WO2020141663A1 - 광학 지문 센싱 회로를 포함한 화소 회로, 화소 회로의 구동 방법, 및 유기 발광 표시 장치 - Google Patents

광학 지문 센싱 회로를 포함한 화소 회로, 화소 회로의 구동 방법, 및 유기 발광 표시 장치 Download PDF

Info

Publication number
WO2020141663A1
WO2020141663A1 PCT/KR2019/006645 KR2019006645W WO2020141663A1 WO 2020141663 A1 WO2020141663 A1 WO 2020141663A1 KR 2019006645 W KR2019006645 W KR 2019006645W WO 2020141663 A1 WO2020141663 A1 WO 2020141663A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
terminal
node
light
receiving element
Prior art date
Application number
PCT/KR2019/006645
Other languages
English (en)
French (fr)
Inventor
최병덕
유용상
김용덕
문정민
정순신
송문봉
장기석
정지환
Original Assignee
엘지디스플레이 주식회사
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사, 한양대학교 산학협력단 filed Critical 엘지디스플레이 주식회사
Priority to CN201980082508.1A priority Critical patent/CN113228150B/zh
Priority to US17/296,856 priority patent/US11783617B2/en
Publication of WO2020141663A1 publication Critical patent/WO2020141663A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/046Pixel structures with an emissive area and a light-modulating area combined in one pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • G09G2360/148Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel the light being detected by light detection means within each pixel

Definitions

  • the present disclosure provides a pixel circuit including an optical fingerprint sensing circuit, a driving method of a pixel circuit including an optical fingerprint sensing circuit, and a display device including a pixel circuit including an optical fingerprint sensing circuit (Pixel circuit including optical fingerprint sensing circuit, Method for driving the pixel circuit and Display device).
  • the video display device is a computer-based system (computer) such as a laptop computer, a tablet PC, a smart phone, a personal digital assistant, an automated teller machine, a search guidance system, and the like. based system).
  • computer computer-based system
  • personal information related to personal privacy is stored as well as a lot of data requiring confidentiality such as business information or business confidentiality. To protect these data, there is a need to strengthen security.
  • Fingerprints can be used as a way to enhance security. As the fingerprint of a finger is used in a computer-based system, research on an image display device including a fingerprint recognition device, which is expected to be widely used in a smart phone, has been actively conducted.
  • an image display device having a fingerprint sensing circuit recognizes a fingerprint by an optical sensing method or a capacitive method.
  • An image display device for recognizing a fingerprint by an optical sensing method is provided with a fingerprint recognition circuit including a light receiving element as a fingerprint sensor on a display panel.
  • the light-receiving element generates a photocurrent by sensing light emitted from the display panel and reflected by the fingerprint.
  • the amount of photocurrent generated from the light receiving element varies depending on whether the object reflecting the light is a ridge or valley of the fingerprint.
  • the fingerprint recognition circuit recognizes the shape of the fingerprint through the amount of change in the photocurrent.
  • a fingerprint recognition circuit having a high resolution of 500 PPI or more is required.
  • the inventors of the present invention have recognized the necessity of integrating the fingerprint recognition circuit and the pixel circuit by removing duplicate elements of the fingerprint recognition circuit and the pixel circuit.
  • the pixel circuit and the fingerprint recognition circuit are integrated, since the distance between the pixel circuit and the fingerprint recognition circuit is close, a considerable amount of light emitted from the self-luminous element does not reach the fingerprint and is reflected by glass or electrodes, causing the pixel circuit to It can return to the light receiving element.
  • the light receiving element may receive light incident from the outside of the display device, for example, sunlight or light from an indoor lighting device.
  • the direct light enters the fingerprint recognition circuit, since the direct light may have a larger amount of light than the fingerprint light, the light receiving element may not properly recognize the light reflected by the fingerprint. Finally, the fingerprint recognition rate of the fingerprint recognition circuit is lowered.
  • the inventors of the present invention have researched to improve the above-mentioned problems.
  • the present disclosure has been devised to solve the above-mentioned problems, and it is a technical problem to provide an integrated pixel circuit that recognizes a fingerprint without being affected by direct light that is not reflected by the fingerprint.
  • the present disclosure is a pixel circuit including an optical fingerprint sensing circuit, the pixel circuit comprising: a self-luminous element that displays an image; A light receiving element emitted from the self-luminous element and receiving light reflected through a user's fingerprint to convert it into a photocurrent; And a pixel control circuit; Including, The light receiving element, A first light receiving element for generating a first signal; And a second light receiving element generating a second signal, wherein the pixel control circuit calculates the first signal and the second signal to generate an output signal, and generates at least one transistor component and at least one capacitor component. It is characterized by including.
  • the pixel control circuit is characterized by generating an output signal from which a noise signal is removed by differentiating the first signal and the second signal.
  • the pixel control circuit further includes a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a seventh transistor, a first capacitor, and a second capacitor, and the first transistor
  • the first terminal is connected to the data line
  • the second terminal of the first transistor is connected to the first node
  • the gate terminal of the first transistor is connected to the n-th scan line
  • the first terminal of the second transistor Is connected to a second node
  • the second terminal of the second transistor is connected to a third node
  • the gate terminal of the second transistor is connected to a fourth node
  • the first terminal of the third transistor is the first Connected to a fourth node
  • the second terminal of the third transistor is connected to the third node
  • the gate terminal of the third transistor is connected to the n-1 th scanline
  • the first terminal of the fourth transistor is It is connected to the first node
  • the second terminal of the fourth transistor is connected to the cathode terminal of the second light receiving element
  • a first terminal of the seventh transistor is connected to the second node, a second terminal of the seventh transistor is connected to an output line, and a gate terminal of the seventh transistor is connected to a second sensing line ,
  • the first terminal of the first capacitor is connected to the first node, the first capacitor
  • the second terminal of the capacitor is connected to the fourth node, the first terminal of the second capacitor is connected to the first node, the second terminal of the second capacitor is grounded, and the first light receiving element of the
  • the cathode terminal is connected to a power supply (VDD), and the second light receiving element is grounded.
  • the pixel control circuit further includes an eighth transistor, a ninth transistor, and a tenth transistor, the first terminal of the eighth transistor is connected to a power supply VDD, and the second terminal of the eighth transistor is It is connected to the first node, the gate terminal of the eighth transistor is connected to the n-1 th scan line, the first terminal of the ninth transistor is connected to the power source, and the second terminal of the ninth transistor Is connected to the second node, the gate terminal of the ninth transistor is connected to a first emission line, the first terminal of the tenth transistor is connected to the third node, and the tenth transistor It characterized in that the second terminal is connected to the anode terminal of the self-luminous element, the gate terminal of the tenth transistor is connected to the second emission line, and the cathode terminal of the self-luminous element is grounded.
  • the pixel control circuit further includes a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, and a seventh transistor, and the first terminal of the first transistor is a data line ,
  • a second terminal of the first transistor is connected to a first node, a gate terminal of the first transistor is connected to an n-th scanline, and a first terminal of the second transistor is connected to the first node Connected, the second terminal of the second transistor is connected to a second node, the gate terminal of the second transistor is connected to a third node, and the first terminal of the third transistor is connected to the third node ,
  • the second terminal of the third transistor is connected to the second node, the gate terminal of the third transistor is connected to the n-th scan line, and the first terminal of the fourth transistor is connected to the third node
  • the second terminal of the fourth transistor is connected to a cathode terminal of the second light receiving element, the gate terminal of the fourth transistor is connected to a first sens
  • the pixel control circuit further includes an eighth transistor, a ninth transistor, a tenth transistor, and an eleventh transistor, and the first terminal of the eighth transistor is connected to an initialization line, and the second of the eighth transistor is The terminal is connected to the third node, the gate terminal of the eighth transistor is connected to the n-1 th scan line, the first terminal of the ninth transistor is connected to the initialization line, and the second of the ninth transistor is The terminal is connected to the anode terminal of the self-luminous element, the gate terminal of the ninth transistor is connected to the n-1 th scan line, and the first terminal of the tenth transistor is connected to the power source , The second terminal of the tenth transistor is connected to the first node, the gate terminal of the tenth transistor is connected to an emission line, and the first terminal of the eleventh transistor is connected to the second node.
  • the second terminal of the eleventh transistor is connected to the anode terminal of the self-luminous element, the gate terminal of the eleventh transistor is connected to the emission line, and the first terminal of the capacitor is connected to the power source. It is characterized in that the second terminal of the capacitor is connected to the third node, and the cathode terminal of the self-luminous element is grounded.
  • the pixel control circuit further includes a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, and a sixth transistor, and the first terminal of the first transistor is connected to the data line,
  • the second terminal of the first transistor is connected to a first node
  • the gate terminal of the first transistor is connected to an n-th scan line
  • the first terminal of the second transistor is connected to a second node
  • the first The second terminal of the second transistor is connected to a third node
  • the gate terminal of the second transistor is connected to the first node
  • the first terminal of the third transistor is connected to the first node
  • the third The second terminal of the transistor is connected to the cathode terminal of the second light receiving element
  • the gate terminal of the third transistor is connected to the first sensing line
  • the first terminal of the fourth transistor is the It is connected to the anode terminal of the first light receiving element
  • the second terminal of the fourth transistor is connected to the first node
  • the gate terminal of the fourth transistor is connected to the
  • the pixel control circuit further includes a seventh transistor, a first terminal of the seventh transistor is connected to the power supply, a second terminal of the seventh transistor is connected to the second node, and the seventh transistor
  • the gate terminal of the transistor is connected to an emission line
  • the first terminal of the capacitor is connected to the power supply
  • the second terminal of the capacitor is connected to the first node
  • the anode of the self-luminous element A terminal is connected to the third node, and a cathode terminal of the self-luminous element is grounded.
  • the output voltage can be maintained near VREF/2 based on the first light receiving element for charging or the second light receiving element for discharging, there is an effect of preventing the output voltage of the pixel circuit from being clipped. .
  • FIG. 1 is a view showing a cross-section of a circuit including a self-luminous element and a light-receiving element.
  • FIG. 2 is a view showing a pixel circuit according to the prior art.
  • FIG. 3 is a diagram illustrating a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 4 is a graph showing a current flowing through a light receiving element of a pixel circuit according to the prior art.
  • FIG 5 is a graph showing a current flowing through a light receiving element according to an embodiment of the present disclosure.
  • FIG. 6 is a graph showing an output voltage according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating a pixel circuit according to an embodiment of the present disclosure.
  • FIG. 10 is a graph showing a voltage of a first node according to an embodiment of the present disclosure.
  • FIG. 11 is a graph showing a voltage of a first node according to an embodiment of the present disclosure.
  • the “unit” may be implemented as a processor and memory.
  • processor should be broadly interpreted to include general purpose processors, central processing units (CPUs), microprocessors, digital signal processors (DSPs), controllers, microcontrollers, state machines, and the like.
  • processor may refer to an application specific semiconductor (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), and the like.
  • ASIC application specific semiconductor
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor refers to a combination of processing devices, such as, for example, a combination of a DSP and a microprocessor, a combination of a plurality of microprocessors, a combination of one or more microprocessors in combination with a DSP core, or any other combination of such configurations. It can also be referred to.
  • memory should be interpreted broadly to include any electronic component capable of storing electronic information.
  • the term memory is random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), erase-programmable read-only memory (EPROM), electrical As well as various types of processor-readable media, such as erasable PROM (EEPROM), flash memory, magnetic or optical data storage, registers, and the like.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read-only memory
  • EPROM erase-programmable read-only memory
  • electrically such as erasable PROM (EEPROM), flash memory, magnetic or optical data storage, registers, and the like.
  • a memory is said to be in electronic communication with the processor if the processor can read information from and/or write information to the memory.
  • the memory integrated in the processor is in electronic communication with the processor.
  • signal means an electrical signal of voltage or current.
  • FIG. 1 is a view showing a cross-section of a circuit including a self-luminous element and a light-receiving element.
  • the self-luminous element may include an electroluminescence element, OLED, quantum dot-LED (QD-LED), micro-LED, and the like.
  • the light receiving device PD may be, for example, a photodiode.
  • the distance between the pixel circuit and the fingerprint recognition circuit may be close. Due to the structure of the display panel, the light receiving element PD may not only reach the light 120 reflected from the fingerprint, but also the light 110 emitted from the self-luminous element may not reach the fingerprint and may be glass or an electrode. The reflected light can be received. In addition, light (not shown) received from the outside of the display device may be received.
  • the direct light 130 When the direct light 130 is incident on the fingerprint recognition circuit, since the direct light 130 may have a larger amount of light than the fingerprint light 120, the light receiving element may not properly recognize the light reflected by the fingerprint, and finally Has a problem that the fingerprint recognition rate of the fingerprint recognition circuit is lowered.
  • FIG. 2 is a view showing a pixel circuit according to the prior art.
  • the pixel circuit 210 is a case where the pixel circuit and the fingerprint recognition circuit are integrated, and may include one light receiving element, at least one transistor component T1, and at least one capacitor component CINT.
  • the pixel circuit 210 may be disposed on the display panel.
  • the light receiving element of the pixel circuit 210 may be disposed at the first position 221.
  • the remaining portion of the pixel circuit 210 may be disposed at the second position 222.
  • One pixel circuit 210 includes one light-receiving element, and the light-receiving element receives light by a self-luminous element, light from the outside, and light reflected from a fingerprint.
  • Light from the outside may represent light generated from the outside of a display device such as sunlight or fluorescent lamps.
  • the light generated by the self-luminous device may represent light generated by the self-luminous device or the light generated by the self-luminous device, which is not a fingerprint but reflected by glass or electrodes of the display panel.
  • the light reflected from the fingerprint may reflect light from the self-luminous device or external light reflected on the fingerprint, thereby indicating light from the fingerprint.
  • the pixel circuit 210 may have difficulty in fingerprint recognition using light reflected from the fingerprint.
  • the more the pixel circuit 210 is integrated in the same area the greater the influence of light of the self-luminous device will be, so the fingerprint recognition rate of the pixel circuit 210 may decrease.
  • FIG. 3 is a diagram illustrating a pixel circuit according to an embodiment of the present disclosure.
  • the pixel circuit 310 including the optical fingerprint sensing circuit may include a first light receiving element 311 and a second light receiving element 312 and a pixel control circuit 313.
  • the light-receiving element converts light emitted from the self-emitting element and reflected through the user's fingerprint into a photocurrent in the reverse direction.
  • the amount of photocurrent generated from the light-receiving element varies depending on whether the object reflecting the light is a ridge or valley of the fingerprint.
  • the photocurrent due to the light reflected from the bone may be greater than the photocurrent due to the light reflected from the ridge.
  • the present invention is not limited thereto, and the photocurrent due to light reflected from the bone may be less than or equal to the photocurrent caused by light reflected from the ridge.
  • the first light receiving element may receive light and generate a first signal.
  • the second light receiving element may receive light and generate a second signal.
  • the first light receiving element 311 may charge the capacitor component CINT of the pixel control circuit 313.
  • the second light receiving element 312 may discharge the capacitor component CINT of the pixel control circuit 313.
  • the capacitor component CINT may be charged by the first signal and discharged by the second signal.
  • the differential signal may flow to the pixel control circuit 313.
  • the differential signal may flow from the pixel control circuit 313 toward the photodiodes.
  • the capacitor component CINT When the first signal is greater than the second signal, the capacitor component CINT may be charged.
  • the capacitor component CINT may be discharged.
  • the pixel control circuit 313 may receive a difference signal between the first signal and the second signal. Also, the pixel control circuit 313 may output an output signal to the output line OUT based on the difference signal.
  • the pixel control circuit 313 of FIG. 3 may include at least one transistor component T1 and at least one capacitor component CINT.
  • the transistor component T1 represents a component that is turned on/off according to a predetermined signal S1.
  • the pixel control circuit 313 may reset the output (OUT) voltage of the pixel circuit 310 through the switching operation of the transistor component T1.
  • the capacitor component (CINT) represents a component that generates a current when the voltage changes.
  • the transistor component T1 and the capacitor component CINT of the pixel control circuit 313 may be implemented using at least one of a transistor or a capacitor.
  • the pixel control circuit 313 may include a self-luminous element (not shown).
  • the self-luminous element may output light based on a data signal.
  • the self-luminous element emits light according to an incoming current based on a data signal.
  • the self-emitting device includes an organic light emitting cell formed between the anode electrode and the cathode electrode.
  • the organic light emitting cell may be formed to have a structure of a hole transport layer / organic light emitting layer / electron transport layer, or a structure of a hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection layer.
  • a functional layer for improving the luminous efficiency and/or lifetime of the organic light emitting layer may be additionally formed in the organic light emitting cell.
  • the pixel circuit 310 may be disposed on the display panel.
  • the display panel may include a plurality of pixel circuits.
  • the first light receiving element 311 of the pixel circuit 310 may be included in the first region 321.
  • the second light receiving element 312 of the pixel circuit 310 may be included in the second region 322.
  • a portion of the pixel control circuit 313 or the pixel control circuit 313 of the pixel circuit 310 may be included in the third region 323.
  • the self-luminous element may be included in the third region 323.
  • the first region 321 including the first light receiving element 311 and the second region 322 including the second light receiving element 312 may be close. Accordingly, light by the self-luminous element or external light may have the same effect on the first light-receiving element 311 and the second light-receiving element 312. Therefore, the first light-receiving element 311 and the second light-receiving element 312 may generate the same current based on light generated by the self-luminous element or external light.
  • Fingerprint recognition may be performed by detecting light reflected from the bones and floors of a fine fingerprint by light receiving elements. Therefore, the light reflected from the fingerprint received by the first light receiving element 311 may be different from the light reflected from the fingerprint received by the second light receiving element 312. Also, the first light-receiving element 311 and the second light-receiving element 312 may generate currents of different sizes based on light reflected from the fingerprint.
  • the pixel circuit 310 including the optical fingerprint sensing circuit can accurately recognize the fingerprint by using the difference between the current of the first light receiving element 311 and the current of the second light receiving element 312.
  • a current difference between the current of the first light receiving element 311 and the current of the second light receiving element 312 may be output to the pixel control circuit 313.
  • the pixel control circuit 313 may output a current or voltage based on the difference current to the output line OUT.
  • the system including the pixel circuit 310 can accurately recognize the fingerprint based on the output signal output to the output line OUT.
  • the output voltage may be clipped to VREF or VSS (source voltage of T1).
  • Clipping means that the waveform of the output signal is cut off and distortion occurs because the input signal larger than the reference passes through the circuit and operates in the saturated portion of the input/output characteristics.
  • direct light that is not reflected by the fingerprint may generate an excessive photocurrent in the light receiving element PD because its light amount is very large.
  • the excessive photocurrent can charge the capacitor component CINT with a high voltage within a short time, so the output voltage can be clipped to VREF.
  • the output voltage is clipped to VREF, the output signal is distorted, and as a result, the conventional pixel circuit 210 cannot accurately recognize the fingerprint.
  • the pixel circuit 310 according to an embodiment of the present disclosure of FIG. 3 includes two light receiving elements, a first light receiving element 311 for charging and a second light receiving element 312 for discharging. Therefore, the output voltage can be maintained near VREF/2. That is, it has an effect of preventing the phenomenon that the output voltage of the pixel circuit 310 is clipped.
  • FIG. 4 will be described showing the current flowing through the light-receiving device according to the prior art before explaining FIG. 5 for ease of understanding.
  • FIG. 4 is a graph showing a current flowing through a light receiving element of a pixel circuit according to the prior art.
  • the horizontal axis in Fig. 4 represents time, and the vertical axis represents the current flowing through the light receiving element.
  • the fingerprint light current 410 represents the current generated from the light receiving element based on the light reflected from the fingerprint.
  • the direct light current 420 represents a current generated from the light receiving element by light from the self-emitting element or light from the outside. Since the light by the self-luminous element or the light from the outside is stronger than the light reflected from the fingerprint, the direct light current 420 may be greater than the fingerprint light current 410.
  • the direct light current 420 may shake due to noise.
  • the synthesized current 430 represents the sum of the fingerprint light current 410 and the direct light current 420.
  • the direct light current 420 may have a greater effect on the composite current 430 than the fingerprint light current 410.
  • the influence of the direct light current 420 due to noise may be large.
  • clipping may occur.
  • FIG 5 is a graph showing a current flowing through a light receiving element according to an embodiment of the present disclosure.
  • the horizontal axis of graph 510 represents time.
  • the vertical axis of the graph 510 represents the current flowing through the first light receiving element 311 and the second light receiving element 312.
  • the second fingerprint light current 511 represents the current generated from the second light receiving element 312 based on the light reflected from the fingerprint.
  • the first fingerprint light current 512 represents the current generated from the first light receiving element 311 based on the light reflected from the fingerprint.
  • the distance between the first light receiving element 311 and the second light receiving element 312 is close, but the valleys and floors of the fingerprint are also fine. Accordingly, the first fingerprint light current 512 generated in the first light receiving element 311 may be different from the second fingerprint light current 511 generated in the second light receiving element 312.
  • the direct light current 513 represents the current generated from the first light-receiving element 311 and the second light-receiving element 312 by light from a self-luminous element or light from the outside.
  • the currents generated from the first light-receiving element 311 and the second light-receiving element 312 by light from the self-luminous element or from external light may be the same.
  • Light from the self-luminous element or light from the outside may be stronger than light reflected from the fingerprint. Therefore, the direct light current 513 may be greater than the second fingerprint light current 511 or the first fingerprint light current 512.
  • the direct light current 513 may be shaken by noise.
  • the total current flowing through the first light receiving element 311 may be the sum of the first fingerprint light current 512 and the direct light current 513.
  • the total current flowing through the second light receiving element 312 may be the sum of the second fingerprint light current 511 and the direct light current 513.
  • the horizontal axis of the graph 520 represents time.
  • the vertical axis of the graph 520 represents the difference between the current flowing through the first light receiving element 311 and the current flowing through the second light receiving element 312. Since the direct light current 513 flows in common to the first light-receiving element 311 and the second light-receiving element 312, they may cancel each other. Therefore, the difference signal 521 may not be affected by the direct light current 513. In addition, the difference signal 521 may be smaller than the synthesized current 430.
  • the differential signal 521 may charge or discharge the capacitor component CINT of FIG. 3.
  • the pixel circuit 310 may reduce the influence of a signal generated from light generated by a self-luminous element or light from the outside, that is, noise. Also, the pixel circuit 310 may recognize a fingerprint based on a signal by light reflected from the fingerprint. In addition, the pixel circuit 310 can reduce noise caused by light from a self-luminous element or light from the outside and prevent clipping. Therefore, the pixel circuit 310 can increase the accuracy of fingerprint recognition.
  • FIG. 6 is a graph showing an output voltage according to an embodiment of the present disclosure.
  • the horizontal axis of graph 600 represents time.
  • the vertical axis of the graph 600 represents the output voltage.
  • the output voltage 620 of the prior art will be described with reference to FIG. 2.
  • the output voltage 620 represents the voltage at the output line OUT of the prior art.
  • the transistor component T1 is turned on based on the signal of the base terminal, and the light receiving element is not receiving light.
  • the capacitor component (CINT) is filled based on VREF.
  • the output voltage 620 of the output line OUT is maintained at VREF.
  • the integration step is a step in which the light receiving element receives light.
  • the light-receiving element receives light to generate electric current, and discharges charges charged in the capacitor component CINT.
  • the transistor component T1 may be turned off.
  • the output voltage 620 may be rapidly reduced. This is because the capacitor component CINT can be completely discharged because the direct light current 420 generated from the light-receiving element is large due to light by the self-emitting element or light from the outside as described in FIG. 4. Since light by the self-luminous element or light from the outside is relatively strong, light reflected from the fingerprint can hardly affect the output voltage 620.
  • the sense-out step is a step in which the system including the pixel circuit 210 reads the signal of the output line OUT of the pixel circuit 210.
  • the system including the pixel circuit 210 receives the signal while the output voltage 620 is kept low. Since the light reflected from the fingerprint can hardly affect the output voltage 620, the system can be difficult to sense the signal generated based on the light by the fingerprint from the output line OUT.
  • the output voltage 610 represents the voltage at the output line OUT.
  • the transistor component T1 is turned on based on the signal of the base terminal, and the light receiving element is in a state that does not receive light.
  • the capacitor component (CINT) is charged based on VREF/2.
  • the output voltage 610 of the output line OUT is maintained at VREF/2.
  • the integration step is a step in which the light receiving element receives light.
  • the first light receiving element 311 and the second light receiving element 312 receive light to generate a current.
  • the transistor component T1 may be turned off.
  • the first light-receiving element 311 and the second light-receiving element 312 may generate different currents by the light reflected from the fine valleys or floors of the fingerprint.
  • the first light receiving element 311 may charge the capacitor CINT.
  • the second light receiving element 312 may discharge the capacitor CINT.
  • the current flowing through the capacitor component CINT may be a difference signal between the first signal generated by the first light receiving element 311 and the second signal generated by the second light receiving element 312.
  • the first signal and the second signal are commonly influenced by light from the self-emitting device and light from the outside. Therefore, the differential signal based on the first signal and the second signal may not be affected by light from the self-luminous element and light from the outside.
  • the magnitude of the differential signal may be smaller than the magnitude of the current generated in the light-receiving element based on light from the self-emitting element and light from the outside. Therefore, the output voltage 610 based on the capacitor component CINT may be gradually increased or decreased by the differential signal.
  • the capacitor CINT When the first signal generated by the first light-receiving element 311 is greater than the second signal generated by the second light-receiving element 312, the capacitor CINT may be charged because a current will flow through the capacitor CINT. Therefore, the output voltage 610 may be gradually increased. Conversely, when the first signal generated by the first light-receiving element 311 is smaller than the second signal generated by the second light-receiving element 312, since the current will be supplied from the capacitor component CINT, the capacitor CINT is discharged. Can. Therefore, the output voltage 610 may be gradually lowered.
  • the sense-out step is a step in which the system including the pixel circuit 310 reads the signal of the output line OUT of the pixel circuit 310.
  • the system may determine that the first light receiving element 311 has received more light than the second light receiving element 312.
  • the system may determine that the first light receiving element 311 has received less light than the second light receiving element 312. The system can accurately recognize the fingerprint based on the output voltage 610.
  • FIG. 7 is a diagram illustrating a pixel circuit according to an embodiment of the present disclosure.
  • the pixel circuit 700 may include a first light receiving element 711 and a second light receiving element 712. Also, the pixel circuit 700 may include a pixel control circuit.
  • the pixel control circuit includes the first transistor T1, the second transistor T4, the third transistor T5, the fourth transistor T7, the fifth transistor T10, the sixth transistor T9, and the seventh transistor ( T8), the first capacitor (C1) and may further include a second capacitor (C2).
  • the first terminal or the second terminal of the transistors may be a source terminal or a drain terminal.
  • the transistors can be turned on or off depending on the signal at the gate terminal.
  • the first terminal of the first transistor T1 is connected to the data line, the second terminal of the first transistor is connected to the first node 731, and the gate terminal of the first transistor T1 is the n-th scan line ( Scan(n)).
  • the first terminal of the second transistor T4 is connected to the second node 732, the second terminal of the second transistor T4 is connected to the third node 733, and the gate of the second transistor T4 The terminal can be connected to the fourth node 734.
  • the first terminal of the third transistor T5 is connected to the fourth node 734, the second terminal of the third transistor T5 is connected to the third node 733, and the gate of the third transistor T5
  • the terminal may be connected to the n-1th scan line (Scan(n-1)).
  • the first terminal of the fourth transistor T7 is connected to the first node 731, the second terminal of the fourth transistor T7 is connected to the cathode terminal of the second light receiving element 712, The gate terminal of the 4 transistor T7 may be connected to the first sensing line Sen.
  • the first terminal of the fifth transistor T10 is connected to the anode terminal of the first light receiving element 711, the second terminal of the fifth transistor T10 is connected to the first node 731 node, and the fifth The gate terminal of the transistor T10 may be connected to the first sensing line Sen.
  • the first terminal of the sixth transistor T9 is connected to the third node 733, the second terminal of the sixth transistor T9 is grounded, and the gate terminal of the sixth transistor T9 is the first sensing line ( Sen).
  • the first terminal of the seventh transistor T8 is connected to the second node 732, the second terminal of the seventh transistor T8 is connected to the output line OUT, and the gate terminal of the seventh transistor T8 May be connected to the second sensing line Sen2.
  • the first terminal of the first capacitor C1 may be connected to the first node 731, and the second terminal of the first capacitor C1 may be connected to the fourth node 734.
  • the first terminal of the second capacitor C2 is connected to the first node 731, and the second terminal of the second capacitor C2 can be grounded.
  • the cathode terminal of the first light receiving element 711 may be connected to a power source VDD, and the second light receiving element 712 may be grounded.
  • the pixel control circuit may further include an eighth transistor T2, a ninth transistor T3, a tenth transistor T6, and a self-emitting device OLED.
  • the first terminal of the eighth transistor T2 is connected to the power supply VDD, the second terminal of the eighth transistor T2 is connected to the first node 731, and the gate terminal of the eighth transistor T2 is It may be connected to the n-1 th scan line (Scan(n-1)).
  • the first terminal of the ninth transistor T3 is connected to the power supply, the second terminal of the ninth transistor T3 is connected to the second node 732, and the gate terminal of the ninth transistor T3 is the first emie. It may be connected to the emission line EM1.
  • the first terminal of the tenth transistor T6 is connected to the third node 733, the second terminal of the tenth transistor T6 is connected to the anode terminal of the self-emission device OLED, and the tenth transistor ( The gate terminal of T6) may be connected to the second emission line EM2.
  • the cathode terminal of the self-emitting device OLED may be grounded.
  • FIG. 8 is a diagram illustrating a pixel circuit according to an embodiment of the present disclosure.
  • the pixel circuit 800 of FIG. 8 implements a structure capable of differential optical fingerprint sensing by adding a transistor and an optical sensor to the optical fingerprint sensing pixel circuit using internal compensation.
  • the pixel circuit 800 may include a first light receiving element 811 and a second light receiving element 812. Also, the pixel circuit 800 may include a pixel control circuit.
  • the pixel control circuit includes the first transistor M1, the second transistor M4, the third transistor M2, the fourth transistor M8, the fifth transistor M11, the sixth transistor M9, and the seventh transistor ( M10) may be further included.
  • the first terminal of the first transistor M3 is connected to the data line Data, the second terminal of the first transistor M3 is connected to the first node 831, and the gate terminal of the first transistor M3 May be connected to the nth scan line (Scan(n)).
  • the first terminal of the second transistor M4 is connected to the first node 831
  • the second terminal of the second transistor M4 is connected to the second node 832
  • the gate of the second transistor M4 The terminal may be connected to the third node 833.
  • the first terminal of the third transistor M2 is connected to the third node 833, the second terminal of the third transistor M2 is connected to the second node 832, and the gate of the third transistor M2 is The terminal may be connected to the n-th scan line (Scan(n)).
  • the first terminal of the fourth transistor M8 is connected to the third node 833, the second terminal of the fourth transistor M8 is connected to the cathode terminal of the second light receiving element 812,
  • the gate terminal of the 4 transistor M8 may be connected to the first sensing line Sen.
  • the first terminal of the fifth transistor M11 is connected to the anode terminal of the first light receiving element 811, the second terminal of the fifth transistor M11 is connected to the third node 833, The gate terminal of the fifth transistor M11 may be connected to the first sensing line Sen.
  • the first terminal of the sixth transistor M9 is connected to the second node 832, the second terminal of the sixth transistor M9 is grounded, and the gate terminal of the sixth transistor M9 is the first sensing line ( Sen).
  • the first terminal of the seventh transistor M10 is connected to the first node 831, the second terminal of the seventh transistor M10 is connected to the output line OUT, and the gate terminal of the seventh transistor M10 May be connected to the second sensing line Sen2.
  • the cathode terminal of the first light receiving element 811 may be connected to a power source VDD, and the anode terminal of the second light receiving element 812 may be grounded.
  • the pixel control circuit may further include an eighth transistor M1, a ninth transistor M7, a tenth transistor M5, an eleventh transistor M6, a capacitor CST, and a self-luminous element OLED. .
  • the first terminal of the eighth transistor M1 is connected to the initialization line (Initial), the second terminal of the eighth transistor M1 is connected to the third node 833, and the gate terminal of the eighth transistor M1 May be connected to the n-1th scan line (Scan(n-1)).
  • the first terminal of the ninth transistor M7 is connected to the initialization line (Initial), the second terminal of the ninth transistor M7 is connected to the anode terminal of the self-emitting device OLED, and the ninth The gate terminal of the transistor M7 may be connected to the n-1 th scan line Scan(n-1).
  • the first terminal of the tenth transistor M5 is connected to the power supply, the second terminal of the tenth transistor M5 is connected to the first node 831, and the gate terminal of the tenth transistor M5 is the emission ( emission) line EM.
  • the first terminal of the eleventh transistor M6 is connected to the second node 832, the second terminal of the eleventh transistor M6 is connected to the anode terminal of the self-emitting device OLED, and the eleventh transistor ( The gate terminal of M6) may be connected to the emission line EM.
  • the first terminal of the capacitor CST may be connected to a power source, and the second terminal of the capacitor CST may be connected to the third node 833.
  • the cathode terminal of the self-emitting device OLED may be grounded.
  • the pixel circuit 800 may receive an initialization signal from an initialization line (Initial).
  • the pixel circuit can acquire a data signal from the data line Data.
  • the pixel circuit 800 may receive an emission signal from the emission line EM.
  • the pixel circuit 800 may receive an n-th scan signal from the n-th scan line Scan(n).
  • the pixel circuit may receive an n-1th scan signal from an n-1th scan line (Scan(n-1)).
  • n can be a positive integer.
  • n may represent a frame of an image to be displayed in the pixel circuit.
  • the n-th scan signal may be a scan signal for the n-th frame.
  • the system including the pixel circuit 800 may operate the at least one of an n-th scan signal, an n-1th scan signal, an initialization signal, a data signal, and an emission signal to emit the self-emitting device OLED.
  • the system can include a processor or memory.
  • the processor may operate at least one of an n-th scan signal, an n-1th scan signal, an initialization signal, a data signal, and an emission signal according to instructions or data included in the memory.
  • the system including the pixel circuit 800 may perform the step of resetting the previous frame data based on the initialization signal.
  • the system including the pixel circuit 800 may perform the step of compensating the threshold voltage Vth of the second transistor M4 and applying the data signal based on at least one of the data signal and the n-th scan signal. .
  • the system including the pixel circuit 800 may perform the step of changing the voltage of the third node 833 based on the currents of the first light receiving element 811 and the second light receiving element 812.
  • the voltage of the third node 833 which is the gate terminal voltage of the second transistor M4, and the first node, which is the first terminal of the second transistor M4, through the source follower operation ( 831).
  • the system including the pixel circuit 800 may perform the step of outputting the voltage of the first node 831 to the output line OUT.
  • the system including the pixel circuit 800 may perform the step of resetting the previous frame data.
  • the eighth transistor M1 and the ninth transistor M7 may operate.
  • the system may transmit at least one of an n-1th scan signal and an initialization signal to the pixel circuit 800.
  • the pixel circuit 800 may receive an n-1 th scan signal from an n-1 th scan line (Scan(n-1)).
  • the pixel circuit 800 may receive an initialization signal from an initialization line (Initial).
  • the eighth transistor M1 and the ninth transistor M7 may reset data of a previous frame based on the n-1th scan signal and the initialization signal.
  • the system including the pixel circuit 800 may perform a step of compensating the threshold voltage Vth of the second transistor M4 and applying a data signal.
  • the first transistor M3 and the third transistor M2 may operate.
  • the system may transmit at least one of an n-th scan signal and a data signal to the pixel circuit 800.
  • the pixel circuit 800 may receive an n-th scan signal from the n-th scan line Scan(n).
  • the pixel circuit 800 may receive a data signal from the data line Data.
  • the first transistor M1 may apply a data signal to the first node.
  • the third transistor M2 may compensate for the threshold voltage Vth of the second transistor M4.
  • the system including the pixel circuit 800 may perform an integration phase.
  • the integration phase may include changing the voltage of the third node 833 which is the gate terminal of the second transistor M4 based on the currents of the first light receiving element 811 and the second light receiving element 812. have.
  • the integration phase may include transmitting the gate terminal voltage of the second transistor M4 to the first node 831 which is the first terminal of the second transistor M4 through the source follower operation.
  • a system including the pixel circuit 800 may transmit a first sensing signal to the pixel circuit 800.
  • the pixel circuit 800 may receive a first sensing signal from the first sensing line Sen.
  • the first light receiving element 811 and the second light receiving element 812 may generate a current according to the received light amount.
  • the fourth transistor M8 and the fifth transistor M11 are the third node 833 based on the first sensing signal, the current by the first light receiving element 811 and the current by the second light receiving element 812. Voltage can be applied.
  • the voltage applied to the third node 833 by the source follower operation of the second transistor M4 may be transmitted to the first node 831.
  • the system including the pixel circuit 800 may perform the step of outputting the voltage of the first node 831 to the output line OUT.
  • the system may transmit a second sensing signal to the pixel circuit 800.
  • the pixel circuit 800 may receive a second sensing signal from the second sensing line Sen2. Based on the second sensing signal, the seventh transistor M10 may output the voltage of the first node 831 to the output line OUT.
  • the system can receive the output of the pixel circuit 800 as data. Further, the system may perform fingerprint recognition based on data received from a plurality of pixel circuits.
  • FIG. 9 is a diagram illustrating a pixel circuit according to an embodiment of the present disclosure.
  • the pixel circuit 900 of FIG. 9 implements a structure capable of differential optical fingerprint sensing by adding a transistor and an optical sensor to the optical fingerprint sensing pixel circuit using external compensation.
  • the pixel circuit 900 may include a first light receiving element 911 and a second light receiving element 912. Also, the pixel circuit 900 may include a pixel control circuit.
  • the pixel control circuit may include a first transistor M1, a second transistor M2, a third transistor M4, a fourth transistor M7, a fifth transistor M5, and a sixth transistor M6. .
  • the first terminal of the first transistor M1 is connected to the data line Data, the second terminal of the first transistor M1 is connected to the first node 931, and the gate terminal of the first transistor M1 May be connected to the nth scan line (Scan(n)).
  • the first terminal of the second transistor M2 is connected to the second node 932, the second terminal of the second transistor M2 is connected to the third node 933, and the gate of the second transistor M2 The terminal may be connected to the first node 931.
  • the first terminal of the third transistor M4 is connected to the first node 931, the second terminal of the third transistor M4 is connected to the cathode terminal of the second light receiving element 912,
  • the gate terminal of the 3 transistor M4 may be connected to the first sensing line Sen.
  • the first terminal of the fourth transistor M7 is connected to the anode terminal of the first light receiving element 911, the second terminal of the fourth transistor M7 is connected to the first node 931, and the fourth transistor The gate terminal of M7 may be connected to the first sensing line Sen.
  • the first terminal of the fifth transistor M5 is connected to the third node 933, the second terminal of the fifth transistor M5 is grounded, and the gate terminal of the fifth transistor M5 is the first sensing line ( Sen).
  • the first terminal of the sixth transistor M6 is connected to the second node 932, the second terminal of the sixth transistor M6 is connected to the output line OUT, and the gate terminal of the sixth transistor M6 is May be connected to the second sensing line Sen2.
  • the cathode terminal of the first light-receiving element 911 may be connected to a power source VDD, and the anode terminal of the second light-receiving element 912 may be grounded.
  • the pixel control circuit may further include a seventh transistor M3, a capacitor CST, and a self-emitting device OLED.
  • the first terminal of the seventh transistor M3 is connected to the power supply VDD, the second terminal of the seventh transistor M3 is connected to the second node 932, and the gate terminal of the seventh transistor M3 is It may be connected to the emission line EM.
  • the first terminal of the capacitor CST may be connected to the power supply VDD, and the second terminal of the capacitor CST may be connected to the first node 931.
  • the anode terminal of the self-emitting device OLED may be connected to the third node 933, and the cathode terminal of the self-emitting device OLED may be grounded.
  • FIG. 10 is a graph showing an output voltage according to an embodiment of the present disclosure.
  • the horizontal axis of the graph 1000 represents time.
  • the horizontal axis of the graph may represent one frame time of the integration phase.
  • the vertical axis of the graph 1000 represents the voltage of the first node 831.
  • the graph 1000 may represent a case where a ratio of low temperature polysilicon (LTPS) thin film transistor (TFT) leakage, direct light and light reflected from a fingerprint is 1:100:0.1. Direct light may include offset and noise.
  • LTPS low temperature polysilicon
  • TFT thin film transistor
  • the voltage by the self-light-emitting element and the light from the outside are so strong that the voltage may be equal to the line 1061 regardless of whether there is light from the fingerprint. Therefore, the accuracy of fingerprint sensing may be low in a system including a pixel circuit.
  • the pixel circuit 800 according to an embodiment of the present disclosure may increase the accuracy of fingerprint sensing as described below.
  • Line 1011 represents a case in which the light reflected from the fingerprint is received only by the first light receiving element 811 in the integration phase. That is, the second light receiving element 812 is a case where the amount of light converged to almost zero because the light reflected from the fingerprint is too small.
  • the first light receiving element 811 may generate a first signal based on light reflected from the fingerprint (fingerprint light), and light from the self-light emitting element and light from the outside (direct light). Since the second light receiving element 812 has not received the light (fingerprint light) reflected from the fingerprint, the second light receiving element 812 may generate a second signal based on light from the self-emitting element and light from the outside (direct light). Since the second signal does not include fingerprint light, the first signal may have a larger value than the second signal. The difference signal between the first signal and the second signal may charge the capacitor CST.
  • the voltage of the third node 833 may increase gradually.
  • the voltage of the first node 831 may also be gradually increased by the source follower operation of the second transistor M4. Therefore, the voltage of the first node 831 may be the same as the line 1011.
  • Line 1012 represents a case in which the amount of light converges to almost zero because the light reflected from the fingerprints received by the first light receiving element 811 and the second light receiving element 812 in the integration phase is too small.
  • the bone of the fingerprint is too dark, so the fingerprint may not reflect light, and the first light receiving element 811 and the second light receiving element 812 may not receive light from the fingerprint.
  • the first light-receiving element 811 may generate a first signal based on light from the self-luminous element and light from the outside (direct light).
  • the second light-receiving element 812 may generate a second signal based on light from the self-luminous element and light from the outside (direct light).
  • the difference signal between the first signal and the second signal may be almost equal to zero. Therefore, the voltage of the third node 833 may hardly change.
  • the voltage of the first node 831 may also be unchanged by the source follower operation of the second transistor M4. Therefore, the voltage of the first node 831 may be the same as the line 1012.
  • Line 1013 represents a case in which the light reflected from the fingerprint is received only by the second light receiving element 812 in the integration phase.
  • the first light receiving element 811 has too little light reflected from the fingerprint, so the amount of light can converge to almost zero. For example, since the floor of the fingerprint is bright, the fingerprint reflects light so that the second light receiving element 812 can receive the reflected light from the fingerprint. In addition, the valley of the fingerprint is too dark, so the fingerprint may not reflect light, and as a result, the first light receiving element 812 may not receive light from the fingerprint.
  • the second light-receiving element 812 may generate a second signal based on light reflected from the fingerprint (fingerprint light) and light from the self-emitting element and light from the outside (direct light). Since the first light receiving element 811 has not received light (fingerprint light) from the fingerprint, it is possible to generate a first signal based on light from the self-light emitting element and light from the outside (direct light).
  • the second signal may have a larger value than the first signal due to light from the fingerprint.
  • the difference signal between the first signal and the second signal may discharge the capacitor CST.
  • the voltage of the third node 833 may gradually decrease.
  • the voltage of the first node 831 may also be gradually lowered by the source follower operation of the second transistor M4. Therefore, the voltage of the first node 831 may be the same as the line 1013.
  • the voltage of the first node 831 may be transmitted to the output line OUT by the operation of the seventh transistor M10.
  • the system may perform fingerprint recognition based on the output signal transmitted from the output line OUT. Since the voltage of the first node 831 changes according to whether the first light-receiving element 811 and the second light-receiving element 812 receive light from the fingerprint, the system including the pixel circuit 800 accurately recognizes the fingerprint. Can be done accurately.
  • the pixel circuit 800 can reduce the influence of the light by the self-luminous element and the light from the outside and the influence of noise. In addition, the pixel circuit 800 can prevent clipping caused by light from the self-luminous element and light from the outside. Also, since the pixel circuit 800 can perform fingerprint recognition using only light (fingerprint light) reflected by the fingerprint, the signal noise ratio (SNR) can be increased.
  • SNR signal noise ratio
  • FIG. 11 is a graph showing an output voltage according to an embodiment of the present disclosure.
  • the horizontal axis of graph 1100 represents time.
  • the horizontal axis of the graph may represent one frame time of the integration phase.
  • the vertical axis of the graph 1100 represents the voltage of the first node 831.
  • the graph 1100 may represent a case in which the ratio of low temperature polysilicon (LTPS) thin film transistor (TFT) leakage, direct light and light reflected from a fingerprint is 10:100:0.1. Direct light may include offset and noise.
  • LTPS low temperature polysilicon
  • TFT thin film transistor
  • the voltage may be the same as the line 1161 regardless of whether there is light reflected from the fingerprint because the light from the self-emitting element and the light from the outside are too strong. Therefore, the accuracy of fingerprint sensing may be low in a system including a pixel circuit.
  • the pixel circuit 800 according to an embodiment of the present disclosure may increase the accuracy of fingerprint sensing as described below.
  • Line 1111 shows a case in which the first light receiving element 811 receives more light reflected from the fingerprint than the second light receiving element 812 in the integration phase.
  • line 1111 may indicate a case in which the first light receiving element 811 receives light reflected from a bright portion of the fingerprint and the second light receiving element 812 receives light reflected from a dark portion of the fingerprint. have.
  • the first light receiving element 811 may generate a first signal based on light reflected from the fingerprint (fingerprint light) and light from the self-light emitting element and light from the outside (direct light).
  • the second light receiving element 812 may generate a second signal based on light reflected from the fingerprint (fingerprint light) and light from the self-emitting element and light from the outside (direct light). Since the first light receiving element 811 receives more light reflected from the fingerprint than the second light receiving element 812, the first signal may have a larger value than the second signal.
  • the difference signal between the first signal and the second signal may charge the capacitor CST.
  • the voltage of the third node 833 may increase gradually.
  • the voltage of the first node 831 may also be gradually increased by the source follower operation of the second transistor M4. Therefore, the voltage of the first node 831 may be the same as the line 1111.
  • the line 1112 may indicate a case in which the size of the fingerprint light (light reflected from the fingerprint) received by the first light receiving element 811 and the second light receiving element 812 in the integration phase is the same.
  • the first light receiving element 811 may generate a first signal based on light reflected from the fingerprint (fingerprint light) and light from the self-light emitting element and light from the outside (direct light).
  • the second light receiving element 812 may generate a second signal based on light reflected from the fingerprint (fingerprint light) and light from the self-emitting element and light from the outside (direct light).
  • the difference signal between the first signal and the second signal may be almost equal to zero. Therefore, the voltage of the third node 833 may hardly change.
  • the voltage of the first node 831 may also be unchanged by the source follower operation of the second transistor M4. Therefore, the voltage of the first node 831 may be the same as the line 1112.
  • Line 1113 shows a case in which the first light receiving element 811 receives less light reflected from the fingerprint than the second light receiving element 812 in the integration phase.
  • line 1113 may indicate a case in which the first light receiving element 811 receives light reflected from a dark portion of the fingerprint and the second light receiving element 812 receives light reflected from a bright portion of the fingerprint. have.
  • the first light receiving element 811 may generate a first signal based on light reflected from the fingerprint (fingerprint light) and light from the self-light emitting element and light from the outside (direct light).
  • the second light receiving element 812 may generate a second signal based on light reflected from the fingerprint (fingerprint light) and light from the self-emitting element and light from the outside (direct light). Since the first light receiving element 811 receives less light reflected from the fingerprint than the second light receiving element 812, the first signal may have a smaller value than the second signal.
  • the difference signal between the first signal and the second signal may discharge the capacitor CST.
  • the voltage of the third node 833 may gradually decrease.
  • the voltage of the first node 831 may also be gradually lowered by the source follower operation of the second transistor M4. Therefore, the voltage of the first node 831 may be the same as the line 1113.
  • the voltage of the first node 831 may be transmitted to the output line OUT by the operation of the seventh transistor M10.
  • the system may perform fingerprint recognition based on the output signal transmitted from the output line OUT. Since the voltage of the first node 831 changes according to whether the first light-receiving element 811 and the second light-receiving element 812 receive light from the fingerprint, the system including the pixel circuit 800 accurately recognizes the fingerprint. Can be done accurately.
  • the pixel circuit 800 can reduce the influence of light by a self-luminous element, light from outside, and noise. In addition, the pixel circuit 800 can prevent clipping caused by light from the self-luminous element and light from the outside. Also, since the pixel circuit 800 can perform fingerprint recognition using only the light reflected by the fingerprint, the signal noise ratio (SNR) can be increased.
  • SNR signal noise ratio
  • the above-described embodiments of the present disclosure can be written in a program executable on a computer and can be implemented in a general-purpose digital computer that operates the program using a computer-readable recording medium.
  • the computer-readable recording medium includes a storage medium such as a magnetic storage medium (eg, ROM, floppy disk, hard disk, etc.), an optical reading medium (eg, CD-ROM, DVD, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Image Input (AREA)

Abstract

광학 지문 센싱 회로를 포함한 화소 회로, 광학 지문 센싱 회로를 포함한 화소 회로의 구동 방법 및 광학 지문 센싱 회로를 포함한 화소 회로를 포함하는 표시 장치가 개시된다. 본 개시에 따른 광학 지문 센싱 회로를 포함한 화소 회로는 빛을 수신하여 제 1 신호를 생성하는 제 1 수광 소자, 빛을 수신하여 제 2 신호를 생성하는 제 2 수광 소자 및 상기 제 1 신호와 상기 제 2 신호의 차분 신호를 수신하여 출력 신호를 출력하고, 적어도 하나의 트랜지스터 성분과 적어도 하나의 캐패시터 성분을 포함하고, 데이터 신호에 기초하여 빛을 출력하는 자발광 소자를 포함하는 화소 제어회로를 포함한다.

Description

광학 지문 센싱 회로를 포함한 화소 회로, 화소 회로의 구동 방법, 및 유기 발광 표시 장치
본 개시는 광학 지문 센싱 회로를 포함한 화소 회로, 광학 지문 센싱 회로를 포함한 화소 회로의 구동 방법 및 광학 지문 센싱 회로를 포함한 화소 회로를 포함하는 표시 장치(Pixel circuit including optical fingerprint sensing circuit, Method for driving the pixel circuit and Display device)에 관한 것이다.
본 발명은 2018년 12월 31일에 출원된 한국특허출원 제 10-2018-0173480 호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
화상 표시 장치는 노트북 컴퓨터, 태블릿 피시(tablet PC), 스마트폰(smart phone), 개인 휴대용 정보 단말기(Personal Digital Assistant), 현금 자동 입출금기(Automated Teller Machine), 검색 안내 시스템 등과 같은 컴퓨터 기반 시스템(computer based system)에서 사용되고 있다. 이들 시스템에는 통상적으로 개인 사생활과 관련된 개인정보는 물론 영업정보나 영업기밀과 같이 비밀을 요하는 많은 데이터가 저장되어 있다. 이들 데이터를 보호하기 위해서는 보안을 강화해야 할 필요성이 있다.
보안 강화를 위한 방법으로 손가락의 지문을 활용할 수 있다. 손가락의 지문이 컴퓨터 기반 시스템에 활용됨에 따라, 특히 스마트폰에 많이 활용될 것으로 예상되는 지문 인식 소자를 포함한 화상 표시 장치에 대한 연구가 활발히 진행되고 있다.
일반적으로 지문 센싱 회로를 갖는 화상 표시 장치는 광학 센싱 방식 또는 정전 용량 방식으로 지문을 인식한다.
광학 센싱 방식으로 지문을 인식하는 화상 표시 장치는 표시 패널에 지문 센서로써 수광 소자를 포함한 지문 인식회로가 구비된다. 상기 수광 소자는 표시 패널로부터 출사 되어 지문에 의해 반사된 광을 센싱하여 광전류를 생성한다. 이때, 수광 소자로부터 발생되는 광전류의 양은 광을 반사시킨 물체가 지문의 융선(Ridge)인지 또는 골(Valley)인지에 따라 가변 된다. 지문 인식회로는 광전류의 변화량을 통하여 지문의 형태를 인식한다.
광학 센싱 방식으로 지문을 인식하기 위해서는 예시적으로 500PPI 이상의 고해상도를 가지는 지문인식회로가 필요하다.
본 발명의 발명자들은 고해상도의 지문인식회로 개발을 위해서, 지문인식회로와 화소회로의 중복된 소자를 제거하고 지문인식회로와 화소회로를 통합의 필요성을 인식하였다.
화소회로와 지문인식회로가 통합되는 경우, 화소회로와 지문인식회로의 거리가 가깝기 때문에, 자발광 소자에서 출사된 빛의 상당량이 지문에 도달하지 못하고 유리 또는 전극(electrode)에 반사되어 화소회로의 수광 소자로 돌아올 수 있다. 또한 수광 소자는 표시 장치 외부로부터 입사된 빛, 예를 들면 태양광이나 실내 조명기기의 빛을 수신할 수도 있다. 이러한 직광이 지문인식회로에 입사되는 경우, 직광은 지문광 보다 광량이 클 수 있기 때문에, 수광 소자는 지문에 반사된 빛을 제대로 인식하지 못할 수 있다. 최종적으로는 지문인식회로의 지문인식률이 낮아지는 문제가 발생한다. 본 발명의 발명자들은 상술한 문제점들을 개선하기 위한 연구를 하였다.
이에, 본 개시는 전술한 문제점을 해결하기 위하여 안출된 것으로, 지문에 반사되지 않은 직광에 영향을 받지 않고, 지문을 인식하는 통합된 화소회로를 제공하는 것을 기술적 과제로 한다.
본 개시는, 광학 지문 센싱 회로를 포함한 화소회로로서, 상기 화소회로는, 화상을 표시하는 자발광 소자; 상기 자발광 소자에서 출사되어 사용자의 지문을 통해 반사된 광을 수광하여 광전류로 변환하는 수광소자; 및 화소 제어회로; 를 포함하고, 상기 수광소자는, 제 1 신호를 생성하는 제 1 수광 소자; 및 제 2 신호를 생성하는 제 2 수광 소자를 포함하고, 상기 화소 제어회로는 상기 제 1 신호와 상기 제 2 신호를 연산하여 출력 신호를 생성하고, 적어도 하나의 트랜지스터 성분과 적어도 하나의 캐패시터 성분을 포함하는 것을 특징으로 한다.
상기 화소 제어회로는, 상기 제 1 신호와 상기 제 2 신호를 차분하여 노이즈 신호가 제거된 출력신호를 생성하는 것을 특징으로 한다.
상기 화소 제어회로는 제 1 트랜지스터, 제 2 트랜지스터, 제 3 트랜지스터, 제 4 트랜지스터, 제 5 트랜지스터, 제 6 트랜지스터, 제 7 트랜지스터, 제 1 캐패시터 및 제 2 캐패시터를 더 포함하고, 상기 제 1 트랜지스터의 제 1 단자는 데이터라인에 연결되고, 상기 제 1 트랜지스터의 제 2 단자는 제 1 노드에 연결되고, 상기 제 1 트랜지스터의 게이트 단자는 n 번째 스캔라인에 연결되고, 상기 제 2 트랜지스터의 제 1 단자는 제 2 노드에 연결되고, 상기 제 2 트랜지스터의 제 2 단자는 제 3 노드에 연결되고, 상기 제 2 트랜지스터의 게이트 단자는 제 4 노드에 연결되고, 상기 제 3 트랜지스터의 제 1 단자는 상기 제 4 노드에 연결되고, 상기 제 3 트랜지스터의 제 2 단자는 상기 제 3 노드에 연결되고, 상기 제 3 트랜지스터의 게이트 단자는 n-1 번째 스캔라인에 연결되고, 상기 제 4 트랜지스터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 4 트랜지스터의 제 2 단자는 상기 제 2 수광 소자의 캐소드(Cathode) 단자에 연결되고, 상기 제 4 트랜지스터의 게이트 단자는 제 1 센싱(sensing) 라인에 연결되고, 상기 제 5 트랜지스터의 제 1 단자는 상기 제 1 수광 소자의 아노드 단자에 연결되고, 상기 제 5 트랜지스터의 제 2 단자는 상기 제 1 노드에 연결되고, 상기 제 5 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고, 상기 제 6 트랜지스터의 제 1 단자는 상기 제 3 노드에 연결되고, 상기 제 6 트랜지스터의 제 2 단자는 접지되고, 상기 제 6 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고, 상기 제 7 트랜지스터의 제 1 단자는 상기 제 2 노드에 연결되고, 상기 제 7 트랜지스터의 제 2 단자는 출력 라인에 연결되고, 상기 제 7 트랜지스터의 게이트 단자는 제 2 센싱 라인에 연결되고, 상기 제 1 캐패시터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 1 캐패시터의 제 2 단자는 상기 제 4 노드에 연결되고, 상기 제 2 캐패시터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 2 캐패시터의 제 2 단자는 접지되고, 상기 제 1 수광 소자의 캐소드 단자는 전원(VDD)에 연결되고, 상기 제 2 수광 소자는 접지되는 것을 특징으로 한다.
또한, 상기 화소 제어회로는 제 8 트랜지스터, 제 9 트랜지스터, 및 제 10 트랜지스터를 더 포함하고, 상기 제 8 트랜지스터의 제 1 단자는 전원(VDD)에 연결되고, 상기 제 8 트랜지스터의 제 2 단자는 상기 제 1 노드에 연결되고, 상기 제 8 트랜지스터의 게이트 단자는 상기 n-1 번째 스캔라인에 연결되고, 상기 제 9 트랜지스터의 제 1 단자는 상기 전원에 연결되고, 상기 제 9 트랜지스터의 제 2 단자는 상기 제 2 노드에 연결되고, 상기 제 9 트랜지스터의 게이트 단자는 제 1 에미션(emission)라인에 연결되고, 상기 제 10 트랜지스터의 제 1 단자는 상기 제 3 노드에 연결되고, 상기 제 10 트랜지스터의 제 2 단자는 상기 자발광 소자의 아노드 단자에 연결되고, 상기 제 10 트랜지스터의 게이트 단자는 제 2 에미션 라인에 연결되고, 상기 자발광 소자의 캐소드 단자는 접지되는 것을 특징으로 한다.
또한, 상기 화소 제어회로는 제 1 트랜지스터, 제 2 트랜지스터, 제 3 트랜지스터, 제 4 트랜지스터, 제 5 트랜지스터, 제 6 트랜지스터 및 제 7 트랜지스터를 더 포함하고, 상기 제 1 트랜지스터의 제 1 단자는 데이터라인에 연결되고, 상기 제 1 트랜지스터의 제 2 단자는 제 1 노드에 연결되고, 상기 제 1 트랜지스터의 게이트 단자는 n 번째 스캔라인에 연결되고, 상기 제 2 트랜지스터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 2 트랜지스터의 제 2 단자는 제 2 노드에 연결되고, 상기 제 2 트랜지스터의 게이트 단자는 제 3 노드에 연결되고, 상기 제 3 트랜지스터의 제 1 단자는 상기 제 3 노드에 연결되고, 상기 제 3 트랜지스터의 제 2 단자는 상기 제 2 노드에 연결되고, 상기 제 3 트랜지스터의 게이트 단자는 상기 n 번째 스캔라인에 연결되고, 상기 제 4 트랜지스터의 제 1 단자는 상기 제 3 노드에 연결되고, 상기 제 4 트랜지스터의 제 2 단자는 상기 제 2 수광 소자의 캐소드(Cathode) 단자에 연결되고, 상기 제 4 트랜지스터의 게이트 단자는 제 1 센싱(sensing) 라인에 연결되고, 상기 제 5 트랜지스터의 제 1 단자는 상기 제 1 수광 소자의 아노드(Anode) 단자에 연결되고, 상기 제 5 트랜지스터의 제 2 단자는 상기 제 3 노드에 연결되고, 상기 제 5 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고, 상기 제 6 트랜지스터의 제 1 단자는 상기 제 2 노드에 연결되고, 상기 제 6 트랜지스터의 제 2 단자는 접지되고, 상기 제 6 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고, 상기 제 7 트랜지스터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 7 트랜지스터의 제 2 단자는 출력 라인에 연결되고, 상기 제 7 트랜지스터의 게이트 단자는 제 2 센싱 라인에 연결되고, 상기 제 1 수광 소자의 캐소드 단자는 전원(VDD)에 연결되고, 상기 제 2 수광 소자의 아노드 단자는 접지되는 것을 특징으로 한다.
또한, 상기 화소 제어회로는 제 8 트랜지스터, 제 9 트랜지스터, 제 10 트랜지스터, 및 제 11 트랜지스터를 더 포함하고, 상기 제 8 트랜지스터의 제 1 단자는 초기화 라인에 연결되고, 상기 제 8 트랜지스터의 제 2 단자는 상기 제 3 노드에 연결되고, 상기 제 8 트랜지스터의 게이트 단자는 n-1 번째 스캔라인에 연결되고, 상기 제 9 트랜지스터의 제 1 단자는 초기화라인에 연결되고, 상기 제 9 트랜지스터의 제 2 단자는 상기 자발광 소자의 아노드(anode) 단자에 연결되고, 상기 제 9 트랜지스터의 게이트 단자는 상기 n-1 번째 스캔라인에 연결되고, 상기 제 10 트랜지스터의 제 1 단자는 상기 전원에 연결되고, 상기 제 10 트랜지스터의 제 2 단자는 상기 제 1 노드에 연결되고, 상기 제 10 트랜지스터의 게이트 단자는 에미션(emission)라인에 연결되고, 상기 제 11 트랜지스터의 제 1 단자는 상기 제 2 노드에 연결되고, 상기 제 11 트랜지스터의 제 2 단자는 상기 자발광 소자의 아노드 단자에 연결되고, 상기 제 11 트랜지스터의 게이트 단자는 상기 에미션 라인에 연결되고, 상기 캐패시터의 제 1 단자는 상기 전원에 연결되고, 상기 캐패시터의 제 2 단자는 상기 제 3 노드에 연결되고, 상기 자발광 소자의 캐소드 단자는 접지되는 것을 특징으로 한다.
또한, 상기 화소 제어회로는 제 1 트랜지스터, 제 2 트랜지스터, 제 3 트랜지스터, 제 4 트랜지스터, 제 5 트랜지스터 및 제 6 트랜지스터를 더 포함하고, 상기 제 1 트랜지스터의 제 1 단자는 데이터라인에 연결되고, 상기 제 1 트랜지스터의 제 2 단자는 제 1 노드에 연결되고, 상기 제 1 트랜지스터의 게이트 단자는 n번째 스캔라인에 연결되고, 상기 제 2 트랜지스터의 제 1 단자는 제 2 노드에 연결되고, 상기 제 2 트랜지스터의 제 2 단자는 제 3 노드에 연결되고, 상기 제 2 트랜지스터의 게이트 단자는 상기 제 1 노드에 연결되고, 상기 제 3 트랜지스터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 3 트랜지스터의 제 2 단자는 상기 제 2 수광 소자의 캐소드(Cathode) 단자에 연결되고, 상기 제 3 트랜지스터의 게이트 단자는 제 1 센싱(sensing) 라인에 연결되고, 상기 제 4 트랜지스터의 제 1 단자는 상기 제 1 수광 소자의 아노드 단자에 연결되고, 상기 제 4 트랜지스터의 제 2 단자는 상기 제 1 노드에 연결되고, 상기 제 4 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고, 상기 제 5 트랜지스터의 제 1 단자는 상기 제 3 노드에 연결되고, 상기 제 5 트랜지스터의 제 2 단자는 접지되고, 상기 제 5 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고, 상기 제 6 트랜지스터의 제 1 단자는 상기 제 2 노드에 연결되고, 상기 제 6 트랜지스터의 제 2 단자는 출력 라인에 연결되고, 상기 제 6 트랜지스터의 게이트 단자는 제 2 센싱 라인에 연결되고, 상기 제 1 수광 소자의 캐소드 단자는 전원(VDD)에 연결되고, 상기 제 2 수광 소자의 아노드 단자는 접지되는 것을 특징으로 한다.
또한, 상기 화소 제어회로는 제 7 트랜지스터를 더 포함하고, 상기 제 7 트랜지스터의 제 1 단자는 상기 전원에 연결되고, 상기 제 7 트랜지스터의 제 2 단자는 상기 제 2 노드에 연결되고, 상기 제 7 트랜지스터의 게이트 단자는 에미션(emission)라인에 연결되고, 상기 캐패시터의 제 1 단자는 상기 전원에 연결되고, 상기 캐패시터의 제 2 단자는 상기 제 1 노드에 연결되고, 상기 자발광 소자의 아노드 단자는 상기 제 3 노드에 연결되고, 상기 자발광 소자의 캐소드 단자는 접지되는 것을 특징으로 한다.
본 개시에 따르면, 충전용 제 1 수광 소자 또는 방전용 제 2 수광 소자에 기초하여 출력 전압이 VREF/2 근처로 유지될 수 있으므로, 화소회로의 출력 전압이 클리핑되는 것을 방지할 수 있는 효과가 있다.
또한, 본 개시에 따르면, 제 1 수광 소자 및 제 2 수광 소자에 공통으로 흐르는 전류의 차인 차분 신호를 이용하여 지문을 센싱함으로써, 자발광 소자에 의한 빛 또는 외부로부터의 빛으로부터 발생한 신호, 즉 노이즈의 영향을 줄일 수 있고, 클리핑 현상을 방지할 수 있는 효과가 있다.
도 1은 자발광 소자 및 수광 소자를 포함하는 회로의 단면을 나타낸 도면이다.
도 2는 종래 기술에 따른 화소 회로를 나타낸 도면이다.
도 3은 본 개시의 일 실시예에 따른 화소회로를 나타낸 도면이다.
도 4는 종래 기술에 따른 화소회로의 수광 소자에 흐르는 전류를 나타낸 그래프이다.
도 5는 본 개시의 일 실시예에 따른 수광 소자에 흐르는 전류를 나타낸 그래프이다.
도 6은 본 개시의 일 실시예에 따른 출력 전압을 나타낸 그래프이다.
도 7은 본 개시의 일 실시예에 따른 화소회로를 나타낸 도면이다.
도 8은 본 개시의 일 실시예에 따른 화소회로를 나타낸 도면이다.
도 9는 본 개시의 일 실시예에 따른 화소회로를 나타낸 도면이다.
도 10은 본 개시의 일 실시예에 따른 제 1 노드의 전압을 나타낸 그래프이다.
도 11 은 본 개시의 일 실시예에 따른 제 1 노드의 전압을 나타낸 그래프이다.
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.
본 개시의 일 실시예에 따르면 "부"는 프로세서 및 메모리로 구현될 수 있다. 용어 "프로세서" 는 범용 프로세서, 중앙 처리 장치 (CPU), 마이크로프로세서, 디지털 신호 프로세서 (DSP), 제어기, 마이크로제어기, 상태 머신 등을 포함하도록 넓게 해석되어야 한다. 몇몇 환경에서는, "프로세서" 는 주문형 반도체 (ASIC), 프로그램가능 로직 디바이스 (PLD), 필드 프로그램가능 게이트 어레이 (FPGA) 등을 지칭할 수도 있다. 용어 "프로세서" 는, 예를 들어, DSP 와 마이크로프로세서의 조합, 복수의 마이크로프로세서들의 조합, DSP 코어와 결합한 하나 이상의 마이크로프로세서들의 조합, 또는 임의의 다른 그러한 구성들의 조합과 같은 처리 디바이스들의 조합을 지칭할 수도 있다.
용어 "메모리" 는 전자 정보를 저장 가능한 임의의 전자 컴포넌트를 포함하도록 넓게 해석되어야 한다. 용어 메모리는 임의 액세스 메모리 (RAM), 판독-전용 메모리 (ROM), 비-휘발성 임의 액세스 메모리 (NVRAM), 프로그램가능 판독-전용 메모리 (PROM), 소거-프로그램가능 판독 전용 메모리 (EPROM), 전기적으로 소거가능 PROM (EEPROM), 플래쉬 메모리, 자기 또는 광학 데이터 저장장치, 레지스터들 등과 같은 프로세서-판독가능 매체의 다양한 유형들을 지칭할 수도 있다. 프로세서가 메모리로부터 정보를 판독하고/하거나 메모리에 정보를 기록할 수 있다면 메모리는 프로세서와 전자 통신 상태에 있다고 불린다. 프로세서에 집적된 메모리는 프로세서와 전자 통신 상태에 있다.
용어 “신호”는 전압 또는 전류의 전기신호를 의미한다.
아래에서는 첨부한 도면을 참고하여 실시예에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 개시를 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
도 1은 자발광 소자 및 수광 소자를 포함하는 회로의 단면을 나타낸 도면이다.
상기 자발광 소자에는 전계발광소자(electroluminescence element), OLED, QD-LED(quantum dot-LED), Micro-LED 등이 포함될 수 있다. 상기 수광 소자(PD)는 예를 들어 포토다이오드 일 수 있다.
도 1에 도시된 바와 같이, 화소회로와 지문인식회로가 통합되는 경우, 화소회로와 지문인식회로의 거리가 가까울 수 있다. 이러한 표시 패널의 구조로 인하여 수광 소자(PD)는 지문(Finger print)에서 반사된 빛(120)뿐만 아니라, 자발광 소자에서 출사된 빛(110)이 지문에 도달하지 못하고 유리 또는 전극(electrode)에서 반사된 빛을 수광할 수 있다. 또한 표시 장치 외부에서 들어오는 빛(도면 미도시)을 수광할 수 있다.
이하 설명에서는 유리 또는 전극에서 반사된 빛과, 표시 장치 외부에서 들어오는 빛을 “직광”으로 호칭한다. 그리고 지문에 의해 반사된 빛을 “지문광”으로 호칭한다.
이러한 직광(130)이 지문인식회로에 입사되는 경우, 직광(130)은 지문광(120) 보다 광량이 클 수 있기 때문에, 수광 소자는 지문에 반사된 빛을 제대로 인식하지 못할 수 있고, 최종적으로는 지문인식회로의 지문인식률이 낮아지는 문제가 발생한다.
도 2는 종래 기술에 따른 화소 회로를 나타낸 도면이다.
화소회로(210)는 화소회로와 지문인식회로가 통합된 경우로서, 하나의 수광 소자, 적어도 하나의 트랜지스터 성분(T1), 및 적어도 하나의 캐패시터 성분(CINT)을 포함할 수 있다. 화소회로(210)는 표시 패널에 배치될 수 있다. 예를 들어 화소회로(210)의 수광 소자는 제 1 위치(221)에 배치될 수 있다. 또한, 화소회로(210)의 나머지 부분은 제 2 위치(222)에 배치될 수 있다. 하나의 화소회로(210)는 하나의 수광 소자를 포함하며, 수광 소자는 자발광 소자에 의한 빛, 외부로부터의 빛, 및 지문으로부터 반사된 빛을 수신한다.
외부로부터의 빛은 햇볕 또는 형광등과 같은 표시 장치 외부로부터 발생한 빛을 나타낼 수 있다. 또한 자발광 소자에 의한 빛은 자발광 소자에서 발생한 빛 또는 자발광 소자에 의한 빛이 지문이 아닌 표시 패널의 유리 또는 전극 등에 반사된 빛을 나타낼 수 있다. 지문으로부터 반사된 빛은 자발광 소자의 빛 또는 외부의 빛이 지문에 반사되어 지문으로부터 나온 빛을 나타낼 수 있다.
자발광 소자의 빛 및 외부로부터의 빛은 지문으로부터 반사된 빛보다 셀 수 있다. 따라서 화소회로(210)는 지문으로부터 반사된 빛을 이용하여 지문 인식을 하는데 어려움을 겪을 수 있다. 특히 화소회로(210)가 동일 면적 안에 많이 집적될수록 자발광 소자의 빛에 의한 영향이 커질 것이므로 화소회로(210)의 지문 인식률이 떨어질 수 있다.
도 3은 본 개시의 일 실시예에 따른 화소회로를 나타낸 도면이다.
광학 지문 센싱 회로를 포함한 화소회로(310)는 제 1 수광 소자(311) 및 제 2 수광 소자(312) 및 화소 제어회로(313)를 포함할 수 있다.
수광 소자는 자발광 소자로부터 출사되어 사용자의 지문을 통해 반사된 광을 역 방향의 광전류로 변환한다. 이때, 수광 소자로부터 발생되는 광전류의 양은 광을 반사시킨 물체가 지문의 융선(Ridge)인지 또는 골(Valley)인지에 따라 가변된다. 여기서, 골로부터 반사된 광에 의한 광전류는 융선으로부터 반사된 광에 의한 광전류보다 클 수 있다. 하지만 이에 한정되는 것은 아니며 골로부터 반사된 광에 의한 광전류는 융선으로부터 반사된 광에 의한 광전류보다 작거나 같을 수 있다.
제 1 수광 소자는 빛을 수신하여 제 1 신호를 생성할 수 있다. 제 2 수광 소자는 빛을 수신하여 제 2 신호를 생성할 수 있다. 제 1 수광 소자(311)는 화소 제어회로(313)의 캐패시터 성분(CINT)을 충전할 수 있다. 제 2 수광 소자(312)는 화소 제어회로(313)의 캐패시터 성분(CINT)을 방전할 수 있다. 캐패시터 성분(CINT)은 제 1 신호에 의하여 충전될 수 있으며, 제 2 신호에 의하여 방전될 수 있다. 제 1 신호가 제 2 신호보다 큰 경우 차분 신호는 화소 제어회로(313)으로 흐를 수 있다. 제 1 신호가 제 2 신호보다 작은 경우 차분 신호는 화소 제어회로(313)에서 포토 다이오드들 쪽으로 흐를 수 있다. 제 1 신호가 제 2 신호보다 큰 경우 캐패시터 성분(CINT)은 충전될 수 있다. 제 1 신호가 제 2 신호보다 작은 경우 캐패시터 성분(CINT)은 방전될 수 있다.
화소 제어회로(313)는 제 1 신호와 제 2 신호의 차분 신호를 수신할 수 있다. 또한 화소 제어회로(313)는 차분 신호에 기초하여 출력 라인(OUT)으로 출력 신호를 출력할 수 있다.
설명의 편의를 위하여 도 3의 화소 제어회로(313)는 간략하게 도시되어 있다. 화소 제어회로(313)는 적어도 하나의 트랜지스터 성분(T1)과 적어도 하나의 캐패시터 성분(CINT)을 포함할 수 있다. 트랜지스터 성분(T1)은 소정의 신호(S1)에 따라 온(ON)/오프(OFF)되는 성분을 나타낸다. 상기 화소 제어회로(313)는 상기 트랜지스터 성분(T1)의 스위칭 동작을 통하여 상기 화소회로(310)의 출력(OUT) 전압을 리셋(reset)할 수 있다. 상기 트랜지스터 성분(T1)이 온(ON)시에 출력(OUT) 전압은 VREF/2로 리셋 된다. 캐패시터 성분(CINT)은 전압이 변하는 경우 전류를 생성하는 성분을 나타낸다. 화소 제어회로(313)의 트랜지스터 성분(T1) 및 캐패시터 성분(CINT)은 트랜지스터 또는 캐패시터 중 적어도 하나를 이용하여 구현될 수 있다.
화소 제어회로(313)는 자발광 소자(미도시)를 포함할 수 있다. 자발광 소자는 데이터 신호에 기초하여 빛을 출력할 수 있다. 자발광 소자는 데이터 신호에 기초하여 유입되는 전류에 따라 발광한다. 유기발광다이오드(OLED)를 예로 들어 설명하면, 상기 자발광 소자는 애노드 전극과 캐소드 전극 사이에 형성된 유기 발광셀을 포함한다. 여기서, 유기 발광셀은 정공 수송층/유기 발광층/전자 수송층의 구조, 또는 정공 주입층/정공 수송층/유기 발광층/전자 수송층/전자 주입층의 구조를 가지도록 형성될 수 있다. 또한, 유기 발광셀에는 유기발광층의 발광 효율 및/또는 수명 등을 향상시키기 위한 기능층이 추가로 형성될 수 있다.
화소회로(310)는 표시 패널에 배치될 수 있다. 표시 패널은 복수의 화소회로들을 포함할 수 있다. 예를 들어 화소회로(310)의 제 1 수광 소자(311)는 제 1 영역(321)에 포함될 수 있다. 화소회로(310)의 제 2 수광 소자(312)는 제 2 영역(322)에 포함될 수 있다. 화소회로(310)의 화소 제어회로(313) 또는 화소 제어회로(313) 중 일부는 제 3 영역(323)에 포함될 수 있다. 예를 들어 자발광 소자는 제 3 영역(323)에 포함될 수 있다.
제 1 수광 소자(311)를 포함한 제 1 영역(321) 및 제 2 수광 소자(312)를 포함한 제 2 영역(322)은 가까울 수 있다. 따라서, 자발광 소자에 의한 빛 또는 외부의 빛은 제 1 수광 소자(311) 및 제 2 수광 소자(312)에 동일한 영향을 미칠 수 있다. 따라서 제 1 수광 소자(311) 및 제 2 수광 소자(312)는 자발광 소자에 의한 빛 또는 외부의 빛에 기초하여 동일한 전류를 생성할 수 있다.
지문 인식은 미세한 지문의 골 및 마루에서 반사된 빛을 수광 소자들이 감지하여 수행될 수 있다. 따라서 제 1 수광 소자(311)가 수신한 지문으로부터 반사된 빛은, 제 2 수광 소자(312)가 수신한 지문으로부터 반사된 빛과 다를 수 있다. 또한 제 1 수광 소자(311)와 제 2 수광 소자(312)는 지문으로부터 반사된 빛에 기초하여 서로 다른 크기의 전류를 생성할 수 있다.
상술한 바와 같이, 자발광 소자의 빛 또는 외부의 빛이 제 1 수광 소자(311) 및 제 2 수광 소자(312)에 동일한 영향을 미친다. 반면에, 지문으로부터 반사된 빛은 제 1 수광 소자(311)와 제 2 수광 소자(312)에 서로 다른 영향을 미친다. 따라서, 광학 지문 센싱 회로를 포함하는 화소회로(310)는 제 1 수광 소자(311)의 전류와 제 2 수광 소자(312)의 전류의 차분을 이용하여, 정확하게 지문을 인식할 수 있다.
예를 들어, 제 1 수광 소자(311)의 전류와 제 2 수광 소자(312)의 전류의 차전류(Current difference)는 화소 제어회로(313)으로 출력될 수 있다. 화소 제어회로(313)는 차전류에 기초한 전류 또는 전압을 출력 라인(OUT)으로 출력할 수 있다. 화소회로(310)를 포함하는 시스템은 출력 라인(OUT)으로 출력된 출력 신호에 기초하여 지문을 정확하게 인식할 수 있다.
도 2의 종래의 화소회로(210)에 따르면 출력 전압이 VREF 또는 VSS(T1의 소스 전압)로 클리핑(clipping)될 수 있다.
클리핑이란 기준보다 큰 입력 신호가 회로를 통과하여 입출력 특성의 포화 부분에서 동작함으로써, 출력 신호의 파형이 잘리고 왜곡이 발생하는 것을 말한다.
전술한 바와 같이 지문에 반사되지 않은 직광은 그 광량이 매우 커서 수광소자(PD)에 과한 광전류를 발생시킬 수 있다. 상기 수광소자(PD)가 충전용인 경우, 이 과한 광전류는 캐패시터 성분(CINT)을 단시간 내에 높은 전압으로 충전시킬 수 있으므로 출력 전압이 VREF로 클리핑 될 수 있다. 출력 전압이 VREF로 클리핑 됨으로써 출력 신호는 왜곡되고, 그 결과 종래 화소회로(210)는 지문을 정확하게 인식할 수 없다.
하지만 도 3 의 본 개시의 일 실시예에 따른 화소회로(310)는, 충전용 제 1 수광 소자(311)와 방전용 제 2 수광 소자(312) 두개의 수광 소자를 포함하여 구성된다. 따라서 출력 전압이 VREF/2 근처로 유지될 수 있다. 즉, 화소회로(310)의 출력 전압이 클리핑 되는 현상을 방지할 수 있는 효과를 가진다.
제 1 수광 소자(311) 및 제 2 수광 소자(312)에 흐르는 전류와 클리핑 현상 방지 원리에 대해서는 도 5에서 자세히 설명한다.
먼저 이해를 돕기 위하여 도 5를 설명하기 전에 종래 기술에 따른 수광 소자에 흐르는 전류를 나타낸 도 4를 설명한다.
도 4는 종래 기술에 따른 화소회로의 수광 소자에 흐르는 전류를 나타낸 그래프이다.
도 4의 가로축은 시간을 나타내며, 세로축은 수광 소자에 흐르는 전류를 나타낸다. 지문광 전류(410)는 지문으로부터 반사된 빛에 기초하여 수광 소자로부터 생성된 전류를 나타낸다. 직광 전류(420)는 자발광 소자에 의한 빛 또는 외부로부터의 빛에 의해 수광 소자로부터 생성된 전류를 나타낸다. 자발광 소자에 의한 빛 또는 외부로부터 빛은 지문으로부터 반사된 빛보다 강하기 때문에, 직광 전류(420)는 지문광 전류(410)보다 클 수 있다. 직광 전류(420)는 노이즈에 의하여 떨림이 있을 수 있다. 합성전류(430)는 지문광 전류(410)와 직광 전류(420)의 합을 나타낸다.
직광 전류(420)가 지문광 전류(410)보다 크므로, 직광 전류(420)가 지문광 전류(410)보다 합성전류(430)에 미치는 영향이 클 수 있다. 또한 직광 전류(420)의 노이즈에 의한 영향이 클 수 있다. 또한, 직광 전류(420)의 크기가 크므로 클리핑(clipping)이 일어날 수 있다.
도 5는 본 개시의 일 실시예에 따른 수광 소자에 흐르는 전류를 나타낸 그래프이다.
그래프(510)의 가로축은 시간을 나타낸다. 그래프(510)의 세로축은 제 1 수광 소자(311) 및 제 2 수광 소자(312)에 흐르는 전류를 나타낸다. 제 2 지문광 전류(511)는 지문으로부터 반사된 빛에 기초하여 제 2 수광 소자(312)로부터 생성된 전류를 나타낸다. 제 1 지문광 전류(512)는 지문으로부터 반사된 빛에 기초하여 제 1 수광 소자(311)로부터 생성된 전류를 나타낸다. 제 1 수광 소자(311) 및 제 2 수광 소자(312)의 거리는 가깝지만, 지문의 골 및 마루 역시 미세하다. 따라서 제 1 수광 소자(311)에서 생성된 제 1 지문광 전류(512)는 제 2 수광 소자(312)에서 생성된 제 2 지문광 전류(511)와 다를 수 있다.
직광 전류(513)는 자발광 소자에 의한 빛 또는 외부로부터의 빛에 의해 제 1 수광 소자(311) 및 제 2 수광 소자(312)로부터 생성된 전류를 나타낸다. 자발광 소자에 의한 빛 또는 외부로부터의 빛에 의해 제 1 수광 소자(311) 및 제 2 수광 소자(312)로부터 생성된 전류는 동일할 수 있다. 자발광 소자에 의한 빛 또는 외부로부터 빛은 지문으로부터 반사된 빛보다 강할 수 있다. 따라서 직광 전류(513)는 제 2 지문광 전류(511) 또는 제 1 지문광 전류 (512)보다 클 수 있다. 직광 전류(513)는 노이즈에 의하여 떨림이 있을 수 있다.
제 1 수광 소자(311)에 흐르는 총 전류는 제 1 지문광 전류(512)와 직광 전류(513)의 합일 수 있다. 제 2 수광 소자(312)에 흐르는 총 전류는 제 2 지문광 전류(511)와 직광 전류(513)의 합일 수 있다.
그래프(520) 가로축은 시간을 나타낸다. 그래프(520)의 세로축은 제 1 수광 소자(311)에 흐르는 전류와 제 2 수광 소자(312)에 흐르는 전류의 차를 나타낸다. 직광 전류(513)는 제 1 수광 소자(311)및 제 2 수광 소자(312)에 공통으로 흐르므로, 서로 상쇄될 수 있다. 따라서, 차분 신호(521)는 직광 전류(513)에 의하여 영향을 받지 않을 수 있다. 또한 차분 신호(521)는 합성전류(430)보다 크기가 작을 수 있다. 차분 신호(521)는 도 3 의 캐패시터 성분(CINT)을 충전하거나 방전할 수 있다.
도 5에서 설명한 바와 같이 화소회로(310)는 자발광 소자에 의한 빛 또는 외부로부터의 빛으로부터 발생한 신호, 즉 노이즈의 영향을 줄일 수 있다. 또한 화소회로(310)는 지문으로부터 반사된 빛에 의한 신호에 기초하여 지문을 인식할 수 있다. 또한 화소회로(310)는 자발광 소자에 의한 빛 또는 외부로부터의 빛에 의한 노이즈를 줄일 수 있으며 클리핑을 예방할 수 있다. 따라서 화소회로(310)는 지문 인식의 정확도를 높일 수 있다.
도 6은 본 개시의 일 실시예에 따른 출력 전압을 나타낸 그래프이다.
그래프(600)의 가로축은 시간을 나타낸다. 그래프(600)의 세로축은 출력 전압을 나타낸다.
먼저 도 2와 함께 종래 기술의 출력 전압(620)을 설명한다. 출력 전압(620)은 종래 기술의 출력 라인(OUT)에서의 전압을 나타낸다. 프리차지(Pre-charge) 단계에서 트랜지스터 성분(T1)은 베이스 단자의 신호에 기초하여 턴온 상태이며, 수광 소자는 빛을 수신하지 않은 상태이다. 캐패시터 성분(CINT)은 VREF에 기초하여 충전된다. 프리차지(Pre-charge) 단계에서 출력 라인(OUT)의 출력 전압(620)은 VREF로 유지된다.
인테그레이션(Integrationi) 단계는 수광 소자가 빛을 수신하는 단계이다. 수광 소자는 빛을 수신하여 전류를 생성하며, 캐패시터 성분(CINT)에 충전된 전하들을 방전시킨다. 또한 트랜지스터 성분(T1)은 턴오프되어 있을 수 있다. 인테그레이션 단계에서 출력 전압(620)은 급격히 줄어들 수 있다. 왜냐하면, 도 4에서 설명한 바와 같이 자발광 소자에 의한 빛 또는 외부로부터의 빛에 의해 수광 소자로부터 생성된 직광 전류(420)가 크기 때문에, 캐패시터 성분(CINT)이 완전 방전될 수 있기 때문이다. 자발광 소자에 의한 빛 또는 외부로부터의 빛이 상대적으로 강하므로 지문으로부터 반사된 빛은 출력 전압(620)에 거의 영향을 줄 수 없다.
센스아웃(Sense-out) 단계는 화소회로(210)를 포함하는 시스템이 화소회로(210)의 출력 라인(OUT)의 신호를 읽는 단계이다. 출력 전압(620)이 낮게 유지된 상태에서 화소회로(210)를 포함하는 시스템은 신호를 수신한다. 지문으로부터 반사된 빛이 출력 전압(620)에 거의 영향을 미칠 수 없으므로, 시스템은 출력 라인(OUT)으로부터 지문에 의한 빛에 기초하여 생성된 신호를 센싱하기 어려울 수 있다.
도 3과 함께 본 개시의 일 실시예에 따른 출력 전압(610)을 설명한다. 출력 전압(610)은 출력 라인(OUT)에서의 전압을 나타낸다. 프리차지 단계에서 트랜지스터 성분(T1)은 베이스 단자의 신호에 기초하여 턴온 상태이며, 수광 소자는 빛을 수신하지 않는 상태이다. 캐패시터 성분(CINT)은 VREF/2에 기초하여 충전된다. 프리차지 단계에서 출력 라인(OUT)의 출력 전압(610)은 VREF/2로 유지된다.
인테그레이션 단계는 수광 소자가 빛을 수신하는 단계이다. 제 1 수광 소자(311) 및 제 2 수광 소자(312)는 빛을 수신하여 전류를 생성한다. 또한 트랜지스터 성분(T1)은 턴오프되어 있을 수 있다.
상술한 바와 같이, 제 1 수광 소자(311) 및 제 2 수광 소자(312)는 지문의 미세한 골 또는 마루에서 반사된 빛에 의하여 서로 다른 전류를 생성할 수 있다. 제 1 수광 소자(311)는 캐패시터(CINT)를 충전시킬 수 있다. 또한 제 2 수광 소자(312)는 캐패시터(CINT)를 방전시킬 수 있다.
캐패시터 성분(CINT)에 흐르는 전류는 제 1 수광 소자(311)가 생성한 제 1 신호와 제 2 수광 소자(312)가 생성한 제 2 신호의 차분 신호일 수 있다. 도 5에서 상술한 바와 같이 제 1 신호 및 제 2 신호는 자발광 소자에 의한 빛과 외부로부터의 빛으로부터 공통된 영향을 받는다. 따라서 제 1 신호 및 제 2 신호에 기초한 차분 신호는 자발광 소자에 의한 빛 및 외부로부터의 빛에 영향을 받지 않을 수 있다. 차분 신호의 크기는 자발광 소자에 의한 빛과 외부로부터의 빛에 기초하여 수광 소자에서 생성된 전류의 크기보다 작을 수 있다. 따라서 캐패시터 성분(CINT)에 기초한 출력 전압(610)은 차분 신호에 의하여 서서히 높아지거나 낮아질 수 있다.
제 1 수광 소자(311)가 생성한 제 1 신호가 제 2 수광 소자(312)가 생성한 제 2 신호보다 큰 경우, 캐패시터(CINT)로 전류가 흐를 것이므로 캐패시터(CINT)는 충전될 수 있다. 따라서 출력 전압(610)은 서서히 높아질 수 있다. 반대로 제 1 수광 소자(311)가 생성한 제 1 신호가 제 2 수광 소자(312)가 생성한 제 2 신호보다 작은 경우, 캐패시터 성분(CINT)으로부터 전류가 공급될 것이므로 캐패시터(CINT)는 방전될 수 있다. 따라서 출력 전압(610)은 서서히 낮아질 수 있다.
센스아웃 단계는 화소회로(310)를 포함하는 시스템이 화소회로(310)의 출력 라인(OUT)의 신호를 읽는 단계이다. 시스템은 출력 전압(610)이 VREF/2보다 높은 경우, 제 1 수광 소자(311)가 제 2 수광 소자(312)보다 많은 빛을 수신한 것으로 판단할 수 있다. 또한 시스템은 출력 전압(610)이 VREF/2 보다 낮은 경우, 제 1 수광 소자(311)가 제 2 수광 소자(312)보다 적은 빛을 수신한 것으로 판단할 수 있다. 시스템은 출력 전압(610)에 기초하여 정확하게 지문은 인식할 수 있다.
실시예 1
도 7은 본 개시의 일 실시예에 따른 화소회로를 나타낸 도면이다.
화소회로(700)는 제 1 수광 소자(711) 및 제 2 수광 소자(712)를 포함할 수 있다. 또한 화소회로(700)는 화소 제어회로를 포함할 수 있다. 화소 제어회로는 제 1 트랜지스터(T1), 제 2 트랜지스터(T4), 제 3 트랜지스터(T5), 제 4 트랜지스터(T7), 제 5 트랜지스터(T10), 제 6 트랜지스터(T9), 제 7 트랜지스터(T8), 제 1 캐패시터(C1) 및 제 2 캐패시터(C2)를 더 포함할 수 있다.
트랜지스터들의 제 1 단자 또는 제 2 단자는 소스 단자 또는 드레인 단자일 수 있다. 트랜지스터들은 게이트 단자의 신호에 따라 턴온되거나 턴오프될 수 있다.
제 1 트랜지스터(T1)의 제 1 단자는 데이터라인에 연결되고, 제 1 트랜지스터의 제 2 단자는 제 1 노드(731)에 연결되고, 제 1 트랜지스터(T1)의 게이트 단자는 n 번째 스캔라인(Scan(n))에 연결될 수 있다.
제 2 트랜지스터(T4)의 제 1 단자는 제 2 노드(732)에 연결되고, 제 2 트랜지스터(T4)의 제 2 단자는 제 3 노드(733)에 연결되고, 제 2 트랜지스터(T4)의 게이트 단자는 제 4 노드(734)에 연결될 수 있다.
제 3 트랜지스터(T5)의 제 1 단자는 제 4 노드(734)에 연결되고, 제 3 트랜지스터(T5)의 제 2 단자는 제 3 노드(733)에 연결되고, 제 3 트랜지스터(T5)의 게이트 단자는 n-1 번째 스캔라인(Scan(n-1))에 연결될 수 있다.
제 4 트랜지스터(T7)의 제 1 단자는 제 1 노드(731)에 연결되고, 제 4 트랜지스터(T7)의 제 2 단자는 제 2 수광 소자(712)의 캐소드(Cathode) 단자에 연결되고, 제 4 트랜지스터(T7)의 게이트 단자는 제 1 센싱(sensing) 라인(Sen)에 연결될 수 있다.
제 5 트랜지스터(T10)의 제 1 단자는 제 1 수광 소자(711)의 아노드 단자에 연결되고, 제 5 트랜지스터(T10)의 제 2 단자는 제 1 노드(731)드에 연결되고, 제 5 트랜지스터(T10)의 게이트 단자는 제 1 센싱 라인(Sen)에 연결될 수 있다.
제 6 트랜지스터(T9)의 제 1 단자는 제 3 노드(733)에 연결되고, 제 6 트랜지스터(T9)의 제 2 단자는 접지되고, 제 6 트랜지스터(T9)의 게이트 단자는 제 1 센싱 라인(Sen)에 연결될 수 있다.
제 7 트랜지스터(T8)의 제 1 단자는 제 2 노드(732)에 연결되고, 제 7 트랜지스터(T8)의 제 2 단자는 출력 라인(OUT)에 연결되고, 제 7 트랜지스터(T8)의 게이트 단자는 제 2 센싱 라인(Sen2)에 연결될 수 있다.
제 1 캐패시터(C1)의 제 1 단자는 제 1 노드(731)에 연결되고, 제 1 캐패시터(C1)의 제 2 단자는 제 4 노드(734)에 연결될 수 있다.
제 2 캐패시터(C2)의 제 1 단자는 제 1 노드(731)에 연결되고, 제 2 캐패시터(C2)의 제 2 단자는 접지될 수 있다.
제 1 수광 소자(711)의 캐소드 단자는 전원(VDD)에 연결되고, 제 2 수광 소자(712)는 접지될 수 있다.
화소 제어회로는 제 8 트랜지스터(T2), 제 9 트랜지스터(T3), 제 10 트랜지스터(T6) 및 자발광 소자(OLED)를 더 포함할 수 있다.
제 8 트랜지스터(T2)의 제 1 단자는 전원(VDD)에 연결되고, 제 8 트랜지스터(T2)의 제 2 단자는 제 1 노드(731)에 연결되고, 제 8 트랜지스터(T2)의 게이트 단자는 n-1 번째 스캔라인(Scan(n-1))에 연결될 수 있다.
제 9 트랜지스터(T3)의 제 1 단자는 전원에 연결되고, 제 9 트랜지스터(T3)의 제 2 단자는 제 2 노드(732)에 연결되고, 제 9 트랜지스터(T3)의 게이트 단자는 제 1 에미션(emission) 라인(EM1)에 연결될 수 있다.
제 10 트랜지스터(T6)의 제 1 단자는 제 3 노드(733)에 연결되고, 제 10 트랜지스터(T6)의 제 2 단자는 자발광 소자(OLED)의 아노드 단자에 연결되고, 제 10 트랜지스터(T6)의 게이트 단자는 제 2 에미션 라인(EM2)에 연결될 수 있다.
자발광 소자(OLED)의 캐소드 단자는 접지될 수 있다.
실시예 2
도 8은 본 개시의 일 실시예에 따른 화소회로를 나타낸 도면이다.
도 8의 화소회로(800)는 내부보상을 이용한 광학 방식 지문 센싱 화소 회로에 트렌지스터와 광학센서를 추가하여 차동 광학 방식 지문 센싱이 가능한 구조를 구현한 것이다.
화소회로(800)는 제 1 수광 소자(811) 및 제 2 수광 소자(812)를 포함할 수 있다. 또한 화소회로(800)는 화소 제어회로를 포함할 수 있다. 화소 제어회로는 제 1 트랜지스터(M1), 제 2 트랜지스터(M4), 제 3 트랜지스터(M2), 제 4 트랜지스터(M8), 제 5 트랜지스터(M11), 제 6 트랜지스터(M9), 제 7 트랜지스터(M10)를 더 포함할 수 있다.
제 1 트랜지스터(M3)의 제 1 단자는 데이터라인(Data)에 연결되고, 제 1 트랜지스터(M3)의 제 2 단자는 제 1 노드(831)에 연결되고, 제 1 트랜지스터(M3)의 게이트 단자는 n 번째 스캔라인(Scan(n))에 연결될 수 있다.
제 2 트랜지스터(M4)의 제 1 단자는 제 1 노드(831)에 연결되고, 제 2 트랜지스터(M4)의 제 2 단자는 제 2 노드(832)에 연결되고, 제 2 트랜지스터(M4)의 게이트 단자는 제 3 노드(833)에 연결될 수 있다.
제 3 트랜지스터(M2)의 제 1 단자는 제 3 노드(833)에 연결되고, 제 3 트랜지스터(M2)의 제 2 단자는 제 2 노드(832)에 연결되고, 제 3 트랜지스터(M2)의 게이트 단자는 n 번째 스캔라인(Scan(n))에 연결될 수 있다.
제 4 트랜지스터(M8)의 제 1 단자는 제 3 노드(833)에 연결되고, 제 4 트랜지스터(M8)의 제 2 단자는 제 2 수광 소자(812)의 캐소드(Cathode) 단자에 연결되고, 제 4 트랜지스터(M8)의 게이트 단자는 제 1 센싱(sensing) 라인(Sen)에 연결될 수 있다.
제 5 트랜지스터(M11)의 제 1 단자는 제 1 수광 소자(811)의 아노드(Anode) 단자에 연결되고, 제 5 트랜지스터(M11)의 제 2 단자는 제 3 노드(833)에 연결되고, 제 5 트랜지스터(M11)의 게이트 단자는 제 1 센싱 라인(Sen)에 연결될 수 있다.
제 6 트랜지스터(M9)의 제 1 단자는 제 2 노드(832)에 연결되고, 제 6 트랜지스터(M9)의 제 2 단자는 접지되고, 제 6 트랜지스터(M9)의 게이트 단자는 제 1 센싱 라인(Sen)에 연결될 수 있다.
제 7 트랜지스터(M10)의 제 1 단자는 제 1 노드(831)에 연결되고, 제 7 트랜지스터(M10)의 제 2 단자는 출력 라인(OUT)에 연결되고, 제 7 트랜지스터(M10)의 게이트 단자는 제 2 센싱 라인(Sen2)에 연결될 수 있다.
제 1 수광 소자(811)의 캐소드 단자는 전원(VDD)에 연결되고, 제 2 수광 소자(812)의 아노드 단자는 접지될 수 있다.
화소 제어회로는 제 8 트랜지스터(M1), 제 9 트랜지스터(M7), 제 10 트랜지스터(M5), 제 11 트랜지스터(M6), 캐패시터(CST), 및 자발광 소자(OLED)를 더 포함할 수 있다.
제 8 트랜지스터(M1)의 제 1 단자는 초기화라인(Initial)에 연결되고, 제 8 트랜지스터(M1)의 제 2 단자는 제 3 노드(833)에 연결되고, 제 8 트랜지스터(M1)의 게이트 단자는 n-1 번째 스캔라인(Scan(n-1))에 연결될 수 있다.
제 9 트랜지스터(M7)의 제 1 단자는 초기화라인(Initial)에 연결되고, 제 9 트랜지스터(M7)의 제 2 단자는 자발광 소자(OLED)의 아노드(anode) 단자에 연결되고, 제 9 트랜지스터(M7)의 게이트 단자는 n-1 번째 스캔라인(Scan(n-1))에 연결될 수 있다.
제 10 트랜지스터(M5)의 제 1 단자는 전원에 연결되고, 제 10 트랜지스터(M5)의 제 2 단자는 제 1 노드(831)에 연결되고, 제 10 트랜지스터(M5)의 게이트 단자는 에미션(emission) 라인(EM)에 연결될 수 있다.
제 11 트랜지스터(M6)의 제 1 단자는 제 2 노드(832)에 연결되고, 제 11 트랜지스터(M6)의 제 2 단자는 자발광 소자(OLED)의 아노드 단자에 연결되고, 제 11 트랜지스터(M6)의 게이트 단자는 에미션 라인(EM)에 연결될 수 있다.
캐패시터(CST)의 제 1 단자는 전원에 연결되고, 캐패시터(CST)의 제 2 단자는 제 3 노드(833)에 연결될 수 있다.
자발광 소자(OLED)의 캐소드 단자는 접지될 수 있다.
화소회로(800)는 초기화라인(Initial)으로부터 초기화 신호를 수신할 수 있다. 화소회로는 데이터 라인(Data)으로부터 데이터 신호를 획득할 수 있다. 화소회로(800)는 에미션 라인(EM)으로부터 에미션 신호를 수신할 수 있다. 화소회로(800)는 n 번째 스캔 라인(Scan(n))으로부터 n번째 스캔 신호를 수신할 수 있다. 화소회로는 n-1번째 스캔 라인(Scan(n-1))으로부터 n-1번째 스캔 신호를 수신할 수 있다. n은 양의 정수 일 수 있다. n은 화소회로에서 표시될 영상의 프레임을 나타낼 수 있다. 예를 들어 n번째 스캔 신호는 n번째 프레임에 대한 스캔 신호일 수 있다.
화소회로(800)를 포함하는 시스템은 n 번째 스캔 신호, n-1번째 스캔 신호, 초기화 신호, 데이터 신호 및 에미션 신호 중 적어도 하나를 조작하여, 자발광 소자(OLED)를 발광시킬 수 있다. 시스템은 프로세서 또는 메모리를 포함할 수 있다. 프로세서는 메모리에 포함된 명령어 또는 데이터에 따라 n 번째 스캔 신호, n-1번째 스캔 신호, 초기화 신호, 데이터 신호 및 에미션 신호 중 적어도 하나를 조작할 수 있다.
화소회로(800)를 포함하는 시스템은 초기화 신호에 기초하여 이전 프레임 데이터를 리셋하는 단계를 수행할 수 있다. 화소회로(800)를 포함하는 시스템은 데이터 신호 및 n번째 스캔 신호 중 적어도 하나에 기초하여 제 2 트랜지스터(M4)의 임계 전압(Vth)을 보상하고, 데이터 신호를 인가하는 단계를 수행할 수 있다. 화소회로(800)를 포함하는 시스템은 제 1 수광 소자(811) 및 제 2 수광 소자(812)에 의한 전류에 기초하여 제 3 노드(833)의 전압 변화시키는 단계를 수행할 수 있다. 화소회로(800)를 포함하는 시스템은 소스 팔로워 동작을 통해서 제 2 트랜지스터(M4)의 게이트 단자 전압인 제 3 노드(833)의 전압을 제 2 트랜지스터(M4)의 제 1 단자인 제 1 노드(831)에 전달하는 단계를 수행할 수 있다. 화소회로(800)를 포함하는 시스템은 제 1 노드(831)의 전압을 출력 라인(OUT)으로 출력하는 단계를 수행할 수 있다.
화소회로(800)를 포함하는 시스템은 이전 프레임 데이터를 리셋하는 단계를 수행할 수 있다. 제 8 트랜지스터(M1) 및 제 9 트랜지스터(M7)가 동작할 수 있다. 시스템은 화소회로(800)에 n-1 번째 스캔신호 및 초기화 신호 중 적어도 하나를 전송할 수 있다. 화소회로(800)는 n-1 번째 스캔라인(Scan(n-1))으로부터 n-1 번째 스캔신호를 수신할 수 있다. 화소회로(800)는 초기화라인(Initial)으로부터 초기화 신호를 수신할 수 있다. n-1 번째 스캔신호 및 초기화 신호에 기초하여, 제 8 트랜지스터(M1) 및 상기 제 9 트랜지스터(M7)는 이전 프레임의 데이터를 리셋할 수 있다.
화소회로(800)를 포함하는 시스템은 제 2 트랜지스터(M4)의 임계 전압(Vth)을 보상하고, 데이터 신호를 인가하는 단계를 수행할 수 있다. 상기 데이터 신호를 인가하는 단계에서 제 1 트랜지스터(M3) 및 제 3 트랜지스터(M2)가 동작할 수 있다. 시스템은 화소회로(800)에 n 번째 스캔신호 및 데이터 신호 중 적어도 하나를 전송할 수 있다. 화소회로(800)는 n 번째 스캔라인(Scan(n))으로부터 n 번째 스캔신호를 수신할 수 있다. 화소회로(800)는 데이터라인(Data)으로부터 데이터 신호를 수신할 수 있다. n 번째 스캔신호에 기초하여, 제 1 트랜지스터(M1)는 제 1 노드에 데이터 신호를 인가할 수 있다. n 번째 스캔신호에 기초하여, 제 3 트랜지스터(M2)는 제 2 트랜지스터(M4)의 임계 전압(Vth)을 보상할 수 있다.
화소회로(800)를 포함하는 시스템은 인테그레이션 페이즈(integration phase)를 수행할 수 있다. 인테그레이션 페이즈는 제 1 수광 소자(811) 및 제 2 수광 소자(812)에 의한 전류에 기초하여 제 2 트랜지스터(M4)의 게이트 단자인 제 3 노드(833)의 전압을 변화시키는 단계를 포함할 수 있다. 인테그레이션 페이즈는 소스 팔로워 동작을 통해서 제 2 트랜지스터(M4)의 게이트 단자 전압을 제 2 트랜지스터(M4)의 제 1 단자인 제 1 노드(831)에 전달하는 단계를 포함할 수 있다.
화소회로(800)를 포함하는 시스템은 화소회로(800)에 제 1 센싱 신호를 전송할 수 있다. 화소회로(800)는 제 1 센싱 라인(Sen)으로부터 제 1 센싱 신호를 수신할 수 있다. 제 1 수광 소자(811) 및 제 2 수광 소자(812)는 수신한 광량에 따라 전류를 생성할 수 있다. 제 1 센싱 신호, 제 1 수광 소자(811)에 의한 전류 및 제 2 수광 소자(812)에 의한 전류에 기초하여, 제 4 트랜지스터(M8) 및 제 5 트랜지스터(M11)는 제 3 노드(833)에 전압을 인가할 수 있다.
제 2 트랜지스터(M4)의 소스 팔로워(Source Follower) 동작에 의하여 제 3 노드(833)에 인가된 전압은 상기 제 1 노드(831)에 전달될 수 있다.
화소회로(800)를 포함하는 시스템은 제 1 노드(831)의 전압을 출력 라인(OUT)으로 출력하는 단계를 수행할 수 있다. 시스템은 화소회로(800)에 제 2 센싱 신호를 전송할 수 있다. 화소회로(800)는 제 2 센싱 라인(Sen2)으로부터 제 2 센싱 신호를 수신할 수 있다. 제 2 센싱 신호에 기초하여, 제 7 트랜지스터(M10)는 제 1 노드(831)의 전압을 출력 라인(OUT)으로 출력할 수 있다. 시스템은 화소회로(800)의 출력을 데이터로서 수신할 수 있다. 또한, 시스템은 복수의 화소회로들로부터 수신한 데이터에 기초하여 지문 인식을 할 수 있다.
실시예 3
도 9는 본 개시의 일 실시예에 따른 화소회로를 나타낸 도면이다.
도 9의 화소회로(900)는 외부보상을 이용한 광학 방식 지문 센싱 화소 회로에 트렌지스터와 광학센서를 추가하여 차동 광학 방식 지문 센싱이 가능한 구조를 구현한 것이다.
화소회로(900)는 제 1 수광 소자(911) 및 제 2 수광 소자(912)를 포함할 수 있다. 또한 화소회로(900)는 화소 제어회로를 포함할 수 있다. 화소 제어회로는 제 1 트랜지스터(M1), 제 2 트랜지스터(M2), 제 3 트랜지스터(M4), 제 4 트랜지스터(M7), 제 5 트랜지스터(M5) 및 제 6 트랜지스터(M6)를 포함할 수 있다.
제 1 트랜지스터(M1)의 제 1 단자는 데이터라인(Data)에 연결되고, 제 1 트랜지스터(M1)의 제 2 단자는 제 1 노드(931)에 연결되고, 제 1 트랜지스터(M1)의 게이트 단자는 n번째 스캔라인(Scan(n))에 연결될 수 있다.
제 2 트랜지스터(M2)의 제 1 단자는 제 2 노드(932)에 연결되고, 제 2 트랜지스터(M2)의 제 2 단자는 제 3 노드(933)에 연결되고, 제 2 트랜지스터(M2)의 게이트 단자는 제 1 노드(931)에 연결될 수 있다.
제 3 트랜지스터(M4)의 제 1 단자는 제 1 노드(931)에 연결되고, 제 3 트랜지스터(M4)의 제 2 단자는 제 2 수광 소자(912)의 캐소드(Cathode) 단자에 연결되고, 제 3 트랜지스터(M4)의 게이트 단자는 제 1 센싱(sensing) 라인(Sen)에 연결될 수 있다.
제 4 트랜지스터(M7)의 제 1 단자는 제 1 수광 소자(911)의 아노드 단자에 연결되고, 제 4 트랜지스터(M7)의 제 2 단자는 제 1 노드(931)에 연결되고, 제 4 트랜지스터(M7)의 게이트 단자는 제 1 센싱 라인(Sen)에 연결될 수 있다.
제 5 트랜지스터(M5)의 제 1 단자는 제 3 노드(933)에 연결되고, 제 5 트랜지스터(M5)의 제 2 단자는 접지되고, 제 5 트랜지스터(M5)의 게이트 단자는 제 1 센싱 라인(Sen)에 연결될 수 있다.
제 6 트랜지스터(M6)의 제 1 단자는 제 2 노드(932)에 연결되고, 제 6 트랜지스터(M6)의 제 2 단자는 출력 라인(OUT)에 연결되고, 제 6 트랜지스터(M6)의 게이트 단자는 제 2 센싱 라인(Sen2)에 연결될 수 있다.
제 1 수광 소자(911)의 캐소드 단자는 전원(VDD)에 연결되고, 제 2 수광 소자(912)의 아노드 단자는 접지될 수 있다.
화소 제어회로는 제 7 트랜지스터(M3), 캐패시터(CST) 및 자발광 소자(OLED)를 더 포함할 수 있다.
제 7 트랜지스터(M3)의 제 1 단자는 전원(VDD)에 연결되고, 제 7 트랜지스터(M3)의 제 2 단자는 제 2 노드(932)에 연결되고, 제 7 트랜지스터(M3)의 게이트 단자는 에미션(emission)라인(EM)에 연결될 수 있다.
캐패시터(CST)의 제 1 단자는 전원(VDD)에 연결되고, 캐패시터(CST)의 제 2 단자는 제 1 노드(931)에 연결될 수 있다.
자발광 소자(OLED)의 아노드 단자는 제 3 노드(933)에 연결되고, 자발광 소자(OLED)의 캐소드 단자는 접지될 수 있다.
도 10은 본 개시의 일 실시예에 따른 출력 전압을 나타낸 그래프이다.
이하에서는 도 8을 참조하여 도 10을 설명한다. 그래프(1000)의 가로축은 시간을 나타낸다. 또한 그래프의 가로축은 인테그래이션 페이즈의 1 프레임 시간을 나타낼 수 있다. 그래프(1000)의 세로축은 제 1 노드(831)의 전압을 나타낸다. 그래프(1000)는 Low Temperature Poly Silicon(LTPS) Thin Film Transistor(TFT) 리퀴지(leakage), 직광 및 지문으로부터 반사된 빛의 비율이 1:100:0.1 경우를 나타낼 수 있다. 직광은 오프셋과 노이즈를 포함할 수 있다.
수광 소자를 하나만 사용하는 종래 기술에 따르면 자발광 소자에 의한 빛 및 외부로부터의 빛이 너무 강하여 지문으로부터의 빛이 있는지 여부에 상관없이 전압은 라인(1061)과 같을 수 있다. 따라서 화소회로를 포함하는 시스템은 지문 센싱의 정확도가 낮을 수 있다. 하지만 본 개시의 일 실시예에 따른 화소회로(800)는 아래에서 설명하는 바와 같이 지문 센싱의 정확도를 높일 수 있다.
라인(1011)은 인테그레이션 페이즈에서 제 1 수광 소자(811)에만 지문으로부터 반사된 빛이 수신된 경우를 나타낸다. 즉, 제 2 수광 소자(812)는 지문으로부터 반사된 빛이 너무 적어서 빛의 양이 거의 0에 수렴한 경우이다.
제 1 수광 소자(811)는 지문으로부터 반사된 빛(지문광), 및 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 1 신호를 생성할 수 있다. 제 2 수광 소자(812)는 지문으로부터 반사된 빛(지문광)을 수신하지 못했으므로, 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 2 신호를 생성할 수 있다. 제2 신호는 지문광이 포함되어 있지 아니하므로, 제 1 신호는 제 2 신호보다 큰 값을 가질 수 있다. 제 1 신호와 제 2 신호의 차분 신호는 캐패시터(CST)를 충전시킬 수 있다. 제 3 노드(833)의 전압은 점점 높아질 수 있다. 제 2 트랜지스터(M4)의 소스 팔로워 동작에 의하여 제 1 노드(831)의 전압 역시 점점 높아 질 수 있다. 따라서 제 1 노드(831)의 전압은 라인(1011)과 같을 수 있다.
라인(1012)은 인테그레이션 페이즈에서 제 1 수광 소자(811) 및 제 2 수광 소자(812)가 수신한 지문으로부터 반사된 빛이 너무 적어서 빛의 양이 거의 0에 수렴하는 경우를 나타낸다. 예를 들어 지문의 골이 너무 어두워서 지문은 빛을 반사하지 않을 수 있고, 제 1 수광 소자(811) 및 제 2 수광 소자(812)는 지문으로부터 빛을 수신하지 못할 수 있다.
지문으로부터의 빛이 없으므로, 제 1 수광 소자(811)는 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 1 신호를 생성할 수 있다. 마찬가지로, 제 2 수광 소자(812)는 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 2 신호를 생성할 수 있다. 제 1 신호와 제 2 신호의 차분 신호는 거의 0과 같을 수 있다. 따라서 제 3 노드(833)의 전압은 거의 변하지 않을 수 있다. 제 2 트랜지스터(M4)의 소스 팔로워 동작에 의하여 제 1 노드(831)의 전압 역시 변하지 않을 수 있다. 따라서 제 1 노드(831)의 전압은 라인(1012)과 같을 수 있다.
라인(1013)은 인테그레이션 페이즈에서 제 2 수광 소자(812)에만 지문으로부터 반사된 빛이 수신된 경우를 나타낸다. 제 1 수광 소자(811)는 지문으로부터 반사된 빛이 너무 적어서 빛의 양이 거의 0에 수렴할 수 있다. 예를 들어 지문의 마루가 밝아서 지문은 빛을 반사하여 제 2 수광 소자(812)는 지문으로부터 반사된 빛을 수신할 수 있다. 또한, 지문의 골이 너무 어두워서 지문은 빛을 반사하지 않을 수 있고, 그 결과 제 1 수광 소자(812)는 지문으로부터의 빛을 수신하지 못할 수 있다.
제 2 수광 소자(812)는 지문으로부터 반사된 빛(지문광) 및 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 2 신호를 생성할 수 있다. 제 1 수광 소자(811)는 지문으로부터의 빛(지문광)을 수신하지 못했으므로, 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 1 신호를 생성할 수 있다. 지문으로부터의 빛에 의하여 제 2 신호가 제 1 신호보다 큰 값을 가질 수 있다. 제 1 신호와 제 2 신호의 차분 신호는 캐패시터(CST)를 방전 시킬 수 있다. 제 3 노드(833)의 전압은 점점 낮아질 수 있다. 제 2 트랜지스터(M4)의 소스 팔로워 동작에 의하여 제 1 노드(831)의 전압 역시 점점 낮아 질 수 있다. 따라서 제 1 노드(831)의 전압은 라인(1013)과 같을 수 있다.
제 1 노드(831)의 전압은 제 7 트랜지스터(M10)의 동작에 의하여 출력 라인(OUT)에 전달될 수 있다. 시스템은 출력 라인(OUT)으로부터 전달된 출력 신호에 기초하여 지문 인식을 수행할 수 있다. 제 1 수광 소자(811) 및 제 2 수광 소자(812)가 지문으로부터 빛을 수신했는지 여부에 따라 제 1 노드(831)의 전압이 변하므로, 화소회로(800)를 포함하는 시스템은 정확하게 지문인식을 정확하게 수행할 수 있다.
또한, 화소회로(800)는 자발광 소자에 의한 빛과 외부로부터의 빛에 의한 영향과 노이즈에 의한 영향을 줄일 수 있다. 또한 화소회로(800)는 자발광 소자에 의한 빛과 외부로부터의 빛에 의한 클리핑(clipping) 현상을 예방할 수 있다. 또한 화소회로(800)는 지문에 의해 반사된 빛(지문광) 만을 이용하여 지문인식을 수행할 수 있으므로 signal noise ratio(SNR)를 높일 수 있다.
도 11 은 본 개시의 일 실시예에 따른 출력 전압을 나타낸 그래프이다.
이하에서는 도 8을 참조하여 도 11을 설명한다. 그래프(1100)의 가로축은 시간을 나타낸다. 또한 그래프의 가로축은 인테그래이션 페이즈의 1 프레임 시간을 나타낼 수 있다. 그래프(1100)의 세로축은 제 1 노드(831)의 전압을 나타낸다. 그래프(1100)는 Low Temperature Poly Silicon(LTPS) Thin Film Transistor(TFT) 리퀴지(leakage), 직광 및 지문으로부터 반사된 빛의 비율이 10:100:0.1인 경우를 나타낼 수 있다. 직광은 오프셋과 노이즈를 포함할 수 있다.
수광 소자를 하나만 사용하는 종래 기술에 따르면 자발광 소자에 의한 빛과 외부로부터의 빛이 너무 강하여 지문으로부터 반사된 빛이 있는지 여부에 상관없이 전압은 라인(1161)과 같을 수 있다. 따라서 화소회로를 포함하는 시스템은 지문 센싱의 정확도가 낮을 수 있다. 하지만 본 개시의 일 실시예에 따른 화소회로(800)는 아래에서 설명하는 바와 같이 지문 센싱의 정확도를 높일 수 있다.
라인(1111)은 인테그레이션 페이즈에서 제 1 수광 소자(811)가 제 2 수광 소자(812)보다 지문으로부터 반사된 빛을 많이 수신하는 경우를 나타낸다. 예를 들어 라인(1111)은 제 1 수광 소자(811)가 지문의 밝은 부분에서 반사된 빛을 수신하고 제 2 수광 소자(812)는 지문의 어두운 부분에서 반사된 빛을 수신하는 경우를 나타낼 수 있다.
제 1 수광 소자(811)는 지문으로부터 반사된 빛(지문광) 및 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 1 신호를 생성할 수 있다. 마찬가지로 제 2 수광 소자(812)는 지문으로부터 반사된 빛(지문광) 및 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 2 신호를 생성할 수 있다. 제 1 수광 소자(811)가 제 2 수광 소자(812)보다 지문으로부터 반사된 빛을 많이 수신했으므로, 제 1 신호가 제 2 신호보다 큰 값을 가질 수 있다. 제 1 신호와 제 2 신호의 차분 신호는 캐패시터(CST)를 충전시킬 수 있다. 제 3 노드(833)의 전압은 점점 높아질 수 있다. 제 2 트랜지스터(M4)의 소스 팔로워 동작에 의하여 제 1 노드(831)의 전압 역시 점점 높아 질 수 있다. 따라서 제 1 노드(831)의 전압은 라인(1111)과 같을 수 있다.
라인(1112)은, 인테그레이션 페이즈에서 제 1 수광 소자(811) 및 제 2 수광 소자(812)가 수신하는 지문광(지문으로부터 반사된 빛)의 크기가 동일한 경우를 나타낼 수 있다.
제 1 수광 소자(811)는 지문으로부터 반사된 빛(지문광) 및 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 1 신호를 생성할 수 있다. 마찬가지로 제 2 수광 소자(812)는 지문으로부터 반사된 빛(지문광) 및 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 2 신호를 생성할 수 있다. 제 1 신호와 제 2 신호의 차분 신호는 거의 0과 같을 수 있다. 따라서 제 3 노드(833)의 전압은 거의 변하지 않을 수 있다. 제 2 트랜지스터(M4)의 소스 팔로워 동작에 의하여 제 1 노드(831)의 전압 역시 변하지 않을 수 있다. 따라서 제 1 노드(831)의 전압은 라인(1112)과 같을 수 있다.
라인(1113)은 인테그레이션 페이즈에서 제 1 수광 소자(811)가 제 2 수광 소자(812)보다 지문으로부터 반사된 빛을 적게 수신하는 경우를 나타낸다. 예를 들어 라인(1113)은 제 1 수광 소자(811)가 지문의 어두운 부분에서 반사된 빛을 수신하고 제 2 수광 소자(812)는 지문의 밝은 부분에서 반사된 빛을 수신하는 경우를 나타낼 수 있다.
제 1 수광 소자(811)는 지문으로부터 반사된 빛(지문광) 및 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 1 신호를 생성할 수 있다. 마찬가지로 제 2 수광 소자(812)는 지문으로부터 반사된 빛(지문광) 및 자발광 소자에 의한 빛과 외부로부터의 빛(직광)에 기초하여 제 2 신호를 생성할 수 있다. 제 1 수광 소자(811)는 제 2 수광 소자(812)보다 지문으로부터 반사된 빛을 적게 수신했으므로, 제 1 신호는 제 2 신호보다 작은 값을 가질 수 있다. 제 1 신호와 제 2 신호의 차분 신호는 캐패시터(CST)를 방전시킬 수 있다. 제 3 노드(833)의 전압은 점점 낮아질 수 있다. 제 2 트랜지스터(M4)의 소스 팔로워 동작에 의하여 제 1 노드(831)의 전압 역시 점점 낮아 질 수 있다. 따라서 제 1 노드(831)의 전압은 라인(1113)과 같을 수 있다.
제 1 노드(831)의 전압은 제 7 트랜지스터(M10)의 동작에 의하여 출력 라인(OUT)에 전달될 수 있다. 시스템은 출력 라인(OUT)으로부터 전달된 출력 신호에 기초하여 지문 인식을 수행할 수 있다. 제 1 수광 소자(811) 및 제 2 수광 소자(812)가 지문으로부터 빛을 수신했는지 여부에 따라 제 1 노드(831)의 전압이 변하므로, 화소회로(800)를 포함하는 시스템은 정확하게 지문인식을 정확하게 수행할 수 있다.
또한, 화소회로(800)는 자발광 소자에 의한 빛, 외부로부터의 빛 및 노이즈에 의한 영향을 줄일 수 있다. 또한 화소회로(800)는 자발광 소자에 의한 빛 및 외부로부터의 빛에 의한 클리핑(clipping) 현상을 예방할 수 있다. 또한 화소회로(800)는 지문에 의해 반사된 빛만을 이용하여 지문인식을 수행할 수 있으므로 signal noise ratio(SNR)를 높일 수 있다.
이제까지 다양한 실시예들을 중심으로 살펴보았다. 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자는 본 개시가 본 개시의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 개시의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 개시에 포함된 것으로 해석되어야 할 것이다.
한편, 상술한 본 개시의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.

Claims (8)

  1. 광학 지문 센싱 회로를 포함한 화소회로로서,
    상기 화소회로는,
    화상을 표시하는 자발광 소자; 상기 자발광 소자에서 출사되어 사용자의 지문을 통해 반사된 광을 수광하여 광전류로 변환하는 수광소자; 및 화소 제어회로; 를 포함하고,
    상기 수광소자는, 제 1 신호를 생성하는 제 1 수광 소자; 및 제 2 신호를 생성하는 제 2 수광 소자를 포함하고,
    상기 화소 제어회로는 상기 제 1 신호와 상기 제 2 신호를 연산하여 출력 신호를 생성하고, 적어도 하나의 트랜지스터 성분과 적어도 하나의 캐패시터 성분을 포함하는 화소회로.
  2. 제 1항에 있어서,
    상기 화소 제어회로는,
    상기 제 1 신호와 상기 제 2 신호를 차분하여 노이즈 신호가 제거된 출력신호를 생성하는 것을 특징으로 하는 화소회로.
  3. 제 1 항에 있어서,
    상기 화소 제어회로는 제 1 트랜지스터, 제 2 트랜지스터, 제 3 트랜지스터, 제 4 트랜지스터, 제 5 트랜지스터, 제 6 트랜지스터, 제 7 트랜지스터, 제 1 캐패시터 및 제 2 캐패시터를 더 포함하고,
    상기 제 1 트랜지스터의 제 1 단자는 데이터라인에 연결되고, 상기 제 1 트랜지스터의 제 2 단자는 제 1 노드에 연결되고, 상기 제 1 트랜지스터의 게이트 단자는 n 번째 스캔라인에 연결되고,
    상기 제 2 트랜지스터의 제 1 단자는 제 2 노드에 연결되고, 상기 제 2 트랜지스터의 제 2 단자는 제 3 노드에 연결되고, 상기 제 2 트랜지스터의 게이트 단자는 제 4 노드에 연결되고,
    상기 제 3 트랜지스터의 제 1 단자는 상기 제 4 노드에 연결되고, 상기 제 3 트랜지스터의 제 2 단자는 상기 제 3 노드에 연결되고, 상기 제 3 트랜지스터의 게이트 단자는 n-1 번째 스캔라인에 연결되고,
    상기 제 4 트랜지스터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 4 트랜지스터의 제 2 단자는 상기 제 2 수광 소자의 캐소드(Cathode) 단자에 연결되고, 상기 제 4 트랜지스터의 게이트 단자는 제 1 센싱(sensing) 라인에 연결되고,
    상기 제 5 트랜지스터의 제 1 단자는 상기 제 1 수광 소자의 아노드 단자에 연결되고, 상기 제 5 트랜지스터의 제 2 단자는 상기 제 1 노드에 연결되고, 상기 제 5 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고,
    상기 제 6 트랜지스터의 제 1 단자는 상기 제 3 노드에 연결되고, 상기 제 6 트랜지스터의 제 2 단자는 접지되고, 상기 제 6 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고,
    상기 제 7 트랜지스터의 제 1 단자는 상기 제 2 노드에 연결되고, 상기 제 7 트랜지스터의 제 2 단자는 출력 라인에 연결되고, 상기 제 7 트랜지스터의 게이트 단자는 제 2 센싱 라인에 연결되고,
    상기 제 1 캐패시터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 1 캐패시터의 제 2 단자는 상기 제 4 노드에 연결되고,
    상기 제 2 캐패시터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 2 캐패시터의 제 2 단자는 접지되고,
    상기 제 1 수광 소자의 캐소드 단자는 전원(VDD)에 연결되고, 상기 제 2 수광 소자는 접지되는 것을 특징으로 하는 화소회로.
  4. 제 3 항에 있어서,
    상기 화소 제어회로는 제 8 트랜지스터, 제 9 트랜지스터, 및 제 10 트랜지스터를 더 포함하고,
    상기 제 8 트랜지스터의 제 1 단자는 전원(VDD)에 연결되고, 상기 제 8 트랜지스터의 제 2 단자는 상기 제 1 노드에 연결되고, 상기 제 8 트랜지스터의 게이트 단자는 상기 n-1 번째 스캔라인에 연결되고,
    상기 제 9 트랜지스터의 제 1 단자는 상기 전원에 연결되고, 상기 제 9 트랜지스터의 제 2 단자는 상기 제 2 노드에 연결되고, 상기 제 9 트랜지스터의 게이트 단자는 제 1 에미션(emission)라인에 연결되고,
    상기 제 10 트랜지스터의 제 1 단자는 상기 제 3 노드에 연결되고, 상기 제 10 트랜지스터의 제 2 단자는 상기 자발광 소자의 아노드 단자에 연결되고, 상기 제 10 트랜지스터의 게이트 단자는 제 2 에미션 라인에 연결되고,
    상기 자발광 소자의 캐소드 단자는 접지되는 것을 특징으로 하는 화소회로.
  5. 제 1 항에 있어서,
    상기 화소 제어회로는 제 1 트랜지스터, 제 2 트랜지스터, 제 3 트랜지스터, 제 4 트랜지스터, 제 5 트랜지스터, 제 6 트랜지스터 및 제 7 트랜지스터를 더 포함하고,
    상기 제 1 트랜지스터의 제 1 단자는 데이터라인에 연결되고, 상기 제 1 트랜지스터의 제 2 단자는 제 1 노드에 연결되고, 상기 제 1 트랜지스터의 게이트 단자는 n 번째 스캔라인에 연결되고,
    상기 제 2 트랜지스터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 2 트랜지스터의 제 2 단자는 제 2 노드에 연결되고, 상기 제 2 트랜지스터의 게이트 단자는 제 3 노드에 연결되고,
    상기 제 3 트랜지스터의 제 1 단자는 상기 제 3 노드에 연결되고, 상기 제 3 트랜지스터의 제 2 단자는 상기 제 2 노드에 연결되고, 상기 제 3 트랜지스터의 게이트 단자는 상기 n 번째 스캔라인에 연결되고,
    상기 제 4 트랜지스터의 제 1 단자는 상기 제 3 노드에 연결되고, 상기 제 4 트랜지스터의 제 2 단자는 상기 제 2 수광 소자의 캐소드(Cathode) 단자에 연결되고, 상기 제 4 트랜지스터의 게이트 단자는 제 1 센싱(sensing) 라인에 연결되고,
    상기 제 5 트랜지스터의 제 1 단자는 상기 제 1 수광 소자의 아노드(Anode) 단자에 연결되고, 상기 제 5 트랜지스터의 제 2 단자는 상기 제 3 노드에 연결되고, 상기 제 5 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고,
    상기 제 6 트랜지스터의 제 1 단자는 상기 제 2 노드에 연결되고, 상기 제 6 트랜지스터의 제 2 단자는 접지되고, 상기 제 6 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고,
    상기 제 7 트랜지스터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 7 트랜지스터의 제 2 단자는 출력 라인에 연결되고, 상기 제 7 트랜지스터의 게이트 단자는 제 2 센싱 라인에 연결되고,
    상기 제 1 수광 소자의 캐소드 단자는 전원(VDD)에 연결되고, 상기 제 2 수광 소자의 아노드 단자는 접지되는 것을 특징으로 하는 화소회로.
  6. 제 5 항에 있어서,
    상기 화소 제어회로는 제 8 트랜지스터, 제 9 트랜지스터, 제 10 트랜지스터, 및 제 11 트랜지스터를 더 포함하고,
    상기 제 8 트랜지스터의 제 1 단자는 초기화라인에 연결되고, 상기 제 8 트랜지스터의 제 2 단자는 상기 제 3 노드에 연결되고, 상기 제 8 트랜지스터의 게이트 단자는 n-1 번째 스캔라인에 연결되고,
    상기 제 9 트랜지스터의 제 1 단자는 초기화라인에 연결되고, 상기 제 9 트랜지스터의 제 2 단자는 상기 자발광 소자의 아노드(anode) 단자에 연결되고, 상기 제 9 트랜지스터의 게이트 단자는 상기 n-1 번째 스캔라인에 연결되고,
    상기 제 10 트랜지스터의 제 1 단자는 상기 전원에 연결되고, 상기 제 10 트랜지스터의 제 2 단자는 상기 제 1 노드에 연결되고, 상기 제 10 트랜지스터의 게이트 단자는 에미션(emission)라인에 연결되고,
    상기 제 11 트랜지스터의 제 1 단자는 상기 제 2 노드에 연결되고, 상기 제 11 트랜지스터의 제 2 단자는 상기 자발광 소자의 아노드 단자에 연결되고, 상기 제 11 트랜지스터의 게이트 단자는 상기 에미션 라인에 연결되고,
    상기 캐패시터의 제 1 단자는 상기 전원에 연결되고, 상기 캐패시터의 제 2 단자는 상기 제 3 노드에 연결되고,
    상기 자발광 소자의 캐소드 단자는 접지되는 것을 특징으로 하는 화소회로.
  7. 제 1 항에 있어서,
    상기 화소 제어회로는 제 1 트랜지스터, 제 2 트랜지스터, 제 3 트랜지스터, 제 4 트랜지스터, 제 5 트랜지스터 및 제 6 트랜지스터를 더 포함하고,
    상기 제 1 트랜지스터의 제 1 단자는 데이터라인에 연결되고, 상기 제 1 트랜지스터의 제 2 단자는 제 1 노드에 연결되고, 상기 제 1 트랜지스터의 게이트 단자는 n번째 스캔라인에 연결되고,
    상기 제 2 트랜지스터의 제 1 단자는 제 2 노드에 연결되고, 상기 제 2 트랜지스터의 제 2 단자는 제 3 노드에 연결되고, 상기 제 2 트랜지스터의 게이트 단자는 상기 제 1 노드에 연결되고,
    상기 제 3 트랜지스터의 제 1 단자는 상기 제 1 노드에 연결되고, 상기 제 3 트랜지스터의 제 2 단자는 상기 제 2 수광 소자의 캐소드(Cathode) 단자에 연결되고, 상기 제 3 트랜지스터의 게이트 단자는 제 1 센싱(sensing) 라인에 연결되고,
    상기 제 4 트랜지스터의 제 1 단자는 상기 제 1 수광 소자의 아노드 단자에 연결되고, 상기 제 4 트랜지스터의 제 2 단자는 상기 제 1 노드에 연결되고, 상기 제 4 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고,
    상기 제 5 트랜지스터의 제 1 단자는 상기 제 3 노드에 연결되고, 상기 제 5 트랜지스터의 제 2 단자는 접지되고, 상기 제 5 트랜지스터의 게이트 단자는 상기 제 1 센싱 라인에 연결되고,
    상기 제 6 트랜지스터의 제 1 단자는 상기 제 2 노드에 연결되고, 상기 제 6 트랜지스터의 제 2 단자는 출력 라인에 연결되고, 상기 제 6 트랜지스터의 게이트 단자는 제 2 센싱 라인에 연결되고,
    상기 제 1 수광 소자의 캐소드 단자는 전원(VDD)에 연결되고, 상기 제 2 수광 소자의 아노드 단자는 접지되는 것을 특징으로 하는 화소회로.
  8. 제 7 항에 있어서,
    상기 화소 제어회로는 제 7 트랜지스터를 더 포함하고,
    상기 제 7 트랜지스터의 제 1 단자는 상기 전원에 연결되고, 상기 제 7 트랜지스터의 제 2 단자는 상기 제 2 노드에 연결되고, 상기 제 7 트랜지스터의 게이트 단자는 에미션(emission)라인에 연결되고,
    상기 캐패시터의 제 1 단자는 상기 전원에 연결되고, 상기 캐패시터의 제 2 단자는 상기 제 1 노드에 연결되고,
    상기 자발광 소자의 아노드 단자는 상기 제 3 노드에 연결되고, 상기 자발광 소자의 캐소드 단자는 접지되는 것을 특징으로 하는 화소회로.
PCT/KR2019/006645 2018-12-31 2019-06-03 광학 지문 센싱 회로를 포함한 화소 회로, 화소 회로의 구동 방법, 및 유기 발광 표시 장치 WO2020141663A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980082508.1A CN113228150B (zh) 2018-12-31 2019-06-03 包括光学指纹感测电路的像素电路、驱动像素电路的方法和有机发光显示装置
US17/296,856 US11783617B2 (en) 2018-12-31 2019-06-03 Pixel circuit comprising optical fingerprint sensing circuit, method for driving pixel circuit, and organic light-emitting display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180173480A KR102607403B1 (ko) 2018-12-31 2018-12-31 광학 지문 센싱 회로를 포함한 화소 회로, 화소 회로의 구동 방법, 및 유기 발광 표시 장치
KR10-2018-0173480 2018-12-31

Publications (1)

Publication Number Publication Date
WO2020141663A1 true WO2020141663A1 (ko) 2020-07-09

Family

ID=71406666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006645 WO2020141663A1 (ko) 2018-12-31 2019-06-03 광학 지문 센싱 회로를 포함한 화소 회로, 화소 회로의 구동 방법, 및 유기 발광 표시 장치

Country Status (4)

Country Link
US (1) US11783617B2 (ko)
KR (1) KR102607403B1 (ko)
CN (1) CN113228150B (ko)
WO (1) WO2020141663A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108229388A (zh) * 2017-12-30 2018-06-29 深圳信炜科技有限公司 感光驱动电路、感光装置及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230144684A (ko) * 2022-04-07 2023-10-17 삼성디스플레이 주식회사 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148285A (ja) * 2003-11-13 2005-06-09 Sony Corp 表示装置およびその駆動方法
JP2013069201A (ja) * 2011-09-26 2013-04-18 Seiko Epson Corp 光センサーとその駆動方法、及び静脈センサー、指紋センサー
US20160042216A1 (en) * 2014-08-07 2016-02-11 Boe Technology Group Co., Ltd. Array Substrate, Driving Method Thereof, and Display Apparatus
KR101718476B1 (ko) * 2015-09-17 2017-03-21 주식회사 비욘드아이즈 지문 인식 기능을 구비한 표시 장치
KR20170136692A (ko) * 2016-06-01 2017-12-12 에코스솔루션(주) 위조 지문에 대한 보안성이 향상된 휴대용 보안인증기의 인증방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481127B2 (ja) * 2009-08-19 2014-04-23 株式会社ジャパンディスプレイ センサ素子およびその駆動方法、センサ装置、ならびに入力機能付き表示装置および電子機器
US9916793B2 (en) * 2012-06-01 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving the same
TWI526946B (zh) * 2014-12-17 2016-03-21 義隆電子股份有限公司 指紋感測裝置
US20170289805A1 (en) * 2016-03-30 2017-10-05 Motorola Mobility Llc Embedded active matrix organic light emitting diode (amoled) fingerprint sensor and self-compensating amoled
CN106203408A (zh) * 2016-08-31 2016-12-07 上海箩箕技术有限公司 光学指纹传感器模组
KR20180085288A (ko) * 2017-01-18 2018-07-26 삼성전자주식회사 지문 인식 기능을 가지는 전자 장치
CN206863767U (zh) * 2017-03-31 2018-01-09 上海思立微电子科技有限公司 一种用于指纹传感器的信号处理电路
KR102491855B1 (ko) * 2017-12-11 2023-01-26 삼성전자주식회사 3d 지문센서 소자 및 이를 포함하는 전자 장치
CN108073911B (zh) * 2017-12-30 2021-10-15 柳州梓博科技有限公司 感光装置、感光模组、显示模组及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148285A (ja) * 2003-11-13 2005-06-09 Sony Corp 表示装置およびその駆動方法
JP2013069201A (ja) * 2011-09-26 2013-04-18 Seiko Epson Corp 光センサーとその駆動方法、及び静脈センサー、指紋センサー
US20160042216A1 (en) * 2014-08-07 2016-02-11 Boe Technology Group Co., Ltd. Array Substrate, Driving Method Thereof, and Display Apparatus
KR101718476B1 (ko) * 2015-09-17 2017-03-21 주식회사 비욘드아이즈 지문 인식 기능을 구비한 표시 장치
KR20170136692A (ko) * 2016-06-01 2017-12-12 에코스솔루션(주) 위조 지문에 대한 보안성이 향상된 휴대용 보안인증기의 인증방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108229388A (zh) * 2017-12-30 2018-06-29 深圳信炜科技有限公司 感光驱动电路、感光装置及电子设备

Also Published As

Publication number Publication date
CN113228150B (zh) 2024-06-11
KR102607403B1 (ko) 2023-11-29
KR20200082662A (ko) 2020-07-08
CN113228150A (zh) 2021-08-06
US20220005408A1 (en) 2022-01-06
US11783617B2 (en) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2020141664A1 (ko) 광학 지문 센싱 회로를 포함한 화소 회로, 화소 회로의 구동 방법, 및 유기 발광 표시 장치
WO2021157786A1 (ko) 표시 장치
WO2020171384A1 (en) Display panel and driving method of the display panel
US11217172B2 (en) Pixel circuit, driving method thereof and display device
WO2016045301A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2020251212A1 (ko) 터치 장치 및 그 구동 방법
WO2021020655A1 (ko) 표시 장치 및 그것의 제조 방법
US10650740B2 (en) Pixel driving circuit and display device
US10205900B2 (en) Pixel circuit, semiconductor camera detection circuit and display device
WO2019245173A1 (ko) 유기 발광 표시 장치
WO2020141663A1 (ko) 광학 지문 센싱 회로를 포함한 화소 회로, 화소 회로의 구동 방법, 및 유기 발광 표시 장치
US10943536B2 (en) External compensation circuit and method, and display device
WO2013176302A1 (ko) 정전용량 지문센서
US20040026719A1 (en) Providing current to compensate for spurious current while receiving signals through a line
CN113129817A (zh) 电力管理驱动器和显示装置
WO2019245189A1 (ko) 표시 장치
WO2023090757A1 (ko) 표시 장치
WO2020045777A1 (ko) 화소 및 이를 포함하는 표시 장치
WO2020122377A1 (ko) 표시 장치 및 표시 장치 제조 방법
WO2015182998A1 (ko) 시프트 회로, 시프트 레지스터 및 표시장치
WO2021157791A1 (ko) 표시 장치 및 그 구동 방법
JP2021535416A (ja) 表示パネルおよびその駆動方法
US11631351B2 (en) Current detection device and display device
WO2020218674A1 (ko) 표시 장치
WO2015167227A1 (ko) 유기발광 표시장치의 휘도 편차 보상장치 및 보상방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907660

Country of ref document: EP

Kind code of ref document: A1