WO2020138919A1 - 오르니틴 탈탄산 효소 변이형 및 이를 이용한 퓨트레신 생산 방법 - Google Patents

오르니틴 탈탄산 효소 변이형 및 이를 이용한 퓨트레신 생산 방법 Download PDF

Info

Publication number
WO2020138919A1
WO2020138919A1 PCT/KR2019/018404 KR2019018404W WO2020138919A1 WO 2020138919 A1 WO2020138919 A1 WO 2020138919A1 KR 2019018404 W KR2019018404 W KR 2019018404W WO 2020138919 A1 WO2020138919 A1 WO 2020138919A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
putrescine
ornithine decarboxylase
variant
Prior art date
Application number
PCT/KR2019/018404
Other languages
English (en)
French (fr)
Inventor
이재헌
문희수
전애지
양영렬
김병기
홍은영
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/KR2018/016764 external-priority patent/WO2020138543A1/ko
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Priority to US17/044,726 priority Critical patent/US20230287382A1/en
Publication of WO2020138919A1 publication Critical patent/WO2020138919A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01017Ornithine decarboxylase (4.1.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01018Lysine decarboxylase (4.1.1.18)

Definitions

  • the present application relates to an ornithine decarboxylase variant, a gene encoding the ornithine decarboxylase variant, a microorganism containing the ornithine decarboxylase variant, and putrescine synthesis using the same.
  • Putrescine (putrescine; 1,4-diamino-butane) is a substance that causes odors from decayed organisms, but is industrially produced in that it can be used for synthesis of 4,6-nylon.
  • putrescine is produced in excess of 10,000 tons per year by petroleum resources, but there is a problem that the supply and demand of raw materials is unstable due to frequent fluctuations in oil prices. In addition, there is a problem that it can cause environmental pollution due to the large amount of toxic substances generated in the production process.
  • putrescine In the method of producing putrescine from microorganisms, various biological engineering methods have been used to increase the putrescine production.
  • the methods may be, for example, by regulating the activity of an enzyme involved in putrescine biosynthesis as a promoter, overexpressing a transporter so that putrescine is easily released out of a cell, or blocking a pathway for decomposing putrescine.
  • controlling the activity of enzymes involved in biosynthesis of putrescine in microorganisms can greatly contribute to an increase in putrescine production.
  • Ornithine decarboxylase is an enzyme that synthesizes putrescine by cutting the terminal carboxyl group of ornithine, and is one of enzymes that play an important role in putrescine biosynthesis.
  • ornithine decarboxylase not only synthesizes putrescine from ornithine, but also has the activity (side reaction) of synthesizing from lysine to cadaverine (1,5-diamino-pentane). Together with tressin, cadaverine can be produced to lower the amount of putrescine produced. The cadaverine can also cause a number of problems in puritresin purification.
  • putrescine H 2 N(CH 2 ) 4 NH 2
  • cadaverine H 2 N(CH 2 ) 5 NH 2
  • the present inventors discovered a novel ornithine decarboxylase, and the ornithine decarboxylase completed the present application by confirming that the synthesis activity of cadaverine is low and the synthesis activity of putrescine is high.
  • This application provides ornithine decarboxylase or a variant thereof.
  • the present application also provides a polynucleotide encoding the ornithine decarboxylase or a variant thereof.
  • the present application is to provide a microorganism that produces putrescine containing the ornithine decarboxylase or a variant thereof.
  • Another object of the present application is to provide a method for producing putrescine, comprising culturing the microorganism in a medium.
  • Another object of the present application is to provide a method for increasing the purity of putrescine, comprising culturing the microorganism in a medium.
  • Another object of the present application is to provide a method for increasing the ratio of putrescine to cadaverine, comprising culturing the microorganism in a medium.
  • Another object of the present application is to provide a use for the synthesis of polyamide-based polymers of the putrescine.
  • One aspect of the present application provides a variant of ornithine decarboxylase having putrescine production activity comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1.
  • the present application provides a variant of a protein in which the amino acid sequence of SEQ ID NO: 1 is alanine, which is the 713th amino acid, is substituted with another amino acid, and/or ii) glutamic acid, which is the 698th amino acid, is substituted with another amino acid.
  • the amino acid substitution is i) the 713th amino acid alanine is substituted with an amino acid selected from leucine, isoleucine, valine, arginine, aspartic acid, tryptophan and glutamine, and/or ii) the 698th amino acid glutamic acid is substituted with aspartic acid It may include.
  • futresine in this application is a substance produced by decarboxylation of ornithine or hydrolysis of agmatine, which is present in decay, but is widely distributed as a normal component in the body. It is a kind of polyamine that composes ribosomes and promotes cell growth or RNA synthesis. In particular, industrially, it is an important raw material for the production of polyamides 4 and 6, including nylon 4 and 6, and it is a material that is in need of research for mass production.
  • Putrescine can be produced by using ornithine as a substrate.
  • ornithine as a substrate.
  • the synthesis of ornithine can be used without limitation as long as it can be easily selected by those skilled in the art.
  • ornithine in this application is a basic amino acid that plays an important role in the ornithine cycle, especially L-ornithine is widely found in plants, animals and microorganisms. In general, in the body having an ornithine cycle, it plays a metabolically important role in relation to urea production. In addition, it can be converted to each other with arginine, glutamic acid, and proline in vivo, and carries ketone acid, glyoxalic acid, and amino groups.
  • ornithine decarboxylase is an enzyme that catalyzes the following reaction scheme, which is the first step in the synthesis of polyamines and the final step in the putrescine production pathway.
  • ornithine decarboxylase may be used in combination with ornithine decarboxylase.
  • ODC produces putrescine using L-ornithine as a substrate, and pyridoxal phosphate (PLP) acts as a co-factor.
  • FIG. 1 shows a chemical reaction formula of the process of synthesizing orthine as a substrate and putrescine using ornithine decarboxylase.
  • the cadaverine synthesis pathway which is a side reaction of ornithine decarboxylase to be suppressed, is shown.
  • various methods well-known in the art can be applied to the method for securing the ornithine decarboxylase (ODC).
  • ODC ornithine decarboxylase
  • Examples of the method include gene synthesis technology that includes codon optimization to ensure high efficiency of enzymes in microorganisms that are widely used for enzyme expression, and biomass information based on microbial genome information of microorganisms, which is useful It can be secured through a screening method, but is not limited thereto.
  • SEQ ID NO: 1 refers to the amino acid sequence of ornithine decarboxylase having putrescine production activity.
  • the amino acid sequence of SEQ ID NO: 1 can be obtained from GenBank of NCBI, a known database.
  • the ornithine decarboxylase may be derived from the genus Lactobacillus sp. , Saccharomyces sp. , or Escherichia coli , E. coli , and specifically, Lactobacillusshakeeri ( Lactobacillus saerimneri ) may be derived, but is not limited thereto, and if the amino acid sequence of a protein having the same activity as the protein containing the amino acid sequence may be included without limitation.
  • the protein comprising the amino acid sequence of SEQ ID NO: 1 is described as an ornithine decarboxylase having putrescine production activity in the present application, it is possible to add or generate meaningless sequences before and after the amino acid sequence of SEQ ID NO: 1. It does not exclude a mutation or a potential mutation thereof, and corresponds to a protein having putrescine activity of the present application if it has the same or corresponding activity as a protein containing the amino acid sequence of SEQ ID NO: 1 Is apparent to those skilled in the art.
  • the protein having putrescine production activity of the present application may have an amino acid sequence of SEQ ID NO: 1 or 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or more thereof It may be a protein composed of an amino acid sequence having homology or identity.
  • a protein having an amino acid sequence in which some sequences are deleted, modified, substituted, or added is also included in the scope of the protein subject to variation of the present application. Is self-explanatory.
  • polypeptide consisting of the amino acid sequence of SEQ ID NO: 1' is a sequence corresponding to SEQ ID NO: 1, or in the case of a sequence having the same or corresponding activity, the'polypeptide consisting of the amino acid sequence of SEQ ID NO: 1' It is obvious that you can belong.
  • a sequence that does not change the function of the protein before and after the amino acid sequence is added, a naturally occurring mutation, a silent mutation or preservation thereof It does not exclude the red permutation, and it is obvious that even within such a sequence addition or mutation, it is within the scope of the present application.
  • conservative substitution in the present application means to replace one amino acid with another amino acid having similar structural and/or chemical properties.
  • the variant may retain one or more biological activities, but may have one or more conservative substitutions, for example.
  • Such amino acid substitutions can generally occur based on the similarity in residue polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature.
  • positively charged (basic) amino acids among the amino acids with electrically charged amino acids are arginine, lysine, and histidine; negatively charged (acidic) amino acids are glutamic acid and arpartic acid It includes;
  • nonpolar amino acids include glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan and proline, and are polar or hydrophilic.
  • hydrophilic amino acids include serine, threonine, cysteine, tyrosine, asparagine, and glutamine, and among the non-polar amino acids, aromatic amino acids include phenylalanine, tryptophan, and tyrosine.
  • variant is one or more amino acids that differs from the recited sequence listed above in conservative substitution and/or modification, but the function of the protein. Refers to a protein whose functions or properties are maintained. The variant is different from the sequence identified by several amino acid substitutions, deletions or additions. Such variants can generally be identified by modifying one or more of the amino acid sequences of the protein and evaluating the properties of the modified protein. In other words, the ability of the variant may be increased, unchanged, or decreased compared to the native protein. In addition, some variants may include variants with one or more portions removed, such as an N-terminal leader sequence or a transmembrane domain.
  • variants may include variants with a portion removed from the N- and/or C-terminus of the mature protein.
  • variant may be a term such as a variant, modified, mutated protein, mutant polypeptide, mutant (in English, modification, modified protein, modified polypeptide, mutant, mutein, divergent, variant, etc.), If the term is used in a mutated sense, it is not limited thereto.
  • the mutant may be one having an increased activity of the mutated protein compared to a natural wild-type or unmodified protein, but is not limited thereto.
  • the variant may include deletions or additions of amino acids with minimal impact on the properties and secondary structure of the polypeptide.
  • a polypeptide can be conjugated with a signal (or leader) sequence of the protein N-terminus involved in the translation of a protein co-translationally or post-translationally.
  • the polypeptide can be conjugated with other sequences or linkers to identify, purify, or synthesize the polypeptide.
  • the protein variant of the present application may be an ornithine decarboxylase variant.
  • ornithine decarboxylase variant is'mutated ODC protein, ODC variant, variant ornithine decarboxylase, variant ornithine dicarboxylase, variant ODC protein, ODC variant, It can be used in combination with a variant ODC enzyme protein, a variant ODC enzyme.
  • amino acids 713 and 698 may be substituted with an amino acid different from the amino acid before substitution.
  • alanine which is the 713th amino acid of the amino acid sequence of SEQ ID NO: 1
  • the expression "a specific amino acid is substituted” it is obvious that the amino acid before the substitution is replaced with another amino acid, even if it is not separately indicated that it is substituted with another amino acid.
  • the variant may be i) alanine, which is the 713th amino acid, replaced with another amino acid, and/or ii) glutamic acid, which is the 698th amino acid, substituted with another amino acid.
  • the substitution with the other amino acid is i) alanine, the 713th amino acid, is substituted with an amino acid selected from leucine, isoleucine, valine, arginine, aspartic acid, tryptophan and glutamine, and/or ii) the 698th amino acid glutamic acid is aspartic acid It may be substituted with.
  • the variant i) alanine, the 713th amino acid is substituted with an amino acid selected from leucine, isoleucine, valine, arginine, aspartic acid, tryptophan and glutamine, and/or ii) the 698th amino acid glutamic acid is aspartic It may be a variant substituted with an acid.
  • amino acid sequence of SEQ ID NO: 1) alanine, the 713th amino acid, is substituted with an amino acid selected from leucine, isoleucine, valine, arginine, aspartic acid, tryptophan and glutamine, and/or ii) the 698th amino acid glutamic acid is aspartic acid
  • the variant substituted with may be to include any one amino acid sequence selected from SEQ ID NO: 4, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 19 to 23, specifically SEQ ID NO: 4, SEQ ID NO: 8, sequence No.
  • SEQ ID NOs: 19 to 23 may be essentially consisting of any one of amino acid sequences of SEQ ID NOs: 19 to 23 (consisting essentially of), and more specifically, among SEQ ID NO: 4, SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 19 to 23 It may be composed of any one amino acid sequence, but is not limited thereto.
  • the variant includes substitution with other amino acids at positions corresponding to positions 713 and/or 698 of SEQ ID NO: 1, and at least 80%, 90%, 95%, 96% of the amino acid sequence of SEQ ID NO: 1, It may have a sequence homology of 97%, 98%, or 99% or more, and less than 100%, and may have putrescine production activity.
  • the variant may include an amino acid sequence of any one of SEQ ID NO: 4, SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 19 to 23 or an amino acid sequence having 80% or more homology or identity with the amino acid sequence.
  • the variant of the present application is at least 80%, 90%, 95%, 96%, 97% of the amino acid sequence of any one of SEQ ID NO: 4, SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 19-23, Polypeptides with 98%, or 99% homology or identity.
  • amino acid sequence having such homology or identity and exhibits an efficacy corresponding to the protein a protein having an amino acid sequence in which some sequences are deleted, modified, substituted, or added in addition to the 713th or 698th amino acid position is also the scope of the present application. It is obvious that it is included within.
  • the term'homology' or'identity' refers to the degree associated with two given amino acid sequences or nucleotide sequences and may be expressed as a percentage.
  • the terms homology and identity can often be used interchangeably.
  • sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, and default gap penalties established by the program used can be used together.
  • Substantially, homologous or homologous sequences are generally medium or high stringent conditions along at least about 50%, 60%, 70%, 80% or 90% of the entire or full-length sequence (stringent conditions).
  • Hybridization also contemplates polynucleotides containing degenerate codons instead of codons in the polynucleotide.
  • the homology, similarity or identity of a polynucleotide or polypeptide is, for example, Smith and Waterman, Adv. Appl. As known in Math (1981) 2:482, see, for example, Needleman et al. (1970), J Mol Biol. It can be determined by comparing sequence information using a GAP computer program such as 48:443.
  • the GAP program defines the total number of symbols in the shorter of the two sequences, divided by the number of similar aligned symbols (ie, nucleotides or amino acids).
  • the default parameters for the GAP program are (1) Binary Comparison Matrix (contains values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: Weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or gap open penalty 10, gap extension penalty 0.5); And (3) no penalty for the end gap.
  • the term “homology” or “identity” refers to relevance between sequences.
  • the term "variant of ornithine decarboxylase” refers to a variant polypeptide of ornithine decarboxylase having putrescine production capacity, a variant of ornithine decarboxylase protein, ornithine decarboxylase protein Mutant type polypeptide, ornithine decarboxylase variant polypeptide, ornithine decarboxylase variant, ornithine decarboxylase protein variant, variant ornithine decarboxylase, variant ornithine decarboxylase protein, etc. You can.
  • the ornithine decarboxylase may be derived from Lactobacillus sp. , Saccharomyces sp. , or Escherichia coli , E. coli , but is not limited thereto.
  • the variant form of the ornithine decarboxylase may include mutations at positions 713 and/or 698 in the amino acid sequence of SEQ ID NO: 1, even if the amino acid sequence is added to or deleted from SEQ ID NO: 1, SEQ ID NO: 1 If the amino acid at the position corresponding to amino acids 713 and/or 698 from the N-terminus of is substituted, it is included in the scope of the present application.
  • corresponding to is an amino acid residue at a position listed in a protein or peptide, or an amino acid residue similar, identical or identical to a residue listed in a protein or peptide Refers to.
  • corresponding region generally refers to a related protein or similar location in a reference protein.
  • the variant form of the ornithine decarboxylase protein is a 713th and/or 698th amino acid in the amino acid sequence of SEQ ID NO: 1, which is replaced with another amino acid. It may be a mutant ornithine decarboxylase protein having enhanced activity compared to a decarboxylase.
  • This variant of the ornithine decarboxylase protein has at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or more homology with the amino acid sequence of SEQ ID NO: 1 described above. Or it means that the amino acid at the position corresponding to the 713th or 698th position of SEQ ID NO: 1 in the amino acid having the same identity is changed.
  • the 713th and/or 698th amino acid mutation is i) the 713th amino acid alanine is substituted with leucine, isoleucine, valine, arginine, aspartic acid, tryptophan or glutamine, and/or ii) the 698th amino acid glutamic acid aspartic acid It may be substituted with.
  • the variant of the ornithine decarboxylase is i) in the amino acid sequence of SEQ ID NO: 1, alanine, the 713th amino acid, is substituted with leucine, isoleucine, valine, arginine, aspartic acid, tryptophan or glutamine, and/or ii )
  • the 698th amino acid glutamic acid may be substituted with aspartic acid, and may have enhanced activity compared to a protein comprising the amino acid sequence of SEQ ID NO: 1 or an ornithine decarboxylase protein before mutation from a wild-type microorganism.
  • the amount of putrescine is increased, the purity of putrescine is increased, or the selectivity of putrescine is increased.
  • the protein variant of the present application is characterized by having gene-regulating activity such that the selectivity of putrescine production capacity, putrescine purity or putrescine production is increased compared to a natural wild-type or non-mutated ornithine decarboxylase.
  • the protein variant of the present application can inhibit the synthesis of cadaverine, one of the side reactions of ornithine decarboxylase through microorganisms, and increase the amount of putrescine production.
  • Another aspect of the present application provides a polynucleotide encoding a variant of the ornithine decarboxylase protein.
  • Ornithine decarboxylase protein comprising the amino acid sequence of SEQ ID NO: 1 and its variants are as described above.
  • polynucleotide is a polymer of nucleotides in which nucleotide monomers are long chained by covalent bonds, and are DNA or RNA strands of a certain length or more, more specifically, encoding the above variant. Means a polynucleotide fragment.
  • the polynucleotide encoding the variant of the ornithine decarboxylase of the present application may be included without limitation as long as it is a polynucleotide sequence encoding the variant polypeptide having putrescine production activity of the present application.
  • the gene encoding the amino acid sequence of the ornithine decarboxylase protein in the present application may be, for example, a speC, odc, spe1 or speF gene, and the gene is Lactobacillus, Saccharomyces, or Escherichia coli , E. coli ), but is not limited thereto.
  • the gene may be a nucleotide sequence encoding any one of the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 4, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 19 to 23, more specifically SEQ ID NO: 10, sequence No. 13, SEQ ID NO: 17, SEQ ID NO: 18, and may be a sequence comprising any one of the nucleotide sequences of SEQ ID NO: 24 to 28, but is not limited thereto.
  • the polynucleotide of the present application may vary in the coding region within a range that does not change the amino acid sequence of the polypeptide due to the degeneracy of the codon or considering the codon preferred in the organism in which the polypeptide is to be expressed. Deformation can be made. Specifically, any polynucleotide sequence encoding a variant of the ornithine decarboxylase protein in which the 713th and/or 698th amino acids in the amino acid sequence of SEQ ID NO: 1 are substituted with other amino acids can be included.
  • probes that can be prepared from known gene sequences, for example, the 713th and/or 698th in the amino acid sequence of SEQ ID NO: 1 by hybridizing with complementary sequences to all or part of the base sequence under stringent conditions.
  • the amino acid is a sequence encoding an ornithine decarboxylase protein having putresin production activity substituted with another amino acid, it may be included without limitation.
  • stringent condition refers to a condition that enables specific hybridization between polynucleotides. These conditions are specifically described in the literature (eg, J. Sambrook et al., homology).
  • genes with high homology or identity 40% or more, specifically 90% or more, more specifically 95% or more, more specifically 97% or more, particularly specifically 99% or more Hybridization between genes having the same identity, and not hybridization between genes with lower homology or identity, or 60° C., 1 ⁇ SSC, 0.1% SDS, which is a washing condition for normal southern hybridization, specifically Conditions for washing once, specifically 2 to 3 times, at a salt concentration and temperature corresponding to 60° C., 0.1 ⁇ SSC, 0.1% SDS, and more specifically 68° C., 0.1 ⁇ SSC and 0.1% SDS. Can be enumerated.
  • Hybridization requires that two nucleic acids have complementary sequences, although mismatches between bases are possible depending on the stringency of hybridization.
  • the term “complementary” is used to describe the relationship between nucleotide bases that are hybridizable to each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present application may also include isolated nucleic acid fragments complementary to the entire sequence as well as substantially similar nucleic acid sequences.
  • polynucleotides having homology or identity can be detected using hybridization conditions including a hybridization step at a Tm value of 55° C. and using the above-described conditions.
  • the Tm value may be 60°C, 63°C or 65°C, but is not limited thereto, and may be appropriately adjusted by a person skilled in the art according to the purpose.
  • the appropriate stringency to hybridize a polynucleotide depends on the length and degree of complementarity of the polynucleotide, and variables are well known in the art (see Sambrook et al., supra, 9.50-9.51, 11.7-11.8).
  • Another aspect of the present application provides a vector comprising a polynucleotide encoding an ornithine decarboxylase variant.
  • Ornithine decarboxylase comprising the amino acid sequence of SEQ ID NO: 1, its variants and the polynucleotide are as described above.
  • vector refers to a DNA preparation containing a base sequence of a polynucleotide encoding the target polypeptide operably linked to a suitable regulatory sequence so that the target polypeptide can be expressed in a suitable host. do.
  • the regulatory sequence may include a promoter capable of initiating transcription, any operator sequence to regulate such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation. After transformation into a suitable host cell, the vector can replicate or function independently of the host genome, and can be integrated into the genome itself.
  • the vector used in the present application is not particularly limited, and any vector known in the art can be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophage.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pBR-based, pUC-based, and pBluescriptII-based plasmid vectors.
  • pGEM system pTZ system, pCL system and pET system.
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like can be used.
  • a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for intracellular chromosomal insertion. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • a selection marker for checking whether the chromosome is inserted may be further included. The selection marker is for selecting cells transformed with a vector, that is, to confirm whether a target nucleic acid molecule is inserted, and confers a selectable phenotype such as drug resistance, nutritional demand, resistance to a cytotoxic agent, or expression of a surface polypeptide. Markers can be used. In an environment treated with a selective agent, only cells expressing the selection marker survive or exhibit different expression traits, so that the transformed cells can be selected.
  • the present application provides a microorganism that produces putrescine, including the ornithine decarboxylase or a variant thereof, or a polynucleotide encoding the enzyme.
  • microorganism comprising a variant polypeptide or "microorganism comprising a variant of the ornithine decarboxylase” is any microorganism capable of producing putrescine, including the protein variant of the present application.
  • the protein variant of the present application is expressed in a natural wild-type microorganism or a microorganism producing putrescine, and thus, putrescine production capacity, putrescine production purity, or It may be a recombinant microorganism with increased selectivity for putrescine production.
  • the recombinant microorganism may be a microorganism having increased selectivity of putrescine production capacity, production purity, or putrescine production compared to a natural wild-type microorganism or an unmodified microorganism, but is not limited thereto.
  • the microorganism is a microorganism expressing a variant form of an ornithine decarboxylase containing at least one amino acid variation in the amino acid sequence of SEQ ID NO: 1, wherein the amino acid variation is the 713th and/or 698th amino acid from the N-terminus. It may include substitution with other amino acids.
  • the microorganism may be a microorganism that expresses a variant polypeptide having a putrescine-producing activity in which the 713th or 698th amino acid is replaced with another amino acid in the amino acid sequence of SEQ ID NO: 1, but is not limited thereto.
  • the putrescine, the ornithine decarboxylase protein comprising the amino acid sequence of SEQ ID NO: 1 and its variants are as described above.
  • the term "to be/is expressed" a protein means a state in which a target protein is introduced into a microorganism or modified to be expressed in a microorganism.
  • the target protein is a protein present in a microorganism, it refers to a state in which its activity is enhanced compared to that before the intrinsic or modification.
  • target protein may be a variant of ornithine decarboxylase protein having the ability to produce putrescine described above.
  • introduction of a protein means that the microorganism exhibits activity of a specific protein that was not originally possessed, or exhibits an enhanced activity compared to the intrinsic activity or pre-modification activity of the protein.
  • a polynucleotide encoding a specific protein may be introduced into a chromosome in a microorganism, or a vector containing a polynucleotide encoding a specific protein may be introduced into a microorganism to exhibit its activity.
  • enhancing activity means that the activity is improved compared to the intrinsic activity or the activity before modification of a specific protein possessed by a microorganism.
  • the "intrinsic activity” refers to the activity of a specific protein originally possessed by the parent strain before the transformation, when the trait of the microorganism changes due to genetic variation due to natural or artificial factors.
  • enhancing the activity of the present application increases the number of intracellular copies of the gene encoding the protein variant of the present application, a method of introducing the mutation into the expression control sequence of the gene encoding the protein variant, ornithine decarboxylase
  • a method of replacing a gene expression control sequence encoding a protein variant with a strong activity sequence a method of replacing a gene encoding a wild type protein of an ornithine decarboxylase on a chromosome with a gene encoding the protein variant, the protein It may be made by any one or more methods selected from the group consisting of a method of additionally introducing a mutation to the gene encoding the ornithine decarboxylase protein and a method of introducing a protein variant to a microorganism so that the activity of the variant is enhanced. It is not limited to this.
  • the increase in the number of copies of a gene is not particularly limited, but may be performed in a form operably linked to a vector, or by being inserted into a chromosome in a host cell.
  • a vector capable of replicating and functioning independently of the host, in which the polynucleotide encoding the protein of the present application is operably linked may be introduced into the host cell.
  • a vector capable of inserting the polynucleotide into a chromosome in a host cell to which the polynucleotide is operably linked may be introduced into the chromosome of the host cell. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, for example, homologous recombination.
  • Modification of the expression control sequence to increase the expression of the polynucleotide is not particularly limited, but the nucleic acid sequence is deleted, inserted, non-conservative or conservative substitution or a combination thereof to further enhance the activity of the expression control sequence. It can be performed by inducing a mutation of a phase, or by replacing it with a nucleic acid sequence having stronger activity.
  • the expression control sequence may include, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, a sequence that controls termination of transcription and translation, and the like.
  • a strong promoter may be connected to the upper portion of the polynucleotide expression unit instead of the original promoter, but is not limited thereto.
  • Examples of known strong promoters include cj1 to cj7 promoters (Republic of Korea Patent No. 10-0620092), lac promoters, trp promoters, trc promoters, tac promoters, lambda phage PR promoters, PL promoters, tet promoters, gapA promoters, and SPL7 promoters , SPL13 (sm3) promoter (Korea Registered Patent No. 10-1783170), O2 promoter (Korea Registered Patent No. 10-1632642), tkt promoter and yccA promoter, but are not limited thereto.
  • Modification of the polynucleotide sequence on the chromosome is not particularly limited thereto, but a deletion, insertion, non-conservative or conservative substitution or combination of these nucleic acid sequences is induced to further enhance the activity of the polynucleotide sequence, thereby inducing variation in the expression control sequence. Or by replacing with an improved polynucleotide sequence to have stronger activity.
  • the introduction and enhancement of such protein activity is generally based on a minimum or 1%, 10%, 25%, or 50% of the activity or concentration of the corresponding protein based on the activity or concentration of the protein in the wild-type or unmodified microorganism strain. It may be increased to 75%, 100%, 150%, 200%, 300%, 400% or 500%, up to 1000% or 2000%, but is not limited thereto.
  • the microorganism containing the variant form of the ornithine decarboxylase or containing the polynucleotide encoding the microorganism may be a recombinant microorganism produced by transformation with a vector containing the polynucleotide, but is not limited thereto. .
  • transformation in the present application means that a vector containing a polynucleotide encoding a target protein is introduced into a host cell so that the protein encoded by the polynucleotide in the host cell can be expressed.
  • the transformed polynucleotide can include all of them, regardless of whether they are inserted into the chromosome of the host cell or located outside the chromosome, as long as they can be expressed in the host cell.
  • the polynucleotide includes DNA and RNA encoding a target protein. The polynucleotide may be introduced into a host cell and expressed as long as it can be expressed in any form.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self-expression.
  • the expression cassette may include a promoter, a transcription termination signal, a ribosome binding site, and a translation termination signal, which are operably linked to the polynucleotide.
  • the expression cassette may be in the form of an expression vector capable of self-replicating.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked means that the promoter sequence and the gene sequence to initiate and mediate transcription of the polynucleotide encoding the target polypeptide of the present application are functionally linked.
  • unmodified microorganism of the present application is not a native strain itself, or a microorganism that does not contain the protein variant of the present application, or a vector that contains a polynucleotide encoding the protein variant of the present application has not been transformed. Means microorganisms.
  • The'microorganism' of the present application may include both prokaryotic and eukaryotic microorganisms as long as it is a microorganism capable of producing putrescine.
  • microorganisms that produce putrescine is wild-type microorganisms that naturally have putrescine-producing ability, but putrescine is produced by introducing wild-type or mutant-type strains into the parent strains that have no or significantly less putrescine-producing ability. It means microorganisms that have the ability. Specifically, a microorganism having a weakened or strengthened specific mechanism due to a cause such as an external gene being inserted or an activity of an intrinsic gene being enhanced or inactivated, including all microorganisms in which genetic modification has occurred naturally or artificially. It may be a microbial organism with enhanced genetic activity or enhanced activity for putrescine production.
  • the microorganism of the present application may include the protein variant of the present application, and may increase the production capacity, production purity, or selectivity of putrescine production.
  • the microorganism of the present application may be a microorganism in which a part of the gene in the putrescine biosynthetic pathway is enhanced or weakened, or a part of the gene in the putrescine degradation pathway is enhanced or weakened.
  • microorganisms producing putrescine include a variant of the ornithine decarboxylase, and increase the amount of putrescine produced by comparing the desired putrescine from a carbon source in the medium with a wild-type or unmodified microorganism, It may mean a microorganism characterized in that the purity of putrescine increases or the selectivity of putrescine production increases.
  • the "microorganisms producing putrescine” may be used interchangeably with "microorganisms having putrescine production capacity" or "putrescine producing microorganisms”.
  • the microorganism producing the putrescine may be a recombinant microorganism.
  • the recombinant microorganism is as described above.
  • the type of microorganism that produces putrescine is not particularly limited as long as it can produce putrescine, but specifically, the genus Corynebacterium , the genus Escherichia , the genus Enterbacter , uh Winiah (Erwinia) genus, Serratia marcescens (Serratia) genus, Providencia (Providencia) may be a microorganism belonging to the genus and Brevibacterium (Brevibacterium), more specifically, Corynebacterium (Corynebacterium) in or Escherichia It may be a microorganism belonging to the genus Escherichia.
  • Escherichia ( Escherichia ) microorganisms may be Escherichia coli , Corynebacterium genus microorganisms Corynebacterium glutamicum ( Corynebacterium glutamicum ), Corynebacterium Corynebacterium ammoniagenes , Corynebacterium crudilactis , Corynebacterium deserti , Corynebacterium efficiens , Corynebacterium efficiens , Corynebacterium efficiens ( Corynebacterium callunae ), Corynebacterium stationis , Corynebacterium singulare , Corynebacterium halotolerans , Corynebacterium striatum , Corynebacterium Paul Ruti Solidarity (Corynebacterium pollutisoli), Corynebacterium or the like already Tansu Cxorynebacterium imitans), Coryn
  • the parent strain of the ornithine decarboxylase protein or a microorganism producing putrescine modified to express the mutant of the protein is not particularly limited as long as it is a microorganism producing putrescine.
  • putrescine can be synthesized by introducing ornithine decarboxylase (ODC) from the outside.
  • ODC ornithine decarboxylase
  • the microorganism that produces the putrescine is not particularly limited thereto, but additionally, ornithine carbamoyltransfrase (ArgF), which is involved in arginine synthesis in ornithine, is a protein involved in the release of glutamate (NCgl1221) ) May be inactivated.
  • ArgF ornithine carbamoyltransfrase
  • the microorganism that produces the putrescine is not particularly limited thereto, for example, acetyl glutamate synthase or acetyl that converts glutamate to acetyl glutamate (N-acetylglutamate) to enhance the biosynthetic pathway from glutamate to ornithine.
  • Ornithine acetyltransferase (ArgJ), which converts ornithine to ornithine, acetylglutamate kinase (ArgB), which converts acetylglutamate to N-acetylglutamyl phosphate, acetylglutamyl phosphate, acetylglutamate Acetyl gamma glutamyl phosphate reductase (ArgC), which converts to N-acetylglutamate semialdehyde, Acetylornithine aminotransferase (ArgD), which converts acetylglutamate semialdehyde to N-acetylornithine.
  • the activity may be enhanced compared to the intrinsic activity, thereby improving the productivity of ornithine used as a biosynthetic raw material for putrescine.
  • the microorganism that produces the putrescine is not particularly limited thereto, but may further be a microorganism of the genus Corynebacterium having putrescine production capacity, where the activity of putrescine acetyltransferase is attenuated.
  • the microorganism that produces the putrescine is not particularly limited thereto, but the activity of the putrescine release protein may be enhanced, but is not limited thereto.
  • enhancing/increasing is a concept encompassing both increased activity compared to intrinsic activity.
  • Enhancement or increase of such gene activity can be achieved by application of various methods well known in the art. Examples of such methods include increasing the number of intracellular copies of a gene; A method for introducing a variation into a gene expression control sequence; A method of replacing a gene expression control sequence with a sequence having strong activity; A method of introducing a mutation into the gene to enhance the activity of the gene; And it may be made by any one or more methods selected from the group consisting of a method for introducing a foreign gene into the microorganism, can be achieved by a combination thereof, but is not particularly limited by the above example.
  • activation is a concept that includes all the activity is weakened or inactive compared to the intrinsic activity.
  • Inactivation of such gene activity can be achieved by application of various methods well known in the art.
  • Examples of the method include a method of deleting all or part of a gene on a chromosome, including when the activity of the gene is removed; A method of replacing the gene encoding the protein on the chromosome with a mutated gene so that the activity of the protein is reduced; A method of introducing a variation into an expression control sequence of a gene on a chromosome encoding the protein; A method of replacing the expression control sequence of the gene encoding the protein with a sequence having weak or no activity (eg, a method of replacing the promoter of the gene with a weaker promoter than the intrinsic promoter); A method of deleting all or part of a gene on a chromosome encoding the protein; A method of introducing an antisense oligonucleotide (eg, antisense RNA) that complementarily binds to a transcript of a gene on the chromosome and inhibits translation from
  • a method for producing putrescine comprising culturing the microorganism producing the putrescine in a medium.
  • the putrescine, the ornithine decarboxylase comprising the amino acid sequence of SEQ ID NO: 1, its variants, the expression of proteins, and microorganisms are as described above.
  • the term "cultivation" in the present application means to grow the microorganism under appropriately controlled environmental conditions.
  • the culturing process of the present application may be performed according to suitable media and culture conditions known in the art. Such a culture process can be easily adjusted and used by those skilled in the art according to the selected strain.
  • the culture may be batch, continuous and fed-batch, but is not limited thereto.
  • the term "medium” in the present application means a substance in which a nutrient required for culturing the microorganism is mixed as a main component, and supplies nutrients and growth factors, including water indispensable for survival and development.
  • the medium and other culture conditions used for the culture of microorganisms of the present application can be used without any particular limitation as long as the medium used for the culture of ordinary microorganisms, but the microorganism of the present application is a suitable carbon source, nitrogen source, personnel, inorganic In a normal medium containing a compound, amino acid and/or vitamin, etc., it can be cultured while controlling temperature, pH, etc. under aerobic conditions.
  • the step of culturing the microorganism is not particularly limited, but may be performed by a known batch culture method, a continuous culture method, a fed-batch culture method, or the like.
  • the culture conditions are not particularly limited, but using a basic compound (e.g. sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (e.g. phosphoric acid or sulfuric acid) to a suitable pH (e.g. pH 5 to 9, specifically Can adjust pH 6 to 8, most specifically pH 6.8), and maintain aerobic conditions by introducing oxygen or an oxygen-containing gas mixture into the culture.
  • the culture temperature may be maintained at 20 to 45°C, specifically 25 to 40°C, and cultured for about 10 to 160 hours, but is not limited thereto.
  • the putrescine produced by the culture may be secreted into the medium or remain in the cells.
  • the culture medium used may include sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) Oil, peanut oil and coconut oil), fatty acids (e.g. palmitic acid, stearic acid and linoleic acid), alcohols (e.g. glycerol and ethanol) and organic acids (e.g. acetic acid) can be used individually or in combination. , But is not limited to this.
  • Nitrogen sources include nitrogen-containing organic compounds (e.g.
  • peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea), or inorganic compounds e.g. ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate
  • inorganic compounds e.g. ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate
  • potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and sodium-containing salts corresponding thereto may be used individually or in combination, but are not limited thereto.
  • the medium may contain other metal salts (eg, magnesium sulfate or iron sulfate), essential growth-promoting substances such as amino acids and vitamins.
  • the method for recovering the putrescine produced in the culturing step of the present application may collect the desired amino acid from the culture medium using a suitable method known in the art according to the culture method. For example, centrifugation, filtration, anion exchange chromatography, crystallization and HPLC, etc. can be used, and the desired putrescine can be recovered from the medium or microorganism using suitable methods known in the art.
  • the method for recovering the putrescine may further include a purification step.
  • a method of increasing the purity of putrescine comprising culturing the microorganism that produces the putrescine.
  • providing a method for increasing the ratio of putrescine to cadaverine comprising culturing the putrescine-producing microorganism.
  • the putrescine and microorganisms are as described above.
  • a use for producing polyamide of putrescine produced by culturing the microorganism producing the putrescine.
  • it provides a composition for producing a polyamide containing the microorganism that produces the putrescine.
  • the putrescine and microorganisms are as described above.
  • the putrescine-producing microorganism comprises the polypeptide of SEQ ID NO: 1, or comprises amino acid substitutions at positions corresponding to a) 713, b) 698, or c) 713 and 698 of SEQ ID NO: 1, And a microorganism comprising ornithine decarboxylase, comprising a polypeptide having a sequence homology of at least 80% or less and less than 100% to the polypeptide of SEQ ID NO: 1.
  • the step of culturing the microorganism for producing the putrescine comprises the polypeptide of SEQ ID NO: 1, or at a position corresponding to a) 713, b) 698, or c) 713 and 698 of SEQ ID NO: 1
  • the polyamide is a material utilized in various materials, and is excellent in heat resistance and chemical resistance due to hydrogen bonding between amide bonds, and is being developed as a material of various materials.
  • the polyamide may be a fiber raw material, specifically, a nylon raw material.
  • Polyamide fiber has excellent characteristics in high strength, abrasion resistance, softness, gloss characteristics, and dyeing clarity, such as leg wear such as pantyhose, inner wear, sports wear, etc. It can be used for clothing products.
  • the polyamide may be a raw material such as pharmaceuticals, surfactants, films, plastics.
  • the polyamide film is a substrate for display.
  • the polyamide film can be applied to a protective film for a display, a touch panel, a window cover of a foldable device, and the like.
  • the ornithine decarboxylase of the present application has an effect of increasing putrescine productivity or production efficiency and suppressing side reactions.
  • the present application has an effect of inhibiting the synthesis of cadaverine, which is one of the side reactions of the ornithine decarboxylase, thereby achieving a simplification of the putrescine purification/separation process and reduction of production cost.
  • FIG. 1 shows a schematic diagram of putrescine synthesis using ornithine decarboxylase using ornithine as a substrate in the present application. It also shows the cadaverine synthesis pathway, a side reaction of ornithine decarboxylase that should be inhibited.
  • Figure 2 confirms the activity of ornithine decarboxylase from various sources, and shows the relative activity of reactivity when using ornithine as a substrate and reactivity when using lysine as a substrate (side reaction).
  • ODC_Lb is derived from Lactobacillus saerimneri (inducible)
  • ODC_Sc is from saccharomyces cerevisiae (inducible)
  • ODC_Ec is from E.coli (constitutive)
  • ODC_Ef is from E.coli (inducible).
  • Fig. 3 shows that the wild-type ornithine decarboxylase from the purified Lactobacillus and 696th alanine of the wild-type ornithine decarboxylase are glutamic acid (A696E), and the 702th valine of the wild-type ornithine decarboxylase is glycine ( V702G), wild type ornithine decarboxylase 713th alanine as leucine (A713L), wild type ornithine decarboxylase 696th alanine and 713th alanine as glutamic acid and leucine (A696E/A713L), wild type ornithine
  • the 702th valine and 713th alanine of the decarboxylase are glycine and leucine (V702G/A713L), and the 696th alanine of the wild-type ornithine decarboxylase and the 702th valine and
  • wild type ornithine decarboxylase 698 th glutamic acid was replaced with aspartic acid (E698D)
  • wild type ornithine decarboxylase 698 th glutamic acid and 713 alanine were substituted with aspartic acid and leucine It is a figure comparing (a) ornithine specific activity and (b) lysine specific activity by using the modified variant (E698D/A713L).
  • FIG. 4 shows that 698 th glutamic acid of purified lactobacillus-derived wild-type ornithine decarboxylase and wild-type ornithine decarboxylase is aspartic acid (E698D), and the 713th alanine of wild-type decarboxylase is leucine (A713L).
  • E698D aspartic acid
  • A713L leucine
  • FIG. 5 is a view comparing the bioconversion reaction under various conditions.
  • A Putrescine synthesis was quantified with an ornithine substrate, and when the purified lactobacillus-derived wild-type ornithine decarboxylase was reacted in a 0.37 M concentration buffer (see ⁇ ), the 713th of the wild-type ornithine decarboxylase When alanine substituted with leucine was reacted in a 0.37 M concentration buffer (see ⁇ ), when a wild type ornithine decarboxylase was reacted in a 0.1 M concentration buffer (see ⁇ ), the 713th of the wild type decarboxylase This is a diagram when a variant of alanine substituted with leucine is reacted in a 0.1 M concentration buffer (see ⁇ ).
  • Figure 6 shows the expression level of the recombinant ornithine decarboxylase gene derived from four strains.
  • ODC_e.coli_SpeC from E.coli (constitutive)
  • ODC_e.coli_SpeF from E.coli (inducible)
  • ODC_ Lactobacillus from Lactobacillus saerimneri (inducible)
  • ODC_ saccharomyces cerevisiae from saccharomyces ceriblesiae
  • the substrate reactivity of ornithine decarboxylase from four microorganisms was compared. Wild type derived from Lactobacillus saerimneri (inducible), Saccharomyces cerevisiae (inducible), E.coli (constitutive), E.coli (inducible) Ornithine decarboxylase was targeted, and it was denoted as ODC_Lb, ODC_Sc, ODC_Ec, ODC_Ef, respectively.
  • the protein was expressed under conditions of 0.1 mM IPTG and 18°C using E. coli BL21 (DE3). Then, the initial reaction rate was compared at 45°C using 10% cell extract. The case of using 4 mM ornithine as the substrate and the case of using 4 mM lysine was compared, respectively.
  • Figure 2 shows the activity of the ODC enzyme derived from the four microorganisms. Specifically, it showed ornithine decarboxylase activity that produced putrescine using ornithine as a substrate, and lysine decarboxylase activity that produced cadaverine using lysine as a substrate. Lysine decarboxylase activity was all similar, but ornithine decarboxylase activity was the best ornithine decarboxylase derived from Lactobacillus (ODC_Lb).
  • the crystal structure of Lactobacillus ornithine decarboxylase is known, and it is possible to predict the tunnel through which the substrate enters and exits the enzyme through structural analysis.
  • multiple sequence alignment using sequence information of bioinformatics was performed, and ornithine decarboxylase used in the present invention
  • the positions of A696, V702, A713, and E698 from the N-terminal of the amino acid sequence were selected as mutation positions.
  • Residues conserving amino acid residues at specific positions in the protein structure play a very important role in the structure and function of the protein, and are particularly likely to play a direct role in the catalytic process, so they are excluded as mutant residues.
  • Saturation mutagenesis refers to the introduction of a variety of nucleotide changes at a specified location in a gene.
  • Saturation mutation refers to inserting a mutation through PCR by inserting an NNK codon instead of the sequence to be mutated on the primer of a complementary sequence that binds to the template strand.
  • N means A, T, G, C of the nucleotide
  • K means T, G.
  • Saturation mutations were performed using NNK codons on selected functional residues, followed by screening against the variant library. All libraries were subjected to primary and secondary screening through a whole cell reaction.
  • the whole-cell reaction refers to a reaction using whole cell without crushing cells containing a specific enzyme to use cell contents or to separate and purify the enzyme.
  • the primary screening was conducted through an ornithine whole cell reaction and variants with similar or faster activity were selected as a change in absorbance compared to the wild type.
  • Secondary screening was conducted through a lysine whole-cell response, and for the variants selected in the primary, if responsiveness to lysine was lower than that of the wild type.
  • intrinsic activity when ornithine or lysine was used as a substrate was measured.
  • Specific activity refers to the activity per unit amount of pure protein in which impurities and other proteins are removed through enzyme purification.
  • the amount of enzyme that catalyzes 1 ⁇ mol of substrate change per minute is 1 unit, and it is unit per 1 mg. It is expressed as a number.
  • the lactobacillus-derived wild-type and mutant-type ornithine decarboxylase was transformed into E. coli BL21 (DE3) and expressed using an inducer IPTG with a culture volume of 50 mL, using a Ni-NTA column. Only pure protein was purified.
  • wild type and variant (A696E, V702G, A713L, A696E/A713L, V702G/A713L, A696E/V702G/A713L, E698D and E698D/A713L) enzymes
  • A696E, V702G, A713L, A696E/A713L, V702G/A713L, A696E/V702G/A713L, E698D and E698D/A713L enzymes
  • all of the functional residues (A696, V702, A713, E698) are located in an active site or a substrate access tunnel.
  • the intrinsic activity of the mutants depends on the native activity of the wild type. The results were confirmed to be 19.9%, 4.3%, 89.4%, 12.8%, 4.9%, 0.1%, 75.6% and 74.4%, respectively (Fig. 3(a)).
  • the intrinsic activity of the variant (A696E, V702G, A713L, A696E/A713L, V702G/A713L, A696E/V702G/A713L, E698D, E698D/A713L) enzymes relative to the intrinsic activity of the wild-type enzyme, respectively 16.9%, 0.6%, 42.4%, 4.4%, 0.9%, 0.7%, 50.8%, 29.2%, it was confirmed that the side reaction is inhibited (Fig. 3 (b)).
  • lysine concentrations of 0.45 mM to 140 mM were used to determine the kinetic coefficients for lysine of wild type and variant ornithine decarboxylase enzymes after protein purification.
  • a pH buffer solution a pH 5.0 citric-sodium citrate buffer was used, and the reaction volume was performed at 200 ⁇ l.
  • the analysis was conducted through the HPLC analysis method specified above, and was obtained as the average value of three experiments.
  • the kinetics of wild-type and variant lysine decarboxylase are shown in FIG. 4.
  • Variants E698D and E698D/A713L also confirmed that the k cat values for lysine were reduced to 2.08 and 2.59 times, respectively, compared to the wild type, and it was confirmed that the k cat /K M values for lysine were reduced by 1.28 and 1.67 times. That is, it was confirmed that the mutants can reduce side reactions.
  • ornithine decarboxylase (A713L), a variant with the highest ornithine intrinsic activity, on the production of putrescine or cadaverine.
  • a case where a high concentration of 51.5 g/L (0.39 M) ornithine was used as a substrate and a case where a concentration of 2.57 g/L (17.6 mM) lysine was used as a substrate were conducted.
  • a buffer concentration for titrating the pH was performed under two conditions (0.1 M or 0.37 M).
  • 0.1 mg of protein-purified wild-type and variant enzymes were used in the reaction.
  • 0.39 M ornithine or 17.6 mM lysine was used, and 0.1 or 0.37 M citric-sodium citrate buffer (pH 5.0) was used as a buffer.
  • 0.1 mM PLP coenzyme was used, the reaction proceeded at 50°C, and the reaction volume proceeded to 2 mL. The results are shown in FIG. 5.
  • 5(a) is a case where 51.5 g/L (0.39 M) ornithine is used as a substrate.
  • putrescine when 0.37 M buffer was used (refer to ⁇ and ⁇ in Fig. 5(a)), after 4 hours, putrescine was 33.0 g/in wild type and mutant form (A713L), respectively. L and 31.6 g/L.
  • a low concentration of buffer 0.1 M
  • wild-type and mutated (A713L) contained putrescine at 20.2 g/L and 20.7 g, respectively. /L generated. It was confirmed that the wild-type and mutant-type (A713L) putrescine production capacity was similar, and it was confirmed that the use of a high concentration buffer (0.37 M) was beneficial for reactivity.
  • Fig. 5(b) is a case where 2.57 g/L (17.6 mM) of lysine is used as a substrate.
  • 0.37 M buffer 0.03 g/L and 0.007 g/ in wild type and mutant type (A713L), respectively, after 4 hours.
  • L produced cadaverine.
  • 0.1 M buffer was used (see ⁇ and ⁇ in FIG. 5(B))
  • side reactions of cadaverine were increased, and after 7 hours, 0.59 g/L in wild type and mutant type (A713L), respectively.
  • 0.38 g/L of cadaverine as a side reaction.
  • the production method of a recombinant gene for expressing the ornithine decarboxylation enzymes ODC_Lb, ODC_Sc, ODC_Ec, and ODC_Ef derived from the four microorganisms mentioned in Example 1 is as follows.
  • Lactobacillus saerimneri (ACCESSION no.P43099), Saccharomyces cerevisiae (ACCESSION no. J02777.1), and Escherichia coli str. Ornithine decarboxylase genes using the K-12 (ACCESSION no.BAA35349) genomic information were amplified in the gene coding region by PCR with the gene sequence specified in Table 1, and then the restriction product was processed into the PCR product and inserted into the plasmid. .
  • E. coli DH5 alpha was used as a host strain for DNA manipulation
  • E. coli BL21 (DE3) was used as a host strain for C-terminal His6-tagged ODC gene expression.
  • Recombinant E. coli BL21 was grown at 37° C. in 50 mL LB medium containing 50 mg/mL kanamycin. When the culture reached 0.8 under OD 600 conditions, 0.2 mM IPTG was added to the culture. After inducing protein expression at 18-30° C., cells were harvested. Cells were resuspended in lysis buffer and sonicated to destroy cells.
  • the obtained recombinant ODCs were purified at 4°C with Ni-NTA agarose resin from Quiagen (Hilden, Germany). Recombinant proteins were obtained using Centriplus YM-30 (Millipore, Bedford, MA) with a molecular mass cut off of 100 kDa. Expression results are shown in FIG. 6.
  • the CJ7 promoter (KCCM10617, Korean Patent Registration No. 10-0620092) was introduced before the initiation codon of the ODC_Lb gene and the ODC_Ec gene.
  • PCR was performed using the specified primer pair of Table 2 using genomic DNA of Corynebacterium glutamicum ATCC13032. PCR reaction was carried out by repeating 30 times of denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, and stretching at 72°C for 30 seconds.
  • PCR nucleic acid products having a size of 400 basepair (bp) were confirmed.
  • the obtained PCR product was purified using a PCR prep kit (GeneAll, Seoul).
  • BamHI and XbaI were added to the purified PCR product and the pSCEC vector solution sample, restriction enzyme treatment was performed at a reaction at 37°C for 4 hours, and electrophoresis was performed using 1.5% agarose gel, followed by PCR nucleic acid product band and size of 400 bp. After cutting the band of the nucleic acid fragments were obtained using a Gel prep kit (GeneAll, Seoul).
  • Each ligated CJ7 promoter fragment and vector of 1 mg were ligated using T4 ligase, and then electroporated to E. coli DH5 alpha strain. Electroporation was applied at 2500V. The recovered strains were spread on LB plate medium containing 50 ⁇ g/L spectinomycin, and cultured at 37° C. for 1 day to select resistant strains. After selecting 18 strains, PCR results having a size of 400 bp after colony PCR with SEQ ID NOs: 9 and 10 were confirmed. The production of pSCEC_cj7 with CJ7 promoter was confirmed from colony PCR results.
  • the obtained PCR product and pSCEC_cj7 vector were treated with restriction enzymes XbaI and SalI.
  • the restriction enzyme-treated nucleic acids were gel prep to ligation ODC_Lb, ODC_Ec and pSCEC_cj7 nucleic acid fragments and inserted into the E. coli DH5 alpha strain.
  • PSCEC_cj7_ODC_Lb and pSCEC_cj7_ODC_Ec were obtained from the selected strains in which insertion was confirmed, respectively, and electroporation was performed at 2500V for microorganisms KCCM11240P in the genus Corynebacterium producing putrescine.
  • Colonies were formed by plating and culturing the strain in BHIS plate medium (Braine heart infusion 37 g/l, sorbitol 91 g/l, agar 2%) containing 50 ⁇ g/L spectinomycin.
  • the selected strain is 50 ⁇ g/L CM medium containing spectinomycin (glucose 10 g/L, polypeptone 10 g/L, yeast extract 5 g/L, beef extract 5 g/L, NaCl 2.5 g/ L, Urea 2 g / L, pH 6.8) was confirmed that shaking culture is possible.
  • centrifugation was performed to obtain cells. The obtained cells were centrifuged after cell disruption by an ultrasonic treatment method to obtain a solution containing soluble proteins.
  • ODC_Lb and ODC_Ec proteins containing His-tag were respectively purified using Ni-NTA Spin Columns (Hilden, Germany). It was obtained using a nano drop to measure the protein concentration. Recombinant protein concentrations calculated based on the measured values were ODC_Lb: 1.282 g/L and ODC_Ec: 0.039 g/L, respectively, and it was confirmed that ODC_Lb secured a soluble protein of 30 times or more compared to ODC_Ec in the Coryne strain.
  • ODC_Lb When ODC_Lb was expressed using E. coli and Coryne strains as hosts in medium temperature conditions, it was confirmed that high soluble protein production was possible with high expression and normal protein folding.
  • a microorganism of the genus Corynebacterium with improved putrescine production capacity a microorganism of the genus Corynebacterium (KCCM11240P) having the putrescine production capacity disclosed in the patent application (Korea Patent Publication No. 2013-0082478) is used. Became.
  • the microorganism of the genus Corynebacterium (KCCM11240P) having the ability to produce putrescine is a microorganism prepared from Corynebacterium glutamicum ATCC13032 (ATCC 13032 ⁇ argF ⁇ NCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)- speC(Ec): a microorganism in which NCgl1469 is defective in KCCM11138P (Korean Patent Publication No. 2012-0064046).
  • a vector was prepared to replace the ornithine deoxidase in the putrescine-producing microorganism with the ornithine decarboxylase variant derived from lactobacillus. More specifically, using the ODC_Lb_start (EcoRV)_5, ODC_Lb_stop (MfeI)_3 primers disclosed in Table 4 below, the DNA of the ornithine decarboxylase derived from Lactobacillus prepared in Examples 1 and 3 above was used. Amplified.
  • wild-type and mutant-type (E698D, A713L) lactobacillus ornithine decarboxylase were inserted into the prepared pET24ma vector to make each of them as a template, and L-odc_start (EcoRV)_5, shown in Table 4 below.
  • PCR was performed using two primers, L-odc_stop (MfeI)_3.
  • Gene fragments obtained through PCR amplification were treated with EcoRV and MfeI restriction enzymes (37°C, 3 hours), and pDZ-bioAD-P (CJ7) produced using the same method as disclosed in Patent Publication No. 2012-0064046.
  • Gene fragments of wild type and variant (E698D, A713L) ornithine decarboxylase enzymes derived from Lactobacillus were inserted into the vector. In this method, EcoRV and MfeI restriction enzymes were used.
  • Recombinant vectors (pDZ-ODC_Lb, pDZ-ODC_Lb_E698D, pDZ-ODC_Lb_A713L) for chromosomal insertion prepared by the above method were confirmed by sequencing.
  • the insertion of a successful vector into the chromosome was determined by whether it was blue in a solid medium containing X-gal (5-bromo-4-chloro-3-indolyl- ⁇ -D-galactoside). After the primary chromosome-inserted strains were shake cultured in a nutrient medium (30°C, 8 hours), serial dilution was performed, respectively, and plating was performed on a solid medium containing X-gal. While most colonies were blue, they were able to select white colonies at a low rate, and the selected colonies were introduced into the chromosome by final cross-over of the final Lactobacillus ornithine decarboxylase. Strains were obtained. Finally, the strain was confirmed by sequencing of the variants. The identified strains were named KCCM11240P::ODC_Lb, KCCM11240P::ODC_Lb_E698D, KCCM11240P::ODC_Lb_A713L.
  • putrescine production capacity was evaluated.
  • the strains prepared above are CM plate medium containing 1 mM arginine (1% per glucose, 1% polypeptone, 0.5% yeast extract, 0.5% beef extract, 0.25% NaCl, 0.2% urea, 100% NaOH 100 ⁇ l) , agar 2%, pH 6.8, based on 1L) after incubation at 30°C for 16 hours, inoculated with about one platinum in a 25 ml titer medium having the composition of Table 5 below, and then for 24 hours at 200 rpm at 30°C. Shake culture. For all the produced strains, 1 mM arginine was added to the medium during fermentation and cultured.
  • 1 mM arginine 1% per glucose, 1% polypeptone, 0.5% yeast extract, 0.5% beef extract, 0.25% NaCl, 0.2% urea, 100% NaOH 100 ⁇ l
  • agar 2% pH 6.8, based on 1L
  • KCCM11240P::ODC_Lb_A713L the strain introduced with A713L ornithine decarboxylase (KCCM11240P::ODC_Lb_A713L) compared to KCCM11240P, produced cadaverine due to side reactions when producing putrescine, decreased by about 48%P, and compared with the residual glucose concentration in the culture for the same time It can be seen that the consumption of sugar increases and productivity increases.
  • a variant of the form in which the amino acid 713 from the N-terminus is substituted with another amino acid, including a hydrophobic amino acid is a chromosome of the microorganism of the genus Corynebacterium (KCCM11240P) with enhanced putrescine production capacity.
  • a mutant strain substituted with wild type ornithine decarboxylase derived from E. coli was prepared. More specifically, to prepare a vector for substituting each of the hydrophobic amino acid valine, basic amino acid arginine, acidic amino acid aspartic acid, neutral amino acid glutamine, and aromatic amino acid tryptophan, respectively.
  • PCR was performed using the pDZ-ODC_Lb vector prepared in Example 7 as a template and using the primers disclosed in Table 4 and Table 7 above. First, PCR was performed on the front portion (5') and the rear portion (3'), respectively, centering on the region to be mutated, and secondly, PCR was performed to combine the two PCR fragments.
  • amplification by PCR is performed using the ODC_Lb_start (EcoRV)_5 and ODC_Lb_A713V_3 primers in the front part, and the ODC_Lb_A713V_5 and ODC_Lb_stop (MfeI)_3 primers in the back part was amplified by PCR.
  • Two PCR fragments obtained through primary PCR were used as templates for secondary PCR, and PCR was performed using ODC_Lb_start (EcoRV)_5 and ODC_Lb_stop (MfeI)_3 primers.
  • the finally obtained variant A713V gene fragment of Lactobacillus ornithine decarboxylase was inserted into the pDZ-bioAD-P(CJ7) vector in the same manner as in Example 7.
  • the rest of the variants A713R, A713D, A713W, and A713Q were also subjected to PCR in the same manner as described above using the primers described in Table 7 and inserted into the pDZ-bioAD-P (CJ7) vector.
  • the prepared recombinant vectors for chromosomal insertion (pDZ-ODC_Lb_A713V, pDZ-ODC_Lb_A713R, pDZ-ODC_Lb_A713D, pDZ-ODC_Lb_A713W, pDZ-ODC_Lb_A713Q) were confirmed by sequence analysis.
  • Each of the ODC_Lb_A713D, pDZ-ODC_Lb_A713W, and pDZ-ODC_Lb_A713Q recombinant vectors was transfected into a KCCM11240P strain in the same manner as in Example 7 and selected to obtain a strain in which the final Lactobacillus ornithine decarboxylase variants were introduced into the chromosome. Finally, the strain was confirmed by sequencing of the variants.
  • the identified strains were named KCCM11240P::ODC_Lb_ A713V, KCCM11240P::ODC_Lb_ A713R, KCCM11240P::ODC_Lb_A713D, KCCM11240P::ODC_Lb_A713Q, KCCM11240P::ODC_Lb_A713W.
  • strains having introduced the Lactobacillus ornithine decarboxylase variant in the form of substitution with other amino acids including hydrophobicity also strains having wild type ornithine decarboxylase derived from E. coli after 12 hours of culture.
  • putrescine production increased by an average of about 86%P.
  • it showed an average increase of about 21%P compared to a strain having a wild type ornithine decarboxylase derived from Lactobacillus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 출원은 오르니틴 탈탄산 효소 또는 단백질 변이형, 이를 코딩하는 폴리뉴클레오티드, 이를 포함하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법에 관한 것이다. 본 발명은 퓨트레신 생산성, 생산 효율 또는 생산 선택성을 증대시키고, 부반응을 억제하여, 퓨트레신 정제시의 비용을 감소시키는 효과를 달성한다.

Description

오르니틴 탈탄산 효소 변이형 및 이를 이용한 퓨트레신 생산 방법
본 출원은 오르니틴 탈탄산 효소 변이형, 오르니틴 탈탄산 효소 변이형을 암호화하는 유전자, 오르니틴 탈탄산 효소 변이형을 포함하는 미생물 및 이를 이용한 퓨트레신 합성에 관한 것이다.
본 출원은 2018.12.27자로 출원된 PCT 국제특허출원 제 PCT/KR2018/016764 호 및 2018.12.28자로 출원된 대만특허출원 제 107147749 호에 기초한 우선권의 이익을 주장하며, 해당 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
퓨트레신 (putrescine; 1,4-diamino-butane)은 부패된 유기체로부터 발생되는 악취를 유발하는 물질이지만, 4,6-나일론 합성에 활용될 수 있다는 점에서 공업적으로 생산되고 있다. 현재 퓨트레신은 석유자원에 의하여 연당 10,000톤 이상이 생산되고 있으나, 석유 가격의 잦은 변동으로 인하여 원료 수급이 불안정하다는 문제점이 있다. 또한, 생산 과정에서 생성되는 다량의 독성물질로 인하여 환경오염을 유발할 수 있다는 문제점이 있다.
이러한 문제점들을 해결하기 위해, 최근 바이오 유래 퓨트레신 합성에 대한 연구가 활발하게 진행되고 있다. 예를 들면, 바이오 유래 오르니틴으로부터 퓨트레신을 합성하거나, 당을 이용하여 미생물로부터 퓨트레신을 대량으로 생산하는 방법에 관한 연구가 진행되고 있다.
미생물로부터 퓨트레신을 생산하는 방법에 있어서, 퓨트레신 생산량을 증가시키기 위한 다양한 생물학적 엔지니어링 방법들이 사용되어 왔다. 상기 방법들은, 예를 들면, 퓨트레신 생합성에 관여하는 효소의 활성을 프로모터로 조절하거나, 퓨트레신이 세포 밖으로 방출이 용이하도록 역수송체를 과발현 하거나, 퓨트레신을 분해하는 경로를 차단하는 것일 수 있다. 이 중에서도, 미생물 내 퓨트레신 생합성에 관여하는 효소의 활성을 조절하는 것이 퓨트레신 생산량 증가에 크게 기여할 수 있는 것으로 알려져 있다.
오르니틴 탈탄산 효소는 오르니틴의 말단 카르복실기를 절단하여 퓨트레신을 합성하는 효소로서, 퓨트레신 생합성에서 중요한 역할을 수행하는 효소들 중 하나이다. 하지만, 오르니틴 탈탄산 효소는 오르니틴으로부터 퓨트레신을 합성할 뿐만 아니라, 라이신으로부터 카다베린(1,5-diamino-pentane)으로 합성하는 활성 (부반응)을 동시에 갖기 때문에, 이의 활성을 높이는 경우 퓨트레신과 함께 카다베린이 함께 생성되어 퓨트레신의 생산량을 저하시킬 수 있다. 상기 카다베린은 퓨트레신 정제시에도 많은 문제점을 초래할 수 있다. 구체적으로는, 미생물 배양액을 증류방법으로 정제하는 과정에서 퓨트레신 (H2N(CH2)4NH2)과 카다베린 (H2N(CH2)5NH2)의 구조가 매우 유사하기 때문에, 이를 선택적으로 정제하기 위하여 많은 비용 및 시간이 소요되고 있다.
따라서, 오르니틴 탈탄산 효소의 활성을 조절하고자 하는 경우, 오르니틴으로부터 퓨트레신을 합성하는 활성은 유지하면서, 라이신으로부터 카다베린으로 합성하는 활성 (부반응)은 저하시키는 것이 매우 중요하다.
이에, 본 발명자들은 신규한 오르니틴 탈탄산 효소를 발굴하였으며, 상기 오르니틴 탈탄산 효소는 카다베린의 합성 활성은 낮고 퓨트레신의 합성 활성은 높다는 것을 확인함으로써, 본 출원을 완성하였다.
본 출원은 오르니틴 탈탄산 효소 또는 이의 변이형을 제공한다.
본 출원은 또한 상기 오르니틴 탈탄산 효소 또는 이의 변이형을 코딩하는 폴리뉴클레오티드를 제공한다.
본 출원은 상기 오르니틴 탈탄산 효소 또는 이의 변이형을 포함하는 퓨트레신을 생산하는 미생물을 제공하는 것이다.
본 출원의 또 다른 목적은 상기 미생물을 배지에서 배양하는 단계를 포함하는, 퓨트레신 생산 방법을 제공하는 것이다.
본 출원의 또 다른 목적은 상기 미생물을 배지에서 배양하는 단계를 포함하는, 퓨트레신의 순도를 증가시키는 방법을 제공하는 것이다.
본 출원의 또 다른 목적은 상기 미생물을 배지에서 배양하는 단계를 포함하는, 카다베린에 대한 퓨트레신의 비율을 증가시키는 방법을 제공하는 것이다.
아울러, 본 출원의 또 다른 목적은 상기 퓨트레신의 폴리아미드 계 고분자 합성 용도를 제공하는 것이다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
본 출원의 하나의 양태는 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 치환을 포함하는 퓨트레신 생산 활성을 가지는, 오르니틴 탈탄산 효소의 변이형을 제공한다.
구체적으로, 본 출원은 서열번호 1의 아미노산 서열에서 i) 713번째 아미노산인 알라닌이 다른 아미노산으로 치환, 및/또는 ii) 698번째 아미노산인 글루탐산이 다른 아미노산으로 치환된 단백질의 변이형을 제공한다. 상기 아미노산 치환은 i) 713번째 아미노산인 알라닌이 루신, 이소루신, 발린, 아르기닌, 아스파르트산, 트립토판 및 글루타민으로부터 선택되는 아미노산으로 치환, 및/또는 ii) 698번째 아미노산인 글루탐산이 아스파르트산으로 치환되는 것을 포함할 수 있다.
본 출원에서 용어, "퓨트레신"은 오르니틴의 디카복실화 반응이나 아그마틴의 가수분해에 의해 생성되는 물질로, 부패물에도 존재하나 생체에 정상적인 성분으로 널리 분포한다. 폴리아민의 일종으로 리보솜을 구성하고, 세포의 생장을 촉진하거나 RNA 합성을 촉진하는 기능을 가진다. 특히, 산업적으로는 나일론 4, 6을 포함하는 폴리아미드 4, 6의 생산을 위한 중요한 원료물질에 해당하며, 대량 생산을 위한 연구의 필요성이 계속되고 있는 물질이다.
퓨트레신은 오르니틴을 기질로 사용하는 방법으로 생산할 수 있다. 또한, 오르니틴의 전구체가 되는 물질을 기질로 사용하여 오르니틴을 합성한 후, 이로부터 퓨트레신을 생산할 수 있다. 오르니틴의 합성은, 당업자가 용이하게 선택할 수 있는 것이라면 제한 없이 사용할 수 있다.
본 출원에서 용어, "오르니틴"은 오르니틴 회로에서 중요한 역할을 하는 염기성 아미노산으로, 특히 L-오르니틴은 식물, 동물, 미생물에서 널리 발견된다. 일반적으로 오르니틴 회로를 가진 생체 내에서는 요소 생산과 관계하여 대사상 중요한 역할을 한다. 또한, 생체 내에서 아르기닌, 글루탐산, 프롤린과 서로 변환될 수 있으며, 케톤산, 글리옥살산과 아미노기 전달을 한다. 오르니틴 탈탄산 효소에 의해서 아민(퓨트레신)을 생성하는 기질로 이를 통해 폴리아민으로까지 합성된다. 본 발명에서는 특히 오르니틴 탈탄산 효소의 기질로써 사용될 수 있는 L-오르니틴일 수 있다.
본 출원에서 용어, "오르니틴 탈탄산 효소(ornithine decarboxylase, ODC)"는 폴리 아민을 합성하는데 있어 최초 단계이자 퓨트레신(putrescine) 생산 경로 중 마지막 단계인 하기 반응식을 촉매하는 효소이다. 본 출원에서 오르니틴 탈탄산 효소는 오르니틴 디카복실레이즈(ornithine decarboxylase)로 혼용되어 사용될 수 있다. ODC는 L-오르니틴을 기질로 하여 퓨트레신을 생산하는데, 피리독살인산(Pyridoxal phosphate, PLP)이 보조인자(co-factor)로 작용한다.
[반응식]
L-오르니틴 <=> 퓨트레신 + CO2
도 1에는 오르니틴 탈탄산 효소를 이용하여 오르니틴을 기질로 퓨트레신을 합성하는 과정의 화학 반응식을 나타내었다. 또한, 억제해야 할 오르니틴 탈탄산 효소의 부반응인 카다베린(cadaverine) 합성 경로를 나타내었다.
본 출원에 있어서, ODC(ornithine decarboxylase)를 확보하는 방법은 당해 분야에서 잘 알려진 다양한 방법이 적용 가능하다. 그 방법의 예로는 효소 발현에 통상적으로 널리 이용되는 미생물에서 효소를 고효율로 확보할 수 있도록 코돈 최적화가 포함된 유전자 합성 기술 그리고 미생물의 대량 유전체 정보를 기반으로 생물정보학적 방법에 의해 유용 효소자원의 스크리닝 방법을 통해 확보할 수 있으며, 이에 제한되는 것은 아니다.
본 출원에서 서열번호 1은 퓨트레신 생산 활성을 갖는 오르니틴 탈탄산 효소의 아미노산 서열을 의미한다. 상기 서열번호 1의 아미노산 서열은 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다. 일 예로, 오르니틴 탈탄산 효소는 락토바실러스 속(Lactobacillus sp.), 사카로마이세스 속(Saccharomyces sp.), 또는 대장균(Escherichia coli, E. coli) 유래일 수 있고, 구체적으로 락토바실러스 새림네리(Lactobacillus saerimneri) 유래일 수 있으나, 이에 제한되지 않으며 상기 아미노산 서열을 포함하는 단백질과 동일한 활성을 갖는 단백질의 아미노산 서열이라면 제한 없이 포함될 수 있다. 또한, 본 출원에서의 퓨트레신 생산 활성을 갖는 오르니틴 탈탄산 효소로서 서열번호 1의 아미노산 서열을 포함하는 단백질을 기재하였으나, 서열번호 1의 아미노산 서열 앞뒤로의 무의미한 서열 추가 또는 자연적으로 발생할 수 있는 돌연변이, 혹은 이의 잠재성 돌연변이(silent mutation)를 제외하는 것이 아니며, 서열번호 1의 아미노산 서열을 포함하는 단백질과 서로 동일 또는 상응하는 활성을 가지는 경우라면 본 출원의 퓨트레신 활성을 갖는 단백질에 해당됨은 당업자에게 자명하다. 구체적인 예를 들어, 본 출원의 퓨트레신 생산 활성을 갖는 단백질은 서열번호 1의 아미노산 서열 또는 이와 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성 또는 동일성을 갖는 아미노산 서열로 구성되는 단백질일 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 변이 대상이 되는 단백질의 범위 내에 포함됨은 자명하다.
즉, 본 출원에서 '특정 서열번호로 기재된 아미노산 서열을 갖는 단백질 또는 폴리펩티드', '특정 서열번호로 기재된 아미노산 서열을 포함하는 단백질 또는 폴리펩티드'라고 기재되어 있다 하더라도, 해당 서열번호의 아미노산 서열로 이루어진 폴리펩티드와 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원에서 사용될 수 있음은 자명하다. 예를 들어, '서열번호 1의 아미노산 서열로 이루어진 폴리펩티드'는, 서열번호 1에 상응하는 서열이거나, 이와 동일 혹은 상응하는 활성을 가지는 서열인 경우라면 '서열번호 1의 아미노산 서열로 이루어진 폴리펩티드'에 속할 수 있음은 자명하다. 예를 들어, 상기 변이형 단백질과 동일 혹은 상응하는 활성을 가지는 경우라면 상기 아미노산 서열 앞뒤에 단백질의 기능을 변경하지 않는 서열 추가, 자연적으로 발생할 수 있는 돌연변이, 이의 잠재성 돌연변이(silent mutation) 또는 보존적 치환을 제외하는 것이 아니며, 이러한 서열 추가 혹은 돌연변이를 가지는 경우에도 본원의 범위 내에 속하는 것이 자명하다.
본 출원에서 용어 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 상기 변이체는 하나 이상의 생물학적 활성을 여전히 보유하면서, 예를 들어 하나 이상의 보존적 치환을 가질 수 있다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 예를 들면, 전하를 띠는 곁사슬(electrically charged amino acid)을 갖는 아미노산 중 양으로 하전된(염기성) 아미노산은 아르기닌, 리신, 및 히스티딘을, 음으로 하전된(산성) 아미노산은 글루탐산 및 아르파르트산을 포함하고; 전하를 띠지 않는 곁사슬(uncharged amino acid)을 갖는 아미노산 중 비극성 아미노산(nonpolar amino acid)은 글리신, 알라닌, 발린, 루신, 이소루신, 메티오닌, 페닐알라닌, 트립토판 및 프롤린을 포함하고, 극성(polar) 또는 친수성(hydrophilic) 아미노산은 세린, 트레오닌, 시스테인, 티로신, 아스파라긴 및 글루타민을 포함하고, 상기 비극성 아미노산 중 방향족 아미노산은 페닐알라닌, 트립토판 및 티로신을 포함한다.
본 출원에서 용어, "변이형(variant)"은 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)에 있어서 상기 열거된 서열 (the recited sequence)과 상이하나, 상기 단백질의 기능(functions) 또는 특성(properties)이 유지되는 단백질을 지칭한다. 변이형은 수 개의 아미노산 치환, 결실 또는 부가에 의해 식별되는 서열(identified sequence)과 상이하다. 이러한 변이형은 일반적으로 상기 단백질의 아미노산 서열 중 하나 이상의 아미노산을 변형하고, 상기 변형된 단백질의 특성을 평가하여 식별될 수 있다. 즉, 변이형의 능력은 본래 단백질(native protein)에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 또한, 일부 변이체는 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거된 변이형을 포함할 수 있다. 다른 변이형은 성숙 단백질 (mature protein)의 N- 및/또는 C-말단으로부터 일부분이 제거된 변이형을 포함할 수 있다. 상기 용어 "변이형"은 변이체, 변형, 변이된 단백질, 변이형 폴리펩티드, 변이 등의 용어(영문 표현으로는 modification, modified protein, modified polypeptide, mutant, mutein, divergent, variant 등)가 사용될 수 있으며, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다. 본 출원의 목적상, 상기 변이형은 천연의 야생형 또는 비변형 단백질 대비 변이된 단백질의 활성이 증가된 것일 수 있으나, 이에 제한되지 않는다.
또한, 변이형은 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 폴리펩티드는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이전(transfer)에 관여하는 단백질 N-말단의 시그널(또는 리더) 서열과 컨쥬게이트 할 수 있다. 또한 상기 폴리펩티드는 폴리펩티드를 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다.
본 출원의 단백질 변이형은 오르니틴 탈탄산 효소 변이형일 수 있다. 본 출원에서 용어, "오르니틴 탈탄산 효소 변이형"는 '변이형 ODC 단백질, ODC 변이형, 변이형 오르니틴 탈탄산 효소, 변이형 오르니틴 디카복실레이즈, 변이형 ODC 단백질, ODC 변이형, 변이형 ODC 효소 단백질, 변이형 ODC 효소' 등과 혼용되어 사용될 수 있다.
상기 변이형은 서열번호 1의 아미노산 서열에서 713번째 및 698번째 아미노산 중 어느 하나 이상의 아미노산이 치환 전 아미노산과 다른 아미노산으로 치환된 것일 수 있다.
상기 '다른 아미노산으로 치환'은 치환 전의 아미노산과 다른 아미노산이면 제한되지 않는다. 예를 들면, 서열번호 1의 아미노산 서열의 713번째 아미노산인 알라닌이 알라닌 이외의 소수성 아미노산, 염기성 아미노산, 산성 아미노산, 중성 아미노산 또는 방향족성 아미노산으로 치환되는 것을 포함할 수 있다. 즉, 서열번호 1의 아미노산 서열의 713번째 아미노산인 알라닌이 알라닌 이외의 다른 아미노산 잔기로, 또는 698번째 아미노산인 글루탐산이 글루탐산 이외의 다른 아미노산 잔기로 치환된 것이라면 제한되지 않는다. 한편, 본 출원에서 '특정 아미노산이 치환되었다'고 표현하는 경우, 다른 아미노산으로 치환되었다고 별도로 표기하지 않더라도 치환 전의 아미노산과 다른 아미노산으로 치환되는 것임은 자명하다.
구체적으로, 상기 변이형은 서열번호 1의 아미노산 서열에서 i) 713번째 아미노산인 알라닌이 다른 아미노산으로 치환, 및/또는 ii) 698번째 아미노산인 글루탐산이 다른 아미노산으로 치환된 변이형일 수 있다. 상기 다른 아미노산으로의 치환은 i) 713번째 아미노산인 알라닌이 루신, 이소루신, 발린, 아르기닌, 아스파르트산, 트립토판 및 글루타민으로부터 선택되는 아미노산으로 치환, 및/또는 ii) 698번째 아미노산인 글루탐산이 아스파르트산으로 치환되는 것일 수 있다. 보다 구체적으로, 상기 변이형은 i) 713번째 아미노산인 알라닌이 루신, 이소루신, 발린, 아르기닌, 아스파르트산, 트립토판 및 글루타민으로부터 선택되는 아미노산으로 치환, 및/또는 ii) 698번째 아미노산인 글루탐산이 아스파르트산으로 치환된 변이형일 수 있다.
서열번호 1의 아미노산 서열에서 i) 713번째 아미노산인 알라닌이 루신, 이소루신, 발린, 아르기닌, 아스파르트산, 트립토판 및 글루타민으로부터 선택되는 아미노산으로 치환, 및/또는 ii) 698번째 아미노산인 글루탐산이 아스파르트산으로 치환된 변이형은 서열번호 4, 서열번호 8, 서열번호 9, 서열번호 19 내지 23 중에서 선택되는 어느 하나의 아미노산 서열을 포함하는 것일 수 있고, 구체적으로는 서열번호 4, 서열번호 8, 서열번호 9, 서열번호 19 내지 23 중 어느 하나의 아미노산 서열로 필수적으로 구성되는(consisting essentially of) 것일 수 있고, 보다 구체적으로는 서열번호 4, 서열번호 8, 서열번호 9, 서열번호 19 내지 23 중 어느 하나의 아미노산 서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다.
상기 변이형은 서열번호 1의 713번째 및/또는 698번째 위치에 상응하는 위치에서 다른 아미노산으로의 치환을 포함하고, 서열번호 1의 아미노산 서열과 적어도 80%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상, 100% 미만의 서열 상동성을 가지며, 퓨트레신 생산 활성을 가지는 것일 수 있다.
또한, 상기 변이형은 서열번호 4, 서열번호 8, 서열번호 9, 및 서열번호 19 내지 23 중 어느 하나의 아미노산 서열 또는 상기 아미노산 서열과 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 본 출원의 변이형은 서열번호 4, 서열번호 8, 서열번호 9, 및 서열번호 19 내지 23 중 어느 하나의 아미노산 서열과 적어도 80%, 90%, 95%, 96%, 97%, 98%, 또는 99% 상동성 또는 동일성을 가지는 폴리펩티드를 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면 713번째 또는 698번째 아미노산 위치 이외에, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 범위 내에 포함됨은 자명하다.
본 출원에서 용어 '상동성(homology)' 또는 '동일성(identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열과 관련된 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90%를 따라 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다(GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol. 48:443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본원에서 사용된 것으로서, 용어 "상동성" 또는 "동일성"은 서열들 간의 관련성(relevance)를 나타낸다.
또한, 임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다.
본 출원에서 용어, "오르니틴 탈탄산 효소의 변이형"은 퓨트레신 생산능을 가지는 오르니틴 탈탄산 효소의 변이형 폴리펩티드, 오르니틴 탈탄산 효소 단백질의 변이형, 오르니틴 탈탄산 효소 단백질의 변이형 폴리펩티드, 오르니틴 탈탄산 효소 변이형 폴리펩티드, 오르니틴 탈탄산 효소의 변이체, 오르니틴 탈탈산 효소 단백질의 변이체, 변이형 오르니틴 탈탄산 효소, 변이형 오르니틴 탈탄산 효소 단백질 등과 혼용되어 사용될 수 있다. 또한 상기 오르니틴 탈탄산 효소는 락토바실러스 속(Lactobacillus sp.), 사카로마이세스 속(Saccharomyces sp.), 또는 대장균(Escherichia coli, E. coli) 유래일 수 있으나, 이에 제한되지 않는다.
상기 오르니틴 탈탄산 효소의 변이형은 서열번호 1의 아미노산 서열에서 713번째 및/또는 698번째 위치에서 변이를 포함할 수 있으며, 서열번호 1에 아미노산이 부가, 결실된 아미노산 서열이라고 해도 서열번호 1의 N-말단으로부터 713번 및/또는 698번 아미노산에 상응하는 위치의 아미노산이 치환된 변이형이면 본 출원의 범위에 포함된다.
아미노산 잔기 위치와 관련하여 본 출원에 기재된 용어 "상응하는(corresponding to)"은, 단백질 또는 펩타이드에서 열거되는 위치의 아미노산 잔기이거나, 또는 단백질 또는 펩타이드에서 열거되는 잔기와 유사하거나 동일하거나 상동한 아미노산 잔기를 지칭한다. 본 출원에 사용된 "상응 영역"은 일반적으로 관련 단백질 또는 레퍼런스 단백질에서의 유사한 위치를 지칭한다.
상기 오르니틴 탈탄산 효소 단백질의 변이형은 서열번호 1의 아미노산 서열에서 713번째 및/또는 698번째 아미노산이 다른 아미노산으로 치환된 것이며, 서열번호 1의 아미노산 서열을 포함하거나 야생형 미생물 유래 변이 전 오르니틴 탈탄산 효소에 비하여 강화된 활성을 갖는 변이형 오르니틴 탈탄산 효소 단백질일 수 있다. 이와 같은 오르니틴 탈탄산 효소 단백질의 변이형은 상기에서 설명한 서열번호 1의 아미노산 서열과 적어도 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성 또는 동일성을 가지는 아미노산에서 서열번호 1의 713번째 또는 698번째에 상응하는 위치의 아미노산이 변이된 것을 의미한다.
상기 713번째 및/또는 698번째 아미노산 변이는 i) 713번째 아미노산인 알라닌이 루신, 이소루신, 발린, 아르기닌, 아스파르트산, 트립토판 또는 글루타민으로 치환, 및/또는 ii) 698번째 아미노산인 글루탐산이 아스파르트산으로 치환되는 것일 수 있다.
구체적으로, 상기 오르니틴 탈탄산 효소의 변이형은 서열번호 1의 아미노산 서열에서 i) 713번째 아미노산인 알라닌이 루신, 이소루신, 발린, 아르기닌, 아스파르트산, 트립토판 또는 글루타민으로 치환, 및/또는 ii) 698번째 아미노산인 글루탐산이 아스파르트산으로 치환된 것일 수 있으며, 상기 서열번호 1의 아미노산 서열을 포함하는 단백질 또는 야생형 미생물 유래 변이 전 오르니틴 탈탄산 효소 단백질에 비하여 강화된 활성을 갖는 것일 수 있다.
본 출원의 목적상 상기 오르니틴 탈탄산 효소 단백질의 변이형을 포함하는 미생물의 경우, 퓨트레신 생산량이 증가하거나, 퓨트레신 순도가 증가하거나, 퓨트레신 생산의 선택성이 증가하는 것을 특징으로 한다. 본 출원의 단백질 변이형은 천연의 야생형 또는 비변이 오르니틴 탈탄산 효소에 비하여 퓨트레신 생산능, 퓨트레신 순도 또는 퓨트레신 생산의 선택성이 증가되도록 유전자 조절 활성을 갖는 것을 특징으로 한다. 특히, 본 출원의 단백질 변이형이 도입된 미생물을 통해 오르니틴 탈탄산 효소의 부반응 중 하나인 카다베린(cadaverine)의 합성을 저해하고 퓨트레신 생산량을 증가시킬 수 있다는 것에 의의가 있다.
본 출원의 다른 하나의 양태는 상기 오르니틴 탈탄산 효소 단백질의 변이형을 코딩하는 폴리뉴클레오티드를 제공한다.
서열번호 1의 아미노산 서열을 포함하는 오르니틴 탈탄산 효소 단백질 및 이의 변이형에 대해서는 전술한 바와 같다.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이체를 코딩하는 폴리뉴클레오티드 단편을 의미한다.
본 출원의 오르니틴 탈탄산 효소의 변이형을 코딩하는 폴리뉴클레오티드는, 본 출원의 퓨트레신 생산 활성을 갖는 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열이라면 제한없이 포함될 수 있다. 본 출원에서 오르니틴 탈탄산 효소 단백질의 아미노산 서열을 코딩하는 유전자는 예를 들어 speC, odc, spe1 또는 speF 유전자일 수 있고, 상기 유전자는 락토바실러스 속, 사카로마이세스 속, 또는 대장균(Escherichia coli, E. coli) 유래일 수 있으나 이로 제한되는 것은 아니다. 또한, 상기 유전자는 서열번호 1, 서열번호 4, 서열번호 8, 서열번호 9, 서열번호 19 내지 23 중 어느 하나의 아미노산 서열을 코딩하는 염기서열일 수 있으며, 보다 구체적으로는 서열번호 10, 서열번호 13, 서열번호 17, 서열번호 18 및 서열번호 24 내지 28 중 어느 하나의 염기서열을 포함하는 서열일 수 있으나, 이에 제한되지 않는다.
구체적으로, 본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 폴리펩티드를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 폴리펩티드의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 서열번호 1의 아미노산 서열에서 713번째 및/또는 698번째 아미노산이 다른 아미노산으로 치환된 오르니틴 탈탄산 효소 단백질의 변이형을 코딩하는 폴리뉴클레오티드 서열이라면 제한 없이 포함할 수 있다.
또한 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 1의 아미노산 서열에서 713번째 및/또는 698번째 아미노산이 다른 아미노산으로 치환된 퓨트레신 생산 활성을 갖는 오르니틴 탈탄산 효소 단백질을 코딩하는 서열이라면 제한없이 포함될 수 있다. 상기 "엄격한 조건(stringent condition)"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 유전자끼리, 40% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성 또는 동일성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃, 1×SSC, 0.1% SDS, 구체적으로는 60℃, 0.1×SSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1×SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).
본 출원의 다른 하나의 양태는 오르니틴 탈탄산 효소 변이형을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 제공한다.
서열번호 1의 아미노산 서열을 포함하는 오르니틴 탈탄산 효소, 이의 변이형 및 상기 폴리뉴클레오티드에 대해서는 전술한 바와 같다.
본 출원에서 사용된 용어 "벡터(vector)"는 적합한 숙주 내에서 목적 폴리펩티드를 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 염색체 내로 삽입할 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
본 출원의 또 하나의 양태로서, 본 출원은 상기 오르니틴 탈탄산 효소 또는 이의 변이형을 포함하거나, 상기 효소를 코딩하는 폴리뉴클레오티드를 포함하여, 퓨트레신을 생산하는 미생물을 제공하는 것이다.
본 출원에서 용어 "변이형 폴리펩티드를 포함하는 미생물", 또는 "오르니틴 탈탄산 효소의 변이형을 포함하는 미생물"이란, 본 출원의 단백질 변이형을 포함하여 퓨트레신을 생산할 수 있는 미생물이라면 모두 가능하나, 이에 제한되지 않는다. 예를 들어, 본 출원의 단백질 변이형을 포함하는 미생물은, 천연의 야생형 미생물 또는 퓨트레신을 생산하는 미생물에 본 출원의 단백질 변이형이 발현되어, 퓨트레신 생산능, 퓨트레신 생산 순도 또는 퓨트레신 생산의 선택성이 증가된 재조합 미생물일 수 있다. 상기 재조합 미생물은, 천연의 야생형 미생물 또는 비변형 미생물에 비하여 퓨트레신 생산능, 생산 순도 또는 퓨트레신 생산의 선택성이 증가된 미생물일 수 있으나, 이에 제한되는 것은 아니다.
구체적으로 상기 미생물은 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 변이를 포함하는 오르니틴 탈탄산 효소의 변이형을 발현하는 미생물로서, 상기 아미노산 변이는 N-말단으로부터 713번째 및/또는 698번째 아미노산의 다른 아미노산으로의 치환을 포함하는 것일 수 있다. 또한, 상기 미생물은 서열번호 1의 아미노산 서열에서 713번째 또는 698번째 아미노산이 다른 아미노산으로 치환되고, 퓨트레신 생산 활성을 갖는, 변이형 폴리펩티드를 발현하는 미생물일 수 있으나 이에 제한되지 않는다.
상기 퓨트레신, 서열번호 1의 아미노산 서열을 포함하는 오르니틴 탈탄산 효소 단백질 및 이의 변이형에 대해서는 전술한 바와 같다.
본 출원에서 용어, 단백질이 "발현되도록/되는"은 목적 단백질이 미생물 내에 도입되거나, 미생물 내에서 발현되도록 변형된 상태를 의미한다. 상기 목적 단백질이 미생물 내 존재하는 단백질인 경우 내재적 또는 변형 전에 비하여 그 활성이 강화된 상태를 의미한다. 본 출원의 목적상 "목적 단백질"은 전술한 퓨트레신 생산능을 갖는 오르니틴 탈탄산 효소 단백질의 변이형일 수 있다.
구체적으로, "단백질의 도입"은, 미생물이 본래 가지고 있지 않았던 특정 단백질의 활성을 나타내는 것 또는 해당 단백질의 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타내는 것을 의미한다. 예를 들어, 특정 단백질을 코딩하는 폴리뉴클레오티드가 미생물 내 염색체로 도입되거나, 특정 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터가 미생물 내로 도입되어 이의 활성이 나타나는 것일 수 있다. 또한, "활성의 강화"는 미생물이 가진 특정 단백질의 내재적 활성 또는 변형 전 활성에 비하여 활성이 향상된 것을 의미한다. 상기 "내재적 활성"은 자연적, 또는 인위적 요인에 의한 유전적 변이로 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주가 본래 가지고 있던 특정 단백질의 활성을 말한다.
구체적으로, 본 출원의 활성 강화는 본 출원의 단백질 변이형을 코딩하는 유전자의 세포 내 카피수 증가, 상기 단백질 변이형을 암호화하는 유전자의 발현 조절 서열에 변이를 도입하는 방법, 오르니틴 탈탄산 효소 단백질 변이형을 암호화하는 유전자 발현 조절 서열을 활성이 강력한 서열로 교체하는 방법, 염색체 상의 오르니틴 탈탄산 효소의 야생형 단백질을 코딩하는 유전자를 상기 단백질 변이형을 암호화하는 유전자로 대체하는 방법, 상기 단백질 변이형의 활성이 강화되도록 상기 오르니틴 탈탄산 효소 단백질을 암호화하는 유전자에 변이를 추가적으로 도입시키는 방법, 및 미생물에 단백질 변이형을 도입하는 방법으로 이루어진 군으로부터 선택되는 어느 하나 이상의 방법으로 이루어질 수 있으나 이에 제한되지 않는다.
상기에서 유전자의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 구체적으로, 본 출원의 단백질을 코딩하는 폴리뉴클레오티드가 작동 가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터가 숙주세포 내에 도입되는 것일 수 있다. 또는, 상기 폴리뉴클레오티드가 작동 가능하게 연결된, 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포의 염색체 내에 도입되는 것일 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있다.
폴리뉴클레오티드의 발현이 증가하도록 발현 조절서열을 변형하는 것은, 특별히 이에 제한되지 않으나, 상기 발현 조절서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현 조절서열은, 특별히 이에 제한되지 않으나, 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.
상기 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 프로모터가 연결될 수 있으며 이에 한정되는 것은 아니다. 공지된 강력한 프로모터의 예에는 cj1 내지 cj7 프로모터(대한민국 등록특허 제10-0620092호), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터(대한민국 등록특허 제 10-1783170호), O2 프로모터(대한민국 등록특허 제10-1632642), tkt 프로모터 및 yccA 프로모터 등이 있으나 이에 한정되는 것은 아니다.
염색체상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.
이와 같은 단백질 활성의 도입 및 강화는, 상응하는 단백질의 활성 또는 농도가 야생형이나 비변형 미생물 균주에서의 단백질의 활성 또는 농도를 기준으로 하여 일반적으로 최소 1%, 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% 또는 500%, 최대 1000% 또는 2000%까지 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 상기 오르니틴 탈탄산 효소의 변이형을 포함하거나, 이를 코딩하는 폴리뉴클레오티드를 포함하는 미생물은 상기 폴리뉴클레오티드를 포함하는 벡터로 형질전환에 의해 제조되는 재조합 미생물일 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.
본 출원의 용어, "비변형 미생물"은 천연형 균주 자체이거나, 본 출원의 단백질 변이형을 포함하지 않는 미생물, 또는 본 출원의 단백질 변이형을 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되지 않은 미생물을 의미한다.
본 출원의 '미생물'은 퓨트레신을 생산할 수 있는 미생물이라면, 원핵 미생물 및 진핵 미생물 어느 것이나 포함될 수 있다.
본 출원에서 용어, "퓨트레신을 생산하는 미생물"은 자연적으로 퓨트레신 생산능을 가지고 있는 야생형 미생물이나, 퓨트레신 생산능이 없거나 현저히 적은 모균주에 야생형 또는 변이형 도입을 통해 퓨트레신 생산능을 가지고 있는 미생물을 의미한다. 구체적으로, 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하여, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 퓨트레신 생산을 위하여 유전적 변이가 일어나거나 활성을 강화시킨 미생물일 수 있다. 본 출원의 목적상 본 출원의 미생물은 본 출원의 단백질 변이형을 포함하여, 목적하는 퓨트레신의 생산능, 생산 순도 또는 퓨트레신 생산의 선택성이 증가된 것일 수 있다. 구체적으로, 본 출원의 미생물은, 퓨트레신 생합성 경로 내 유전자 일부가 강화 또는 약화되거나, 퓨트레신 분해 경로 내 유전자 일부가 강화 또는 약화된 미생물일 수 있다. 본 출원의 목적상 퓨트레신을 생산하는 미생물은 상기 오르니틴 탈탄산 효소의 변이형을 포함하여, 배지 중의 탄소원으로부터 목적하는 퓨트레신을 야생형이나 비변형 미생물과 비교하여 퓨트레신 생산량이 증가하거나, 퓨트레신 순도가 증가하거나, 퓨트레신 생산의 선택성이 증가하는 것을 특징으로 하는 미생물을 의미할 수 있다. 본 출원에서 상기 "퓨트레신을 생산하는 미생물"은 "퓨트레신 생산능을 갖는 미생물" 또는 "퓨트레신 생산 미생물"과 혼용되어 사용될 수 있다.
상기 퓨트레신을 생산하는 미생물은 재조합 미생물일 수 있다. 상기 재조합 미생물은 전술한 바와 같다.
상기 퓨트레신을 생산하는 미생물은 퓨트레신을 생산할 수 있다면 그 종류가 특별히 제한되지 않으나, 구체적으로, 코리네박테리움(Corynebacterium) 속, 에스케리키아(Escherichia) 속, 엔테로박터(Enterbacter) 속, 어위니아(Erwinia) 속, 세라티아(Serratia) 속, 프로비덴시아(Providencia) 속 및 브레비박테리움(Brevibacterium) 속에 속하는 미생물 일 수 있고, 보다 구체적으로, 코리네박테리움(Corynebacterium) 속 또는 에스케리키아(Escherichia) 속에 속하는 미생물일 수 있다.
보다 더욱 구체적으로는, 에스케리키아속(Escherichia) 미생물은 대장균(Escherichia coli)일 수 있으며, 코리네박테리움(Corynebacterium) 속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 스테셔니스(Corynebacterium stationis), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스Cxorynebacterium imitans), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris) 또는 코리네박테리움 플라베스센스(Corynebacterium flavescens) 등일 수 있고, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)일 수 있으나, 오르니틴 탈탄산 효소 단백질이 도입 또는 강화되어 퓨트레신 생산량이 증가되거나, 퓨트레신 순도가 증가되거나, 퓨트레신 생산의 선택성이 증가될 수 있는 코리네박테리움 속 또는 에스케리키아 속에 속하는 미생물은 제한 없이 포함될 수 있다.
본 출원에서 오르니틴 탈탄산 효소 단백질 또는 상기 단백질의 변이형이 발현되도록 변형된 퓨트레신을 생산하는 미생물의 모균주는 퓨트레신을 생산하는 미생물이라면 특별히 제한되지 않는다.
코리네박테리움 속 미생물에는 퓨트레신 생합성 경로가 없지만 외부로부터 오르니틴 디카르복실라아제(ornithine decarboxylase, ODC)를 도입하면 퓨트레신이 합성될 수 있다.
또한, 상기 퓨트레신을 생산하는 미생물은, 특별히 이에 제한되지 않으나, 추가적으로 오르니틴에서 아르기닌 합성에 관여하는 오르니틴 카르바모일 트랜스퍼라아제(ornithine carbamoyltransfrase, ArgF), 글루타메이트의 배출에 관여하는 단백질(NCgl1221)이 불활성화된 것일 수 있다.
또한, 상기 퓨트레신을 생산하는 미생물은, 특별히 이에 제한되지 않으나, 예를 들어 글루타메이트에서 오르니틴까지의 생합성 경로를 강화하기 위해 글루타메이트를 아세틸글루타메이트 (N-acetylglutamate)로 전환하는 아세틸글루타메이트 신타아제 또는 아세틸오르니틴을 오르니틴으로 전환하는 오르니틴 아세틸트랜스퍼라아제(ArgJ), 아세틸글루타메이트를 아세틸글루타밀 포스페이트 (N-acetylglutamyl phosphate)로 전환하는 아세틸글 루타메이트 키나제 (ArgB), 아세틸글루타밀 포스페이트를 아세틸글루타메이트 세미알데히드 (N-acetylglutamate semialdehyde)로 전환하는 아세틸 감마 글루타밀 포스페이트 리덕타아제 (ArgC), 아세틸글루타메이트 세미알데히드를 아세틸오르니틴 (N-acetylornithine)으로 전환하는 아세틸오르니틴 아미노트랜스퍼라아제 (ArgD)의 활성이 내재적 활성에 비하여 강화되어 퓨트레신의 생합성 원료로서 사용되는 오르니틴의 생산성이 향상된 것일 수 있다.
또한, 상기 퓨트레신을 생산하는 미생물은, 특별히 이에 제한되는 것은 아니나, 추가적으로 퓨트레신 아세틸트렌스퍼라아제의 활성이 약화된, 퓨트레신 생산능을 가지는 코리네박테리움 속 미생물일 수 있다. 아울러, 상기 퓨트레신을 생산하는 미생물은, 특별히 이에 제한되는 것은 아니나, 퓨트레신 배출단백질의 활성이 강화된 것일 수 있으나 이에 제한되는 것은 아니다.
본 출원에서, 용어 "강화/증가"는 내재적 활성에 비하여 활성이 증가되는 것을 모두 포함하는 개념이다.
이러한 유전자 활성의 강화 또는 증가는, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 유전자의 세포 내 카피수 증가; 유전자의 발현 조절 서열에 변이를 도입하는 방법; 유전자 발현 조절 서열을 활성이 강력한 서열로 교체하는 방법; 유전자의 활성이 강화되도록 해당 유전자에 변이를 추가적으로 도입시키는 방법; 및 미생물에 외래 유전자를 도입하는 방법으로 이루어진 군으로부터 선택되는 어느 하나 이상의 방법으로 이루어질 수 있으며, 이들의 조합으로도 달성할 수 있으나, 상기 예에 의해 특별히 제한되는 것은 아니다.
본 출원에서 용어, "불활성화"는 내재적 활성에 비하여 활성이 약화되거나 또는 활성이 없는 것을 모두 포함하는 개념이다.
이러한 유전자 활성의 불활성화는, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 상기 유전자의 활성이 제거된 경우를 포함하여 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 해당 단백질의 활성이 감소되도록 돌연변이된 유전자로, 염색체상의 상기 단백질을 코딩하는 유전자를 대체하는 방법; 상기 단백질을 코딩하는 염색체상의 유전자의 발현 조절 서열에 변이를 도입하는 방법; 상기 단백질을 코딩하는 유전자의 발현 조절 서열을 활성이 약하거나 없는 서열로 교체하는 방법(예컨대, 상기 유전자의 프로모터를 내재적 프로모터보다 약한 프로모터로 교체하는 방법); 상기 단백질을 코딩하는 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 상기 염색체상의 유전자의 전사체에 상보적으로 결합하여 상기 mRNA로부터 단백질로의 번역을 저해하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)를 도입하는 방법; 상기 단백질을 코딩하는 유전자의 SD 서열 앞단에 SD 서열과 상보적인 서열을 인위적으로 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착이 불가능하게 만드는 법 및 해당 서열의 ORF(open reading frame)의 3' 말단에 역전사되도록 프로모터를 부가하는 RTE(Reverse transcription engineering) 방법 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 상기 예에 의해 특별히 제한되는 것은 아니다. 본 출원에서 용어, "내재적 활성"은 자연적, 또는 인위적 요인에 의한 유전적 변이로 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주가 본래 가지고 있던 특정 단백질의 활성을 말한다.
본 출원의 또 하나의 양태로서, 상기 퓨트레신을 생산하는 미생물을 배지에서 배양하는 단계를 포함하는 퓨트레신의 생산 방법을 제공한다.
상기 퓨트레신, 서열번호 1의 아미노산 서열을 포함하는 오르니틴 탈탄산 효소, 이의 변이형, 단백질의 발현, 및 미생물에 대해서는 전술한 바와 같다.
본 출원에서 용어, "배양"은 상기 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및 유가식일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, "배지"는 상기 미생물을 배양하기 위해 필요로 하는 영양물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 본 출원의 미생물의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 본 출원의 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.
상기 방법에 있어서, 상기 미생물을 배양하는 단계는, 특별히 이에 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물 (예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물 (예: 인산 또는 황산)을 사용하여 적정 pH (예컨대, pH 5 내지 9, 구체적으로는 pH 6 내지 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있다. 배양온도는 20 내지 45℃, 구체적으로는 25 내지 40℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 제한되는 것은 아니다. 상기 배양에 의하여 생산된 퓨트레신은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산 (예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
본 출원의 상기 배양 단계에서 생산된 퓨트레신을 회수하는 방법은 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 아미노산을 수집할 수 있다. 예를 들어, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 퓨트레신을 회수할 수 있다. 상기 퓨트레신을 회수하는 방법은, 정제단계를 추가 적으로 포함할 수 있다.
본 출원의 또 하나의 양태로서, 상기 퓨트레신을 생산하는 미생물을 배양하는 단계를 포함하는 퓨트레신의 순도를 높이는 방법을 제공한다. 또한, 상기 퓨트레신을 생산하는 미생물을 배양하는 단계를 포함하는, 카다베린에 대한 퓨트레신의 비율을 증가시키는 방법을 제공한다. 상기 퓨트레신 및 미생물에 대해서는 전술한 바와 같다.
본 출원의 또 하나의 양태로서, 상기 퓨트레신을 생산하는 미생물을 배양하여 제조된, 퓨트레신의 폴리아미드 제조를 위한 용도를 제공한다. 또한, 상기 퓨트레신을 생산하는 미생물을 포함하는 폴리아미드 제조용 조성물을 제공한다. 상기 퓨트레신 및 미생물에 대해서는 전술한 바와 같다.
상기 퓨트레신을 생산하는 미생물은 서열번호 1의 폴리펩티드를 포함하거나, 또는 서열번호 1의 a) 713번째, b) 698번째, 또는 c) 713 및 698번째에 상응하는 위치에서 아미노산 치환을 포함하고, 서열번호 1의 폴리펩티드에 적어도 80% 이상, 100 % 미만의 서열 상동성을 갖는 폴리펩티드를 포함하는, 오르니틴 탈탄산효소를 포함하는 미생물을 포함한다. 또한, 상기 퓨트레신을 생산하는 미생물을 배양하는 단계는 서열번호 1의 폴리펩티드를 포함하거나, 또는 서열번호 1의 a) 713번째, b) 698번째, 또는 c) 713 및 698번째에 상응하는 위치에서 아미노산 치환을 포함하고, 서열번호 1의 폴리펩티드에 적어도 80% 이상, 100 % 미만의 서열 상동성을 갖는 폴리펩티드를 포함하는, 오르니틴 탈탄산효소를 포함하는 미생물을 배양하는 단계를 포함한다.
상기 폴리아미드는, 다양한 소재에 활용되는 물질로서, 아미드 결합 간의 수소결합으로 인하여, 내열성, 내약품성 등이 우수하여, 다양한 소재의 재료로 개발되고 있다. 예를 들면, 상기 폴리아미드는 섬유 원료일 수 있으며, 구체적으로는 나일론의 원료 일 수 있다. 폴리아미드 섬유는 고강도, 내마모성, 소프트성, 광택 특성, 염색 선명성 등에 있어서 우수한 특징을 갖고 있어, 팬티 스타킹 등의 레그 웨어(leg wear), 이너 웨어(inner wear), 스포츠 웨어(sports wear) 등의 의류 제품에 사용될 수 있다. 또한, 상기 폴리아미드는 의약품, 계면활성제, 필름, 플라스틱 등의 원료 일 수 있다. 예를 들면, 폴리아미드를 이용하여 필름을 제조하는 경우, 우수한 광학적 물성 및 기계적 물성을 구현할 수 있는 동시에, 유연성까지 구비하게 되어, 다양한 성형품의 재료로 사용될 수 있으며, 상기 폴리아미드 필름은 디스플레이용 기판, 디스플레이용 보호 필름, 터치 패널, 폴더블 기기의 윈도우 커버 등에 적용될 수 있다.
본 출원의 오르니틴 탈탄산 효소는, 퓨트레신 생산성 또는 생산 효율을 증대시키고, 부반응을 억제하는 효과가 있다. 특히, 본 출원은 오르니틴 탈탄산 효소의 부반응 중 하나인 카다베린의 합성을 저해하는 효과가 있어, 퓨트레신 정제/분리 공정의 간편화 및 생산 비용 절감의 효과를 달성한다.
또한, 본 출원은, 퓨트레신 대량생산을 통해 고분자 전구체, 의약품, 화학 첨가제 등의 다양한 활용이 가능하다.
도 1은 본 출원에서 오르니틴을 기질로 하여 오르니틴 탈탄산 효소를 이용한 퓨트레신 합성 도식도를 나타낸다. 또한 억제해야 할 오르니틴 탈탄산 효소의 부반응인 카다베린 합성 경로를 나타낸다.
도 2는 다양한 유래의 오르니틴 탈탄산 효소 활성을 확인한 것으로, 오르니틴을 기질로 사용하였을 때의 반응성 및 라이신을 기질로 사용하였을 때의 반응성(부반응)의 상대적인 활성도를 나타낸다. ODC_Lb 는 Lactobacillus saerimneri (inducible)로부터, ODC_Sc 는 saccharomyces cerevisiae (inducible) 로부터, ODC_Ec는 E.coli (constitutive) 로부터, ODC_Ef 는 E.coli (inducible) 로부터 유래된다.
도 3은 정제된 락토바실러스 유래의 야생형 오르니틴 탈탄산 효소와, 야생형 오르니틴 탈탄산 효소의 696 번째의 알라닌이 글루탐산으로(A696E), 야생형 오르니틴 탈탄산 효소의 702 번째의 발린이 글라이신으로(V702G), 야생형 오르니틴 탈탄산 효소의 713번째의 알라닌이 루신으로(A713L), 야생형 오르니틴 탈탄산 효소의 696 번째 알라닌과 713번째의 알라닌이 글루탐산과 루신으로(A696E/A713L), 야생형 오르니틴 탈탄산 효소의 702 번째의 발린과 713번째의 알라닌이 글라이신과 루신으로(V702G/A713L), 야생형 오르니틴 탈탄산 효소의 696 번째 알라닌과 702 번째의 발린과 713번째의 알라닌이 글루탐산과 글라이신과 루신으로(A696E/V702G/A713L), 야생형 오르니틴 탈탄산 효소의 698 번째의 글루탐산이 아스파르트산으로(E698D), 야생형 오르니틴 탈탄산 효소의 698 번째의 글루탐산과 713번째의 알라닌이 아스파르트산과 루신으로 치환된 변이형(E698D/A713L)를 이용하여, (가) 오르니틴 고유 활성도와 (나) 라이신 고유 활성도 각각을 정량 후 비교한 도면이다.
도 4는 정제된 락토바실러스 유래의 야생형 오르니틴 탈탄산 효소와 야생형 오르니틴 탈탄산 효소의 698 번째의 글루탐산이 아스파르트산으로(E698D), 야생형 탈탄산 효소의 713번째의 알라닌이 루신으로(A713L), 야생형 오르니틴 탈탄산 효소의 698 번째의 글루탐산과 713번째의 알라닌이 아스파르트산과 루신으로 치환된 변이형(E698D/A713L)을 이용하여 라이신과 오르니틴에 대한 동력학적 계수를 비교한 도면이다.
도 5는 다양한 조건에서 생전환 반응을 비교한 도면이다. (가) 오르니틴 기질로 퓨트레신 합성을 정량하였고, 정제된 락토바실러스 유래의 야생형 오르니틴 탈탄산 효소를 0.37 M 농도 버퍼에서 반응했을 때 (● 참조), 야생형 오르니틴 탈탄산 효소의 713번째의 알라닌이 루신으로 치환된 변이형을 0.37 M 농도 버퍼에서 반응했을 때 (○ 참조), 야생형 오르니틴 탈탄산 효소를 0.1 M 농도 버퍼에서 반응했을 때 (◆ 참조), 야생형 탈탄산 효소의 713번째의 알라닌이 루신으로 치환된 변이형을 0.1 M 농도 버퍼에서 반응했을 때 (◇ 참조)의 도면이다. (나) 라이신을 기질로 카다베린 합성을 정량하였고, 정제된 락토바실러스 유래의 야생형 오르니틴 탈탄산 효소를 0.37 M 농도 버퍼에서 반응했을 때 (● 참조), 야생형 오르니틴 탈탄산 효소의 713번째의 알라닌이 루신으로 치환된 변이형을 0.37 M 농도 버퍼에서 반응했을 때 (○ 참조), 야생형 오르니틴 탈탄산 효소를 0.1 M 농도 버퍼에서 반응했을 때 (◆ 참조), 야생형 오르니틴 탈탄산 효소의 713번째의 알라닌이 루신으로 치환된 변이형을 0.1 M 농도 버퍼에서 반응했을 때 (◇ 참조)의 도면이다.
도 6은 4가지 균주로부터 유래된 재조합 오르니틴 탈탄산 효소 유전자의 발현량을 나타낸 것이다. ODC_e.coli_SpeC는 E.coli (constitutive) 로부터, ODC_e.coli_SpeF는 E.coli (inducible)로부터, ODC_LactobacillusLactobacillus saerimneri (inducible)로부터, ODC_ saccharomyces cerevisiaesaccharomyces cerevisiae(inducible)로부터 유래된다.
이하 본 출원을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로, 본 출원의 범위가 이들 실시예에 의해 제한되는 것은 아니며, 본 출원이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
실시예 1. 다양한 유래의 오르니틴 탈탄산 효소의 활성 비교 수행
네 가지 미생물로부터 유래하는 오르니틴 탈탄산 효소의 기질 반응성을 비교하였다. 락토바실러스 새림네리(Lactobacillus saerimneri (inducible)), 사카로마이세스 세레비제(saccharomyces cerevisiae (inducible)), 이콜라이(E.coli (constitutive)), 이콜라이(E.coli (inducible))로부터 유래된 야생형의 오르니틴 탈탄산 효소를 대상으로 하였으며, 이를 각각 ODC_Lb, ODC_Sc, ODC_Ec, ODC_Ef 로 표기하였다. 상기 효소에 해당하는 유전자를 pET24ma 벡터에 삽입 후, 대장균 BL21 (DE3)을 이용하여 0.1 mM IPTG 및 18℃ 조건에서 단백질을 발현하였다. 이후 10% 세포 추출물을 이용하여 45℃에서 초기 반응 속도를 비교하였다. 기질로 4 mM 오르니틴을 사용한 경우와 4 mM 라이신을 사용한 경우를 각각 비교하였다.
도 2에 상기 네 가지 미생물 유래의 ODC 효소의 활성을 나타내었다. 구체적으로, 오르니틴을 기질로 사용하여 퓨트레신을 생산한 것인 오르니틴 탈탄산 효소 활성과, 라이신을 기질로 사용하여 카다베린을 생산한 것인 라이신 탈탄산 효소 활성을 나타내었다. 라이신 탈탄산 효소 활성은 모두 비슷하였으나, 오르니틴 탈탄산 효소 활성은 락토바실러스 유래의 오르니틴 탈탄산 효소(ODC_Lb)가 가장 우수하였다. 즉, ODC_Lb에 있어서, 오르니틴 탈탄산 효소 활성에 대한 라이신 탈탄산 효소 활성, 즉 부반응의 생성 비율이 가장 낮게 나타나므로, 이와 같은 내용을 바탕으로 변이형 제작을 수행하였다.
실시예 2. 오르니틴 탈탄산 효소의 변이 위치의 선택
락토바실러스 오르니틴 탈탄산 효소는 결정구조가 알려져 있고, 구조분석을 통하여 기질이 효소에 들어가고 나오는 터널 예측이 가능하다. 예측된 터널 부분 중, 포화 변이를 수행할 기능적 잔기(functional residues)를 선택하기 위해서, 생물정보학의 서열정보를 이용한 다수 서열 정렬(multiple sequence alignment)을 수행하였으며, 본 발명에서 이용하는 오르니틴 탈탄산 효소 아미노산 서열의 N 말단으로부터 A696, V702, A713, E698의 위치를 변이 위치로 선정하였다.
단백질 구조 내에 특정 위치의 아미노산 잔기를 보존하고 있는 잔기는 그 단백질에 있어서 구조와 기능상 매우 중요한 역할을 하고, 특히 촉매과정에 있어서 직접적인 역할을 할 가능성이 높기 때문에, 이들은 변이 잔기로서 배제하였다.
실시예 3. 오르니틴 탈탄산 효소의 기능적 잔기에 대한 포화 변이 수행 및 변이형 탐색
포화 변이(saturation mutagenesis)는 유전자의 지정된 위치에 다양한 염기배열의 변화를 도입하는 것을 말한다. 포화 변이는 주형가닥에 결합하는 상보적인 서열의 프라이머(primer) 상에, 변이시키고자 하는 서열대신 NNK 코돈(codon)을 삽입하여 PCR을 통해 변이를 삽입시키는 것을 말한다. 이 때, NNK 코돈에서 N은 뉴클레오티드의 A, T, G, C를 의미하며 K는 T, G를 의미한다.
선택된 기능적 잔기들에 대해 NNK 코돈을 사용하여 포화 변이를 수행한 후, 변이형 라이브러리에 대해 스크리닝을 수행하였다. 모든 라이브러리는 1차 및 2차 스크리닝을 전세포 반응을 통해 진행하였다. 상기 전세포 반응은 특정 효소를 포함하는 세포를 파쇄하여 세포 내용물을 이용하거나 또는 효소를 분리 정제하지 않고 온전한 세포 전체를 이용한 반응을 의미한다. 1차 스크리닝은 오르니틴 전세포 반응을 통해 진행되었으며 야생형과 비교했을 때, 비슷하거나 더 빠른 활성을 보이는 변이형들을 흡광도의 변화로 선택하였다. 2차 스크리닝은 라이신 전세포 반응을 통해 진행되었고, 1차에서 선별된 변이형들에 대해, 라이신에 대한 반응성이 야생형보다 낮으면 선택하였다.
선별된 변이형 효소에 대하여, 오르니틴 또는 라이신을 기질로 사용하였을 때의 고유 활성도를 측정하였다. 고유 활성도(specific activity)는 효소정제를 통해 불순물 및 다른 단백질을 제거한 순수한 단백질의 단위량당 활성을 나타내는 것으로 보통 1분간에 1 μmol의 기질 변화를 촉매하는 효소의 양을 1단위로 하여 1 mg당 단위수로 표시한다. 구체적으로, 락토바실러스 유래 야생형 및 변이형의 오르니틴 탈탄산 효소를 대장균 BL21 (DE3)에 형질전환하여 50 mL의 배양 부피로 인듀서인 IPTG를 이용하여 발현한 이후, Ni-NTA 컬럼을 이용하여 순수 단백질만을 정제하였다. 먼저 단백질 발현 이후, 음파 파쇄기로 세포를 파쇄하고, 원심분리 후 세포 추출액을 얻었다. 300 mM 염화나트륨이 첨가된 50 mM 포스페이트(phosphate) 완충용액(pH8.0)으로 평형화 시킨 컬럼에 세포 추출액을 넣어 0℃에서 1 시간 동안 니켈 수지(resin)와 결합을 시켰다. 이후 수지에 결합하지 못한 단백질을 흘려버리고 50 mM 이미다졸이 포함된 트리스 완충용액으로 비특이적으로 결합된 다른 단백질들을 제거하였다. 마지막으로 250 mM 이미다졸이 포함된 트리스 완충용액으로 원하는 단백질만을 용출하였다. 용출된 단백질에서 이미다졸을 제거하기 위해 여과 컬럼을 이용한 탈염과정을 수행하여 최종적으로 활성 있는 단백질만을 얻었다. 이후 브래드포드 (Bradford) 단백질 정량 키트를 사용하여 단백질량을 측정하고 동일한 양의 단백질을 사용하여 고유 활성도를 측정하였다.
오르니틴 또는 라이신을 기질로 사용하였을 때의 락토바실러스 유래 야생형 및 변이형의 오르니틴 탈탄산 효소의 고유 활성도는 HPLC(High-performance liquid chromatography) 분석기법을 통해 측정하였다. 반응은 50℃에서 30분 내지 300분간 수행하여 세 번의 실험의 평균값으로 구하였다. 10% 내지 25%의 전환 수율을 나타냈을 때의 초기 반응속도를 측정하였다. 양이온 교환 컬럼을 사용하였고 이동상은 0.6 g/L 시트르산, 4 g/L 타르타르산, 1.4 g/L 에틸다이아민, 5% 메탄올 및 95% 물로 구성하였다. 사용된 pH의 버퍼 용액은 pH 5.0의 경우 시트레이트 완충액 (citric-sodium citrate buffer)를 사용하였다. 야생형 및 변이형의 오르니틴 탈탄산 효소의 고유 활성도는 도 3에 나타내었다.
도 3(a) 및 도 3(b)에 나타나 있는 바와 같이, 야생형 및, 변이형(A696E, V702G, A713L, A696E/A713L, V702G/A713L, A696E/V702G/A713L, E698D 및 E698D/A713L) 효소의 고유 활성도를 확인한 결과, 상기 기능적 잔기들(A696, V702, A713, E698)은 모두 활성부위 (active site) 또는 기질 접근 터널에 위치하는 것을 확인하였다.
구체적으로, 오르니틴을 기질로 사용하였을 때, 변이형(A696E, V702G, A713L, A696E/A713L, V702G/A713L, A696E/V702G/A713L, E698D, E698D/A713L)의 고유 활성도는 야생형의 고유 활성도에 대하여 각각 19.9%, 4.3%, 89.4%, 12.8%, 4.9%, 0.1%, 75.6%, 74.4%로 확인되었다(도 3의 (가)).
라이신을 기질로 사용하였을 때, 변이형(A696E, V702G, A713L, A696E/A713L, V702G/A713L, A696E/V702G/A713L, E698D, E698D/A713L) 효소의 고유 활성도는 야생형 효소의 고유 활성도에 대하여 각각 16.9%, 0.6%, 42.4%, 4.4%, 0.9%, 0.7%, 50.8%, 29.2%로, 부반응이 억제되는 것을 확인하였다(도 3의 (나)).
실시예 4. 오르니틴 탈탄산 효소의 기능적 잔기에 대한 동력학적 계수 확인
상기 실시예 3에서 사용된 오르니틴 탈탄산 효소의 변이형 중, 70% 이상의 고유 활성도를 갖는 변이형인 A713L, E698D, 및 E698D/A713L의 특성을 더 면밀하게 확인하고자 하였다. 상기 변이형 및 야생형의 동력학적 계수(Kinetic parameter)를 비교하기 위해서 다양한 농도 조건의 라이신을 이용하였다. 동력학적 계수는 서로 다른 농도를 지닌 기질용액을 이용하여 효소의 기질 친화도 및 기질 전환 능력 수치를 나타낸다.
구체적으로, 단백질 정제를 마친 야생형 및 변이형의 오르니틴 탈탄산 효소의 라이신에 대한 동력학적 계수를 확인하기 위해 0.45 mM 내지 140 mM의 라이신 농도를 사용하였다. pH의 버퍼 용액은 pH 5.0 시트레이트 완충액(citric-sodium citrate buffer)을 사용하였고, 반응 부피는 200 ㎕에서 진행하였다. 분석은 상기 명시된 HPLC 분석 방법을 통해 진행하였으며, 세 번의 실험의 평균값으로 구하였다. 야생형 및 변이형의 라이신 탈탄산 효소의 동력학적 계수는 도 4에 나타내었다.
도 4에 나타낸 바와 같이, 야생형에 비하여 변이형(A713L)의 라이신에 대한 kcat 값이 2.16 배 낮아진 것을 확인하였다. kcat 값의 감소로 인하여 변이형(A713L)의 라이신에 대한 kcat / KM 값이 야생형에 비하여 1.93 배 줄어든 것을 확인하였다. 결론적으로 변이형(A713L)이 라이신 탈탄산 효소 활성을 줄일 수 있음을 확인하였다. 변이형 E698D 및 E698D/A713L 역시 야생형에 비하여 라이신에 대한 kcat 값이 2.08 배와 2.59 배로 각각 줄어드는 것을 확인하였으며, 라이신에 대한 kcat / KM 값이 1.28 배 및 1.67 배 감소되는 것을 확인하였다. 즉, 상기 변이형들은 부반응을 저감시킬 수 있음을 확인하였다.
실시예 5. 변이형 오르니틴 탈탄산 효소의 특성 분석
변이형 중, 가장 높은 오르니틴 고유 활성도를 가지는 변이형인 오르니틴 탈탄산 효소(A713L)가 퓨트레신 또는 카다베린 생성에 미치는 영향을 알아보고자 하였다. 높은 농도 51.5 g/L (0.39 M)의 오르니틴을 기질로서 사용한 경우와, 농도 2.57 g/L (17.6 mM)의 라이신을 기질로서 사용한 경우를 각각 진행하였다. 두 가지 기질 조건에서 반응을 진행함에 있어 알맞은 반응 조건을 잡기 위해, pH 를 적정해주는 버퍼 농도를 두 가지 조건(0.1 M 또는 0.37 M)에서 진행하였다.
구체적으로, 단백질 정제를 마친 야생형 및 변이형 효소 0.1 mg을 반응에 사용하였다. 기질로서 0.39 M의 오르니틴 또는 17.6 mM의 라이신을 사용하였고, 버퍼로서 0.1 또는 0.37 M의 시트레이트 완충액 (citric-sodium citrate buffer, pH 5.0)을 사용하였다. 0.1 mM PLP 조효소가 사용되었고, 반응은 50℃에서 진행되었으며, 반응 부피는 2 mL로 진행하였다. 이에 대한 결과는 도 5에 나타내었다.
도 5의 (가)는 51.5 g/L (0.39 M)의 오르니틴을 기질로 사용한 경우이다. 오르니틴을 퓨트레신으로 변환하는 경우 0.37 M의 버퍼를 사용하였을 때(도 5의 (가)의 ● 및 ○ 참조), 4시간 이후 야생형 및 변이형(A713L)에서 퓨트레신을 각각 33.0 g/L 및 31.6 g/L 생성하였다. 또한, 낮은 농도의 버퍼(0.1 M)를 사용하였을 때(도 5의 (가)의 ◆ 및 ◇ 참조), 7시간 후 야생형 및 변이형(A713L)은 각각 퓨트레신을 20.2 g/L 및 20.7 g/L 생성하였다. 야생형 및 변이형(A713L)의 퓨트레신 생산 능력이 비슷한 것을 확인하였고, 고농도 버퍼(0.37 M)를 사용하는 것이 반응성에 유익한 것을 확인하였다.
도 5의 (나)는 2.57 g/L (17.6 mM)의 라이신을 기질로 사용한 경우이다. 라이신을 카다베린으로 변환하는 경우 0.37 M의 버퍼를 사용하였을 때(도 5의 (나)의 ● 및 ○ 참조), 4시간 후 야생형 및 변이형(A713L)에서 각각 0.03 g/L 및 0.007 g/L의 카다베린을 생성하였다. 또한, 0.1 M의 버퍼를 사용하였을 때(도 5의 (나)의 ◆ 및 ◇ 참조), 카다베린이 생성되는 부반응이 증가하였고, 7시간 후 야생형 및 변이형(A713L)에서 각각 0.59 g/L 및 0.38 g/L의 카다베린을 부반응으로 생성하였다. 이로써 변이형(A713L)에서 카다베린을 생성하는 부반응이 억제되는 것을 확인하였고, 이 부반응 억제 효과는 높은 농도의 버퍼(0.37 M)를 사용할 때 더 두드러지는 것을 확인하였다.
실시예 6. 코리네 균주에서 재조합 ODC 유전자들의 발현량 비교 측정
실시예 1에서 언급된 네 가지 미생물 유래 오르니틴 탈탄산 효소 ODC_Lb, ODC_Sc, ODC_Ec, ODC_Ef를 발현시키기 위한 재조합 유전자의 제작 방법은 다음과 같다.
구체적으로, Lactobacillus saerimneri (ACCESSION no. P43099), Saccharomyces cerevisiae (ACCESSION no. J02777.1), 및 Escherichia coli str. K-12 (ACCESSION no.BAA35349) 유전체 정보를 이용하여 오르니틴 탈탄산 효소 유전자들을 표 1에 명기된 유전자 서열로 PCR에 의한 유전자 코딩 영역 증폭 후, PCR 생성물에 제한 효소를 처리하여 플라스미드에 삽입하였다.
Figure PCTKR2019018404-appb-T000001
재조합된 유전자들은 단백질 C-말단에 His-tag을 추가 번역할 수 있도록 제작하였다. 대장균 DH5 alpha를 DNA 조작을 위한 숙주 균주로 사용하였고, 대장균 BL21 (DE3)을 C-말단 His6- 태그 ODC 유전자 발현을 위한 숙주 균주로 사용하였다. 재조합 대장균 BL21을 50 mg/mL의 카나마이신을 함유하는 50mL LB 배지에서 37℃에서 성장시켰다. 배양액이 OD600 조건에서 0.8에 도달했을 때, 0.2 mM IPTG를 배양액에 첨가하였다. 18 - 30℃에서 단백질 발현을 유도한 후, 세포를 수확하였다. 세포를 용해 완충액에 재현탁하고 초음파 처리하여 세포를 파괴시켰다. 얻어진 재조합 ODC들을 4℃에서 Quiagen (Hilden, Germany)의 Ni-NTA 아가로스 수지로 정제하였다. 재조합 단백질들은 100 kDa의 분자 질량 컷오프(cut off)와 함께 Centriplus YM-30(Millipore, Bedford, MA)을 사용하여 수득하였다. 발현 결과는 도 6과 같다.
SDS-PAGE gel상에서 30℃ 발현 유도 조건의 결과를 분석하면 재조합 ODC_Lb와 ODC_Ec의 발현량이 ODC_Sc, ODC_Ef 대비 높은 것을 확인할 수 있다. 다만 ODC_Ec의 경우 중온 조건 발현 시 가용성 단백질량이 현저히 떨어지는 것이 확인되었다. 추가적으로, 37℃ 발현을 진행하였을 때, ODC_Ec의 가용성 단백질량은 더욱 감소하였다.
코리네 균주에서 ODC_Lb와 ODC_Ec 유전자를 발현시켜서 가용성 단백질로 발현되는 양을 비교 평가하고자 하였다. ODC_Lb 유전자 및 ODC_Ec 유전자의 개시코돈 앞에 CJ7 프로모터(KCCM10617, 대한민국 등록특허 제10-0620092호)를 도입하였다. 우선 CJ7 프로모터 서열을 포함하는 유전자를 얻기 위하여 코리네박테리움 글루타미쿰 ATCC13032의 게놈 DNA를 주형으로 표 2의 명기된 프라이머 쌍을 이용한 PCR을 수행하였다. PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하여 실시하였다.
Figure PCTKR2019018404-appb-T000002
1.5% 아가로즈젤을 이용하여 전기영동 후 400 basepair (bp)의 크기를 가지는 PCR 핵산 결과물을 확인하였다. 얻어진 PCR 결과물은 PCR prep kit (GeneAll, 서울)를 이용하여 정제하였다. 정제된 PCR 산물과 pSCEC 벡터 용액 샘플에 BamHI과 XbaI 을 넣고 37℃, 4시간 반응으로 제한효소 처리하고 1.5% 아가로즈젤을 이용하여 전기영동 후 400 bp의 크기를 가지는 PCR 핵산 산물 밴드와 벡터 사이즈의 밴드를 cutting 후 Gel prep kit (GeneAll, 서울)를 이용하여 핵산 단편들을 수득하였다. 정제된 각 1 mg의 CJ7 프로모터 단편과 벡터를 T4 ligase를 이용하여 ligation 후 E. coli DH5 alpha 균주에 일렉트로포레이션 (electrophoration) 하였다. 일렉트로포레이션은 2500V로 가하였다. 회수된 균주를 50 ㎍/L 스펙티노마이신(spectinomycin)을 포함한 LB 평판배지에 도말하여 37℃에서 1일 배양한 후 내성을 보이는 균주를 선별하였다. 18개의 균주를 선별하여 서열번호 9 및 10으로 콜로니 PCR 후 400bp 의 크기를 가지는 PCR 결과물을 확인할 수 있었다. 콜로니 PCR 결과로부터 CJ7 프로모터를 가지는 pSCEC_cj7의 제작을 확인하였다.
얻어진 pSCEC_cj7 벡터를 기반으로 표 3에 명기된 프라이머를 이용하여 ODC_Lb와 ODC_Ec 2개의 유전자를 PCR을 통해서 증폭하였다.
Figure PCTKR2019018404-appb-T000003
상기 얻어진 PCR 산물 및 pSCEC_cj7 벡터를 제한 효소 XbaI과 SalI으로 처리하였다. 제한 효소 처리된 핵산들을 gel prep 하여 ODC_Lb, ODC_Ec 그리고 pSCEC_cj7 핵산 단편을 ligation 하고 E. coli DH5 alpha 균주에 삽입하였다. 삽입이 확인된 선별된 균주로부터 pSCEC_cj7_ODC_Lb 및 pSCEC_cj7_ODC_Ec를 각각 수득하고 퓨트레신 생산 코리네박테리움 속 미생물 KCCM11240P에 2500V로 각각 일렉트로포레이션(electrophoration) 하였다.
50 ㎍/L 스펙티노마이신(spectinomycin)을 포함한 BHIS 평판 배지(Braine heart infusion 37 g/l, 소르비톨 91 g/l, 한천 2%)에 상기 균주를 도말하여 배양함으로써 콜로니를 형성시켰다. 상기 선별된 균주가 50 ㎍/L 스펙티노마이신(spectinomycin)을 포함한 CM 배지(glucose 10 g/L, polypeptone 10 g/L, yeast extract 5 g/L, beef extract 5 g/L, NaCl 2.5 g/L, Urea 2 g/L, pH 6.8)에서 진탕배양이 가능함을 확인하였다. 제작된 2종의 코리네박테리움 글루타미쿰 변이주를 3 mL 배양 후, 원심분리하여 균체를 확보하였다. 얻어진 균체를 초음파 처리 방법으로 세포 파쇄 후 원심분리하여 가용성 단백질이 포함된 용액을 확보하였다.
Ni-NTA Spin Columns(Hilden, Germany)을 이용하여 His-tag이 포함된 ODC_Lb, ODC_Ec 단백질을 각각 정제하였다. Nano drop을 이용하여 수득하여 단백질의 농도를 측정하였다. 측정값 기반으로 계산된 재조합 단백질 농도는 각각 ODC_Lb: 1.282g/L, ODC_Ec: 0.039 g/L로, 코리네 균주에서 ODC_Ec에 비하여 ODC_Lb가 30배 이상의 가용성 단백질을 확보하는 것을 확인하였다.
ODC_Lb는 중온 조건에서 대장균과 코리네 균주를 숙주로 사용하여 발현시킬 때 높은 발현량과 정상적인 단백질 접힘으로 높은 가용성 단백질 생산이 가능함을 확인할 수 있었다.
실시예 7. 변이형 오르니틴 탈탄산 효소가 도입된 코리네형 퓨트레신 생산 균주 제조 및 퓨트레신 생산능 측정
본 출원의 오르니틴 탈탄산 효소 변이형이 퓨트레신 생산에 미치는 영향을 알아보기 위해, 퓨트레신 생산능이 향상된 코리네박테리움 속 미생물에 상기 오르니틴 탈탄산 효소 변이형을 도입한 균주를 제작하였다.
구체적으로, 상기 퓨트레신 생산능이 향상된 코리네박테리움 속 미생물로, 특허출원 (한국특허공개 제 2013-0082478호)에 개시된 퓨트레신 생산능을 갖는 코리네박테리움 속 미생물(KCCM11240P)이 사용되었다. 상기 퓨트레신 생산능을 갖는 코리네박테리움 속 미생물(KCCM11240P)은, 코리네박테리움 글루타미쿰 ATCC13032 으로부터 제조된 미생물 (ATCC 13032 ΔargF ΔNCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)-speC(Ec): KCCM11138P (한국특허공개 제2012-0064046호)) 내 NCgl1469가 결손된 미생물이다.
상기 퓨트레신 생산 미생물 내 오르니틴 탈산산 효소를 상기 락토바실러스 유래의 락토바실러스 유래의 오르니틴 탈탄산 효소 변이형으로 치환하기 위한 벡터를 제작하였다. 보다 구제적으로는, 상기 실시예 1 및 3에서 제작한 락토바실러스 유래의 오르니틴 탈탄산 효소 변이형의 DNA를 하기 표 4에 개시한 ODC_Lb_start (EcoRV)_5, ODC_Lb_stop (MfeI)_3 프라이머를 이용하여 증폭하였다. 구체적으로는, 상기 제작한 pET24ma 벡터에 야생형 및 변이형(E698D, A713L)의 락토바실러스 오르니틴 탈탄산 효소를 삽입하여 이를 각각 주형으로 하고, 하기 표 4에 개시한 L-odc_start (EcoRV)_5, L-odc_stop (MfeI)_3 두 개의 프라이머를 사용하여 PCR을 수행하였다.
Figure PCTKR2019018404-appb-T000004
PCR 증폭을 통해 얻은 유전자 단편들은 EcoRV와 MfeI 제한효소로 처리(37℃, 3시간)하고, 특허공개 제2012-0064046호에 개시된 방법과 동일한 방법을 이용하여 제작한 pDZ-bioAD-P(CJ7) 벡터에 락토바실러스 유래 야생형 및 변이형 (E698D, A713L) 오르니틴 탈탄산 효소들의 유전자 단편을 삽입하였다. 상기 방법에는 EcoRV와 MfeI 제한효소가 사용되었다. 상기 방법으로 제작된 염색체 삽입용 재조합 벡터(pDZ-ODC_Lb, pDZ-ODC_Lb_E698D, pDZ-ODC_Lb_A713L)는 서열분석으로 확인하였다.
락토바실러스 유래 야생형 및 변이형 오르니틴 탈탄산 효소들이 염색체 내에 삽입된 코리네 균주를 얻기 위해, 상기에서 제작된 pDZ-ODC_Lb, pDZ-ODC_Lb_E698D, pDZ-ODC_Lb_A713L 재조합 벡터 각각을 KCCM11240P 균주에 전기 천공법을 이용하여 형질주입한 뒤 BHIS 평판배지(brainheart infusion 37 g/l, sorbitol 91 g/l, agar 2%, 1L 기준 +kanamycin 25 ㎍/ml)에 도말하였다.
성공적인 벡터의 염색체 내 삽입은 X-gal(5-브로모-4-클로로-3-인돌릴-β-D-갈락토시드)을 포함한 고체 배지에서 푸른색을 나타내는가의 여부로 판별하였다. 1차 염색체 삽입된 균주를 영양배지에서 진탕배양 (30℃, 8시간)한 후, 각각 serial dilution하여, X-gal을 포함하고 있는 고체배지에 도말하였다. 대부분의 콜로니가 푸른색을 띠는 반면에 낮은 비율로 백색의 콜로니를 선별할 수 있었고, 선별한 콜로니는 2차 교차 (cross over)에 의해 최종 락토바실러스 오르니틴 탈탄산 효소 변이형들이 염색체에 도입된 균주를 얻을 수 있었다. 최종적으로 균주는 변이형들의 서열분석에 의해 확인하였다. 확인된 균주를 KCCM11240P::ODC_Lb, KCCM11240P::ODC_Lb_E698D, KCCM11240P::ODC_Lb_A713L 로 명명하였다.
락토바실러스 유래 야생형 및 변이형 오르니틴 탈탄산 효소 도입으로 인한 퓨트레신 생산 균주의 퓨트레신 생산능의 영향을 확인하기 위하여, 퓨트레신 생산능을 평가하였다.
구체적으로, 상기에서 제작된 균주들을 1 mM 아르기닌이 포함된 CM 평판배지 (포도당 1%, polypeptone 1%, 효모추출물 0.5%, beef extract 0.5%, NaCl 0.25%, urea 0.2%, 50% NaOH 100㎕, agar 2%, pH 6.8, 1L 기준)에서 30℃로 16시간 배양한 후, 하기 표 5의 조성을 가지는 25 ml 역가배지에 한 백금이 정도 접종한 다음, 이를 30℃에서 200 rpm으로 24시간 동안 진탕배양 하였다. 제작된 모든 균주에 대하여 발효시 배지에 1 mM 아르기닌을 첨가하여 배양하였다.
Figure PCTKR2019018404-appb-T000005
그 결과 표 6에서 보는 바와 같이, 배양 12시간 후 락토바실러스 유래 변이형(A713L) 오르니틴 탈탄산 효소를 도입한 균주에서, 대장균 오르니틴 탈탄산 효소를 갖는 균주(KCCM11240P) 대비 퓨트레신 생산량이 약 115%P만큼 증가하였다. 또한, A713L 오르니틴 탈탄산 효소를 도입한 균주에서 락토바실러스 유래 야생형 오르니틴 탈탄산 효소를 갖는 균주(KCCM11240P::ODC_Lb) 대비 약 40%P 증가하는 양상을 보였다.
또한, A713L 오르니틴 탈탄산 효소를 도입한 균주(KCCM11240P::ODC_Lb_A713L)는 KCCM11240P 대비, 퓨트레신 생산시 부반응으로 인한 카다베린 생산이 약 48%P 감소하고 배양액 내 잔류 포도당 농도로 미루어보아 동일 시간 내 당 소모량이 증가하여 생산성이 함께 증가함을 알 수 있다.
Figure PCTKR2019018404-appb-T000006
상기와 같은 결과는 락토바실러스 유래 변이형 오르니틴 탈탄산 효소가 도입됨으로 인해 퓨트레신 생산균주에서 당 소모 대비 기존보다 높은 농도의 퓨트레신을 생산을 할 수 있을 뿐만 아니라, 카다베린 저감 및 생산성 향상의 효과를 가짐을 보여준다.
실시예 8. 락토바실러스 오르니틴 탈탄산 효소의 713번째 아미노산 잔기에 대한 포화 변이 영향성 예측
선택된 변이 중 락토바실러스 오르니틴 탈탄산 효소의 713번째의 알라닌이 루신으로 치환된 기능적 잔기 (A713L)에 대하여 알라닌 및 루신을 제외한 다른 아미노산으로 치환한 후 퓨트레신 생산균주 KCCM11240P에 도입하여 퓨트레신 생산에 미치는 영향을 알아보았다.
구체적으로, 서열번호 1의 아미노산 서열에서, N-말단으로부터 713번째 아미노산을 소수성 아미노산을 포함한 다른 아미노산으로 치환한 형태의 변이형을 퓨트레신 생산능이 향상된 코리네박테리움 속 미생물(KCCM11240P)의 염색체 내 대장균 유래 야생형 오르니틴 탈탄산 효소 대신 치환시킨 변이균주를 제작하였다. 더욱 구체적으로 소수성 아미노산 중 하나인 발린, 염기성 아미노산 중 하나인 아르기닌, 산성 아미노산 중 하나인 아스파르트산, 중성 아미노산 중 하나인 글루타민, 방향족성 아미노산 중 하나인 트립토판으로 치환하는 벡터를 각각 제작하기 위하여, 실시예 7에서 제작한 pDZ-ODC_Lb 벡터를 주형으로 하여 상기 표 4와 하기 표 7에 개시된 프라이머를 사용하여 PCR을 수행하였다. 1차로는 변이를 일으키고자 하는 부위를 중심으로 앞쪽 부분(5') 과 뒷쪽 부분(3')에 대하여 각각 PCR을 진행한 다음, 2차로 두 개의 PCR 단편을 합치는 PCR을 수행하였다. 예를 들어, 713번째 아미노산을 알라닌에서 발린으로 치환하는 변이 (A713V)의 경우, 앞쪽 부분 ODC_Lb_start (EcoRV)_5와 ODC_Lb_A713V_3 프라이머를 사용하여 PCR로 증폭하고, 뒤쪽 부분은 ODC_Lb_A713V_5와 ODC_Lb_stop (MfeI)_3 프라이머를 사용하여 PCR로 증폭하였다. 1차 PCR을 통하여 얻은 두 개의 PCR 단편을 2차 PCR의 주형으로 사용하고, ODC_Lb_start (EcoRV)_5와 ODC_Lb_stop (MfeI)_3 프라이머를 사용하여 PCR을 진행하였다. 최종적으로 얻어진 락토바실러스 오르니틴 탈탄산 효소의 변이형 A713V 유전자 단편은 실시예 7과 동일한 방법으로 pDZ-bioAD-P(CJ7) 벡터에 삽입하였다. 그 외 나머지 변이형 A713R, A713D, A713W, A713Q도 표 7에 개시된 프라이머들을 사용하여 상기와 동일한 방법으로 PCR을 진행하여 pDZ-bioAD-P(CJ7) 벡터에 삽입하였다. 제작된 염색체 삽입용 재조합 벡터(pDZ-ODC_Lb_A713V, pDZ-ODC_Lb_A713R, pDZ-ODC_Lb_A713D, pDZ-ODC_Lb_A713W, pDZ-ODC_Lb_A713Q)는 서열분석으로 확인하였다.
Figure PCTKR2019018404-appb-T000007
락토바실러스 오르니틴 탈탄산 효소의 713번째의 알라닌이 소수성 아미노산을 포함한 다른 아미노산으로 치환한 형태의 변이형들이 염색체 내에 삽입된 균주를 얻기 위해, 상기에서 제작된 pDZ-ODC_Lb_A713V, pDZ-ODC_Lb_A713R, pDZ-ODC_Lb_A713D, pDZ-ODC_Lb_A713W, pDZ-ODC_Lb_A713Q 재조합 벡터 각각을 실시예 7과 같은 방법으로 KCCM11240P 균주에 형질주입하고 선별하여 최종 락토바실러스 오르니틴 탈탄산 효소 변이형들이 염색체에 도입된 균주를 얻을 수 있었다. 최종적으로 균주는 변이형들의 서열분석에 의해 확인되었다. 확인된 균주를 KCCM11240P::ODC_Lb_ A713V, KCCM11240P::ODC_Lb_ A713R, KCCM11240P::ODC_Lb_A713D, KCCM11240P::ODC_Lb_A713Q, KCCM11240P::ODC_Lb_A713W 로 명명하였다.
락토바실러스 오르니틴 탈탄산 효소의 713번째의 알라닌이 소수성 아미노산을 포함한 다른 아미노산으로 치환된 형태의 변이형 도입으로 인한 퓨트레신 생산 균주의 퓨트레신 생산능의 영향을 확인하기 위하여, 상기 실시예 7과 같은 방법으로 퓨트레신 생산능을 평가하였다.
Figure PCTKR2019018404-appb-T000008
그 결과 표 8에서 보는 바와 같이, 소수성을 포함한 다른 아미노산으로 치환한 형태의 락토바실러스 오르니틴 탈탄산 효소 변이형을 도입한 균주 또한, 배양 12시간 후 대장균 유래 야생형의 오르니틴 탈탄산 효소를 갖는 균주(KCCM11240P) 대비 퓨트레신 생산량이 평균 약 86%P 만큼 증가하였다. 또한, 락토바실러스 유래 야생형의 오르니틴 탈탄산 효소를 갖는 균주 대비 평균 약 21%P 증가하는 양상을 보였다.
또한 퓨트레신 생산시 부반응으로 인한 카다베린 생산이 약 41%P 감소하고 배양액 내 잔류 포도당 농도로 미루어보아 동일 시간 내 당 소모량이 증가하여 생산성이 함께 증가함을 알 수 있다.
상기와 같은 결과는 락토바실러스 오르니틴 탈탄산 효소의 713번째 알라닌이 루신으로 치환된 변이형 외에도 다른 소수성 아미노산 중 하나인 발린, 염기성 아미노산 중 하나인 아르기닌, 산성 아미노산 중 하나인 아스파르트산, 중성 아미노산 중 하나인 글루타민, 방향족성 아미노산 중 하나인 트립토판으로 치환됨으로 인해 퓨트레신 생산균주에서 당 소모 대비 기존보다 높은 농도의 퓨트레신을 생산을 할 수 있을 뿐만 아니라, 카다베린 저감 및 생산성 향상의 효과를 가짐을 보여준다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
[미생물기탁증]
Figure PCTKR2019018404-appb-I000001

Claims (16)

  1. 서열번호 1의 a) 713번째, b) 698번째, 또는 c) 713 및 698번째에 상응하는 위치에서 아미노산 치환을 포함하고, 서열번호 1의 폴리펩티드에 적어도 80% 이상, 100 % 미만의 서열 상동성을 갖는, 오르니틴 탈탄산효소 변이형.
  2. 제1항에 있어서, 상기 713번째 위치의 아미노산 치환은, 알라닌을 제외한 소수성 아미노산, 염기성 아미노산, 산성 아미노산, 중성 아미노산, 또는 방향족성 아미노산으로의 치환인, 오르니틴 탈탄산 효소의 변이형.
  3. 제1항에 있어서, 상기 713번째 위치의 아미노산 치환은, A713L, A713I, A713V, A713R, A713D, A713W, 또는 A713Q 인, 오르니틴 탈탄산 효소의 변이형.
  4. 제1항에 있어서, 상기 698번째 위치의 아미노산 치환은, E698D인, 오르니틴 탈탄산 효소의 변이형.
  5. 제1항에 있어서, 상기 713번째 위치의 아미노산 치환은, A713L, A713I, A713V, A713R, A713D, A713W, 또는 A713Q이고, 상기 698번째 위치의 아미노산 치환은, E698D인, 오르니틴 탈탄산 효소의 변이형.
  6. 제1항에 있어서, 상기 오르니틴 탈탄산 효소의 변이형은 서열번호 4, 서열번호 8, 서열번호 9, 및 서열번호 19 내지 23 중에서 선택되는 폴리펩티드를 포함하는 것인, 오르니틴 탈탄산 효소의 변이형.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 오르니틴 탈탄산 효소의 변이형을 코딩하는 폴리뉴클레오티드.
  8. 서열번호 1의 폴리펩티드를 포함하거나, 또는 서열번호 1의 a) 713번째, b) 698번째, 또는 c) 713 및 698번째에 상응하는 위치에서 아미노산 치환을 포함하고, 서열번호 1의 폴리펩티드에 적어도 80% 이상, 100 % 미만의 서열 상동성을 갖는 폴리펩티드를 포함하는, 오르니틴 탈탄산효소를 포함하는 미생물.
  9. 제8항에 있어서, 상기 미생물은 에스케리키아(Escherichia) 속 또는 코리네박테리움 (Corynebacterium) 속인, 미생물.
  10. 서열번호 1의 폴리펩티드를 포함하거나, 또는 서열번호 1의 a) 713번째, b) 698번째, 또는 c) 713 및 698번째에 상응하는 위치에서 아미노산 치환을 포함하고, 서열번호 1의 폴리펩티드에 적어도 80% 이상, 100 % 미만의 서열 상동성을 갖는 폴리펩티드를 포함하는, 오르니틴 탈탄산효소를 포함하는 미생물을 배양하는 단계를 포함하는, 퓨트레신 생산방법.
  11. 제10항에 있어서, 배지 내 퓨트레신을 축적하는 단계를 포함하는, 퓨트레신 생산방법.
  12. 제10항에 있어서, 배양된 미생물 또는 배지로부터 퓨트레신을 회수하는 단계를 포함하는 퓨트레신 생산방법.
  13. 서열번호 1의 폴리펩티드를 포함하거나, 또는 서열번호 1의 a) 713번째, b) 698번째, 또는 c) 713 및 698번째에 상응하는 위치에서 아미노산 치환을 포함하고, 서열번호 1의 폴리펩티드에 적어도 80% 이상, 100 % 미만의 서열 상동성을 갖는 폴리펩티드를 포함하는, 오르니틴 탈탄산효소를 포함하는 미생물을 배양하는 단계를 포함하는, 퓨트레신의 순도를 증가시키는 방법.
  14. 서열번호 1의 폴리펩티드를 포함하거나, 또는 서열번호 1의 a) 713번째, b) 698번째, 또는 c) 713 및 698번째에 상응하는 위치에서 아미노산 치환을 포함하고, 서열번호 1의 폴리펩티드에 적어도 80% 이상, 100 % 미만의 서열 상동성을 갖는 폴리펩티드를 포함하는, 오르니틴 탈탄산효소를 포함하는 미생물을 배양하는 단계를 포함하는, 카다베린에 대한 퓨트레신의 비율을 증가시키는 방법.
  15. 퓨트레신으로 폴리아미드를 제조하는 방법으로서, 상기 퓨트레신은 서열번호 1의 폴리펩티드를 포함하거나, 또는 서열번호 1의 a) 713번째, b) 698번째, 또는 c) 713 및 698번째에 상응하는 위치에서 아미노산 치환을 포함하고, 서열번호 1의 폴리펩티드에 적어도 80% 이상, 100 % 미만의 서열 상동성을 갖는 폴리펩티드를 포함하는, 오르니틴 탈탄산효소를 포함하는 미생물을 배양하여 제조된 것인, 폴리아미드 제조 방법.
  16. 서열번호 1의 폴리펩티드를 포함하거나, 또는 서열번호 1의 a) 713번째, b) 698번째, 또는 c) 713 및 698번째에 상응하는 위치에서 아미노산 치환을 포함하고, 서열번호 1의 폴리펩티드에 적어도 80% 이상, 100 % 미만의 서열 상동성을 갖는 폴리펩티드를 포함하는, 오르니틴 탈탄산효소를 포함하는 미생물을 포함하는 폴리아미드 제조용 조성물.
PCT/KR2019/018404 2018-12-27 2019-12-24 오르니틴 탈탄산 효소 변이형 및 이를 이용한 퓨트레신 생산 방법 WO2020138919A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/044,726 US20230287382A1 (en) 2018-12-27 2019-12-24 Ornithine decarboxylase variant and method for producing putrescine by using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/KR2018/016764 WO2020138543A1 (ko) 2018-12-27 2018-12-27 오르니틴 탈탄산 효소의 변이주 및 그의 응용
KRPCT/KR2018/016764 2018-12-27
TW107147749 2018-12-28
TW107147749 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138919A1 true WO2020138919A1 (ko) 2020-07-02

Family

ID=71126636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018404 WO2020138919A1 (ko) 2018-12-27 2019-12-24 오르니틴 탈탄산 효소 변이형 및 이를 이용한 퓨트레신 생산 방법

Country Status (3)

Country Link
US (1) US20230287382A1 (ko)
KR (1) KR20200081281A (ko)
WO (1) WO2020138919A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090107920A (ko) * 2008-04-10 2009-10-14 한국과학기술원 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
KR20150009890A (ko) * 2013-07-17 2015-01-27 씨제이제일제당 (주) 향상된 퓨트레신 생산능을 가지는 변이된 오르니틴 디카복실레이즈 단백질 및 이의 용도
US20170314007A1 (en) * 2014-09-30 2017-11-02 China Three Gorges University Medicament design pocket of ornithine decarboxylase and application of medicament design pocket
KR20180136612A (ko) * 2017-06-14 2018-12-26 씨제이제일제당 (주) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2598792A1 (en) * 2005-03-02 2006-09-08 Metanomics Gmbh Process for the production of fine chemicals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090107920A (ko) * 2008-04-10 2009-10-14 한국과학기술원 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
KR20150009890A (ko) * 2013-07-17 2015-01-27 씨제이제일제당 (주) 향상된 퓨트레신 생산능을 가지는 변이된 오르니틴 디카복실레이즈 단백질 및 이의 용도
US20170314007A1 (en) * 2014-09-30 2017-11-02 China Three Gorges University Medicament design pocket of ornithine decarboxylase and application of medicament design pocket
KR20180136612A (ko) * 2017-06-14 2018-12-26 씨제이제일제당 (주) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HACKERT, M. L. ET AL.: "Sequence of ornithine decarboxylase from Lactobacillus sp. strain 30a", JOURNAL OF BACTERIOLOGY, vol. 176, no. 23, December 1994 (1994-12-01), pages 7391 - 7394, XP055721254 *
HONG, E. Y. ET AL.: "Rational engineering of ornithine decarboxylase with greater selectivity for ornithine over lysine through protein network analysis", JOURNAL OF BIOTECHNOLOGY, vol. 281, 17 July 2018 (2018-07-17), pages 175 - 182, XP055721257 *

Also Published As

Publication number Publication date
US20230287382A1 (en) 2023-09-14
KR20200081281A (ko) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2020130236A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2022231368A1 (ko) 신규한 글루타메이트 합성 효소 서브 유니트 알파 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022055094A1 (ko) L-글루탐산 생산 재조합 미생물 및 이를 이용한 l-글루탐산의 제조방법
WO2018230977A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2021177731A1 (ko) 글루타민 신테타아제 변이형 폴리펩티드 및 이를 이용한 l-글루타민 생산 방법
WO2019004779A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2020067618A1 (ko) 알파-글루코시다제의 활성이 강화된 l-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2022191630A1 (ko) 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-발린 생산 방법
WO2019004780A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2022154191A1 (ko) 신규한 2,5-다이케토-d-글루콘산 리덕타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022149865A2 (ko) GlxR 단백질 변이체 또는 이를 이용한 쓰레오닌 생산방법
WO2020138919A1 (ko) 오르니틴 탈탄산 효소 변이형 및 이를 이용한 퓨트레신 생산 방법
JP7214952B2 (ja) オルニチン脱炭酸酵素変異型及びそれを用いたプトレシンの生産方法
WO2022163904A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2018230978A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2022163936A1 (ko) 신규한 엑시뉴클레아제 abc 서브유닛 a 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2023177253A1 (ko) 거짓쌀도둑거저리 유래 아스파테이트 1-디카복실레이스의 변이체 및 이를 포함하는 미생물
WO2022163933A1 (ko) 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022163941A1 (ko) 신규한 스퍼미딘 신타아제 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022163937A1 (ko) 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022154189A1 (ko) 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022163938A1 (ko) 신규한 리보뉴클레아제 p 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022154188A1 (ko) 신규한 폴리케타이드 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022163929A1 (ko) 신규한 펩티딜-디펩티다제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903933

Country of ref document: EP

Kind code of ref document: A1