WO2020137764A1 - 蛍光体基板、発光基板及び照明装置 - Google Patents

蛍光体基板、発光基板及び照明装置 Download PDF

Info

Publication number
WO2020137764A1
WO2020137764A1 PCT/JP2019/049691 JP2019049691W WO2020137764A1 WO 2020137764 A1 WO2020137764 A1 WO 2020137764A1 JP 2019049691 W JP2019049691 W JP 2019049691W WO 2020137764 A1 WO2020137764 A1 WO 2020137764A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light emitting
substrate
light
layer
Prior art date
Application number
PCT/JP2019/049691
Other languages
English (en)
French (fr)
Inventor
正宏 小西
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2020563145A priority Critical patent/JP7430650B2/ja
Priority to KR1020217018340A priority patent/KR20210105894A/ko
Priority to CN201980083426.9A priority patent/CN113228313A/zh
Priority to US17/414,643 priority patent/US20220052233A1/en
Priority to EP19901970.4A priority patent/EP3905345B1/en
Publication of WO2020137764A1 publication Critical patent/WO2020137764A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • H01L25/042Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/14Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
    • F21Y2105/16Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array square or rectangular, e.g. for light panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2054Light-reflecting surface, e.g. conductors, substrates, coatings, dielectrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a phosphor substrate, a light emitting substrate, and a lighting device.
  • Patent Document 1 discloses an LED lighting device including a substrate on which a light emitting element (LED element) is mounted.
  • LED element light emitting element
  • a light-reflecting material is provided on the surface of the substrate to improve the luminous efficiency.
  • Patent Document 1 In the first place, the LED lighting device disclosed in Patent Document 1 cannot use a reflective material to adjust the light emitted by the LED lighting fixture into light of a different emission color from the light emitted by the light emitting element. Furthermore, Patent Document 1 does not explicitly disclose a specific configuration of the substrate.
  • An object of the present invention is to provide a phosphor substrate which is provided with a phosphor layer on one surface thereof and in which a plurality of light emitting elements are mounted and which is hard to warp.
  • a phosphor substrate according to a first aspect of the present invention is a phosphor substrate having a plurality of light emitting elements mounted on one surface thereof, the insulator substrate being disposed on one surface of the insulating substrate, and being bonded to the plurality of light emitting elements.
  • a first electrode group having a plurality of electrodes, a phosphor layer including a phosphor disposed on one surface of the insulating substrate and having a peak emission wavelength in the visible light region when the light emission of the light emitting element is used as excitation light;
  • the insulating substrate includes bismaleimide resin and glass cloth.
  • the phosphor substrate of the second aspect of the present invention is the phosphor substrate of the first aspect, and includes a second electrode group which is arranged on the other surface of the insulating substrate and has a plurality of electrodes.
  • a phosphor substrate according to a third aspect of the present invention is the phosphor substrate according to the first or second aspect, wherein the insulating substrate has a thermal expansion coefficient of 50° C. or more and 100° C. or less in the vertical direction and the horizontal direction, respectively. It is set to 10 ppm/° C. or less in the range.
  • the phosphor substrate according to the fourth aspect of the present invention is the phosphor substrate according to any one of the first to third aspects, and the glass transition temperature of the insulating substrate is higher than 300°C.
  • a phosphor substrate according to a fifth aspect of the present invention is the phosphor substrate according to any one of the first to fourth aspects, wherein the insulating substrate has a storage elastic modulus of 100° C. or higher and 300° C. or lower, It is larger than 1.0 ⁇ 10 10 Pa and smaller than 1.0 ⁇ 10 11 Pa.
  • a phosphor substrate according to a sixth aspect of the present invention is the phosphor substrate according to any one of the first to fifth aspects, wherein the plurality of electrodes included in the second electrode group is the first electrode group.
  • the dummy electrode is not electrically connected to the plurality of electrodes.
  • the phosphor substrate according to the seventh aspect of the present invention is the phosphor substrate according to any one of the first to sixth aspects, and the second electrode group forms a pattern.
  • the phosphor substrate according to the eighth aspect of the present invention is the phosphor substrate according to any one of the first to seventh aspects, and the thickness of the insulating substrate is 200 ⁇ m or less.
  • the phosphor substrate according to the ninth aspect of the present invention is the phosphor substrate according to the eighth aspect, wherein the insulating substrate has a thickness of 100 ⁇ m or more.
  • a phosphor substrate according to a tenth aspect of the present invention is the phosphor substrate according to any one of the first to ninth aspects, wherein the light emitting element is a CSP packaged in an LED and packaged in a chip size. There is.
  • a light emitting substrate of the present invention includes the phosphor substrate according to any one of the first to tenth aspects, and a plurality of light emitting elements that are respectively bonded to the plurality of electrodes of the first electrode group.
  • the lighting device of the present invention includes the light emitting substrate and a power supply that supplies electric power for causing the light emitting element to emit light.
  • the phosphor substrate according to any one of the first to tenth aspects of the present invention suppresses warpage due to heat generation of a plurality of light emitting elements in a phosphor substrate having a phosphor layer on one surface and having a plurality of light emitting elements mounted thereon. can do.
  • the light emitting substrate of the present invention can stabilize the light emission from the plurality of light emitting elements and the phosphor layer as the warpage of the phosphor substrate is suppressed.
  • FIG. 1B is a partial cross-sectional view of the light emitting substrate taken along the line 1C-1C in FIG. 1A.
  • FIG. 3 is a plan view of a phosphor substrate (a phosphor layer is omitted) of the present embodiment. It is a top view of the fluorescent substance board of this embodiment. It is explanatory drawing of the 1st process in the manufacturing method of the light emitting substrate of this embodiment. It is explanatory drawing of the 2nd process in the manufacturing method of the light emitting substrate of this embodiment.
  • 1A is a plan view of the light emitting substrate 10 of the present embodiment (view seen from the front surface 31), and FIG. 1B is a bottom view of the light emitting substrate 10 of the present embodiment (view seen from the back surface 33).
  • 1C is a partial cross-sectional view of the light emitting substrate 10 taken along the line 1C-1C in FIG. 1A.
  • the light emitting substrate 10 of the present embodiment has a rectangular shape as an example when viewed from the front surface 31 and the back surface 33.
  • the light emitting substrate 10 of the present embodiment includes a plurality of light emitting elements 20, a phosphor substrate 30, and electronic parts (not shown) such as a connector and a driver IC. That is, the light emitting substrate 10 of the present embodiment is configured such that the plurality of light emitting elements 20 and the electronic components are mounted on the phosphor substrate 30.
  • the light emitting substrate 10 according to the present embodiment has a function of emitting light when power is supplied from an external power source (not shown) by directly attaching a lead wire or via a connector. Therefore, the light emitting substrate 10 of the present embodiment is used as a main optical component in, for example, a lighting device (not shown).
  • each of the plurality of light emitting elements 20 is a CSP (Chip Scale Package) in which a flip chip LED 22 (hereinafter, referred to as LED 22) is incorporated (see FIG. 1C).
  • the CSP As the CSP, as shown in FIG. 1C, it is preferable that the entire periphery (five sides) of the LED 22 except the bottom surface is covered with the phosphor sealing layer 24.
  • the phosphor sealing layer 24 contains a phosphor, and the light of the LED 22 is color-converted by the phosphor of the phosphor sealing layer 24 and emitted to the outside. As shown in FIG.
  • the plurality of light emitting elements 20 are regularly arranged on the surface 31 (an example of one surface) of the phosphor substrate 30 over the entire surface 31 of the phosphor substrate 30. It is installed.
  • the correlated color temperature of the light emitted by each light emitting element 20 of the present embodiment is set to 3,018K as an example.
  • the plurality of light emitting elements 20 use a heat sink (not shown) or a cooling fan (not shown) during the light emitting operation to radiate heat so that the temperature of the light emitting element 20 falls from room temperature to 50° C. to 100° C. as an example. Has been cooled).
  • “50° C. to 100° C.” means “50° C. or more and 100° C. or less”.
  • the term "to” used in the numerical range in the present specification means "more than the part described before "” and less than the part described after "”.
  • FIG. 2A is a diagram of the phosphor substrate 30 of the present embodiment, and is a plan view (a view from the surface 31) in which the phosphor layer 36 is omitted.
  • FIG. 2B is a plan view (view from the front surface 31) of the phosphor substrate 30 of the present embodiment.
  • the bottom view of the phosphor substrate 30 of the present embodiment is the same as the view of the light emitting substrate 10 viewed from the back surface 33.
  • the partial cross-sectional view of the phosphor substrate 30 of the present embodiment is the same as the drawing when the light emitting element 20 is removed from the partial cross-sectional view of FIG. 1C. That is, the phosphor substrate 30 of the present embodiment has a rectangular shape as an example when viewed from the front surface 31 and the back surface 33.
  • the phosphor substrate 30 of the present embodiment includes an insulating layer 32 (an example of an insulating substrate), an electrode layer 34 (an example of a first electrode group), a phosphor layer 36, and a back surface pattern layer 38 (of a second electrode group). (One example) and (see FIGS. 1B, 1C, 2A and 2B).
  • the phosphor layer 36 is omitted in FIG. 2A, as shown in FIG. 2B, the phosphor layer 36 is, as an example, a plurality of electrodes described later on the surface 31 of the insulating layer 32 and the electrode layer 34. It is arranged in a portion other than the pair 34A (an example of a plurality of electrodes).
  • through holes 39 are formed in the phosphor substrate 30 at six locations near four corners and two locations near the center.
  • the six through holes 39 are used as positioning holes when the phosphor substrate 30 and the light emitting substrate 10 are manufactured.
  • the six through-holes 39 are used as screw holes for attachment for securing a heat-extracting effect (preventing substrate warpage and floating) to the (light emitting) lamp housing.
  • the phosphor substrate 30 of the present embodiment is processed (etched or the like) by processing a double-sided plate (hereinafter, referred to as a mother board MB; see FIG. 3A) in which copper foil layers are provided on both surfaces of an insulating plate. Manufactured.
  • the main features of the insulating layer 32 of this embodiment will be described below.
  • the shape is a rectangle when viewed from the front surface 31 and the back surface 33, as an example.
  • the material is an insulating material including bismaleimide resin and glass cloth as an example. Further, the insulating material does not contain halogen and phosphorus (halogen-free, phosphorus-free).
  • the thickness is preferably 100 ⁇ m to 200 ⁇ m.
  • the coefficient of thermal expansion (CTE) in the machine direction and the coefficient of thermal expansion (CTE) in the machine direction are, for example, 10 ppm/° C. or less in the range of 50° C. to 100° C., respectively.
  • the coefficient of thermal expansion (CTE) in the longitudinal direction and the coefficient of thermal expansion (CTE) in the lateral direction are 6 ppm/K, respectively, as an example. This value is almost the same as that of the light emitting element 20 of the present embodiment (90% to 110%, that is, within ⁇ 10%).
  • the glass transition temperature is, for example, higher than 300°C.
  • the storage elastic modulus is larger than 1.0 ⁇ 10 10 Pa and smaller than 1.0 ⁇ 10 11 Pa in the range of 100° C. to 300° C.
  • the bending elastic moduli in the machine direction and the transverse direction are 35 GPa and 34 GPa in the normal state, respectively.
  • the hot bending elastic modulus in the machine direction and the transverse direction is 19 GPa at 250° C., for example.
  • the water absorption is 0.13% when left for 24 hours in a temperature environment of 23°C.
  • the relative permittivity is 4.6 in a 1 MHz normal state as an example.
  • the dielectric loss tangent is 0.010 in the normal state of 1 MHz.
  • the insulating layer 32 of the present embodiment corresponds to the insulating layer portion of the motherboard MB, CS-3305A manufactured by Risho Industry Co., Ltd. is used for the motherboard MB as an example.
  • the electrode layer 34 of the present embodiment is a metal layer provided on the surface 31 side of the insulating layer 32.
  • the electrode layer 34 of the present embodiment is, for example, a copper foil layer (a layer made of Cu). In other words, at least the surface of the electrode layer 34 of the present embodiment contains copper.
  • the electrode layer 34 has a pattern provided on the insulating layer 32 and is electrically connected to a terminal (not shown) to which a connector (not shown) is joined.
  • the electrode layer 34 is configured to supply electric power supplied from an external power source (not shown) via the connector to the plurality of light emitting elements 20 when the light emitting substrate 10 is configured.
  • a part of the electrode layer 34 is a plurality of electrode pairs 34A to which the plurality of light emitting elements 20 are respectively joined. That is, the electrode layer 34 of the light emitting substrate 10 of the present embodiment is disposed on the insulating layer 32 and connected to each light emitting element 20.
  • the plurality of electrode pairs 34A also extend over the entire surface 31. They are regularly arranged (see FIG. 2A).
  • a portion of the electrode layer 34 other than the plurality of electrode pairs 34A is referred to as a wiring portion 34B.
  • the plurality of electrode pairs 34A protrude more outward than the wiring portion 34B in the thickness direction of the insulating layer 32 (phosphor substrate 30).
  • the surface to which each light emitting element 20 is bonded is more than the surface other than the bonding surface 34A1 (non-bonding surface 34B1). Is also located outside the insulating layer 32 in the thickness direction.
  • the region (defined as the first arrangement region) in which the electrode layer 34 is arranged on the surface 31 of the insulating layer 32 is, for example, 60% or more of the surface 31 of the insulating layer 32 (area). (See FIG. 2A).
  • 80% or more of the first placement region overlaps the region of the insulating layer 32 where the back surface pattern layer 38 is placed (defined as the second placement region) in the thickness direction of the insulating layer 32. ..
  • the phosphor layer 36 of the present embodiment is arranged on a portion of the surface 31 of the insulating layer 32 and the electrode layer 34 other than the plurality of electrode pairs 34A. That is, the phosphor layer 36 is arranged in a region other than the plurality of electrode pairs 34A in the electrode layer 34. In other words, at least a part of the phosphor layer 36 is arranged so as to surround the entire circumference of each joint surface 34A1 when viewed from the surface 31 side (see FIGS. 1C and 2B).
  • the region where the phosphor layer 36 is arranged on the surface 31 of the insulating layer 32 is, for example, 80% or more of the surface 31 of the insulating layer 32.
  • the surface of the phosphor layer 36 on the outer side in the thickness direction of the insulating layer 32 is located on the outer side in the thickness direction than the joint surface 34A1 of the electrode layer 34 (see FIG. 1C).
  • the phosphor layer 36 of the present embodiment is, for example, an insulating layer containing a phosphor and a binder described later.
  • the phosphor contained in the phosphor layer 36 is fine particles held in a state of being dispersed in a binder, and has a property of exciting the light emission of the LED 22 of each light emitting element 20 as excitation light.
  • the phosphor of the present embodiment has a property that the emission peak wavelength when the light emitted from the light emitting element 20 is used as excitation light is in the visible light region.
  • the binder may be, for example, an epoxy type, an acrylate type, a silicone type, or the like, as long as it has an insulating property equivalent to that of the binder contained in the solder resist.
  • the phosphor contained in the phosphor layer 36 of the present embodiment is, for example, an ⁇ -sialon phosphor containing Eu, a ⁇ -sialon phosphor containing Eu, a CASN phosphor containing Eu, and Eu.
  • the phosphor is at least one kind selected from the group consisting of SCASN phosphors containing
  • the above-mentioned phosphor is an example of the present embodiment, and may be a phosphor other than the above-mentioned phosphor, such as YAG, LuAG, BOS, and other phosphors excited by visible light.
  • the ⁇ -sialon phosphor containing Eu is represented by the general formula: M x Eu y Si 12-(m+n) Al (m+n) O n N 16-n .
  • examples of the nitride phosphor include a CASN phosphor containing Eu and a SCASN phosphor containing Eu.
  • a Eu-containing CASN phosphor (an example of a nitride phosphor) is represented by, for example, the formula CaAlSiN 3 :Eu 2+ , has Eu 2+ as an activator, and has a crystal composed of an alkaline earth silicon nitride as a matrix. Refers to a red phosphor. It should be noted that the definition of the Eu-containing CASN phosphor in the present specification excludes the Eu-containing SCASN phosphor.
  • the SCASN phosphor containing Eu (an example of a nitride phosphor) is represented by, for example, the formula (Sr,Ca)AlSiN 3 :Eu 2+ , uses Eu 2+ as an activator, and is made of an alkaline earth silicon nitride.
  • the back surface pattern layer 38 of the present embodiment is a metal layer provided on the back surface 33 side of the insulating layer 32.
  • the back surface pattern layer 38 of the present embodiment is, for example, a copper foil layer (layer made of Cu).
  • the back surface pattern layer 38 has a plurality of rectangular portions 38A (an example of a plurality of electrodes, hereinafter referred to as a plurality of portions 38A) linearly arranged along the longitudinal direction of the insulating layer 32. ) Is a layer that is arranged adjacent to each other as a phase shift in the lateral direction. That is, the back surface pattern layer 38 of the present embodiment forms a pattern in which a plurality of portions 38A are arranged.
  • the back pattern layer 38 is, for example, an independent floating layer. That is, the back surface pattern layer 38 of this embodiment (the plurality of portions 38A constituting the back surface pattern layer) is a dummy electrode that is not electrically connected to the plurality of electrode pairs 34A of the electrode layer 34 on the front surface 31 side. ..
  • the area of the second arrangement region of the present embodiment is set larger than the area of the first arrangement region (see FIGS. 1B and 2A), it is 90% to 110% of the area of the first arrangement region. The area is set.
  • the method for manufacturing the light emitting substrate 10 of this embodiment includes a first step, a second step, a third step, a fourth step and a fifth step, and each step is performed in the order described.
  • FIG. 3A is a diagram showing the start time and the end time of the first step.
  • the first step is a step of forming the same pattern 34C as the electrode layer 34 on the front surface 31 of the motherboard MB when viewed from the thickness direction and the back surface pattern layer 38 on the back surface 33. This step is performed by etching using a mask pattern (not shown), for example.
  • FIG. 3B is a diagram showing the start time and the end time of the second step.
  • the second step is a step of half-hatching (etching halfway in the thickness direction) part of the pattern 34C.
  • an electrode layer 34 having a plurality of electrode pairs 34A and wiring portions 34B is formed. That is, when this step is completed, a plurality of bonding surfaces 34A1 and a plurality of non-bonding surfaces 34B1 are formed on the electrode layer 34.
  • This step is performed by etching using a mask pattern (not shown), for example.
  • FIG. 3C is a diagram showing the start time and the end time of the third step.
  • the third step is a step of applying the phosphor coating 36C on the surface 31 of the insulating layer 32, that is, the entire surface on which the electrode layer 34 is formed.
  • the phosphor coating 36C is applied by printing.
  • the phosphor coating 36C is applied thicker than all the electrode pairs 34A.
  • the phosphor coating 36C is applied in the thickness direction of the insulating layer 32 so as to cover each joint surface 34A1 from the outside in the thickness direction (so that each joint surface 34A1 is hidden by the phosphor coating 36C). ..
  • FIG. 3D is a diagram showing the start time and the end time of the fourth step.
  • the fourth step is a step of removing a part of the phosphor layer 36 in which the phosphor coating 36C is cured to expose the bonding surfaces 34A1 of all the electrode pairs 34A.
  • the binder of the phosphor coating 36C is, for example, a thermosetting resin
  • each joint in the phosphor layer 36 is cured by heating the phosphor coating 36C and then using a two-dimensional laser processing device (not shown). Laser light is selectively applied to the portion on the surface 34A1.
  • the phosphor substrate 30 of the present embodiment is manufactured.
  • this step may be performed, for example, by the following method.
  • the binder of the phosphor coating 36C is, for example, a UV curable resin (photosensitive resin)
  • a mask pattern is applied to a portion (paint opening) that overlaps each bonding surface 34A1 and exposed to UV light, except for the mask pattern. Is UV-cured and the non-exposed portion (uncured portion) is removed by a resin removing liquid to expose each bonding surface 34A1.
  • heat is applied to perform after-cure (photo-developing method).
  • FIG. 3E is a diagram showing the start time and the end time of the fifth step.
  • the fifth step is a step of mounting the plurality of light emitting elements 20 on the phosphor substrate 30.
  • solder paste SP is printed on each joint surface 34A1 of the plurality of electrode pairs 34A of the phosphor substrate 30, and each electrode of the plurality of light emitting elements 20 is aligned with each joint surface 34A1.
  • FIG. 4 is a diagram for explaining the light emitting operation of the light emitting substrate 10 of the present embodiment.
  • a part of the light L emitted from each light emitting element 20 is emitted to the outside without entering the phosphor layer 36.
  • the wavelength of the light L remains the same as the wavelength of the light L emitted from each light emitting element 20.
  • the light of the LED 22 itself which is a part of the light L emitted from each light emitting element 20, is incident on the phosphor layer 36.
  • the above-mentioned “light of the LED 22 itself in a part of the light L” means color conversion by the phosphor (phosphor sealing layer 24) of each light emitting element 20 (CSP itself) in the emitted light L.
  • Light that is not emitted that is, the light of the LED 22 itself (for example, light of blue color (wavelength near 470 nm)) is meant.
  • the light L of the LED 22 itself collides with the phosphor dispersed in the phosphor layer 36, the phosphor is excited and emits excitation light.
  • the reason why the phosphor is excited is that the phosphor dispersed in the phosphor layer 36 is a phosphor having an excitation peak in blue light (visible light excitation phosphor). Along with this, part of the energy of the light L is used to excite the phosphor, so that the light L loses part of the energy. As a result, the wavelength of the light L is converted (wavelength conversion is performed). For example, depending on the type of phosphor of the phosphor layer 36 (for example, when red-based CASN is used for the phosphor), the wavelength of the light L becomes long (for example, 650 nm).
  • the wavelength of the excitation light by the phosphor of the phosphor layer 36 is 600 nm or more, the reflection effect can be expected even if the electrode layer 34 is Cu.
  • the wavelength of the light L differs from that in the above example depending on the type of the phosphor of the phosphor layer 36, the wavelength conversion of the light L is performed in any case.
  • the reflection effect can be expected if the electrode layer 34 or its surface is made of Ag (plating), for example.
  • a white reflective layer may be provided below the phosphor layer 36 (on the insulating layer 32 side).
  • the reflective layer is provided by, for example, white paint such as titanium oxide filler.
  • a bundle of light L emitted by each light emitting element 20 is a bundle of light L including a light L having a wavelength different from the wavelength of light L emitted by each light emitting element 20.
  • the light emitting substrate 10 of the present embodiment irradiates the combined light of the light (wavelength) emitted from the light emitting element 20 and the light (wavelength) emitted from the phosphor layer 36.
  • FIG. 5 is a diagram for explaining a light emitting operation of the light emitting substrate 10A of the first comparative embodiment.
  • the light emitting substrate 10A of the first comparative embodiment (the substrate 30A on which the plurality of light emitting elements 20 are mounted) has the same configuration as the light emitting substrate 10 (phosphor substrate 30) of the present embodiment, except that the phosphor layer 36 is not provided. It is said that.
  • the light L emitted from each light emitting element 20 and incident on the surface 31 of the substrate 30A is reflected or scattered without the wavelength being converted. Therefore, in the case of the substrate 30A of the first comparative embodiment, when the light emitting element 20 is mounted, it is not possible to adjust the light emission color different from the light emitted by the light emitting element 20. That is, in the case of the light emitting substrate 10A of the first comparative embodiment, it is not possible to adjust to light of a different emission color from the light emitted by the light emitting element 20.
  • the phosphor layer 36 when viewed from the thickness direction of the insulating layer 32, the phosphor layer 36 is provided on the surface 31 of the insulating layer 32 and around each joint surface 34A1 with each light emitting element 20. It is arranged. Therefore, a part of the light L radially emitted from each light emitting element 20 enters the phosphor layer 36, is wavelength-converted by the phosphor layer 36, and is irradiated to the outside. In this case, a part of the light L radially emitted from each light emitting element 20 enters the phosphor layer 36 to excite the phosphor contained in the phosphor layer 36 and generate excitation light.
  • FIG. 6 is a graph showing the result of the first test of the correlated color temperature of the light emitting substrate 10 of the present embodiment.
  • FIG. 7 is a graph showing the result of the second test of the correlated color temperature of the light emitting substrate 10 of this embodiment.
  • a current (mA) and a correlated color are applied to the plurality of light emitting elements 20 when the light emitting substrate 10 including the plurality of light emitting elements 20 having a correlated color temperature of 2200K to 2300K is powered to emit light.
  • K temperature
  • HE(1) and HE(2) show two examples in the case where the structure of the electrode layer 34 is the same as that of the present embodiment. As shown in the results of FIG.
  • the correlated color temperature of the light L emitted by the light emitting substrate 10 is lower than the correlated color temperatures of the plurality of light emitting elements 20. That is, in the case of the present embodiment, the correlated color temperature can be shifted by providing the phosphor layer 36.
  • a current (mA) is applied to the plurality of light emitting elements 20 when the light emitting substrate 10 including the plurality of light emitting elements 20 having a correlated color temperature of 2900K to 3000K is supplied with electric power to emit light.
  • K correlated color temperature
  • HE(1) shows the case where the structure of the electrode layer 34 is the same as that of the present embodiment.
  • the correlated color temperature of the light L emitted from the light emitting substrate 10 is lower than the correlated color temperatures of the plurality of light emitting elements 20. That is, in the case of the present embodiment, the correlated color temperature can be shifted by providing the phosphor layer 36.
  • the phosphor substrate 30 of the present embodiment when the light emitting element 20 is mounted, the light L emitted from the phosphor substrate 30 is changed to the light of the emission color different from the light L emitted by the light emitting element 20. Can be adjusted. Accordingly, according to the light emitting substrate 10 of the present embodiment, the light L emitted from the phosphor substrate 30 can be adjusted to the light L having a different emission color from the light L emitted by the light emitting element 20. From a different point of view, according to the light emitting substrate 10 of the present embodiment, it is possible to irradiate the light L of the emission color different from the light L emitted by the light emitting element 20 to the outside.
  • the present embodiment it is possible to reduce glare as compared with the first comparative embodiment.
  • this effect is obtained when the phosphor layer 36 is provided over the entire surface of the insulating layer 32, specifically, the region of the surface 31 of the insulating layer 32 where the phosphor layer 36 is arranged is the surface 13. It is effective in the case of 80% or more of the area.
  • the plurality of light emitting elements 20 can be set within the temperature range from room temperature to 50° C. to 100° C. by using the heat sink (not shown) and the cooling fan (not shown) during the light emitting operation, using the phosphor substrate 30 as an example.
  • Heat is dissipated (cooled). Therefore, the electrode layer 34 and the insulating layer 32 thermally expand, and each light emitting element 20 also thermally expands.
  • the substrate 30 including the insulating layer 32 and the electrode layer 34 is warped. As a result, the traveling direction of the light L emitted from the plurality of light emitting elements 20 and the phosphor layer 36 may be affected by the warp.
  • the warp may cause cracks in the phosphor layer 36.
  • warping is suppressed by attaching members having the same thermal behavior (expansion and contraction) (that is, members having the same shape) to the front and back through the insulating layer 32. If the Cu pattern is stretched only on the surface 31 side, stress and warpage occur at the material interface having different thermal behaviors, but by sandwiching the Cu pattern on both sides, the warpage is forcibly eliminated.
  • the light emitting substrate 10 of the present embodiment is less likely to fail. Further, the light emitting substrate 10 of the present embodiment can stabilize the light emission from the plurality of light emitting elements 20 and the phosphor layer 36.
  • the ratio of the first arrangement area (the arrangement area of the electrode layer 34) to the surface 31 of the insulating layer 32 is set to 60% or more (see FIG. 2A). Therefore, the wiring portion 34B (see FIG. 2A), which occupies most of the electrode layer 34, has a heat radiation function. That is, the present embodiment is effective in that the electrode layer 34 and the back surface pattern layer 38 cooperate with each other to effectively dissipate the heat from the plurality of light emitting elements 20. Further, in the present embodiment, at least a part (80% or more) of the first arrangement region overlaps the back surface pattern layer 38 in the thickness direction of the insulating layer 32.
  • the heat of the insulating layer 32 can be efficiently released (radiated) from both sides in the thickness direction.
  • the area of the second arrangement region is 90% to 110% of the area of the first arrangement region. That is, the back surface pattern layer 38 is in contact with the insulating layer 32 in a region substantially equal to the electrode layer 34 (about ⁇ 10%). Therefore, the heat of the insulating layer 32 can be efficiently radiated from the front surface 31 side and the back surface 33 side of the insulating layer 32.
  • the phosphor substrate 30 of the present embodiment and the plurality of light emitting elements 20 arranged on the phosphor substrate 30 are heated to 250° C., for example, during the fifth step (reflow step) during manufacturing. (See Figure 3E). Therefore, the phosphor substrate 30 thermally expands, and each light emitting element 20 also thermally expands. Then, due to the difference in thermal expansion coefficient between the former and the latter, the insulating layer 32 (phosphor substrate 30) is warped. As a result, mounting failure of the plurality of light emitting elements 20 may occur.
  • the warp is suppressed by using the electrode layer having the same physical properties and structure on the front surface 31 and the back surface 33, and the thermal stress between the insulating layer 32 and the light emitting element 20 (CSP) is respectively increased. To be the same or to the same degree. Along with this, according to the present embodiment, manufacturing defects are unlikely to occur.
  • the light emitting element 20 is assumed to be a CSP.
  • an example of the light emitting element 20 may be other than the CSP.
  • a flip chip may be simply mounted. It can also be applied to the substrate of the COB device itself.
  • the surface of the phosphor layer 36 on the outer side in the thickness direction of the insulating layer 32 is located on the outer side in the thickness direction than the joint surface 34A1 of the electrode layer 34 (see FIG. 1C). ..
  • the surface of the phosphor layer 36 on the outer side in the thickness direction of the insulating layer 32 is the same as the bonding surface 34A1 of the electrode layer 34 in the thickness direction or more than the bonding surface 34A1. It is clear that the first effect can be obtained even at the position on the inner side in the thickness direction.
  • the phosphor layer 36 is arranged on the surface 31 of the insulating layer 32 and the electrode layer 34 other than the plurality of electrode pairs 34A (see FIG. 2B).
  • the first effect can be obtained even if the surface 31 of the phosphor substrate 30 is not arranged over the entire area other than the plurality of electrode pairs 34A. Is clear. Therefore, even if the phosphor substrate 36 and the light emitting substrate 10 of the present embodiment are different from each other only in that the phosphor layer 36 is arranged in the range of the surface 31 different from the case of the present embodiment, the embodiment is the present invention. Can be said to belong to the technical scope of.
  • CS-3305A manufactured by Risho Industry Co., Ltd. is used as the motherboard MB.
  • CS-3305A manufactured by Risho Kogyo Co., Ltd. is not limited to the standard specifications such as the insulating layer thickness and the copper foil thickness, and the copper foil pressure may be thicker.
  • the light emitting substrate 10 of the present embodiment can be applied to a lighting device by combining with other components.
  • Other components in this case are a power supply or the like that supplies electric power for causing the light emitting element 20 of the light emitting substrate 10 to emit light.
  • the back surface pattern layer 38 (the plurality of portions 38A constituting the back surface pattern layer) is a dummy electrode that is not electrically connected to the plurality of electrode pairs 34A included in the electrode layer 34 on the front surface 31 side.
  • the back surface pattern layer 38 is connected to the electrode layer 34 of the front surface 31 via, for example, a through hole (not shown), and the back surface pattern layer 38 is formed as a part of an electric path for supplying power to the electrode layer 34.
  • it may be configured as a part of the heat dissipation route.
  • the back surface pattern layer 38 is described as being arranged on the back surface 33 of the phosphor substrate 30 of the present embodiment. However, the back surface pattern layer 38 may not be provided on the back surface 33 like the phosphor substrate 30A (light emitting substrate 10A) of the modified example of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明の蛍光体基板は、一面に複数の発光素子が搭載される蛍光体基板であって、絶縁基板と、前記絶縁基板の一面に配置され、前記複数の発光素子に接合する複数の電極を有する第1電極群と、前記絶縁基板の一面に配置され、前記発光素子の発光を励起光としたときの発光ピーク波長が可視光領域にある蛍光体を含む蛍光体層と、を備え、前記絶縁基板は、ビスマレイミド樹脂及びガラスクロスを含んでいる。

Description

蛍光体基板、発光基板及び照明装置
 本発明は、蛍光体基板、発光基板及び照明装置に関する。
 特許文献1には、発光素子(LED素子)が搭載された基板を備えるLED照明器具が開示されている。このLED照明器具は、基板の表面に反射材を設けて、発光効率を向上させている。
中国特許公開106163113号公報
 特許文献1に開示されているLED照明装置は、そもそも、反射材を利用してLED照明器具が発光する光を発光素子が発光する光と異なる発光色の光に調整することができない。さらに、特許文献1には、基板の具体的な構成について明確に開示されていない。
 本発明は、一面に蛍光体層を備え、かつ、複数の発光素子が搭載される蛍光体基板において、反り難い蛍光体基板の提供を目的とする。
 本発明の第1態様の蛍光体基板は、一面に複数の発光素子が搭載される蛍光体基板であって、絶縁基板と、前記絶縁基板の一面に配置され、前記複数の発光素子に接合する複数の電極を有する第1電極群と、前記絶縁基板の一面に配置され、前記発光素子の発光を励起光としたときの発光ピーク波長が可視光領域にある蛍光体を含む蛍光体層と、を備え、前記絶縁基板は、ビスマレイミド樹脂及びガラスクロスを含んでいる。
 本発明の第2態様の蛍光体基板は、第1態様の蛍光体基板であって、前記絶縁基板の他面に配置され、複数の電極を有する第2電極群、を備える。
 本発明の第3態様の蛍光体基板は、第1又は第2態様の蛍光体基板であって、前記絶縁基板の縦方向及び横方向の熱膨張係数は、それぞれ、50℃以上100℃以下の範囲において10ppm/℃以下とされている。
 本発明の第4態様の蛍光体基板は、第1~第3態様のいずれか一態様の蛍光体基板であって、前記絶縁基板のガラス転移温度は、300℃よりも高い。
 本発明の第5態様の蛍光体基板は、第1~第4態様のいずれか一態様の蛍光体基板であって、前記絶縁基板の貯蔵弾性率は、100℃以上300℃以下の範囲において、1.0×1010Paよりも大きく1.0×1011Paよりも小さい。
 本発明の第6態様の蛍光体基板は、第1~第5態様のいずれか一態様の蛍光体基板であって、前記第2電極群が有する前記複数の電極は、前記第1電極群が有する前記複数の電極と電気的に接続していないダミー電極とされる。
 本発明の第7態様の蛍光体基板は、第1~第6態様のいずれか一態様の蛍光体基板であって、前記第2電極群は、パターンを形成している。
 本発明の第8態様の蛍光体基板は、第1~第7態様のいずれか一態様の蛍光体基板であって、前記絶縁基板の厚みは、200μm以下とされている。
 本発明の第9態様の蛍光体基板は、第8態様の蛍光体基板であって、前記絶縁基板の厚みは、100μm以上とされている。
 本発明の第10態様の蛍光体基板は、第1~第9態様いずれか一態様の蛍光体基板であって、前記発光素子は、LEDが組み込まれ、チップサイズにパッケージされたCSPとされている。
 本発明の発光基板は、第1~第10態様のいずれか一態様の蛍光体基板と、前記第1電極群の前記複数の電極にそれぞれ接合する複数の発光素子と、を備える。
 本発明の照明装置は、前記発光基板と、前記発光素子を発光させるための電力を供給する電源と、を備える。
 本発明の第1~第10態様の蛍光体基板は、一面に蛍光体層を備えかつ複数の発光素子が搭載される蛍光体基板において、複数の発光素子の発熱に起因する反りの発生を抑制することができる。
 また、本発明の発光基板は、蛍光体基板の反りの発生が抑制されることに伴い、複数の発光素子及び蛍光体層からの発光を安定させることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態の発光基板の平面図である。 本実施形態の発光基板及び蛍光体基板の底面図である。 図1Aの1C-1C切断線により切断した発光基板の部分断面図である。 本実施形態の蛍光体基板(蛍光体層を省略)の平面図である。 本実施形態の蛍光体基板の平面図である。 本実施形態の発光基板の製造方法における第1工程の説明図である。 本実施形態の発光基板の製造方法における第2工程の説明図である。 本実施形態の発光基板の製造方法における第3工程の説明図である。 本実施形態の発光基板の製造方法における第4工程の説明図である。 本実施形態の発光基板の製造方法における第5工程の説明図である。 本実施形態の発光基板の発光動作を説明するための図である。 第1比較形態の発光基板の発光動作を説明するための図である。 本実施形態の発光基板の相関色温度の第1試験の結果を表すグラフである。 本実施形態の発光基板の相関色温度の第2試験の結果を表すグラフである。 変形例の発光基板及び蛍光体基板の底面図である。
≪概要≫
 以下、本実施形態の発光基板10の構成及び機能について図1A~図1C、図2A、図2Bを参照しながら説明する。次いで、本実施形態の発光基板10の製造方法について図3A~図3Eを参照しながら説明する。次いで、本実施形態の発光基板10の発光動作について図4を参照しながら説明する。次いで、本実施形態の効果について図4~図7等を参照しながら説明する。なお、以下の説明において参照するすべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
≪本実施形態の発光基板の構成及び機能≫
 図1Aは本実施形態の発光基板10の平面図(表面31から見た図)、図1Bは本実施形態の発光基板10の底面図(裏面33から見た図)である。図1Cは、図1Aの1C-1C切断線により切断した発光基板10の部分断面図である。
 本実施形態の発光基板10は、表面31及び裏面33から見て、一例として矩形とされている。また、本実施形態の発光基板10は、複数の発光素子20と、蛍光体基板30と、コネクタ、ドライバIC等の電子部品(図示省略)とを備えている。すなわち、本実施形態の発光基板10は、蛍光体基板30に、複数の発光素子20及び上記電子部品が搭載されたものとされている。
 本実施形態の発光基板10は、リード線の直付けにより又はコネクタを介して外部電源(図示省略)から給電されると、発光する機能を有する。そのため、本実施形態の発光基板10は、例えば照明装置(図示省略)等における主要な光学部品として利用される。
<複数の発光素子>
 複数の発光素子20は、それぞれ、一例として、フリップチップLED22(以下、LED22という。)が組み込まれたCSP(Chip Scale Package)とされている(図1C参照)。CSPとして、図1Cに示すように、LED22の底面を除く全周囲(5面)が蛍光体封止層24により覆われていることが好ましい。蛍光体封止層24には蛍光体が含まれ、LED22の光は蛍光体封止層24の蛍光体により色変換されて外部に出射する。複数の発光素子20は、図1Aに示されるように、蛍光体基板30の表面31(一面の一例)に、表面31の全体に亘って規則的に並べられた状態で、蛍光体基板30に搭載されている。なお、本実施形態の各発光素子20が発光する光の相関色温度は、一例として3,018Kとされている。また、複数の発光素子20は、発光動作時に、ヒートシンク(図示省略)や冷却ファン(図示省略)を用いることで、蛍光体基板30を一例として常温から50℃~100℃に収まるように放熱(冷却)されている。ここで、本明細書で数値範囲に使用する「~」の意味について補足すると、例えば「50℃~100℃」は「50℃以上100℃以下」を意味する。そして、本明細書で数値範囲に使用する「~」は、「『~』の前の記載部分以上『~』の後の記載部分以下」を意味する。
<蛍光体基板>
 図2Aは、本実施形態の蛍光体基板30の図であって、蛍光体層36を省略して図示した平面図(表面31から見た図)である。図2Bは、本実施形態の蛍光体基板30の平面図(表面31から見た図)である。なお、本実施形態の蛍光体基板30の底面図は、発光基板10を裏面33から見た図と同じである。また、本実施形態の蛍光体基板30の部分断面図は、図1Cの部分断面図から発光素子20を除いた場合の図と同じである。すなわち、本実施形態の蛍光体基板30は、表面31及び裏面33から見て、一例として矩形とされている。
 本実施形態の蛍光体基板30は、絶縁層32(絶縁基板の一例)と、電極層34(第1電極群の一例)と、蛍光体層36と、裏面パターン層38(第2電極群の一例)とを備えている(図1B、図1C、図2A及び図2B参照)。なお、図2Aでは蛍光体層36が省略されているが、蛍光体層36は、図2Bに示されるように、一例として、絶縁層32及び電極層34の表面31における、後述する複数の電極対34A(複数の電極の一例)以外の部分に配置されている。
 また、蛍光体基板30には、図1B及び図2Aに示されるように、四つ角付近の4箇所及び中央付近の2箇所の6箇所に貫通孔39が形成されている。6箇所の貫通孔39は、蛍光体基板30及び発光基板10の製造時に位置決め孔として利用されるようになっている。あわせて、6箇所の貫通孔39は、(発光)灯具筐体への熱引き効果確保(基板反り及び浮き防止)のための取り付け用のネジ穴として利用される。なお、本実施形態の蛍光体基板30は、後述するように、絶縁板の両面に銅箔層が設けられた両面板(以下、マザーボードMBという。図3A参照)を加工(エッチング等)して製造される。
〔絶縁層〕
 以下、本実施形態の絶縁層32の主な特徴について説明する。
 形状は、前述のとおり、一例として表面31及び裏面33から見て矩形である。
 材質は、一例としてビスマレイミド樹脂及びガラスクロスを含む絶縁材である。また、当該絶縁材にはハロゲン及びリンは含まれていない(ハロゲンフリー、リンフリー)。
 厚みは、一例として100μm~200μmが好ましい。
 縦方向及び横方向の熱膨張係数(CTE)は、それぞれ、一例として、50℃~100℃の範囲において10ppm/℃以下である。また、別の見方をすると、縦方向及び横方向の熱膨張係数(CTE)は、それぞれ、一例として、6ppm/Kである。この値は、本実施形態の発光素子20の場合とほぼ同等(90%~110%、すなわち±10%以内)である。
 ガラス転移温度は、一例として、300℃よりも高い。
 貯蔵弾性率は、一例として、100℃~300℃の範囲において、1.0×1010Paよりも大きく1.0×1011Paよりも小さい。
 縦方向及び横方向の曲げ弾性率は、一例として、それぞれ、常態において35GPa及び34GPaである。
 縦方向及び横方向の熱間曲げ弾性率は、一例として、250℃において19GPaである。
 吸水率は、一例として、23℃の温度環境で24時間放置した場合に0.13%である。
 比誘電率は、一例として、1MHz常態において4.6である。
 誘電正接は、一例として、1MHz常態において、0.010である。
 なお、本実施形態の絶縁層32はマザーボードMBの絶縁層の部分に相当するが、当該マザーボードMBには一例として利昌工業株式会社製のCS-3305Aが用いられる。
〔電極層〕
 本実施形態の電極層34は、絶縁層32の表面31側に設けられた金属層とされている。本実施形態の電極層34は一例として銅箔層(Cu製の層)とされている。別言すれば、本実施形態の電極層34は、少なくともその表面が銅を含んで形成されている。
 電極層34は、絶縁層32に設けられたパターンとされ、コネクタ(図示省略)が接合される端子(図示省略)と導通している。そして、電極層34は、コネクタを介して外部電源(図示省略)から給電された電力を、発光基板10の構成時の複数の発光素子20に供給するようになっている。そのため、電極層34の一部は、複数の発光素子20がそれぞれ接合される複数の電極対34Aとされている。すなわち、本実施形態の発光基板10の電極層34は、絶縁層32に配置され、各発光素子20に接続されている。
 また、前述のとおり、本実施形態の発光基板10における複数の発光素子20は表面31の全体に亘って規則的に並べられていることから、複数の電極対34Aも表面31の全体に亘って規則的に並べられている(図2A参照)。電極層34における複数の電極対34A以外の部分を、配線部分34Bという。本実施形態では、図1Cに示されるように、一例として、複数の電極対34Aは、配線部分34Bよりも絶縁層32(蛍光体基板30)の厚み方向外側に突出している。別言すると、電極層34における絶縁層32の厚み方向外側に向く面において、それぞれ各発光素子20が接合される面(接合面34A1)は、接合面34A1以外の面(非接合面34B1)よりも、絶縁層32の厚み方向外側に位置している。
 なお、絶縁層32の表面31における電極層34が配置されている領域(第1配置領域と定義する。)は、一例として、絶縁層32の表面31の60%以上の領域(面積)とされている(図2A参照)。また、第1配置領域の80%以上の領域は、絶縁層32の厚み方向において、絶縁層32における裏面パターン層38が配置されている領域(第2配置領域と定義する。)と重なっている。
〔蛍光体層〕
 本実施形態の蛍光体層36は、図2Bに示されるように、一例として、絶縁層32及び電極層34の表面31における、複数の電極対34A以外の部分に配置されている。すなわち、蛍光体層36は、電極層34における複数の電極対34A以外の領域に配置されている。別言すると、蛍光体層36の少なくとも一部は、表面31側から見て、各接合面34A1の周りを全周に亘って囲むように配置されている(図1C及び図2B参照)。そして、本実施形態では、絶縁層32の表面31における蛍光体層36が配置されている領域は、一例として、絶縁層32の表面31における80%以上の領域とされている。
 なお、蛍光体層36における絶縁層32の厚み方向外側の面は、電極層34の接合面34A1よりも当該厚み方向外側に位置している(図1C参照)。
 本実施形態の蛍光体層36は、一例として、後述する蛍光体とバインダーとを含む絶縁層とされている。蛍光体層36に含まれる蛍光体は、バインダーに分散された状態で保持されている微粒子とされ、各発光素子20のLED22の発光を励起光として励起する性質を有する。具体的には、本実施形態の蛍光体は、発光素子20の発光を励起光としたときの発光ピーク波長が可視光領域にある性質を有する。なお、バインダーは、例えば、エポキシ系、アクリレート系、シリコーン系等で、ソルダーレジストに含まれるバインダーと同等の絶縁性を有するものであればよい。
(蛍光体の具体例)
 ここで、本実施形態の蛍光体層36に含まれる蛍光体は、一例として、Euを含有するα型サイアロン蛍光体、Euを含有するβ型サイアロン蛍光体、Euを含有するCASN蛍光体及びEuを含有するSCASN蛍光体からなる群から選ばれる少なくとも一種以上の蛍光体とされている。なお、前述の蛍光体は、本実施形態の一例であり、YAG、LuAG、BOSその他の可視光励起の蛍光体のように、前述の蛍光体以外の蛍光体であってもよい。
 Euを含有するα型サイアロン蛍光体は、一般式:MEuSi12-(m+n)Al(m+n)16-nで表される。上記一般式中、MはLi、Mg、Ca、Y及びランタニド元素(ただし、LaとCeを除く)からなる群から選ばれる、少なくともCaを含む1種以上の元素であり、Mの価数をaとしたとき、ax+2y=mであり、xが0<x≦1.5であり、0.3≦m<4.5、0<n<2.25である。
 Euを含有するβ型サイアロン蛍光体は、一般式:Si6-zAl8-z(z=0.005~1)で表されるβ型サイアロンに発光中心として二価のユーロピウム(Eu2+)を固溶した蛍光体である。
 また、窒化物蛍光体として、Euを含有するCASN蛍光体、Euを含有するSCASN蛍光体等が挙げられる。
 Euを含有するCASN蛍光体(窒化物蛍光体の一例)は、例えば、式CaAlSiN:Eu2+で表され、Eu2+を付活剤とし、アルカリ土類ケイ窒化物からなる結晶を母体とする赤色蛍光体をいう。なお、本明細書におけるEuを含有するCASN蛍光体の定義では、Euを含有するSCASN蛍光体が除かれる。
 Euを含有するSCASN蛍光体(窒化物蛍光体の一例)は、例えば、式(Sr,Ca)AlSiN:Eu2+で表され、Eu2+を付活剤とし、アルカリ土類ケイ窒化物からなる結晶を母体とする赤色蛍光体をいう。
〔裏面パターン層〕
 本実施形態の裏面パターン層38は、絶縁層32の裏面33側に設けられた金属層とされている。本実施形態の裏面パターン層38は一例として銅箔層(Cu製の層)とされている。
 裏面パターン層38は、図1Bに示されるように、絶縁層32の長手方向に沿って直線状に並べられている複数の矩形部分38A(複数の電極の一例、以下、複数の部分38Aという。)の塊が短手方向において位相をずらしたよう隣接して並べられている層とされている。すなわち、本実施形態の裏面パターン層38は、複数の部分38Aを並べたパターンを形成している。
 なお、裏面パターン層38は、一例として、独立フローティング層とされている。すなわち、本実施形態の裏面パターン層38(を構成する複数の部分38A)は、表面31側の電極層34が有する複数の電極対34Aと電気的に接続していない、ダミー電極とされている。また、本実施形態の第2配置領域の面積は、第1配置領域の面積よりも大きく設定されているが(図1B及び図2A参照)、第1配置領域の面積の90%~110%の面積に設定されている。
 以上が、本実施形態の発光基板10及び蛍光体基板30の構成についての説明である。
≪本実施形態の発光基板の製造方法≫
 次に、本実施形態の発光基板10の製造方法について図3A~図3Eを参照しながら説明する。本実施形態の発光基板10の製造方法は第1工程、第2工程、第3工程、第4工程及び第5工程を含んでおり、各工程はこれらの記載順で行われる。
<第1工程>
 図3Aは、第1工程の開始時及び終了時を示す図である。第1工程は、マザーボードMBの表面31に厚み方向から見て電極層34と同じパターン34Cを、裏面33に裏面パターン層38を形成する工程である。本工程は、例えばマスクパターン(図示省略)を用いたエッチングにより行われる。
<第2工程>
 図3Bは、第2工程の開始時及び終了時を示す図である。第2工程は、パターン34Cの一部をハーフハッチ(厚み方向の途中までエッチング)する工程である。本工程が終了すると、結果的に、複数の電極対34Aと配線部分34Bとを有する電極層34が形成される。すなわち、本工程が終了すると、電極層34に複数の接合面34A1と複数の非接合面34B1とが形成される。本工程は、例えばマスクパターン(図示省略)を用いたエッチングにより行われる。
<第3工程>
 図3Cは、第3工程の開始時及び終了時を示す図である。第3工程は、絶縁層32の表面31、すなわち電極層34が形成された面の全面に蛍光体塗料36Cを塗布する工程である。本工程では、例えば、印刷により蛍光体塗料36Cを塗布する。この場合、蛍光体塗料36Cをすべての電極対34Aよりも厚く塗布する。別言すると、この場合、蛍光体塗料36Cを絶縁層32の厚み方向において、各接合面34A1を厚み方向の外側から覆うように(各接合面34A1が蛍光体塗料36Cで隠れるように)塗布する。
<第4工程>
 図3Dは、第4工程の開始時及び終了時を示す図である。第4工程は、蛍光体塗料36Cが硬化した蛍光体層36の一部を除去して、すべての電極対34Aの接合面34A1を露出させる工程である。ここで、蛍光体塗料36Cのバインダーが例えば熱硬化性樹脂である場合は、加熱により蛍光体塗料36Cを硬化させた後に2次元レーザー加工装置(図示省略)を用いて蛍光体層36における各接合面34A1上の部分に選択的にレーザー光を照射する。その結果、蛍光体層36における各接合面34A1上の部分及び電極対34Aの各接合面34A1付近の部分がアブレーションされて、各接合面34A1が露出する。以上の結果、本実施形態の蛍光体基板30が製造される。
 なお、本工程は、上記の方法の他に、例えば、以下の方法により行ってもよい。蛍光体塗料36Cのバインダーが例えばUV硬化性樹脂(感光性樹脂)である場合、各接合面34A1と重なる部分(塗料開口部)にマスクパターンをかけて、UV光を露光し、当該マスクパターン以外をUV硬化させ、非露光部(未硬化部)を樹脂除去液により取り除くことで、各接合面34A1を露出させる。その後、一般的には、熱をかけてアフターキュアを行う(写真現像法)。
<第5工程>
 図3Eは、第5工程の開始時及び終了時を示す図である。第5工程は、蛍光体基板30に複数の発光素子20を搭載する工程である。本工程は、蛍光体基板30の複数の電極対34Aの各接合面34A1にはんだペーストSPを印刷し、各接合面34A1に複数の発光素子20の各電極を位置合わせした状態で、一例として250℃の環境下ではんだペーストSPを溶かす。その後、はんだペーストSPが冷却された固化すると、各電極対34Aに各発光素子20が接合される。すなわち、本工程は、一例としてリフロー工程により行われる。
 以上が、本実施形態の発光基板10の製造方法についての説明である。
≪本実施形態の発光基板の発光動作≫
 次に、本実施形態の発光基板10の発光動作について図4を参照しながら説明する。ここで、図4は、本実施形態の発光基板10の発光動作を説明するための図である。
 まず、複数の発光素子20を作動させる作動スイッチ(図示省略)がオンになると、コネクタ(図示省略)を介して外部電源(図示省略)から電極層34への給電が開始され、複数の発光素子20は光Lを放射状に発散出射し、その光Lの一部は蛍光体基板30の表面31に到達する。以下、出射された光Lの進行方向に分けて光Lの挙動について説明する。
 各発光素子20から出射された光Lの一部は、蛍光体層36に入射することなく外部に出射される。この場合、光Lの波長は、各発光素子20から出射された際の光Lの波長と同じままである。
 また、各発光素子20から出射された光Lの一部分の中のLED22自身の光は、蛍光体層36に入射する。ここで、前述の「光Lの一部分の中のLED22自身の光」とは、出射された光Lのうち各発光素子20(CSP自身)の蛍光体(蛍光体封止層24)により色変換されていない光、すなわち、LED22自身の光(一例として青色(波長が470nm近傍)の光)を意味する。そして、LED22自身の光Lが蛍光体層36に分散されている蛍光体に衝突すると、蛍光体が励起して励起光を発する。ここで、蛍光体が励起する理由は、蛍光体層36に分散されている蛍光体が青色の光に励起ピークを持つ蛍光体(可視光励起蛍光体)を使用しているためである。これに伴い、光Lのエネルギーの一部は蛍光体の励起に使われることで、光Lはエネルギーの一部を失う。その結果、光Lの波長が変換される(波長変換がなされる)。例えば、蛍光体層36の蛍光体の種類によっては(例えば、蛍光体に赤色系CASNを用いた場合には)光Lの波長が長くなる(例えば650nm等)。また、蛍光体層36での励起光はそのまま蛍光体層36から出射するものもあるが、一部の励起光は下側の電極層34に向かう。そして、一部の励起光は電極層34での反射により外部に出射する。以上のように、蛍光体層36の蛍光体による励起光の波長が600nm以上の場合、電極層34がCuでも反射効果が望める。なお、蛍光体層36の蛍光体の種類によっては光Lの波長が前述の例と異なるが、いずれの場合であっても光Lの波長変換がなされることになる。例えば、励起光の波長が600nm未満の場合、電極層34又はその表面を例えばAg(鍍金)とすれば反射効果が望める。また、蛍光体層36の下側(絶縁層32側)に白色の反射層が設けられてもよい。反射層は、例えば、酸化チタンフィラー等の白色塗料により設けられる。
 以上のとおり、各発光素子20が出射した光L(各発光素子20が放射状に出射した光L)は、それぞれ、上記のような複数の光路を経由して上記励起光とともに外部に照射される。そのため、蛍光体層36に含まれる蛍光体の発光波長と、発光素子20(CSP)におけるLED22を封止した(又は覆う)蛍光体(蛍光体封止層24)の発光波長とが異なる場合、本実施形態の発光基板10は、各発光素子20が出射した際の光Lの束を、各発光素子20が出射した際の光Lの波長と異なる波長の光Lを含む光Lの束として上記励起光とともに照射する。例えば、本実施形態の発光基板10は、発光素子20が出射した光(波長)と蛍光体層36より出射された光(波長)との合成光を照射する。
 以上が、本実施形態の発光基板10の発光動作についての説明である。
≪本実施形態の効果≫
 次に、本実施形態の効果について図面を参照しながら説明する。
<第1の効果>
 第1の効果については、本実施形態を以下に説明する第1比較形態(図5参照)と比較して説明する。ここで、第1比較形態の説明において、本実施形態と同じ構成要素等を用いる場合は、その構成要素等に本実施形態の場合と同じ名称、符号等を用いることとする。図5は、第1比較形態の発光基板10Aの発光動作を説明するための図である。第1比較形態の発光基板10A(複数の発光素子20を搭載する基板30A)は、蛍光体層36を備えていない点以外は、本実施形態の発光基板10(蛍光体基板30)と同じ構成とされている。
 第1比較形態の発光基板10Aの場合、各発光素子20から出射され、基板30Aの表面31に入射した光Lは、波長が変換されることなく反射又は散乱する。そのため、第1比較形態の基板30Aの場合、発光素子20が搭載された場合に発光素子20が発光する光と異なる発光色の光に調整することができない。すなわち、第1比較形態の発光基板10Aの場合、発光素子20が発光する光と異なる発光色の光に調整することができない。
 これに対して、本実施形態の場合、絶縁層32の厚み方向から見て、絶縁層32の表面31であって、各発光素子20との各接合面34A1の周囲には蛍光体層36が配置されている。そのため、各発光素子20から放射状に出射された光Lの一部は、蛍光体層36に入射して、蛍光体層36により波長変換されて、外部に照射される。この場合、各発光素子20から放射状に出射された光Lの一部は、蛍光体層36に入射して、蛍光体層36に含まれる蛍光体を励起させ、励起光を発生させる。
 ここで、図6は、本実施形態の発光基板10の相関色温度の第1試験の結果を表すグラフである。また、図7は、本実施形態の発光基板10の相関色温度の第2試験の結果を表すグラフである。
 第1試験は、相関色温度が2200K~2300K相当である複数の発光素子20を備えた発光基板10に給電して発光させた場合における、複数の発光素子20に電流(mA)と、相関色温度(K)との関係を調べて結果である。ここで、HE(1)及びHE(2)は電極層34の構造が本実施形態と同じ構造の場合の2つの実施例を示す。図6の結果のとおり、いずれの場合であっても、発光基板10が発光する光Lの相関色温度は、複数の発光素子20の相関色温度よりも低くなっている。すなわち、本実施形態の場合、蛍光体層36を備えることで相関色温度をシフトさせることができていた。
 また、第2試験は、相関色温度が2900K~3000K相当である複数の発光素子20を備えた発光基板10に給電して発光させた場合における、複数の発光素子20に電流(mA)と、相関色温度(K)との関係を調べて結果である。ここで、HE(1)は電極層34の構造が本実施形態と同じ構造の場合を示す。図7の結果のとおり、発光基板10が発光する光Lの相関色温度は、複数の発光素子20の相関色温度よりも低くなっている。すなわち、本実施形態の場合、蛍光体層36を備えることで相関色温度をシフトさせることができていた。
 したがって、本実施形態の蛍光体基板30によれば、発光素子20が搭載された場合に、蛍光体基板30から発光される光Lを発光素子20が発光する光Lと異なる発光色の光に調整することができる。これに伴い、本実施形態の発光基板10によれば、蛍光体基板30から発光される光Lを発光素子20が発光する光Lと異なる発光色の光Lに調整することができる。別の見方をすると、本実施形態の発光基板10によれば、発光素子20が発光する光Lと異なる発光色の光Lを外部に照射することができる。
<第2の効果>
 第1比較形態の場合、図5に示されるように、各発光素子20の配置間隔に起因して外部に照射される光Lに斑が発生する。ここで、光Lの斑が大きいほど、グレアが大きいという。
 これに対して、本実施形態の場合、図2Bに示されるように、各接合面34A1の周囲を(全周に亘って)蛍光体層36に囲まれたうえで、さらに隣接する発光素子20同士の間にも蛍光体層36が設けられている。そのため、各接合面34A1の周囲(各発光素子20の周囲)からも励起光が発光される。
 したがって、本実施形態によれば、第1比較形態に比べて、グレアを小さくすることができる。
 特に、本効果は、蛍光体層36が絶縁層32の全面に亘って設けられている場合、具体的には、絶縁層32の表面31における蛍光体層36が配置されている領域が表面13の80%以上の領域のような場合に有効である。
<第3の効果>
 前述のとおり、複数の発光素子20は、発光動作時に、ヒートシンク(図示省略)や冷却ファン(図示省略)を用いることで、蛍光体基板30を一例として常温から50℃~100℃に収まるように放熱(冷却)される。そのため、電極層34及び絶縁層32は熱膨張し、各発光素子20も熱膨張する。そして、前者と後者との熱膨張率の差に起因して、絶縁層32と電極層34とから構成される基板30に反りが発生する。その結果、複数の発光素子20及び蛍光体層36から発光する光Lの進行方向が反りにより影響を受ける虞がある。また、反りにより蛍光体層36にクラックが発生する虞がある。
 しかしながら、本実施形態では、絶縁層32を介し表裏に同じ熱挙動(膨張、収縮)する部材を(すなわち、同じような形状の部材)貼り付けることで、反りを押さえる。表面31側だけCuパターンを張ると熱挙動の異なる物質界面で応力、反りが発生するが、両面に挟み込むことで強制的に反りをなくす。これに伴い、本実施形態の発光基板10は、故障が発生し難い。また、本実施形態の発光基板10は、複数の発光素子20及び蛍光体層36からの発光を安定させることができる。
 なお、本実施形態の場合、絶縁層32の表面31に対する第1配置領域(電極層34の配置領域)の割合は60%以上とされている(図2A参照)。そのため、電極層34のほとんどの部分を占める配線部分34B(図2A参照)に放熱機能を持たせている。すなわち、本実施形態の場合、電極層34と裏面パターン層38とが協業して、複数の発光素子20による熱を効果的に放熱させている点で有効といえる。
 さらに、本実施形態では、第1配置領域の少なくとも一部(80%以上)の領域が絶縁層32の厚み方向において裏面パターン層38と重なっている。そのため、絶縁層32の熱を当該厚み方向の両側から効率よく逃がす(放熱する)ことができる点で有効といえる。
 さらに、本実施形態では、第2配置領域の面積が第1配置領域の面積の90%~110%とされている。すなわち、裏面パターン層38は、絶縁層32において、電極層34とほぼ同等(±10%程度)の領域で接触している。そのため、絶縁層32の熱を絶縁層32の表面31側及び裏面33側から効率よく放熱することができる。
<第4の効果>
 前述のとおり、本実施形態の蛍光体基板30と蛍光体基板30に配置された複数の発光素子20は、製造時の第5工程(リフロー工程)の際に、一例として250℃に加熱される(図3E参照)。そのため、蛍光体基板30は熱膨張し、各発光素子20も熱膨張する。そして、前者と後者との熱膨張率の差に起因して、絶縁層32(蛍光体基板30)に反りが発生する。その結果、複数の発光素子20の実装不良が起こる虞がある。
 しかしながら、本実施形態の場合、表面31及び裏面33に同物性、構造の電極層を用いることで反りを押さえ、更に絶縁層32と発光素子20(CSP)間の熱応力を、夫々熱膨張係数を同じ又は同じ程度とすることで抑制する。これに伴い、本実施形態によれば、製造不良が発生し難い。
 以上が、本実施形態の効果についての説明である。
 以上のとおり、本発明について前述の実施形態及び実施例を例として説明したが、本発明は前述の実施形態及び実施例に限定されるものではない。本発明の技術的範囲には、例えば、下記のような形態(変形例)も含まれる。
 例えば、本実施形態の説明では、発光素子20の一例をCSPであるとした。しかしながら、発光素子20の一例はCSP以外でもよい。例えば、単にフリップチップを搭載したものでもよい。また、COBデバイスの基板自身に応用することもできる。
 また、本実施形態の説明では、蛍光体層36における絶縁層32の厚み方向外側の面は、電極層34の接合面34A1よりも当該厚み方向外側に位置しているとした(図1C参照)。しかしながら、前述の第1の効果の説明のメカニズムを考慮すると、蛍光体層36における絶縁層32の厚み方向外側の面が電極層34の接合面34A1と当該厚み方向において同じ又は接合面34A1よりも当該厚み方向内側の位置としても第1の効果を奏することは明らかである。
 また、本実施形態の説明では、蛍光体層36は、絶縁層32及び電極層34の表面31における、複数の電極対34A以外の部分に配置されているとした(図2B参照)。しかしながら、前述の第1の効果の説明のメカニズムを考慮すると、蛍光体基板30の表面31における複数の電極対34A以外の部分の全域に亘って配置されていなくても第1の効果を奏することは明らかである。したがって、本実施形態の場合と異なる表面31の範囲に蛍光体層36が配置されている点のみ本実施形態の蛍光体基板30及び発光基板10と異なる形態であっても、当該形態は本発明の技術的範囲に属するといえる。
 また、本実施形態の説明では、蛍光体基板30及び発光基板10を製造するに当たり、利昌工業株式会社製のCS-3305AをマザーボードMBとして用いると説明した。しかしながら、これは一例であり、異なるマザーボードMBを用いてもよい。例えば、利昌工業株式会社製のCS-3305Aの絶縁層厚、銅箔厚等の標準仕様にこだわるものではなく、特に銅箔圧は更に厚いものを用いてもよい。
 また、本実施形態の発光基板10(その変形例も含む)は、他の構成要素と組み合せて、照明装置に応用することができる。この場合における他の構成要素は、発光基板10の発光素子20を発光させるための電力を供給する電源等である。
 また、本実施形態では、裏面パターン層38(を構成する複数の部分38A)は、表面31側の電極層34が有する複数の電極対34Aと電気的に接続していない、ダミー電極とされているとして説明した。しかしながら、裏面パターン層38を例えばスルーホール(図示省略)を介して表面31の電極層34に接続し、裏面パターン層38を電極層34に電力を供給するための電気経路の一部として構成してもよいし、放熱ルートの一部として構成してもよい。
 また、本実施形態の蛍光体基板30の裏面33には、裏面パターン層38が配置されているとして説明した。しかしながら、図8の変形例の蛍光体基板30A(発光基板10A)のように、裏面33に裏面パターン層38がなくてもよい。
 この出願は、2018年12月27日に出願された日本出願特願2018-244546号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (12)

  1.  一面に複数の発光素子が搭載される蛍光体基板であって、
     絶縁基板と、
     前記絶縁基板の一面に配置され、前記複数の発光素子に接合する複数の電極を有する第1電極群と、
     前記絶縁基板の一面に配置され、前記発光素子の発光を励起光としたときの発光ピーク波長が可視光領域にある蛍光体を含む蛍光体層と、
     を備え、
     前記絶縁基板は、ビスマレイミド樹脂及びガラスクロスを含んでいる、
     蛍光体基板。
  2.  前記絶縁基板の他面に配置され、複数の電極を有する第2電極群、
     を備える請求項1に記載の蛍光体基板。
  3.  前記絶縁基板の縦方向及び横方向の熱膨張係数は、それぞれ、50℃以上100℃以下の範囲において10ppm/℃以下とされている、
     請求項1又は2に記載の蛍光体基板。
  4.  前記絶縁基板のガラス転移温度は、300℃よりも高い、
     請求項1~3のいずれか一項に記載の蛍光体基板。
  5.  前記絶縁基板の貯蔵弾性率は、100℃以上300℃以下の範囲において、1.0×1010Paよりも大きく1.0×1011Paよりも小さい、
     請求項1~4のいずれか1項に記載の蛍光体基板。
  6.  前記第2電極群が有する前記複数の電極は、前記第1電極群が有する前記複数の電極と電気的に接続していないダミー電極とされる、
     請求項2のいずれか一項に記載の蛍光体基板。
  7.  前記第2電極群は、パターンを形成している、
     請求項2または6に記載の蛍光体基板。
  8.  前記絶縁基板の厚みは、200μm以下とされている、
     請求項1~7のいずれか一項に記載の蛍光体基板。
  9.  前記絶縁基板の厚みは、100μm以上とされている、
     請求項8に記載の蛍光体基板。
  10.  前記発光素子は、LEDが組み込まれ、チップサイズにパッケージされたCSPとされている、
     請求項1~9のいずれか一項に記載の蛍光体基板。
  11.  請求項1~10のいずれか一項に記載の蛍光体基板と、
     前記第1電極群の前記複数の電極にそれぞれ接合する複数の発光素子と、
     を備える発光基板。
  12.  請求項11に記載の発光基板と、
     前記発光素子を発光させるための電力を供給する電源と、
     を備える照明装置。
PCT/JP2019/049691 2018-12-27 2019-12-18 蛍光体基板、発光基板及び照明装置 WO2020137764A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020563145A JP7430650B2 (ja) 2018-12-27 2019-12-18 蛍光体基板、発光基板及び照明装置
KR1020217018340A KR20210105894A (ko) 2018-12-27 2019-12-18 형광체 기판, 발광 기판 및 조명 장치
CN201980083426.9A CN113228313A (zh) 2018-12-27 2019-12-18 荧光体基板、发光基板以及照明装置
US17/414,643 US20220052233A1 (en) 2018-12-27 2019-12-18 Phosphor substrate, light emitting substrate, and lighting device
EP19901970.4A EP3905345B1 (en) 2018-12-27 2019-12-18 Light-emitting substrate, and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-244546 2018-12-27
JP2018244546 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137764A1 true WO2020137764A1 (ja) 2020-07-02

Family

ID=71128611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049691 WO2020137764A1 (ja) 2018-12-27 2019-12-18 蛍光体基板、発光基板及び照明装置

Country Status (7)

Country Link
US (1) US20220052233A1 (ja)
EP (1) EP3905345B1 (ja)
JP (1) JP7430650B2 (ja)
KR (1) KR20210105894A (ja)
CN (1) CN113228313A (ja)
TW (1) TWI812825B (ja)
WO (1) WO2020137764A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148509A (ja) * 1999-11-18 2001-05-29 Matsushita Electric Works Ltd 照明光源
JP2009267289A (ja) * 2008-04-30 2009-11-12 Citizen Electronics Co Ltd 発光装置
WO2010150880A1 (ja) * 2009-06-26 2010-12-29 株式会社朝日ラバー 白色反射材及びその製造方法
CN103579480A (zh) * 2012-07-27 2014-02-12 华夏光股份有限公司 热电分离的半导体装置与其制造方法
WO2014181757A1 (ja) * 2013-05-09 2014-11-13 日東電工株式会社 回路基板、光半導体装置およびその製造方法
JP2015198252A (ja) * 2014-04-01 2015-11-09 廣▲ジャー▼光電股▲ふん▼有限公司 Ledアセンブリー及びこのledアセンブリーを用いたled電球
JP2016122693A (ja) * 2014-12-24 2016-07-07 日亜化学工業株式会社 発光装置
JP2016139632A (ja) * 2015-01-26 2016-08-04 京セラ株式会社 配線基板
CN106163113A (zh) 2015-03-23 2016-11-23 李玉俊 Led灯安装灯珠用电路板表面反光层制作工艺

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3640153B2 (ja) 1999-11-18 2005-04-20 松下電工株式会社 照明光源
KR20070047676A (ko) * 2005-11-02 2007-05-07 가부시끼가이샤 도리온 발광 다이오드 실장 기판
TWI361497B (en) * 2007-08-20 2012-04-01 Delta Electronics Inc Light-emitting diode apparatus and manufacturing method thereof
JP5211667B2 (ja) * 2007-12-07 2013-06-12 ソニー株式会社 照明装置及び表示装置
KR20130104975A (ko) * 2012-03-16 2013-09-25 삼성전자주식회사 발광장치
US20150060911A1 (en) 2013-09-05 2015-03-05 Unistars Corporation Optoelectronic semiconductor device and fabricating method thereof
CN203839375U (zh) * 2014-03-28 2014-09-17 中山市鸿宝电业有限公司 一种大功率led芯片集成封装结构
US9660161B2 (en) * 2014-07-07 2017-05-23 Cree, Inc. Light emitting diode (LED) components including contact expansion frame
JP2016069401A (ja) 2014-09-26 2016-05-09 住友ベークライト株式会社 プリプレグ、樹脂基板、金属張積層板、プリント配線基板、および半導体装置
JP6724634B2 (ja) 2016-07-28 2020-07-15 日亜化学工業株式会社 発光装置の製造方法
CN206637330U (zh) 2016-09-30 2017-11-14 深圳市玲涛光电科技有限公司 条形光源及采用该条形光源的背光模组、电子设备
JP6751910B2 (ja) * 2016-10-05 2020-09-09 パナソニックIpマネジメント株式会社 多層プリント配線板、多層プリント配線板の製造方法
CN106356439A (zh) 2016-11-21 2017-01-25 中山市立体光电科技有限公司 一种可调色温的led封装结构
JP6472467B2 (ja) * 2017-01-23 2019-02-20 Nissha株式会社 静電容量式タッチパネル
KR102653215B1 (ko) * 2018-10-10 2024-04-01 삼성전기주식회사 적층 세라믹 전자부품
CN113228316A (zh) 2018-12-27 2021-08-06 电化株式会社 荧光体基板、发光基板以及照明装置
CN113272976A (zh) 2018-12-27 2021-08-17 电化株式会社 荧光体基板、发光基板以及照明装置
KR20210106433A (ko) 2018-12-27 2021-08-30 덴카 주식회사 형광체 기판, 발광 기판 및 조명 장치
EP3905348B1 (en) 2018-12-27 2024-01-24 Denka Company Limited Light-emitting substrate, and lighting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148509A (ja) * 1999-11-18 2001-05-29 Matsushita Electric Works Ltd 照明光源
JP2009267289A (ja) * 2008-04-30 2009-11-12 Citizen Electronics Co Ltd 発光装置
WO2010150880A1 (ja) * 2009-06-26 2010-12-29 株式会社朝日ラバー 白色反射材及びその製造方法
CN103579480A (zh) * 2012-07-27 2014-02-12 华夏光股份有限公司 热电分离的半导体装置与其制造方法
WO2014181757A1 (ja) * 2013-05-09 2014-11-13 日東電工株式会社 回路基板、光半導体装置およびその製造方法
JP2015198252A (ja) * 2014-04-01 2015-11-09 廣▲ジャー▼光電股▲ふん▼有限公司 Ledアセンブリー及びこのledアセンブリーを用いたled電球
JP2016122693A (ja) * 2014-12-24 2016-07-07 日亜化学工業株式会社 発光装置
JP2016139632A (ja) * 2015-01-26 2016-08-04 京セラ株式会社 配線基板
CN106163113A (zh) 2015-03-23 2016-11-23 李玉俊 Led灯安装灯珠用电路板表面反光层制作工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUBOYAMA, NORIHITO; YASUDA, TAKASHI: "An approach to the thermal expansion coefficient of IC chips and excellent cost performance. Printed wiring board materials for semiconductor packages substrates. Newly developed CS-3305A", RISHO NEWS, no. 192, 10 January 2014 (2014-01-10), pages 7 - 9, XP009528684 *

Also Published As

Publication number Publication date
CN113228313A (zh) 2021-08-06
KR20210105894A (ko) 2021-08-27
US20220052233A1 (en) 2022-02-17
JP7430650B2 (ja) 2024-02-13
EP3905345A1 (en) 2021-11-03
EP3905345A4 (en) 2022-02-16
JPWO2020137764A1 (ja) 2021-11-11
TWI812825B (zh) 2023-08-21
TW202037842A (zh) 2020-10-16
EP3905345B1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
JP7410881B2 (ja) 蛍光体基板、発光基板及び照明装置
WO2020137763A1 (ja) 蛍光体基板、発光基板及び照明装置
JP7444537B2 (ja) 蛍光体基板の製造方法、発光基板の製造方法及び照明装置の製造方法
US20230361254A1 (en) Phosphor board manufacturing method and light-emitting substrate manufacturing method
JP7425750B2 (ja) 蛍光体基板、発光基板及び照明装置
JP7491849B2 (ja) 蛍光体基板、発光基板及び照明装置
WO2020137764A1 (ja) 蛍光体基板、発光基板及び照明装置
US20230335685A1 (en) Phosphor board, light-emitting substrate, and lighting apparatus
TWI842799B (zh) 螢光體基板、發光基板及照明裝置
WO2024063043A1 (ja) 蛍光体基板、発光基板及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019901970

Country of ref document: EP

Effective date: 20210727