WO2020143056A1 - 一种发送上行信号的方法及装置 - Google Patents

一种发送上行信号的方法及装置 Download PDF

Info

Publication number
WO2020143056A1
WO2020143056A1 PCT/CN2019/071475 CN2019071475W WO2020143056A1 WO 2020143056 A1 WO2020143056 A1 WO 2020143056A1 CN 2019071475 W CN2019071475 W CN 2019071475W WO 2020143056 A1 WO2020143056 A1 WO 2020143056A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
time period
uplink
terminal device
uplink signal
Prior art date
Application number
PCT/CN2019/071475
Other languages
English (en)
French (fr)
Inventor
谢信乾
郭志恒
费永强
毕文平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/071475 priority Critical patent/WO2020143056A1/zh
Priority to CN201980088434.2A priority patent/CN113273276B/zh
Publication of WO2020143056A1 publication Critical patent/WO2020143056A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the technical field of wireless communication, and in particular, to a method and device for sending an uplink signal.
  • terminal devices can simultaneously access two network devices.
  • This access method is called dual connectivity (DC).
  • DC dual connectivity
  • the terminal device may send uplink signals to the first network device and the second network device at the same time, which may easily lead to cross modulation between the uplink signals.
  • the required transmission power may also exceed the maximum transmission power supported by the terminal device.
  • a terminal device simultaneously accesses a first network device in a long term evolution (LTE) communication system and a second network device in a new radio interface (NR) communication system
  • LTE long term evolution
  • NR new radio interface
  • the LTE communication system works in frequency division duplex (frequency division duplex, FDD) mode
  • the NR communication system works in time division duplex (time division duplex, TDD) mode.
  • FDD frequency division duplex
  • TDD time division duplex
  • the first network device and the terminal device can simultaneously perform up and down communication. Therefore, uplink communication between the terminal device and the first network device, and uplink and downlink communication with the second network device may occur simultaneously.
  • the terminal device sends the uplink signal to the first network device and the second network device at the same time.
  • the cross-modulation between the uplink signals may cause interference to the downlink communication between the terminal device and the first network device, and affect the terminal device to receive the downlink signal sent by the first network device.
  • the terminal device in order to avoid that the terminal device accesses the first network device in the LTE communication system and the second network device in the NR communication system, it simultaneously sends uplink signals to the first network device and the second network device.
  • the network device sends the reference uplink and downlink configuration information to the terminal device.
  • the terminal device may determine the subframe used to send the uplink signal to the first network device according to the reference configuration information sent by the first network device.
  • the subframe used to send the uplink signal to the first network device may be simply referred to as an uplink subframe.
  • the terminal device may send an uplink signal to the first network device in the determined uplink subframe.
  • the reference uplink and downlink configurations may be as shown in Table 1.
  • the terminal device determines that subframes 2, 3, 4, 7, 8, and 9 are uplink subframes.
  • the first network device sends an uplink signal instead of sending the uplink signal to the second network device during the time period corresponding to these subframes.
  • the first network device may also adjust the number of the uplink subframe by configuring an offset value for the terminal device.
  • the reference uplink and downlink configuration information sent by the first network device to the terminal device is the reference uplink and downlink configuration 1.
  • the terminal device determines that subframes 2, 3, 7, and 8 are uplink subframes.
  • the configured offset value is 2
  • the terminal device determines that subframes 4, 5, 9, and 0 are uplink subframes.
  • this method can enable the terminal device to simultaneously send uplink signals to the first network device and the second network device at the same time, no matter which configuration in Table 1 is referenced by the first network device to the terminal, refer to the uplink and downlink configurations. At least 4 subframes in the frame cannot be used by the terminal device to perform uplink communication with the first network device. Therefore, this implementation is less flexible. In addition, on these subframes that cannot be used by the terminal device to perform uplink communication with the first network device, the terminal device may not match the first subframe in the time period corresponding to these subframes. Second, the network equipment performs uplink communication, which results in waste of resources and reduces resource utilization.
  • the present application provides a method and an apparatus for sending an uplink signal.
  • a terminal device accesses a first network device and a second network device at the same time, and sends uplink signals to the first network device and the second network device at different times, It is helpful to improve the flexibility of the terminal device to send the uplink signal to the first network device, and improve the utilization rate of resources.
  • the method for sending an uplink signal in an embodiment of the present application includes: the terminal device receives the first indication information sent by the first network device, and determines a second time period, and then, can send a message to the second time period
  • the first network device sends a first uplink signal.
  • the first indication information is used to indicate a first time period
  • the first time period is an uplink time period configured by the first network device for the terminal device
  • the second time period is the first time period
  • the second network device is a downlink time period configured by the terminal device and does not overlap the first time period.
  • the terminal device does not send an uplink signal to the second network device during the first time period.
  • the terminal device in addition to sending an uplink signal to the first network device during the uplink time period configured by the first network device, may also send an uplink signal to the first network device during the second time period.
  • the second time period is flexibly determined by the terminal device according to the first time period and the downlink time period that the second network device configures for the terminal device. Therefore, it helps to improve the terminal device's simultaneous access to the first network device and the second network device.
  • uplink signals are not sent to the first network device and the second network device at the same time, the flexibility to send the uplink signals to the first network device and improve the utilization rate of resources.
  • the terminal device sends a second uplink signal to the first network device during the first time period; wherein the first uplink signal includes a physical uplink shared channel PUSCH, or physical A signal transmitted on at least one channel of a random access channel PRACH; the second uplink signal includes a signal transmitted on at least one channel of a physical uplink control channel PUCCH, PUSCH, or PRACH, and/or a sounding reference signal SRS . Due to the flexibility of the second time period, the rules for defining the signal transmission on the PUCCH in the second time period are more complicated, so the first uplink signal may include the signal transmitted on the PUSCH or PRACH, thereby helping to simplify the implementation .
  • the first uplink signal may include the signal transmitted on the PUSCH or PRACH, thereby helping to simplify the implementation .
  • the terminal device receives a downlink signal sent by the second network device during the second time period, where a carrier carrying the first uplink signal and a carrier carrying the downlink signal different.
  • the first network device is a long-term evolution LTE access network device
  • the second network device is a new air interface NR access network device. It helps to increase the utilization rate of resources when terminal equipment accesses LTE access network equipment and NR access network equipment at the same time, and helps improve the flexibility of terminal equipment to send uplink signals to LTE access network equipment.
  • the LTE access network device works in frequency division duplex FDD mode
  • the NR access network device works in time division multiplexing TDD mode. It is helpful to make the method for sending uplink signals of this application be applied to the network device working in TDD mode and the network device working in FDD mode
  • the terminal device determines a third time period, the third time period includes an uplink time period and/or a flexible time period configured by the second network device for the terminal device, and The first time period does not overlap; wherein, when the terminal device does not send an uplink signal to the second network device in the third time period, it sends the first network device in the third time period Send the third uplink signal. Help to further improve the utilization of resources.
  • the third uplink signal includes a signal transmitted on PUSCH.
  • an embodiment of the present application provides an apparatus including a transceiver and a processor; wherein the transceiver is used to receive first indication information sent by a first network device, and the first indication information is used to Indicating a first time period, where the first time period is an uplink time period configured by the first network device for the terminal device; the processor is used to determine a second time period, and the second time period is the The second network device is a downlink time period configured by the terminal device and does not overlap with the first time period; the transceiver is further configured to send the first network device a first time during the second time period Uplink signal.
  • the terminal device does not send an uplink signal to the second network device during the first time period
  • the transceiver is further configured to send a second uplink signal to the first network device during the first time period; wherein the first uplink signal includes a physical uplink shared channel PUSCH, or a signal transmitted on at least one channel of a physical random access channel PRACH; the second uplink signal includes a signal transmitted on at least one channel of a physical uplink control channel PUCCH, PUSCH, or PRACH, and/or Sounding reference signal SRS.
  • the first uplink signal includes a physical uplink shared channel PUSCH, or a signal transmitted on at least one channel of a physical random access channel PRACH
  • the second uplink signal includes a signal transmitted on at least one channel of a physical uplink control channel PUCCH, PUSCH, or PRACH, and/or Sounding reference signal SRS.
  • the transceiver is further configured to receive a downlink signal sent by the second network device during the second time period, where a carrier carrying the first uplink signal and a carrier carrying the downlink The signal carrier is different.
  • the first network device is a long-term evolution LTE access network device
  • the second network device is a new air interface NR access network device.
  • the LTE access network device works in frequency division duplex FDD mode
  • the NR access network device works in time division multiplexing TDD mode.
  • the processor is further configured to determine a third time period, the third time period includes an uplink time period and/or a flexible time period configured by the second network device for the terminal device And does not overlap with the first time period; wherein, when the terminal device does not send an uplink signal to the second network device in the third time period, it sends A network device sends a third uplink signal.
  • the third uplink signal includes a signal transmitted on PUSCH.
  • an embodiment of the present application further provides an apparatus, including a functional module for implementing the first aspect of the embodiment of the present application and any possible design method of the first aspect.
  • an embodiment of the present application further provides a chip, wherein the chip is connected to a transceiver and a memory, respectively, for reading and executing program instructions stored in the memory, and triggering the transceiver to implement the first aspect and the first Aspect of any possible design method.
  • a computer storage medium wherein the computer storage medium stores program instructions, and when the program instructions are executed by a processor, they are used to implement the first aspect and any possible design of the first aspect Methods.
  • An embodiment of the present application further provides a communication system, including a first network device, a second network device, and the second aspect of the embodiment of the present application and any possible design device of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application
  • FIG. 2a is a schematic diagram of another communication system architecture according to an embodiment of the present application.
  • FIG. 2b is a schematic diagram of another communication system architecture according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another communication system architecture according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another communication system architecture according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for sending an uplink signal according to an embodiment of the present application
  • 6a is a schematic structural diagram of a subframe according to an embodiment of the present application.
  • 6b is a schematic structural diagram of another seed frame according to an embodiment of the present application.
  • 6c is a schematic structural diagram of another seed frame according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a subframe and a time slot according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another seed frame and time slot according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the overlapping relationship between the time periods of the embodiment.
  • FIG. 10 is a schematic flowchart of a mechanism for uplink communication between the terminal device and the first network device when the terminal accesses the first network device and the second network device at the same time according to an embodiment of the present application;
  • FIG. 11 is a schematic flowchart of a mechanism for uplink communication between a terminal device and a first network device when a terminal accesses an LTE access network device and an NR access network device at the same time according to an embodiment of the present application;
  • FIG. 12 is a schematic structural diagram of another seed frame and time slot according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another device according to an embodiment of the present application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the relationship of the related objects, indicating that there can be three relationships.
  • a and/or B can represent the following three relationships: A exists alone, A and B exist simultaneously, and B exists alone.
  • a and B can be singular or plural.
  • the character “/” generally indicates that the related object is a “or” relationship.
  • “At least one (item) of the following” or similar expressions refer to any combination of these items, including any combination of single items (items) or plural items (items).
  • At least one (a) of a, b, or c may represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c It can be single or multiple.
  • the terminal device involved in the embodiments of the present application may be a device for providing voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the terminal device can also be a wireless terminal, where the wireless terminal can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and the wireless terminal can be a mobile terminal, such as a mobile phone (or " Cellular phone, mobile phone, etc.), or a computer with a mobile terminal, for example, the computer with a mobile terminal may be a portable, pocket-sized, handheld, built-in computer, or in-vehicle mobile device that exchanges language with the wireless access network And/or data, such as tablets, wearable devices, virtual reality terminals, augmented reality terminals, wireless terminals in industrial control, etc.
  • RAN Radio Access Network
  • the wireless terminal can also be a personal communication service (Personal Communication Service, PCS) phone, cordless phone, session initiation protocol (Session Initiation Protocol, SIP) phone, wireless local loop (Wireless Local Loop, WLL) station, personal digital assistant (Personal Digital Assistant, PDA) and other equipment.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless terminal can also be called a system, subscriber unit (Subscriber Unit), subscriber station (Subscriber Station), mobile station (Mobile Station), mobile station (Mobile), remote station (Remote Station), access point (Access Point, AP ), remote terminal (Remote Terminal), access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), user equipment (User Device), or user equipment (User Equipment), etc., this application is implemented Examples are not limited.
  • the network device involved in the embodiments of the present application is an access network device, which may be a base station or an access point, or may refer to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the network device is a base station
  • the base station can be used to convert received air frames and Internet Protocol (Internet) (IP) packets to each other, as a router between the wireless terminal and the rest of the access network, of which the access network
  • IP Internet Protocol
  • the rest can include IP networks.
  • the base station can also be used to coordinate attribute management of the air interface.
  • the base station can be Node B in wideband code division multiple access (WCDMA), it can also be an evolutionary Node B (eNB) in an LTE communication system, or it can be The base station in the NR communication system, or the next generation mobile communication base station (next generation Node B, gNB), etc. are not limited in the embodiments of the present application.
  • WCDMA wideband code division multiple access
  • eNB evolutionary Node B
  • LTE communication system Long Term Evolution
  • gNB next generation mobile communication base station
  • the terminal device in the embodiment of the present application can simultaneously access two network devices, and this access method is called DC.
  • the terminal device accesses the first network device and the second network device at the same time.
  • the first network device and the second network device may be two network devices in the same communication system, for example, the first network device and the second network device may be two network devices in the LTE communication system.
  • the first network device and the second network device may also be network devices in different communication systems.
  • the first network device is a network device in an LTE communication system
  • the second network device is a network device in an NR communication system.
  • first network device and the second network device are network devices in different communication systems, and the wireless access technologies (RATs) adopted by the different communication systems are different, the terminal devices simultaneously access the first
  • This connection method between the first network device and the second network device can also be referred to as multi-RAT connection (MR-DC).
  • MR-DC multi-RAT connection
  • the terminal device simultaneously accesses the first network device and the second network device, where the first network device is an access network device in an LTE communication system, which may be referred to as an LTE access network device, and the second network device is NR
  • the access network equipment in the communication system may be referred to simply as the NR access network equipment.
  • LTE is also called evolved universal terrestrial radio access (E-UTRA)
  • E-UTRA evolved universal terrestrial radio access
  • LTE access network equipment is the main network equipment
  • NR access network equipment is the auxiliary network equipment
  • the access method can also be called Evolved Universal Land Surface Wireless Access and New Air Interface Dual Connectivity (E-UTRA NR dual connectivity, EN-DC).
  • E-UTRA NR dual connectivity EN-DC
  • terminal equipment should simultaneously access LTE access network equipment and NR access network equipment. If the NR access network equipment is the main network equipment and the LTE access network equipment is the auxiliary network equipment, the terminal equipment This kind of access method can be called dual connection of new air interface and evolved universal land surface wireless
  • the first network device and the second network device in the embodiments of the present application may be deployed on the same site, or may be deployed on different sites.
  • a schematic diagram of the communication system architecture of the embodiment of the present application is shown in FIG. 1 and includes a network device and a terminal device, where the network device includes the first network device And second network equipment.
  • the same hardware device such as a transceiver
  • FIG. 1 a schematic diagram of the communication system architecture of the embodiment of the present application is shown in FIG. 1 and includes a network device and a terminal device, where the network device includes the first network device And second network equipment.
  • the same hardware device such as a transceiver
  • the first network device when the first network device and the second network device are deployed on the same site and the transceivers are shared, a schematic diagram of the architecture of the communication system.
  • the first network device includes a first processor 211 and a transceiver 213
  • the second network device includes a second processor 212 and a transceiver 213
  • the first network device and the second network device share the transceiver 213.
  • FIG. 2b when the first network device and the second network device are deployed on the same site, but do not share the transceiver, a schematic diagram of the architecture of the communication system.
  • the first network device includes a first processor 221 and a first transceiver 222
  • the second network device includes a second processor 231 and a second transceiver 232.
  • FIG. 3 a schematic structural diagram of the communication system according to an embodiment of the present application is shown in FIG. 3, and includes the first network device, the second network device, and the terminal device. It should be understood that when the first network device and the second network device are deployed on different sites, they are independent devices, each having an independent transceiver and processor.
  • the first network device includes The first processor 401 and the first transceiver 402
  • the second network device includes a second processor 411 and a second transceiver 412.
  • the terminal device when the terminal device accesses the first network device and the second network device at the same time, it can send uplink signals to the first network device and the second network device at the same time, which easily causes the power required by the terminal to exceed the terminal device The maximum power supported.
  • the terminal device when the terminal device sends uplink signals to the first network device and the second network device at the same time, cross modulation between the uplink signals is also likely to occur.
  • the terminal device sending the uplink signal to the first network device may be referred to as uplink communication between the terminal device and the first network device
  • the terminal device sending the uplink signal to the second network device may be referred to as the terminal device and the first 2. Uplink communication between network devices.
  • the terminal device receiving the downlink signal sent by the first network device may be referred to as downlink communication between the terminal device and the first network device
  • the terminal device receiving the downlink signal sent by the second network device may be referred to as the terminal device and the second Downlink communication between network devices.
  • the first network device when the first network device works in FDD mode, the first network device configures the terminal device with two paired frequency bands, one of which is used for uplink communication and the other frequency band is used for downlink communication.
  • the uplink communication and the downlink communication between the terminal device and the first network device may be performed simultaneously.
  • the terminal device when the first network device works in the FDD mode, the terminal device is allocated two paired frequency bands near 1.8 GHz, such as a frequency band of 1.85 GHz and a frequency band of 1.75 GHz, of which the frequency band of 1.85 GHz is used for the terminal device and the first
  • the network device performs uplink communication, and the frequency band of 1.75 GHz is used for the terminal device to perform downlink communication with the first network device.
  • the uplink communication, the downlink communication between the terminal device and the first network device, and the uplink communication between the terminal device and the second network device may occur simultaneously.
  • the cross-modulation between the uplink signals caused by the simultaneous uplink communication between the first network device and the second network device will interfere with the downlink communication between the terminal device and the first network device, affecting the terminal device to receive the downlink signal sent from the first network device .
  • the second network device may work in TDD mode or FDD mode.
  • the second network device when the second network device works in the TDD mode, the second network device configures an unpaired frequency band for the terminal device, which is used not only for uplink communication between the terminal device and the second network device, but also for the terminal device Downlink communication is performed with the second network device, but uplink and downlink communications between the terminal device and the second network device are not performed simultaneously.
  • the second network device when the second network device works in the TDD mode, the second network device configures a non-paired frequency band for the terminal device, such as a frequency band around 3.5 GHz, and the terminal device and the second network device are respectively at 3.5 in different time periods. Uplink and downlink communications are carried out in the frequency band around GHz.
  • an embodiment of the present application provides a method for sending an uplink signal, which is helpful to enable a terminal device to access the first network device and the second network device at the same time when accessing the first network device and the second network device at the same time
  • the network device sends the uplink signal, thereby helping to improve the reliability of the terminal device sending the uplink signal to the first network device and the second network device.
  • the embodiments of the present application do not limit whether the first network device works in FDD mode or TDD mode, and does not limit whether the second network device works in FDD mode or TDD mode.
  • FIG. 5 it is a schematic flowchart of a method for sending an uplink signal according to an embodiment of the present application. It includes the following steps.
  • Step 501 The first network device sends first indication information to the terminal device.
  • the first indication information is used to indicate a first time period, and the first time period is an uplink time period configured by the first network device for the terminal device.
  • the uplink time period in the embodiments of the present application is used for uplink communication. Therefore, the first time period is used for uplink communication between the terminal device and the first network device.
  • the first time period in the embodiment of the present application may be one or more time units, where the time unit may be a frame, a subframe, a slot, a mini-slot, or the like.
  • the first time period may be one or more subframes.
  • the uplink subframe configured by the first network device for the terminal device is subframes 2, 3, 4, 7, 8, and 9, and the first time period includes subframes 2, 3, 4, and 7. , 8, 9.
  • the uplink subframes configured by the first network device for the terminal device are subframes 2, 3, and 7, and the first time period includes subframes 2, 3, and 7.
  • the uplink subframes configured by the first network device for the terminal device are subframes 2 and 3, and the first time period includes subframes 2 and 3.
  • the first indication information may be reference uplink and downlink configuration information, or may include reference uplink and downlink configuration information and an offset value.
  • the reference uplink and downlink configuration information may be the reference uplink and downlink configuration index shown in Table 1.
  • the uplink subframes configured for the terminal device are subframes 2, 3, 4, 7, 8, and 9.
  • the uplink subframes configured for the terminal device are subframes 2, 3, and 7.
  • the uplink subframes configured for the terminal device are subframes 2 and 3.
  • the uplink subframes configured for the terminal device are subframes 4, 5, 9, and 0.
  • the range of the offset value can be configured according to the actual situation.
  • the range of the offset value may be a natural number greater than or equal to 0 and less than or equal to 9.
  • the first indication information in the embodiment of the present application may also be implemented in other ways, such as time information, which is not limited.
  • the terminal device does not send an uplink signal to the second network device during the first time period.
  • the first time period includes subframes 2, 3, 4, 7, 8, and 9, and the terminal device does not send to the second network device in subframes 2, 3, 4, 7, 8, and 9 Uplink signal.
  • the terminal device communicates with the subframes 2, 3, 4, 7, 8, 9 No uplink signal is sent to the second network device on time units that overlap in time.
  • the time unit used for communication between the second network device and the terminal device is a time slot, as shown in FIG. 7, for the terminal device, the time slots 4, 5, 6 used for communication with the second network device , 7, 8, 9, 14, 15, 16, 17, 18 and 19 overlap with subframes 2, 3, 4, 7, 8, 9 in time, then the terminal equipment is in time slots 4, 5, 6, 7 , 8, 9, 14, 15, 16, 17, 18 and 19 do not perform uplink communication to the second network device.
  • the terminal device is not in the uplink Perform uplink communication with the second network device in the time slot, that is, receive the uplink signal sent by the second network device.
  • the terminal device may perform downlink communication with the second network device in time slots 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, and 19.
  • time slots 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, time slot 4 used for communication with the second network device The time slot 10 and the time slot 14 overlap with the subframes 2, 3, 4, 7, 8, 9 in time.
  • the terminal device may be in the time slots 4, 5, 6 , 7, 8, 9, 10, 14, 15, 16, 17, 18, and 19 do not send uplink signals to the second network device, which helps to prevent the terminal device from sending to the first network device and the second network device at the same time Uplink signal.
  • the terminal device may perform downlink communication with the second network device in time slots 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, and 19.
  • the carrier used by the uplink signal to the first network device Or the frequency band and the carrier or frequency band used by the second network device to receive the sent downlink signal are different.
  • the terminal device may send an uplink signal to the first network device during the first time period.
  • the uplink signal sent by the terminal device to the first network device in the first time period may be a signal transmitted on a physical uplink control channel (physical layer control link (PUCCH)).
  • the terminal device may also send other signals to the first network device during the first time period, for example, a signal transmitted on a physical uplink shared channel (physical layer, uplink, shared channel, PUSCH), Signals transmitted on a physical random access channel (physical layer access channel, PRACH), or sounding reference signals (SRS), etc.
  • a physical uplink shared channel physical layer, uplink, shared channel, PUSCH
  • Signals transmitted on a physical random access channel physical layer access channel, PRACH
  • SRS sounding reference signals
  • Step 502 After receiving the first indication information, the terminal device determines a second time period, where the second time period is a downlink time period configured by the second network device for the terminal device and does not overlap the first time period.
  • the non-overlap between the second time period and the first time period in the embodiments of the present application means that the second time period and the first time period do not overlap in time.
  • the time period between time t1 and time t2 is T1
  • the time period between time t2 and time t4 is T2
  • the time period between time t2 and time t3 is T3, time t1
  • the time period between time t3 and time t3 is T4
  • the time period between time t3 and time t4 is T5.
  • T1 and T2 do not overlap
  • T1 and T5 do not overlap
  • T3 and T5 do not overlap
  • T4 and T3 partially overlap
  • the overlapping part is T3, T4 and T2 partially overlap
  • the overlapping part is T3, in addition, T2 and T2
  • the time period composed of T3 and T5 completely overlaps.
  • T2 is the first time period
  • T4 is the downlink time period configured by the second network device for the terminal device
  • the time period between T2 and T4 overlapping in time is T3
  • the time period between T2 and T4 does not overlap in time Is T1
  • the second time period is T1.
  • the second network device may indicate the downlink time period configured for the terminal device by sending second indication information to the terminal device.
  • the downlink time period is used for downlink communication, that is, the terminal device may be used to receive the downlink signal sent by the second network device during the downlink time period.
  • the terminal device and the second network device communicate in units of time units.
  • the time unit may be a frame, a subframe, a slot, a mini-slot, and so on.
  • the downlink time period configured by the second network device for the terminal device may include one or more time units.
  • the time unit used for communication between the terminal device and the first network device and the time unit used for communication between the terminal device and the second network device may be the same or different.
  • the time unit of communication between the terminal device and the second network device is a time slot.
  • different subcarrier intervals correspond to different time slots. For example, when a 30KHz subcarrier interval is used between the terminal device and the second network device, the duration of each time slot is 0.5 ms. As another example, when a 60 KHz subcarrier interval is used between the terminal device and the second network device, the duration of each time slot is 0.25 ms.
  • the subcarrier spacing can also be 15KHz, 120KHz, etc.
  • the downlink slot configured by the second network device for the terminal device is slot 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11, and the first network device is configured for the terminal device
  • the upstream subframes are subframes 2, 3, 4, 7, 8, and 9, while time slots 4, 5, 6, 7, 8 and 9 overlap with subframes 2, 3 and 4 in time, and time slots 2, 3. 10 and 11 do not overlap in time with subframes 2, 3, 4, 7, 8 and 9; therefore, when the terminal device communicates with the first network device, the second time period includes subframe 1 and subframe 5, When the terminal device communicates with the second network device, the second time period includes time slots 2, 3, 10, and 11.
  • the second indication information may be uplink and downlink configuration information.
  • the second indication information may be uplink and downlink time slot configuration information, and the terminal device may The uplink and downlink time slot configuration information determines the uplink time slot, the downlink time slot and/or the flexible time slot configured by the NR access network device for the terminal device. It can be understood that the terminal device may perform uplink communication or downlink communication with the second network device in the flexible time slot.
  • the second network device may only configure the downlink time period for the terminal device. After receiving the second indication information, the terminal device may determine which is the downlink time period, other than the downlink time period It can be used for uplink communication or downlink communication. The embodiment of the present application does not limit the manner in which the second network device configures the downlink time period for the terminal device.
  • the downlink time period configured by the second network device for the terminal device in the embodiment of the present application includes a second time period, that is, the second time period can be used for the terminal device to receive a downlink signal from the second network device.
  • Step 503 The terminal device sends the first uplink signal to the first network device during the second time period.
  • the first uplink signal may be a signal transmitted on PUSCH or PRACH, or a signal transmitted on PUCCH, or the like.
  • the second time period since the second time period is not fixed, it changes as the first time period or the downlink time period configured by the second network device for the terminal device changes.
  • the signal transmitted on the PUCCH by the first network device is more complicated in specific implementation. Therefore, in order to simplify the implementation of the solution, in some embodiments, the first uplink signal does not include the signal transmitted on the PUCCH.
  • the terminal device can send an uplink signal to the first network device, and can also receive a downlink signal from the second network device.
  • the terminal device will be on the first carrier
  • the uplink signal is sent to the first network device, and the downlink signal is received from the second network device on the second carrier.
  • the first carrier and the second carrier are different carriers, that is, the first carrier and the second carrier are in the frequency domain Occupies different frequency resources.
  • the second time period is flexibly determined according to the downlink time period configured by the second network device, thereby helping to improve the utilization rate of resources, and This makes the terminal device more flexible in sending uplink signals to the first network device.
  • the terminal device sends an uplink signal to the first network device in the first time period or an uplink signal to the first network device in the second time period, the carrier or frequency band used is identical. However, after the terminal device sends the uplink signal to the first network device in the first period of time, and receives the indication information sent by the first network device to instruct the terminal device to perform carrier switching, it is possible that the terminal device will make the terminal device perform the first period of time It is different from the carrier used when sending the uplink signal in the second time period.
  • the terminal device may send an uplink signal to the second network device during the uplink time period or flexible time period, or may not send the uplink signal to the second network device.
  • the network device sends an uplink signal, for example, the terminal device may send a downlink signal to the second network device in a flexible time period. Therefore, in some embodiments of the present application, the terminal device may also determine a third time period, where the third time period It includes the uplink time period and/or flexible time period configured by the second network device for the terminal device, and does not overlap with the first time period.
  • the terminal device may be used to send the third uplink signal to the first network device when it does not send the uplink signal to the second network device during the third time period. It should be noted that when the terminal device sends the uplink signal to the second network device in the third time period, it does not send the third uplink signal to the first network device in the third time period.
  • the terminal device when the terminal device needs to send the uplink signal to the second network device in the third time period and also needs to send the third uplink signal to the first network device in the third time period, the terminal device gives priority to the second network The device sends an uplink signal and discards the third uplink signal sent to the first network device, so that the terminal device does not send the uplink signal to the first network device and the second network device at the same time. Therefore, in some embodiments, the third uplink signal sent by the terminal device to the first network device in the third time period is a signal transmitted on the PUSCH, thereby helping to avoid the terminal device from discarding important information. However, in specific implementation, the terminal device may also send the signal transmitted on the PUCCH or PRACH to the first network device during the third time period, or may send the SRS to the first network device during the third time period.
  • the uplink time period is used for uplink communication, and the flexible time period can be used for uplink communication or downlink communication.
  • the uplink time period configured by the second network device for the terminal device may include one or more time units.
  • the time unit may be a frame, a subframe, a time slot, or a mini-slot.
  • the time unit may be a subframe.
  • the time unit may be a time slot.
  • the second network device may only configure the uplink time period for the terminal device without configuring the flexible time period, or may only configure the terminal device only for the flexible time period without configuring the uplink time period, or may both
  • the terminal device is configured with an uplink time period and a flexible time period.
  • the uplink subframes configured by the first network device for the terminal device are subframes 2, 3, 4, 7, 8, and 9, and the uplink time slots configured by the second network device for the terminal device are time slot 0, 1, 2, 3, 4, and 5, flexible time slots are 12, 13, 14, and 15, time slots 4, 5, 14, 15 and subframe 2 and subframe 7 overlap in time, therefore, for terminal equipment and
  • the third time period includes subframe 1 and subframe 6.
  • the third time period includes time slots 0, 1, 2, 3, 12, and 13.
  • the first network device configures the uplink subframes for the terminal device as subframes 2, 3, 4, 7, 8, and 9, and the second network device configures the uplink time slots for the terminal device as time slots 0, 1 , 2, 3, 4, and 5, flexible time slots are 12, 13, 14 and 15, time slot 4 part, time slot 5, time slot 14 part, time slot 15 and subframe 2 and subframe 7 in time Overlap, although the part of time slot 4 and the part of time slot 14 overlap with subframe 2 and subframe 7 in time, but the terminal device and the second network device communicate in units of time slots, therefore, the terminal device The uplink signal cannot be sent to the second network device in time slot 4 and time slot 14.
  • the third time period includes subframe 1 and subframe 6.
  • the third time period includes the part of time slot 2, the part of time slot 3, the part of time slot 4, the part of time slot 12, the part of time slot 13 and the time slot 14.
  • the method for uplink communication when the terminal device accesses the first network device and the second network device in the embodiment of the present application, as shown in FIG. 10, specifically includes the following steps .
  • Step 1001 The first network device sends first indication information to the terminal device.
  • the first indication information is used to indicate a first time period, and the first time period is an uplink time period configured by the first network device for the terminal device.
  • Step 1002 After receiving the first indication information, the terminal device determines a second time period for sending the first uplink signal to the first network device, where the second time period is a downlink configured by the second network device for the terminal device The time period, and the second time period does not overlap with the first time period.
  • the terminal device when the terminal device may need to send the first uplink signal in the second time period, the terminal device may send the first uplink signal in the second time period, but may not When it is required to send the first uplink signal, the first uplink signal is no longer sent in the second time period. However, regardless of whether the terminal device sends the first uplink signal to the first network device in the second time period, it can send the downlink signal to the second network device in the second time period. It can be understood that the terminal device is used to carry the carrier or frequency band of the first uplink signal sent to the first network device in the second time period, and the terminal device is used to bear the second network device to receive the second network device for sending in the second time period. The carrier or frequency band of the downlink signal is different.
  • the first uplink signal may be only the signal transmitted on the PUSCH. That is, the terminal device sends only the signal transmitted on the PUSCH to the first network device during the second time period.
  • the first uplink signal may be a signal transmitted only on PUSCH and/or PRACH. That is, the terminal device sends only the signals transmitted on the PUSCH and/or PRACH to the first network device during the second time period.
  • the first uplink signal may further include a signal transmitted on a channel such as PUCCH, PRACH, or PUSCH, or SRS.
  • the terminal device does not send the uplink signal to the second network device during the first time period, and may send the second uplink signal to the second network device during the first time period.
  • the second uplink signal may include a signal transmitted on at least one channel such as PUCCH, PUSCH, and PRACH, and the second uplink signal may also include a signal such as SRS.
  • the terminal device may also determine a third time period for sending a third uplink signal to the first network device, where the third time period includes an uplink time period configured by the second network device for the terminal device and/or Or flexible time period, and does not overlap with the first time period.
  • the terminal device may send the third uplink signal to the first network device during the third time period.
  • the third uplink signal may be only a signal transmitted on the PUSCH, that is, the terminal device sends the signal transmitted on the PUSCH to the first network device only during the third time period.
  • the terminal device when the terminal device sends the uplink signal to the second network device in the third time period, it does not send the third uplink signal to the first network device in the third time period. In addition, when the terminal device has the need to send the third uplink signal to the first network device and the uplink signal to the second network device during the third time period, the terminal device discards the The third uplink signal sent by the first network device sends the uplink signal to the second network device in the third time period. It helps to prevent the terminal device from sending uplink signals to the first network device and the second network device at the same time.
  • the LTE access network device is a base station in an LTE communication system, such as an eNB
  • the NR access network device is a base station in an NR communication system, such as gNB.
  • a typical LTE communication system is deployed with the LTE communication system operating in FDD mode.
  • the LTE access network device can configure the terminal device with two pairs of frequency bands, such as around 1.8 GHz Two frequency bands, such as a first frequency band and a second frequency band, where the first frequency band is used for uplink communication and the second frequency band is used for downlink communication.
  • a typical NR communication system deployment method is: the NR communication system works in TDD mode.
  • the NR access network device can configure the terminal device with an unpaired frequency band, for example The third frequency band, where the third frequency band is a frequency band around 3.5 GHz, and the terminal device can realize uplink communication and downlink communication through the third frequency band at different times.
  • FIG. 11 a schematic flowchart of a method for uplink communication when a terminal device accesses an LTE access network device and an NR access network device according to an embodiment of the present application. It includes the following steps.
  • FIG. 11 it is a schematic flowchart of a method for uplink communication when a terminal device accesses an LTE access network device and an NR access network device according to an embodiment of the present application. It includes the following steps.
  • Step 1101 the LTE access network device sends first indication information to the terminal device on the second frequency band, the first indication information is used to indicate a first uplink subframe, and the first uplink subframe is configured by the LTE access network device for the terminal device Upstream subframe.
  • Step 1102 The NR access network device sends second indication information to the terminal device on the third frequency band, where the second indication information is used to indicate the configuration of the uplink and downlink time slots.
  • Step 1103 After receiving the first indication information on the second frequency band and the second indication information on the third frequency band, the terminal device determines to send the first uplink signal to the LTE access network device on the first frequency band In the second uplink subframe, the second uplink subframe is different from the first uplink subframe, and the second uplink subframe includes a portion overlapping in time with a downlink time slot configured by the NR access network device for the terminal device.
  • the terminal device may send an uplink signal to the LTE access network device on the first uplink subframe and the first frequency band, for example, the signal transmitted on the PUCCH may also be a signal transmitted on the channel such as PUSCH, PRACH, etc. For SRS, etc.
  • the terminal device does not send an uplink signal in a time slot that overlaps with the first uplink subframe in time to avoid that the terminal device sends an uplink signal to the LTE access network device and the NR access network device at the same time.
  • the terminal device When the terminal device needs to send the first uplink signal in the second uplink subframe, it may send the first uplink signal to the LTE access network device in the second uplink subframe and the first frequency band. When there is no need to send the first uplink signal on the second uplink subframe, the terminal device may no longer send the first uplink signal on the second uplink subframe.
  • the first uplink signal is only the signal transmitted on the PUSCH, that is, the terminal device can only send the signal transmitted on the PUSCH to the LTE access network device on the second uplink subframe and the first frequency band , And cannot send other upstream signals.
  • the first uplink signal only includes signals transmitted on the PUSCH and PRACH, that is, the terminal device can only send the PUSCH and/or PUSCH and/or LTE access network device on the second uplink subframe and the first frequency band
  • the signal transmitted on PRACH cannot send other upstream signals.
  • the first uplink signal may further include a signal transmitted on a channel such as PUCCH, PRACH, or PUSCH, or SRS.
  • the terminal device can also receive the downlink signal sent by the NR access network device in a time slot overlapping with the second uplink subframe in time and a third frequency band.
  • the terminal device may also determine the uplink time slot and/or the flexible time configured with the NR access network device in subframes other than the first uplink subframe according to the first indication information and the second indication information Subframes where the slots overlap in time.
  • the subframes other than the first uplink subframe that overlap in time with the uplink time slot and/or flexible time slot configured by the NR access network device are called the first Three uplink subframes.
  • the terminal device needs to send an uplink signal to the NR access network device in a time slot that overlaps with the third uplink subframe in time at the same time, and needs to send uplink to the LTE access network device in the third uplink subframe
  • the uplink signal that needs to be sent to the LTE access network device is discarded, and the uplink signal is sent to the NR access network device in the time slot overlapping the third uplink subframe in time and the third frequency band.
  • the terminal device may send uplink data to the LTE access network device in the third uplink subframe when there is a demand.
  • the uplink signal is sent to the LTE access network device on the third uplink subframe and the first frequency band.
  • the uplink signal sent by the terminal device to the LTE access network device in the third uplink subframe may be only a signal transmitted on the PUSCH, thereby helping to avoid loss of important information.
  • the terminal device no matter whether it is on the first uplink subframe, the second uplink subframe, and the third uplink subframe on the first frequency band to the LTE access network
  • the devices sending uplink signals can all receive downlink signals sent by the LTE access network device in the second frequency band.
  • the first uplink subframe may include one or more subframes
  • the second uplink subframe may also include one or more subframes
  • the third uplink subframe may also be one or more subframes frame.
  • the number of subframes included in the first uplink subframe is related to the configuration in which the LTE access network device is the terminal
  • the number of second uplink subframes is related to the first uplink subframe and the NR access network device in the terminal device
  • the situation of the configured downlink time slot is related.
  • the number of the third uplink subframe is related to the situation of the first uplink subframe and the NR access to the uplink time slot and/or flexible time slot configured by the device for the terminal device.
  • the terminal device communicates with the LTE access network device using a 15KHz subcarrier interval
  • the terminal device communicates with the NR access network device using a 30KHz subcarrier interval as an example.
  • the uplink subframes configured by the LTE access network device for the terminal device are subframes 0, 1, 5, and 6.
  • the NR access network equipment configures the uplink time slots for terminal devices as time slots 4, 5, 6, and 7, flexible time slots as 8, 9, and downlink time slots as time slots 0, 1, 2, 3, 10, 11. 12, 13, 14, 15, 16, 17, 18, 19.
  • the first uplink subframes are subframes 0, 1, 5, and 6.
  • the second uplink subframe The frames are subframes 7, 8, and 9. Since the time slots 4, 5, 6, 7 in the uplink time slot and the time slots 8 and 9 in the flexible time slot overlap with any subframe in the first uplink subframe in time, and time slot 4 The subframes in which 5, 5, 6, 7, 8 and 9 overlap in time are subframes 2, 3 and 4, so the third uplink subframe is subframes 2, 3 and 4.
  • Terminal equipment can send upstream signals to LTE access network equipment on 0, 1, 5, 6, 7, 8 and 9 and when not to NR access network equipment on time slots 5, 6, 7, 8 and 9
  • the uplink signal can be sent to the LTE access network device in subframes 2, 3, and 4, which helps to improve the flexibility of the uplink signal transmission of the LTE access network device and improve the resource utilization.
  • the sub-carrier interval used for uplink communication between the terminal device and the NR access network device may also be 15KHz, 60KHz, 120KHz, etc.
  • the above description is made only by taking the subcarrier interval of 30KHz as an example.
  • the methods provided by the embodiments of the present application are introduced from the perspective of interaction between the network device and the terminal device.
  • the terminal device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application of the technical solution and design constraints.
  • FIG. 13 shows an apparatus 1300 provided by the present application.
  • the apparatus 1300 may be a terminal device or a terminal device capable of supporting the terminal device to implement the method involved in FIG. 5, FIG. 10, or FIG. 11. Function of the device.
  • the device 1300 may also be a device (such as a chip or a chip system) in the terminal device.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the device 1300 includes at least one processor 1310, at least one memory 1320, and a transceiver 1330, where the memory 1320 is used to store program instructions and/or data.
  • the memory 1320, the transceiver 1330, and the processor 1310 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units, or modules, which may be in electrical, mechanical, or other forms, used for information interaction between devices, units, or modules.
  • the processor 1310 may cooperate with the memory 1320.
  • the processor 1310 executes the program instructions stored in the memory 1320, and sends and receives signals through the transceiver 1330, so as to implement the method for sending uplink signals in the embodiment of the present application. It should be understood that at least one of the at least one memory 1320 may be included in the processor 1310.
  • the specific connection medium between the transceiver 1330, the processor 1310, and the memory 1320 is not limited.
  • the memory 1320, the processor 1310, and the transceiver 1330 are connected by a bus.
  • the bus is shown by a thick line in FIG. 13.
  • the connection between other components is only for illustrative purposes, and is not cited. Limited.
  • the bus can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the processor 1310 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, discrete gates or transistor logic devices, and discrete hardware components, which can be implemented Or execute the disclosed methods, steps, and logical block diagrams in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the software module may be located in the memory 1320, and the processor 1310 reads the program instructions in the memory 1320 and completes the steps of the above method in combination with its hardware.
  • the memory 1320 may be a non-volatile memory, such as a hard disk (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory).
  • a non-volatile memory such as a hard disk (HDD) or a solid-state drive (SSD), etc.
  • a volatile memory volatile memory
  • RAM random access memory
  • the memory may also be any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function, which is used to store program instructions and/or data.
  • the transceiver 1330 may be a circuit, a bus, a communication interface, or any other device that can be used for signal interaction.
  • the other devices may be other terminal devices or network devices.
  • the processor 1310 may use the transceiver 1330 to send and receive signals.
  • the transceiver 1330 is used to send an uplink signal to the first network device during the second time period, and receive the first indication information.
  • At least one processor 1310 includes the processor 1 A processor 2 and a processor 3, wherein the processor 1 is used to process signals of the first network device, and the processor 2 is used to process signals of the second network device.
  • processor 1 may be referred to as an LTE processor
  • processor 2 may also be referred to as an NR processor.
  • the processor 3 may be an application processor or a dedicated processor.
  • a method for sending an uplink signal is introduced.
  • the transceiver 1330 sends the first indication information to the processor 1, and the processor 1 parses the first indication information to obtain the first network device as a terminal
  • the configuration of the uplink time period configured by the device, and then the uplink time period configured by the first network device for the terminal device is sent to the processor 3, and the processor 2 determines the downlink time period configured by the second network device for the terminal device
  • the second network device configures the downlink time period for the terminal device to the processor 3, and the processor 3 according to the received downlink time period configuration from the processor 2 and the uplink time from the processor 1
  • the configuration of the segment determine the second period of time, and then indicate to the processor 1 that the first uplink signal can be sent to the first network device through the transceiver 1330 during the second period of time.
  • the first uplink signal may be sent to the first network device directly through the transceiver 1330 in the second time period.
  • the processor 3 may also indicate to the processor 2 that the uplink signal cannot be sent to the second network device during the first time period, and indicate to the processor 1 that the uplink signal may be sent to the second network device during the first time period. Signal etc.
  • the processor 1 and the processor 2 may determine whether the uplink signal can be sent to the corresponding network device according to the instruction of the processor 3.
  • the device may be a terminal device or a device in a terminal device (such as a chip or a chip system). The method performed by the terminal device in any of the illustrated embodiments.
  • the apparatus includes a transceiver module 1410 and a processing module 1420; wherein, the transceiver module 1410 is configured to receive first indication information sent by a first network device, the first indication information is used to indicate a first time period, and the first time period An uplink time period configured for the first network device for the terminal device, and the terminal device does not send an uplink signal to the second network device during the first time period; the processing module 1420 is used to determine the second Time period, the second time period is a downlink time period configured by the second network device for the terminal device, and does not overlap with the first time period; the transceiving module 1410 is also used for the second time period The segment sends a first uplink signal to the first network device.
  • the transceiver module 1410 is further configured to send a second uplink signal to the first network device during the first time period; wherein the first uplink signal includes a physical uplink shared channel PUSCH Or a signal transmitted on at least one channel of a physical random access channel PRACH; the second uplink signal includes a signal transmitted on at least one channel of a physical uplink control channel PUCCH, PUSCH, or PRACH, and/or sounding Reference signal SRS.
  • the first uplink signal includes a physical uplink shared channel PUSCH Or a signal transmitted on at least one channel of a physical random access channel PRACH
  • the second uplink signal includes a signal transmitted on at least one channel of a physical uplink control channel PUCCH, PUSCH, or PRACH, and/or sounding Reference signal SRS.
  • the transceiver module 1410 is further configured to receive the downlink signal sent by the second network device during the second time period, where the carrier carrying the first uplink signal and the downlink signal Carrier is different.
  • the first network device is a long-term evolution LTE access network device
  • the second network device is a new air interface NR access network device.
  • the LTE access network device works in frequency division duplex FDD mode
  • the NR access network device works in time division multiplexing TDD mode.
  • the processing module 1420 is further configured to determine a third time period, where the third time period includes an uplink time period and/or a flexible time period configured by the second network device for the terminal device, And does not overlap with the first period of time; wherein, when the terminal device does not send an uplink signal to the second network device on the third period of time, it sends the first signal to the first period of time on the third period of time The network device sends the third uplink signal.
  • the third uplink signal includes a signal transmitted on PUSCH.
  • the hardware implementation of the transceiver module 1410 may be a transceiver, and reference may be made to the relevant introduction to the transceiver 1330 in FIG. 13, and the processing module 1420 may be a processor, and reference may be made to the relevant introduction to the processor 1310 in FIG. 13.
  • the apparatus may be used to implement the steps performed by the terminal device in sending an uplink signal according to an embodiment of the present application.
  • the apparatus may be used to implement the steps performed by the terminal device in sending an uplink signal according to an embodiment of the present application.
  • the computer program product includes one or more program instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the program instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the program instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD) )Wait.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种发送上行信号的方法及装置,涉及无线通信技术领域,有助于提高资源的利用率。其中该方法包括:终端设备接收第一网络设备发送的第一指示信息,并确定第二时间段,然后可以在第二时间段向第一网络设备发送第一上行信号。其中,第一指示信息用于指示第一时间段,第一时间段为第一网络设备为终端设备配置的上行时间段;第二时间段为述第二网络设备为终端设备配置的下行时间段、且与第一时间段不重叠。这种技术方案由于可以灵活确定第二时间段,因此由于提高发送上行信号的灵活性,以及提高资源的利用率。

Description

一种发送上行信号的方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种发送上行信号的方法及装置。
背景技术
随着通信技术的不断发展,终端设备可以同时接入两个网络设备,这种接入方式称为双连接(dual connectivity,DC)。例如,终端设备同时接入第一网络设备和第二网络设备时,可能会同时向第一网络设备和第二网络设备发送上行信号,容易导致上行信号间的交叉调制,另外,终端设备当同时向第一网络设备和第二网络设备发送上行信号时,还可能导致所需的发射功率超出终端设备所支持的最大发射功率。
在一种典型的应用场景中,终端设备同时接入长期演进(long term evolution,LTE)通信系统中的第一网络设备和新空口(new radio interface,NR)通信系统中的第二网络设备,其中,LTE通信系统工作在频分双工(frequency division duplex,FDD)模式,NR通信系统工作在时分双工(time division duplex,TDD)模式。对于第一网络设备来说,由于LTE通信系统工作在FDD模式,因此,第一网络设备可以与终端设备同时进行上、下通信。因而终端设备与第一网络设备之间的上行通信、以及与第二网络设备之间的上、下行通信可能同时发生。当终端设备与第一网络设备之间的上行通信、以及与第二网络设备之间的上、下行通信可能同时发生时,终端设备同时向第一网络设备和第二网络设备发送上行信号导致的上行信号间的交叉调制,可能会对终端设备与第一网络设备之间的下行通信造成干扰,影响终端设备接收第一网络设备发送的下行信号。
现有技术中,为了避免终端设备接入LTE通信系统中的第一网络设备和NR通信系统中的第二网络设备时,同时向第一网设备和第二网络设备发送上行信号,由第一网络设备向终端设备发送参考上下行配置信息。终端设备可以根据第一网络设备发送的参考配置信息,确定用于向第一网络设备发送上行信号的子帧。其中,用于向第一网络设备发送上行信号的子帧可以简称为上行子帧。终端设备可以在确定的上行子帧上向第一网络设备发送上行信号。其中,参考上下行配置可以如表1所示。例如,第一网络设备发送给终端设备的参考配置信息为参考上下行配置0,则终端设备确定子帧2、3、4、7、8、9为上行子帧,可以在这些子帧上向第一网络设备发送上行信号,而不再这些子帧对应时间段向第二网络设备发送上行信号。此外,第一网络设备还可以通过为终端设备配置一个偏移值,调整上行子帧的编号。例如第一网络设备发送给终端设备的参考上下行配置信息为参考上下行配置1,当配置的偏移值为0,则终端设备确定子帧2、3、7、8为上行子帧,当配置的偏移值为2时,则终端设备确定子帧4、5、9和0为上行子帧。
表1
Figure PCTCN2019071475-appb-000001
Figure PCTCN2019071475-appb-000002
虽然这种方式可以使得终端设备能够不同时向第一网络设备和第二网络设备同时发送上行信号,但是,无论第一网络设备给终端配置表1中的哪种参考上下行配置,在一个无线帧中至少有4个子帧不能被终端设备用来与第一网络设备进行上行通信。因此这种实现方式灵活度较差,此外,在这些不能够被终端设备用来与第一网络设备进行上行通信的子帧上,终端设备也可能在这些子帧对应的时间段内不与第二网络设备进行上行通信,从而导致资源的浪费,降低了资源利用率。
发明内容
本申请提供了一种发送上行信号的方法及装置,终端设备同时接入第一网络设备和第二网设备时,在不同时向第一网络设备和第二网络设备发送上行信号的情况下,有助于提高终端设备向第一网络设备发送上行信号的灵活性,以及提高资源的利用率。
第一方面,本申请实施例中的发送上行信号的方法,包括:终端设备接收第一网络设备发送的第一指示信息,并确定第二时间段,然后,可以在所述第二时间段向所述第一网络设备发送第一上行信号。其中,所述第一指示信息用于指示第一时间段,所述第一时间段为所述第一网络设备为所述终端设备配置的上行时间段;所述第二时间段为所述第二网络设备为所述终端设备配置的下行时间段、且与所述第一时间段不重叠。
需要说明的是,本申请实施例中所述终端设备在所述第一时间段不向所述第二网络设备发送上行信号。
本申请实施例中,由于终端设备可以除了在第一网络设备配置的上行时间段上向第一网络设备发送上行信号以外,还可以在第二时间段向第一网络设备发送上行信号,而第二时间段是终端设备根据第一时间段和第二网络设备为终端设备配置的下行时间段灵活确定的,因此,有助于提高终端设备同时接入第一网络设备和第二网设备时,在不同时向第一网络设备和第二网络设备发送上行信号的情况下,向第一网络设备发送上行信号的灵活性,以及提高资源的利用率。
在一种可能的设计中,所述终端设备在所述第一时间段向所述第一网络设备发送第二上行信号;其中,所述第一上行信号包括在物理上行共享信道PUSCH、或者物理随机接入信道PRACH中的至少一个信道上传输的信号;所述第二上行信号包括在物理上行控制信道PUCCH、PUSCH、或者PRACH中的至少一个信道上传输的信号、和/或探测参考信号SRS。由于第二时间段具有灵活性,因此在第二时间段上定义PUCCH上传输信号的规则较为复杂,因此在第一上行信号可以包括在PUSCH或者PRACH上传输的信号,从而有助于简化实现方式。
在一种可能的设计中,所述终端设备在所述第二时间段接收所述第二网络设备发送的下行信号,其中承载所述第一上行信号的载波、与承载所述下行信号的载波不同。
在一种可能的设计中,所述第一网络设备为长期演进LTE接入网设备,所述第二网络设备为新空口NR接入网设备。有助于在终端设备同时接入LTE接入网设备和NR接入网设备时,提高资源的利用率,以及有助于提高终端设备向LTE接入网设备发送上行信号的 灵活性。
在一种可能的设计中,所述LTE接入网络设备工作在频分双工FDD模式,所述NR接入网设备工作在时分复用TDD模式。有助于使得本申请发送上行信号的方法应用在工作在TDD模式的网络设备和工作在FDD模式的网络设备场景下
在一种可能的设计中,所述终端设备确定第三时间段,所述第三时间段包括所述第二网络设备为所述终端设备配置的上行时间段和/或灵活时间段、且与所述第一时间段不重叠;其中,所述终端设备不在所述第三时间段上向所述第二网络设备发送上行信号时,在所述第三时间段上向所述第一网络设备发送第三上行信号。有助于进一步提高资源的利用率。
在一种可能的设计中,所述第三上行信号包括在PUSCH上传输的信号。通过上述技术方案有助于提高信号传输的可靠性,以及简化实现方式。
第二方面,本申请实施例提供了一种装置,所述包括收发器和处理器;其中,所述收发器用于接收第一网络设备发送的第一指示信息,所述第一指示信息用于指示第一时间段,所述第一时间段为所述第一网络设备为所述终端设备配置的上行时间段;所述处理器用于确定第二时间段,所述第二时间段为所述第二网络设备为所述终端设备配置的下行时间段、且与所述第一时间段不重叠;所述收发器还用于在所述第二时间段向所述第一网络设备发送第一上行信号。
需要说明的是,本申请实施例中所述终端设备在所述第一时间段不向所述第二网络设备发送上行信号
在一种可能的设计做中,所述收发器还用于在所述第一时间段向所述第一网络设备发送第二上行信号;其中,所述第一上行信号包括在物理上行共享信道PUSCH、或者物理随机接入信道PRACH中的至少一个信道上传输的信号;所述第二上行信号包括在物理上行控制信道PUCCH、PUSCH、或者PRACH中的至少一个信道上传输的信号、和/或探测参考信号SRS。
在一种可能的设计中,所述收发器还用于在所述第二时间段接收所述第二网络设备发送的下行信号,其中承载所述第一上行信号的载波、与承载所述下行信号的载波不同。
在一种可能的设计中,所述第一网络设备为长期演进LTE接入网设备,所述第二网络设备为新空口NR接入网设备。
在一种可能的设计中,所述LTE接入网络设备工作在频分双工FDD模式,所述NR接入网设备工作在时分复用TDD模式。
在一种可能的设计中,所述处理器还用于确定第三时间段,所述第三时间段包括所述第二网络设备为所述终端设备配置的上行时间段和/或灵活时间段、且与所述第一时间段不重叠;其中,所述终端设备不在所述第三时间段上向所述第二网络设备发送上行信号时,在所述第三时间段上向所述第一网络设备发送第三上行信号。
在一种可能的设计中,所述第三上行信号包括在PUSCH上传输的信号。
第三方面,本申请实施例还提供了一种装置,包括用于实现本申请实施例第一方面以及第一方面任意一种可能的设计方法的功能模块。
第四方面,本申请实施例还提供了一种芯片,其中该芯片分别与收发器、存储器相连,用于读取并执行存储器中存储的程序指令,触发收发器以实现第一方面以及第一方面任意一种可能的设计的方法。
第五方面,还提供了一种计算机存储介质,其中该计算机存储介质上存储有程序指令,所述程序指令被处理器执行时,用于实现第一方面以及第一方面任意一种可能的设计的方法。
本申请实施例还提供了一种通信系统,包括第一网络设备、第二网络设备以及本申请实施例第二方面以及第二方面任意一种可能的设计的装置。
另外,第二方面至第五方面中任一种可能设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例的一种通信系统架构的示意图;
图2a为本申请实施例的另一种通信系统架构的示意图;
图2b为本申请实施例的另一种通信系统架构的示意图;
图3为本申请实施例的另一种通信系统架构的示意图;
图4为本申请实施例的另一种通信系统架构的示意图;
图5为本申请实施例发送上行信号的方法的流程示意图;
图6a为本申请实施例一种子帧的结构示意图;
图6b为本申请实施例的另一种子帧的结构示意图;
图6c为本申请实施例的另一种子帧的结构示意图;
图7为本申请实施例的一种子帧和时隙的结构示意图;
图8为本申请实施例的另一种子帧和时隙的结构示意图;
图9为本身实施例时间段之间的重叠关系示意图;
图10为本申请实施例的终端当同时接入第一网络设备和第二网络设备时终端设备与第一网络设备之间的上行通信的机制的流程示意图;
图11为本申请实施例终端当同时接入LTE接入网设备和NR接入网设备时终端设备与第一网络设备之间的上行通信的机制的流程示意图;
图12为本申请实施例的另一种子帧和时隙的结构示意图;
图13为本申请实施例的一种装置的结构示意图;
图14为本申请实施例的另一种装置的结构示意图。
具体实施方式
本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示以下三种关系:单独存在A,同时存在A和B,单独存在B。其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c可以是单个,也可以是多个。
本申请实施例的涉及的终端设备可以为用于向用户提供语音和/或数据连通性的设备、具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备还可以为无线终端,其中,无线终端可以经无线接入网(Radio Access Network,RAN)与一 个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话、手机等)、或具有移动终端的计算机等,例如,具有移动终端的计算机可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据,如平板电脑、穿戴式设备、虚拟现实终端、增强现实终端、工业控制中的无线终端等设备。例如,无线终端还可以为个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,AP)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)等,本申请实施例不做限定。
本申请实施例涉及的网络设备为接入网设备,可以是基站,或者接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备等。当网络设备为基站时,基站可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可用于协调对空中接口的属性管理。例如,基站可以是宽带码分多址(wideband code division multiple access,WCDMA)中的节点B(Node B),还可以是LTE通信系统中的演进型基站(evolutional Node B,eNB),也可以是NR通信系统中的基站,或者是下一代移动通信基站(next generation Node B,gNB)等,本申请实施例并不限定。
具体的,本申请实施例的终端设备可以同时接入两个网络设备,这种接入方式称之为DC。示例的,终端设备同时接入第一网络设备和第二网络设备。其中,第一网络设备与第二网络设备可以为同一通信系统中的两个网络设备,例如,第一网络设备和第二网络设备可以为LTE通信系统中的两个网络设备。第一网络设备和第二网络设备还可以为不同通信系统中的网络设备。例如,第一网络设备为LTE通信系统中的网络设备,第二网络设备为NR通信系统中的网络设备。需要说明的是,当第一网络设备和第二网络设备为不同通信系统中的网络设备、且不同通信系统采用的无线接入技术(radio access technology,RAT)不同时,终端设备同时接入第一网络设备和第二网络设备的这种连接方式又可以称之为多无线接入技术连接(multi-RAT dual connectivity,MR-DC)。
示例的,终端设备同时接入第一网络设备和第二网络设备,其中,第一网络设备为LTE通信系统中的接入网设备,可以简称为LTE接入网设备,第二网络设备为NR通信系统中的接入网设备,可以简称为NR接入网设备。由于LTE又被称为演进的通用陆面无线接入(evolved universal terrestrial radio access,E-UTRA),当LTE接入网设备为主网络设备,NR接入网设备为辅网络设备时,终端设备的接入方式又可称之为演进的通用陆面无线接入与新空口双连接(E-UTRA NR dual connectivity,EN-DC)。随着通信系统的不断演进,终端设备当同时接入LTE接入网设备和NR接入网设备,若NR接入网设备为主网络设备,LTE接入网设备为辅网络设备,则终端设备的这种接入方式可称之为新空口与演进的通用陆面无线接入双连接(NR E-UTRA dual connectivity,NE-DC)。
本申请实施例中的第一网络设备和第二网络设备可以部署在同一站点上,也可以部署在不同的站点上。示例的,第一网络设备和第二网络设备部署在同一站点上时,本申请实 施例的通信系统架构的示意图如图1所示,包括网络设备和终端设备,其中网络设备包括第一网络设备和第二网络设备。具体的,当第一网络设备与第二网络设备部署在同一站点上时,可以共享相同的硬件设备(例如收发器),也可以不共享相同硬件设备。例如,如图2a所示,为第一网络设备和第二网络设备部署在同一站点上,且共享收发器时,通信系统的架构示意图。如图2a所示,第一网络设备包括第一处理器211和收发器213,第二网络设备包括第二处理器212和收发器213,第一网络设备和第二网络设备共享收发器213。再例如,如图2b所示,第一网络设备和第二网络设备部署在同一站点上,且但不共享收发器时,通信系统的架构示意图。如图2b所示,第一网络设备包括第一处理器221和第一收发器222,第二网络设备包括第二处理器231和第二收发器232。
示例的,第一网络设备和第二网络设备部署在不同的站点上时,本申请实施例的通信系统的架构示意图如图3所示,包括第一网络设备、第二网络设备和终端设备。应理解,当第一网络设备和第二网络设备部署在不同的站点上时,为独立的设备,分别具有独立的收发器和处理器,示例的,如图4所示,第一网络设备包括第一处理器401和第一收发器402,第二网络设备包括第二处理器411和第二收发器412。
本申请实施例中,由于终端设备当同时接入第一网络设备和第二网络设备时,可以同时向第一网络设备和第二网络设备发送上行信号,容易导致终端所需求的功率超出终端设备所支持的最大功率。另外,终端设备当同时向第一网络设备和第二网络设备发送上行信号时,还容易导致上行信号间的交叉调制。需要说明的是,终端设备向第一网络设备发送上行信号可以称之为终端设备与第一网络设备之间的上行通信,终端设备向第二网络设备发送上行信号可以称之为终端设备与第二网络设备之间的上行通信。此外,终端设备接收第一网络设备发送的下行信号可以称之为终端设备与第一网络设备之间的下行通信,终端设备接收第二网络设备发送的下行信号可以称之为终端设备与第二网络设备之间的下行通信。
在一些实施例中,当第一网络设备工作在FDD模式时,第一网络设备为终端设备配置两个成对频段,其中一个频段用于上行通信,另一个频段用于下行通信,因而,允许终端设备可以与第一网络设备之间的上行通信和下行通信可以同时进行。例如,第一网络设备工作在FDD模式时,为终端设备分配1.8GHz附近的两个成对的频段,如1.85GHz的频段和1.75GHz的频段,其中1.85GHz的频段用于终端设备与第一网络设备进行上行通信,1.75GHz的频段用于终端设备与第一网络设备进行下行通信。
当第一网络设备工作在FDD模式时,终端设备与第一网络设备之间的上行通信、下行通信、以及终端设备与第二网络设备之间的上行通信可能会同时发生,而终端设备与第一网络设备和第二网络设备同时的上行通信导致的上行信号间的交叉调制,会干扰对终端设备与第一网络设备之间的下行通信,影响终端设备接收来自第一网络设备发送的下行信号。其中,当第一网络设备工作在FDD模式时,第二网络设备可以工作在TDD模式,也可以工作在FDD模式。示例的,当第二网络设备工作在TDD模式时,第二网络设备为终端设备配置一个非成对的频段,既用于终端设备与第二网络设备之间进行上行通信,又用于终端设备与第二网络设备之间进行下行通信,但是,终端设备与第二网络设备之间的上、下行通信不是同时进行的。例如,第二网络设备工作在TDD模式时,第二网络设备为终端设备配置的一个非成对的频段,例如3.5GHz附近的频段,终端设备与第二网络设备在不同的时间段分别在3.5GHz附近的频段上进行上行通信和下行通信。
有鉴于此,本申请实施例提供了一种发送上行信号的方法,有助于使得终端设备当同时接入第一网络设备和第二网络设备时,能够不同时向第一网络设备和第二网络设备发送上行信号,从而有助于提高终端设备向第一网络设备和第二网络设备发送上行信号的可靠性。
需要说明的是,本申请实施例不限定第一网络设备工作在FDD模式,还是TDD模式,也不限定第二网络设备工作在FDD模式,还是TDD模式。
示例的,如图5所示,为本申请实施例发送上行信号的方法的流程示意图。具体包括以下步骤。
步骤501,第一网络设备向终端设备发送第一指示信息,第一指示信息用于指示第一时间段,第一时间段为第一网络设备为终端设备配置的上行时间段。
应理解,本申请实施例中的上行时间段用于进行上行通信。因此,第一时间段用于终端设备与第一网络设备进行上行通信。具体的,本申请实施例中的第一时间段可以为一个或多个时间单元,其中时间单元可以为帧、子帧、时隙(slot)、迷你时隙(mini-slot)等。通常情况下,对于LTE来说,第一时间段可以为一个或多个子帧。
例如,如图6a所示,第一网络设备为终端设备配置的上行子帧为子帧2、3、4、7、8、9,则第一时间段包括子帧2、3、4、7、8、9。再例如,如图6b所示,第一网络设备为终端设备配置的上行子帧为子帧2、3和7,则第一时间段包括子帧2、3和7。又示例如,如图6c所示,第一网络设备为终端设备配置的上行子帧为子帧2和3,则第一时间段包括子帧2和3。
在一些实施例中,第一指示信息可以为参考上下行配置信息,也可以包括参考上下行配置信息和偏移值。示例的,参考上下行配置信息可以为表1中所示的参考上下行配置索引。例如,第一网络设备向终端设备发送表1中的参考上下行配置0,则为终端设备配置的上行子帧为子帧2、3、4、7、8和9。再例如,第一网络设备向终端设备发送表1中的参考上下行配置2,则为终端设备配置的上行子帧为子帧2、3和7。又例如,第一网络设备向终端设备发送表1中的参考上下行配置4,则为终端设备配置的上行子帧为子帧2和3。还例如,第一网络设备向终端设备发送参考上下行配置1和偏移值2,则为终端设备配置的上行子帧为子帧4、5、9和0。需要说明的是,本申请实施例中偏移值的取值范围可以根据实际情况进行相应的配置。例如,偏移值的取值范围可以为大于或等于0且小于或等于9的自然数。此外,本申请实施例的第一指示信息还可以通过其它方式实现,例如时间信息等,对此不作限定。
应理解,本申请实施例中,终端设备在第一时间段上不向第二网络设备发送上行信号。以图6a为例,第一时间段包括子帧2、3、4、7、8和9,则终端设备在子帧2、3、4、7、8和9上不向第二网络设备发送上行信号。特别的,第二网络设备与终端设备之间用于通信的时间单元如果不是子帧,例如时隙、迷你时隙等,则终端设备在与子帧2、3、4、7、8、9在时间上重叠的时间单元上不向第二网络设备发送上行信号。例如,第二网络设备与终端设备之间用于通信的时间单元为时隙,如图7所示,对于终端设备来说,用于与第二网络设备进行通信的时隙4、5、6、7、8、9、14、15、16、17、18和19在时间上与子帧2、3、4、7、8、9重叠,则终端设备在时隙4、5、6、7、8、9、14、15、16、17、18和19上不向第二网络设备进行上行通信。示例的,若时隙4、5、6、7、8、9、14、15、16、17、18和19中存在第二网络设备为终端设备配置的上行时隙,终端设备也不在该上行时 隙上与第二网络设备进行上行通信,即接收第二网络设备发送的上行信号。但是,终端设备可以在时隙4、5、6、7、8、9、14、15、16、17、18和19上与第二网络设备进行下行通信。又例如,如图8所示,对于终端设备来说,用于与第二网络设备进行通信的时隙5、6、7、8、9、15、16、17、18、19、时隙4的部分、时隙10的部分和时隙14的部分在时间上与子帧2、3、4、7、8、9重叠,则在一些实例中,终端设备可以在时隙4、5、6、7、8、9、10、14、15、16、17、18和19上均不向第二网络设备发送上行信号,有助于避免终端设备同时向第一网络设备和第二网络设备发送上行信号。但是,终端设备可以在时隙4、5、6、7、8、9、10、14、15、16、17、18和19上与第二网络设备进行下行通信。
需要说明的是,终端设备当在第一时段向第一网络设备发送上行信号、以及在第一时间段接收第二网络设备发送的下行信号时,向第一网络设备发送上行信号所使用的载波或频段和第二网络设备接收发送的下行信号所使用的载波或频段是不同的。
在一些实施例中,终端设备可以在第一时间段上向第一网络设备发送上行信号,具体的,由于第一时间段为第一网络设备配置给终端设备的上行时间段,通常情况下是固定的,因此,终端设备在第一时间段上向第一网络设备发送的上行信号可以为在物理上行控制信道(physical layer uplink control channel,PUCCH)上传输的信号。此外,在另一些实施例中,终端设备还可以在第一时间段上向第一网络设备发送其它信号,例如,在物理上行共享信道(physical layer uplink shared channel,PUSCH)上传输的信号、在物理随机接入信道(physical layer random access channel,PRACH)上传输的信号,或者探测参考信号(sounding reference signal,SRS)等。
步骤502,终端设备接收到第一指示信息后,确定第二时间段,第二时间段为第二网络设备为终端设备配置的下行时间段、且与第一时间段不重叠。
需要说明的是,通常情况下,本申请实施例中第二时间段和第一时间段之间不重叠指的是第二时间段和第一时间段时间上没有重合。
示例的,如图9所示,时刻t1与时刻t2之间的时间段为T1,时刻t2与时刻t4之间的时间段为T2,时刻t2与时刻t3之间的时间段为T3,时刻t1与时刻t3之间的时间段为T4,时刻t3和时刻t4之间的时间段为T5。其中,T1与T2不重叠,T1和T5不重叠,T3和T5不重叠,T4和T3存在部分重叠,重叠的部分为T3,T4和T2存在部分重叠,重叠的部分为T3,此外,T2与由T3和T5组成的时间段完全重叠。例如T2为第一时间段,T4为第二网络设备为终端设备配置的下行时间段,则T2与T4之间在时间上重叠的时间段为T3,而T2与T4之间在时间上不重叠的时间段为T1,因此第二时间段为T1。
在一些实施例中,第二网络设备可以通过向终端设备发送第二指示信息,来指示为终端设备配置的下行时间段。其中,下行时间段用于下行通信,即终端设备可以用于在下行时间段接收第二网络设备发送的下行信号。在一些实施例中,终端设备与第二网络设备之间是以时间单元为单位进行通信的。时间单元可以为帧、子帧、时隙(slot)、迷你时隙(mini-slot)等。其中,第二网络设备为终端设备配置的下行时间段可以包括一个或多个时间单元。需要说明的是,本申请实施例中终端设备与第一网络设备用于通信的时间单元、与终端设备与第二网络设备之间通信的时间单元可以是相同的,也可以是不同的。例如,通常情况下,对于NR来说,终端设备与第二网络设备之间通信的时间单元为时隙。应理解,在NR中,不同的子载波间隔,对应的时隙不同。例如,终端设备与第二网络设备之间采用30KHz的子载波间隔时,每个时隙的时长为0.5ms。再例如,终端设备与第二网络 设备之间采用60KHz的子载波间隔时,每个时隙的时长为0.25ms。除此之外,子载波间隔还可以为15KHz、120KHz等。
以图7为例,第二网络设备为终端设备配置的下行时隙为时隙2、3、4、5、6、7、8、9、10和11,而第一网络设备为终端设备配置的上行子帧为子帧2、3、4、7、8和9,而时隙4、5、6、7、8和9在时间上与子帧2、3和4重叠,时隙2、3、10和11与子帧2、3、4、7、8和9在时间上没有重叠,因此,终端设备与第一网络设备来通信时,第二时间段包括子帧1和子帧5,终端设备与第二网络设备通信时,第二时间段包括时隙2、3、10和11。
在一些实施例中,第二指示信息可以为上下行配置信息,例如,对于工作在TDD模式的NR接入网设备来说,第二指示信息可以为上下行时隙配置信息,终端设备可以根据上下行时隙配置信息确定NR接入网设备为终端设备配置的上行时隙、下行时隙和/或灵活时隙。可以理解的是,终端设备可以在灵活时隙上与第二网络设备进行上行通信或者下行通信。
在另一些实施例中,第二网络设备还可以只为终端设备配置下行时间段,终端设备在接收到第二指示信息后,可以确定哪些是下行时间段,除了下行时间段以外的其他时间段可以用于上行通信,也可以用于下行通信等。本申请实施例对第二网络设备为终端设备配置下行时间段的方式不作限定。
应理解,本申请实施例中第二网络设备为终端设备配置的下行时间段包括第二时间段,即第二时间段能够用于终端设备接收来自第二网络设备的下行信号。
步骤503,终端设备在第二时间段向第一网络设备发送第一上行信号。
第一上行信号可以为在PUSCH、或者PRACH上传输的信号,也可以为在PUCCH上传输的信号等。然而,由于第二时间段是不固定的,是随着可以随着第一时间段或者第二网络设备为终端设备配置的下行时间段的变化而变化,如果终端设备在第二时间段上向第一网络设备发送在PUCCH上传输的信号,在具体实现起来较为复杂,因此,为了简化方案的实现方式,在一些实施例中,第一上行信号不包括在PUCCH上传输的信号。
需要说明的是,在第二时间段内,终端设备能够向第一网络设备发送上行信号,同时也可以接收来自第二网络设备的下行信号,在一些实现方式中,终端设备会在第一载波上向第一网络设备发送上行信号,而在第二载波上从第二网络设备接收下行信号,第一载波和第二载波为不同的载波,也就是说第一载波和第二载波在频域上占用不同的频率资源。
本申请实施例中,由于第一时间段是第一网络设备指示的,而第二时间段是根据第二网络设备配置的下行时间段灵活确定的,从而有助于提高资源的利用率,而且使得终端设备向第一网络设备发送上行信号更加灵活。
此外,还需要说明的是,终端设备无论是在第一时间段上向第一网络设备发送上行信号,还是在第二时间段上向第一网络设备发送上行信号,所使用的载波或频段是相同的。但是,终端设备当在第一时间段上向第一网络设备发送上行信号后,接收到第一网络设备发送的指示信息,指示终端设备进行载波切换,则有可能使得终端设备在第一时间段和第二时间段上发送上行信号时所使用的载波不同。
进一步的,由于第二网络设备还可能为终端设备配置上行时间段和/或灵活时间段,终端设备在上行时间段或者灵活时间段可能向第二网络设备发送上行信号,也可能不向第二网络设备发送上行信号,例如终端设备可能在灵活时间段向第二网络设备发送下行信号, 因此,在本申请的一些实施例中,终端设备还可以确定第三时间段,其中,第三时间段包括第二网络设备为终端设备配置的上行时间段和/或灵活时间段、且与第一时间段不重叠。终端设备可以在第三时间段不向第二网络设备发送上行信号时,可以用于向第一网络设备发送第三上行信号。需要说明的是,终端设备当在第三时间段向第二网络设备发送上行信号时,则不在第三时间段上向第一网络设备发送第三上行信号。
应理解,终端设备当在第三时间段上需要向第二网络设备发送上行信号,也需要在第三时间段上向第一网络设备发送第三上行信号时,终端设备优先保证向第二网络设备发送上行信号,丢弃向第一网络设备发送的第三上行信号,以实现终端设备不同时向第一网络设备和第二网络设备发送上行信号。因此,在一些实施例中,终端设备在第三时间段上向第一网络设备发送的第三上行信号为在PUSCH上传输的信号,从而有助于避免终端设备丢弃重要信息。但是在具体实现时,终端设备也可以在第三时间段上向第一网络设备发送在PUCCH或者PRACH上传输的信号,也可以在第三时间段上向第一网络设备发送SRS等。
另外,可以理解的是,上行时间段用于上行通信,灵活时间段可以用于上行通信,也可以用于下行通信。其中,第二网络设备为终端设备配置的上行时间段可以包括一个或多个时间单元。具体的,时间单元可以为帧、子帧、时隙、迷你时隙等。例如,对于LTE来说,时间单元可以为子帧。再例如,对于NR来说,时间单元可以为时隙。还需说明的是,第二网络设备可以只为终端设备配置上行时间段,而不配置灵活时间段,也可以只为终端设备只配置灵活时间段,而不配置上行时间段,还可以既为终端设备配置上行时间段,又配置灵活时间段。
以图7为例,第一网络设备为终端设备配置的上行子帧为子帧2、3、4、7、8和9,第二网络设备为终端设备配置的上行时隙为时隙0、1、2、3、4、5,灵活时隙为12、13、14和15,时隙4、5、14、15与子帧2和子帧7在时间上重叠,因此,对于终端设备与第一网络设备通信来说,第三时间段包括子帧1和子帧6。对于终端设备与第二网络设备通信来说,第三时间段包括时隙0、1、2、3、12和13。
以图8为例,第一网络设备为终端设备配置上行子帧为子帧2、3、4、7、8和9,第二网络设备为终端设备配置的上行时隙为时隙0、1、2、3、4、5,灵活时隙为12、13、14和15,时隙4的部分、时隙5、时隙14的部分、时隙15与子帧2和子帧7在时间上重叠,虽然时隙4的部分以及时隙14的部分与子帧2和子帧7在时间上重叠,但是终端设备与第二网络设备之间是以时隙为单位进行通信的,因此,终端设备在时隙4和时隙14上不能向第二网络设备发送上行信号,对于终端设备与第一网络设备通信来说,第三时间段包括子帧1和子帧6。对于终端设备与第二网络设备通信来说,第三时间段包括时隙2的部分、时隙3、时隙4的部分、时隙12的部分、时隙13和时隙14的部分。
基于本申请实施例图5所示的发送上行信号的方法,本申请实施例终端设备接入第一网络设备和第二网络设备时的上行通信的方法,如图10所示,具体包括以下步骤。
步骤1001,第一网络设备向终端设备发送第一指示信息,第一指示信息用于指示第一时间段,第一时间段为第一网络设备为终端设备配置的上行时间段。
步骤1002,终端设备在接收到第一指示信息后,确定用于向第一网络设备发送第一上行信号的第二时间段,其中,第二时间段为第二网络设备为终端设备配置的下行时间段、 且第二时间段与第一时间段不重叠。
需要说明的是,本申请实施例中,终端设备可以在第二时间段有第一上行信号发送的需求时,可以在第二时间段上发送第一上行信号,可以在第二时间段上没有第一上行信号发送的需求时,不再第二时间段上发送第一上行信号。但是,终端设备无论是否在第二时间段上向第一网络设备发送第一上行信号,均可以在第二时间段上向第二网络设备发送下行信号。可以理解的是,终端设备用于承载在第二时间段上向第一网络设备发送的第一上行信号的载波或频段,与终端设备用于承载在第二时间段上接收第二网络设备发送的下行信号的载波或频段是不同的。
在一些实施例中,第一上行信号可以仅为在PUSCH上传输的信号。即终端设备在第二时间段上向第一网络设备仅发送在PUSCH上传输的信号。在另一些实施例中,第一上行信号为可以仅为在PUSCH和/或PRACH上传输的信号。即终端设备在第二时间段上向第一网络设备仅发送在PUSCH和/或PRACH上传输的信号。在其它一些实施例中,第一上行信号还可以包括在PUCCH、PRACH、或PUSCH等信道上传输的信号、或者SRS等。
此外,本申请实施例终端设备在第一时间段上不向第二网络设备发送上行信号,可以在第一时间段上向第二网络设备发送第二上行信号。
在一些实施例中,第二上行信号可以包括在PUCCH、PUSCH、PRACH等至少一个信道上传输的信号,第二上行信号还可以包括SRS等信号。
可以理解的是,本申请实施例中,第一时间段、第二时间段、第一指示信息、第二网络设备为终端设备配置下行时间段等的相关介绍可以参见图5所示的发送上行信号的方法中的相关介绍,在此不再赘述。
进一步的,本申请实施例终端设备还可以确定用于向第一网络设备发送第三上行信号的第三时间段,其中第三时间段包括第二网络设备为终端设备配置的上行时间段和/或灵活时间段,且与第一时间段不重叠。终端设备当在第三时间段上不向第二网络设备发送上行信号时,可以在第三时间段上向第一网络设备发送第三上行信号。示例的,第三上行信号可以仅为在PUSCH上传输的信号,即终端设备仅在第三时间段上向第一网络设备发送在PUSCH上传输的信号。
需要说明的是,本申请实施例中终端设备当在第三时间段上向第二网络设备发送上行信号时,不再第三时间段上向第一网络设备发送第三上行信号。此外,终端设备当在第三时间段上同时有向第一网络设备发送第三上行信号的需求,以及向第二网络设备发送上行信号的需求,则终端设备丢弃在第三时间段上需要向第一网络设备发送的第三上行信号,在第三时间段上向第二网络设备发送上行信号。有助于避免终端设备同时向第一网络设备和第二网络设备发送上行信号。
应理解,本申请实施例中第三时间段、第二网络设备为终端设备配置的上行时间段和/或灵活时间段等信息的具体实现方式,可以参见图5所示的发送上行信号的方法中的相关介绍,在此不再赘述。
以终端设备同时接入LTE接入网设备和NR接入网设备为例,结合具体的应用场景,对本申请实施例进行介绍。示例的,LTE接入网设备为LTE通信系统中的基站,如eNB,NR接入网设备为NR通信系统中的基站,例如gNB。一个典型LTE通信系统的部署方式为LTE通信系统工作在FDD模式,当终端设备接入LTE接入网设备后,LTE接入网设备 可以为终端设备配置两个成对的频段,例如1.8GHz附近的两个频段,例如第一频段和第二频段,其中第一频段用于上行通信,第二频段用于下行通信。一种典型的NR通信系统的部署方式为:NR通信系统工作在TDD模式,当终端设备接入NR接入网设备后,NR接入网设备可以为终端设备配置一个非成对的频段,例如第三频段,其中第三频段为3.5GHz附近的频段,终端设备可以在不同时刻通过第三频段实现上行通信和下行通信。
如图11所示,为结合上述应用场景,本申请实施例终端设备接入LTE接入网设备和NR接入网设备时的上行通信的方法流程示意图。具体包括以下步骤。
如图11所示,为本申请实施例终端设备接入LTE接入网设备和NR接入网设备时的上行通信的方法流程示意图。具体包括以下步骤。
步骤1101,LTE接入网设备在第二频段上向终端设备发送第一指示信息,第一指示信息用于指示第一上行子帧,第一上行子帧为LTE接入网设备为终端设备配置的上行子帧。
步骤1102,NR接入网设备在第三频段上向终端设备发送第二指示信息,第二指示信息用于指示上下行时隙配置。
步骤1103,终端设备在第二频段上接收到第一指示信息,以及在第三频段上接收到第二指示信息后,确定用于在第一频段上向LTE接入网设备发送第一上行信号的第二上行子帧,第二上行子帧与第一上行子帧不同,且第二上行子帧包括在时间上与NR接入网设备为终端设备配置的下行时隙重叠的部分。
其中,终端设备可以在第一上行子帧和第一频段上向LTE接入网设备发送上行信号,例如在PUCCH上传输的信号,还可以为在PUSCH、PRACH等信道上传输的信号,还可以为SRS等。但是,通常情况下,终端设备在与第一上行子帧在时间上重叠的时隙上不发送上行信号,以避免终端设备同时向LTE接入网设备和NR接入网设备发送上行信号。
终端设备当有在第二上行子帧发送第一上行信号的需求时,可以在第二上行子帧和第一频段上向LTE接入网设备发送第一上行信号。终端设备当没有在第二上行子帧上发送第一上行信号的需求时,可以不再第二上行子帧上发送第一上行信号。
其中,在一些实施例中,第一上行信号仅为在PUSCH上传输的信号,即终端设备在第二上行子帧和第一频段上只能向LTE接入网设备发送在PUSCH上传输的信号,而不能发送其它上行信号。在另一些实施例中,第一上行信号仅包括在PUSCH和PRACH上传输的信号,即终端设备在第二上行子帧和第一频段上只能向LTE接入网设备发送在PUSCH和/或PRACH上传输的信号,而不能发送其它上行信号。在其它一些实施例中,第一上行信号还可以包括在PUCCH、PRACH、或PUSCH等信道上传输的信号、或者SRS等。
此外,终端设备无论是否向LTE接入网设备发送第一上行信号,还可以在与第二上行子帧在时间上重叠的时隙和第三频段上接收NR接入网设备发送的下行信号。
在一些实施例中,终端设备还可以根据第一指示信息和第二指示信息,确定除第一上行子帧以外的子帧中、与NR接入网设备配置的上行时隙和/或灵活时隙在时间上重叠的子帧。本申请实施例为简化描述方式,将除第一上行子帧以外的子帧中、与NR接入网设备配置的上行时隙和/或灵活时隙在时间上重叠的子帧称之为第三上行子帧。
需要说明的是,终端设备当同时在与第三上行子帧在时间上重叠的时隙需要向NR接入网设备发送上行信号、以及在第三上行子帧需要向LTE接入网设备发送上行信号时,则丢弃需要向LTE接入网设备发送的上行信号,在与第三上行子帧在时间上重叠的时隙和第三频段上向NR接入网设备发送上行信号。终端设备当在与第三上行子帧在时间上重叠的 时隙不需要向NR接入网设备发送上行信号时,可以在终端设备有需求在第三上行子帧向LTE接入网设备发送上行信号时,在第三上行子帧和第一频段上向LTE接入网设备发送上行信号。在一些实施例中,终端设备在第三上行子帧向LTE接入网设备发送的上行信号可以仅为在PUSCH上传输的信号,从而有助于避免重要信息的丢失。
可以理解的是,由于LTE通信系统工作在FDD模式,因此,终端设备无论是否在第一上行子帧、第二上行子帧和第三上行子帧上是否在第一频段上向LTE接入网设备发送上行信号,均可以在第二频段上接收LTE接入网设备发送的下行信号。
需要说明的是,本申请实施例中,第一上行子帧可以包括一个或多个子帧,第二上行子帧也可以包括一个或多个子帧,第三上行子帧也可以为一个或多个子帧。其中,第一上行子帧包括的子帧的个数与LTE接入网设备为终端的配置相关,而第二上行子帧的个数与第一上行子帧以及NR接入网设备为终端设备配置的下行时隙的情况相关,第三上行子帧的个数与第一上行子帧以及NR接入我那个设备为终端设备配置的上行时隙和/或灵活时隙的情况有关。
以终端设备与LTE接入网设备通信时采用15KHz的子载波间隔、终端设备与NR接入网设备通信时采用30KHz的子载波间隔为例。如图12所示,LTE接入网设备为终端设备配置的上行子帧为子帧0、1、5和6。NR接入网设备为终端设备配置的上行时隙为时隙4、5、6、7,灵活时隙为8、9,下行时隙为时隙0、1、2、3、10、11、12、13、14、15、16、17、18、19。则第一上行子帧为子帧0、1、5和6。由于下行时隙中时隙0、1、2、3、10、11、12和13在时间上与第一上行子帧重叠,而下行子帧中的时隙14、15、16、17、18和19与第一上行子帧中的任一子帧未重叠,而时隙14、15、16、17、18和19在时间上与子帧7、8和9重叠,因此,第二上行子帧为子帧7、8和9。由于上行时隙中的时隙4、5、6、7以及灵活时隙中的时隙8和9均与第一上行子帧中的任一子帧在时间上为重叠,而与时隙4、5、6、7、8和9在时间上重叠的子帧为子帧2、3和4,因此第三上行子帧为子帧2、3和4。终端设备可以在0、1、5、6、7、8和9上向LTE接入网设备发送上行信号,以及当在时隙5、6、7、8和9上不向NR接入网设备发送上行信号时,可以在子帧2、3和4上向LTE接入网设备发送上行信号,从而有助于提高LTE接入网设备上行信号发送的灵活性,以及提高资源的利用率。
需要说明的是,终端设备与NR接入网设备之间进行上行通信采用的子载波间隔还可以为15KHz、60KHz、120KHz等,上述仅以子载波间隔为30KHz为例进行介绍。
本申请涉及的各个实施例可以单独使用,也可以相互组合使用,以实现不同的技术效果。
上述本申请提供的实施例中,分别从网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
基于相同的构思,图13所示为本申请提供的一种装置1300,该装置1300可以是终端设备,也可以是能够支持终端设备实现图5、图10或图11所涉及的方法中终端设备的功能的装置。示例性地,装置1300还可以是终端设备内的装置(如芯片或芯片系统)。需要说明的是,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器 件。
装置1300中包括至少一个处理器1310、至少一个存储器1320和收发器1330,其中,存储器1320用于存储程序指令和/或数据。存储器1320、收发器1330和处理器1310耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1310可能和存储器1320协同操作。处理器1310执行存储器1320中存储的程序指令,通过收发器1330收发信号,以实现本申请实施例发送上行信号的方法。其中,应理解,所述至少一个存储器1320中的至少一个可以包括于处理器1310中。
本申请实施例中不限定上述收发器1330、处理器1310以及存储器1320之间的具体连接介质。在图13中以存储器1320、处理器1310以及收发器1330之间通过总线连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1310可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储器1320中,处理器1310读取存储器1320中的程序指令,结合其硬件完成上述方法的步骤。
在本申请实施例中,存储器1320可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在本申请实施例中,收发器1330可以是电路、总线、通信接口或者其它任意可以用于进行信号交互的装置。其中,示例性地,该其它设备可以是其它终端设备或网络设备。处理器1310可以利用收发器1330收发信号,示例的,收发器1330用于在第二时间段向第一网络设备发送上行信号,以及接收第一指示信息等。
此外,还应说明的是,本申请实施例中,由于终端设备可以同时接入第一网络设备和第二网络设备,因此,如图13所示,至少一个处理器1310中包括处理器1、处理器2和处理器3,其中处理器1用于处理第一网络设备的信号,处理器2用于处理第二网络设备的信号。例如,第一网络设备为LTE接入网设备,第二网络设备为NR网络设备,则处理器1又可以称之为LTE处理器,处理器2又可以称之为NR处理器。其中,处理器3可以为应用处理器,也可以为专用处理器等。以处理器1、处理2和处理器3为例,介绍本申请实施例发送上行信号的方法。示例的,收发器1330接收到来自第一网络设备的第一指示信息后,将第一指示信息发送给处理器1,由处理器1对第一指示信息进行解析,得到第一网络设备为终端设备配置的上行时间段的配置情况,然后将第一网络设备为终端设备配置的上行时间段的情况发送给处理器3,处理器2确定第二网络设备为终端设备配置的 下行时间段的情况后,将第二网络设备为终端设备配置的下行时间段的情况发送给处理器3,由处理器3根据接收到的来自处理器2的下行时间段的配置情况和来自处理器1的上行时间段的配置情况,确定第二时间段,然后向处理器1指示在第二时间段上可以通过收发器1330向第一网络设备发送第一上行信号,处理器1当需要在第二时间段上向第一网络设备发送第一上行信号时,则可以直接在第二时间段上通过收发器1330向第一网络设备发送第一上行信号。又示例的,处理器3还可以向处理器2指示在第一时间段上不能向第二网络设备发送上行信号,以及向处理器1指示可以在第一时间段上向第二网络设备发送上行信号等。处理器1和处理器2可以根据处理器3的指示,来确定是否可以向相应的网络设备发送上行信号。
如图14所示,为本申请提供的装置的另一个实施例,该装置可以是终端设备也可以终端设备中的装置(如芯片或芯片系统),可执行上述如图5、10或11所示的任一实施例中由终端设备执行的方法。
该装置包括收发模块1410和处理模块1420;其中,收发模块1410用于接收第一网络设备发送的第一指示信息,所述第一指示信息用于指示第一时间段,所述第一时间段为所述第一网络设备为所述终端设备配置的上行时间段,且所述终端设备在所述第一时间段不向所述第二网络设备发送上行信号;处理模块1420用于确定第二时间段,所述第二时间段为所述第二网络设备为所述终端设备配置的下行时间段、且与所述第一时间段不重叠;收发模块1410还用于在所述第二时间段向所述第一网络设备发送第一上行信号。
在一种可能的设计做中,收发模块1410还用于在所述第一时间段向所述第一网络设备发送第二上行信号;其中,所述第一上行信号包括在物理上行共享信道PUSCH、或者物理随机接入信道PRACH中的至少一个信道上传输的信号;所述第二上行信号包括在物理上行控制信道PUCCH、PUSCH、或者PRACH中的至少一个信道上传输的信号、和/或探测参考信号SRS。
在一种可能的设计中,收发模块1410还用于在所述第二时间段接收所述第二网络设备发送的下行信号,其中承载所述第一上行信号的载波、与承载所述下行信号的载波不同。
在一种可能的设计中,所述第一网络设备为长期演进LTE接入网设备,所述第二网络设备为新空口NR接入网设备。
在一种可能的设计中,所述LTE接入网络设备工作在频分双工FDD模式,所述NR接入网设备工作在时分复用TDD模式。
在一种可能的设计中,处理模块1420还用于确定第三时间段,所述第三时间段包括所述第二网络设备为所述终端设备配置的上行时间段和/或灵活时间段、且与所述第一时间段不重叠;其中,所述终端设备不在所述第三时间段上向所述第二网络设备发送上行信号时,在所述第三时间段上向所述第一网络设备发送第三上行信号。
在一种可能的设计中,所述第三上行信号包括在PUSCH上传输的信号。
其中,收发模块1410的硬件实现方式可以为收发器,可以参见图13中关于收发器1330的相关介绍,处理模块1420可以处理器,可以参见图13中关于处理器1310的相关介绍。
应理解,该装置可以用于实现本申请实施例的发送上行信号的中由终端设备执行的步骤,相关特征可以参照上文,此处不再赘述。
应理解,图13和图14所示的装置为模块划分的方式是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个程序指令。在计算机上加载和执行所述程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述程序指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述程序指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内,因此本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种发送上行信号的方法,其特征在于,所述方法包括:
    终端设备接收第一网络设备发送的第一指示信息,所述第一指示信息用于指示第一时间段,所述第一时间段为所述第一网络设备为所述终端设备配置的上行时间段;
    所述终端设备确定第二时间段,所述第二时间段为所述第二网络设备为所述终端设备配置的下行时间段、且与所述第一时间段不重叠;
    所述终端设备在所述第二时间段向所述第一网络设备发送第一上行信号。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第一时间段向所述第一网络设备发送第二上行信号;
    其中,所述第一上行信号包括在物理上行共享信道PUSCH、或者物理随机接入信道PRACH中的至少一个信道上传输的信号;所述第二上行信号包括在物理上行控制信道PUCCH、PUSCH、或者PRACH中的至少一个信道上传输的信号、和/或探测参考信号SRS。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第二时间段接收所述第二网络设备发送的下行信号,其中承载所述第一上行信号的载波、与承载所述下行信号的载波不同。
  4. 如权利要求1至3任一所述的方法,其特征在于,所述第一网络设备为长期演进LTE接入网设备,所述第二网络设备为新空口NR接入网设备。
  5. 如权利要求4所述的方法,其特征在于,所述LTE接入网络设备工作在频分双工FDD模式,所述NR接入网设备工作在时分复用TDD模式。
  6. 如权利要求1至5任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定第三时间段,所述第三时间段包括所述第二网络设备为所述终端设备配置的上行时间段和/或灵活时间段、且与所述第一时间段不重叠;
    其中,所述终端设备不在所述第三时间段上向所述第二网络设备发送上行信号时,在所述第三时间段上向所述第一网络设备发送第三上行信号。
  7. 如权利要求6所述的方法,其特征在于,所述第三上行信号包括在PUSCH上传输的信号。
  8. 一种装置,其特征在于,所述包括收发器和处理器:
    所述收发器,用于接收第一网络设备发送的第一指示信息,所述第一指示信息用于指示第一时间段,所述第一时间段为所述第一网络设备为所述终端设备配置的上行时间段;
    所述处理器,用于确定第二时间段,所述第二时间段为所述第二网络设备为所述终端设备配置的下行时间段、且与所述第一时间段不重叠;
    所述收发器,还用于在所述第二时间段向所述第一网络设备发送第一上行信号。
  9. 如权利要求8所述的装置,其特征在于,所述收发器还用于:
    在所述第一时间段向所述第一网络设备发送第二上行信号;
    其中,所述第一上行信号包括在物理上行共享信道PUSCH、或者物理随机接入信道PRACH中的至少一个信道上传输的信号;所述第二上行信号包括在物理上行控制信道PUCCH、PUSCH、或者PRACH中的至少一个信道上传输的信号、和/或探测参考信号SRS。
  10. 如权利要求8或9所述的装置,其特征在于,所述收发器,还用于:
    在所述第二时间段接收所述第二网络设备发送的下行信号,其中承载所述第一上行信 号的载波、与承载所述下行信号的载波不同。
  11. 如权利要求8至10任一所述的装置,其特征在于,所述第一网络设备为长期演进LTE接入网设备,所述第二网络设备为新空口NR接入网设备。
  12. 如权利要求11所述的装置,其特征在于,所述LTE接入网络设备工作在频分双工FDD模式,所述NR接入网设备工作在时分复用TDD模式。
  13. 如权利要求8至12任一所述的装置,其特征在于,所述处理器还用于:
    确定第三时间段,所述第三时间段包括所述第二网络设备为所述终端设备配置的上行时间段和/或灵活时间段、且与所述第一时间段不重叠;
    其中,所述终端设备不在所述第三时间段上向所述第二网络设备发送上行信号时,在所述第三时间段上向所述第一网络设备发送第三上行信号。
  14. 如权利要求13所述的装置,其特征在于,所述第三上行信号包括在PUSCH上传输的信号。
  15. 一种芯片,其特征在于,所述芯片与存储器、收发器耦合,当所述芯片运行时,读取所述存储器中的程序指令,触发所述收发器执行如权利要求1至7任一所述的方法。
  16. 一种计算机存储介质,其特征在于,所述计算机存储介质上存储有程序指令,所述程序指令被处理器执行时,用于实现如权利要求1至7任意一项所述的方法。
PCT/CN2019/071475 2019-01-11 2019-01-11 一种发送上行信号的方法及装置 WO2020143056A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/071475 WO2020143056A1 (zh) 2019-01-11 2019-01-11 一种发送上行信号的方法及装置
CN201980088434.2A CN113273276B (zh) 2019-01-11 2019-01-11 一种发送上行信号的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071475 WO2020143056A1 (zh) 2019-01-11 2019-01-11 一种发送上行信号的方法及装置

Publications (1)

Publication Number Publication Date
WO2020143056A1 true WO2020143056A1 (zh) 2020-07-16

Family

ID=71521418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071475 WO2020143056A1 (zh) 2019-01-11 2019-01-11 一种发送上行信号的方法及装置

Country Status (2)

Country Link
CN (1) CN113273276B (zh)
WO (1) WO2020143056A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115529198A (zh) * 2021-06-25 2022-12-27 华为技术有限公司 一种控制设备发送消息的方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018103002A1 (en) * 2016-12-07 2018-06-14 Qualcomm Incorporated Control channel configuration and timing for autonomous uplink
CN108933610A (zh) * 2017-05-27 2018-12-04 维沃移动通信有限公司 一种干扰测量处理方法、相关设备和系统
CN108934005A (zh) * 2017-05-27 2018-12-04 维沃移动通信有限公司 一种能力信息上报方法、相关设备和系统
CN108990154A (zh) * 2017-06-02 2018-12-11 维沃移动通信有限公司 一种针对终端自干扰的传输方法、相关设备和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663818C1 (ru) * 2014-11-26 2018-08-10 Хуавэй Текнолоджиз Ко., Лтд. Способ, устройство и система беспроводной связи
US11595173B2 (en) * 2016-03-30 2023-02-28 Interdigital Patent Holdings, Inc. Long term evolution-assisted NR flexible radio access
JP6759695B2 (ja) * 2016-05-11 2020-09-23 ソニー株式会社 端末装置、基地局装置、通信方法、及びプログラム
US20200205156A1 (en) * 2017-06-26 2020-06-25 Convida Wireless, Llc Lte coexistence with 5g nr
CN109088660A (zh) * 2018-09-13 2018-12-25 维沃移动通信有限公司 一种移动终端的通信方法及移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018103002A1 (en) * 2016-12-07 2018-06-14 Qualcomm Incorporated Control channel configuration and timing for autonomous uplink
CN108933610A (zh) * 2017-05-27 2018-12-04 维沃移动通信有限公司 一种干扰测量处理方法、相关设备和系统
CN108934005A (zh) * 2017-05-27 2018-12-04 维沃移动通信有限公司 一种能力信息上报方法、相关设备和系统
CN108990154A (zh) * 2017-06-02 2018-12-11 维沃移动通信有限公司 一种针对终端自干扰的传输方法、相关设备和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On UL timing difference in EN-DC", 3GPP DRAFT; R4-1804120, 20 April 2018 (2018-04-20), Melbourne, Australia, pages 1 - 3, XP051418955 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115529198A (zh) * 2021-06-25 2022-12-27 华为技术有限公司 一种控制设备发送消息的方法、装置及系统
WO2022267541A1 (zh) * 2021-06-25 2022-12-29 华为技术有限公司 一种控制设备发送消息的方法、装置及系统

Also Published As

Publication number Publication date
CN113273276B (zh) 2022-12-30
CN113273276A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
TWI785185B (zh) 傳輸配置方法及相關產品
JP2022516804A (ja) リソース構成方法および装置
WO2022028311A1 (zh) 一种物理下行控制信道增强方法、通信装置及系统
WO2018170673A1 (zh) 传输数据的方法、终端设备和网络设备
WO2020001607A1 (zh) 数据加扰方法及相关设备
JP2021503781A (ja) データ伝送方法、端末装置、およびネットワーク装置
US10819397B2 (en) Information transmission method and related device
WO2019196689A1 (zh) 通信的方法和通信装置
US11638222B2 (en) Power determining method and apparatus
TW201935983A (zh) 實體上傳分享通道傳輸方法和終端設備
WO2018137700A1 (zh) 一种通信方法,装置及系统
WO2020143490A1 (zh) 通信方法及装置
US11469852B2 (en) Signal sending and receiving method, and apparatus
JP7450752B2 (ja) ランダムアクセス信号を送信するための方法および装置
WO2021159340A1 (en) Downlink control information for reduced-complexity device
WO2020143056A1 (zh) 一种发送上行信号的方法及装置
WO2020063546A1 (zh) 一种指示方法、装置及系统
WO2020052533A1 (zh) 使用免授权频段的通信方法和通信装置
WO2020143739A1 (zh) 通信方法和通信装置
WO2020156002A1 (zh) 通信方法及通信装置
WO2021068261A1 (zh) 频域传输资源配置的方法以及装置
WO2019129164A1 (zh) 一种传输时间处理方法及相关设备
WO2024067571A1 (zh) 灵活双工sbfd信息指示方法、终端及网络侧设备
WO2023197800A1 (zh) Pusch发送方法、解析方法、终端和网络设备
WO2023207785A1 (zh) 终端操作方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908847

Country of ref document: EP

Kind code of ref document: A1