WO2020140285A1 - 静电释放保护电路、显示基板和显示装置 - Google Patents

静电释放保护电路、显示基板和显示装置 Download PDF

Info

Publication number
WO2020140285A1
WO2020140285A1 PCT/CN2019/070476 CN2019070476W WO2020140285A1 WO 2020140285 A1 WO2020140285 A1 WO 2020140285A1 CN 2019070476 W CN2019070476 W CN 2019070476W WO 2020140285 A1 WO2020140285 A1 WO 2020140285A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic discharge
conductive
electrostatic
conductive portion
protection circuit
Prior art date
Application number
PCT/CN2019/070476
Other languages
English (en)
French (fr)
Inventor
许卓
白雅杰
王孝林
马童国
葛永利
Original Assignee
京东方科技集团股份有限公司
重庆京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 重庆京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2019/070476 priority Critical patent/WO2020140285A1/zh
Priority to CN201980000031.8A priority patent/CN111656521B/zh
Priority to US16/632,098 priority patent/US11579667B2/en
Priority to EP19829390.4A priority patent/EP3907759A1/en
Publication of WO2020140285A1 publication Critical patent/WO2020140285A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/181Enclosures
    • G06F1/182Enclosures with special features, e.g. for use in industrial environments; grounding or shielding against radio frequency interference [RFI] or electromagnetical interference [EMI]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0067Devices for protecting against damage from electrostatic discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0079Electrostatic discharge protection, e.g. ESD treated surface for rapid dissipation of charges
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures

Definitions

  • Embodiments of the present disclosure relate to the display field, and in particular, to an electrostatic discharge protection circuit, a display substrate, and a display device.
  • a first aspect of the present disclosure provides an electrostatic discharge protection circuit, including:
  • a first conductive portion having an end
  • At least one electrostatic discharge part which is disposed in the same layer as the first conductive part and is spaced apart from the end of the first conductive part, the at least one electrostatic discharge part is configured to be discharged at the end of the first conductive part Electrostatic charges generated at the site.
  • the at least one electrostatic discharge part is located on at least one side of the end of the first conductive part.
  • the at least one electrostatic discharge part is located on two opposite sides of the end of the first conductive part, and the distance from the at least one electrostatic discharge part to the two opposite sides of the end is equal .
  • the electrostatic discharge protection circuit includes at least two stages of electrostatic discharge units, and at least one side surface of the end of the first conductive portion is provided with the at least two stages of electrostatic discharge units, and each stage of electrostatic discharge unit includes the At least one electrostatic discharge part, the distance between the at least two-stage electrostatic discharge unit and the end of the first conductive part is sequentially increased.
  • one of the at least two stages of electrostatic discharge units includes a plurality of electrostatic discharge units, and the plurality of electrostatic discharge units and the first conductive part in the same stage of electrostatic discharge unit The distances of the ends are equal to each other.
  • the first conductive portion further includes an extension portion that extends from an end of the first conductive portion to the at least one electrostatic discharge portion, and the end of the extension portion is The at least one electrostatic discharge part is spaced from each other.
  • the at least one electrostatic discharge part is located on at least one side of the end of the extension part.
  • the electrostatic discharge protection circuit includes at least two stages of electrostatic discharge units, at least one side of the end of the extension portion is provided with the at least two stages of electrostatic discharge units, each stage of electrostatic discharge unit includes the at least one static electricity In the discharge part, the distance between the at least two-stage electrostatic discharge unit and the end of the extension part increases sequentially.
  • one of the at least two-stage electrostatic discharge units includes a plurality of electrostatic discharge units, and the plurality of electrostatic discharge units and the ends of the extensions in the same stage of electrostatic discharge unit The distances are equal to each other.
  • a second aspect of the present disclosure provides a display substrate including the above electrostatic discharge protection circuit.
  • the display substrate further includes a second conductive portion, the first conductive portion, the second conductive portion, and the at least one electrostatic discharge portion are disposed in the same layer and spaced apart from each other, and the first conductive portion The distance between the end of and the second conductive portion is greater than the distance between the end of the first conductive portion and the at least one electrostatic discharge portion.
  • a portion of the extension portion extends away from the second conductive portion.
  • the first conductive portion includes a first signal line
  • the second conductive portion includes a second signal line
  • the distance between the end of the first signal line and the second signal line Is greater than the distance between the end of the first signal line and the at least one electrostatic discharge part.
  • the display substrate further includes a base substrate, and the first signal line, the second signal line, and the at least one electrostatic discharge portion are all located on the base substrate and are disposed in the same layer.
  • the display substrate further includes an insulating layer and an active layer, wherein the insulating layer covers the first signal line, the second signal line, and the at least one electrostatic discharge portion, the active layer Covering the insulating layer, the insulating layer is configured to insulate the active layer from the first signal line, the second signal line, and the at least one electrostatic discharge part.
  • a third aspect of the present disclosure provides a display device including the above display substrate.
  • 1(a) to 1(d) are schematic diagrams of electrostatic breakdown of the display panel
  • FIG. 2 is a scanning electron microscope image of electrostatic breakdown at a local position of the display panel
  • 3 is a scanning electron microscope diagram showing the cross-sectional structure of the panel when electrostatic breakdown occurs
  • FIG. 4 is a schematic diagram of an electrostatic discharge protection circuit according to an embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view taken along line I-I of FIG. 4;
  • FIG. 6 is a schematic diagram of an electrostatic discharge part according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an electrostatic discharge part according to still another embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an electrostatic discharge part according to still another embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of an electrostatic discharge protection circuit according to another embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view taken along line II-II of FIG. 9;
  • FIG. 11 is a schematic diagram of an electrostatic discharge circuit according to yet another embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of an electrostatic discharge circuit according to yet another embodiment of the present disclosure.
  • 13(a) to 13(c) each exemplarily show the shape of the end of the conductive portion of the embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of an electrostatic discharge protection circuit according to another embodiment of the present disclosure.
  • FIG. 15 is a cross-sectional view taken along line XI-XI of FIG. 14;
  • FIG. 16 is a cross-sectional view taken along line XII-XII of FIG. 14;
  • 17 is a schematic diagram of an extension portion of an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of an extension part of yet another embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of an extension part of another embodiment of the present disclosure.
  • 21 is a schematic diagram of an extension part of another embodiment of the present disclosure.
  • 22 is a schematic diagram of an extension portion of yet another embodiment of the present disclosure.
  • FIG. 23 is a schematic diagram of an extension part of yet another embodiment of the present disclosure.
  • 24 is a schematic diagram of an electrostatic discharge protection circuit according to still another embodiment of the present disclosure.
  • 25 is a schematic diagram of a display substrate according to an embodiment of the present disclosure.
  • 26 is a partially enlarged schematic view of the display substrate of FIG. 25;
  • FIG. 27 is a cross-sectional view taken along line V-V of FIG. 26.
  • FIG. 1(a) to FIG. 1(b) schematically show the static discharge phenomenon in the manufacturing process of the display panel.
  • a gate insulating layer 30 is formed.
  • an amorphous silicon layer 40 is deposited on the gate insulating layer 30.
  • a portion of the amorphous silicon layer 40 between the gate lines 10 and 20 may form a current channel under the action of static electricity.
  • the minimum distance D between the grid lines 10 and the common electrode lines 20 be as small as possible.
  • D when D is too small, for example, when D is less than 10 microns, the electrostatic current is large, thereby generating electrons 42 and holes 44 in the amorphous silicon layer 40, and the gate insulating layer 30 is broken down , significantly affecting product yield.
  • FIG. 1(c) after the etching of the amorphous silicon layer 40 is completed, a hole 50 is left in the broken gate insulating layer 30, and the hole 50 exposes the surfaces of the gate line 10 and the common electrode line 20 come out. As shown in FIG.
  • FIG. 2 schematically shows a position where electrostatic breakdown occurs on the display panel.
  • FIG. 3 schematically shows a cross-sectional view of the display panel when electrostatic breakdown occurs.
  • An embodiment of the present disclosure provides an electrostatic discharge protection circuit, including: a first conductive portion having an end; and at least one electrostatic discharge portion, the at least one electrostatic discharge portion is disposed in the same layer as the first conductive portion and is The ends of the first conductive portion are spaced apart from each other, and the at least one electrostatic discharge portion is configured to discharge the electrostatic charge generated at the end of the first conductive portion. Since the electrostatic discharge part is located near the end of the first conductive part, the electrostatic charge accumulated at the end can be discharged through the electrostatic discharge part. In this way, the electrostatic discharge part can share the breakdown current and prevent static electricity from entering other effective circuits.
  • FIG. 4 is a schematic diagram of an electrostatic discharge protection circuit according to an embodiment of the present disclosure
  • FIG. 5 is a cross-sectional view taken along line I-I of FIG. 4.
  • an electrostatic discharge protection circuit is provided on the substrate 240.
  • the electrostatic discharge protection circuit includes: a first conductive portion 200 having an end A; and at least one electrostatic discharge portion 210, the at least one electrostatic discharge The portion 210 is provided in the same layer as the first conductive portion 200 and is spaced apart from the end A of the first conductive portion 210, and the electrostatic discharge portion 210 is configured to be discharged at the end of the first conductive portion 210 The electrostatic charge q generated by A.
  • the electrostatic discharge part 210 Since the electrostatic discharge part 210 is located near the end A of the first conductive part 210, the electrostatic charge accumulated at the end A can be discharged through the electrostatic discharge part 210, so that the electrostatic discharge part 210 can share the breakdown current and prevent the entry of static electricity Other effective circuits.
  • the display substrate when the electrostatic discharge protection circuit of the above embodiments is applied to a display substrate, the display substrate includes, for example, an effective circuit such as a second conductive portion, the first conductive portion, the second conductive portion, and all
  • the at least one electrostatic discharge part is provided in the same layer and spaced from each other, and the distance between the end of the first conductive part and the second conductive part is greater than the end of the first conductive part and the at least one static electricity The distance between the release parts. For example, as shown in FIGS.
  • the electrostatic discharge protection circuit further includes a second conductive portion 220, which is provided in the same layer as the electrostatic discharge portion 210 and the first conductive portion 200, and the The distance m between the end A of the first conductive part 200 and the second conductive part 200 is greater than the distance n between the end A of the first conductive part 200 and the electrostatic discharge part 210. Since m is greater than n, electrostatic breakdown is more likely to occur between the end portion A and the electrostatic discharge portion 210, thus preventing static electricity from entering the second conductive portion 220.
  • a second conductive portion 220 which is provided in the same layer as the electrostatic discharge portion 210 and the first conductive portion 200, and the The distance m between the end A of the first conductive part 200 and the second conductive part 200 is greater than the distance n between the end A of the first conductive part 200 and the electrostatic discharge part 210. Since m is greater than n, electrostatic breakdown is more likely to occur between the end portion A and the electrostatic discharge portion 210, thus
  • an insulating layer 212 and an amorphous silicon layer 214 are formed on the first conductive portion 200, the electrostatic discharge portion 210, and the second conductive portion 220, when a discharge occurs between the first conductive portion 200 and the electrostatic discharge portion 210
  • a discharge channel can be formed in the amorphous silicon layer 214.
  • the second conductive portion in the display substrate may be a common electrode block or other bulk conductors, or may be a signal line such as a common electrode line.
  • the at least one electrostatic discharge part is located on at least one side of the end of the first conductive part.
  • the end A of the first conductive portion 200 has a first side S1, a second side S2, and a third side S3, and the electrostatic discharge portion 210 is located on the first side S1 of the end A, and two Those are separated by a distance n.
  • the electrostatic discharge part 210 may be located on the second side S2 or the third side S3 of the end A, and both can achieve the purpose of discharging.
  • the at least one electrostatic discharge part is located on both sides of the end of the first conductive part.
  • the electrostatic discharge portion 210 a is located on the first side surface S1 and the second side surface S2 of the end portion A of the first conductive portion 200.
  • the electrostatic discharge part 210a in FIG. 6 can form more discharge channels, which is beneficial to discharge more electrostatic charges.
  • the at least one electrostatic discharge portion is located on three sides of the end of the first conductive portion.
  • the electrostatic discharge part 210 b is located on the first side S1, the second side S2, and the third side S3 of the end A of the first conductive part 200.
  • the electrostatic discharge part 210b in FIG. 7 can form more discharge channels (as indicated by arrows), which is beneficial to discharge more static electricity Charge.
  • the at least one electrostatic discharge part is located on two opposite sides of the end of the first conductive part, and the distance from the at least one electrostatic discharge part to the two opposite sides of the end is equal .
  • the electrostatic discharge protection circuit includes two electrostatic discharge parts 210c, 210d, the electrostatic discharge part 210c is located on the first side S1 of the end A of the first conductive part 200, and the electrostatic discharge part 210d is located at the first On the third side surface S3 of the end A of the conductive portion 200, the two side surfaces S1 and S3 are respectively located on opposite sides of the first conductive portion 200.
  • the electrostatic charge accumulated at the end portion A can be simultaneously discharged through the electrostatic discharge parts 210c, 210d located on the opposite side of the first conductive part 200, thereby discharging a large amount of electrostatic charge more quickly.
  • the electrostatic discharge parts 210c, 210d may be two separate components, or be integrally formed as one electrostatic discharge part.
  • the electrostatic discharge part may have the shape of the electrostatic discharge part 210b of FIG.
  • the electrostatic discharge parts 210c and 210d may be regarded as two parts on the same electrostatic discharge part.
  • the electrostatic discharge parts 210c and 210d are mirror-symmetric with respect to the extending direction oo' (or horizontal direction) of the first conductive part 200. In this way, not only can the electrostatic charge be discharged more quickly, but also easy to manufacture.
  • the electrostatic discharge protection circuit may include two, three, four, or more electrostatic discharge parts disposed around the tip A, thereby forming more discharge channels.
  • the electrostatic discharge protection circuit includes at least two stages of electrostatic discharge units, and at least one side surface of the end of the first conductive portion is provided with the at least two stages of electrostatic discharge units, and each stage of electrostatic discharge unit includes the At least one electrostatic discharge part, the distance between the at least two-stage electrostatic discharge unit and the end of the first conductive part is sequentially increased.
  • FIG. 9 is a schematic diagram of an electrostatic discharge protection circuit according to another embodiment of the present disclosure
  • FIG. 10 is a cross-sectional view taken along line II-II of FIG. 9. For example, as shown in FIGS.
  • a multi-stage electrostatic discharge unit is provided on both the first side surface S1 and the third side surface S3 of the end portion A of the first conductive portion 200.
  • each of the first side S1 and the third side S3 is provided with a level 1 to level 3 electrostatic discharge unit (that is, a level I to a level III), the level 3 electrostatic discharge unit and the end of the first conductive portion 200 The distance between A increases sequentially.
  • each stage of the electrostatic discharge unit includes an electrostatic discharge section, the distance between the electrostatic discharge section 210e of the first-stage electrostatic discharge unit and the end A is t1, and the electrostatic discharge section 210f of the second-stage electrostatic discharge unit and the end A The interval between them is t2, and the interval between the electrostatic discharge part 210g of the third-stage electrostatic discharge unit and the end A is t3, then t1 ⁇ t2 ⁇ t3.
  • the discharge principle of the multi-stage electrostatic discharge unit will be specifically described below by taking the electrostatic discharge parts 210e, 210f, and 210g provided on the first side surface S1 of the end A of the first conductive part 200 as examples.
  • the electrostatic discharge part 210e becomes the new end of the first conductive part 200;
  • the second discharge to the second stage electrostatic discharge unit is continued, that is, the second discharge occurs at the electrostatic discharge part 210f, and then the electrostatic discharge part 210f becomes the new end of the first conductive part 200;
  • the third discharge to the third stage electrostatic discharge unit is continued, that is, the third discharge occurs at the electrostatic discharge part 210g.
  • the electrostatic charge can be discharged multiple times, and the accumulated electrostatic charge can be discharged at any time, reducing the risk of the static charge entering other effective circuits.
  • static charge may continue to accumulate at the end of the first conductive portion, and the use of a multi-level discharge unit can greatly reduce the loss caused by the static charge entering the internal effective circuit.
  • the three electrostatic discharge parts 210e, 210f, and 210g are arranged at equal intervals along the direction perpendicular to the extending direction oo' of the first conductive part 200, for example, the three electrostatic discharge parts 210e, 210f, and 210g are along the vertical center
  • the lines yy' are arranged at equal intervals.
  • the three electrostatic discharge parts may not be arranged along a straight line, or the distance between them is unequal, and the above purpose can also be achieved.
  • the electrostatic discharge parts 210h, 210i, and 210j are disposed on the third side surface S3 of the end portion A of the first conductive part 200, and may have the same, similar, or different structures as the electrostatic discharge parts 210h, 210i, and 210j, which are all covered in the present disclosure In the range.
  • At least one stage of the electrostatic discharge unit includes a plurality of electrostatic discharge parts, and the distances between the plurality of electrostatic discharge parts in the same stage of the electrostatic discharge unit and the ends of the first conductive part are equal to each other.
  • each stage of the electrostatic discharge unit includes an equal number of electrostatic discharge parts, and the number of electrostatic discharge parts is greater than or equal to two.
  • Class I, II, and III electrostatic discharge units each include two electrostatic discharge parts 210k, and the two electrostatic discharge parts 210k and the ends of the first conductive part 200 in each stage of electrostatic discharge unit The distances of the part A are equal to each other. Compared with the fact that each stage of the electrostatic discharge unit in FIG.
  • the two electrostatic discharge parts can discharge electrostatic charges more quickly, and the electrostatic discharge effect is better.
  • each stage of the electrostatic discharge unit includes an unequal number of electrostatic discharge parts, and the electrostatic discharge unit located at a higher stage has more electrostatic discharge parts.
  • the class I electrostatic discharge unit includes one electrostatic discharge part 210l
  • the class II electrostatic discharge unit includes two electrostatic discharge parts 210l
  • the class III electrostatic discharge unit includes three electrostatic discharge parts 210l, and so on.
  • two electrostatic discharge parts 210l may be provided in the class I electrostatic discharge unit
  • three electrostatic discharge parts 210l may be provided in the class II electrostatic discharge unit, and so on.
  • the electrostatic discharge circuit of this embodiment can gradually discharge more electrostatic charges, which is especially suitable for the situation where electrostatic charges accumulate more and more.
  • the first conductive portion is made of a conductive material such as metal, alloy, etc., for example, a gate line or a data line on the display substrate.
  • the term "end" refers to the end or head of an object and does not include a definition of shape.
  • the end portion may have various shapes such as a flat head, a round head, or a pointed head.
  • the end A of the first conductive portion 200 has a flat shape.
  • the end A is tapered or has a chamfered shape.
  • the end A is pointed.
  • FIG. 13(a) the end A is pointed.
  • the end A is a round head.
  • the charge distribution on the surface of a charged conductor is related to the shape of the conductor.
  • the protruding part of the conductor surface has a large charge density; the flat part of the conductor surface has a small charge density; the part of the conductor surface that is recessed has a small charge density. Therefore, the surface charge density of an isolated charged conductor is inversely proportional to the radius of surface curvature.
  • the end of the charged signal line usually has a higher charge density, which is prone to tip discharge.
  • the second conductive part is made of a conductive material such as metal, alloy, or the like.
  • the second conductive portion is, for example, a common electrode block or other bulk conductors, or may be a signal line such as a common electrode line.
  • the first conductive portion, the second conductive portion, and the electrostatic discharge portion are made of the same material and arranged in the same layer, which is beneficial to simplify the manufacturing process.
  • the first conductive part 200, the second conductive part 220, and the electrostatic discharge parts 210e, 210f, 210g are made of the same material and are provided in the same layer.
  • the manufacturing process of the above structure includes: manufacturing a metal layer on the base substrate, and patterning the metal layer through an etching process to obtain the first conductive part 200, the second conductive part 220, and the electrostatic discharge parts 210e, 210f, 210g picture of.
  • an insulating layer 212 and an amorphous silicon layer 214 are formed on the first conductive portion 200, the second conductive portion 220, and the electrostatic discharge portions 210e, 210f, and 210g.
  • the first conductive portion 200, the second conductive portion 220, and the electrostatic discharge portions 210e, 210f, and 210g can be obtained through a single patterning process, simplifying the manufacturing process.
  • patterning process used in the embodiments of the present disclosure includes photoresist coating, exposure, development, etching, and other process steps.
  • the first conductive portion further includes an extension portion that extends from an end of the first conductive portion to the at least one electrostatic discharge portion, and the end of the extension portion is The at least one electrostatic discharge part is spaced from each other.
  • 14 is a schematic diagram of an electrostatic discharge protection circuit according to yet another embodiment of the present disclosure
  • FIG. 15 is a cross-sectional view taken along line XI-XI of FIG. 14
  • FIG. 16 is a cross-sectional view taken along line XII-XII of FIG.
  • the electrostatic discharge circuit includes a first conductive portion 300, an extension portion 316, and electrostatic discharge portions 310a to 310d.
  • the extension portion 316 extends from the end portion A of the first conductive portion 300 to the electrostatic discharge portions 310a, 310c, respectively, and the ends 332, 334 of the extension portion 316 and the electrostatic discharge portions 310a, 310c are spaced apart from each other.
  • the manufacturing materials of the extension portion 316 and the first conductive portion 300 may be the same or different. When the materials of the two are the same, they may be integrally formed to simplify the manufacturing process.
  • the extended portion 316 is formed by projecting upward and downward from the end A of the first conductive portion 300 in the vertical direction, respectively.
  • the extension 316 can weaken the electric field at the end A, making electrostatic charges easier to be discharged at the ends 332, 334 of the extension 316, thereby preventing the static charge from entering an effective circuit such as the second conductive part 320.
  • the extension portion 316 is elongated, and is mirror-symmetric with respect to the center line oo′ of the first conductive portion 300. It can be understood that in other embodiments, the extension portion 316 may have other For an asymmetric shape, for example, the extended portion includes only the part below or above the center line oo' in FIG. 14, and the above purpose can also be achieved. It can be understood that the shape and the extending direction of the extended portion can be set according to the shape and position of the second conductive portion, which will be described in the following embodiments.
  • the distance between the extended portion 316 and the second conductive portion 320 is b, and the distance between the extended portion 316 and the electrostatic discharge portion 310a is d1. Since d1 is much smaller than b (d1 ⁇ b), the extended portion 316 and the electrostatic discharge The induced voltage difference between the part 310a is much larger than the induced voltage difference between the extended part 316 and the second conductive part 320. Therefore, the static charge accumulated at the end A is preferentially discharged between the extended portion 316 and the second conductive portion 320.
  • the electrostatic discharge parts 310a, 310b discharge electric charges according to the electrostatic discharge principle of the multi-stage electrostatic discharge unit described in the previous embodiment.
  • the electrostatic discharge unit 310a can be regarded as a first-stage electrostatic discharge unit, and the electrostatic discharge unit 310b can be regarded as a second-stage electrostatic discharge unit.
  • the static electricity discharge part 310a becomes the new end of the first conductive part 300; when the static electricity accumulates again, it continues to the second-stage static electricity discharge unit, that is, the static electricity is discharged
  • the second discharge is performed at the portion 310b. In this way, the electrostatic charge can be discharged many times, and the accumulated electrostatic charge can be released at any time.
  • the electrostatic discharge protection circuit of the embodiment of the present disclosure can further share the electrostatic current at the end A of the first conductive part 300 without increasing the distance between the first conductive part 300 and the second conductive part 320, so that the electrostatic shock Penetration is more likely to occur at the ends 332, 334 of the extension 316, thereby preventing static charges from entering effective circuits such as the second conductive portion.
  • the length of the extended portion is much greater than the distance between the first conductive portion and the second conductive portion. In at least some embodiments, the distance between the first conductive portion and the second conductive portion is greater than the distance between the extended portion and the electrostatic discharge portion closest to the extended portion. In at least some embodiments, the length of the electrostatic discharge portion is greater than the width of the extended portion. For example, as shown in FIG.
  • a is the longitudinal length of the strip-shaped extending portion 316
  • b is the distance between the first conductive portion 300 and the second conductive portion 320 (it can also be understood as the width between adjacent signal lines, Generally greater than 5 microns)
  • c is the lateral width of the extended portion 316
  • d1 is the distance between the electrostatic discharge portion 310a and the extended portion 316
  • e is the longitudinal length of the electrostatic discharge portion 310a.
  • the positional relationship between the end of the extension part and the electrostatic discharge part is discussed by taking one end 332 of the extension part 316 of FIG. 14 as an example. It can be understood that the other end 334 of the extension part 316 may have Structures with the same, similar, or different ends 332 are all within the scope of the present disclosure.
  • the at least one electrostatic discharge part is located on at least one side of the end of the extension part.
  • the end 332 of the extension 316 has first to third sides S11, S12, S13, where the electrostatic discharge part 310 a is located on the second side S12 of the end 332 of the extension 316.
  • the electrostatic discharge part 310a may also be located on the side S11 or S13, which can also achieve the purpose of discharging.
  • the end 332a of the extension 316a has three sides S21, S22, and S23, and the electrostatic discharge part 510a has a letter "L" shape and is provided on the two sides S22, S23 of the end 332a of the extension 316a In this way, more discharge channels can be formed, which is beneficial to release more electrostatic charges.
  • the side surface S23 is farther away from the second conductive portion 320a than the side surface S21. Therefore, the electrostatic discharge portion 510a is provided on the side surface S23 to further prevent electrostatic charges from approaching or entering the second conductive portion 320a.
  • the end 332a of the extended portion 316a includes a chamfer 350 that increases the distance between the end 332a near the second conductive portion 320a side and the electrostatic discharge portion 510a
  • the spacing that is, the spacing is W1
  • the electrostatic discharge portion 510b is located on all three sides of the end 332b of the extension 316b (the end 332b has three sides S21, S22, and S23 similar to those in FIG. 17) to wrap the end 332b. In this way, more discharge channels can be formed. For example, at a position where the electrostatic discharge part 510b and the end 332b face each other, the distance between the two remains constant, so that the multiple discharge channels have the same length, and more electrostatic charges can be discharged at the same time.
  • the end of the extension portion of the embodiment of the present disclosure is similar to the “end portion” of the conductive portion described in the previous embodiment, and may have various shapes, such as a flat head, a round head, or a pointed head, etc., and may be a regular or irregular shape.
  • the tip of the extension has the shape shown in FIGS. 13(a) to 13(c).
  • the ends of the extensions of FIGS. 14 and 18 have a flat shape.
  • the electrostatic discharge portion 510c is located on the three sides of the end 332c of the extended portion 316c.
  • the end 332c of the extended portion 316c has a tapered shape, similar to a tapered shape, and at this time, electrostatic charges are more easily concentrated in the tapered portion.
  • the inner surface of the electrostatic discharge portion 510c has the same shape as the outer surface of the tip 332c, so that the fit of the two is better in shape, further preventing static charges from entering the second conductive portion 320c, thereby effectively protecting the second conductive ⁇ 320c.
  • the electrostatic discharge portion 510d is located on the side surface S22 of the end 332d of the extension portion 316d.
  • the end 332d of the extended portion 316d has a tapered shape
  • the upper and lower ends of the electrostatic discharge portion 510d also have a tapered shape
  • the upper end and the end 332d have the same width and the two are on the same center line.
  • the distance between the extended portion 316d and the electrostatic discharge portion 510d is gradual, that is, the distance W3 on the center line is the shortest, and the distance W2 on both sides of the center line is the longest. In this case, electrostatic charges are more likely to be concentrated at the distance W3, making discharge more likely to occur.
  • the electrostatic discharge protection circuit includes at least two stages of electrostatic discharge units, at least one side of the end of the extension portion is provided with the at least two stages of electrostatic discharge units, each stage of electrostatic discharge unit includes the at least one static electricity In the discharge part, the distance between the at least two-stage electrostatic discharge unit and the end of the extension part increases sequentially.
  • a two-stage electrostatic discharge unit is provided on the side surface S12 of the end 332 of the extension 316, the first-stage electrostatic discharge unit includes an electrostatic discharge unit 310a, and the second-stage electrostatic discharge unit includes an electrostatic discharge unit 310b .
  • the static charge is first discharged at the electrostatic discharge part 310a, and then, the second discharge is performed at the electrostatic discharge part 310b.
  • the electrostatic charge can be discharged multiple times, and through the multi-stage discharge unit, the accumulated electrostatic charge can be discharged at any time, reducing the risk of the static charge entering the second conductive portion.
  • two stages of electrostatic discharge units are provided at the end of the extension 316e, and each stage of the electrostatic discharge unit includes an electrostatic discharge part 510e.
  • the electrostatic discharge part 510e in the class II is farther from the end of the extension part 316e, so the electrostatic discharge part 510e in the class I discharges first.
  • the end of the extension portion 316e has a tapered shape, and the surface of each electrostatic discharge portion 510e opposite to the extension portion 316e has the same shape as the end of the extension portion, so that the electrostatic discharge portion and the end of the extension portion 316e The distance between them remains the same, that is, the length of the discharge channels is the same, so that more charges can be released at the same time.
  • At least one stage of the electrostatic discharge unit includes a plurality of electrostatic discharge parts, and the distances between the ends of the plurality of electrostatic discharge parts and the extension part in the same stage of the electrostatic discharge unit are equal to each other.
  • the distances between the ends of the two electrostatic discharge parts 510f, 510e and the extension 316f in the same stage of the electrostatic discharge unit are equal to each other.
  • a three-stage electrostatic discharge unit is provided on the same side of the end of the extension 316g, and a higher-level discharge unit has more electrostatic discharge parts. As can be seen from FIG.
  • a portion of the extension portion extends away from the second conductive portion.
  • the extension portion includes a first portion and a second portion, wherein the extension direction of the first portion is the same as the extension direction of the second conductive portion, and the extension direction of the second portion is the extension direction of the first portion They are perpendicular to each other and extend away from the second conductive portion. For example, as shown in FIG.
  • the extended portion 416 extends from the end A of the first conductive portion 400, and the extended portion 416 includes a first portion 440 and second portions 434, 432, wherein the extending direction of the first portion 440 is the same as the The extension direction of the second conductive portion 420 is the same, both in the vertical direction (x direction), so that the extension portion 416 and the second conductive portion 420 are always kept parallel to each other, and the distance between the two remains unchanged, further avoiding the static charge and The second conductive portion is close.
  • the extending direction of the second portions 434 and 432 is a horizontal direction (y direction), which is perpendicular to the extending direction of the first portion, and extends away from the second conductive portion 420.
  • the electrostatic discharge block 410 provided at the ends of the second portions 434 and 432 of the extension portion 416 can be further away from the second conductive portion 320 to further prevent static charges from entering the second conductive portion 420.
  • the extending direction of the second portions 434 and 432 of the extension portion 416 may not be the y direction shown in FIG. 24, for example, a direction forming an angle with the x direction, and the direction is, for example, 0. Degrees to 90 degrees.
  • ends of the second portions 434, 432 of the extension 416 may have various shapes of the ends of the extension described in the previous embodiment, and the arrangement of the electrostatic discharge block 410 may also refer to the description in the previous embodiment, here No longer.
  • the shape and extension direction of the extension portion can be set according to the shape and position of the second conductive portion.
  • the extension part, the first conductive part, the second conductive part, and the electrostatic discharge part are made of the same material and are provided in the same layer.
  • the extension part, the first conductive part, the second conductive part, and the electrostatic discharge part are made of the same material and are provided in the same layer.
  • the electrostatic discharge circuit described in the embodiments of the present disclosure can be applied to any electronic circuit, such as a circuit board of a semiconductor device.
  • the following uses an example of applying the electrostatic discharge circuit of the embodiment of the present disclosure to a display substrate of a display device as an example.
  • the display substrate includes but is not limited to an array substrate, a color filter substrate, and the like.
  • An embodiment of the present disclosure also provides a display substrate, including the electrostatic discharge protection circuit described in any of the foregoing embodiments.
  • the following uses an example in which the electrostatic discharge circuit of FIG. 4 is applied to a display substrate as an example.
  • the first conductive portion is, for example, a first signal line such as a gate line
  • the second conductive portion is a second signal such as a common electrode line. line.
  • the display substrate 100 includes a display area 102 and a non-display area surrounding the display area.
  • the display area 102 is an area for displaying images.
  • the display substrate 100 includes a plurality of gate lines GL and a plurality of data lines DL. In the display area 102, the plurality of gate lines GL and the plurality of data lines DL cross to define a plurality of pixel units 104.
  • the display substrate 100 further includes a common electrode line 106 and a signal source 108 located in the non-display area.
  • the common electrode line 106 surrounds the display area 102.
  • the signal source 108 provides a common voltage signal to the common electrode line 106.
  • FIG. 26 in the dotted line area, there is a gap between the end of each gate line GL and the common electrode line 106.
  • the display substrate 100 includes a base substrate 140, and the gate line GL and the electrostatic discharge portion 110 are all located on the base substrate 140.
  • the gate line GL has an end A.
  • the electrostatic discharge part 110 and the end A of the gate line GL are spaced from each other and are configured to discharge the electrostatic charge generated at the end A of the gate line GL. Since the electrostatic discharge part 110 is located near the end A of the conductive part, the electrostatic charge accumulated at the end A can be discharged through the electrostatic discharge part 110, so that the electrostatic discharge part 110 can share the breakdown current and prevent the electrostatic charge from entering other Effective circuit.
  • the gate line GL, the common electrode line 106, and the electrostatic discharge part 110 are all located on the base substrate 140, and the three are arranged in the same layer and spaced from each other. Similar to the relationship between m and n in FIG. 4, the distance between the end A of the gate line GL and the common electrode line 106 is greater than the distance between the end A of the gate line GL and the electrostatic discharge part 110.
  • the gate line GL further includes an extension portion.
  • an extension portion For the specific structure of the extension portion, reference may be made to the description of the extension portion in the foregoing embodiment, and details are not described here.
  • a portion of the extended portion extends away from the common electrode line 106 to further prevent static charges from approaching the common electrode line 106.
  • the display substrate 100 further includes an insulating layer 112 and an active layer 114, wherein the insulating layer covers the gate line GL, the common electrode line 106, and the electrostatic discharge portion 110, and the active layer 114 covers the On the insulating layer 112, the insulating layer 112 is configured to insulate the active layer 114 from the gate line GL, the common electrode line 106 and the static electricity discharge part 110.
  • An embodiment of the present disclosure also provides a display device, including the display substrate described in the previous embodiment.
  • display devices include devices with display functions such as mobile phones, cameras, electronic photo albums, desktop computers, tablet computers, and navigators. Since the display device has the electrostatic discharge protection circuit described in the previous embodiment, it can prevent static electricity from entering the effective circuit and improve the display effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Liquid Crystal (AREA)
  • Elimination Of Static Electricity (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一种静电释放保护电路、显示基板和显示装置。该静电释放保护电路包括:第一导电部,具有端部;和至少一个静电释放部,与所述第一导电部同层设置并且与所述第一导电部的端部彼此间隔,所述至少一个静电释放部配置为释放在所述第一导电部的端部处产生的静电电荷。由于静电释放部位于第一导电部的端部的附近,在端部处积累的静电电荷能通过静电释放部得到释放,这样, 静电释放部能分担击穿电流,防止静电进入其他有效电路。

Description

静电释放保护电路、显示基板和显示装置 技术领域
本公开实施例涉及显示领域,尤其涉及一种静电释放保护电路、显示基板和显示装置。
背景技术
在现有显示面板的制造过程中,容易在基板上积累大量静电荷,当基板上的两条金属线距离过近时,极易在两条金属线之间发生静电释放,从而击穿金属线周围的绝缘层,使绝缘层周围的信号线发生短路,引起显示不良。
发明内容
本公开第一方面提供一种静电释放保护电路,包括:
第一导电部,具有端部;和
至少一个静电释放部,与所述第一导电部同层设置并且与所述第一导电部的端部彼此间隔,所述至少一个静电释放部配置为释放在所述第一导电部的端部处产生的静电电荷。
至少一些实施例中,所述至少一个静电释放部位于所述第一导电部的端部的至少一个侧面。
至少一些实施例中,所述至少一个静电释放部位于所述第一导电部的端部的两个相对侧面,并且所述至少一个静电释放部到所述端部的两个相对侧面的距离相等。
至少一些实施例中,静电释放保护电路包括至少两级静电释放单元,所述第一导电部的端部的至少一个侧面设置有所述至少两级静电释放单元,每级静电释放单元包括所述至少一个静电释放部,所述至少两级静电释放单元与所述第一导电部的端部之间的距离依次递增。
至少一些实施例中,所述至少两级静电释放单元的其中一级静电释放单元包括多个静电释放部,处于同一级静电释放单元中的所述多个静电释放部与所述第一导电部的端部的距离彼此相等。
至少一些实施例中,所述第一导电部还包括延展部,所述延展部从所述第一导电部的端部向所述至少一个静电释放部延伸,并且所述延展部的末端与所述至少一个静电释放部彼此间隔。
至少一些实施例中,所述至少一个静电释放部位于所述延展部的末端的至少一个侧面。
至少一些实施例中,静电释放保护电路包括至少两级静电释放单元,所述延展部的末端的至少一个侧面设置有所述至少两级静电释放单元,每级静电释放单元包括所述至少一个静电释放部,所述至少两级静电释放单元与所述延展部的末端之间的距离依次递增。
至少一些实施例中,所述至少两级静电释放单元的其中一级静电释放单元包括多个静电释放部,处于同一级静电释放单元中的所述多个静电释放部与所述延展部的末端的距离彼此相等。
本公开第二方面提供一种显示基板,包括上述静电释放保护电路。
至少一些实施例中,显示基板还包括第二导电部,所述第一导电部、所述第二导电部和所述至少一个静电释放部同层设置且相互间隔,并且所述第一导电部的端部与所述第二导电部之间的距离大于所述第一导电部的端部与所述至少一个静电释放部之间的距离。
至少一些实施例中,所述延展部的一部分朝远离于所述第二导电部的方向延伸。
至少一些实施例中,所述第一导电部包括第一信号线,所述第二导电部包括第二信号线,所述第一信号线的端部和所述第二信号线之间的距离大于所述第一信号线的端部和所述至少一个静电释放部之间的距离。
至少一些实施例中,显示基板还包括衬底基板,所述第一信号线、第二信号线和所述至少一个静电释放部均位于该衬底基板上且同层设置。
至少一些实施例中,显示基板还包括绝缘层和有源层,其中所述绝缘层覆盖于所述第一信号线、第二信号线和所述至少一个静电释放部上,所述有源层覆盖于所述绝缘层上,所述绝缘层配置为使所述有源层绝缘于所述第一信号线、第二信号线和所述至少一个静电释放部。
本公开第三方面提供一种显示装置,包括上述显示基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1(a)至图1(d)为显示面板发生静电击穿的原理图;
图2为显示面板局部位置发生静电击穿的扫描电镜图;
图3为显示面板发生静电击穿时的截面结构的扫描电镜图;
图4为本公开实施例的静电释放保护电路的示意图;
图5为沿图4的I-I线的截面图;
图6为本公开另一实施例的静电释放部的示意图;
图7为本公开再一实施例的静电释放部的示意图;
图8为本公开又一实施例的静电释放部的示意图;
图9为本公开另一实施例的静电释放保护电路的示意图;
图10为沿图9的II-II线的截面图;
图11为本公开再一实施例的静电释放电路的示意图;
图12为本公开又一实施例的静电释放电路的示意图;
图13(a)至图13(c)分别示例性示出了本公开实施例的导电部的端部的形状;
图14为本公开另一实施例的静电释放保护电路的示意图;
图15为沿图14的XI-XI线的截面图;
图16为沿图14的XII-XII线的截面图;
图17为本公开实施例的延展部的示意图;
图18为本公开另一实施例的延展部的示意图;
图19为本公开再一实施例的延展部的示意图;
图20为本公开又一实施例的延展部的示意图;
图21为本公开另一实施例的延展部的示意图;
图22为本公开再一实施例的延展部的示意图;
图23为本公开又一实施例的延展部的示意图;
图24为本公开再一实施例的静电释放保护电路的示意图;
图25为本公开实施例的显示基板的示意图;
图26为图25的显示基板的局部放大示意图;
图27为沿图26的V-V线的截面图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在现有显示面板的自动化生产线中,由于在大部分工艺制程中空气干燥,机器频繁运转,容易在机器人抓手或者设备上积累大量静电。当抓手或者设备接触显示面板表面时,抓手或设备上的静电会感应面板中的金属层产生等量电荷,这时若面板设计中两较长金属走线距离太近时,极易发生静电释放,击穿绝缘层,造成后续工艺中的信号线与金属走线发生短路,引起显示不良。
图1(a)至图1(b)示意性示出显示面板制作工艺中的静电释放现象。如图1(a)所示,在形成栅线10和公共电极线20后,形成一层栅绝缘层30。如图1(b)所示,在栅绝缘层30上沉积非晶硅层40。此时,非晶硅层40的位于栅线10、20之间部分中可能在静电作用下形成电流通道,该电流通道越长,静电电流越小,则击伤栅绝缘层30的几率越小;沟道越短,静电电流越大,则击伤栅绝缘层30的几率越大。随着人们对窄边框显示面板的要求不断提高, 希望栅线10和公共电极线20之间的最小间距D越小越好。如图1(b)所示,当D过小时,例如D低于10微米时,静电电流较大,从而在非晶硅层40内产生电子42和空穴44,栅绝缘层30被击穿,严重影响产品良率。如图1(c)所示,在完成非晶硅层40的刻蚀后,被击穿的栅绝缘层30中留有孔洞50,该孔洞50使栅线10和公共电极线20的表面暴露出来。如图1(d)所示,当信号线60形成在栅绝缘层30上时,信号线60通过孔洞50与公共电极线20之间电连接,发生短路。图2示意性示出显示面板上发生静电击穿的位置。图3示意性示出显示面板发生静电击穿时的截面图。
本公开实施例提供一种静电释放保护电路,包括:第一导电部,具有端部;和至少一个静电释放部,该至少一个静电释放部与所述第一导电部同层设置并且与所述第一导电部的端部彼此间隔,所述至少一个静电释放部配置为释放在所述第一导电部的端部处产生的静电电荷。由于静电释放部位于第一导电部端部的附近,在端部处积累的静电电荷能通过静电释放部得到释放,这样,静电释放部能分担击穿电流,防止静电进入其他有效电路。
图4为本公开实施例的一种静电释放保护电路的示意图,图5为沿图4的I-I线的截面图。例如,如图4所示,在基板240上设置有静电释放保护电路,该静电释放保护电路包括:第一导电部200,具有端部A;和至少一个静电释放部210,该至少一个静电释放部210与所述第一导电部200同层设置并且与所述第一导电部210的端部A彼此间隔,所述静电释放部210配置为释放在所述第一导电部210的端部处A产生的静电电荷q。由于静电释放部210位于第一导电部210端部A的附近,在端部A处积累的静电电荷能通过静电释放部210得到释放,这样,静电释放部210能分担击穿电流,防止静电进入其他有效电路。
至少一些实施例中,在上述实施例的静电释放保护电路应用于显示基板时,该显示基板例如包括第二导电部等有效电路,所述第一导电部、所述第二导电部、和所述至少一个静电释放部同层设置且相互间隔,并且所述第一导电部的端部与所述第二导电部之间的距离大于所述第一导电部的端部与所述至少一个静电释放部之间的距离。例如,如图4和图5所示,静电释放保护电路还包括第二导电部220,所述第二导电部220与静电释放部210和所述第一导电部200同层设置,并且所述第一导电部200的端部A与所述第二 导电部200之间的距离m大于所述第一导电部200的端部A与静电释放部210之间的距离n。由于m大于n,在端部A和静电释放部210之间更容易发生静电击穿,这样,防止静电进入第二导电部220中。图5中,在第一导电部200、静电释放部210和第二导电部220上形成有绝缘层212和非晶硅层214,当第一导电部200和静电释放部210之间发生放电时,可以在非晶硅层214中形成放电通道。例如,显示基板中的第二导电部可以是公共电极块或其他块状导体,也可以是公共电极线等信号线。
至少一些实施例中,所述至少一个静电释放部位于所述第一导电部的端部的至少一个侧面。例如,如图4所示,第一导电部200的端部A具有第一侧面S1、第二侧面S2和第三侧面S3,静电释放部210位于端部A的第一侧面S1上,并且二者间隔一段距离n。可以理解的是,静电释放部210可以位于端部A的第二侧面S2或第三侧面S3上,均可以达到放电目的。
至少一些实施例中,所述至少一个静电释放部位于所述第一导电部的端部的两个侧面。例如,如图6所示,静电释放部210a位于第一导电部200的端部A的第一侧面S1和第二侧面S2上。相比于图4中静电释放部210只设置在侧面S1上的情况,图6的静电释放部210a可以形成更多的放电通道,有利于释放更多的静电电荷。
至少一些实施例中,所述至少一个静电释放部位于所述第一导电部的端部的三个侧面。例如,如图7所示,静电释放部210b位于第一导电部200的端部A的第一侧面S1、第二侧面S2和第三侧面S3上。相比于图6中静电释放部210设置在两个侧面S1、S2上的情况,图7的静电释放部210b可以形成更多的放电通道(如箭头所示),有利于释放更多的静电电荷。
至少一些实施例中,所述至少一个静电释放部位于所述第一导电部的端部的两个相对侧面,并且所述至少一个静电释放部到所述端部的两个相对侧面的距离相等。例如,如图8所示,静电释放保护电路包括两个静电释放部210c、210d,静电释放部210c位于第一导电部200的端部A的第一侧面S1上,静电释放部210d位于第一导电部200的端部A的第三侧面S3上,两个侧面S1、S3分别位于第一导电部200的相反侧上。静电释放部210c与端部A的第一侧面S1之间的距离n1等于静电释放部210d与端部A的第三侧面S3之间的距离n2,即n1=n2。这样,端部A处积累的静电电荷可以通过位 于第一导电部200的相反侧的静电释放部210c、210d同时得到释放,从而更快速地释放大量静电电荷。可以理解的是,静电释放部210c、210d可以是两个单独的部件,或者一体形成为一个静电释放部。例如,该静电释放部可具有图7的静电释放部210b的形状,此时,可以将静电释放部210c、210d视为同一静电释放部上的两部分。例如,静电释放部210c、210d相对于第一导电部200的延伸方向oo’(或称水平方向)呈镜面对称。这样,不仅能更快速地释放静电电荷,也便于制作。可以理解的是,静电释放保护电路可以包括两个、三个、四个或更多个静电释放部,设置在尖端A的周围,从而形成更多放电通道。
至少一些实施例中,静电释放保护电路包括至少两级静电释放单元,所述第一导电部的端部的至少一个侧面设置有所述至少两级静电释放单元,每级静电释放单元包括所述至少一个静电释放部,所述至少两级静电释放单元与所述第一导电部的端部之间的距离依次递增。例如,图9为本公开另一实施例的静电释放保护电路的示意图,图10为沿图9的II-II线的截面图。例如,如图9和图10所示,在第一导电部200的端部A的第一侧面S1和第三侧面S3上均设置有多级静电释放单元。例如,第一侧面S1和第三侧面S3的每个上设置第1级至第3级静电释放单元(即I级至III级),这三级静电释放单元与第一导电部200的端部A之间的距离依次递增。例如,每级静电释放单元包括一个静电释放部,第1级静电释放单元的静电释放部210e与端部A之间的间距为t1,第2级静电释放单元的静电释放部210f与端部A之间的间距为t2,第3级静电释放单元的静电释放部210g与端部A之间的间距为t3,那么t1<t2<t3。下面以设置在第一导电部200的端部A的第一侧面S1的静电释放部210e、210f和210g为例,对多级静电释放单元的放电原理进行具体说明。
如图10所示,当第一导电部200的端部A处积累的静电电荷发生放电时,由于端部A与第1级静电释放单元之间的距离t1在t1、t2和t3中最短,在端部A和静电释放部210e之间先发生放电,由于每一级静电释放单元只能承担一次破坏,所以,释放静电之后,静电释放部210e成为第一导电部200的新端部;当静电再次积累时,继续向第2级静电释放单元进行第二次放电,即在静电释放部210f处发生第二次放电,之后静电释放部210f成为 第一导电部200的新端部;当静电再次积累时,继续向第3级静电释放单元进行第三次放电,即在静电释放部210g处发生第三次放电。这样,通过多级释放单元,静电电荷可以经历多次释放,可以随时将积累的静电电荷释放出去,降低静电荷进入其他有效电路的风险。尤其对于制程较长的电子产品来说,静电荷可能会不断地积累在第一导电部的端部,采用多级释放单元能大大降低因静电荷进入内部有效电路而带来的损失。本实施例中,三个静电释放部210e、210f、210g沿垂直于第一导电部200的延伸方向oo’的方向等间距排列,例如三个静电释放部210e、210f、210g沿着竖直中心线yy’等间距排列。在其他实施例中,三个静电释放部也可以不沿着直线排列,或者彼此之间的间距不等,同样可以实现上述目的。静电释放部210h、210i和210j设置在第一导电部200的端部A的第三侧面S3上,可以具有与静电释放部210h、210i和210j相同、相似或不同的结构,都涵盖在本公开的范围内。
至少一些实施例中,至少一级静电释放单元包括多个静电释放部,处于同一级静电释放单元中的所述多个静电释放部与所述第一导电部的端部的距离彼此相等。例如,每级静电释放单元包括数量相等的静电释放部,且静电释放部的数量大于或等于两个。例如,如图11所示,I、II、III级静电释放单元均包括两个静电释放部210k,并且在每一级静电释放单元中的两个静电释放部210k与第一导电部200的端部A的距离彼此相等。相对于图9中每级静电释放单元具有单个静电释放部来说,两个静电释放部能够更快速地释放静电电荷,静电释放效果更好。图11中,多个静电释放单元中的两个静电释放部的间距彼此相同,即b1=b2=b3。可以理解的是,这三个间距可以彼此不相同,同样能够达到上述技术效果。
再例如,每级静电释放单元包括数量不相等的静电释放部,并且位于更高一级的静电释放单元具有更多的静电释放部。例如,如图12所示,I级静电释放单元包括一个静电释放部210l,II级静电释放单元包括两个静电释放部210l,III级静电释放单元包括三个静电释放部210l,以此类推。可选地,也可以在I级静电释放单元中设置两个静电释放部210l,II级静电释放单元中设置三个静电释放部210l,以此类推。该实施例的静电释放电路可以逐步释放更多的静电电荷,尤其适于静电电荷积累越来越多的情况。
本公开实施例中,第一导电部由诸如金属、合金等导电材料制成,例如 为显示基板上的栅线或数据线等。术语“端部”指的是物体的末端或头部,不包含对形状的限定。例如,端部可以为平头、圆头或尖头等各种形状。例如,图4至图12中,第一导电部200的端部A具有平头形状。例如,如图13(a)所示,端部A为渐缩或具有倒角的形状。例如,如图13(b)所示,端部A为尖头。再例如,如图13(c)所示,端部A为圆头。通常,带电导体表面的电荷分布与该导体的形状有关。例如,导体表面突出的部位,电荷密度大;导体表面较平坦的部位,电荷密度较小;导体表面凹进去的部位,电荷密度更小。因此,孤立带电导体的面电荷密度与表面曲率半径成反比。在显示基板中,带电信号线的末端通常具有较高的电荷密度,容易产生尖端放电现象。本公开实施例中,第二导电部由诸如金属、合金等导电材料制成。显示基板中,第二导电部例如为公共电极块或其他块状导体,也可以是公共电极线等信号线。
至少一些实施例中,第一导电部、第二导电部和静电释放部由相同材料制成并且设置为同层,这样有利于简化制备制作工艺。例如,如图10所示,第一导电部200、第二导电部220和静电释放部210e、210f、210g由相同材料制成并且设置为同层。例如,上述结构的制作工艺包括:在衬底基板上制作一金属层,通过一次蚀刻工艺图案化该金属层,得到第一导电部200、第二导电部220和静电释放部210e、210f、210g的图案。接下来,第一导电部200、第二导电部220和静电释放部210e、210f、210g上形成绝缘层212和非晶硅层214。这样,第一导电部200、第二导电部220和静电释放部210e、210f、210g可以通过一次构图工艺获得,简化制作工艺。本公开实施例中使用的术语“构图工艺”包括光刻胶涂覆、曝光、显影、刻蚀等工艺步骤。
至少一些实施例中,所述第一导电部还包括延展部,所述延展部从所述第一导电部的端部向所述至少一个静电释放部延伸,并且所述延展部的末端与所述至少一个静电释放部彼此间隔。图14为本公开再一实施例的静电释放保护电路的示意图,图15为沿图14的XI-XI线的截面图,图16为沿图14的XII-XII线的截面图。如图14所示,该静电释放电路包括第一导电部300、延展部316和静电释放部310a至310d。延展部316从第一导电部300的端部A分别向静电释放部310a、310c延伸,并且所述延展部316的末端332、334与静电释放部310a、310c分别彼此间隔。延展部316和第一导电部300 的制作材料可以相同或不同,当二者材料相同时,可以一体形成,简化制作工艺。例如,延展部316通过从第一导电部300的末端A沿着竖直方向分别向上和向下凸出来而形成。这样,延展部316与第一导电部300的端部A之间无接触界面且无间隙,静电电荷更容易从端部A处流向延展部316的末端332、334。由于端部A处的静电电流密度减小,延展部316的末端332、334的静电电流密度增大,当静电荷放电时,优先在延展部316的末端332、334处发生。因此,延展部316可以减弱端部A的电场,使静电荷更容易在延展部316的末端332、334得到释放,从而避免静电荷进入到诸如第二导电部320的有效电路中。本实施例中,图14的延展部316为长条形,并且相对于第一导电部300的中心线oo’呈镜面对称,可以理解的是,在其他实施例中,延展部316可以具有其他非对称形状,例如,延展部只包括图14的中心线oo’以下或以上的部分,同样能实现上述目的。可以理解的是,延展部的形状和延伸方向可以根据第二导电部的形状、位置来设定,这在后面的实施例中将有所描述。
参照图15、图16,对延展部316、静电释放部310a、310b之间的静电荷放电原理进行说明。在图14中,假设端部A处靠近第二导电部320一侧的电荷量为q+,由于孤立带电导体的面电荷密度与表面曲率半径成反比,端部A处靠近第二导电部320一侧的表面处于金属线平直区,曲率半径为末端332处的若干倍,因此其表面电荷为末端332处的若干分之一,所以延展部316的末端332处的电荷量为nq+,为端部A处的n倍。延展部316与第二导电部320之间的间距为b,而延展部316与静电释放部310a之间的间距为d1,由于d1远小于b(d1<<b),延展部316与静电释放部310a之间的感应电压差要远大于延展部316与第二导电部320之间的感应电压差。因此,端部A处积累的静电荷优先在延展部316与第二导电部320之间进行释放。接下来,静电释放部310a、310b按照前面实施例所说的多级静电释放单元的静电释放原理来释放电荷。静电释放部310a可以看作第1级静电释放单元,静电释放部310b可以看作第2级静电释放单元。当在延展部316与静电释放部310a之间释放静电后,静电释放部310a成为第一导电部300的新端部;当静电再次积累时,继续向第2级静电释放单元,即在静电释放部310b处进行第二次放电。这样,静电电荷可以经历多次释放,随时将积累的静电电荷释 放出去。本公开实施例的静电释放保护电路可在不增大第一导电部300、第二导电部320之间间距的情况下,进一步分担第一导电部300的端部A的静电电流,使静电击穿更容易发生在延展部316的末端332、334,从而避免静电荷进入到诸如第二导电部的有效电路中。
至少一些实施例中,延展部的长度远大于第一导电部和第二导电部之间的距离。至少一些实施例中,第一导电部和第二导电部之间的距离大于延展部与最接近该延展部的静电释放部之间的间距。至少一些实施例中,静电释放部的长度大于延展部的宽度。例如,如图14所示,a为条形延展部316的纵向长度,b为第一导电部300和第二导电部320之间的距离(也可以理解为相邻信号线之间的宽度,一般大于5微米),c为延展部316的横向宽度,d1为静电释放部310a与延展部316之间的间距,e为静电释放部310a的纵向长度。至少一些实施例中,a>>b,能进一步减弱第一导电部300的端部A的静电密度,例如a=5b~20b。至少一些实施例中,b>d,可以增大延展部316的末端的感应电压差,有利于放电,例如b=2d~5d。至少一些实施例中,e>c,便于在静电电荷与静电释放部310相对的表面上形成感应电荷,例如e=c~5c。
以下实施例中,以图14的延展部316的其中一个末端332为例讨论延展部的末端和静电释放部之间的位置关系,可以理解的是,延展部316的另一个末端334可以具有与末端332相同、相似或不同的结构,都涵盖在本公开的范围内。
至少一些实施例中,所述至少一个静电释放部位于所述延展部的末端的至少一个侧面。例如,如图14所示,延展部316的末端332具有第一至第三侧面S11、S12、S13,其中静电释放部310a位于延展部316的末端332的第二侧面S12上。可以理解的是,静电释放部310a还可以位于侧面S11或S13上,同样能够实现放电目的。
例如,如图17所示,延展部316a的末端332a具有三个侧面S21、S22、S23,静电释放部510a具有字母“L”型,设置在延展部316a的末端332a的两个侧面S22、S23上,这样可以形成更多的放电通道,有利于释放更多的静电电荷。侧面S23比侧面S21更远离于第二导电部320a,因此,把静电释放部510a设置在侧面S23上能进一步避免静电电荷靠近或进入第二导电部320a。例如,在靠近第二导电部320a的一侧,延展部316a的末端332a包括 倒角350,该倒角350增大了靠近第二导电部320a一侧的末端332a和静电释放部510a之间的间距,即间距为W1,使末端332a积累的静电荷更容易集中在末端332a的另一角上(即图中末端332a的左下角),这样可以承担更大的静电电流,释放更多静电荷。
例如,如图18所示,静电释放部510b位于延展部316b的末端332b的所有三个侧面(末端332b具有类似图17中的三个侧面S21、S22、S23)上,把末端332b包住。这样,可以形成更多的放电通道。例如,在静电释放部510b与末端332b彼此面对面的位置处,二者之间的间距始终保持不变,这样,多个放电通道的长度相同,可以同时释放更多静电电荷。
本公开实施例的延展部的末端与前面实施例描述的导电部的“端部”相似,可以具有各种形状,例如平头、圆头或尖头等,可以是规则的或不规则的形状。例如,延展部的末端具有图13(a)至图13(c)所示的形状。图14和18的延展部的末端具有平头形状。例如,如图19所示,静电释放部510c位于延展部316c的末端332c的三个侧面。延展部316c的末端332c具有渐缩形状,类似锥形,此时,静电荷更容易集中在渐缩部分中。例如,静电释放部510c的内表面具有与末端332c外表面相同的形状,这样,二者在形状上的配合度更佳,进一步避免静电荷进入第二导电部320c中,从而有效保护第二导电部320c。例如,如图20所示,静电释放部510d位于延展部316d的末端332d的侧面S22上。延展部316d的末端332d具有渐缩形状,静电释放部510d的上下两个端部同样具有渐缩形状,并且上端部与末端332d的宽度相同并且二者位于同一中心线上。延展部316d与静电释放部510d之间的间距是渐变的,即位于中心线上的间距W3最短,位于中心线两侧的间距W2最长。在此情况下,静电荷更容易集中在间距W3处,使放电更容易发生。
至少一些实施例中,静电释放保护电路包括至少两级静电释放单元,所述延展部的末端的至少一个侧面设置有所述至少两级静电释放单元,每级静电释放单元包括所述至少一个静电释放部,所述至少两级静电释放单元与所述延展部的末端之间的距离依次递增。例如,如图14所示,在延展部316的末端332的侧面S12上设置有两级静电释放单元,第1级静电释放单元包括静电释放部310a,第2级静电释放单元包括静电释放部310b。按照前面实施例中多级释放单元的放电原理,静电荷会先在静电释放部310a处放电,然 后,在静电释放部310b处进行第二次放电。这样,静电电荷可以经历多次释放,通过多级释放单元,可以随时将积累的静电电荷释放出去,降低静电荷进入第二导电部的风险。再例如,如图21所示,在延展部316e的末端处设置两级静电释放单元,每级静电释放单元包括一个静电释放部510e。处于II级的静电释放部510e距离延展部316e的末端更远,因此处于I级的静电释放部510e先放电。图21中,延展部316e的末端具有渐缩的形状,每个静电释放部510e与延展部316e相对的表面具有与延展部末端相同的形状,这样,使静电释放部与延展部316e的末端之间的间距保持不变,即放电通道的长度相同,这样可以同时释放更多电荷。
至少一些实施例中,至少一级静电释放单元包括多个静电释放部,处于同一级静电释放单元中的所述多个静电释放部与所述延展部的末端的距离彼此相等。例如,如图22所示,处于同一级静电释放单元中的两个静电释放部510f、510e与延展部316f的末端的距离彼此相等。再例如,如图23所示,延展部316g的末端的同一侧面设置有三级静电释放单元,更高级释放单元具有更多的静电释放部,从图23中可以看出,位于同一级静电释放单元中的多个静电释放部510g与所述延展部316g的末端的距离彼此相等。图23中多级静电释放单元的具体结构可以参考关于图12中的描述,此处不再赘述。
至少一些实施例中,所述延展部的一部分朝远离于所述第二导电部的方向延伸。这样,可以使延展部的末端进一步远离第二导电部,避免静电荷靠近或进入第二导电部。例如,所述延展部包括第一部分和第二部分,其中所述第一部分的延伸方向与所述第二导电部的延伸方向相同,所述第二部分的延伸方向与所述第一部分的延伸方向相互垂直并且朝远离于所述第二导电部的方向延伸。例如,如图24所示,延展部416从第一导电部400的端部A延伸,延展部416包括第一部分440和第二部分434、432,其中所述第一部分440的延伸方向与所述第二导电部420的延伸方向相同,均为竖直方向(x方向),这样可以保持延展部416与第二导电部420始终保持相互平行,二者的间距保持不变,进一步避免静电荷与所述第二导电部靠近。第二部分434、432的延伸方向为水平方向(y方向),与第一部分的延伸方向相互垂直,并且朝远离于所述第二导电部420的方向延伸。这样,设置在延展部416的第二部分434、432的末端的静电释放块410可以更远离于第二导电部320, 进一步防止静电荷进入到第二导电部420中。可以理解的是,本公开实施例中,延展部416的第二部分434、432的延伸方向可以不是图24所示的y方向,例如是与x方向形成一定角度的方向,该方向例如在0度到90度之间。此外,延展部416的第二部分434、432的末端可以具有前面实施例中所描述延展部的末端的各种形状,静电释放块410的设置方式也可以参考前面实施例中的描述,此处不再赘述。延展部的形状和延伸方向可以根据第二导电部的形状、位置来设定。
至少一些实施例中,延展部与第一导电部、第二导电部、静电释放部由相同材料制成并且设置为同层。具体设置方式和制作工艺可以参考前面实施例中的描述,此处不再赘述。
本公开实施例描述的静电释放电路可应用于任何电子电路中,例如半导体器件的电路板上。下面以将本公开实施例的静电释放电路应用于显示装置的显示基板为例进行说明,该显示基板包括但不限于阵列基板、彩膜基板等。
本公开实施例还提供一种显示基板,包括前面任一实施例所述的静电释放保护电路。下面以图4的静电释放电路应用于显示基板为例进行说明,本实施例中,第一导电部例如为诸如栅线的第一信号线,第二导电部为诸如公共电极线的第二信号线。
例如,如图25至图27所示,显示基板100包括显示区102和环绕在显示区四周的非显示区。显示区102为用于显示图像的区域。显示基板100包括多条栅线GL和多条数据线DL,在显示区102中,多条栅线GL和多条数据线DL交叉限定多个像素单元104。显示基板100还包括位于非显示区中的公共电极线106和信号源108。公共电极线106环绕在显示区102四周,例如,信号源108给公共电极线106提供公共电压信号。如图26所示,在虚线区内,每条栅线GL的端部和公共电极线106之间存在间隙。
如图27所示,显示基板100包括衬底基板140,栅线GL、静电释放部110均位于所述衬底基板140上。栅线GL具有端部A。静电释放部110与所述栅线GL的端部A彼此间隔并且配置为释放在所述栅线GL的端部A处产生的静电电荷。由于静电释放部110位于导电部的端部A的附近,在端部A处积累的静电电荷能通过静电释放部110得到释放,这样,静电释放部110能分担击穿电流,防止静电电荷进入其他有效电路。图27中栅线GL和静电 释放部110的具体构造可以参考前面关于图4实施例中的描述,此处不再赘述。另外,栅线GL及其端部的各种变形、静电释放部110的各种变形,以及二者之间可能存在的各种位置关系,可以参考前面实施例中对第一导电部和静电释放部的描述,此处不再赘述。
例如,显示基板100种,栅线GL、公共电极线106、静电释放部110均位于所述衬底基板140上,三者同层设置且相互间隔。与图4中m和n的关系相似,栅线GL的端部A与公共电极线106之间的距离大于栅线GL的端部A与静电释放部110之间的距离。
例如,栅线GL还包括延展部,延展部的具体结构可以参考前面实施例中对延展部的描述,此处不再赘述。例如,该延展部的一部分朝远离于公共电极线106的方向延伸,进一步避免静电荷靠近公共电极线106。
例如,显示基板100还包括绝缘层112和有源层114,其中所述绝缘层覆盖于所述栅线GL、公共电极线106和静电释放部110上,所述有源层114覆盖于所述绝缘层112上,所述绝缘层112配置为使所述有源层114绝缘于所述栅线GL、公共电极线106和静电释放部110。
本公开实施例还提供一种显示装置,包括前面实施例所述的显示基板。例如,显示装置包括诸如手机、照相机、电子相册、台式电脑、平板电脑、导航仪等具备显示功能的装置。由于显示装置具有前面实施例描述的静电释放保护电路,能防止静电进入有效电路,提高显示效果。
本文中,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (16)

  1. 一种静电释放保护电路,包括:
    第一导电部,具有端部;和
    至少一个静电释放部,与所述第一导电部同层设置并且与所述第一导电部的端部彼此间隔,所述至少一个静电释放部配置为释放在所述第一导电部的端部处产生的静电电荷。
  2. 根据权利要求1所述的静电释放保护电路,其中所述至少一个静电释放部位于所述第一导电部的端部的至少一个侧面。
  3. 根据权利要求1所述的静电释放保护电路,其中所述至少一个静电释放部位于所述第一导电部的端部的两个相对侧面,并且所述至少一个静电释放部到所述端部的两个相对侧面的距离相等。
  4. 根据权利要求1所述的静电释放保护电路,包括至少两级静电释放单元,所述第一导电部的端部的至少一个侧面设置有所述至少两级静电释放单元,每级静电释放单元包括所述至少一个静电释放部,所述至少两级静电释放单元与所述第一导电部的端部之间的距离依次递增。
  5. 根据权利要求4所述的静电释放保护电路,其中所述至少两级静电释放单元的其中一级静电释放单元包括多个静电释放部,处于同一级静电释放单元中的所述多个静电释放部与所述第一导电部的端部的距离彼此相等。
  6. 根据权利要求1至5任一项所述的静电释放保护电路,其中所述第一导电部还包括延展部,所述延展部从所述第一导电部的端部向所述至少一个静电释放部延伸,并且所述延展部的末端与所述至少一个静电释放部彼此间隔。
  7. 根据权利要求6所述的静电释放保护电路,其中所述至少一个静电释放部位于所述延展部的末端的至少一个侧面。
  8. 根据权利要求6所述的静电释放保护电路,包括至少两级静电释放单元,所述延展部的末端的至少一个侧面设置有所述至少两级静电释放单元,每级静电释放单元包括所述至少一个静电释放部,所述至少两级静电释放单元与所述延展部的末端之间的距离依次递增。
  9. 根据权利要求8所述的静电释放保护电路,其中所述至少两级静电释 放单元的其中一级静电释放单元包括多个静电释放部,处于同一级静电释放单元中的所述多个静电释放部与所述延展部的末端的距离彼此相等。
  10. 一种显示基板,包括权利要求1至9任一项所述的静电释放保护电路。
  11. 根据权利要求10所述的显示基板,还包括第二导电部,所述第一导电部、所述第二导电部和所述至少一个静电释放部同层设置且相互间隔,并且所述第一导电部的端部与所述第二导电部之间的距离大于所述第一导电部的端部与所述至少一个静电释放部之间的距离。
  12. 根据权利要求10所述的显示基板,其中所述延展部的一部分朝远离于所述第二导电部的方向延伸。
  13. 根据权利要求11所述的显示基板,其中所述第一导电部包括第一信号线,所述第二导电部包括第二信号线,所述第一信号线的端部和所述第二信号线之间的距离大于所述第一信号线的端部和所述至少一个静电释放部之间的距离。
  14. 根据权利要求13所述的显示基板,还包括衬底基板,所述第一信号线、第二信号线和所述至少一个静电释放部均位于该衬底基板上且同层设置。
  15. 根据权利要求14所述的显示基板,还包括绝缘层和有源层,其中所述绝缘层覆盖于所述第一信号线、第二信号线和所述至少一个静电释放部上,所述有源层覆盖于所述绝缘层上,所述绝缘层配置为使所述有源层绝缘于所述第一信号线、第二信号线和所述至少一个静电释放部。
  16. 一种显示装置,包括权利要求12至15任一项所述的显示基板。
PCT/CN2019/070476 2019-01-04 2019-01-04 静电释放保护电路、显示基板和显示装置 WO2020140285A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/070476 WO2020140285A1 (zh) 2019-01-04 2019-01-04 静电释放保护电路、显示基板和显示装置
CN201980000031.8A CN111656521B (zh) 2019-01-04 2019-01-04 静电释放保护电路、显示基板和显示装置
US16/632,098 US11579667B2 (en) 2019-01-04 2019-01-04 Electrostatic discharge protection circuit, display substrate and display apparatus
EP19829390.4A EP3907759A1 (en) 2019-01-04 2019-01-04 Electrostatic discharge protection circuit, display substrate, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070476 WO2020140285A1 (zh) 2019-01-04 2019-01-04 静电释放保护电路、显示基板和显示装置

Publications (1)

Publication Number Publication Date
WO2020140285A1 true WO2020140285A1 (zh) 2020-07-09

Family

ID=71406845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070476 WO2020140285A1 (zh) 2019-01-04 2019-01-04 静电释放保护电路、显示基板和显示装置

Country Status (4)

Country Link
US (1) US11579667B2 (zh)
EP (1) EP3907759A1 (zh)
CN (1) CN111656521B (zh)
WO (1) WO2020140285A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713138A (zh) * 2020-12-28 2021-04-27 上海天马有机发光显示技术有限公司 一种柔性基板及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029615A1 (en) * 2005-08-08 2007-02-08 Han-Chung Lai Active matrix substrate and repairing method thereof
CN104570493A (zh) * 2015-01-22 2015-04-29 合肥京东方光电科技有限公司 一种阵列基板母板及其制作方法、静电消除设备
CN106201074A (zh) * 2016-06-30 2016-12-07 京东方科技集团股份有限公司 触控基板及其制作方法、触控屏
CN107785350A (zh) * 2016-08-24 2018-03-09 中华映管股份有限公司 静电防护电路及静电防护方法
CN108666304A (zh) * 2018-05-10 2018-10-16 深圳市华星光电半导体显示技术有限公司 一种阵列基板和显示面板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023672A (en) * 1989-11-15 1991-06-11 Ford Microelectronics Electrostatic discharge protection device for gallium arsenide resident integrated circuits
US7067914B2 (en) * 2001-11-09 2006-06-27 International Business Machines Corporation Dual chip stack method for electro-static discharge protection of integrated circuits
JP4031423B2 (ja) * 2003-10-29 2008-01-09 株式会社東芝 半導体集積回路
JP2008166099A (ja) * 2006-12-28 2008-07-17 Fuji Xerox Co Ltd 回路基板および電子部品
CN101354507B (zh) * 2007-07-26 2010-10-06 北京京东方光电科技有限公司 薄膜晶体管液晶显示器阵列基板结构及其制造方法
US20090200063A1 (en) * 2008-02-08 2009-08-13 Sony Ericsson Mobile Communications Ab Embedded spark gap
TWI567599B (zh) * 2013-09-27 2017-01-21 友達光電股份有限公司 具靜電攻擊防護之面板裝置
TWI522877B (zh) * 2014-04-30 2016-02-21 群創光電股份有限公司 觸控面板與觸控顯示裝置
CN104765490A (zh) * 2015-03-23 2015-07-08 小米科技有限责任公司 具有静电防护结构的触控电路以及触控面板
TWI669991B (zh) * 2018-01-11 2019-08-21 和碩聯合科技股份有限公司 具靜電放電保護機制的電路板及具有此電路板的電子裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029615A1 (en) * 2005-08-08 2007-02-08 Han-Chung Lai Active matrix substrate and repairing method thereof
CN104570493A (zh) * 2015-01-22 2015-04-29 合肥京东方光电科技有限公司 一种阵列基板母板及其制作方法、静电消除设备
CN106201074A (zh) * 2016-06-30 2016-12-07 京东方科技集团股份有限公司 触控基板及其制作方法、触控屏
CN107785350A (zh) * 2016-08-24 2018-03-09 中华映管股份有限公司 静电防护电路及静电防护方法
CN108666304A (zh) * 2018-05-10 2018-10-16 深圳市华星光电半导体显示技术有限公司 一种阵列基板和显示面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713138A (zh) * 2020-12-28 2021-04-27 上海天马有机发光显示技术有限公司 一种柔性基板及显示面板
CN112713138B (zh) * 2020-12-28 2024-05-17 武汉天马微电子有限公司 一种柔性基板及显示面板

Also Published As

Publication number Publication date
CN111656521B (zh) 2023-12-26
EP3907759A1 (en) 2021-11-10
CN111656521A (zh) 2020-09-11
US11579667B2 (en) 2023-02-14
US20210223831A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
CN109599402B (zh) 显示基板和显示装置
US9735184B2 (en) Forming method for structure of crossing datalines and scanning lines in display device
CN104733495B (zh) 有机发光二极管显示设备及其制造方法
US11552231B2 (en) Display device
WO2017071233A1 (zh) 制作阵列基板的方法和阵列基板
US10206291B2 (en) Manufacturing method for substrate of flat panel display device
WO2020015071A1 (zh) 阵列基板及其制作方法
US10304865B2 (en) Pixel array substrate with discontinuous selection lines
TWI673864B (zh) 有機發光二極體結構、顯示器及移動通信設備
US20170329455A1 (en) Touch panel and touch display screen
US10283573B2 (en) Organic light emitting display apparatus and thin film deposition mask for manufacturing the same
WO2020140285A1 (zh) 静电释放保护电路、显示基板和显示装置
WO2018035934A1 (zh) 触摸屏及其触摸感应组件
CN211788997U (zh) Tft阵列基板和显示面板
US20200303426A1 (en) Display panel and manufacturing method thereof and display device
US11329261B2 (en) Organic light emitting diode substrate and manufacturing method thereof
CN109036140A (zh) 显示面板及其制备方法、显示装置
CN110096175B (zh) 显示面板
TWI520324B (zh) 具有導電圖案變化區之顯示面板
CN110707065A (zh) 阵列基板及显示面板
TWI765788B (zh) 顯示面板及其製造方法
CN106653746B (zh) 一种阵列基板和显示装置
KR20120065230A (ko) 증착 마스크 및 그것을 사용한 유기 el 표시 패널의 제조방법
CN103926762B (zh) 阵列基板及其制造方法
CN110660350B (zh) 栅极驱动电路基板结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019829390

Country of ref document: EP

Effective date: 20210804