WO2020138231A1 - ろ過装置およびその運転方法 - Google Patents

ろ過装置およびその運転方法 Download PDF

Info

Publication number
WO2020138231A1
WO2020138231A1 PCT/JP2019/050998 JP2019050998W WO2020138231A1 WO 2020138231 A1 WO2020138231 A1 WO 2020138231A1 JP 2019050998 W JP2019050998 W JP 2019050998W WO 2020138231 A1 WO2020138231 A1 WO 2020138231A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
liquid
target
control means
state
Prior art date
Application number
PCT/JP2019/050998
Other languages
English (en)
French (fr)
Inventor
亜弓 森
小林 敦
憲太郎 小林
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US17/417,517 priority Critical patent/US20220111335A1/en
Priority to CN201980086196.1A priority patent/CN113242758B/zh
Priority to BR112021012617-1A priority patent/BR112021012617A2/pt
Priority to JP2020502507A priority patent/JP7388347B2/ja
Priority to EP19904397.7A priority patent/EP3903912A4/en
Publication of WO2020138231A1 publication Critical patent/WO2020138231A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • B01D2311/165Cross-flow velocity control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a filtering device and a method of operating the filtering device.
  • Filtration using separation membranes is used in various fields such as water treatment fields such as drinking water production, water purification treatment, wastewater treatment, fermentation fields involving the culture of microorganisms and cultured cells, and the food industry field.
  • the filtration performance of the separation membrane will deteriorate due to the accumulation of deposits on the surface of the separation membrane as the filtration operation is continued by filtering the liquid to be filtered using the separation membrane. Therefore, as one of the means for removing the deposits on the surface of the separation membrane after the filtration operation is continued for a certain period of time, there is a backwashing operation in which the backwash liquid flows back through the separation membrane. By alternately performing the filtration operation and the backwashing operation, it becomes possible to periodically remove the deposit on the surface of the separation membrane and maintain the filtration performance of the separation membrane.
  • Patent Document 1 a method of reproducing the state of the control device when the liquid flow rate is stabilized during the previous operation for a predetermined time at the start of the next operation
  • Patent Document 2 a method for performing a preliminary control with the state immediately before the end of the previous control operation as the target state before the start of the next control operation
  • the conventional method for early stabilization of the liquid flow rate has a flexible application when the effect is insufficient or when the filtration operation and the backwashing operation in which the target flow rates are significantly different are continuously performed. Was impossible. Further, in the conventional method, the liquid flow rate immediately after the start of operation becomes significantly higher than the target flow rate, and thus there is a problem that the membrane is likely to be blocked.
  • the present invention is unlikely to be affected by a large difference in the target flow rate, stabilizes the liquid flow rate early after the start of operation, and suppresses that the liquid flow rate immediately after the start of operation becomes significantly higher than the target flow rate. It is an object of the present invention to provide a possible filtration device and a method of operating the same.
  • a filtration device including a flow rate control unit and a separation membrane module includes a liquid flow rate detection unit that detects a liquid flow rate at an arbitrary location, and an external control unit that controls the state of the flow rate control unit, After the external control means starts a target range setting step of setting a target flow rate range A including a target liquid flow rate at the arbitrary position and the supply of the liquid to be filtered or the backwash liquid to the separation membrane module.
  • a filtration apparatus comprising: a state setting step of setting the recorded state S; and a flow rate control step of controlling the liquid flow rate within the target flow rate range.
  • the flow rate control means is set to the state S recorded in the control state recording step, and the liquid to be filtered or the backwashing liquid is supplied to the separation membrane module, and the liquid passing step I, and the separation by the flow rate control means.
  • the filtering apparatus and the operating method thereof of the present invention even when the filtering operation and the backwashing operation in which the target flow rates are greatly different are continuously performed, the liquid flow rate after the operation is started without being affected by the operation.
  • the time until stabilization can be greatly shortened.
  • the filtration time can be extended to prevent the flow rate after the start of operation from becoming significantly higher than the target flow rate and to prevent the progress of the membrane clogging.
  • FIG. 1 is a schematic flow chart showing an example of the filtration device of the present invention.
  • FIG. 2 is a schematic flow chart showing an example of the external control device of the present invention.
  • FIG. 3 is a schematic diagram showing an example of the liquid flow rate transition of the present invention.
  • FIG. 1 is a schematic flow chart showing an example of the filtration device of the present invention.
  • a control valve V1 and a control valve V2 are used as flow rate control means
  • an external pressure type hollow fiber membrane module (hereinafter, “hollow fiber membrane module”) 6 is used as a separation membrane module
  • a flow rate is used as liquid flow rate detection means.
  • a computer 9 and a computer 14 are provided as external control means
  • a pressure gauge 5 and a pressure gauge 10 are provided as pressure detection means, respectively. The difference between the pressure gauge 5 and the pressure gauge 10 is monitored as the transmembrane pressure difference.
  • FIG. 2 is a schematic diagram showing a signal flow of the fluid liquid amount detection means, the external control means, and the flow rate control means.
  • the liquid flow rate at an arbitrary position detected by the liquid flow rate detection means 21 (corresponding to the flowmeter 9 and the flowmeter 8 in FIG. 1) is sent to the external control means 22 (corresponding to the computer 13 and the computer 14 in FIG. 1).
  • To be Calculation is performed in the external control means 22, and a signal regarding the state of the flow rate control means 23 (corresponding to the control valve V1 and control valve V2 in FIG. 1) is sent to the flow rate control means 23.
  • the external control means 22 detects the liquid flow rate after starting the target range setting step 24 for setting the target flow rate range A including the target liquid flow rate in the liquid flow rate detection means 21 and starting the supply of the liquid to be filtered to the hollow fiber membrane module 6.
  • the liquid flow rate detected by the means 21 is recorded in the control state recording step 25, which records the state S of the flow rate control means 23 when it first enters the target flow rate range A, and the flow rate control means 23 in the control state recording step 25.
  • the external control means 22 includes a target range setting step 24, a control state recording step 25, a state setting step 26, and a flow rate control step 27, so that the liquid to be filtered in the filtration device of the present invention is a hollow fiber membrane.
  • the time until the liquid flow rate is stabilized after the start of the operation can be significantly shortened, and the liquid flow rate becomes higher than the target value immediately after the start of the operation. It was found that the progress of clogging can be suppressed.
  • description will be given while showing a specific operation method in the filtration device shown in FIGS.
  • the liquid to be filtered stored in the liquid to be filtered tank 1 is supplied to the hollow fiber membrane module 6 by the supply pump 2.
  • the liquid to be filtered is filtered by the hollow fiber membrane housed in the hollow fiber membrane module 6 from the hollow fiber membrane filtered liquid side (primary side) to the hollow fiber membrane filtered liquid side (secondary side), and the filtered liquid Becomes The filtrate is sent to and stored in the filtrate storage tank 7 via the filtrate pipe 11.
  • the flow rate of the liquid to be filtered supplied to the hollow fiber membrane module 6 is monitored by the flow meter 9, and the valve opening of the control valve V1 which is a flow rate control device is controlled by the computer 13. Moreover, a part of the liquid to be filtered is not filtered, but is circulated by the circulation pump 3 and supplied again to the hollow fiber membrane module 6.
  • a backflow cleaning operation (hereinafter, “backwash operation”) of the hollow fiber membrane module 6 is performed in order to remove the dirt accumulated on the surface of the hollow fiber membrane in the hollow fiber membrane module 6. ..
  • the backwashing liquid stored in the filtrate storage tank 7 is sent by the backwashing pump 12 and supplied to the hollow fiber membrane module 6 through the filtrate pipe 11.
  • the backwash liquid is made to flow backward from the hollow fiber membrane filtrate side (secondary side) of the hollow fiber membrane in the hollow fiber membrane module 6 to the hollow fiber membrane filtered liquid side (primary side).
  • the flow rate of the backwash liquid supplied to the hollow fiber membrane module 6 is monitored by the flow meter 9, and the computer 13 controls the valve opening degree of the control valve V1 which is a flow rate control means.
  • the filtration operation and the backwashing operation are repeated, but in a plurality of cycles when a series of flows of performing one backwashing step after one filtration step is regarded as one “cycle”
  • the implementation of the method for operating the filtration device of the present invention will be described in detail below with reference to an example.
  • Target range setting step After carrying out this target range setting step, the filtration operation of the filtration device is started.
  • the target range setting step may be performed after the filtration operation or backwash operation of the filtration device is started.
  • the target flow rate range An for the filtration operation and the target flow rate range Ar for the backwash operation are individually set, but the values of both may be common.
  • the hollow fiber membrane module 6 is filtered while the computer 13 controls the opening degree of the control valve V1 based on the flow rate measured by the flow meter 9 at the same time as the start of the operation. Liquid is supplied (liquid passing step P).
  • the control method may be any method as long as the flow rate of the flow meter 9 falls within the target liquid range An. Control is preferred.
  • the state Sn of the flow rate control means (the opening degree of the control valve V1 in this example) when the liquid flow rate at p1 first enters the preset target flow rate range An is recorded in the computer 13 (control state). Recording process).
  • the liquid flow rate first enters the target flow rate range An it means that the liquid flow rate continuously enters the target flow rate range An for 1 second or more, preferably for 3 seconds or more, more preferably continuously. It means the time when 5 seconds or more have passed.
  • the filtration operation is terminated after a predetermined time. Then, the backwash operation of the first cycle is performed. Even in the backwashing operation of the first cycle, at the same time as the operation is started, the hollow fiber membrane module 6 is controlled by the computer 13 while controlling the opening of the control valve V1 based on the flow rate measured by the flowmeter 9. The filtrate is supplied (passing step P). Also in this case, any method may be used to control the opening degree of the control valve V1 as long as the flow rate of the flow meter 9 falls within the target flow rate range Ar. From the viewpoint, the PID control is preferably performed by the computer 13.
  • the state Sr of the flow rate control means (the opening degree of the control valve V1 in this example) when the liquid flow rate at p1 first enters the target flow rate range Ar is recorded in the computer 13 (control state recording step).
  • the liquid flow rate first enters the target flow rate range Ar it means that the liquid flow rate continuously enters the target flow rate range A for 1 second or more, preferably for 3 seconds or more, more preferably continuously. It means the time when 5 seconds or more have passed.
  • the means for recording the state Sr is not particularly limited.
  • the backwash operation is finished after a predetermined time. Then, the filtration operation of the second cycle is performed.
  • the supply of the liquid to be filtered to the hollow fiber membrane module 6 is switched to PID control, and the filtering operation is continued (liquid passing step P).
  • a target range setting step of setting the target flow rate range An (2) a state Sn of the flow rate control means
  • the operation method of the filtration device of the present invention for the filtration operation is executed, which includes a control state recording step for recording, (3) a liquid passage step I in which the flow rate control means is in the state Sn, and (4) a liquid passage step P. It will be.
  • the control valve V1 which is the flow rate control means is set to the state Sr, and the backwashing liquid is supplied to the hollow fiber membrane module 6 (liquid passing step I).
  • the supply of the backwash liquid to the hollow fiber membrane module 6 is switched to PID control, and the backwash operation is continued (liquid passing step P). ..
  • Target range setting step of setting the target flow rate range Ar (2) State of the flow rate control means in the series of the backwash operation from the first cycle to the second cycle up to this point.
  • a control state recording step of recording Sr (3) a method of operating the filtering device of the present invention for backwash operation, including a liquid passing step I and a liquid passing step P in which the flow rate control means is in the state Sr.
  • the state of the flow rate control means when the liquid flow rate at any position in the filtration device first enters the target flow rate range A By recording S and applying it to the subsequent liquid passing step I, the rising control at the start of the liquid passing step I becomes easy, and a stable target liquid flow rate can be realized earlier.
  • the operating method of the filtration device of the present invention stops the supply of the liquid to be filtered or the backwash liquid after the control state recording step is finished, and starts the supply of the liquid to be filtered or the backwash liquid in the liquid passing step I.
  • particularly preferable effects are exhibited.
  • FIG. 3 shows the transition of the filtration flow rate in the liquid passing step I of the present invention (a), the transition of the filtration flow rate when the conventional technique is applied (b), and the start of the filtration operation without performing the liquid passing step I. It is the figure which showed typically the transition (c) of the filtration flow rate at the time of implementing PID control.
  • the backwashing step may be terminated after the liquid passing step P of the second cycle has been performed for a predetermined time, and the filtering operation and the backwashing operation of the third cycle and the fourth cycle may be similarly performed. Further, in each of the second cycle filtration operation and the backwash operation, the control state recording step is performed, the state Sn and the state Sr are recorded again, and these are applied to apply the third cycle filtration operation and A backwash operation may be performed.
  • the opening degree of the nth cycle may be set based on the tendency of the immediately preceding several cycles (for example, several cycles from the n-5th cycle to the n-1th cycle).
  • the n-5th cycle opening degree Sn(n-5) to the n-1th cycle opening degree Sn(n-1) of the control valve V1 are plotted against the number of cycles and approximated by the least squares method.
  • the opening degree Sn(n) at the nth cycle may be calculated from the approximate straight line and used as Sn. In this case, it is preferable to predict Sn from the last three cycles or more.
  • This method is an effective method, for example, when the properties of the liquid to be filtered are suddenly deteriorated or improved while the operation is continued. Is also effective in preventing operation at high flow rates.
  • the “arbitrary location” selected in the target range setting step is not limited to one location within the filtration device, and multiple “arbitrary locations” may be selected. When a plurality of "arbitrary locations” are selected, it is necessary to associate the flow rate control means corresponding to each. On the other hand, even if there is only one "arbitrary place", the state S of a plurality of flow rate control means may be recorded in the control state recording step.
  • the control valve V2 the supply pump 2, the circulation pump 3 or the backwash pump 12 may be used as the flow rate control means, and the opening degree of the control valve V2,
  • the outputs of the backwash pump 12, the supply pump 2, and the circulation pump 3 may be recorded as the state S in the control state recording step.
  • the opening degree is controlled by the computer 14 based on the liquid flow rate detected by the flow meter 8.
  • the liquid passing step I is preferably 60 seconds or less, more preferably 30 seconds or less, and further preferably 20 seconds or less.
  • the target flow rate range A in the target range setting step included in the operating method of the filtration device of the present invention is preferably within ⁇ 20%, more preferably within ⁇ 10%, and within ⁇ 5% of the target liquid flow rate.
  • the target flow rate range A is too narrow, it takes a long time to enter the target flow rate range A for the first time, so it is preferably ⁇ 1% or more. Within this range, rise control at the start of the liquid passing step I becomes easier, and a stable target liquid flow rate can be realized at an earlier stage.
  • the flow rate control means included in the filtration device to which the method for operating the filtration device according to the present invention is preferably a valve and/or a pump capable of more easily and accurately controlling the flow rate.
  • the separation membrane module included in the filtration device to which the method for operating the filtration device of the present invention is applied is not particularly limited, and a known configuration can be applied.
  • the separation membrane included in the separation membrane module may be an organic membrane or an inorganic membrane as long as the membrane can be backwashed, and examples thereof include polyvinylidene fluoride, polysulfone, polyether sulfone, polytetrafluoroethylene, and polyethylene.
  • an organic membrane made of polypropylene or an inorganic membrane made of ceramics can be used, but a separation membrane made of polyvinylidene fluoride, which is less likely to be contaminated by organic substances, is easy to wash, and has excellent durability, is preferable. ..
  • the type of the separation membrane examples include a microfiltration membrane or an ultrafiltration membrane having an average pore diameter of 0.001 ⁇ m or more and less than 10 ⁇ m.
  • the shape of the separation membrane may be, for example, a hollow fiber membrane, a tubular membrane, a monolith membrane or a pleated membrane, but a hollow fiber membrane having a membrane surface area larger than the volume of the separation membrane module is preferable.
  • the hollow fiber membrane may be either an external pressure type that filters from the outside to the inside of the hollow fiber or an internal pressure type that filters from the inside to the outside, but clogging due to turbidity is unlikely to occur. External pressure type hollow fiber membranes are preferred.
  • the outer diameter of the external pressure type hollow fiber membrane is preferably 0.5 to 3 mm. When the outer diameter is 0.5 mm or more, the resistance of the filtrate flowing through the hollow fiber membrane can be suppressed to be relatively small. On the other hand, when the outer diameter is 3 mm or less, the hollow fiber membrane can be prevented from being crushed by the pressure of the liquid to be filtered.
  • the inner diameter of the internal pressure type hollow fiber membrane is preferably 0.5 to 3 mm. When the inner diameter is 0.5 mm or more, the resistance of the liquid to be filtered flowing in the hollow fiber membrane can be suppressed to be relatively small. On the other hand, when the inner diameter is 3 mm or less, a larger membrane surface area can be secured.
  • the mode of filtration using the separation membrane module in which the separation membrane is a hollow fiber membrane may be total volume filtration or cross flow filtration.
  • the shearing force of the circulating liquid to be filtered can be obtained.
  • Cross-flow filtration is preferred.
  • the filtration device and the method for operating the filtration device of the present invention are suitably used for filtration of a liquid to be filtered in which the transmembrane pressure difference increases rapidly during one cycle.
  • the rate of increase of the transmembrane pressure difference in one cycle is 1 kPa/min or more, preferably 1.5 kPa/min or more, and more preferably 2 kPa/min or more.
  • the progress of the membrane clogging of the separation membrane is rapid, and therefore the effect of the present invention becomes remarkable.
  • examples of the liquid to be filtered that has a high rate of increase in transmembrane pressure difference during one cycle include a liquid having a turbidity of 20 NTU or more, or a liquid having a total organic matter concentration (TOC) of 10 mg/L or more. Specific examples thereof include high turbidity surface water, secondary sewage treated water, industrial wastewater, and biological fermentation liquid.
  • Example 1 The external pressure type PVDF microfiltration hollow fiber membrane module thus produced was used as a separation membrane module to configure the filtration device shown in FIG.
  • the cycle of the cross flow filtration operation and the backwash operation was repeated. More specifically, using commercially available unfiltered wine as the liquid to be filtered, a cross-flow filtration operation was performed for 550 seconds at a target filtration flux of 2.2 m 3 /m 2 /day, and the filtrate of the filtration operation was backwashed. As a result, the backwashing operation was performed at a target backwashing flux of 3.0 m 3 /m 2 /day.
  • the membrane surface linear velocity in the cross flow filtration operation was set to be 1.5 m/s.
  • p1 which is the flow rate measurement target point of the flow meter 9 is selected as an arbitrary point in the filtration device, and the target filtration flux 2.2 m 3 /m 2 which is the target liquid flow rate is selected.
  • the range of ⁇ 10% with respect to the target filtration flux of 2.2 m 3 /m 2 /day including /day was set as the target flow rate range A (target range setting step).
  • the liquid flow rate (filtration flux) at p1 is 2.2 m 3 /m which is the target flow rate range A.
  • the valve opening degree of the control valve V1 when it entered the range of 2 /day ⁇ 10% (60 seconds after the start of the filtration operation) was recorded as the state S (control state recording step).
  • the valve opening of the control valve V1 is set to the state S recorded in the filtration operation of the first cycle, and the liquid to be filtered is supplied to the separation membrane module for 5 seconds (the liquid passing step). I), and then the liquid to be filtered was supplied by PID control (liquid passing step P).
  • the time from the start of the filtering operation of the second cycle until the liquid flow rate at p1 entered the target flow rate range A for the first time was 20 seconds, and the liquid flow rate could be stabilized early.
  • the transition of the liquid flow rate is as shown in FIG. 3A, and it did not increase significantly from the target liquid flow rate.
  • Example 2 The filtering device was operated in the same manner as in Example 1 except that the time of the liquid passing step I was changed to 10 seconds. The time from the start of the filtering operation in the second cycle until the liquid flow rate at p1 entered the target flow rate range A for the first time was 15 seconds, and the liquid flow rate could be stabilized early. In addition, the transition of the liquid flow rate is as shown in FIG. 3A, and it did not increase significantly from the target liquid flow rate.
  • Example 3 The filtering apparatus was operated in the same manner as in Example 1 except that the time of the liquid passing step I was changed to 15 seconds. The time from the start of the filtering operation of the second cycle until the liquid flow rate at p1 entered the target flow rate range A for the first time was 20 seconds, and the liquid flow rate could be stabilized early. In addition, the transition of the liquid flow rate is as shown in FIG. 3A, and it did not increase significantly from the target liquid flow rate.
  • Example 4 The filtering apparatus was operated in the same manner as in Example 1 except that the time of the liquid passing step I was changed to 20 seconds. The time from the start of the filtering operation of the second cycle until the liquid flow rate at p1 entered the target flow rate range A for the first time was 25 seconds, and the liquid flow rate could be stabilized. In addition, the transition of the liquid flow rate is as shown in FIG. 3A, and it did not increase significantly from the target liquid flow rate.
  • Example 1 In the filtration operation of the second cycle, the filtration device was operated in the same manner as in Example 1 except that the liquid passing step I was not performed and the liquid to be filtered was supplied by PID control from the start of the filtration operation.
  • the time from the start of the filtering operation in the second cycle until the liquid flow rate at p1 entered the target flow rate range A for the first time was 60 seconds, and the liquid flow rate could not be stabilized early.
  • the transition of the liquid flow rate is as shown in FIG. 3C, and the filtration flow rate at the start of the second cycle filtration may be significantly higher than the target liquid flow rate.
  • Example 2 In the filtration operation of the first cycle, the valve opening degree of the control valve V1 when 545 seconds have elapsed after the start of the filtration operation is recorded, and in the filtration operation of the second cycle, the time of the liquid passing step I is set to 10 seconds.
  • the filtration apparatus was operated in the same manner as in Example 1 except that the above was changed to.
  • the liquid flow rate (filtration flux) at p1 entered the range of the target flow rate range A of 2.2 m 3 /m 2 /day ⁇ 10% in Example 1.
  • the filtration apparatus and its operating method of the present invention include a liquid to be filtered in various fields such as drinking water production, water treatment fields such as water treatment, wastewater treatment, fermentation fields involving culturing of microorganisms and cultured cells, and food industry fields. It is preferably applied to the filtration treatment of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

流量制御手段と、分離膜モジュールと、を備えるろ過装置が、任意の箇所での液体流量を検出する液体流量検出手段と、前記流量制御手段の状態を制御する外部制御手段を備え、前記外部制御手段が、前記任意の箇所での、目標液体流量を含む目標流量範囲Aを設定する、目標範囲設定工程と、前記分離膜モジュールに被ろ過液又は逆洗液の供給を開始した後に、前記任意の箇所での液体流量が、目標流量範囲Aにはじめて入った際の前記流量制御手段の状態Sを記録する、制御状態記録工程と、前記流量制御手段を、前記制御状態記録手段で記録された前記状態Sとする、状態設定工程と、前記液体流量を、前記目標流量範囲Aに制御する、流量制御工程と、を備えたろ過装置を提供する。

Description

ろ過装置およびその運転方法
 本発明は、ろ過装置およびその運転方法に関する。
 分離膜を用いたろ過は、飲料水製造、浄水処理、排水処理等の水処理分野、微生物や培養細胞の培養を伴う発酵分野、食品工業分野等、様々な方面で利用されている。
 分離膜を用いて被ろ過液をろ過する、ろ過運転の継続に伴い、分離膜表面に堆積物が蓄積し、分離膜のろ過性能が低下することは避けられない。そのため、一定時間ろ過運転を継続した後の分離膜表面の堆積物を除去する手段の一つとして、分離膜に逆洗液を逆流させる、逆流洗浄運転が存在する。これらろ過運転と逆流洗浄運転とを交互に行うことにより、定期的に分離膜表面の堆積物を除去して、分離膜のろ過性能を保持することが可能となる。
 しかし、このようなろ過運転や逆流洗浄運転を開始する際の分離膜等の状態は常に一定ではないことから、分離膜に被ろ過液又は逆洗液の供給を開始した後に、それら液体の流量を目標範囲内に安定化させるために、都度長時間を要することが問題視されていた。
 これに対し、運転開始後に液体流量を早期に安定化させるための技術として、前回の運転中に液体流量が安定化した際の制御装置の状態を、次回の運転開始時に所定時間再現する方法(特許文献1)や、前回の制御運転終了直前の状態を、次回の制御運転開始前の目標状態として、予備的な制御を行う方法(特許文献2)等が開示されている。
日本国特開2005-13797号公報 日本国特開昭61-236068号公報
 しかしながら、液体流量の早期安定化のための従来の方法は、その効果が不十分であるか、目標流量が大きく異なるろ過運転と逆流洗浄運転とが続けて実施された場合等において、柔軟な適用が不可能なものであった。また、従来の方法は運転開始直後の液体流量が目標流量より大幅に高くなるため、膜の閉塞が進行しやすいという問題があった。
 そこで本発明は、目標流量の大きな相違にも影響を受け難く、運転開始後に液体流量を早期に安定化させ、かつ運転開始直後の液体流量が目標流量より大幅に高くなることを抑制することが可能な、ろ過装置ならびにその運転方法を提供することを目的とする。
 係る課題を解決するため、本発明は、以下のろ過装置およびその運転方法を提供する。
(1)流量制御手段と、分離膜モジュールと、を備えるろ過装置が、任意の箇所での液体流量を検出する液体流量検出手段と、前記流量制御手段の状態を制御する外部制御手段を備え、
 前記外部制御手段が、前記任意の箇所での、目標液体流量を含む目標流量範囲Aを設定する、目標範囲設定工程と、前記分離膜モジュールに被ろ過液又は逆洗液の供給を開始した後に、前記任意の箇所での液体流量が、目標流量範囲Aにはじめて入った際の前記流量制御手段の状態Sを記録する、制御状態記録工程と、前記流量制御手段を、前記制御状態記録工程で記録された前記状態Sとする、状態設定工程と、前記液体流量を、前記目標流量範囲に制御する、流量制御工程と、を備えたろ過装置。
(2)前記目標流量範囲Aが、前記目標液体流量に対して±10%以内である、(1)に記載のろ過装置。
(3)前記流量制御手段が、バルブ及び/又はポンプである、(1)又は(2)に記載のろ過装置。
(4)流量制御手段と、分離膜モジュールと、を備えるろ過装置における、任意の箇所での、目標液体流量を含む目標流量範囲Aを設定する、目標範囲設定工程と、前記分離膜モジュールに被ろ過液又は逆洗液の供給を開始した後に、前記任意の箇所での液体流量が、目標流量範囲Aにはじめて入った際の前記流量制御手段の状態Sを記録する、制御状態記録工程と、前記流量制御手段を、前記制御状態記録工程で記録された前記状態Sにして、前記分離膜モジュールに被ろ過液又は逆洗液を供給する、通液工程Iと、前記流量制御手段によって前記分離膜モジュールに被ろ過液又は逆洗液を供給する流量を前記目標流量範囲に制御する、通液工程Pと、を備える、ろ過装置の運転方法。
(5)前記制御状態記録工程を終えた後に被ろ過液又は逆洗液の供給を停止し、前記通液工程Iにおける被ろ過液又は逆洗液の供給を開始する、(4)に記載のろ過装置の運転方法。
(6)前記通液工程Iを5秒以上継続する、(4)又は(5)に記載のろ過装置の運転方法。
(7)前記目標流量範囲Aが、前記目標液体流量に対して±10%以内である、(4)~(6)のいずれかに記載のろ過装置の運転方法。
(8)前記流量制御手段が、バルブ及び/又はポンプである、(4)~(7)のいずれかに記載のろ過装置の運転方法。
 本発明のろ過装置およびその運転方法によれば、目標流量が大きく異なるろ過運転と逆流洗浄運転とが続けて実施された場合等においても、その影響を受けることなく、運転開始後の液体流量の安定化までの時間を、大幅に短縮することができる。さらには、運転開始後の流量が目標流量より大幅に多くなることを防ぎ、膜の閉塞の進行を抑制するためろ過時間を延ばすことができる。
図1は、本発明のろ過装置の一例を示す、概略フロー図である。 図2は、本発明の外部制御装置の一例を示す、概略フロー図である。 図3は、本発明の液体流量推移の一例を示す、概略図である。
 以下に、本発明の実施形態について図面を参照しながら詳細に説明するが、本発明はこれらによって何ら限定されるものではない。
 図1は、本発明のろ過装置の一例を示す概略フロー図である。この例のろ過装置は、流量制御手段としてコントロールバルブV1、コントロールバルブV2を、分離膜モジュールとして外圧式の中空糸膜モジュール(以下、「中空糸膜モジュール」)6を、液体流量検出手段として流量計9、流量計8を、外部制御手段としてコンピュータ13、コンピュータ14を、圧力検出手段として圧力計5、圧力計10を、それぞれ備える。圧力計5と圧力計10の差を膜間差圧としてモニタリングする。
 図2は、流体液量検出手段と外部制御手段、流量制御手段の信号フローを示す概略図である。液体流量検出手段21(図1では流量計9、流量計8に相当)によって検出された任意の箇所での液体流量が、外部制御手段22(図1ではコンピュータ13、コンピュータ14に相当)に送られる。外部制御手段22において演算が行われ、流量制御手段23(図1ではコントロールバルブV1、コントロールバルブV2に相当)の状態についての信号が流量制御手段23へ送られる。
 外部制御手段22は、液体流量検出手段21における目標液体流量を含む目標流量範囲Aを設定する目標範囲設定工程24と、中空糸膜モジュール6に被ろ過液の供給を開始した後に、液体流量検出手段21で検出された液体流量が、目標流量範囲Aにはじめて入った際の流量制御手段23の状態Sを記録する制御状態記録工程25と、流量制御手段23を制御状態記録工程25で記録された状態Sとする状態設定工程26と、目標液体流量に応じて流量制御手段23の状態を制御する、流量制御工程27を備える。
 筆者らは、外部制御手段22が、目標範囲設定工程24と制御状態記録工程25、状態設定工程26、ならびに流量制御工程27を備えることにより、本発明のろ過装置において被ろ過液を中空糸膜モジュール6にてろ過する際に、運転開始後の液体流量の安定化までの時間を、大幅に短縮することができること、ならびに、運転開始直後に液体流量が目標値よりも高くなることによる膜の目詰まり進行を抑制できることを見出した。以下、図1、2に示したろ過装置において具体的な運転方法を示しながら説明する。
 本発明のろ過装置では、被ろ過液槽1に貯留された被ろ過液を、供給ポンプ2により中空糸膜モジュール6に供給する。被ろ過液は中空糸膜モジュール6内に収められた中空糸膜によって、中空糸膜被ろ過液側(1次側)から中空糸膜ろ過液側(2次側)にろ過されて、ろ過液となる。ろ過液は、ろ過液配管11を経てろ過液貯留槽7へと送液され貯留される。
 中空糸膜モジュール6に供給される被ろ過液の流量は、流量計9でモニタリングされ、コンピュータ13により流量制御装置であるコントロールバルブV1のバルブ開度が制御される。また、被ろ過液の一部はろ過されず、循環ポンプ3により循環されて再び中空糸膜モジュール6に供給される。
 ろ過運転を行った後、中空糸膜モジュール6内の中空糸膜の表面に堆積した汚れを除去するために、中空糸膜モジュール6の逆流洗浄運転(以下、「逆洗運転」)が行われる。逆洗運転では、ろ過液貯留槽7に貯留された逆洗液を、逆洗ポンプ12により送液し、ろ過液配管11を経て中空糸膜モジュール6に供給する。逆洗液は中空糸膜モジュール6内の中空糸膜の、中空糸膜ろ過液側(2次側)から中空糸膜被ろ過液側(1次側)に逆流させられる。中空糸膜モジュール6に供給される逆洗液の流量は、流量計9でモニタリングされ、コンピュータ13により流量制御手段であるコントロールバルブV1のバルブ開度が制御される。
 ろ過運転と逆洗運転とは繰り返し行われるが、一回のろ過工程の後に、一回の逆洗工程を実施するという一連の流れを1つの「サイクル」とした場合における、複数回のサイクルでの本発明のろ過装置の運転方法の実施について、以下に一例を挙げて詳しく説明する。
 ろ過装置内における任意の箇所として、流量計9の流量測定対象箇所であるp1(図示しない)を選択する。そして、このp1での、目標液体流量を含む目標流量範囲Aを設定する(目標範囲設定工程)。この目標範囲設定工程を実施した後に、ろ過装置のろ過運転を開始する。なお、ろ過装置のろ過運転又は逆洗運転の開始後に、目標範囲設定工程を実施しても構わない。なおこの例では、ろ過運転向けの目標流量範囲Anと、逆洗運転向けの目標流量範囲Arとを個別に設定するが、両者の値が共通であっても構わない。
 第一サイクル目のろ過運転では、その運転開始と同時に、流量計9で測定される流量をもとに、コンピュータ13にてコントロールバルブV1の開度を制御しながら中空糸膜モジュール6に被ろ過液を供給する(通液工程P)。制御の方法は、流量計9での流量が、目標液体範囲Anに収まるのであればどのような方法でも構わないが、目標流量範囲Anへの収束性の観点からPID(Proportional-Integral-Differential)制御が好ましい。
 通液工程Pを開始した後に、上記p1における液体流量を監視する。そして、p1での液体流量が、予め設定した目標流量範囲Anにはじめて入った際の、流量制御手段の状態Sn(この例では、コントロールバルブV1の開度)をコンピュータ13に記録する(制御状態記録工程)。ここで、目標流量範囲Anにはじめて入った際とは、液体流量が目標流量範囲Anに連続して1秒以上入った時点、好ましくは連続して3秒以上入った時点、さらに好ましくは連続して5秒以上入った時点のことを指す。
 コンピュータ13に状態Snを記録する手段としては、様々なものが考えられるが、流量制御手段を再び状態Snに戻すために必要十分な情報が記録可能な手段であれば、特に限定されるものではない。
 制御状態記録工程で流量制御手段の状態Snを記録してから、所定時間後にろ過運転を終了する。その後、第一サイクル目の逆洗運転を実施する。第一サイクル目の逆洗運転においても、その運転開始と同時に、流量計9で測定される流量をもとに、コンピュータ13にてコントロールバルブV1の開度を制御しながら中空糸膜モジュール6にろ過液を供給する(通液工程P)。この場合も、コントロールバルブV1の開度を制御する方法は、流量計9での流量が目標流量範囲Arに収まるのであればどのような方法でも構わないが、目標流量範囲Arへの収束性の観点からコンピュータ13によりPID制御されることが好ましい。
 通液工程Pを開始した後に、上記p1における液体流量を監視する。そして、p1での液体流量が、目標流量範囲Arにはじめて入った際の、流量制御手段の状態Sr(この例では、コントロールバルブV1の開度)をコンピュータ13に記録する(制御状態記録工程)。ここで、目標流量範囲Arにはじめて入った際とは、液体流量が目標流量範囲Aに連続して1秒以上入った時点、好ましくは連続して3秒以上入った時点、さらに好ましくは連続して5秒以上入った時点のことを指す。状態Srを記録する手段も、特に限定されるものではない。
 制御状態記録工程で流量制御手段の状態Srを記録してから、所定時間後に逆洗運転を終了する。その後、第二サイクル目のろ過運転を実施する。
 第二サイクル目のろ過運転においては、被ろ過液の中空糸膜モジュール6への供給開始と同時に、流量制御手段であるコントロールバルブV1を状態Snにして、中空糸膜モジュール6に被ろ過液を供給する(通液工程I)。
 第二サイクル目のろ過運転の通液工程Iを所定時間実施した後、被ろ過液の中空糸膜モジュール6への供給をPID制御に切り換え、ろ過運転を継続する(通液工程P)。
 ここまでの、第一サイクル目から第二サイクル目までのろ過運転についての一連の流れの中で、(1)目標流量範囲Anを設定する目標範囲設定工程、(2)流量制御手段の状態Snを記録する制御状態記録工程、(3)流量制御手段を状態Snにした通液工程I、(4)通液工程Pを備える、ろ過運転についての本発明のろ過装置の運転方法が実行されることとなる。
 所定時間後にろ過運転を終了し、第二サイクル目の逆洗運転を実施する。第二サイクル目の逆洗運転においても、その運転開始と同時に、流量制御手段であるコントロールバルブV1を状態Srにして、中空糸膜モジュール6に逆洗液を供給する(通液工程I)。第二サイクル目の逆洗運転の通液工程Iを所定時間実施した後、逆洗液の中空糸膜モジュール6への供給をPID制御に切り換え、逆洗運転を継続する(通液工程P)。
 ここまでの、第一サイクル目から第二サイクル目までの逆洗運転についての一連の流れの中で、(1)目標流量範囲Arを設定する目標範囲設定工程、(2)流量制御手段の状態Srを記録する制御状態記録工程、(3)流量制御手段を状態Srにした通液工程I、通液工程Pを備える、逆洗運転についての本発明のろ過装置の運転方法が実行されることとなる。
 以上のように、分離膜モジュールに被ろ過液又は逆洗液の供給を開始した後に、ろ過装置における任意の箇所での液体流量が、目標流量範囲Aにはじめて入った際の流量制御手段の状態Sを記録し、その後の通液工程Iに適用することで、通液工程Iの開始時における立ち上がり制御が容易となり、より早期に、安定的な目標液体流量を実現することができる。
 本発明のろ過装置の運転方法は、上記制御状態記録工程を終えた後に被ろ過液又は逆洗液の供給を停止し、上記通液工程Iにおける被ろ過液又は逆洗液の供給を開始する態様の流れにおいて、特に好適な効果を奏するものである。
 一方で、液体流量が目標流量範囲Aに入ってから一定時間が経過した後の流量制御手段の状態Sを記録し、これをその後の通液工程Iに適用した場合には、通液工程における立ち上がり制御が困難となり、安定的な目標液体流量の実現までに長時間を要することとなる。これは、一定時間の経過による、分離膜の膜閉塞等の影響によるものである。
 例えば、ろ過運転の制御状態記録工程において、任意の箇所での液体流量が目標流量範囲Aに入って一定時間が経過すると、分離膜の膜閉塞が進み、それに応じて液体流量を調整するために、流量制御手段であるコントロールバルブV1の開度は大きくなる。
 この状況におけるコントロールバルブV1の開度を状態Sとして記録しても、その後の逆洗運転で分離膜の膜閉塞が解消された場合には、この状態Sはその後のろ過運転における通液工程Iに適合するものではない。コントロールバルブの開度が大き過ぎるため、液体流量が目標流量範囲を大幅に超えてしまい、結果として安定的な目標液体流量の実現までに長時間がかかり、さらには液体流量が過大になることで、さらに分離膜の膜閉塞が進行しやすくなるという、悪循環をもたらす結果となる。
 図3は、本発明の通液工程Iにおけるろ過流量の推移(a)、従来技術を適用した場合のろ過流量の推移(b)、および通液工程I を実施せずろ過運転の開始時からPID制御を実施した場合のろ過流量の推移(c)を模式的に示した図である。本発明の通液工程Iを適用することにより、目標液体流量に早期に到達するとともに、運転開始後の流量の大幅な増大を抑制することができる。
 第二サイクル目の通液工程Pを所定時間行った後に逆洗工程を終了し、同様に第三サイクル目、第四サイクル目のろ過運転及び逆洗運転を実施しても構わない。また、第二サイクル目のろ過運転及び逆洗運転のそれぞれにおいて、制御状態記録工程を実施して、改めて状態Sn及び状態Srを記録して、それらを適用して第三サイクル目のろ過運転及び逆洗運転を実施しても構わない。
 上記のようなサイクルの繰り返しにおいて、n回目のサイクルのろ過運転及び逆洗運転を実施する場合には、より精度の高い流量制御を行うため、直前のサイクル(n-1回目のサイクル)で実施した制御状態記録工程で記録された状態Sn及び状態Srを適用することが好ましい。
 また、直前の数サイクル(例えばn-5回目からn-1回目までの数サイクル)の傾向からn回目のサイクルの開度を設定しても良い。例えばコントロールバルブV1のn-5回目のサイクル開度Sn(n-5)からn-1回目のサイクルの開度Sn(n-1)をサイクル数に対してプロットし、最小二乗法にて近似直線を引いた場合に、nサイクル目の開度Sn(n)を近似直線より算出してSnとしても良い。この場合、直前の3サイクル以上からSnを予測することが好ましい。
 この方法は、例えば運転を継続するなかで、急激に被ろ過液の性状が悪化するもしくは改善する場合に効果的な方法であり、特に被ろ過液の性状が改善する場合には、目標値よりも高い流量で運転されることを防止するのに効果的である。
 なお、目標範囲設定工程において選択される「任意の箇所」は、ろ過装置内において一箇所に限られるものではなく、複数の「任意の箇所」が選択されても構わない。複数の「任意の箇所」が選択された場合には、それぞれに対応する流量制御手段を紐付けする必要がある。一方で、「任意の箇所」が一箇所であっても、制御状態記録工程において、複数の流量制御手段についての状態Sが記録されるような態様であっても構わない。
 例えば、図1に示すろ過装置においては、コントロールバルブV1以外に、コントロールバルブV2、供給ポンプ2、循環ポンプ3又は逆洗ポンプ12を流量制御手段としても構わず、コントロールバルブV2の開度や、逆洗ポンプ12、供給ポンプ2及び循環ポンプ3の出力を、状態Sとして制御状態記録工程において記録しても構わない。コントロールバルブV2の場合では、流量計8により検出した液体流量を元に、コンピュータ14にて開度が制御される。
 本発明のろ過装置の運転方法では、状態Sを保持する上記通液工程Iを、5秒以上継続することが好ましく、10秒以上継続することがより好ましい。通液工程Iを5秒以上継続することで、通液工程Iの開始時における立ち上がり制御がより容易となる。一方で、より早い段階で通液工程Pを実施するため、通液工程Iは60秒以下であることが好ましく、30秒以下であることがより好ましく、20秒以下であることがさらに好ましい。
 本発明のろ過装置の運転方法が備える目標範囲設定工程における目標流量範囲Aは、目標液体流量に対して±20%以内が好ましく、さらに±10%以内、±5%以内が好ましい。一方目標流量範囲Aが狭すぎる場合、目標流量範囲Aに始めては入るまでの時間が長くなるため、±1%以上であることが好ましい。この範囲とすることで、通液工程Iの開始時における立ち上がり制御がさらに容易となり、さらに早期に、安定的な目標液体流量を実現することができる。
 本発明のろ過装置の運転方法が適用されるろ過装置が備える、流量制御手段は、より簡便かつ精度の高い流量制御が可能な、バルブ及び/又はポンプであることが好ましい。
 本発明のろ過装置の運転方法が適用されるろ過装置が備える、分離膜モジュールとしては、特に限定はされず、公知の構成のものが適用可能である。
 分離膜モジュールが備える分離膜は、逆洗が可能な膜であれば有機膜でも無機膜でも構わず、例えば、ポリフッ化ビニリデン製、ポリスルホン製、ポリエーテルスルホン製、ポリテトラフルオロエチレン製、ポリエチレン製若しくはポリプロピレン製の有機膜、又は、セラミックス製の無機膜が挙げられるが、有機物による汚れが発生しにくく、かつ洗浄が容易であり、さらに耐久性にも優れる、ポリフッ化ビニリデン製の分離膜が好ましい。
 分離膜の種類としては、例えば、平均細孔径が0.001μm以上10μm未満の精密ろ過膜又は限外ろ過膜が挙げられる。また分離膜の形状としては、例えば、中空糸膜、チューブラー膜、モノリス膜又はプリーツ膜が挙げられるが、分離膜モジュールの体積に比べ膜表面積が大きい、中空糸膜が好ましい。
 中空糸膜としては、中空糸の外側から内側に向かってろ過する外圧式と、内側から外側に向かってろ過する内圧式と、のいずれであっても構わないが、濁質による閉塞が起こり難い、外圧式の中空糸膜が好ましい。外圧式の中空糸膜の外径は、0.5~3mmであることが好ましい。外径が0.5mm以上であることで、中空糸膜中を流れるろ過液の抵抗を、比較的小さく抑えることができる。一方で、外径が3mm以下であることで、被ろ過液の圧力による中空糸膜の潰れを抑制することができる。また、内圧式の中空糸膜内径は、0.5~3mmであることが好ましい。内径が0.5mm以上であることで、中空糸膜中を流れる被ろ過液の抵抗を、比較的小さく抑えることができる。一方で、内径が3mm以下であることで、より大きな膜表面積を確保することができる。
 分離膜が中空糸膜である分離膜モジュールを用いたろ過の様式は、全量ろ過であっても構わないし、クロスフローろ過であっても構わない。ただし、高濃度の有機物を含有する被ろ過液では、分離膜に付着する汚れの量が多いので、この汚れを効果的に除去するためには、循環する被ろ過液のせん断力が得られる、クロスフローろ過が好ましい。
 本発明のろ過装置およびろ過装置の運転方法は、1サイクル中の膜間差圧の上昇速度が速い被ろ過液のろ過に好適に用いられる。具体的には、1サイクル中の膜間差圧の上昇速度が1kPa/分以上、好ましくは1.5kPa/分以上、さらにこのましくは2kPa/分以上である。上昇速度が1kPa/分以上の被ろ過液のろ過では、分離膜の膜閉塞の進行が早いため、本発明の効果が顕著になる。
 また、1サイクル中の膜間差圧の上昇速度が速い被ろ過液としては、例えば濁度が20NTU以上の液体、もしくは全有機物濃度(TOC)が10mg/L以上の液体が挙げられる。具体的には、高濁度の表流水、下水二次処理水、工場廃水、生物発酵液などが挙げられる。
 (ポリフッ化ビニリデン精密ろ過中空糸膜の作製)
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38質量部と、γ-ブチロラクトン62質量部とを混合し、160℃で溶解した。この高分子溶液を、γ-ブチロラクトン85質量%水溶液を中空部形成液体として随伴させながら、二重管の口金から吐出し、口金の30mm下方に設置した温度5℃のγ-ブチロラクトン85質量%水溶液からなる冷却浴中で凝固させて、ポリフッ化ビニリデン(以下、PVDF)精密ろ過中空糸膜を作製した。得られたPVDF中空糸膜は、外径1250μm、内径800μm、平均孔径は0.3μmであった。
 (外圧式PVDF精密ろ過中空糸膜モジュールの作製)
 内径22mm、長さ300mmのポリスルホン製の筒状ケース内に、得られた中空糸膜100本を充填し、一方の端部にビスフェノールF型エポキシ樹脂(ハンツマン社製、LST868-R14)と脂肪族アミン系硬化剤(ハンツマン社製、LST868-H14)とを質量比が100:30となるように混合したものを流し込み、硬化させてポッティング部を形成した。同様にもう一方の端部にもポッティング部を形成し、両端ともにポッティング部を切断して中空糸膜の中空部を開口させ、外圧式PVDF精密ろ過中空糸膜モジュールを作製した。
 (実施例1)
 作製した外圧式PVDF精密ろ過中空糸膜モジュールを分離膜モジュールとして、図1に示したろ過装置を構成した。
 このろ過装置において、クロスフローろ過運転と逆洗運転とのサイクルを繰り返した。より具体的には、市販の無ろ過ワインを被ろ過液として、目標ろ過流束2.2m/m/日でクロスフローろ過運転を550秒間行い、そのろ過運転のろ過液を逆洗液として、目標逆洗流束3.0m/m/日で逆洗運転を行った。なおクロスフローろ過運転における膜面線速度は、1.5m/sとなるようにした。
 第一サイクル目のろ過運転を行う前に、ろ過装置における任意の箇所として流量計9の流量測定対象箇所であるp1を選定し、目標液体流量である目標ろ過流束2.2m/m/日を含む、目標ろ過流束2.2m/m/日に対して±10%の範囲を目標流量範囲Aとして設定した(目標範囲設定工程)。
 第一サイクル目のろ過運転では、PID制御により分離膜モジュールに被ろ過液の供給を開始した後に、p1での液体流量(ろ過流束)が、目標流量範囲Aである2.2m/m/日±10%の範囲に入った際(ろ過運転の開始から60秒後)の、コントロールバルブV1のバルブ開度を状態Sとして記録した(制御状態記録工程)。
 第二サイクル目のろ過運転では、コントロールバルブV1のバルブ開度を、第一サイクル目のろ過運転で記録された状態Sにして、5秒間分離膜モジュールに被ろ過液を供給し(通液工程I)、その後、PID制御により被ろ過液を供給した(通液工程P)。第二サイクル目のろ過運転の開始時から、p1での液体流量が目標流量範囲Aに初めて入るまでの時間は20秒であり、早期に液体流量を安定化させることができた。また、液体流量の推移については、図3(a)に示すような推移であり、目標液体流量から大幅に高くなることはなかった。
 (実施例2)
 通液工程Iの時間を10秒に変えた以外は、実施例1と同様にろ過装置を運転した。第二サイクル目のろ過運転の開始時から、p1での液体流量が目標流量範囲Aに初めて入るまでの時間は15秒であり、早期に液体流量を安定化させることができた。また、液体流量の推移については、図3(a)に示すような推移であり、目標液体流量から大幅に高くなることはなかった。
 (実施例3)
 通液工程Iの時間を15秒に変えた以外は、実施例1と同様にろ過装置を運転した。第二サイクル目のろ過運転の開始時から、p1での液体流量が目標流量範囲Aに初めて入るまでの時間は20秒であり、早期に液体流量を安定化させることができた。また、液体流量の推移については、図3(a)に示すような推移であり、目標液体流量から大幅に高くなることはなかった。
 (実施例4)
 通液工程Iの時間を20秒に変えた以外は、実施例1と同様にろ過装置を運転した。第二サイクル目のろ過運転の開始時から、p1での液体流量が目標流量範囲Aに初めて入るまでの時間は25秒であり、液体流量を安定化させることができた。また、液体流量の推移については、図3(a)に示すような推移であり、目標液体流量から大幅に高くなることはなかった。
 (比較例1)
 第二サイクル目のろ過運転において、通液工程Iを実施せず、ろ過運転の開始時からPID制御により被ろ過液を供給した以外は、実施例1と同様にろ過装置を運転した。第二サイクル目のろ過運転の開始時から、p1での液体流量が目標流量範囲Aに初めて入るまでの時間は60秒であり、早期に液体流量を安定化させることができなかった。また、液体流量の推移については、図3(c)に示すような推移であり、第二サイクル目のろ過開始時のろ過流量は目標液体流量から大幅に高くなる場合もあった。
 (比較例2)
 第一サイクル目のろ過運転において、ろ過運転の開始後545秒が経過した時のコントロールバルブV1のバルブ開度を記録し、第二サイクル目のろ過運転において、通液工程Iの時間を10秒に変えた以外は、実施例1と同様にろ過装置を運転した。第一サイクル目のろ過運転において、p1での液体流量(ろ過流束)が、目標流量範囲Aである2.2m/m/日±10%の範囲に入ったのは、実施例1と同じくろ過運転の開始から60秒後であったが、その時点と比較して、ろ過運転の開始後545秒が経過した時は分離膜の閉塞が相当程度に進行しており、コントロールバルブV1のバルブ開度が大きくなっていた。その結果、第二サイクル目のろ過運転開始時のコントロールバルブV1のバルブ開度が過大となったため、ろ過運転の開始時から、p1での液体流量の推移が、図3(b)に示すような推移となり、目標流量範囲Aを大幅に超えてしまい、その後再び目標流量範囲Aに入るまでの時間は55秒となり、早期に液体流量を安定化させることができなかった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2018年12月26日出願の日本特許出願(特願2018-242780)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のろ過装置およびその運転方法は、飲料水製造、浄水処理、排水処理等の水処理分野、微生物や培養細胞の培養を伴う発酵分野、食品工業分野等、様々な方面での被ろ過液のろ過処理に好ましく適用される。
 1 被ろ過液槽
 2 供給ポンプ
 3 循環ポンプ
 4 流量計
 5 圧力計
 6 中空糸膜モジュール
 7 ろ過液貯留槽
 8 流量計
 9 流量計
 10 圧力計
 11 ろ過液配管
 12 逆洗ポンプ
 13 コンピュータ
 14 コンピュータ
 V1 コントロールバルブ
 V2 コントロールバルブ
 V3 バルブ
 V4 バルブ
 21 液体流量検出手段
 22 外部制御手段
 23 流量制御手段
 24 目標範囲設定工程
 25 制御状態記録工程
 26 状態設定工程
 27 流量制御工程

Claims (8)

  1.  流量制御手段と、分離膜モジュールと、を備えるろ過装置が、
     任意の箇所での液体流量を検出する液体流量検出手段と、
     前記流量制御手段の状態を制御する外部制御手段を備え、
     前記外部制御手段が、
     前記任意の箇所での、目標液体流量を含む目標流量範囲Aを設定する、目標範囲設定工程と、
     前記分離膜モジュールに被ろ過液又は逆洗液の供給を開始した後に、前記任意の箇所での液体流量が、目標流量範囲Aにはじめて入った際の前記流量制御手段の状態Sを記録する、制御状態記録工程と、
     前記流量制御手段を、前記制御状態記録工程で記録された前記状態Sとする、状態設定工程と、
     前記液体流量を、前記目標流量範囲Aに制御する、流量制御工程と、
    を備えたろ過装置。
  2.  前記目標流量範囲Aが、前記目標液体流量に対して±10%以内である、請求項1記載のろ過装置。
  3.  前記流量制御手段が、バルブ及び/又はポンプである、請求項1又は2記載のろ過装置。
  4.  流量制御手段と、分離膜モジュールと、を備えるろ過装置における、任意の箇所での、目標液体流量を含む目標流量範囲Aを設定する、目標範囲設定工程と、
     前記分離膜モジュールに被ろ過液又は逆洗液の供給を開始した後に、前記任意の箇所での液体流量が、目標流量範囲Aにはじめて入った際の前記流量制御手段の状態Sを記録する、制御状態記録工程と、
     前記流量制御手段を、前記制御状態記録工程で記録された前記状態Sにして、前記分離膜モジュールに被ろ過液又は逆洗液を供給する、通液工程Iと、
     前記流量制御手段によって前記分離膜モジュールに被ろ過液又は逆洗液を供給する流量を前記目標流量範囲Aに制御する、通液工程Pと、
    を備える、ろ過装置の運転方法。
  5.  前記制御状態記録工程を終えた後に被ろ過液又は逆洗液の供給を停止し、前記通液工程Iにおける被ろ過液又は逆洗液の供給を開始する、請求項4記載のろ過装置の運転方法。
  6.  前記通液工程Iを5秒以上継続する、請求項4又は5記載のろ過装置の運転方法。
  7.  前記目標流量範囲Aが、前記目標液体流量に対して±10%以内である、請求項4~6のいずれか一項記載のろ過装置の運転方法。
  8.  前記流量制御手段が、バルブ及び/又はポンプである、請求項4~7のいずれか一項記載のろ過装置の運転方法。
PCT/JP2019/050998 2018-12-26 2019-12-25 ろ過装置およびその運転方法 WO2020138231A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/417,517 US20220111335A1 (en) 2018-12-26 2019-12-25 Filtration apparatus and operation method therefor
CN201980086196.1A CN113242758B (zh) 2018-12-26 2019-12-25 过滤装置及其运转方法
BR112021012617-1A BR112021012617A2 (pt) 2018-12-26 2019-12-25 Dispositivo de filtração e método para operar um dispositivo de filtração
JP2020502507A JP7388347B2 (ja) 2018-12-26 2019-12-25 ろ過装置およびその運転方法
EP19904397.7A EP3903912A4 (en) 2018-12-26 2019-12-25 FILTRATION APPARATUS AND METHOD OF OPERATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-242780 2018-12-26
JP2018242780 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020138231A1 true WO2020138231A1 (ja) 2020-07-02

Family

ID=71128706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050998 WO2020138231A1 (ja) 2018-12-26 2019-12-25 ろ過装置およびその運転方法

Country Status (6)

Country Link
US (1) US20220111335A1 (ja)
EP (1) EP3903912A4 (ja)
JP (1) JP7388347B2 (ja)
CN (1) CN113242758B (ja)
BR (1) BR112021012617A2 (ja)
WO (1) WO2020138231A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236068A (ja) 1985-04-10 1986-10-21 Hitachi Ltd 磁気デイスク装置
JP2004008934A (ja) * 2002-06-06 2004-01-15 Asahi Kasei Corp 膜分離装置の運転方法
JP2005013797A (ja) 2003-06-24 2005-01-20 Asahi Kasei Chemicals Corp 流体プロセスの運転方法
JP2007245061A (ja) * 2006-03-17 2007-09-27 Fuji Electric Systems Co Ltd 水処理装置の流量制御方法
JP2008188541A (ja) * 2007-02-06 2008-08-21 Miura Co Ltd 膜濾過システムの運転方法
JP2016022446A (ja) * 2014-07-23 2016-02-08 三浦工業株式会社 膜濾過装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137978A (ja) * 2003-11-04 2005-06-02 Sumitomo Heavy Ind Ltd 膜ろ過装置の運転方法
JP2008188540A (ja) * 2007-02-06 2008-08-21 Miura Co Ltd 膜濾過システムの運転方法
CN102015076A (zh) * 2008-02-19 2011-04-13 Abb研究有限公司 膜分离过程的在线性能管理
FR2940140B1 (fr) * 2008-12-23 2011-11-11 Degremont Procede et installation pour la gestion du colmatage de modules membranaires et de membranes de filtration
JP5708111B2 (ja) * 2011-03-23 2015-04-30 三浦工業株式会社 水処理システムのフラッシング方法、プログラム、制御器、及び水処理システム
JO3415B1 (ar) * 2011-03-30 2019-10-20 Crystal Lagoons Tech Inc نظام لمعالجة الماء المستخدم لأغراض صناعية
CN104609533B (zh) * 2015-01-27 2017-07-28 王丽英 一种难降解有机废水臭氧非均相催化氧化处理工艺的控制系统及方法
EP3427807B1 (en) * 2016-03-11 2023-08-23 Coway Co., Ltd. Water purifier and control method for water purifier
CN206027462U (zh) * 2016-08-29 2017-03-22 天津市华博水务有限公司 一种超滤膜柱在线监控化学清洗装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236068A (ja) 1985-04-10 1986-10-21 Hitachi Ltd 磁気デイスク装置
JP2004008934A (ja) * 2002-06-06 2004-01-15 Asahi Kasei Corp 膜分離装置の運転方法
JP2005013797A (ja) 2003-06-24 2005-01-20 Asahi Kasei Chemicals Corp 流体プロセスの運転方法
JP2007245061A (ja) * 2006-03-17 2007-09-27 Fuji Electric Systems Co Ltd 水処理装置の流量制御方法
JP2008188541A (ja) * 2007-02-06 2008-08-21 Miura Co Ltd 膜濾過システムの運転方法
JP2016022446A (ja) * 2014-07-23 2016-02-08 三浦工業株式会社 膜濾過装置

Also Published As

Publication number Publication date
JPWO2020138231A1 (ja) 2021-11-04
JP7388347B2 (ja) 2023-11-29
CN113242758A (zh) 2021-08-10
EP3903912A1 (en) 2021-11-03
US20220111335A1 (en) 2022-04-14
CN113242758B (zh) 2023-09-19
BR112021012617A2 (pt) 2021-09-08
EP3903912A4 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
JP6441808B2 (ja) 淡水化装置及び淡水化方法
KR102329058B1 (ko) 분리막 모듈의 막힘 개소 특정 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체, 조수 시스템 및 조수 방법
Chen et al. Membrane separation: basics and applications
US20100193435A1 (en) Method for the Filtration of a Fluid
JP2013188710A (ja) 膜ろ過装置及び造水装置並びに膜ろ過装置の洗浄方法
JPH11319516A (ja) 水ろ過処理装置およびその運転方法
JP2007296500A (ja) 膜分離装置及び膜ろ過方法
US20180104652A1 (en) Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus
JP4885512B2 (ja) 浄水設備及びその運転方法
CA2742251A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP6862935B2 (ja) 濃縮システムおよび濃縮方法
WO2020138231A1 (ja) ろ過装置およびその運転方法
JP7103526B2 (ja) 造水装置の洗浄トラブル判定方法および洗浄トラブル判定プログラム
JP4556150B2 (ja) 高分子多孔質膜
JP2013212497A (ja) 水処理方法
JPH11169851A (ja) 水ろ過処理装置およびその運転方法
JP2922059B2 (ja) 中空糸膜濾過器の運転方法
JPH09290261A (ja) 浄水の製造装置
JP2005254192A (ja) 膜分離装置および膜分離方法
JP6264095B2 (ja) 膜モジュールの洗浄方法
WO2017183131A1 (ja) ろ過処理設備及びこれを備えた淡水化プラント並びにろ過処理方法
WO2022025265A1 (ja) 分離膜モジュールの運転方法、プログラムを記録したコンピュータ読み取り可能な記録媒体及び造水システム
JP2023096360A (ja) 水処理方法および水処理装置
JP2002028453A (ja) スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法および洗浄方法
CN114025869A (zh) 包括纵向脊的管状膜、设有该膜的设备及制造该膜的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020502507

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021012617

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019904397

Country of ref document: EP

Effective date: 20210726

ENP Entry into the national phase

Ref document number: 112021012617

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210625