果显示152bp±3bp范围内的峰,待测病毒为N4亚型禽流感病毒;
如果显示300bp±3bp范围内的峰,待测病毒为N5亚型禽流感病毒;
如果显示240bp±3bp范围内的峰,待测病毒为N6亚型禽流感病毒;
如果显示198bp±3bp范围内的峰,待测病毒为N7亚型禽流感病毒;
如果显示177bp±3bp范围内的峰,待测病毒为N8亚型禽流感病毒;
如果显示210bp±3bp范围内的峰,待测病毒为N9亚型禽流感病毒;
所述方法的目的为鉴定待测病毒是否为禽流感病毒,如果是禽流感病毒其所属的N亚型。
本发明还保护一种方法,包括如下步骤:
以待测样本的cDNA为模板,采用所述引物组合进行GeXP多重PCR,然后采用 GeXP System进行检测分析;
如果显示163bp±3bp范围内的峰,待测样本含有禽流感病毒;
如果显示249bp±3bp范围内的峰,待测样本含有N1亚型禽流感病毒;
如果显示285bp±3bp范围内的峰,待测样本含有N2亚型禽流感病毒;
如果显示220bp±3bp范围内的峰,待测样本含有N3亚型禽流感病毒;
如果显示152bp±3bp范围内的峰,待测样本含有N4亚型禽流感病毒;
如果显示300bp±3bp范围内的峰,待测样本含有N5亚型禽流感病毒;
如果显示240bp±3bp范围内的峰,待测样本含有N6亚型禽流感病毒;
如果显示198bp±3bp范围内的峰,待测样本含有N7亚型禽流感病毒;
如果显示177bp±3bp范围内的峰,待测样本含有N8亚型禽流感病毒;
如果显示210bp±3bp范围内的峰,待测样本含有N9亚型禽流感病毒;
所述方法的目的为鉴定待测样本是否含有禽流感病毒,如果含有禽流感病毒其所含有的禽流感病毒所属的N亚型。
附图说明
图1为实施例4中,采用模板溶液1时,10重反应体系同时检测10个目的片段的结果。
实施发明的最佳方式
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。
RNA/DNA共提试剂盒:大连宝生物公司。GeXP System为美国贝克曼公司产品。GeXP启动试剂盒、毛细管阵列、上样缓冲液、DNA size standard Kit-400 Base Pairs、分离缓冲液和分离胶均为AB Sciex公司产品。NanoDrop ND-1000核酸微量检测仪为Thermo公司产品。
实施例1、引物的获得和制备
通过大量序列分析、引物设计、引物验证和引物筛选,获得10个引物对。引物对AIV-M由正向引物(序列表的序列1)和反向引物(序列表的序列2)组成,用于鉴定禽流感病毒。引物对N1由正向引物(序列表的序列3)和反向引物(序列表的序列4)组成,用于鉴定N1亚型禽流感病毒。引物对N2由正向引物(序列表的序列5)和反向引物(序列表的序列6)组成,用于鉴定N2亚型禽流感病毒。引物对N3由正向引物(序列表的序列7)和反向引物(序列表的序列8)组成,用于鉴定N3亚型禽流感病毒。引物对N4由正向引物(序列表的序列9)和反向引物(序列表的序列10)组成,用于鉴定N4亚型禽流感病毒。引物对N5由正向引物(序列表的序列11)和反向引物(序列表的序列12)组成,用于鉴定N5亚型禽流感病毒。引物对N6由正向引物(序列表的序列13)和反 向引物(序列表的序列14)组成,用于鉴定N6亚型禽流感病毒。引物对N7由正向引物(序列表的序列15)和反向引物(序列表的序列16)组成,用于鉴定N7亚型禽流感病毒。引物对N8由正向引物(序列表的序列17)和反向引物(序列表的序列18)组成,用于鉴定N8亚型禽流感病毒。引物对N9由正向引物(序列表的序列19)和反向引物(序列表的序列20)组成,用于鉴定N9亚型禽流感病毒。
各条引物的核苷酸序列以及各个引物对的扩增片段大小见表1。各条正向引物中具有相同的GeXP通用引物,见下划线标记。各条反向引物中具有相同的GeXP通用引物,见下划线标记。
表1
Figure PCTCN2019084036-appb-000001
表1中,R表示A或G,Y表示C或T,W表示A或T。表1中,*,根据实际检测的毒株不同以及GeXP系统如GenomeLabTM GeXP GeneticAnalysis System毛细管电泳仪的误差,使用上述引物对检测获得的实际扩增长度可在预计扩增产物的长度基础上下波动3bp。
人工合成各条引物。
实施例2、各引物对的特异性
一、模板的制备
1、病毒RNA提取及cDNA的获得
①病毒RNA提取
使用试剂盒EasyPure Viral DNA/RNA Kit(北京全式金生物技术有限公司,产品目录号ER201)按照试剂盒说明书,分别从如下病毒毒株的鸡胚尿囊液中提取RNA(以提取阴性鸡胚尿囊液获得的RNA为阴性对照样品):禽流感病毒毒株:A/Sparrow/Guangxi/GXs-1/2012(H1N2亚型)、A/Chicken/GuangXi/DX/2008(H9N2亚型)、A/Duck/GuangXi/N42/2009(H3N2亚型)、A/Duck/HK/77/76(H2N3亚型)、A/Duck/HK/876/80(H10N3亚型)、A/Turkey/Ontario/6118/68(H8N4亚型)、A/Duck/Guangxi/GXd-1/2009(H6N5亚型)、A/Duck/HK/862/80(H12N5亚型)、A/Duck/Guangxi/070D/2010(H4N6亚型)、A/Duck/Guangxi/GXd-6/2010(H6N8亚型)、A/Duck/PA/2099/12(H11N9亚型)、A/Gull/Md/704/77(H13N5亚型)、A/Mallard/Astrakhan/263/82(H14N5亚型)、A/shearwater/Western Australia/2576/79(H15N9亚型)、A/shorebird/Delaware/168/06(H16N3亚型)和新城疫病毒毒株(NDV)F48、传染性支气管炎病毒毒株(IBV)M41(记载在以下文献:罗思思,谢芝勋,谢丽基,等.H7亚型和N9亚型禽流感病毒RT-LAMP可视化检测方法的建立[J].畜牧兽医学报 2015,46(7):1176-1183.);禽流感病毒毒株:A/duck/Guangxi/GXd-5/2010(H6N1亚型)(记载在以下文献:罗思思,谢芝勋,周辰瑜,等.H6亚型禽流感病毒的分离鉴定与生物学特性分析[J].中国家禽,2015,37(2):54-56.);禽流感病毒毒株:A/pigeon/Guangxi/020P/2009(H3N6亚型)(记载在以下文献:Tingting Liu,Zhixun Xie,Guoli Wang,et al.Avian Influenza Virus with Hemagglutinin-Neuraminidase Combination H3N6,Isolated from a Domestic Pigeon in Guangxi,Southern China[J].Genome Announc,2015Feb 5;3(1).pii:e01537-14.);禽呼肠孤病毒S1133毒株(记载在以下文献:张昆丽,谢芝勋,黄莉,等.禽呼肠孤病毒感染鸡胚成纤维细胞后IL-17、IL-18和IFN-γmRNA转录水平的动态变化[J].2015,35(3):345-349.)。
②cDNA的获得
将步骤①获得的RNA样品分别按照如下反应体系(50μL)和反应条件进行反转录,得到cDNA;以DEPC水作为阴性对照。
RNA 35μL、50pmol Random Primer(9mer)1.4μL,70℃反应10min后立即冰浴5min,然后加入5×Reverse Transcriptase Buffer 10μL、10mM dNTP Mixture 2μL、40U/μL Ribonuclease Inhibitor 0.6μL、200U/μL M-MLV ReverseTranscriptase 1μL。
反转录试剂Random Primer(9mer)、dNTP Mixture、Ribonuclease Inhibitor、M-MLV Reverse Transcriptase,均购自大连TaKaRa公司,目录号分别为D3802、 D4019、D2313A、D2641A。
反应条件:42℃1h,置于-20℃保存。
2、禽流感病毒毒株A/Chicken/QT35/98(H5N9亚型)、A/Duck/42846/07(H7N7亚型)、H7N9 field samples(H7N9亚型)、Duck/HK/47/76(H7N2亚型)、Duck/Guangxi/1/04(H5N1亚型)分别是以cDNA形式留存的样品,并已经HA基因测序证实(H5N9、H7N7、H7N9记载在以下文献:罗思思,谢芝勋,谢丽基,等.H7亚型和N9亚型禽流感病毒RT-LAMP可视化检测方法的建立[J].畜牧兽医学报2015,46(7):1176-1183;H5N1和H7N2记载在以下文献:Zhixun Xie,Yao-shan Pang,Jiabo Liu,et al.Amultiplex RT-PCR for detection of type A influenza virus and differentiation of avian H5,H7,and H9hemagglutinin subtypes[J].Molecular and CellularProbes,2006,20(3-4):245-249)。
二、取步骤一得到的cDNA,作为模板,采用供试引物对进行GeXP单重PCR,然后采用GeXP System(GeXP毛细管电泳系统)进行检测分析。
供试引物对分别为:实施例1制备的各个引物对。
反应体系(20μL):5×PCR Buffer 4μL、引物溶液 2μL、25mM MgCl 2水溶液4μL、JumpStart Taq DNA Polymerase 1μL、模板cDNA 2μL,加dH 2O至20μL。
5×PCR Buffer:含GeXP通用引物对,购自上海爱博才思分析仪器贸易有限公司,目录号A85017。JumpStart Taq DNA Polymerase购自Sigma公司,货号D4184。
引物溶液提供两种有效成分,供试引物对的正向引物和反向引物。反应体系中,正向引物的终浓度为20nM、反向引物的终浓度为20nM,JumpStart Taq DNA Polymerase的含量为2.5U、模板cDNA的含量为1pg-10pg。
反应程序:95℃5min;95℃30s、50℃30s、72℃40s,35个循环;72℃8min。
引物对AIV-M对于所有亚型禽流感病毒均显示163bp的目的峰。引物对AIV-M对于新城疫病毒、传染性支气管炎病毒、禽呼肠孤病毒,均未实现有效扩增,不显示任何峰。
引物对N1对于H6N1亚型禽流感病毒和H5N1亚型禽流感病毒均实现了特异性扩增,均显示249bp的目的峰。引物对N1对于其他各个病毒均未实现有效扩增,不显示任何峰。
引物对N2对于H1N2亚型禽流感病毒、H9N2亚型禽流感病毒、H3N2亚型禽流感病毒和H7N2亚型禽流感病毒均实现了特异性扩增,均显示285bp的目的峰。引物对N2对于其他各个病毒均未实现有效扩增,不显示任何峰。
引物对N3对于H2N3亚型禽流感病毒、H10N3亚型禽流感病毒和H16N3亚型禽流感病毒实现了特异性扩增,显示220bp的目的峰。引物对N3对于其他各个病毒均未实现有效扩增,不显示任何峰。
引物对N4对于H8N4亚型禽流感病毒实现了特异性扩增,显示152bp的目的峰。引物对N4对于其他各个病毒均未实现有效扩增,不显示任何峰。
引物对N5对于H6N5亚型禽流感病毒、H12N5亚型禽流感病毒、H13N5亚型禽流感病毒和H14N5亚型禽流感病毒实现了特异性扩增,显示300bp的目的峰。引物对N5对于其他各个病毒均未实现有效扩增,不显示任何峰。
引物对N6对于H4N6亚型禽流感病毒和H3N6亚型禽流感病毒实现了特异性扩增,显示240bp的目的峰。引物对N6对于其他各个病毒均未实现有效扩增,不显示任何峰。
引物对N7对于H7N7亚型禽流感病毒实现了特异性扩增,显示198bp的目的峰。引物对N7对于其他各个病毒均未实现有效扩增,不显示任何峰。
引物对N8对于H6N8亚型禽流感病毒实现了特异性扩增,显示177bp的目的峰。引物对N8对于其他各个病毒均未实现有效扩增,不显示任何峰。
引物对N9对于H11N9亚型禽流感病毒、H15N9亚型禽流感病毒、H5N9亚型禽流感病毒和H7N9亚型禽流感病毒实现了特异性扩增,显示210bp的目的峰。引物对N9对于其他各个病毒均未实现有效扩增,不显示任何峰。
结果表明,10个引物对均特异性扩增目标病毒,对其它病毒无交叉扩增。
实施例3、引物组合的特异性
一、模板的制备
同实施例2的步骤一。
二、取步骤一得到的cDNA,作为模板,采用供试引物对进行GeXP多重PCR,然后采用GeXP System(GeXP毛细管电泳系统)进行检测分析。
引物组合由实施例1设计的10个引物对组成。
反应体系(20μL):GenomeLab GeXP Start Kit 5×PCR Buffer 4μL、引物组合溶液2μL、25mM MgCl 2水溶液4μL、Taq DNA Polymerase 1μL、模板cDNA 2μL,加dH 2O至20μL。
GenomeLab GeXP Start Kit 5×PCR Buffer:含GeXP通用引物对,购自上海爱博才思分析仪器贸易有限公司,目录号A85017。
引物组合溶液提供所述的10个引物对。反应体系中,每条正向引物的终浓度均为20nM、每条反向引物的终浓度均为20nM,Taq DNA Polymerase的含量为2.5U、模板cDNA的含量为1pg-10pg。
反应程序同实施例2。
对于新城疫病毒、传染性支气管炎病毒、禽呼肠孤病毒,引物组合均未实现有效扩增,不显示任何峰。
对于H1N2亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和285bp的目的峰(对应引物对N2)。
对于H9N2亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目 的峰(对应引物对AIV-M)和285bp的目的峰(对应引物对N2)。
对于H3N2亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和285bp的目的峰(对应引物对N2)。
对于H2N3亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和220bp的目的峰(对应引物对N3)。
对于H10N3亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和220bp的目的峰(对应引物对N3)。
对于H8N4亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和152bp的目的峰(对应引物对N4)。
对于H6N5亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和300bp的目的峰(对应引物对N5)。
对于H12N5亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和300bp的目的峰(对应引物对N5)。
对于H4N6亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和240bp的目的峰(对应引物对N6)。
对于H6N8亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和177bp的目的峰(对应引物对N8)。
对于H11N9亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和210bp的目的峰(对应引物对N9)。
对于H13N5亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和300bp的目的峰(对应引物对N5)。
对于H14N5亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和300bp的目的峰(对应引物对N5)。
对于H15N9亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和210bp的目的峰(对应引物对N9)。
对于H16N3亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和220bp的目的峰(对应引物对N3)。
对于H6N1亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和249bp的目的峰(对应引物对N1)。
对于H3N6亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和240bp的目的峰(对应引物对N6)。
对于H5N9亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和210bp的目的峰(对应引物对N9)。
对于H7N7亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和198bp的目的峰(对应引物对N7)。
对于H5N1亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和249bp的目的峰(对应引物对N1)。
对于H7N9亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和210bp的目的峰(对应引物对N9)。
对于H7N2亚型禽流感病毒,引物组合实现了特异性扩增,显示163bp的目的峰(对应引物对AIV-M)和285bp的目的峰(对应引物对N2)。
实施例4、引物组合的灵敏度
一、构建质粒
分别以实施例2中步骤一的H9N2亚型禽流感病毒、H5N1亚型禽流感病毒、H7N2亚型禽流感病毒、H2N3亚型禽流感病毒、H8N4亚型禽流感病毒、H12N5亚型禽流感病毒、H3N6亚型禽流感病毒、H7N7亚型禽流感病毒、H6N8亚型禽流感病毒和H7N9亚型禽流感病毒的cDNA样品为模板,PCR扩增获得H9N2亚型禽流感病毒M基因、H5N1亚型禽流感病毒NA基因、H7N2亚型禽流感病毒NA基因、H2N3亚型禽流感病毒NA基因、H8N4亚型禽流感病毒NA基因、H12N5亚型禽流感病毒NA基因、H3N6亚型禽流感病毒NA基因、H7N7亚型禽流感病毒NA基因、H6N8亚型禽流感病毒NA基因和H7N9亚型禽流感病毒NA基因的全长cDNA片段,分别与pGEM-T Easy Vector载体连接,获得10种重组质粒pGEM-T-M、pGEM-T-N1、pGEM-T-N2、pGEM-T-N3、pGEM-T-N4、pGEM-T-N5、pGEM-T-N6、pGEM-T-N7、pGEM-T-N8和pGEM-T-N9,经测序证实这10种重组质粒分别插入了上述基因,做为敏感性试验用的标准品。
二、制备模板
将步骤一制备的10种质粒混合,制备模板溶液。模板溶液1中,10种质粒的浓度均为10 3拷贝/μL。模板溶液2中,10种质粒的浓度均为10 2拷贝/μL。模板溶液3中,10种质粒的浓度均为10 1拷贝/μL。
三、取步骤二得到的模板溶液,采用引物组合进行GeXP多重PCR。
反应体系同实施例3。
反应程序同实施例2。
四、完成步骤三后,取PCR产物,采用GeXP System(GeXP毛细管电泳系统)进行检测分析。
结果显示,10 3拷贝/μL、10 2拷贝/μL的质粒模板均能检测到,10 1拷贝/μL的质粒绝大部分已检测不到。采用模板溶液1时,10重反应体系同时检测10个目的片段的结果见图1。
实施例5、干扰性试验
一、制备模板
模板溶液1中,重组质粒pGEM-T-N1的浓度为10 3拷贝/μL、重组质粒pGEM-T-N2的浓度为10 7拷贝/μL。模板溶液2中,重组质粒pGEM-T-N2的浓度为10 4拷贝/μL、重组质粒pGEM-T-N7的浓度为10 2拷贝/μL、重组质粒pGEM-T-N9 的浓度为10 6拷贝/μL。模板溶液3中,重组质粒pGEM-T-N3的浓度为10 3拷贝/μL、重组质粒pGEM-T-N5的浓度为10 7拷贝/μL、重组质粒pGEM-T-N6的浓度为10 5拷贝/μL、重组质粒pGEM-T-N8的浓度为10 2拷贝/μL。
二、取步骤一得到的模板溶液,采用引物组合进行GeXP多重PCR。
反应体系同实施例3。
反应程序同实施例2。
三、完成步骤二后,取PCR产物,采用GeXP System(GeXP毛细管电泳系统)进行检测分析。
均出现对应的目的峰,高浓度和低浓度的模板均检测到,干扰性小,多模板的检测和单模板的检测荧光信号值相差不大。
实施例6、稳定性试验
1、批内重复性
在同一时间内对每种供试病毒进行6次重复试验,方法均同实施例3。
2、批间重复性
在不同时间内对每种供试病毒进行6次重复试验,方法均同实施例3。
批内和批间的检测结果均一致,稳定性佳。
实施例7、对比引物
一、对比试验一
用引物对N4-D代替引物对N4,其他同实施例3。
引物对N4-D由如下正向引物和反向引物组成(预期扩增片段为142bp):
正向引物: AGGTGACACTATAGAATAAGATCGGYTATRTATGTAGTGG;
反向引物: GTACGACTCACTATAGGGACCATATCTDCCYTTCCCATT。
无法有效检测到引物对N2和引物对N5的目的峰。
二、对比试验二
用引物对N3-D代替引物对N3,其他同实施例3。
引物对N3-D由如下正向引物和反向引物组成(预期扩增片段为147bp):
正向引物: AGGTGACACTATAGAATACTGGAAACAGGGTATGTATG;
反向引物: GTACGACTCACTATAGGGAGTCAATGGAGGACCYGGAGT。
无法有效检测到引物对N5和引物对N6的目的峰。
三、对比试验三
用引物对AIV-M-D代替引物对AIV-M、用引物对N4-D代替引物对N4、用引物对N7-D代替引物对N7,其他同实施例3。
引物对AIV-M-D由如下正向引物和反向引物组成(预期扩增片段为263bp):
正向引物: AGGTGACACTATAGAATATGCCCAGTGAGCGAGGACTG;
反向引物: GTACGACTCACTATAGGGAGCCACTTCTGTGGTCACCGT。
引物对N4-D由如下正向引物和反向引物组成(预期扩增片段为154bp):
正向引物: AGGTGACACTATAGAATAGGATGCWAATGGRTGGGTGTC;
反向引物: GTACGACTCACTATAGGGAACCGGTTGTTTCTCCTCTAAT。
引物对N7-D由如下正向引物和反向引物组成(预期扩增片段为199bp):
正向引物: AGGTGACACTATAGAATAGAGTTTATGCAAAGTTGAAGG;
反向引物: GTACGACTCACTATAGGGAGTTTCTAATGGTWGTCCCTTG。
无法有效检测到引物对N1、引物对N3、引物对N5和引物对N6的目的峰。
工业应用
为了建立一种同时鉴别禽流感9个NA亚型的GeXP检测方法,本发明的发明人提供了10对特异性引物,并对10对引物形成的引物组合的多重反应体系进行特异性、敏感性、干扰性、稳定性验证和临床样品检测。10重反应体系均能对应扩增出单一、几种随机混合、9种混合的核酸模板,与预期设计相符。特异性强,对常见的禽病病原体新城疫病毒、传染性支气管炎病毒等不存在交叉反应。同时鉴别10种目的基因的检测下限为10 2拷贝/μL。对不同浓度的不同模板同时进行检测,与单一模板的检测无明显差别,表明10重引物之间干扰性小。在同一时间和不同时间对相同模板进行检测,表明重复性好,稳定性佳。应用本发明提供的引物组合配套GeXP检测方法可以在同一个反应体系中进行10重PCR扩增,有效鉴定9个NA亚型,具有高通量、快速、省时省力的优点,为快速鉴别9个不同的NA亚型AIV提供了有效方法,应用前景广阔。

Claims (9)

  1. 引物组合,包括如下10个引物对:
    引物对AIV-M由正向引物和反向引物组成,正向引物为(a1)、(a2)、(a3)或(a4),反向引物为(b1)、(b2)、(b3)或(b4);
    (a1)序列表的序列1所示;
    (a2)序列表的序列1第19至38位核苷酸所示;
    (a3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (a4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (a3)和/或(a4)中,基因特异性引物如序列表的序列1第19至38位核苷酸所示;
    (b1)序列表的序列2所示;
    (b2)序列表的序列2第20至39位核苷酸所示;
    (b3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (b4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (b3)和/或(b4)中,基因特异性引物如序列表的序列2第20至39位核苷酸所示;
    引物对N1由正向引物和反向引物组成,正向引物为(i1)、(i2)、(i3)或(i4),反向引物为(j1)、(j2)、(j3)或(j4);
    (i1)序列表的序列3所示;
    (i2)序列表的序列93第19至38位核苷酸所示;
    (i3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (i4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (i3)和/或(i4)中,基因特异性引物如序列表的序列3第19至38位核苷酸所示;
    (j1)序列表的序列4所示;
    (j2)序列表的序列4第20至38位核苷酸所示;
    (j3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (j4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (j3)和/或(j4)中,基因特异性引物如序列表的序列4第20至38位核苷酸所示;
    引物对N2由正向引物和反向引物组成,正向引物为(k1)、(k2)、(k3)或(k4),反向引物为(l1)、(l2)、(l3)或(l4);
    (k1)序列表的序列5所示;
    (k2)序列表的序列5第19至35位核苷酸所示;
    (k3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (k4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (k3)和/或(k4)中,基因特异性引物如序列表的序列5第19至35位核苷酸所示;
    (l1)序列表的序列6所示;
    (l2)序列表的序列6第20至36位核苷酸所示;
    (l3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (l4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (l3)和/或(l4)中,基因特异性引物如序列表的序列6第20至36位核苷酸所示;
    引物对N3由正向引物和反向引物组成,正向引物为(m1)、(m2)、(m3)或(m4),反向引物为(n1)、(n2)、(n3)或(n4);
    (m1)序列表的序列7所示;
    (m2)序列表的序列7第19至41位核苷酸所示;
    (m3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (m4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (m3)和/或(m4)中,基因特异性引物如序列表的序列7第19至41位核苷酸所示;
    (n1)序列表的序列8所示;
    (n2)序列表的序列8第20至41位核苷酸所示;
    (n3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (n4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (n3)和/或(n4)中,基因特异性引物如序列表的序列8第20至41位核苷酸所示;
    引物对N4由正向引物和反向引物组成,正向引物为(o1)、(o2)、(o3)或(o4),反向引物为(p1)、(p2)、(p3)或(p4);
    (o1)序列表的序列9所示;
    (o2)序列表的序列9第19至40位核苷酸所示;
    (o3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (o4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (o3)和/或(o4)中,基因特异性引物如序列表的序列9第19至40位核苷酸所示;
    (p1)序列表的序列10所示;
    (p2)序列表的序列10第20至39位核苷酸所示;
    (p3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (p4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (p3)和/或(p4)中,基因特异性引物如序列表的序列10第20至39位核苷酸所示;
    引物对N5由正向引物和反向引物组成,正向引物为(q1)、(q2)、(q3) 或(q4),反向引物为(r1)、(r2)、(r3)或(r4);
    (q1)序列表的序列11所示;
    (q2)序列表的序列11第19至38位核苷酸所示;
    (q3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (q4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (q3)和/或(q4)中,基因特异性引物如序列表的序列11第19至38位核苷酸所示;
    (r1)序列表的序列12所示;
    (r2)序列表的序列12第20至40位核苷酸所示;
    (r3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (r4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (r3)和/或(r4)中,基因特异性引物如序列表的序列12第20至40位核苷酸所示;
    引物对N6由正向引物和反向引物组成,正向引物为(s1)、(s2)、(s3)或(s4),反向引物为(t1)、(t2)、(t3)或(t4);
    (s1)序列表的序列13所示;
    (s2)序列表的序列13第19至43位核苷酸所示;
    (s3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (s4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (s3)和/或(s4)中,基因特异性引物如序列表的序列13第19至43位核苷酸所示;
    (t1)序列表的序列14所示;
    (t2)序列表的序列14第20至44位核苷酸所示;
    (t3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (t4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (t3)和/或(t4)中,基因特异性引物如序列表的序列14第20至44位核苷酸所示;
    引物对N7由正向引物和反向引物组成,正向引物为(u1)、(u2)、(u3)或(u4),反向引物为(v1)、(v2)、(v3)或(v4);
    (u1)序列表的序列15所示;
    (u2)序列表的序列15第19至38位核苷酸所示;
    (u3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (u4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (u3)和/或(u4)中,基因特异性引物如序列表的序列15第19至38位核苷酸所示;
    (v1)序列表的序列16所示;
    (v2)序列表的序列16第20至39位核苷酸所示;
    (v3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (v4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (v3)和/或(v4)中,基因特异性引物如序列表的序列16第20至39位核苷酸所示;
    引物对N8由正向引物和反向引物组成,正向引物为(w1)、(w2)、(w3)或(w4),反向引物为(x1)、(x2)、(x3)或(x4);
    (w1)序列表的序列17所示;
    (w2)序列表的序列17第19至38位核苷酸所示;
    (w3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (w4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (w3)和/或(w4)中,基因特异性引物如序列表的序列17第19至38位核苷酸所示;
    (x1)序列表的序列18所示;
    (x2)序列表的序列18第20至40位核苷酸所示;
    (x3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (x4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (x3)和/或(x4)中,基因特异性引物如序列表的序列18第20至40位核苷酸所示;
    引物对N9由正向引物和反向引物组成,正向引物为(y1)、(y2)、(y3)或(y4),反向引物为(z1)、(z2)、(z3)或(z4);
    (y1)序列表的序列19所示;
    (y2)序列表的序列19第19至39位核苷酸所示;
    (y3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (y4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (y3)和/或(y4)中,基因特异性引物如序列表的序列19第19至39位核苷酸所示;
    (z1)序列表的序列20所示;
    (z2)序列表的序列20第20至39位核苷酸所示;
    (z3)自上游至下游依次包括如下区段:GeXP通用引物和基因特异性引物;
    (z4)自上游至下游依次由如下区段组成:GeXP通用引物和基因特异性引物;
    (z3)和/或(z4)中,基因特异性引物如序列表的序列20第20至39位核苷酸所示。
  2. 如权利要求1所述的引物组合,其特征在于:所述引物组合中,各种引物的摩尔量均相等。
  3. 权利要求1或2所述引物组合的应用,为如下(Ⅰ)、(Ⅱ)、(Ⅲ)、(Ⅳ)、(Ⅴ)、(Ⅵ)、(Ⅶ)或(Ⅷ):
    (Ⅰ)鉴定待测禽流感病毒所属的N亚型;
    (Ⅱ)鉴定待测病毒是否为禽流感病毒,如果是禽流感病毒其所属的N亚型;
    (Ⅲ)鉴定待测样本含有的禽流感病毒所属的N亚型;
    (Ⅳ)鉴定待测样本是否含有禽流感病毒,如果含有禽流感病毒其所含有的禽流感病毒所属的N亚型;
    (Ⅴ)制备试剂盒;所述试剂盒的功能为鉴定待测禽流感病毒所属的N亚型;
    (Ⅵ)制备试剂盒;所述试剂盒的功能为鉴定待测病毒是否为禽流感病毒,如果是禽流感病毒其所属的N亚型;
    (Ⅶ)制备试剂盒;所述试剂盒的功能为鉴定待测样本含有的禽流感病毒所属的N亚型;
    (Ⅷ)制备试剂盒;所述试剂盒的功能为鉴定待测样本是否含有禽流感病毒,如果含有禽流感病毒其所含有的禽流感病毒所属的N亚型。
  4. 如权利要求3所述的应用,其特征在于:
    所述N亚型为N1亚型、N2亚型、N3亚型、N4亚型、N5亚型、N6亚型、N7亚型、N8亚型或N9亚型。
  5. 一种试剂盒,含有权利要求1或2所述引物组合;所述试剂盒的功能为如下(Ⅰ)、(Ⅱ)、(Ⅲ)或(Ⅳ):
    (Ⅰ)鉴定待测禽流感病毒所属的N亚型;
    (Ⅱ)鉴定待测病毒是否为禽流感病毒,如果是禽流感病毒其所属的N亚型;
    (Ⅲ)鉴定待测样本含有的禽流感病毒所属的N亚型;
    (Ⅳ)鉴定待测样本是否含有禽流感病毒,如果含有禽流感病毒其所含有的禽流感病毒所属的N亚型。
  6. 如权利要求5所述的试剂盒,其特征在于:
    所述N亚型为N1亚型、N2亚型、N3亚型、N4亚型、N5亚型、N6亚型、N7亚型、N8亚型或N9亚型。
  7. 权利要求5或6所述试剂盒的制备方法,包括将所有引物混合包装的步骤。
  8. 一种方法,包括如下步骤:
    以待测病毒的cDNA为模板,采用权利要求1或2所述引物组合进行GeXP多重PCR,然后采用GeXP System进行检测分析;
    如果显示163bp±3bp范围内的峰,待测病毒为禽流感病毒;
    如果显示249bp±3bp范围内的峰,待测病毒为N1亚型禽流感病毒;
    如果显示285bp±3bp范围内的峰,待测病毒为N2亚型禽流感病毒;
    如果显示220bp±3bp范围内的峰,待测病毒为N3亚型禽流感病毒;
    如果显示152bp±3bp范围内的峰,待测病毒为N4亚型禽流感病毒;
    如果显示300bp±3bp范围内的峰,待测病毒为N5亚型禽流感病毒;
    如果显示240bp±3bp范围内的峰,待测病毒为N6亚型禽流感病毒;
    如果显示198bp±3bp范围内的峰,待测病毒为N7亚型禽流感病毒;
    如果显示177bp±3bp范围内的峰,待测病毒为N8亚型禽流感病毒;
    如果显示210bp±3bp范围内的峰,待测病毒为N9亚型禽流感病毒;
    所述方法的目的为鉴定待测病毒是否为禽流感病毒,如果是禽流感病毒其所属的N亚型。
  9. 一种方法,包括如下步骤:
    以待测样本的cDNA为模板,采用权利要求1或2所述引物组合进行GeXP多重PCR,然后采用GeXP System进行检测分析;
    如果显示163bp±3bp范围内的峰,待测样本含有禽流感病毒;
    如果显示249bp±3bp范围内的峰,待测样本含有N1亚型禽流感病毒;
    如果显示285bp±3bp范围内的峰,待测样本含有N2亚型禽流感病毒;
    如果显示220bp±3bp范围内的峰,待测样本含有N3亚型禽流感病毒;
    如果显示152bp±3bp范围内的峰,待测样本含有N4亚型禽流感病毒;
    如果显示300bp±3bp范围内的峰,待测样本含有N5亚型禽流感病毒;
    如果显示240bp±3bp范围内的峰,待测样本含有N6亚型禽流感病毒;
    如果显示198bp±3bp范围内的峰,待测样本含有N7亚型禽流感病毒;
    如果显示177bp bp±3bp范围内的峰,待测样本含有N8亚型禽流感病毒;
    如果显示210bp bp±3bp范围内的峰,待测样本含有N9亚型禽流感病毒;
    所述方法的目的为鉴定待测样本是否含有禽流感病毒,如果含有禽流感病毒其所含有的禽流感病毒所属的N亚型。
PCT/CN2019/084036 2019-01-07 2019-04-24 用于检测9个na亚型aiv的引物组合及其应用 WO2020143132A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/649,078 US11279973B2 (en) 2019-01-07 2019-04-24 Primer combination for detecting 9 NA subtype AIVS and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910012094.7A CN109487012B (zh) 2019-01-07 2019-01-07 用于检测9个na亚型aiv的引物组合及其应用
CN201910012094.7 2019-01-07

Publications (1)

Publication Number Publication Date
WO2020143132A1 true WO2020143132A1 (zh) 2020-07-16

Family

ID=65714099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084036 WO2020143132A1 (zh) 2019-01-07 2019-04-24 用于检测9个na亚型aiv的引物组合及其应用

Country Status (3)

Country Link
US (1) US11279973B2 (zh)
CN (1) CN109487012B (zh)
WO (1) WO2020143132A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487012B (zh) * 2019-01-07 2020-09-22 广西壮族自治区兽医研究所 用于检测9个na亚型aiv的引物组合及其应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151313A1 (en) * 2008-06-12 2009-12-17 Universiti Putra Malaysia A novel antiviral peptide against avian influenza virus h9n2
CN103255236A (zh) * 2013-06-03 2013-08-21 广西壮族自治区兽医研究所 H7n9禽流感病毒二重荧光定量rt-pcr检测试剂盒
CN103255237A (zh) * 2013-06-03 2013-08-21 广西壮族自治区兽医研究所 H7n9禽流感病毒三重rt-pcr检测试剂盒
CN104004858A (zh) * 2014-06-19 2014-08-27 广西壮族自治区兽医研究所 H3亚型禽流感病毒巢式rt-pcr检测试剂盒及其引物组
CN104498627A (zh) * 2014-12-05 2015-04-08 广西壮族自治区兽医研究所 H3n8亚型禽流感病毒一步法实时荧光定量rt-pcr检测试剂盒
CN105316430A (zh) * 2015-11-27 2016-02-10 广西壮族自治区兽医研究所 同时鉴别H5N1和H9N2亚型禽流感病毒的GeXP快速检测引物组、试剂盒及其应用
CN105349697A (zh) * 2015-11-27 2016-02-24 广西壮族自治区兽医研究所 同时鉴别8种感染人不同亚型禽流感病毒HA基因的GeXP快速检测试剂盒及其应用
CN107326103A (zh) * 2017-08-28 2017-11-07 聊城大学 一种三重rt‑pcr特异性扩增引物组及三重鉴定的rt‑pcr检测方法
US20180369362A1 (en) * 2017-06-22 2018-12-27 University Of Maryland, College Park Infectious bronchitis virus vaccine using newcastle disease viral vector
CN109487011A (zh) * 2019-01-07 2019-03-19 广西壮族自治区兽医研究所 用于检测h5、h7和h9以及9个na亚型aiv的引物组合及其应用
CN109487012A (zh) * 2019-01-07 2019-03-19 广西壮族自治区兽医研究所 用于检测9个na亚型aiv的引物组合及其应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151313A1 (en) * 2008-06-12 2009-12-17 Universiti Putra Malaysia A novel antiviral peptide against avian influenza virus h9n2
CN103255236A (zh) * 2013-06-03 2013-08-21 广西壮族自治区兽医研究所 H7n9禽流感病毒二重荧光定量rt-pcr检测试剂盒
CN103255237A (zh) * 2013-06-03 2013-08-21 广西壮族自治区兽医研究所 H7n9禽流感病毒三重rt-pcr检测试剂盒
CN104004858A (zh) * 2014-06-19 2014-08-27 广西壮族自治区兽医研究所 H3亚型禽流感病毒巢式rt-pcr检测试剂盒及其引物组
CN104498627A (zh) * 2014-12-05 2015-04-08 广西壮族自治区兽医研究所 H3n8亚型禽流感病毒一步法实时荧光定量rt-pcr检测试剂盒
CN105316430A (zh) * 2015-11-27 2016-02-10 广西壮族自治区兽医研究所 同时鉴别H5N1和H9N2亚型禽流感病毒的GeXP快速检测引物组、试剂盒及其应用
CN105349697A (zh) * 2015-11-27 2016-02-24 广西壮族自治区兽医研究所 同时鉴别8种感染人不同亚型禽流感病毒HA基因的GeXP快速检测试剂盒及其应用
US20180369362A1 (en) * 2017-06-22 2018-12-27 University Of Maryland, College Park Infectious bronchitis virus vaccine using newcastle disease viral vector
CN107326103A (zh) * 2017-08-28 2017-11-07 聊城大学 一种三重rt‑pcr特异性扩增引物组及三重鉴定的rt‑pcr检测方法
CN109487011A (zh) * 2019-01-07 2019-03-19 广西壮族自治区兽医研究所 用于检测h5、h7和h9以及9个na亚型aiv的引物组合及其应用
CN109487012A (zh) * 2019-01-07 2019-03-19 广西壮族自治区兽医研究所 用于检测9个na亚型aiv的引物组合及其应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HOU, YIHONG ET AL.: "Multiplex RT-PCR for Rapid Identification of Four Subtypes of Avian Influenza Virus", JOURNAL OF NORTHWEST A&F UNIVERSITY (NATURAL SCIENCE EDITION), vol. 35, no. 8, 31 August 2007 (2007-08-31), pages 29 - 33 *
LI, M.: "Simultaneous detection of four different neuraminidase types of avian influenza A H5 viruses by multiplex reverse transcription PCR using a GeXP analyser", INFLUENZA OTHER RESPIRATORY VIRUSES, 31 December 2016 (2016-12-31), XP055724872 *
LIU, TINGTING ET AL.: "Simultaneous Detection of H3N2 Subtypes and M Gene of Avian Influenza Virus by Triplex PCR", PROGRESS IN VETERINARY MEDICINE, vol. 36, no. 2, 31 December 2015 (2015-12-31), pages 7 - 11 *
LUO, SISI ET AL.: "Development of a Triplex RT-PCR Assay for Detection of H6N1 Subtype Avian Influenza Virus", CHINESE JOURNAL OF VETERINARY SCIENCE, vol. 35, no. 10, 31 October 2015 (2015-10-31), pages 1626 - 1630 *
LUO, SISI ET AL.: "Establishment of a GeXP Assay for Detection of the H6N1 Subtype Avian Influenza Virus", ANIMAL HUSBANDRY & VETERINARY MEDICINE, vol. 50, no. 11, 31 December 2018 (2018-12-31), pages 101 - 105 *
XU, QIAN ET AL.: "Development of a Triplex RT-PCR Assay for Detection of Avian Influenza Virus H9N2 Subtype", CHINA ANIMAL HUSBANDRY & VETERINARY MEDICINE, vol. 41, no. 11, 31 December 2014 (2014-12-31), pages 58 - 62 *

Also Published As

Publication number Publication date
CN109487012B (zh) 2020-09-22
CN109487012A (zh) 2019-03-19
US11279973B2 (en) 2022-03-22
US20210071231A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
CN103276110B (zh) 用于快速检测新型h7n9亚型禽流感病毒的多重荧光rt-pcr试剂盒及方法
CN106435024B (zh) 检测禽流感病毒亚型的荧光定量pcr引物、探针和试剂盒及检测方法
Chaharaein et al. Detection of H5, H7 and H9 subtypes of avian influenza viruses by multiplex reverse transcription-polymerase chain reaction
US10415103B2 (en) GeXP rapid detection primer set for simultaneously identifying gene HA of eight different human-infected subtypes of avian influenza virus, kit and use thereof
CN106636472B (zh) 检测禽流感病毒与鸡细小病毒的成套试剂与方法
Chander et al. Full length sequencing of all nine subtypes of the neuraminidase gene of influenza A viruses using subtype specific primer sets
Liu et al. Development and application of a triplex real-time PCR assay for the simultaneous detection of avian influenza virus subtype H5, H7 and H9
CN105441586A (zh) 一种a型h5n6亚型禽流感病毒双通道实时荧光pcr检测试剂盒和检测方法
KR20200050872A (ko) 인플루엔자 a 바이러스 및 인플루엔자 b 바이러스 검출 방법
Rashid et al. Multiplex polymerase chain reaction for the detection and differentiation of avian influenza viruses and other poultry respiratory pathogens
WO2020143132A1 (zh) 用于检测9个na亚型aiv的引物组合及其应用
CN109487011B (zh) 用于检测h5、h7和h9以及9个na亚型aiv的引物组合及其应用
CN106636473B (zh) 检测h5亚型禽流感病毒与鸡细小病毒的成套试剂与方法
EP2454386B1 (en) Influenza detection method and kit therefor
CN108588276A (zh) D型流感病毒荧光定量pcr引物对及试剂盒
CN105316430B (zh) 同时鉴别H5N1和H9N2亚型禽流感病毒的GeXP快速检测引物组、试剂盒及其应用
Jindal et al. Amplification of four genes of influenza A viruses using a degenerate primer set in a one step RT-PCR method
CN104531899B (zh) 禽流感病毒及其H6亚型和N1亚型的GeXP快速检测试剂盒
CN109628641B (zh) 用于检测h7以及5个na亚型aiv的引物组合及其应用
CN110669872A (zh) H9和h10亚型禽流感病毒三重rt-pcr检测引物组、试剂盒及方法
Fereidouni et al. Rapid pathotyping of recent H5N1 highly pathogenic avian influenza viruses and of H5 viruses with low pathogenicity by RT-PCR and restriction enzyme cleavage pattern (RECP)
CN111172242B (zh) 一种基于双扩增技术联合检测甲、乙型流感病毒的试剂盒及其应用
Wang et al. Development of a reliable assay protocol for identification of diseases (RAPID)-bioactive amplification with probing (BAP) for detection of Newcastle disease virus
CN103820576B (zh) H11亚型禽流感病毒rt-lamp可视化检测试剂盒
CN110317903B (zh) 甲型流感病毒h8n7的检测试剂盒及检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908119

Country of ref document: EP

Kind code of ref document: A1