WO2020140378A1 - 一种旋转加速度计重力梯度仪运动误差事后补偿方法 - Google Patents

一种旋转加速度计重力梯度仪运动误差事后补偿方法 Download PDF

Info

Publication number
WO2020140378A1
WO2020140378A1 PCT/CN2019/089238 CN2019089238W WO2020140378A1 WO 2020140378 A1 WO2020140378 A1 WO 2020140378A1 CN 2019089238 W CN2019089238 W CN 2019089238W WO 2020140378 A1 WO2020140378 A1 WO 2020140378A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion
data
data block
gradiometer
error
Prior art date
Application number
PCT/CN2019/089238
Other languages
English (en)
French (fr)
Inventor
蔡体菁
喻名彪
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/418,848 priority Critical patent/US11372129B2/en
Publication of WO2020140378A1 publication Critical patent/WO2020140378A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting
    • G01V7/02Details
    • G01V7/06Analysis or interpretation of gravimetric records
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/30Post-processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Definitions

  • the invention relates to an ex-post compensation method for the motion error of a rotary accelerometer gradiometer, which belongs to the technical field of precision measurement.
  • Gravity gradient exploration on moving base is a low-cost, high-efficiency gravity gradient exploration method; it is currently the most advanced gravity field exploration method in the world.
  • Gravity gradient data is widely used in geological analysis, gravity field modeling, high-precision navigation, resource exploration, etc.
  • Gravity gradiometer has extremely important national defense, civil, scientific research value.
  • the gravity gradiometers under research at home and abroad mainly include cold atom gravity gradiometer, superconducting gravity gradiometer, MEMS gravity gradiometer, etc.
  • Gravity gradiometers that have been put into commercial application abroad mainly include rotary accelerometer gradiometer and superconducting accelerometer gradiometer. The prototype of the gradiometer in my country is under development.
  • the invention provides an ex-post compensation method for the motion error of a high-precision rotary accelerometer gradiometer.
  • This method is based on the analytical model of the rotary accelerometer gradiometer. It can quickly calibrate the coefficient of motion error of the gradiometer and remove the linear motion and angle of the gradiometer. Motion-induced errors. Under the condition of ensuring that the resolution of the gradiometer is unchanged, using this method for ex-post compensation can greatly reduce the accuracy requirements of the gradiometer on the online error compensation system, simplify the design of the online error compensation system, and thus simplify the gradiometer Circuit and mechanical design.
  • the invention also provides an ex-post compensation method for the motion error of the rotary accelerometer gradiometer with the above effects and solving the above problems.
  • the method adopted by the present invention is: a method for post-compensation of the motion error of a rotary accelerometer gradiometer, including the following steps:
  • the sampling rate is the same; the output data, linear motion data and angular motion data of the gradiometer with a total exploration time length of L hours are divided into N data blocks according to time, and the time length of each data block can be different;
  • Time where t represents a data block, L m (t) represents a data block, the line motion vector at time t, L a (t) represents a data block, angular motion vector at time t, a x (t), a y (t), a z (t) represents the line motion data at time t in the data block, ⁇ x (t), ⁇ y (t), ⁇ z (t), ⁇ ax (t), ⁇ ay (t ), ⁇ az (t) represents the angular motion data at time t in the data block, and ⁇ represents the angular frequency of the rotating disk of the rotating accelerometer gradiometer;
  • t represents a time starting block
  • L m (t 1) represents a data block starting time t 1 of the line motion vector
  • L a (t 1) represents a data block starting time t 1 of the angular motion vector
  • L m (t) represents a data block, the time t of the line motion vector
  • L a (t) represents a data block, angular motion vector at time t
  • t end time p represents a data block
  • L m (t p) represents end time block t-line motion vector p
  • L a (t p) represents a data block end time t angular motion vector p
  • C according to the following formula, calibration data block line motion error coefficient vector C m and angular motion errors Coefficient vector C A , C m is a 1 ⁇ 10 vector, C A is a 1 ⁇ 8 vector:
  • G out is the output data block of the rotary accelerometer gradiometer
  • L + indicates the plus sign inverse of the L matrix
  • L is the motion matrix of the data block calculated in step b;
  • the present invention has the following advantages:
  • the present invention is the first time to provide a post-accident compensation method for the motion error of a rotary accelerometer gradiometer, which records the linear motion and angular motion of the gradiometer during gravity gradient exploration, and excludes the output data of the gradiometer after the gravity gradient exploration is completed Error of linear motion and angular motion.
  • the motion error compensation method is based on the high-precision analytical model of the gradiometer. It can remove the linear and angular motion errors of the gradiometer from the raw data of the gradiometer with ultra-low signal-to-noise ratio and extract the gravitational gradient signal. It greatly reduces the accuracy requirements of the gravity gradient meter on the online error compensation system, simplifies the circuit and mechanical design of the gravity gradient meter, and enables the gravity gradient meter to adapt to a more severe dynamic environment.
  • Figure 1 is a schematic diagram of the installation of gravity and linear motion sensors of the gradiometer
  • Figure 3 is the original output diagram of the rotary accelerometer gradiometer
  • Figure 4 is the output of the gravity gradient meter after the post-event motion error compensation, excluding the linear motion and angular motion errors of the gradiometer
  • Fig. 5 is a comparison diagram of the universal gravitational gradient recovered by demodulation and recovery of the output of the gradiometer whose linear motion and angular motion of the gradiometer is removed, and the theoretical gravitational gradient.
  • A1, A2, A3 and A4 are the four accelerometers installed on the rotary accelerometer gradiometer and are gravitational gradient sensitive elements; the origin of the measurement coordinate system of the gradiometer is located in the center of the disc, x m is The x axis of the gradiometer's measuring coordinate system, y m is the y axis of the gradiometer's measuring coordinate system, z m is the z axis of the gradiometer's measuring coordinate system; a three axis is installed at the center point of the rotating disk of the gradiometer Accelerometer, used to record the linear motion experienced by the gradiometer during gravity gradient exploration; install gyroscopes on the three coordinate axes of the gradiometer measurement coordinate system respectively, and recorded the angular motion experienced by the gradiometer during gravity gradient exploration ( Angular velocity, angular acceleration).
  • the post-compensation method for the motion error of the rotary accelerometer gradiometer includes the following steps:
  • Preprocessing the output data, linear motion data, and angular motion data of the rotary accelerometer gradiometer mainly including filtering to reduce data noise and sampling rate conversion, so that the output data, linear motion data, and angular motion of the rotary accelerometer gradiometer
  • the sampling rate of the data is the same; the length of time for aviation gravity gradient exploration can be as high as 7 to 8 hours.
  • the gravity gradient instrument linear motion error coefficient vector and angular motion error coefficient vector will slowly change with time, but in In a short period of time, it can be regarded as unchanged; in order to improve the accuracy of the error compensation afterwards, the output data, linear motion data, and angular motion data of the gradiometer can be divided into N according to time according to the characteristics of the gradiometer. Data blocks. For example, the total time length of aviation gravity gradient exploration is 8 hours, and the output data, linear motion data, and angular motion data of the gradiometer can be divided into 8 consecutive data blocks, and the length of each data block is 1 hour.
  • the linear motion error and angular motion error in the 8 data blocks are sequentially removed.
  • the method for removing the linear motion error and angular motion error in each data block is the same.
  • the steps for removing the linear motion error and angular motion error are as follows:
  • represents the angular frequency of the rotating disk of the rotating accelerometer gradiometer
  • t represents a time starting block
  • L m (t 1) represents a data block starting time t 1 of the line motion vector
  • L a (t 1) represents a data block starting time t 1 of the angular motion vector
  • L m (t) represents a data block, the time t of the line motion vector
  • L a (t) represents a data block, angular motion vector at time t
  • t end time p represents a data block
  • L m (t p) represents end time block t-line motion vector p
  • L a (t p) represents a data block end time t angular motion vector p
  • C according to the following formula, calibration data block line motion error coefficient vector C m and angular motion errors Coefficient vector C A , C m is a 1 ⁇ 10 vector, C A is a 1 ⁇ 8 vector:
  • G out is the output data block of the rotary accelerometer gradiometer
  • L + indicates the plus sign inverse of the L matrix
  • L is the motion matrix of the data block calculated in step b;
  • the disc radius R of the simulated rotary accelerometer gradiometer is 0.1m
  • the disc rotation angle frequency ⁇ is 1.57 rad/s
  • the parameters of the accelerometer model of the rotary accelerometer gradiometer is 0.1m
  • the installation parameters of the accelerometer is 1.57 rad/s
  • the parameters of the accelerometer amplification circuit Listed in the table below:
  • the test quality is 480Kg.
  • the linear vibration is applied to the gradiometer to simulate the turbulence effect of aviation exploration.
  • the linear vibration acceleration follows a Gaussian distribution.
  • the average linear vibration acceleration in the vertical direction is 0.1 g, and the standard deviation is 0.02 g.
  • the intensity of the horizontal linear vibration is in the vertical direction.
  • Figure 3 is the original output of the rotary accelerometer gradiometer. It is the output of the co-excitation of the linear motion, angular motion, and gravitational gradient of the gradiometer.
  • Figure 4 is the post-event motion compensation, excluding the linear motion and angular motion of the gradiometer. The output of the error gradiometer is only excited by the gravitational gradient.
  • Figure 5 is a comparison diagram of the universal gravitational gradient recovered by demodulating the output of the gradiometer with linear motion and angular motion of the gradiometer, and the theoretical gravitational gradient; ⁇ inline and ⁇ cross in the figure are the theoretical gravitational gradient, est ⁇ inline and est ⁇ Cross is the universal gravitational gradient recovered by demodulating the output of the gradiometer whose linear motion and angular motion are eliminated. It can be seen from the figure that the recovered gravitational gradient is consistent with the theoretical gravitational gradient.
  • the turbulence level applied to the gradiometer is 200 mg
  • the angular velocity level is 10 -4 ⁇ 10 -3 rad/s
  • the angular acceleration level is 10 -3 ⁇ 10 -2 rad/s 2
  • gravity gradiometer The magnitude of the voltage output caused by angular motion and linear motion is 10 5 V
  • the magnitude of the voltage output caused by the gravitational gradient is 10 -2 V
  • the magnitude of the signal-to-noise ratio is 10 -7 .
  • the post-event error compensation method provided by the present invention can eliminate the linear and angular motion errors of the gradiometer and accurately recover the gravitational gradient. Simulation experiments show that The post-event motion error compensation method provided by the present invention has excellent performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Testing Of Balance (AREA)

Abstract

一种旋转加速度计重力梯度仪运动误差事后补偿方法,在动基座重力梯度勘探中,记录重力梯度仪的角运动、线运动,在勘探结束后,基于旋转加速度计重力梯度仪解析模型,剔除重力梯度仪输出数据中的角运动、线运动误差;使用该事后运动误差补偿方法,在保证重力梯度仪精度不变的情况下,能够极大的降低重力梯度仪对在线误差补偿系统精度的要求,从而简化旋转加速度计重力梯度仪的电路和机械设计,使旋转加速度计重力梯度仪更简单,成本更低。

Description

一种旋转加速度计重力梯度仪运动误差事后补偿方法 技术领域
本发明涉及一种旋转加速度计重力梯度仪运动误差事后补偿方法,属于精密测量技术领域。
背景技术
动基座重力梯度勘探是一种低成本、高效率的重力梯度勘探方法;是目前世界上最先进的重力场勘探方式。重力梯度数据广泛应用于地质分析、重力场建模、高精度导航、资源勘探等。重力梯度仪具有极其重要的国防、民用、科研价值。目前国内外在研的重力梯度仪主要有冷原子重力梯度仪、超导重力梯度仪、MEMS重力梯度仪等。国外已经投入商业应用的重力梯度仪主要有旋转加速度计重力梯度仪及超导加速度计重力梯度仪。我国的重力梯度仪样机正处于研制中。
在动基座重力梯度勘探时,由于重力梯度仪内部的加速度计存在安装误差、加速度计一阶、高阶标度系数不匹配、电路增益不匹配等,导致重力梯度仪的加速度,角速度,角加速度传递到重力梯度仪的输出,造成测量误差。旋转加速度计重力梯度仪在线误差补偿,它的补偿电路和机械设计复杂,且只能在一定程度上抑制重力梯度仪线运动、角运动误差,残余的重力梯度仪线运动误差、角运动误差,严重影响重力梯度仪的测量精度,需要进行事后误差补偿。目前没有关于旋转加速度计重力梯度仪运动误差事后补偿方法的公开报道。
发明内容
本发明提供一种高精度旋转加速度计重力梯度仪运动误差事后补偿方法,该方法基于旋转加速度计重力梯度仪解析模型,它能够快速标定重力梯度仪运动误差系数,剔除重力梯度仪线运动、角运动引起的误差。在保证重力梯度仪分辨率不变的情况下,使用该方法进行事后补偿,能极大的降低重力梯度仪对在线误差补偿系统的精度要求,简化在线误差补偿系统的设计,从而简化重力梯度仪的电路、机械设计。本发明同时提供一种具有以上效果、解决了以上问题的旋转加速度计重力梯度仪运动误差事后补偿方法。
为达到上述目的,本发明采用的方法是:一种旋转加速度计重力梯度仪运动误差事后补偿方法,包括以下步骤:
(1)根据下述方式,对旋转加速度计重力梯度仪的输出数据、线运动数据、角运动数据作预处理;
对旋转加速度计重力梯度仪的输出数据、线运动数据、角运动数据进行滤波,以及采样率转换,降低数据噪声,同时使旋转加速度计重力梯度仪的输出数据、线 运动数据、角运动数据的采样率相同;将勘探时间总长度为L小时的重力梯度仪的输出数据、线运动数据、角运动数据,按时间分割成N个数据块,每个数据块的时间长度可以不同;
(2)依次剔除N个数据块中的线运动误差、角运动误差,每个数据块剔除线运动误差、角运动误差的方法相同,每个数据块剔除线运动误差、角运动误差的步骤如下:
a根据下式,计算数据块所有时刻的线运动向量、角运动向量:
Figure PCTCN2019089238-appb-000001
式中t表示数据块的时间,L m(t)表示数据块中,时刻t的线运动向量,L a(t)表示数据块中,时刻t的角运动向量,a x(t),a y(t),a z(t)表示数据块中,时刻t的线运动数据,ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t)表示数据块中,时刻t的角运动数据,Ω表示旋转加速度计重力梯度仪旋转圆盘角频率;
b将数据块所有时刻的线运动向量、角运动向量,代入下式计算数据块的运动矩阵L:
Figure PCTCN2019089238-appb-000002
式中t 1表示数据块的起始时刻,L m(t 1)表示数据块起始时刻t 1的线运动向量,L a(t 1)表示数据块起始时刻t 1的角运动向量;L m(t)表示数据块中,时刻t的线运动向量,L a(t)表示数据块中,时刻t的角运动向量;t p表示数据块的结束时刻,L m(t p)表示数据块的结束时刻t p的线运动向量,L a(t p)表示数据块结束时刻t p的角运动向量;c根据下式,标定数据块的线运动误差系数向量C m和角运动误差系数向量C A,C m 是1×10向量,C A是1×8向量:
[C m,C A]=G out·L +
式中G out是旋转加速度计重力梯度仪输出数据块,L +表示L矩阵的加号逆;
d将标定的线运动误差系数向量C m和角运动误差系数向量C A代入下式,剔除重力梯度仪线运动、角运动误差:
Figure PCTCN2019089238-appb-000003
Figure PCTCN2019089238-appb-000004
表示剔除了线运动误差、角运动误差的旋转加速度计重力梯度仪输出数据块,
L是步骤b中计算的数据块的运动矩阵;
(3)将N个剔除了线运动误差、角运动误差的数据块合并,并解调,得到勘探时间长度L小时的万有引力梯度输出。
本发明与现有技术相比,具有以下优点:
本发明是首次给出旋转加速度计重力梯度仪运动误差事后补偿方法,它在重力梯度勘探中,记录重力梯度仪的线运动、角运动,在重力梯度勘探结束后,剔除重力梯度仪输出数据中的线运动、角运动误差。该运动误差事后补偿方法基于重力梯度仪高精度解析模型,它能够从超低信噪比的重力梯度仪原始数据中,剔除重力梯度仪线运动、角运动误差,提取万有引力梯度信号,它能够极大的降低重力梯度仪对在线误差补偿系统精度的要求,简化重力梯度仪的电路、机械设计,同时使重力梯度仪,能够适应更加恶劣的动态环境。
附图说明
图1为重力梯度仪角运动、线运动传感器安装示意图;
图2为本发明事后运动误差补偿流程图;
图3是旋转加速度计重力梯度仪的原始输出图;
图4是经过事后运动误差补偿,剔除了重力梯度仪线运动、角运动误差的重力梯度仪的输出
图5是剔除了重力梯度仪线运动、角运动的重力梯度仪的输出解调恢复的万有引力梯度,与理论万有引力梯度的对比图。
具体实施方式
下面结合实施例和说明书附图对本发明作进一步地说明。
如图1所示,A1,A2,A3,A4是旋转加速度计重力梯度仪上安装的四只加速度计,是万有引力梯度敏感元件;重力梯度仪测量坐标系的原点位于圆盘中心,x m是重力梯度仪测量坐标系的x轴,y m是重力梯度仪测量坐标系的y轴,z m是重力梯度仪测量坐标系的z轴;在重力梯度仪旋转圆盘中心点安装一只三轴加速度计,重力梯度勘探时,用于记录重力梯度仪经历的线运动;在重力梯度仪测量坐标系的三个坐标轴分别安装陀螺仪,重力梯度勘探时,记录重力梯度仪经历的角运动(角速度,角加速度)。
如图2所示,旋转加速度计重力梯度仪运动误差事后补偿方法,包括以下步骤:
对旋转加速度计重力梯度仪的输出数据、线运动数据、角运动数据作预处理:主要包括滤波降低数据噪声,采样率转换,使旋转加速度计重力梯度仪的输出数据、线运动数据、角运动数据的采样率相同;航空重力梯度勘探的时间长度可以高达7~8个小时,在整个勘探过程中,重力梯度仪线运动误差系数向量、角运动误差系数向量会随着时间缓慢变化,但在较短的时间段内,可以视为不变;为了提高事后误差补偿的精度,可以根据重力梯度仪的特性,将重力梯度仪的输出数据、线运动数据、角运动数据,按时间分割成N个数据块。比如航空重力梯度勘探的总时间长度为8小时,可以将重力梯度仪的输出数据、线运动数据、角运动数据分割成8个连续的数据块,每个数据块的时间长度为1小时。
依次剔除8个数据块中的线运动误差、角运动误差,每个数据块剔除线运动误差、角运动误差的方法相同,剔除线运动误差、角运动误差的步骤如下:
a根据下式,计算数据块所有时刻的线运动向量、角运动向量:
Figure PCTCN2019089238-appb-000005
式中t表示数据块的时间,L m(t)表示数据块中,时刻t的线运动向量,L a(t)表示数据块中,时刻t的角运动向量,a x(t),a y(t),a z(t)表示数据块中,时刻t的线运动数据,ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t)表示数据块中,时刻t的角运动数据,
Ω表示旋转加速度计重力梯度仪旋转圆盘角频率;
b将数据块所有时刻的线运动向量、角运动向量,代入下式计算数据块的运动矩阵L:
Figure PCTCN2019089238-appb-000006
式中t 1表示数据块的起始时刻,L m(t 1)表示数据块起始时刻t 1的线运动向量,L a(t 1)表示数据块起始时刻t 1的角运动向量;L m(t)表示数据块中,时刻t的线运动向量,L a(t)表示数据块中,时刻t的角运动向量;t p表示数据块的结束时刻,L m(t p)表示数据块的结束时刻t p的线运动向量,L a(t p)表示数据块结束时刻t p的角运动向量;c根据下式,标定数据块的线运动误差系数向量C m和角运动误差系数向量C A,C m是1×10向量,C A是1×8向量:
[C m,C A]=G out·L +
式中G out是旋转加速度计重力梯度仪输出数据块,L +表示L矩阵的加号逆;
d将标定的线运动误差系数向量C m和角运动误差系数向量C A代入下式,剔除重力梯度仪线运动、角运动误差:
Figure PCTCN2019089238-appb-000007
Figure PCTCN2019089238-appb-000008
表示剔除了线运动误差、角运动误差的旋转加速度计重力梯度仪输出数据块,
L是步骤b中计算的数据块的运动矩阵;
将8个剔除了线运动误差、角运动误差的数据块合并,并解调,得到8小时勘探的万有引力梯度输出。
为了对本发明实施例中的方案进行验证,可以进行如下仿真分析:
如图1所示,在重力梯度仪测量坐标系的x,y,z轴安装陀螺仪,测量重力梯度仪角运动;在重力梯度仪旋转圆盘中心安装三轴加速度计,记录重力梯度仪受到的加速度。将旋转加速度计重力梯度仪安装在振动测试台,振动台对重力梯度仪施加随机的线振动和角振动,同时将一个测试质量绕重力梯度仪旋转产生多频率万有引力梯度信号激励重力梯度仪,模拟航空重力梯度勘探的情况;这里利用旋转加速度计重力梯度仪数字模型,模拟上 述过程。仿真的旋转加速度计重力梯度仪的圆盘半径R=0.1m,圆盘旋转角频率Ω=1.57rad/s,旋转加速度计重力梯度仪加速度计模型参数、加速度计安装参数、加速度计放大电路参数列出在下表:
Figure PCTCN2019089238-appb-000009
测试质量480Kg,在重力梯度仪测量坐标系的初始位置为(1.5,0,0),绕重力梯度仪的旋转 角速度为ω(t)=3600+360sin(0.0628t)deg/h。给重力梯度仪施加线振动,模拟航空勘探的紊流作用,线振动加速度服从高斯分布,垂直方向的线振动加速度均值为0.1g,标准差为0.02g;水平方向的线振动的强度是垂直方向的15%;同时,给重力梯度仪的三个方向施加相同强度的高斯角振动,角振动均值等于100deg/h,标准差等于50deg/h。图3是旋转加速度计重力梯度仪的原始输出,它是重力梯度仪线运动、角运动、万有引力梯度共同激励的输出,图4是经过事后运动误差补偿,剔除了重力梯度仪线运动、角运动误差的重力梯度仪的输出,它仅由万有引力梯度激励。图5是剔除了重力梯度仪线运动、角运动的重力梯度仪的输出解调恢复的万有引力梯度,与理论万有引力梯度的对比图;图中Γ inlinecross是理论万有引力梯度,estΓ inline,estΓ cross是剔除了重力梯度仪线运动、角运动的重力梯度仪的输出解调恢复的万有引力梯度。从图中可以看出,恢复的万有引力梯度与理论万有引力梯度一致。仿真实验中,给重力梯度仪施加的紊流量级在200mg,角速度量级在10 -4~10 -3rad/s,角加速度量级10 -3~10 -2rad/s 2;重力梯度仪的角运动、线运动引起的电压输出量级为10 5V,万有引力梯度引起的电压输出量级为10 -2V,因此信噪比量级为10 -7。在超低信噪比10 -7,噪声比信号高千万倍的情况下,本发明提供的事后误差补偿方法,能够剔除重力梯度仪线运动、角运动误差,精确恢复万有引力梯度,仿真实验表明本发明提供的事后运动误差补偿方法,有极佳的性能。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。

Claims (3)

  1. 一种旋转加速度计重力梯度仪运动误差事后补偿方法,其特征在于,包括以下步骤:
    (1)、对旋转加速度计重力梯度仪的输出数据、线运动数据、角运动数据进行滤波,以及采样率转换,降低数据噪声,同时使旋转加速度计重力梯度仪的输出数据、线运动数据、角运动数据的采样率相同;
    (2)、将勘探时间总长度为L小时的重力梯度仪的输出数据、线运动数据、角运动数据,按时间分割成N个数据块,每个数据块的时间长度可以不同;
    (3)、依次剔除N个数据块中的线运动误差、角运动误差;
    (4)、将N个剔除了线运动误差、角运动误差的数据块合并,并解调,得到勘探时间长度L小时的万有引力梯度输出。
  2. 根据权利要求1所述的一种旋转加速度计重力梯度仪运动误差事后补偿方法,其特征在于:步骤(3)中每个数据块剔除线运动误差、角运动误差的方法相同。
  3. 根据权利要求2所述的一种旋转加速度计重力梯度仪运动误差事后补偿方法,其特征在于:步骤(3)中每个数据块剔除线运动误差、角运动误差的步骤如下:
    (3-1)根据下式,计算数据块所有时刻的线运动向量、角运动向量:
    Figure PCTCN2019089238-appb-100001
    式中t表示数据块的时间,L m(t)表示数据块中,时刻t的线运动向量,L a(t)表示数据块中,时刻t的角运动向量,a x(t),a y(t),a z(t)表示数据块中,时刻t的线运动数据,ω x(t),ω y(t),ω z(t),ω ax(t),ω ay(t),ω az(t)表示数据块中,时刻t的角运动数据,Ω表示旋转加速度计重力梯度仪旋转圆盘角频率;
    (3-2)将数据块所有时刻的线运动向量、角运动向量,代入下式计算数据块的运动矩阵L:
    Figure PCTCN2019089238-appb-100002
    式中t 1表示数据块的起始时刻,L m(t 1)表示数据块起始时刻t 1的线运动向量,L a(t 1)表示数据块起始时刻t 1的角运动向量;L m(t)表示数据块中,时刻t的线运动向量,L a(t)表示数据块中,时刻t的角运动向量;t p表示数据块的结束时刻,L m(t p)表示数据块的结束时刻t p的线运动向量,L a(t p)表示数据块结束时刻t p的角运动向量;(3-3)根据下式,标定数据块的线运动误差系数向量C m和角运动误差系数向量C A,C m是1×10向量,C A是1×8向量:
    [C m,C A]=G out·L +
    式中G out是旋转加速度计重力梯度仪输出数据块,L +表示L矩阵的加号逆;
    (3-4)将标定的线运动误差系数向量C m和角运动误差系数向量C A代入下式,剔除重力梯度仪线运动、角运动误差:
    Figure PCTCN2019089238-appb-100003
    Figure PCTCN2019089238-appb-100004
    表示剔除了线运动误差、角运动误差的旋转加速度计重力梯度仪输出数据块,L是步骤(3-2)中计算的数据块的运动矩阵。
PCT/CN2019/089238 2018-12-31 2019-05-30 一种旋转加速度计重力梯度仪运动误差事后补偿方法 WO2020140378A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/418,848 US11372129B2 (en) 2018-12-31 2019-05-30 Post-compensation method for motion errors of rotating accelerometer gravity gradiometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811651176.8A CN109766812B (zh) 2018-12-31 2018-12-31 一种旋转加速度计重力梯度仪运动误差事后补偿方法
CN201811651176.8 2018-12-31

Publications (1)

Publication Number Publication Date
WO2020140378A1 true WO2020140378A1 (zh) 2020-07-09

Family

ID=66453388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089238 WO2020140378A1 (zh) 2018-12-31 2019-05-30 一种旋转加速度计重力梯度仪运动误差事后补偿方法

Country Status (3)

Country Link
US (1) US11372129B2 (zh)
CN (1) CN109766812B (zh)
WO (1) WO2020140378A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109766812B (zh) 2018-12-31 2021-03-09 东南大学 一种旋转加速度计重力梯度仪运动误差事后补偿方法
CN109709628B (zh) * 2019-02-15 2020-08-14 东南大学 一种旋转加速度计重力梯度仪标定方法
CN110068876B (zh) * 2019-05-30 2021-01-26 中国船舶重工集团公司第七0七研究所 基于载体自振动航空重力梯度仪运动误差补偿方法
CN111522252A (zh) * 2020-04-02 2020-08-11 北京仿真中心 一种半实物仿真方法及系统
CN112363247B (zh) * 2020-10-27 2021-09-07 华中科技大学 一种重力梯度仪运动误差事后补偿方法
CN114324978A (zh) * 2021-12-17 2022-04-12 兰州空间技术物理研究所 一种加速度计捕获范围的地面静态标定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6658935B1 (en) * 2001-03-07 2003-12-09 Lockheed Martin Corporation Complemented absolute/relative full-tensor gravity gradiometer system
CN104374401A (zh) * 2014-10-15 2015-02-25 哈尔滨工程大学 一种捷联惯导初始对准中重力扰动的补偿方法
CN108873093A (zh) * 2018-07-12 2018-11-23 临沂大学 一种航空重力梯度仪自梯度补偿方法
CN108931824A (zh) * 2018-04-27 2018-12-04 东南大学 一种动基座旋转加速度计重力梯度仪误差增益系数标定方法
CN109766812A (zh) * 2018-12-31 2019-05-17 东南大学 一种旋转加速度计重力梯度仪运动误差事后补偿方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444867B2 (en) * 2005-01-04 2008-11-04 Bell Geospace, Inc. Accelerometer and rate sensor package for gravity gradiometer instruments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6658935B1 (en) * 2001-03-07 2003-12-09 Lockheed Martin Corporation Complemented absolute/relative full-tensor gravity gradiometer system
CN104374401A (zh) * 2014-10-15 2015-02-25 哈尔滨工程大学 一种捷联惯导初始对准中重力扰动的补偿方法
CN108931824A (zh) * 2018-04-27 2018-12-04 东南大学 一种动基座旋转加速度计重力梯度仪误差增益系数标定方法
CN108873093A (zh) * 2018-07-12 2018-11-23 临沂大学 一种航空重力梯度仪自梯度补偿方法
CN109766812A (zh) * 2018-12-31 2019-05-17 东南大学 一种旋转加速度计重力梯度仪运动误差事后补偿方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIAN XUEWU; CAI TIJING: "Data Processing Method for Rotating Accelerometer Gravity Gradiometer", JOURNAL OF SOUTHEAST UNIVERSITY NATURAL SCIENCE EDITION, vol. 46, no. 4, pages 708 - 712, XP009521858, ISSN: 1001-0505, DOI: 10.3969/j.issn.1001-0505.2016.04.006 *
WANG SHUFU ; SUN FENG ; HAO YANLING ; QIN HONGLEI: "Study on Scale Factor Adjusting and Error Compensation for Rotating Accelerometer Gravity Gradiometer", JOURNAL OF CHINESE INERTIAL TECHNOLOGY, vol. 8, no. 4, pages 31 - 35,45, XP009521860, ISSN: 1005-6734, DOI: 10.13695/j.cnki.12-1222/o3.2000.04.006 *

Also Published As

Publication number Publication date
US11372129B2 (en) 2022-06-28
CN109766812B (zh) 2021-03-09
CN109766812A (zh) 2019-05-17
US20220075091A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2020140378A1 (zh) 一种旋转加速度计重力梯度仪运动误差事后补偿方法
CN100368774C (zh) 光纤陀螺惯测装置快速启动和精度保证的工程实现方法
CN109709628B (zh) 一种旋转加速度计重力梯度仪标定方法
CN109425339B (zh) 一种基于惯性技术的考虑杆臂效应的舰船升沉误差补偿方法
CN106017452B (zh) 双陀螺抗扰动寻北方法
CN110006454B (zh) 一种imu标定三轴转台垂直度和初始姿态的方法
CN109782023B (zh) 一种通过旋转调制法测量加速度计高阶项数系数的方法
CN111650664B (zh) 一种航空重力梯度仪实时重力梯度解调方法及装置
CN112363247B (zh) 一种重力梯度仪运动误差事后补偿方法
CN110058324B (zh) 利用重力场模型的捷联式重力仪水平分量误差修正方法
CN113885098A (zh) 一种重力敏感器低频频率响应误差在线建模及补偿方法
WO2020042696A1 (zh) 一种动基座旋转加速度计重力梯度仪误差补偿装置及方法
CN112345199B (zh) 一种暂冲式高速风洞迎角传感器振动影响修正方法
CN109084755B (zh) 一种基于重力视速度与参数辨识的加速度计零偏估计方法
CN107576992B (zh) 一种重力梯度仪自标定方法及离心梯度补偿方法
CN108120439B (zh) 一种三分量感应线圈姿态测量方法及装置
CN106705995A (zh) 一种MEMS陀螺仪g值敏感系数的标定方法
CN109029499A (zh) 一种基于重力视运动模型的加速度计零偏迭代寻优估计方法
CN109085654B (zh) 一种旋转加速度计重力梯度仪数字建模仿真方法
CN112729266A (zh) 一种用于mems陀螺随机误差的分析方法
CN110030992B (zh) 一种基于磁强计的空中飞行物高速旋转角运动测量方法
Williams et al. Earth coordinate 3-D currents from a modular acoustic velocity sensor
CN206479651U (zh) 一种具有姿态记录功能的地空tem接收系统
CN113447994B (zh) 一种基于旋转加速度计原理的重力梯度全张量测量方法
CN106772633A (zh) 一种具有姿态记录功能的地空tem接收系统及测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907206

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19907206

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.12.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19907206

Country of ref document: EP

Kind code of ref document: A1