WO2020140658A1 - 波达方向估计方法及装置、雷达、可读存储介质 - Google Patents

波达方向估计方法及装置、雷达、可读存储介质 Download PDF

Info

Publication number
WO2020140658A1
WO2020140658A1 PCT/CN2019/121765 CN2019121765W WO2020140658A1 WO 2020140658 A1 WO2020140658 A1 WO 2020140658A1 CN 2019121765 W CN2019121765 W CN 2019121765W WO 2020140658 A1 WO2020140658 A1 WO 2020140658A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
covariance
frequency domain
domain signal
processor
Prior art date
Application number
PCT/CN2019/121765
Other languages
English (en)
French (fr)
Inventor
张雪扬
祁春超
Original Assignee
深圳市华讯方舟太赫兹科技有限公司
华讯方舟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华讯方舟太赫兹科技有限公司, 华讯方舟科技有限公司 filed Critical 深圳市华讯方舟太赫兹科技有限公司
Publication of WO2020140658A1 publication Critical patent/WO2020140658A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/12Means for determining sense of direction, e.g. by combining signals from directional antenna or goniometer search coil with those from non-directional antenna
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/781Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the invention relates to the field of signal processing, in particular to a method and device for estimating direction of arrival, a radar, and a readable storage medium.
  • Direction of Arrival (Direction of Arrival, DOA) estimation refers to obtaining the direction of the incoming wave of the signal source, that is, the direction angle, by processing the signal received by the antenna.
  • DOA is estimated to have a wide range of applications in the fields of radar, sonar, wireless communication, and seismic exploration.
  • Sparse restoration is a new signal processing mechanism and has been applied to DOA estimation. Sparse restoration is to reconstruct the original signal from a small amount of observation data according to the underdetermined observation equations under the condition that the original signal has sparseness. This process can also be called compressed sensing. Sparse reconstruction can be regarded as a l0 norm optimization problem in essence. The calculation process is complicated and the calculation speed is slow.
  • the technical problem mainly solved by the present invention is to provide a method and device for estimating the direction of arrival, a radar, and a readable storage medium, which can solve the problems of the complicated calculation process and slow operation speed of the DOA estimation calculation using sparse restoration in the prior art.
  • the present invention provides a method of direction-of-arrival estimation.
  • the method includes: using multiple receiving antennas in a MIMO antenna to receive an echo signal; performing a Fourier transform on the echo signal to obtain a frequency domain signal; Calculate the covariance of the frequency domain signal; sparsely restore the covariance of the frequency domain signal to obtain the covariance of the original signal; find the target element in the covariance of the original signal, the value of the target element is greater than the specified threshold; according to the target element in the original signal The position in the variance determines the direction of arrival.
  • the present invention provides a device for estimating the direction of arrival.
  • the device includes at least one processor that works alone or in cooperation.
  • the processor is used to execute instructions to implement the aforementioned method of estimating the direction of arrival.
  • the present invention provides a radar.
  • the radar includes a processor and a plurality of antennas.
  • the processor is connected to the plurality of antennas.
  • the processor is used to execute instructions to implement the aforementioned direction of arrival estimation method.
  • the present invention provides a readable storage medium that stores instructions, and when the instructions are executed, the aforementioned direction of arrival estimation method is implemented.
  • the beneficial effect of the present invention is to use the sparse restoration of the covariance of the frequency domain signal in the frequency domain to obtain the covariance of the original signal, and find the target element from the covariance of the original signal to determine the direction of arrival.
  • Sparse restoration in the frequency domain can improve the measurement accuracy.
  • the covariance of the frequency domain signal is a square matrix
  • the order is the number of receiving antennas, and it is not affected by the length of the Fourier transform, which can reduce the complexity of the algorithm.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for estimating the direction of arrival of the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of an apparatus for estimating the direction of arrival of the present invention
  • FIG. 3 is a schematic structural view of an embodiment of the radar of the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of a readable storage medium of the present invention.
  • an embodiment of the method for estimating the direction of arrival of the present invention includes:
  • S1 Use multiple receiving antennas in the MIMO antenna to receive the echo signal.
  • DOA estimation can be applied to other devices, such as sonar, wireless communication devices, etc.
  • MIMO Multiple-Input Multiple-Output
  • the MIMO antenna includes multiple transmit antennas and multiple receive antennas.
  • the radar can use multiple transmitting antennas to emit electromagnetic waves outward, and then use multiple receiving antennas to receive the echo signals reflected by the target.
  • y(t) is the echo signal
  • the size is M*T, where M is the number of antennas and T is the number of snapshots.
  • a r is a target at the receiving end steering matrix
  • a t is the target steering matrices in the transmitting end
  • s is the original signal having sparsity
  • n (t) is the noise.
  • the discrete Fourier transform (DFT) of the echo signal is used to obtain the frequency domain signal, and the fast Fourier transform (FFT) can be used to speed up the calculation speed.
  • DFT discrete Fourier transform
  • FFT fast Fourier transform
  • the complete echo signal can be directly Fourier transformed and the transformed result can be used as a frequency domain signal.
  • the echo signal can be divided into multiple signal blocks; Fourier transform is performed on each signal block separately; all transform results are used as frequency domain signals.
  • the size of the frequency domain signal is M*(N*L), where N is the length of DFT/FFT and L is the total number of signal blocks.
  • the echo signal is divided into a plurality of signal blocks; Fourier transform is performed on each signal block separately; spectrum data of a part of frequency points is extracted from all the conversion results as a frequency domain signal.
  • the extracted partial frequency points include the peak frequency point of the conversion result and the frequency points within the specified range beside the peak frequency point.
  • the echo signal can be divided into L signal blocks, and the spectral data of d frequency points including the peak frequency point are extracted from the transformation result of each signal block, respectively, and the final frequency domain signal size is M* (d*L).
  • the target frequency position has a larger spectrum data value, so the extraction can not only reduce the subsequent calculation, but also improve the signal Noise ratio.
  • the frequency domain signal is:
  • Y(n) is the frequency domain signal
  • the size is M*M
  • S(n) is the original signal in the frequency domain
  • N(n) is the noise signal in the frequency domain.
  • the covariance of the frequency domain signal is:
  • R Y is the covariance of the frequency domain signal
  • E[ ⁇ ] means expectation
  • superscript H means the conjugate transpose operation of the matrix
  • E N is the covariance of noise
  • the covariance R S of the original signal can be obtained.
  • ⁇ f is the F norm
  • ⁇ 1 is the l1 norm
  • is the specified coefficient
  • R C is the column vector formed by connecting R S along the column direction using the vec( ⁇ ) operation or using row( ⁇ ) Calculate the row vector connecting R S along the row direction.
  • S5 Find the target element in the covariance of the original signal, the value of the target element is greater than the specified threshold.
  • R S can be approximated as a diagonal matrix.
  • the value of each element on the diagonal is equal to the square of the value of the corresponding element in the original signal. And for each element in the original signal, if the position corresponding to the element has no target, the value of the element is 0 (ideal) or very small (affected by noise); if the position corresponding to the element has a target, the element Is larger.
  • the value of each element in the covariance of the original signal can be compared with the specified threshold, if it is greater than the specified threshold, the element is the target element, otherwise the element is not the target element, so as to find out all of the original signal Target element.
  • S6 Determine the direction of arrival according to the position of the target element in the covariance of the original signal.
  • the search angle corresponding to the target element can be determined according to the position of the target element in the covariance of the original signal, and the search angle corresponding to the target element is the DOA of the target.
  • the covariance of the frequency domain signal is sparsely restored in the frequency domain to obtain the covariance of the original signal, and the target element is found from the covariance of the original signal to determine the direction of arrival. Sparse restoration in the frequency domain can improve the measurement accuracy.
  • the covariance of the frequency domain signal is a square matrix, the order is the number of receiving antennas, and it is not affected by the length of the Fourier transform, which can reduce the complexity of the algorithm.
  • an embodiment of the apparatus for estimating the direction of arrival of the present invention includes: a processor 110. Only one processor 110 is shown in the figure, the actual number can be more. The processor 110 may work alone or in cooperation.
  • the processor 110 controls the operation of the direction-of-arrival estimation device.
  • the processor 110 may also be called a CPU (Central Processing Unit, central processing unit).
  • the processor 110 may be an integrated circuit chip with signal sequence processing capabilities.
  • the processor 110 may also be a general-purpose processor, a digital signal sequence processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware Components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the processor 110 is used to execute instructions to implement the method provided by any embodiment of the method for estimating the direction of arrival of the present invention and a non-conflicting combination.
  • an embodiment of the radar of the present invention includes: a processor 210 and an antenna array 220.
  • the processor 210 controls the operation of the radar.
  • the processor 210 may also be called a CPU (Central Processing Unit).
  • the processor 210 may be an integrated circuit chip with signal sequence processing capability.
  • the processor 210 may also be a general-purpose processor, a digital signal sequence processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware Components.
  • DSP digital signal sequence processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the antenna array 220 includes multiple receiving antennas for receiving echo signals.
  • the processor 210 is used to execute instructions to implement the method provided by any embodiment of the method for estimating the direction of arrival of the present invention and non-conflicting combinations.
  • the operating frequency of the radar can be 77 GHz, which can be used as a radar sensor in an advanced driver assistance system for automobiles.
  • an embodiment of the readable storage medium of the present invention includes a memory 310, which stores instructions, which are provided to implement any embodiment of the method of estimating the direction of arrival of the present invention and any non-conflicting combination when the instruction is executed Methods.
  • the memory 310 may include a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a flash memory (Flash Memory), a hard disk, an optical disk, and the like.
  • ROM read-only memory
  • RAM random access memory
  • flash Memory flash memory
  • the disclosed method and device may be implemented in other ways.
  • the device implementation described above is only schematic.
  • the division of the module or unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be The combination can either be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software function unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present invention essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium It includes several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or processor to execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种波达方向估计方法,该方法包括:利用MIMO天线中的多个接收天线接收回波信号(S1);对回波信号进行傅里叶变换得到频域信号(S2);计算频域信号的协方差(S3);对频域信号的协方差进行稀疏复原得到原信号的协方差(S4);在原信号的协方差中寻找目标元素,目标元素的值大于指定阈值(S5);根据目标元素在原信号的协方差中的位置确定波达方向(S6)。有益效果:能够在提高测量精度的同时有效的降低算法的复杂度,提高运算速度。

Description

波达方向估计方法及装置、雷达、可读存储介质 技术领域
本发明涉及信号处理领域,特别是涉及一种波达方向估计方法及装置、雷达、可读存储介质。
背景技术
波达方向(Direction of Arrival,DOA)估计是指通过处理天线接收到的信号,获取信号源的来波方向,即方向角。DOA估计在雷达、声呐、无线通信及地震勘探等领域有着广泛的应用。
稀疏复原是一种新的信号处理机制,并且已经应用于DOA估计。稀疏复原是在满足原始信号具有稀疏性的条件下,根据欠定的观测方程组,从少量的观测数据重构原始信号,这一过程也可以被称为压缩感知。稀疏重构本质上可以认为是l0范数优化问题,计算过程复杂,运算速度慢。
技术解决方案
本发明主要解决的技术问题是提供一种波达方向估计方法及装置、雷达、可读存储介质,能够解决现有技术中使用稀疏复原的DOA估计计算过程复杂,运算速度慢的问题。
为了解决上述技术问题,本发明提供了一种波达方向估计方法,该方法包括:利用MIMO天线中的多个接收天线接收回波信号;对回波信号进行傅里叶变换得到频域信号;计算频域信号的协方差;对频域信号的协方差进行稀疏复原得到原信号的协方差;在原信号的协方差中寻找目标元素,目标元素的值大于指定阈值;根据目标元素在原信号的协方差中的位置确定波达方向。
为了解决上述技术问题,本发明提供了一种波达方向估计装置,该装置包括至少一个处理器,单独或协同工作,处理器用于执行指令以实现前述的波达方向估计方法。
为了解决上述技术问题,本发明提供了一种雷达,该雷达包括处理器和多个天线,处理器连接多个天线,处理器用于执行指令以实现前述的波达方向估计方法。
为了解决上述技术问题,本发明提供了一种可读存储介质,存储有指令, 指令被执行时实现前述的波达方向估计方法。
本发明的有益效果是:在频域上利用对频域信号的协方差进行稀疏复原来得到原信号的协方差,从原信号的协方差中寻找目标元素来确定波达方向。在频域上进行稀疏复原能够提高测量精度,同时由于频域信号的协方差为方阵,其阶数为接收天线的数量,不受到傅里叶变换长度的影响,可以降低算法的复杂度。
附图说明
图1是本发明波达方向估计方法一实施例的流程示意图;
图2是本发明波达方向估计装置一实施例的结构示意图;
图3是本发明雷达一实施例的结构示意图;
图4是本发明可读存储介质一实施例的结构示意图。
本发明的实施方式
下面结合附图和实施例对本发明进行详细说明。以下各实施例中不冲突的可以相互结合。
如图1所示,本发明波达方向估计方法一实施例包括:
S1:利用MIMO天线中的多个接收天线接收回波信号。
为便于说明,以下以雷达为例说明波达方向(DOA)估计的过程。实际应用中,DOA估计可以应用于其他设备,例如声呐、无线通信设备等。
多入多出(Multiple-Input Multiple-Output,MIMO)技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收。MIMO天线包括多个发射天线和多个接收天线。雷达可以使用多个发射天线向外发射电磁波,然后利用多个接收天线接收电磁波被目标反射的回波信号。
基于压缩感知/稀疏复原,回波信号的建模表达为:
y(t)=A rA ts+n(t)           (3)
其中,y(t)为回波信号,,大小为M*T,其中M为天线数量,T为快拍数。A r为目标在接收端的导向矩阵,A t为目标在发送端的导向矩阵,s为具有稀疏性的原始信号,n(t)为噪声。
S2:对回波信号进行傅里叶变换得到频域信号。
对回波信号进行离散傅里叶变换(DFT)得到频域信号,可以使用快速傅里叶变换(FFT)来加快运算速度。
可选的,可以直接对完整的回波信号直接进行傅里叶变换并将变换结果作为频域信号。
可选的,可以将回波信号分为多个信号块;分别对每个信号块进行傅里叶变换;将所有变换结果作为频域信号。此时频域信号的大小为M*(N*L),其中N为DFT/FFT的长度,L为信号块总数。
可选的,将回波信号分为多个信号块;分别对每个信号块进行傅里叶变换;在所有变换结果中提取部分频点的频谱数据作为频域信号。被提取的部分频点包括变换结果的峰值频点及峰值频点旁指定范围内的频点。例如,可以将回波信号分成L个信号块,分别在每个信号块的变换结果中提取包括峰值频点在内的d个频点的频谱数据,最终得到的频域信号的大小为M*(d*L)。
由于回波信号在频谱上的功率集中在目标频率位置,相对于其他频率位置的频谱值,在目标频率位置具有较大的频谱数据值,因此提取不仅可以减少后续的计算量,还可以提高信噪比。
根据回波信号的表达式,得到频域信号为:
Y(n)=A rA tS(n)+N(n)           (4)
其中,Y(n)为频域信号,大小为M*M,S(n)为频域上的原始信号,N(n)为频域上的噪声信号。
S3:计算频域信号的协方差。
频域信号的协方差为:
R Y=E[Y(n)Y(n) H]            (1)
其中R Y为频域信号的协方差,E[·]表示求期望,上标的H表示矩阵的共轭转置操作。
S4:对频域信号的协方差进行稀疏复原得到原信号的协方差。
将式(4)代入式(1),可得:
R Y=[A rA t] HR S[A rA t]+E N           (5)
其中E N为噪声的协方差。
根据式(5),利用凸优化算法求解以下方程式:
Figure PCTCN2019121765-appb-000001
s.t.R S=R S H,diag(R S)>=0,R C=vec(R S),or R C=row(R S)
可以得到原信号的协方差R S。其中,‖·‖ f为F范数,‖·‖ 1为l1范数,λ为指定系数,R C为使用vec(·)运算将R S沿着列方向连接成的列向量或使用row(·)运算将R S沿着行方向连接成的行向量。
S5:在原信号的协方差中寻找目标元素,目标元素的值大于指定阈值。
忽略噪声的影响,R S可被近似的看做一个对角阵,对角线上每个元素的值等于原信号中对应元素的值的平方。并且对于原信号中每个元素,若该元素对应的位置没有目标,则该元素的值为0(理想情况)或很小(受到噪声影响);若该元素对应的位置有目标,则该元素的值较大。
根据这一原理,可以将原信号的协方差中每个元素的值与指定阈值比较,若大于指定阈值,则该元素为目标元素,否则该元素不是目标元素,从而找出原信号中的所有目标元素。
S6:根据目标元素在原信号的协方差中的位置确定波达方向。
根据目标元素在原信号的协方差中的位置可以确定目标元素对应的搜索角,目标元素对应的搜索角即为目标的DOA。
通过本实施例的实施,在频域上利用对频域信号的协方差进行稀疏复原来得到原信号的协方差,从原信号的协方差中寻找目标元素来确定波达方向。在频域上进行稀疏复原能够提高测量精度,同时由于频域信号的协方差为方阵,其阶数为接收天线的数量,不受到傅里叶变换长度的影响,可以降低算法的复杂度。
如图2所示,本发明波达方向估计装置一实施例包括:处理器110。图中只画出了一个处理器110,实际数量可以更多。处理器110可以单独或者协同工作。
处理器110控制波达方向估计装置的操作,处理器110还可以称为CPU(Central Processing Unit,中央处理单元)。处理器110可能是一种集成电路芯片,具有信号序列的处理能力。处理器110还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
处理器110用于执行指令以实现本发明波达方向估计方法任一实施例以及 不冲突的组合所提供的方法。
如图3所示,本发明雷达一实施例包括:处理器210和天线阵列220。
处理器210控制雷达的操作,处理器210还可以称为CPU(Central Processing Unit,中央处理单元)。处理器210可能是一种集成电路芯片,具有信号序列的处理能力。处理器210还可以是通用处理器、数字信号序列处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
天线阵列220包括多个接收天线,用于接收回波信号。
处理器210用于执行指令以实现本发明波达方向估计方法任一实施例以及不冲突的组合所提供的方法。
可选的,雷达的工作频率可以为77GHz,可以作为汽车高级驾驶辅助系统中的雷达传感器。
如图4所示,本发明可读存储介质一实施例包括存储器310,存储器310存储有指令,该指令被执行时实现本发明波达方向估计方法任一实施例以及任意不冲突的组合所提供的方法。
存储器310可以包括只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、闪存(Flash Memory)、硬盘、光盘等。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种波达方向估计方法,其特征在于,包括:
    利用MIMO天线中的多个接收天线接收回波信号;
    对所述回波信号进行傅里叶变换得到频域信号;
    计算所述频域信号的协方差;
    对所述频域信号的协方差进行稀疏复原得到原信号的协方差;
    在所述原信号的协方差中寻找目标元素,所述目标元素的值大于指定阈值;
    根据所述目标元素在所述原信号的协方差中的位置确定所述波达方向。
  2. 根据权利要求1所述的方法,其特征在于,所述频域信号的协方差为:
    R Y=E[Y(n)Y(n) H]      (1)
    其中R Y为所述频域信号的协方差,Y(n)为所述频域信号,E[·]表示求期望。
  3. 根据权利要求2所述的方法,其特征在于,所述对所述频域信号的协方差进行稀疏复原得到原信号的协方差包括:
    利用凸优化算法求解以下方程式:
    Figure PCTCN2019121765-appb-100001
    s.t.R S=R S H,diag(R S)>=0,R C=vec(R S),or R C=row(R S)
    其中,R S为所述原信号的协方差,A r为目标在接收端的导向矩阵,A t为所述目标在发送端的导向矩阵,‖·‖ f为F范数,‖·‖ 1为l1范数,λ为指定系数,R C为使用vec(·)运算将R S沿着列方向连接成的列向量或使用row(·)运算将R S沿着行方向连接成的行向量。
  4. 根据权利要求1所述的方法,其特征在于,
    所述对所述回波信号进行傅里叶变换得到频域信号包括:
    将所述回波信号分为多个信号块;
    分别对每个信号块进行所述傅里叶变换;
    将所有变换结果作为所述频域信号。
  5. 根据权利要求1所述的方法,其特征在于,
    所述对所述回波信号进行傅里叶变换得到频域信号包括:
    将所述回波信号分为多个信号块;
    分别对每个信号块进行所述傅里叶变换;
    在所有所述变换结果中提取部分频点的频谱数据作为所述频域信号,被提取的部分频点包括所述变换结果的峰值频点。
  6. 根据权利要求1所述的方法,其特征在于,
    对完整的所述回波信号直接进行所述傅里叶变换并将变换结果作为所述频域信号。
  7. 一种波达方向估计装置,其特征在于,包括至少一个处理器,单独或协同工作,所述处理器用于执行指令以实现如权利要求1-6中任一项所述的方法。
  8. 一种雷达,其特征在于,包括处理器和多个天线,所述处理器连接所述多个天线,所述处理器用于执行指令以实现如权利要求1-6中任一项所述的方法。
  9. 根据权利要求8所述的雷达,其特征在于,所述雷达的工作频率为77GHz。
  10. 一种可读存储介质,存储有指令,其特征在于,所述指令被执行时实现如权利要求1-6中任一项所述的方法。
PCT/CN2019/121765 2018-12-31 2019-11-28 波达方向估计方法及装置、雷达、可读存储介质 WO2020140658A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811651029.0 2018-12-31
CN201811651029.0A CN109782245B (zh) 2018-12-31 2018-12-31 波达方向估计方法及装置、雷达、可读存储介质

Publications (1)

Publication Number Publication Date
WO2020140658A1 true WO2020140658A1 (zh) 2020-07-09

Family

ID=66499718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121765 WO2020140658A1 (zh) 2018-12-31 2019-11-28 波达方向估计方法及装置、雷达、可读存储介质

Country Status (2)

Country Link
CN (1) CN109782245B (zh)
WO (1) WO2020140658A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782245B (zh) * 2018-12-31 2020-12-25 深圳市华讯方舟太赫兹科技有限公司 波达方向估计方法及装置、雷达、可读存储介质
CN113030933B (zh) * 2021-02-22 2024-06-04 上海蛮酷科技有限公司 雷达的目标方位角计算方法、雷达装置及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724270A (en) * 1996-08-26 1998-03-03 He Holdings, Inc. Wave-number-frequency adaptive beamforming
CN103323827A (zh) * 2013-05-27 2013-09-25 杭州电子科技大学 基于快速傅里叶变换的mimo雷达系统角度估计方法
CN106226754A (zh) * 2016-08-22 2016-12-14 西安电子科技大学 基于时间反演的低仰角波达方向估计方法
CN106443621A (zh) * 2016-09-13 2017-02-22 哈尔滨工程大学 冲击噪声条件的基于正交匹配稀疏重构的相干信源动态doa追踪方法
WO2018208560A1 (en) * 2017-05-09 2018-11-15 Dolby Laboratories Licensing Corporation Processing of a multi-channel spatial audio format input signal
CN109782245A (zh) * 2018-12-31 2019-05-21 深圳市华讯方舟太赫兹科技有限公司 波达方向估计方法及装置、雷达、可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760546B (zh) * 2014-01-23 2015-11-18 西安电子科技大学 一种雷达用低空目标波达方向估计方法
CN105068041A (zh) * 2015-08-28 2015-11-18 哈尔滨工程大学 互耦条件下基于协方差矢量稀疏表示的单基地mimo雷达角度估计方法
CN106324558B (zh) * 2016-08-30 2021-04-02 东北大学秦皇岛分校 基于互质阵列的宽带信号doa估计方法
WO2018133056A1 (zh) * 2017-01-22 2018-07-26 北京时代拓灵科技有限公司 一种声源定位的方法和装置
KR101988099B1 (ko) * 2017-04-04 2019-06-11 세종대학교산학협력단 도래각 추정을 위한 공분산 행렬 생성 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724270A (en) * 1996-08-26 1998-03-03 He Holdings, Inc. Wave-number-frequency adaptive beamforming
CN103323827A (zh) * 2013-05-27 2013-09-25 杭州电子科技大学 基于快速傅里叶变换的mimo雷达系统角度估计方法
CN106226754A (zh) * 2016-08-22 2016-12-14 西安电子科技大学 基于时间反演的低仰角波达方向估计方法
CN106443621A (zh) * 2016-09-13 2017-02-22 哈尔滨工程大学 冲击噪声条件的基于正交匹配稀疏重构的相干信源动态doa追踪方法
WO2018208560A1 (en) * 2017-05-09 2018-11-15 Dolby Laboratories Licensing Corporation Processing of a multi-channel spatial audio format input signal
CN109782245A (zh) * 2018-12-31 2019-05-21 深圳市华讯方舟太赫兹科技有限公司 波达方向估计方法及装置、雷达、可读存储介质

Also Published As

Publication number Publication date
CN109782245A (zh) 2019-05-21
CN109782245B (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
CN109655799B (zh) 基于iaa的协方差矩阵向量化的非均匀稀疏阵列测向方法
CN102466794B (zh) 雷达设备
US20230152424A1 (en) Method for eliminating one-bit signal harmonic false target and related component
CN108896954B (zh) 互质阵中一种基于联合实值子空间的波达角估计方法
CN104515969B (zh) 一种基于六角形阵列的相干信号二维doa估计方法
CN107544051A (zh) 嵌套阵列基于k‑r子空间的波达方向估计方法
CN106093845B (zh) 一种基于伪空间谱搜索的快速doa估计方法
CN109765526B (zh) 一种基于空间谱的目标搜索方法及装置
CN113253192B (zh) 一种用于非圆信号的互质线阵级联doa估计方法
WO2020140658A1 (zh) 波达方向估计方法及装置、雷达、可读存储介质
CN112379327A (zh) 一种基于秩损估计的二维doa估计与互耦校正方法
Zheng et al. Two-dimensional DOA estimation for coprime planar array: A coarray tensor-based solution
Mao et al. An Improved DOA Estimation Algorithm Based on Wavelet Operator.
Sun et al. Real-valued DOA estimation with unknown number of sources via reweighted nuclear norm minimization
Xu et al. Joint Doppler and DOA estimation using (Ultra-) Wideband FMCW signals
CN112180339A (zh) 一种基于稀疏处理的雷达回波信号精确测向方法
Gao et al. An improved music algorithm for DOA estimation of coherent signals
CN109946663B (zh) 一种线性复杂度的Massive MIMO目标空间方位估计方法和装置
CN111366893A (zh) 一种均匀圆阵未知互耦条件下的非圆信号方位角估计方法
CN109782246B (zh) 波达方向估计方法及装置、雷达、可读存储介质
CN108614234B (zh) 基于多采样快拍互质阵列接收信号快速傅里叶逆变换的波达方向估计方法
Xiao et al. A weighted forward-backward spatial smoothing DOA estimation algorithm based on TLS-ESPRIT
CN111781575B (zh) 一比特信号单快拍波达方向估计方法及相关组件
Yan et al. Computationally efficient direction of arrival estimation with unknown number of signals
Cai et al. A MUSIC-type DOA estimation method based on sparse arrays for a mixture of circular and non-circular signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907043

Country of ref document: EP

Kind code of ref document: A1