CN113253192B - 一种用于非圆信号的互质线阵级联doa估计方法 - Google Patents

一种用于非圆信号的互质线阵级联doa估计方法 Download PDF

Info

Publication number
CN113253192B
CN113253192B CN202110404244.6A CN202110404244A CN113253192B CN 113253192 B CN113253192 B CN 113253192B CN 202110404244 A CN202110404244 A CN 202110404244A CN 113253192 B CN113253192 B CN 113253192B
Authority
CN
China
Prior art keywords
matrix
array
subarray
doa
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110404244.6A
Other languages
English (en)
Other versions
CN113253192A (zh
Inventor
翟会
李宝宝
张小飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202110404244.6A priority Critical patent/CN113253192B/zh
Publication of CN113253192A publication Critical patent/CN113253192A/zh
Application granted granted Critical
Publication of CN113253192B publication Critical patent/CN113253192B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种用于非圆信号的互质线阵级联DOA估计方法,具体为:设置互质线阵天线阵列,对接收信号采样;利用非圆信号的非圆特性扩展两个子阵的输出数据;分别计算两个子阵扩展后接收数据的协方差矩阵,对两个协方差矩阵特征值分解获得各自的信号子空间和噪声子空间;利用子阵列信号子空间的旋转不变性求得所有模糊角度信息;消除步骤四DOA估计结果的模糊值,获得DOA初估计值;构造降维谱峰搜索函数,在初估计值附近进行DOA精估计。本发明充分利用了非圆信号的非圆特性,进一步扩展了互质阵列的有效孔径,从而提高了DOA估计精度,同时使用级联的方法避免了全局谱峰搜索,又利用降维的方法降低了谱峰搜索的维度,优化DOA估计算法。

Description

一种用于非圆信号的互质线阵级联DOA估计方法
技术领域
本发明属于阵列信号处理,尤其涉及一种用于非圆信号的互质线阵级联DOA估计方法。
背景技术
阵列信号处理具有波束控制灵活、信号增益高、空间分辨率高、抗干扰能力强等优点,因而在近三十年获得了快速发展,在雷达、通信和电子战等领域都有广泛的应用。波达方向估计(Direction of Arrival,DOA)是阵列信号处理的一个主要研究方向。基于旋转不变的信号参数估计(Estimating Signal Parameters via Rotational InvarianceTechniques,ESPRIT)算法和多重信号分类(Multiple Signal Classification,MUSIC)算法等传统DOA估计算法,在阵列规模较小时估计精度较低,阵列规模较大时计算复杂度很高;传统算法直接用于互质阵,会因为阵元间距大于半波长而失效。
发明内容
发明目的:本发明的目的是提供了一种用于非圆信号的互质线阵级联DOA估计方法,在不改变阵元数目情况下扩展阵列孔径,提高DOA估计精度,降低互耦影响,具有更好的角度估计性能。
技术方案:本发明提供了一种用于非圆信号的互质线阵级联DOA估计方法,具体包括如下步骤:
步骤1:设置互质线阵天线阵列,对接收信号采样;
步骤2:利用非圆信号的非圆特性扩展两个子阵的输出数据;
步骤3:分别计算两个子阵扩展后接收数据的协方差矩阵,对两个协方差矩阵特征值分解获得各自的信号子空间和噪声子空间;
步骤4:利用子阵列信号子空间的旋转不变性求得所有模糊角度信息;
步骤5:消除步骤四DOA估计结果的模糊值,获得DOA初估计值;
步骤6:构造降维谱峰搜索函数,在DOA初估计值附近进行DOA精估计。
进一步地,步骤1具体包括:
互质线阵天线阵列包括两个子阵,两个子阵的最左端重合;子阵1是阵元数为M1的均匀线阵,阵元间距为M2λ/2,子阵2是阵元数为M2的均匀线阵,阵元间距为M1λ/2,互质线阵的天线阵元总数为T=M1+M2-1,阵元所在位置的集合表达式为:
P={M2m1d0|0≤m1≤(M1-1)}∪{M1m2d0|0≤m2≤(M2-1)} (1)
其中,d0表示半波长,互质阵列的孔径为max(M1(M2-1)d0,M2(M1-1)d0)。
进一步地,步骤2具体包括:
子阵i在采样时刻t的接收信号数据模型表达式:
xi(t)=Ais(t)+ni(t) (2)
其中,子阵i=1,2;xi(t)表示子阵i在t时刻的接收数据,t=1,…,L,L为总采样快拍数,Ai表示子阵i的方向矩阵,ni(t)表示阵列接收的方差是的零均值加性高斯白噪声,各阵元接收噪声之间互相独立,噪声与信号也互相独立,s(t)表示远场窄带不相干的非圆信源矢量,
s(t)=Ψs0(t) (3)
其中,s0(t)是一个圆信号矢量,Ψ是一个大小为K×K的对角矩阵,K表示信源数,Ψ的第k个对角元素是 表示第k个信号的非圆相位,k=1,2,...,K;
子阵i的方向矩阵Ai=[ai1),ai2),...,aiK)],其中,aik)是第k个信源入射子阵i的导向矢量,aik)的表达式为:
其中,θk表示第k个信源发出的信号与接收阵列法线的夹角,表示子阵i相邻阵元之间的间距,其中/>且/>
扩展两个子阵的输出数据,将子阵i的接收数据xi(t)扩展为
其中,Ji是Mi×Mi维的反单位矩阵,其副对角线的元素全为1,其余元素都是0,Bi是子阵i的扩展方向矩阵,
其中Bi1=AiΨ,
进一步地,步骤3具体包括:
子阵i扩展接收数据yi(t)的协方差矩阵为
其中,表示维度为2Mi×2Mi的单位矩阵,其主对角线元素是1,其余元素都是0,是源协方差矩阵,各信源之间独立,Rs是一个对角矩阵;
通过L次快拍估计子阵i扩展接收信号的协方差矩阵表达式为:
对估计的协方差矩阵进行特征值分解,得到:
其中,Usi的信号子空间,Λs是信号子空间对应的特征矢量,Uni是/>的噪声子空间,Λn是噪声子空间对应的特征矢量,信号子空间Usi和扩展方向矩阵Bi张成相同线性子空间。
进一步地,步骤4具体包括:
信号子空间Usi和扩展方向矩阵Bi张成相同线性子空间,存在可逆矩阵T,使得:
Usi=BiT (10)
定义矩阵Bai为矩阵Bi删除第Mi行元素和第2Mi行元素后的矩阵,矩阵Bbi为矩阵Bi删除第1行元素和第Mi+1行元素后的矩阵,扩展方向矩阵Bi满足旋转不变性,
BaiΦi=Bbi (11)
其中,是包含DOA信息的对角矩阵;
定义矩阵Usai为矩阵Usi删除第Mi行元素和第2Mi行元素后的矩阵,矩阵Usbi为矩阵Usi删除第1行元素和第Mi+1行元素后的矩阵,根据Usai=BaiT,Usbi=BbiT,得到:
UsaiT-1ΦiT=Usbi (12)
令Γi=T-1ΦiT,Γi的特征值即为Φi的对角元素,根据噪声子空间Usi得到Γi的表达式为:
对Γi进行特征值分解,如果分解得到第k个特征值为λk,则根据子阵i接收数据估计的第k处信源DOA表达式为:
其中,且/>
进一步地,步骤5具体包括:
和/>在真实值处不严格相等,第k处信源的初估计值/>由/>和/>的实数解中两个最相近值的平均得到:
进一步地,步骤6具体包括:
子阵i满足其中,bi表示子阵i的扩展导向矢量,据此构造NC-MUSIC谱函数,寻找谱函数峰值位置求得DOA精估计,求解过程表述为:
其中,
构造降维的NC-MUSIC谱函数降低计算复杂度,表达式为:
其中,只与θ有关,/>只与/>有关;将/>中的/>替换,/>表达式为:
其中,
采用拉格朗日乘子法,添加约束条件以消除平凡解,其中,e=[1,0]T,得到子阵i降维的NC-MUSIC谱函数的表达式为:
其中,fi(θ)取得极大值时的θ即为子阵i的DOA精估计结果,分别在每个初估计值附近计算子阵1和子阵2的降维NC-MUSIC谱函数;在第k个初估计值附近计算f1(θ)和f2(θ),峰值位置分别是/>和/>第k个信源的DOA精估计的表达式为:
有益效果:与现有技术相比,本发明具有如下显著的优点:
(1)本发明方法采用互质阵,降低天线之间互耦影响;
(2)本发明方法利用了非圆信号的非圆特性,提高DOA估计精度;
(3)本发明方法只需要一维局部谱峰搜索,降低的运算复杂度。
附图说明
图1是本发明的算法流程图;
图2是本发明中互质线阵示意图;
图3是不同阵元个数下本发明方法与ESPRIT、RD-MUSIC算法复杂度对比图;
图4是不同快拍数下本发明方法与ESPRIT、RD-MUSIC算法复杂度对比图;
图5是不同信噪比下本发明方法与均匀线阵中MUSIC算法性能对比图;
图6是不同信噪比下本发明方法与ULA-MUSIC、CLA-MUSIC和CLA-NC-MUSIC算法性能对比图;
图7是不同快拍数下本发明方法与NC-ESPRIT、NC-MUSIC、NCRIPM算法性能对比图;
图8是不同信噪比下本发明方法与NC-ESPRIT、NC-MUSIC、NCRIPM算法性能对比图。
具体实施方式
符号表示:(·)T表示矩阵转置运算,(·)H表示矩阵共轭转置运算,大写字母X表示矩阵,小写字母x(·)表示矢量,e表示自然常数,j表示虚数符号,*表示取复数共轭运算,angle(·)表示取复数的相角。
如图1所示,本实施例提供了一种用于非圆信号的互质线阵级联DOA估计方法,具体为:
步骤一:设置互质线阵天线阵列,对接收信号采样;
如图2所示,实施例中的互质天线阵列可以分成的两个子阵,配置天线阵列使得两个子阵的最左端重合。子阵1是阵元数为M1的均匀线阵,阵元间距为M2λ/2,子阵2是阵元数为M2的均匀线阵,阵元间距为M1λ/2,所述互质线阵的天线阵元总数为T=M1+M2-1。那么阵元所在位置的集合可以表示为:
P={M2m1d0|0≤m1≤(M1-1)}∪{M1m2d0|0≤m2≤(M2-1)} (1)
其中,d0表示半波长,由此可知互质阵列的孔径为max(M1(M2-1)d0,M2(M1-1)d0),相较于相同阵元数时均匀线阵(M1+M2)d0可知,互质线阵阵列孔径得到了显著提升。
步骤二:利用非圆信号的非圆特性扩展两个子阵的输出数据;
子阵i(i=1,2)在采样时刻t的接收信号数据模型为:
xi(t)=Ais(t)+ni(t) (2)
其中,xi(t)表示子阵i在t时刻的接收数据,其中t=1,…,L,L为总采样快拍数,Ai表示子阵i的方向矩阵,ni(t)表示阵列接收的方差是的零均值加性高斯白噪声,各阵元接收噪声之间互相独立,噪声与信号也互相独立,s(t)表示远场窄带不相干的非圆信源矢量,可以分解为:
s(t)=Ψs0(t) (3)
其中s0(t)是一个圆信号矢量,Ψ是一个大小为K×K的对角矩阵,其中K表示信源数,Ψ的第k个对角元素是其中/>表示第k个信号的非圆相位,k=1,2,...,K。
子阵i的方向矩阵Ai=[ai1),ai2),...,aiK)],其中aik)是第k个信源入射子阵i的导向矢量,aik)的具体形式为:
其中,θk表示第k个信源发出的信号与接收阵列法线的夹角,表示子阵i相邻阵元之间的间距,其中/>且/>
扩展两个子阵的输出数据,将子阵i的接收数据xi(t)扩展为:
其中Ji是Mi×Mi维的反单位矩阵,其副对角线的元素全为1,其余元素都是0,Bi是子阵i的扩展方向矩阵,
其中Bi1=AiΨ,
步骤三:分别计算两个子阵扩展后接收数据的协方差矩阵,对两个协方差矩阵特征值分解获得各自的信号子空间和噪声子空间;
子阵i扩展接收数据yi(t)的协方差矩阵为:
其中表示维度为2Mi×2Mi的单位矩阵,其主对角线元素是1,其余元素都是0,是源协方差矩阵,因为各信源之间独立,Rs是一个对角矩阵。
实际应用中信号快拍数是有限的,可以通过L次快拍估计子阵i扩展接收信号的协方差矩阵。
对估计的协方差矩阵进行特征值分解,
其中Usi的信号子空间,Λs是信号子空间对应的特征矢量,Uni是/>的噪声子空间,Λn是噪声子空间对应的特征矢量。可以发现信号子空间Usi和扩展方向矩阵Bi张成相同线性子空间。
步骤四:利用子阵列信号子空间的旋转不变性求得所有模糊角度信息无需谱峰搜索就可以获得所有模糊的DOA值,具有较低的复杂度;
信号子空间Usi和扩展方向矩阵Bi张成相同线性子空间,则存在可逆矩阵T,使得:
Usi=BiT (10)
定义矩阵Bai为矩阵Bi删除第Mi行元素和第2Mi行元素后的矩阵,矩阵Bbi为矩阵Bi删除第1行元素和第Mi+1行元素后的矩阵。扩展方向矩阵Bi满足旋转不变性,
BaiΦi=Bbi (11)
其中是包含DOA信息的对角矩阵。定义矩阵Usai为矩阵Usi删除第Mi行元素和第2Mi行元素后的矩阵,矩阵Usbi为矩阵Usi删除第1行元素和第Mi+1行元素后的矩阵。显然Usai=BaiT,Usbi=BbiT可以推出:
UsaiT-1ΦiT=Usbi (12)
令Γi=T-1ΦiT,显然Γi的特征值即为Φi的对角元素。Γi可以由噪声子空间Usi求得:
对Γi进行特征值分解,如果分解得到第k个特征值为λk,则根据子阵i接收数据估计的第k处信源DOA可能为:
其中,且/>
步骤五:消除步骤四DOA估计结果的模糊值,获得DOA初估计值;
步骤四得到的共有/>个取值,但其中/>个解是无意义的复数解,首先去掉这些复数解开。/>个实数解中只有1个是真实角度,其余/>个实数解都是模糊角度。由于M1和M2是互质的,可以保证无噪声干扰时/>和/>的实数解只在真实值处重合,可以利用这一点消除模糊值。实际情况中接收信号总是含有噪声的,因此/>和/>在真实值处不会严格相等,第k处信源的初估计值/>可以由/>和/>的实数解中两个最相近值的平均得到:
步骤六:构造降维谱峰搜索函数,在初估计值附近进行DOA精估计。
首先利用扩展导向矢量和噪声子空间的正交性构造降维谱峰搜索函数,然后在初估计值附近计算谱峰搜索函数,进行谱峰搜索获得。方法扩展了互质阵列的有效孔径,具有很高的DOA估计精度,同时只需进行一维的局部谱峰搜索,算法的复杂度也比较低。
由于信号与噪声与不相干的,子阵的扩展导向矢量和其噪声子空间都是正交的。对于子阵i满足其中bi表示子阵i的扩展导向矢量,可以据此构造NC-MUSIC谱函数,寻找谱函数峰值位置可以求得DOA精估计。求解过程可以表述为:
其中,求解过程是一个二维搜索过程,计算复杂度较高。DOA估计问题一般不关心信号非圆角度/>因此可以考虑构造降维的NC-MUSIC谱函数降低计算复杂度。/>可以写作:
其中只与θ有关,/>只与/>有关。将/>中的/>替换,因此/>可以改写为:
其中采用拉格朗日乘子法解决上述问题,添加约束条件/>以消除平凡解,其中e=[1,0]T,最终得到子阵i降维的NC-MUSIC谱函数为:
fi(θ)取得极大值时的θ即为子阵i的DOA精估计结果。分别在每个初估计值附近计算子阵1和子阵2的降维NC-MUSIC谱函数。若在第k个初估计值附近计算f1(θ)和f2(θ),求得峰值位置分别是/>和/>则第k个信源的DOA精估计为:
图3、图4是本发明方法与ESPRIT、RD-MUSIC算法复杂度对比图。其中图3是不同阵元个数下各算法复杂度对比图,图4是不同快拍数下各算法复杂度对比图,从两幅图可以本发明方法的复杂度低于RD-MUSIC算法但是高于NC-ESPRIT算法。其中NC-ESPRIT算法的复杂度是O(8(M-1)K2+13K3+8M3+4M2L),RD-MUSIC算法复杂度是O(4M2L+8M3+(8M2-4MK)n),而本发明方法的复杂度是O(8(M-1)K2+13K3+8M2+4M2L(8M2-4MK)nl),其中,M表示互质线阵阵元数,n表示全局搜索次数,ni表示局部搜索次数,L表示快拍数。
图5是不同信噪比下本发明方法与均匀线阵中MUSIC算法性能对比图,给出了理论下界CRB。从图中可以看出本发明方法性能不但优于均匀线阵中的MUSIC算法,而且优于均匀线阵的理论下界CRB。其中快拍数为100,均匀线阵与互质线阵的阵元数相同,信源入射角度分别是为10°,30°。可以看到由于互质阵阵列的孔径更大,互耦影响较小,具有更好的角度估计性能。
图6是不同信噪比下本发明方法与ULA-MUSIC、CLA-MUSIC和CLA-NC-MUSIC算法性能对比图。从图中可以看出本发明方法的角度估计性能优于均匀线阵中MUSIC算法和互质线阵中MUSIC算法,与互质阵中NC-MUSIC算法非常接近。这是因为本发明方法和互质线阵中MUSIC算法利用了信号的非圆特性,并且使用互质线阵减弱了互耦的影响。其中快拍数为200,均匀线阵与互质线阵的阵元数相同,信源入射角度分别是为10°,30°。
图7是不同快拍数下本发明方法与NC-ESPRIT、NC-MUSIC、NCRIPM算法性能对比图,给出了理论下界CRB。从图中可以看出本发明方法性能优于NC-RIPM算法和NC-ESPRIT算法,与NC-MUSIC算法非常接近。其中子阵1阵元数M1=6,子阵2阵元数M2=5,信噪比为10dB,信源入射角度分别是10°,30°。
图8是不同信噪比下本发明方法与NC-ESPRIT、NC-MUSIC、NCRIPM算法性能对比图,给出了理论下界CRB。从图中本发明方法的性能优于NC-ESPRIT算法和NC-RIPM算法,NC-MUSIC算法非常接近,且低信噪比时优于NC-MUSIC算法。其中子阵1阵元数M1=7,子阵2阵元数M2=5,快拍数为100,信源入射角度分别是10°,30°。

Claims (6)

1.一种用于非圆信号的互质线阵级联DOA估计方法,其特征在于,具体包括如下步骤:
步骤1:设置互质线阵天线阵列,对接收信号采样;
步骤2:利用非圆信号的非圆特性扩展两个子阵的输出数据;
步骤3:分别计算所述两个子阵扩展后接收数据的协方差矩阵,对两个协方差矩阵特征值分解获得各自的信号子空间和噪声子空间;
步骤4:利用子阵列信号子空间的旋转不变性求得所有模糊角度信息;
步骤5:消除步骤四DOA估计结果的模糊值,获得DOA初估计值;
步骤6:构造降维谱峰搜索函数,在所述DOA初估计值附近进行DOA精估计;
其中,所述步骤2具体包括:
子阵i在采样时刻t的接收信号数据模型表达式:
xi(t)=Ais(t)+ni(t) (2)
其中,子阵i=1,2;xi(t)表示子阵i在t时刻的接收数据,t=1,…,L,L为总采样快拍数,Ai表示子阵i的方向矩阵,ni(t)表示阵列接收的方差是的零均值加性高斯白噪声,各阵元接收噪声之间互相独立,噪声与信号也互相独立,s(t)表示远场窄带不相干的非圆信源矢量,
s(t)=Ψs0(t) (3)
其中,s0(t)是一个圆信号矢量,Ψ是一个大小为K×K的对角矩阵,K表示信源数,Ψ的第k个对角元素是表示第k个信号的非圆相位,k=1,2,...,K;
子阵i的方向矩阵Ai=[ai1),ai2),...,aiK)],其中,aik)是第k个信源入射子阵i的导向矢量,aik)的表达式为:
其中,θk表示第k个信源发出的信号与接收阵列法线的夹角,λ表示信号波长,表示子阵/>的阵元数,/>表示子阵i相邻阵元之间的间距,其中/>且/>
扩展两个子阵的输出数据,将子阵i的接收数据xi(t)扩展为
其中,Ji是Mi×Mi维的反单位矩阵,其副对角线的元素全为1,其余元素都是0,*表示取复数共轭运算,Bi是子阵i的扩展方向矩阵,
其中Bi1=AiΨ,
2.根据权利要求1所述的一种用于非圆信号的互质线阵级联DOA估计方法,其特征在于,所述步骤1具体包括:
所述互质线阵天线阵列包括两个子阵,所述两个子阵的最左端重合;子阵1是阵元数为M1的均匀线阵,阵元间距为M2λ/2,子阵2是阵元数为M2的均匀线阵,阵元间距为M1λ/2,所述互质线阵的天线阵元总数为T=M1+M2-1,阵元所在位置的集合表达式为:
P={M2m1d0|0≤m1≤(M1-1)}∪{M1m2d0|0≤m2≤(M2-1)} (1)
其中,d0表示半波长,互质阵列的孔径为max(M1(M2-1)d0,M2(M1-1)d0)。
3.根据权利要求1所述的一种用于非圆信号的互质线阵级联DOA估计方法,其特征在于,所述步骤3具体包括:
子阵i扩展接收数据yi(t)的协方差矩阵为
其中,表示维度为2Mi×2Mi的单位矩阵,其主对角线元素是1,其余元素都是0,是源协方差矩阵,各信源之间独立,RS是一个对角矩阵;
通过L次快拍估计子阵i扩展接收信号的协方差矩阵表达式为:
对估计的协方差矩阵进行特征值分解,得到:
其中,Usi的信号子空间,Λs是信号子空间对应的特征矢量,Uni是/>的噪声子空间,Λn是噪声子空间对应的特征矢量,信号子空间Usi和扩展方向矩阵Bi张成相同线性子空间。
4.根据权利要求1或3所述的一种用于非圆信号的互质线阵级联DOA估计方法,其特征在于,所述步骤4具体包括:
信号子空间Usi和扩展方向矩阵Bi张成相同线性子空间,存在可逆矩阵T,使得:
Usi=BiT (10)
定义矩阵Bai为矩阵Bi删除第Mi行元素和第2Mi行元素后的矩阵,矩阵Bbi为矩阵Bi删除第1行元素和第Mi+1行元素后的矩阵,扩展方向矩阵Bi满足旋转不变性,
BaiΦi=Bbi (11)
其中,是包含DOA信息的对角矩阵;
定义矩阵Usai为矩阵Usi删除第Mi行元素和第2Mi行元素后的矩阵,矩阵Usbi为矩阵Usi删除第1行元素和第Mi+1行元素后的矩阵,根据Usai=BaiT,Usbi=BbiT,得到:
UsaiT-1ΦiT=Usbi (12)
令Γi=T-1ΦiT,Γi的特征值即为Φi的对角元素,根据噪声子空间Usi得到Γi的表达式为:
对Γi进行特征值分解,如果分解得到第k个特征值为λk,则根据子阵i接收数据估计的第k处信源DOA表达式为:
其中,且/>
5.根据权利要求4所述的一种用于非圆信号的互质线阵级联DOA估计方法,其特征在于,所述步骤5具体包括:
和/>在真实值处不严格相等,第k处信源的初估计值/>由/>和/>的实数解中两个最相近值的平均得到:
6.根据权利要求5所述的一种用于非圆信号的互质线阵级联DOA估计方法,其特征在于,所述步骤6具体包括:
子阵i满足其中,bi表示子阵i的扩展导向矢量,据此构造NC-MUSIC谱函数,寻找谱函数峰值位置求得DOA精估计,求解过程表述为:
其中,
构造降维的NC-MUSIC谱函数降低计算复杂度,表达式为:
其中,只与θ有关,/>只与/>有关;将/>中的替换,/>表达式为:
其中,
采用拉格朗日乘子法,添加约束条件以消除平凡解,其中,e=[1,0]T,得到子阵i降维的NC-MUSIC谱函数的表达式为:
其中,fi(θ)取得极大值时的θ即为子阵i的DOA精估计结果,分别在每个初估计值附近计算子阵1和子阵2的降维NC-MUSIC谱函数;在第k个初估计值附近计算f1(θ)和f2(θ),峰值位置分别是/>和/>第k个信源的DOA精估计的表达式为:
CN202110404244.6A 2021-04-15 2021-04-15 一种用于非圆信号的互质线阵级联doa估计方法 Active CN113253192B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110404244.6A CN113253192B (zh) 2021-04-15 2021-04-15 一种用于非圆信号的互质线阵级联doa估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110404244.6A CN113253192B (zh) 2021-04-15 2021-04-15 一种用于非圆信号的互质线阵级联doa估计方法

Publications (2)

Publication Number Publication Date
CN113253192A CN113253192A (zh) 2021-08-13
CN113253192B true CN113253192B (zh) 2024-03-15

Family

ID=77220855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110404244.6A Active CN113253192B (zh) 2021-04-15 2021-04-15 一种用于非圆信号的互质线阵级联doa估计方法

Country Status (1)

Country Link
CN (1) CN113253192B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563760B (zh) * 2022-02-07 2023-02-07 哈尔滨工程大学 一种基于sca阵型的二阶超波束形成方法、设备及介质
CN116299150B (zh) * 2022-12-27 2023-12-01 南京航空航天大学 一种均匀面阵中降维传播算子的二维doa估计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932680A (zh) * 2019-04-04 2019-06-25 哈尔滨工程大学 一种基于平移互质阵列的非圆信号波达方向估计方法
CN110749858A (zh) * 2019-09-26 2020-02-04 南京航空航天大学 一种基于多项式求根的展开互质阵测向估计方法
CN111239679A (zh) * 2020-02-12 2020-06-05 南京航空航天大学 一种用于互质面阵下相干信源doa估计的方法
CN111580039A (zh) * 2020-03-29 2020-08-25 重庆邮电大学 基于非圆信号的单基地展开互质阵列mimo雷达doa估计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932680A (zh) * 2019-04-04 2019-06-25 哈尔滨工程大学 一种基于平移互质阵列的非圆信号波达方向估计方法
CN110749858A (zh) * 2019-09-26 2020-02-04 南京航空航天大学 一种基于多项式求根的展开互质阵测向估计方法
CN111239679A (zh) * 2020-02-12 2020-06-05 南京航空航天大学 一种用于互质面阵下相干信源doa估计的方法
CN111580039A (zh) * 2020-03-29 2020-08-25 重庆邮电大学 基于非圆信号的单基地展开互质阵列mimo雷达doa估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种自动匹配的分布式非圆信号二维DOA快速估计方法;崔维嘉;代正亮;王大鸣;李祥志;;电子与信息学报(第12期);全文 *

Also Published As

Publication number Publication date
CN113253192A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN106980106B (zh) 阵元互耦下的稀疏doa估计方法
CN109061554B (zh) 一种基于空间离散网格动态更新的目标到达角度估计方法
CN109633522B (zh) 基于改进的music算法的波达方向估计方法
CN111239678B (zh) 一种基于l型阵列的二维doa估计方法
CN113253192B (zh) 一种用于非圆信号的互质线阵级联doa估计方法
CN111580039A (zh) 基于非圆信号的单基地展开互质阵列mimo雷达doa估计方法
CN110412499B (zh) 基于压缩感知理论下的rss算法的宽带doa估计算法
CN111707985A (zh) 基于协方差矩阵重构的off-grid DOA估计方法
Reddy et al. Reduced-complexity super-resolution DOA estimation with unknown number of sources
CN110398732B (zh) 低计算量自适应步长迭代搜索的目标方向检测方法
CN112130111B (zh) 一种大规模均匀十字阵列中单快拍二维doa估计方法
CN110895325B (zh) 基于增强四元数多重信号分类的到达角估计方法
CN111366893B (zh) 一种均匀圆阵未知互耦条件下的非圆信号方位角估计方法
CN110531312B (zh) 一种基于稀疏对称阵列的doa估计方法和系统
Zhang et al. An ℓ p-norm based method for off-grid doa estimation
CN112180339A (zh) 一种基于稀疏处理的雷达回波信号精确测向方法
CN114884841A (zh) 基于高阶统计和非均匀阵列的欠定参数联合估计方法
CN113567913B (zh) 基于迭代重加权可降维的二维平面doa估计方法
Dakulagi et al. Smart antenna system for DOA estimation using single snapshot
Xiao et al. A weighted forward-backward spatial smoothing DOA estimation algorithm based on TLS-ESPRIT
CN111368256B (zh) 一种基于均匀圆阵的单快拍测向方法
Zhang et al. Estimation of fading coefficients in the presence of multipath propagation
Wang et al. Sparsity-based space-time adaptive processing for airborne radar with coprime array and coprime pulse repetition interval
Qi et al. An improved multiple-Toeplitz matrices reconstruction algorithm for DOA estimation of coherent signals
CN108594165B (zh) 一种基于期望最大化算法的窄带信号波达方向估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant