WO2024063043A1 - 蛍光体基板、発光基板及び照明装置 - Google Patents

蛍光体基板、発光基板及び照明装置 Download PDF

Info

Publication number
WO2024063043A1
WO2024063043A1 PCT/JP2023/033869 JP2023033869W WO2024063043A1 WO 2024063043 A1 WO2024063043 A1 WO 2024063043A1 JP 2023033869 W JP2023033869 W JP 2023033869W WO 2024063043 A1 WO2024063043 A1 WO 2024063043A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
layer
light emitting
light
substrate
Prior art date
Application number
PCT/JP2023/033869
Other languages
English (en)
French (fr)
Inventor
正宏 小西
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2024063043A1 publication Critical patent/WO2024063043A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a phosphor substrate, a light emitting substrate, and a lighting device.
  • Patent Document 1 discloses an LED lighting fixture that includes a substrate on which a light emitting element (LED element) is mounted. This LED lighting equipment improves luminous efficiency by providing a reflective material on the surface of the substrate.
  • LED element light emitting element
  • the present invention can reduce the glare of the light emitted by the light emitting element when the light emitting element is mounted, and can also efficiently realize the function of adjusting the emitted light color to be different from the light emitted by the light emitting element.
  • the aim is to develop phosphor substrate technology that can be used.
  • the phosphor substrate according to [1] when the light emitting element is an LED, a position closest to the insulating substrate in the PN junction region of the LED is within a thickness direction of the phosphor layer.
  • [5] The phosphor substrate according to [4], wherein the phosphor substrate has a support layer exposed portion where the phosphor layer is not provided and the support layer is exposed, around the area where the light emitting element is mounted.
  • the phosphor is composed of a plurality of phosphor particles
  • the white pigment contained in the support layer is composed of a plurality of white particles, D1 50 , which is a volume-based median diameter (D 50 ) of the plurality of phosphor particles measured by a laser diffraction scattering method, and a volume-based median diameter (D 50 ) of the plurality of white particles measured by a laser diffraction scattering method.
  • D1 50 is a volume-based median diameter (D 50 ) of the plurality of phosphor particles measured by a laser diffraction scattering method
  • D 50 volume-based median diameter of the plurality of white particles measured by a laser diffraction scattering method
  • the present invention it is possible to reduce the glare of the light emitted by the light emitting element when the light emitting element is mounted, and to efficiently realize the function of adjusting the emitted light color to be different from the light emitted by the light emitting element.
  • FIG. 2 is a plan view of the light emitting substrate of the first embodiment. It is a bottom view of the light emitting board of 1st Embodiment.
  • FIG. 1C is a partial cross-sectional view of the light emitting substrate taken along the line 1C-1C in FIG. 1A.
  • 1A is a plan view showing the vicinity of a mounting area of one light emitting element by enlarging area A1 of FIG. 1A.
  • FIG. FIG. 2 is a plan view of a phosphor substrate (a phosphor layer and a support layer are omitted) of the first embodiment.
  • FIG. 2 is a plan view of the phosphor substrate of the first embodiment.
  • FIG. 3 is an explanatory diagram of a first step in the method for manufacturing a light emitting substrate according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a second step in the method for manufacturing a light emitting substrate according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a third step in the method for manufacturing a light emitting substrate according to the first embodiment. It is an explanatory view of the 4th process in the manufacturing method of the light emitting board of a 1st embodiment. It is an explanatory view of the 5th process in the manufacturing method of the light emitting board of a 1st embodiment.
  • FIG. 3 is a diagram for explaining the light emitting operation of the light emitting substrate of the first embodiment.
  • FIG. 6 is a diagram for explaining the light emitting operation of a comparative light emitting substrate.
  • FIG. 7 is a partial cross-sectional view of a light emitting substrate according to a second embodiment.
  • FIG. 1A is a plan view of the light emitting substrate 10, and FIG. 1B is a bottom view of the light emitting substrate 10.
  • FIG. 1C is a partial cross-sectional view of the light emitting substrate 10 taken along the line 1C-1C in FIG. 1A.
  • FIG. 1D is an enlarged view of region C2 in FIG. 1A, focusing on one light emitting element 20.
  • the plan view is, for example, a view seen from the front surface 32 side of the insulating layer 31, which will be described later, and the bottom view is a view seen from the back surface 33 side of the insulating layer 31.
  • the "front surface 32 side" will be described as the "+Z direction side” and the "back surface 33 side” will be described as the "-Z direction side.”
  • the light emitting substrate 10 is, for example, rectangular when viewed from the "+Z direction side" and the "-Z direction side.” Further, the light emitting board 10 of this embodiment includes a plurality of light emitting elements 20, a phosphor substrate 30, and electronic components (not shown) such as a connector and a driver IC. The light emitting board 10 has a function of emitting light when supplied with power from an external power source (not shown) via a connector. Therefore, the light emitting substrate 10 is used as a main optical component in, for example, a lighting device (not shown).
  • the basic configurations of the phosphor substrate 30 and the light emitting substrate 10 of this embodiment are as follows.
  • the phosphor substrate 30 carries at least one light emitting element 20.
  • the phosphor substrate 30 includes an insulating layer 31 (an example of an insulating substrate), a circuit pattern layer 34, a support layer 35, and a phosphor layer 36.
  • the circuit pattern layer 34 is arranged on the surface 32 (an example of one surface) of the insulating layer 31 and is bonded to at least one light emitting element 20.
  • the phosphor layer 36 is disposed on the surface 32 side of the insulating layer 31 and includes a phosphor whose emission peak wavelength is in the visible light region when the emission of at least one light emitting element 20 is used as excitation light.
  • the support layer 35 is disposed on the surface 32 of the insulating layer 31, but in the region where the circuit pattern layer 34 is provided on the insulating layer 31, the support layer 35 is disposed on the surface of the circuit pattern layer 34 and the phosphor layer 36 support.
  • the support layer 35 is provided as a layer that does not contain phosphor.
  • the light emitting substrate 10 includes a phosphor substrate 30 having the basic configuration described above and at least one light emitting element 20.
  • Each of the plurality of light emitting elements 20 is, for example, a CSP (Chip Scale Package) in which a flip chip LED 22 (hereinafter referred to as "LED 22") is incorporated (see FIGS. 1C and 1D).
  • the LED 22 has a square shape when viewed from above (that is, viewed from the +Z direction side), and the length L1 of one side is, for example, 1200 ⁇ m or 1700 ⁇ m.
  • the plurality of light emitting elements 20 are mounted in a regularly arranged manner over the entire surface side of the phosphor substrate 30.
  • the correlated color temperature of the light emitted by each light emitting element 20 is, for example, 3,018K. Note that by using a heat sink (not shown) and a cooling fan (not shown), heat is radiated (cooled) so that the temperature of the phosphor substrate 30 is within 50 to 100 degrees Celsius from room temperature, for example, during the light emission operation of the plurality of light emitting elements 20. ).
  • FIG. 2A is a plan view of the phosphor substrate 30, with the support layer 35 and the phosphor layer 36 omitted.
  • FIG. 2B is a plan view of the phosphor substrate 30. Note that the bottom view of the phosphor substrate 30 of this embodiment is the same as the view of the light emitting substrate 10 viewed from the back side (-Z direction side). Further, a partial cross-sectional view of the phosphor substrate 30 is the same as the partial cross-sectional view of FIG. 1C with the light emitting element 20 removed. That is, the phosphor substrate 30 has a rectangular shape, for example, when viewed from the +Z direction side and the -Z direction side.
  • FIG. 2A shows the range of a plurality of electrode pairs 34A, which will be described later, and a wiring portion 34B, which is a portion other than the plurality of electrode pairs 34A, in reality, both are on the same plane (outer surface). ), there is no boundary between the support layer 35 and the phosphor layer 36 in the diagram shown in FIG. 2A in which the support layer 35 and the phosphor layer 36 are removed.
  • FIG. 2A is a diagram in which the symbols of the plurality of electrode pairs 34A and the wiring portion 34B are added for convenience.
  • the phosphor substrate 30 includes an insulating layer 31, a circuit pattern layer 34, a support layer 35, a phosphor layer 36, and a back pattern layer 38 (see FIGS. 1B to 1D, 2A, and 2B). ). In FIG. 2A, the support layer 35 and the phosphor layer 36 are omitted.
  • the phosphor layer 36 is arranged, for example, on the +Z direction side surface (ie, the outer surface 35x) of the support layer 35.
  • the phosphor layer 36 is not provided in the region where the light emitting element 20 is provided.
  • the phosphor layer 36 is not provided in a region of a certain width (predetermined distance L2) from the region where the light emitting element 20 is provided, and the support layer exposed portion 70 is formed in which the support layer 35 is exposed.
  • the width of the support layer exposed portion 70 is preferably set to, for example, 50 ⁇ m to 200 ⁇ m. If the predetermined distance L2 is less than 50 ⁇ m, when forming the phosphor layer 36, it will flow toward the light emitting element 20 due to manufacturing errors or the viscosity of the phosphor paint, and the optical element mounting area 75, which is the mounting surface of the light emitting element 20, will (See FIGS. 3C and 3D), which may prevent proper mounting. If the predetermined distance L2 is 200 ⁇ m or more, the light output from the light emitting element 20 may not sufficiently reach the phosphor layer 36, and the efficiency of the function as the phosphor substrate 30 (ie, color temperature shift function) may be reduced.
  • the predetermined distance L2 is 200 ⁇ m or more, the light output from the light emitting element 20 may not sufficiently reach the phosphor layer 36, and the efficiency of the function as the phosphor substrate 30 (ie, color temperature shift function) may be reduced.
  • through holes 39 are formed in six locations in the phosphor substrate 30, including four locations near the four corners and two locations near the center.
  • the six through holes 39 are used as positioning holes when manufacturing the phosphor substrate 30 and the light emitting substrate 10.
  • the six through holes 39 are used as screw holes for mounting to ensure a heat dissipation effect (to prevent board warping and floating) to the (light emitting) lamp casing.
  • the phosphor substrate 30 of this embodiment is made by etching or other processing a double-sided board (hereinafter referred to as motherboard MB, see FIG. 3A) in which copper foil layers are provided on both sides of an insulating board.
  • motherboard MB a double-sided board
  • CS-3305A manufactured by Risho Kogyo Co., Ltd. is used.
  • the shape is, for example, a rectangle when viewed from the front surface 32 side (+Z direction side) and the back surface 33 side ( ⁇ Z direction side).
  • the material is an insulating material including bismaleimide resin and glass cloth, for example.
  • the thickness T1 is, for example, 100 ⁇ m.
  • the coefficient of thermal expansion (CTE) in the longitudinal direction and in the transverse direction is, for example, 10 ppm/°C or less in the range of 50°C to 100°C, respectively. From another perspective, the longitudinal and transverse coefficients of thermal expansion (CTE) are each 6 ppm/K, for example.
  • the glass transition temperature is, for example, higher than 300°C.
  • the storage modulus is greater than 1.0 ⁇ 10 10 Pa and smaller than 1.0 ⁇ 10 11 Pa in the range of 100° C. to 300° C.
  • the bending modulus in the longitudinal direction and in the transverse direction is, by way of example, 35 GPa and 34 GPa, respectively, under normal conditions.
  • the hot bending modulus in the longitudinal and transverse directions is, for example, 19 GPa at 250°C.
  • the water absorption rate is 0.13% when left for 24 hours in a temperature environment of 23°C.
  • the dielectric constant is, for example, 4.6 at 1 MHz normal state.
  • the dielectric loss tangent is, for example, 0.010 at a normal frequency of 1 MHz.
  • the circuit pattern layer 34 is a metal layer provided on the surface 32 side (+Z direction side) of the insulating layer 31, and is, for example, a copper foil layer (layer made of Cu), and is bonded to a connector (not shown). It is electrically connected to the terminal 37. Then, the circuit pattern layer 34 supplies power supplied from an external power source (not shown) via the connector to the plurality of light emitting elements 20 while forming the light emitting board 10 . Therefore, a portion of the circuit pattern layer 34 serves as a plurality of electrode pairs 34A to which the plurality of light emitting elements 20 are respectively bonded. That is, the circuit pattern layer 34 is arranged on the surface 32 of the insulating layer 31, and is connected to each light emitting element 20 at a bonding surface 34A1, which is the outer surface of each electrode pair 34A.
  • the plurality of electrode pairs 34A are also arranged regularly over the entire surface 32.
  • the portion of the circuit pattern layer 34 other than the plurality of electrode pairs 34A is referred to as a wiring portion 34B.
  • the outer surface of the wiring portion 34B (that is, the portion of the outer surface of the circuit pattern layer 34 other than the bonding surface 34A1) is referred to as a non-bonding surface 34B1.
  • the non-bonding surface 34B1 is a portion of the circuit pattern layer 34 other than the portion bonded to all the light emitting elements 20.
  • the area on the surface 32 of the insulating layer 31 where the circuit pattern layer 34 is arranged is, for example, a region (area) of 60% or more of the surface 32 of the insulating layer 31 (see FIG. (See 2A).
  • the thickness T3 of the circuit pattern layer 34 is, for example, 175 ⁇ m. However, in each figure, the relationships among the thickness T3 of the circuit pattern layer 34, the thickness T1 of the insulating layer 31, the thickness T5 of the phosphor layer 36, etc. do not match the dimensions.
  • the support layer 35 is provided on the surface 32 of the insulating layer 31 or on the circuit pattern layer 34 in the area where the circuit pattern layer 34 is provided, and supports the phosphor layer 36. However, the phosphor layer 36 is not provided in the area where the solder paste SP is provided.
  • a recess support layer 35b is provided so as to fill the recess 34x. There is.
  • the thickness T4 of the support layer 35 in the region provided on the circuit pattern layer 34 is, for example, thinner than the thickness T3 of the circuit pattern layer 34. Specifically, it is set to 20 ⁇ m.
  • the support layer 35 in the area where the circuit pattern layer 34 is not provided has the same top surface position as the top surface of the support layer 35 in the area provided on the circuit pattern layer 34 at the top surface position where it is provided ( That is, the thickness is set to T3+T4). That is, the support layer 35 is provided so as to be substantially flush with the entire phosphor substrate 30.
  • the thickness T3 of the support layer 35 may be thinner, thicker, or the same than the thickness T3 of the circuit pattern layer 34 as described above, and can be set as appropriate according to required specifications.
  • the support layer 35 does not contain a phosphor (an aggregate of a plurality of phosphor particles), but contains a white pigment (an aggregate of a plurality of white particles) and a binder, and contains a plurality of white pigments. It is an insulating layer in which particles are dispersed in the binder.
  • the support layer 35 has a single layer structure, for example.
  • the multiple white particles are, for example, titanium oxide, but they may be calcium oxide or other white particles.
  • the binder may be, for example, an epoxy-based, acrylate-based, silicone-based, or other binder, as long as it has the same insulating properties as the binder contained in the solder resist.
  • the phosphor layer 36 is provided on the surface (outer surface 35x) of the support layer 35 opposite to the surface that contacts the insulating layer 31. There is.
  • the area on the surface 32 of the insulating layer 31 where the phosphor layer 36 is arranged is, for example, 80% or more of the area on the surface 32 of the insulating layer 31.
  • the lower surface ( ⁇ Z direction side) of the phosphor layer 36 in the thickness direction that is, the boundary with the outer surface 35x of the support layer 35 is set lower than the position of the junction 25 of the LED 22 (FIG. 1C and Figure 3E).
  • the mounting level of the light emitting element 20, which is a CSP, and the lower surface level of the phosphor layer 36 are the same.
  • the junction 25 of the LED 22 refers to the PN junction region of the LED 22, and light is emitted at this junction 25.
  • the phosphor layer 36 is, for example, an insulating layer that includes a phosphor (an aggregate of a plurality of phosphor particles) and a binder, which will be described later, and a plurality of phosphor particles are dispersed in the binder.
  • the phosphor included in the phosphor layer 36 has a property of exciting the light emitted from each light emitting element 20 as excitation light.
  • the phosphor of this embodiment has a property that the emission peak wavelength is in the visible light region when the emission from the light emitting element 20 is used as excitation light.
  • the binder may be, for example, an epoxy-based, acrylate-based, or silicone-based binder, as long as it has an insulating property equivalent to that of the binder contained in the solder resist.
  • the volume-based median diameter (D 50 ) of the plurality of phosphor particles included in the phosphor layer 36 measured by a laser diffraction scattering method is expressed as D1 50 .
  • the volume-based median diameter (D 50 ) of the plurality of white particles included in the above-mentioned support layer 35 measured by a laser diffraction scattering method is expressed as D2 50 .
  • D1 50 and D2 50 have the following relationship (Formula 1).
  • the median diameter (D 50 ) of the plurality of white particles constituting the white pigment is 80% or more and 120% or less of the median diameter (D 50 ) of the plurality of phosphor particles constituting the phosphor. It is set to be within the range of
  • the phosphors included in the phosphor layer 36 of this embodiment include, for example, an ⁇ -sialon phosphor containing Eu, a ⁇ -sialon phosphor containing Eu, a CASN phosphor containing Eu, and an Eu-containing sialon phosphor. at least one phosphor selected from the group consisting of SCASN phosphors containing Note that the above-mentioned phosphor is an example in this embodiment, and phosphors other than the above-mentioned phosphor may be used, such as YAG, LuAG, BOS, and other visible light-excited phosphors.
  • the ⁇ -type sialon phosphor containing Eu is represented by the general formula: M x Eu y Si 12-(m+n) Al (m+n) O n N 16-n .
  • examples of the nitride phosphor include a CASN phosphor containing Eu and a SCASN phosphor containing Eu.
  • the CASN phosphor containing Eu is, for example, a red phosphor represented by the formula CaAlSiN 3 :Eu 2+ , which uses Eu 2+ as an activator and has a crystal made of alkaline earth silicon nitride as a host. Note that the definition of CASN phosphor containing Eu in this specification excludes SCASN phosphor containing Eu.
  • the SCASN phosphor containing Eu is, for example, a red phosphor represented by the formula (Sr,Ca)AlSiN 3 :Eu 2+ , which uses Eu 2+ as an activator and has a crystal made of alkaline earth silicon nitride as a matrix. means.
  • the back pattern layer 38 is a metal layer provided on the back surface 33 side of the insulating layer 31, and is, for example, a copper foil layer (layer made of Cu).
  • the thickness T2 of the back pattern layer 38 is, for example, 175 ⁇ m.
  • a plurality of rectangular blocks arranged in a straight line along the longitudinal direction of the insulating layer 31 are arranged adjacently so as to be out of phase in the transverse direction. It is a layered layer.
  • the back pattern layer 38 is, for example, an independent floating layer. Note that, as an example, the back pattern layer 38 overlaps with 80% or more of the circuit pattern layer 34 disposed on the front surface 32 in the thickness direction of the insulating layer 31.
  • the method for manufacturing the light emitting substrate 10 of this embodiment includes a first step, a second step, a third step, a fourth step, and a fifth step, and each step is performed in the order described.
  • the method for manufacturing the phosphor substrate 30 of the present embodiment includes at least one light emitting element 20 on a surface 32 (an example of one surface) of an insulating layer 31 (an example of an insulating substrate).
  • the first step circuit pattern layer forming step) of forming the circuit pattern layer 34 to be bonded to
  • a third step phosphor layer forming step) of forming a phosphor layer 36 containing a phosphor whose color is in the visible light region, and a layer not containing the phosphor between the insulating layer 31 and the phosphor layer 36.
  • the method for manufacturing the light-emitting substrate 10 of the present embodiment is the same as the method for manufacturing the phosphor substrate 30 of the present embodiment described above, and the method of manufacturing the light-emitting substrate 30 in which at least one light-emitting element 20 is added to the circuit pattern layer 34.
  • FIG. 3A is a diagram showing the start and end of the first step.
  • the first step (an example of a circuit pattern layer forming step) is a step of forming a circuit pattern layer 34 on the front surface 32 and a back surface pattern layer 38 on the back surface 33 of the insulating layer 31 of the motherboard MB. This step is performed, for example, by etching using a mask pattern (not shown).
  • FIG. 3B is a diagram showing the start and end of the second step.
  • a layer containing no phosphor is formed between the insulating layer 31 and the phosphor layer 36 formed in the third step.
  • This is a step of forming a support layer 35 that supports the body layer 36.
  • a white color is applied to the surface of the circuit pattern layer 34 in the area where the circuit pattern layer 34 is arranged, and on the surface of the insulating layer 31 in the area where the circuit pattern layer 34 is not arranged.
  • the support layer 35 is formed by applying a paint (not shown).
  • the white paint is a paint in which a solvent is added to the white pigment (aggregate of a plurality of white particles) and binder that constitute the support layer 35, and the applied white paint layer becomes the support layer 35 after curing. As a result, when this step is completed, a single-layer structure layer containing a white pigment is formed as the support layer 35.
  • the support layer 35 formed in this process may be formed by applying white paint in the thickness direction of the insulating layer 31 in one pass or multiple passes.
  • FIG. 3C is a diagram showing the start and end of the third step.
  • the third step (an example of a phosphor layer forming step) is a step of applying a phosphor paint (not shown) to the outer surface 35x of the support layer 35 to form a phosphor layer 36.
  • the outer surface 35x of the support layer 35 formed in the second step is provided in and around the optical element mounting area 75 where the light emitting element 20 is mounted (i.e., the CSP mounting area).
  • a phosphor paint is applied to the area except for the exposed portion 70 of the support layer using a screen printing method.
  • the phosphor layer 36 is formed on the outer surface 35x of the support layer 35, and is formed so that the outer surface 36x of the phosphor layer 36 is flat.
  • FIG. 3D is a diagram showing the start and end of the fourth step.
  • the fourth step is a step of removing a portion of the support layer 35 to expose all the bonding surfaces 34A1 of the circuit pattern layer 34.
  • a two-dimensional laser processing device (not shown) is used to selectively irradiate a portion of the support layer 35 on each bonding surface 34A1 with laser light. As a result, a portion of the support layer 35 on each bonding surface 34A1 is ablated, and each bonding surface 34A1 is exposed.
  • the bonding surface 34A1 may be exposed in advance using a method such as a photo printing method or a screen printing method in the second step (supporting layer forming step).
  • a method such as a photo printing method or a screen printing method in the second step (supporting layer forming step).
  • the phosphor substrate 30 is manufactured.
  • Step 5] 3E is a diagram showing the start and end of the fifth step.
  • the fifth step (an example of a bonding step) is a step of mounting a plurality of light-emitting elements 20 on the phosphor substrate 30.
  • solder paste SP is printed on each bonding surface 34A1 exposed by removing the support layer 35 of the phosphor substrate 30 in a concave shape, and the solder paste is melted in a state where each electrode of the plurality of light-emitting elements 20 is aligned with each bonding surface 34A1.
  • each light-emitting element 20 is bonded to each electrode pair 34A (each bonding surface 34A1).
  • this step is performed by a reflow process as an example. When this process is completed, the light emitting substrate 10 is manufactured.
  • Fig. 4 is a diagram for explaining the light emitting operation of the light emitting substrate 10 of this embodiment, focusing on the phosphor layer 36 and omitting the support layer 35.
  • Fig. 5 shows a light emitting substrate 10a of a comparative embodiment to be described later.
  • the activation switch (not shown) that activates the plurality of light emitting elements 20 When the activation switch (not shown) that activates the plurality of light emitting elements 20 is turned on, power supply to the circuit pattern layer 34 is started from an external power source (not shown) via the connector (not shown), and the plurality of light emitting elements 20 are turned on.
  • the element 20 emits light L in a radial and divergent manner, and a portion of the light L reaches the surface of the phosphor substrate 30 (ie, the outer surface 36x of the phosphor layer 36).
  • the behavior of the emitted light L will be explained in terms of the traveling direction of the emitted light L.
  • a part of the light L emitted from each light emitting element 20 is reflected by the outer surface 36x without entering the phosphor layer 36, and is emitted to the outside.
  • the wavelength of the light L remains the same as the wavelength of the light L emitted from each light emitting element 20.
  • the light of the LED 22 itself in a portion of the light L emitted from each light emitting element 20 enters the phosphor layer 36.
  • the above-mentioned "light of the LED 22 itself in a part of the light L” refers to the light that has not been color-converted by the phosphor of each light emitting element 20 (CSP itself) out of the emitted light L, that is, the light of the LED 22 itself in a part of the light L. It means its own light (for example, blue light (wavelength near 470 nm)).
  • the phosphor When the light L of the LED 22 itself collides with the phosphor dispersed in the phosphor layer 36, the phosphor is excited and emits excitation light.
  • the reason why the phosphor is excited is that the phosphor dispersed in the phosphor layer 36 is a phosphor having an excitation peak in blue light (visible light excited phosphor).
  • part of the energy of the light L is used to excite the phosphor, and the light L loses part of its energy.
  • the wavelength of the light L is converted (wavelength conversion is performed). For example, depending on the type of phosphor in the phosphor layer 36 (for example, when red CASN is used as the phosphor), the wavelength of the light L becomes long (for example, 650 nm).
  • the excitation light in the phosphor layer 36 is emitted from the phosphor layer 36 as it is, but some of the excitation light is directed toward the support layer 35 below.
  • the excitation light directed toward the support layer 35 is reflected by the support layer 35 and emitted to the outside.
  • the support layer 35 is formed of a white pigment as described above, the reflection effect in the entire wavelength range of visible light can be enhanced.
  • the light L emitted by each light emitting element 20 (the light L radially emitted by each light emitting element 20) is irradiated to the outside together with the excitation light through the plurality of optical paths as described above. . Therefore, when the emission wavelength of the phosphor included in the phosphor layer 36 is different from the emission wavelength of the phosphor that seals (or covers) the LED 22 in the light emitting element 20 (CSP), the light emitting substrate 10 of this embodiment , a bundle of light L emitted by each light emitting element 20 is irradiated together with the excitation light as a bundle of light L including light L having a wavelength different from the wavelength of light L emitted by each light emitting element 20.
  • the light emitting substrate 10 of this embodiment emits a composite light of the light (wavelength) emitted by the light emitting element 20 and the light (wavelength) emitted from the phosphor layer 36.
  • the light emitting substrate 10 of this embodiment converts the bundle of light L emitted by each light emitting element 20 into a light L containing light L having the same wavelength as the wavelength of light L emitted by each light emitting element 20. It is irradiated as a bundle with the above excitation light.
  • the junction 25 constituting the light emitting element 20, which is a CSP is located below the phosphor layer 36 (on the ⁇ Z direction side), the luminous efficiency of the phosphor substrate 30 will be reduced. That is, the light emitted from the LED 22 itself does not reach the phosphor layer 36, and the color temperature shift of the phosphor substrate 30 with respect to the CSP becomes smaller.
  • the above relationship between the junction 25 and the phosphor layer 36 is particularly important in the region near the light emitting element 20. In other words, in the region where the light of the light emitting element 20 does not reach, for example, the light emitting Such a relationship does not necessarily have to be satisfied in the peripheral portion of the substrate 10 and the like. The above is a description of the light emitting operation of the light emitting substrate 10 of this embodiment.
  • FIG. 5 is a diagram for explaining the light emitting operation of the light emitting substrate 10a of the comparative embodiment.
  • the light-emitting substrate 10a (substrate 30a on which a plurality of light-emitting elements 20 is mounted) of the comparative embodiment has the same configuration as the light-emitting substrate 10 (phosphor substrate 30) of the present embodiment, except that it does not include the phosphor layer 36. ing.
  • the light L emitted from each light-emitting element 20 and incident on the surface 32 of the substrate 30a is reflected or scattered without having its wavelength converted. Therefore, in the case of the substrate 30a of the comparative embodiment, it is not possible to adjust the light emission color to be different from the light emitted by the light emitting element 20 when the light emitting element 20 is mounted. That is, in the case of the light-emitting substrate 10a of the comparative embodiment, it is not possible to adjust the light emission color to be different from the light emitted by the light-emitting element 20.
  • the surface of the light emitting substrate 10 (the support layer surface 35X of the support layer 35 in FIG. 1C) and the periphery of each light emitting element 20 is A phosphor layer 36 is arranged. Therefore, a part of the light L emitted radially from each light emitting element 20 enters the phosphor layer 36, is wavelength-converted by the phosphor layer 36, and is irradiated to the outside. In this case, a portion of the light L radially emitted from each light emitting element 20 enters the phosphor layer 36 to excite the phosphor included in the phosphor layer 36 to generate excitation light.
  • the phosphor substrate 30 of this embodiment when the light emitting element 20 is mounted, the light L emitted from the phosphor substrate 30 is converted into light of a different color from the light L emitted by the light emitting element 20. Can be adjusted. Accordingly, according to the light emitting substrate 10 of this embodiment, the light L emitted from the phosphor substrate 30 can be adjusted to the light L of a different color from the light L emitted by the light emitting element 20. From another perspective, according to the light emitting substrate 10 of this embodiment, it is possible to irradiate the outside with light L of a different color from the light L emitted by the light emitting element 20.
  • glare can be reduced compared to the comparative embodiment. Note that this effect is achieved when the phosphor layer 36 is provided over the entire surface of the light emitting substrate 10 , specifically, the area where the phosphor layer 36 is disposed covers 80% of the surface 32 of the insulating layer 31 . It is more effective in cases where the area is larger than %.
  • the light emitting element 20 is a CSP
  • the position closest to the insulating layer 31 (-Z direction side) in the PN junction region (that is, the junction 25) of the LED 22 constituting the CSP is the phosphor layer 36. in the thickness direction.
  • the mounting level of the CSP (LED 22) is the lower stacking position of the phosphor layer 36 (the boundary level between the phosphor layer 36 and the support layer 35). Therefore, the light of the LED 22 output from the junction 25 reliably reaches the phosphor layer 36, and the functions of the phosphor layer 36 can be efficiently realized.
  • the phosphor layer 36 is supported by the support layer 35 (see FIGS. 1C and 3E). More specifically, the entire region of the phosphor layer 36 is supported by a single-layer support layer 35 containing a white pigment. Therefore, in the entire region of the phosphor layer 36, the reflection effect of the entire wavelength region of the excitation light, which is considered as visible light, can be enhanced.
  • the white pigment constituting the support layer 35 is cheaper than the phosphor constituting the phosphor layer 36
  • the white paint for forming the support layer 35 is cheaper than the phosphor paint. Therefore, the phosphor substrate 30 of this embodiment is less expensive than the case where the support layer 35 is formed of the phosphor layer 36. Accordingly, in the method for manufacturing the phosphor substrate 30 of this embodiment, the manufacturing cost of the phosphor substrate 30 is lower than in the method for manufacturing a phosphor substrate in which the support layer 35 is formed of the phosphor layer 36. be.
  • the thickness of the circuit pattern layer 34 is made thicker than that of a normal circuit board.
  • the thickness is set to be 175 ⁇ m as an example.
  • a support layer 35 is interposed between the circuit pattern layer 34 and the phosphor layer 36. Therefore, in the area where the circuit pattern layer 34 is not provided, the volume of the phosphor layer 36 will increase if the support layer 35 is not provided, but in this embodiment, since the support layer 35 is provided, the manufacturing cost can be sufficiently suppressed. can.
  • the phosphor layer 36 is not provided around the optical element mounting area 75 where the light emitting element 20 is mounted, and there is a supporting layer exposed portion 70 in which the supporting layer 35 is exposed. This prevents the phosphor layer 36 from adhering to the optical element mounting area 75 (particularly where the solder paste SP is provided) when the phosphor layer 36 is laminated on the support layer 35, thereby adversely affecting the mounting of the light emitting element 20. can be avoided. Further, in the supporting layer exposed portion 70, the distance from the phosphor layer 36 to the light emitting element 20 (ie, the predetermined distance L2 in FIGS. 1C and 1D) is 50 ⁇ m to 200 ⁇ m.
  • the predetermined distance L2 is 50 ⁇ m or more, it is possible to effectively prevent the phosphor paint from adhering to the optical element mounting area 75 when the phosphor layer 36 is laminated. Further, since the predetermined distance L2 is 200 ⁇ m or less, it is possible to avoid a situation where the light output from the light emitting element 20 does not sufficiently reach the phosphor layer 36 and the color temperature shift function deteriorates.
  • D1 50 and D2 50 have the following relationship (Equation 1).
  • (Formula 1) 0.8 ⁇ D2 50 /D1 50 ⁇ 1.2
  • the difference in the median diameter of the fine particles (a plurality of phosphor particles and a plurality of white particles) in each layer is set to be relatively small. Therefore, in the phosphor substrate 30 of this embodiment, stress generated at the interface between the support layer 35 and the phosphor layer 36 is reduced.
  • the light emitting substrate 110 of this embodiment differs from the light emitting substrate 10 of the first embodiment (see FIG. 1C) in that a groove-shaped support layer recess 77 is provided in the support layer exposed portion 70 of the support layer 35. It's different.
  • the method of manufacturing the light emitting substrate 110 of the present embodiment includes a step of forming a groove-shaped support layer recess 77.
  • the bonding surface 34A1 it may be formed by removing a part of the support layer 35 by laser beam irradiation, or by using a photo printing method or a screen printing method in the second step (support layer forming step). If used, a support layer 35 can also be formed.
  • the support layer recess 77 prevents the phosphor paint from flowing into the optical element mounting area 75 when applying the phosphor paint during manufacturing. It can effectively prevent it from being put away.
  • an example of the light emitting element 20 is a CSP.
  • an example of the light emitting element 20 may be other than CSP.
  • it may simply be equipped with a flip chip.
  • it can also be applied to the substrate itself of a COB device. In any case, it is sufficient that the area where light is actually outputted is above the boundary area between the phosphor layer 36 and the support layer 35 in the thickness direction (on the +Z direction side).
  • the phosphor substrate 30 is mounted with a plurality of light emitting elements 20, and the light emitting substrate 10 is equipped with a plurality of light emitting elements 20.
  • the number of light emitting elements 20 mounted on the phosphor substrate 30 may be at least one or more.
  • the back surface pattern layer 38 is provided on the back surface 33 of the phosphor substrate 30 (see FIG. 1B), but the back surface pattern layer 38 may not be provided.
  • the phosphor layer 36 is arranged in a portion other than the plurality of electrode pairs 34A on the surface 32 of the insulating layer 31 and the circuit pattern layer 34 on which the light emitting element 20 is mounted. (See Figure 2B). However, the phosphor layer 36 does not have to be disposed over the entire area of the surface 32 of the phosphor substrate 30 other than the plurality of electrode pairs 34A.
  • CS-3305A manufactured by Risho Kogyo Co., Ltd. is used as the motherboard MB in manufacturing the phosphor substrate 30 and the light emitting substrate 10.
  • this is just an example, and a different motherboard MB may be used.
  • the standard specifications such as the insulation layer thickness and copper foil thickness of CS-3305A manufactured by Risho Kogyo Co., Ltd. are not limited, and a thicker copper foil thickness may be used.
  • the light emitting substrates 10 and 110 (including variations thereof) of each embodiment can be combined with other components and applied to a lighting device.
  • Other components in this case include a power source that supplies power for causing the light emitting elements 20 of the light emitting substrate 10 to emit light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

蛍光体基板(30)は、少なくとも1つの発光素子(20)が搭載される。蛍光体基板(30)は、絶縁層(31)と、絶縁層(31)の一面に配置された発光素子(20)に接合される回路パターン層(34)と、発光素子(20)の発光を励起光としたときの発光ピーク波長が可視光領域にある蛍光体を含む蛍光体層(36)と、絶縁層(31)と蛍光体層(36)との間に配置され、かつ、蛍光体を含まない層であって蛍光体層(36)を支持する支持層(35)とを備える。支持層(35)は、回路パターン層(34)が設けられた領域においては回路パターン層(34)に積層されて設けられている。発光素子(20)のジャンクション(25)の最も絶縁層(31)側の位置が、蛍光体層(36)の厚さ方向の範囲にある。

Description

蛍光体基板、発光基板及び照明装置
 本発明は、蛍光体基板、発光基板及び照明装置に関する。
 特許文献1には、発光素子(LED素子)が搭載された基板を備えるLED照明器具が開示されている。このLED照明器具は、基板の表面に反射材を設けて、発光効率を向上させている。
中国特許公開106163113号公報
 しかしながら、特許文献1に開示されている構成の場合、反射材を利用してLED照明器具が発光する光を発光素子が発光する光と異なる発光色の光に調整することができない。
 本発明は、発光素子が搭載された場合に発光素子が発光する光のグレアを低減でき、また、発光素子が発光する光と異なる発光色の光に調整する機能を効率的に実現することができる蛍光体基板の技術を目的とする。
 本発明によれば以下の技術が提供される。
[1]
 少なくとも1つの発光素子が搭載される蛍光体基板であって、
 絶縁基板と、
 前記絶縁基板の一面に配置され、前記少なくとも1つの発光素子に接合される回路パターン層と、
 前記絶縁基板の一面側に配置され、前記少なくとも1つの発光素子の発光を励起光としたときの発光ピーク波長が可視光領域にある蛍光体を含む蛍光体層と、
 前記絶縁基板と前記蛍光体層との間に配置され、かつ、前記蛍光体を含まない層であって、前記蛍光体層を支持する支持層と、
 を備え、
 前記支持層は、前記回路パターン層が設けられた領域においては、前記回路パターン層に積層されて設けられており、
 前記発光素子の発光領域の最も絶縁基板側の位置が、前記蛍光体層の厚さ方向の範囲にある、蛍光体基板。
[2]
 前記発光素子がLEDである場合に、前記LEDのPN接合領域において最も絶縁基板側の位置が、前記蛍光体層の厚さ方向の範囲にある、[1]に記載の蛍光体基板。
[3]
 前記支持層は、白色顔料を含む単層構造である、[1]または[2]に記載の蛍光体基板。
[4]
 前記蛍光体層は、前記発光素子が搭載される領域には設けられていない、[1]から[3]までのいずれか1に記載の蛍光体基板。
[5]
 前記発光素子が搭載される領域の周囲には、前記蛍光体層が設けられず前記支持層が露出した支持層露出部を有する、[4]に記載の蛍光体基板。
[6]
 前記支持層露出部において前記蛍光体層から前記発光素子までの距離が50μ~200μmである、[5]に記載の蛍光体基板。
[7]
 前記支持層露出部は、厚さ方向に凹形状となった支持層凹部を有する、[5]または[6]に記載の蛍光体基板。
[8]
 前記蛍光体は、複数の蛍光体粒子で構成され、
 前記支持層に含まれる白色顔料は、複数の白色粒子で構成され、
 前記複数の蛍光体粒子における、レーザー回折散乱法により測定される体積基準のメジアン径(D50)であるD150と、前記複数の白色粒子における、レーザー回折散乱法により測定される体積基準のメジアン径(D50)であるD250とは、下記の(式1)の関係を有する、[1]から[7]までのいずれか1に記載の蛍光体基板。
   (式1)0.8≦D250/D150≦1.2
[9]
 [1]から[8]のいずれか1に記載の蛍光体基板と、
 前記少なくとも1つの発光素子と、を備える発光基板。
[10]
 [9]に記載の発光基板と、
 前記少なくとも1つの発光素子を発光させるための電力を供給する電源と、を備える照明装置。
 本発明によれば、発光素子が搭載された場合に発光素子が発光する光のグレアを低減でき、また、発光素子が発光する光と異なる発光色の光に調整する機能を効率的に実現することができる蛍光体基板の技術を提供できる。
第1実施形態の発光基板の平面図である。 第1実施形態の発光基板の底面図である。 図1Aの1C-1C切断線により切断した発光基板の部分断面図である。 図1Aの領域A1を拡大して1つの発光素子の搭載領域近傍を示した平面図である。 第1実施形態の蛍光体基板(蛍光体層及び支持層を省略)の平面図である。 第1実施形態の蛍光体基板の平面図である。 第1実施形態の発光基板の製造方法における第1工程の説明図である。 第1実施形態の発光基板の製造方法における第2工程の説明図である。 第1実施形態の発光基板の製造方法における第3工程の説明図である。 第1実施形態の発光基板の製造方法における第4工程の説明図である。 第1実施形態の発光基板の製造方法における第5工程の説明図である。 第1実施形態の発光基板の発光動作を説明するための図である。 比較形態の発光基板の発光動作を説明するための図である。 第2実施形態の発光基板の部分断面図である。
≪概要≫
 本発明の一例である第1~第5実施形態についてこれらの記載順で説明する。次いで、これらの実施形態の変形例について説明する。なお、以下の説明において参照するすべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
≪第1実施形態≫
 以下、第1実施形態について図1A~図5を参照しながら説明する。まず、本実施形態の発光基板10の構成及び機能について図1A~図1Dを参照しながら説明する。次いで、本実施形態の発光基板10の製造方法について図3A~図3Eを参照しながら説明する。次いで、本実施形態の発光基板10の発光動作について図4を参照しながら説明する。次いで、本実施形態の効果について図4、図5等を参照しながら説明する。
<第1実施形態の発光基板の構成及び機能>
 図1Aは発光基板10の平面図、図1Bは発光基板10の底面図である。図1Cは、図1Aの1C-1C切断線により切断した発光基板10の部分断面図である。図1Dは、図1Aの領域C2を拡大した図であって、一つの発光素子20に着目して示している。なお、平面図は、例えば、後述する絶縁層31の表面32側からみた図であり、底面図は絶縁層31の裏面33側から見た図である。以下の実施形態では、「表面32側」を「+Z方向側」、「裏面33側」を「-Z方向側」として説明する。
 発光基板10は、平面図や底面図に示すように、「+Z方向側」及び「-Z方向側」から見て、一例として矩形である。また、本実施形態の発光基板10は、複数の発光素子20と、蛍光体基板30と、コネクタ、ドライバIC等の電子部品(図示省略)とを備えている。発光基板10は、コネクタを介して外部電源(図示省略)から給電されると、発光する機能を有する。そのため、発光基板10は、例えば照明装置(図示省略)等における主要な光学部品として利用される。
 なお、以降の説明の中で詳細に説明するが、本実施形態の蛍光体基板30及び発光基板10の基本的な構成は、それぞれ、以下のとおりである。
<蛍光体基板の基本的な構成>
 蛍光体基板30は、少なくとも1つの発光素子20を搭載する。具体的には、蛍光体基板30は、絶縁層31(絶縁基板の一例)と、回路パターン層34と、支持層35と、蛍光体層36とを備える。
 回路パターン層34は、絶縁層31の表面32(一面の一例)に配置され、少なくとも1つの発光素子20に接合される。蛍光体層36は、絶縁層31の表面32側に配置され、少なくとも1つの発光素子20の発光を励起光としたときの発光ピーク波長が可視光領域にある蛍光体を含む。支持層35は、絶縁層31の表面32に配置されるが、絶縁層31上に回路パターン層34が設けられている領域においては、回路パターン層34の表面に配置されて、蛍光体層36を支持する。支持層35は、蛍光体を含まない層として設けられる。
<発光基板の基本的な構成>
 発光基板10は、前述の基本的な構成を有する蛍光体基板30と、少なくとも1つの発光素子20と、を備える。
〔複数の発光素子〕
 複数の発光素子20は、それぞれ、一例として、フリップチップLED22(以下、「LED22」という。)が組み込まれたCSP(Chip Scale Package)である(図1Cや図1D参照)。LED22は、上面視で(すなわち、+Z方向側から見た図で)、正方形であって、1辺の長さL1は例えば1200μmや1700μmである。
 複数の発光素子20は、図1Aに示されるように、蛍光体基板30の表面側の全体に亘って、規則的に並べられた状態で搭載されている。各発光素子20が発光する光の相関色温度は、一例として3,018Kである。なお、ヒートシンク(図示省略)や冷却ファン(図示省略)を用いることで、複数の発光素子20の発光動作時に、蛍光体基板30を一例として常温から50℃~100℃に収まるように放熱(冷却)するように構成されている。
 ここで、本明細書で数値範囲に使用する「~」の意味について補足すると、例えば「50℃~100℃」は「50℃以上100℃以下」を意味する。すなわち、本明細書で数値範囲に使用する「~」は、「『~』の前の記載部分以上『~』の後の記載部分以下」を意味する。
〔蛍光体基板〕
 図2Aは、蛍光体基板30の図であって、支持層35及び蛍光体層36を省略して図示した平面図である。図2Bは、蛍光体基板30の平面図である。なお、本実施形態の蛍光体基板30の底面図は、発光基板10を裏面側(-Z方向側)から見た図と同じである。また、蛍光体基板30の部分断面図は、図1Cの部分断面図から発光素子20を除いた場合の図と同じである。すなわち、蛍光体基板30は、+Z方向側及び-Z方向側から見て、一例として矩形である。
 なお、図2Aには、後述する複数の電極対34Aと、複数の電極対34A以外の部分である配線部分34Bとの範囲が図示されているが、実際のところ、両者は同じ平面(外表面)に形成されているため、図2Aのように支持層35及び蛍光体層36を除いた図において、両者の境界は存在しない。しかしながら、図2Aは、両者の位置関係を明確化するために、便宜的に、複数の電極対34A及び配線部分34Bの符号を入れた図としている。
 蛍光体基板30は、絶縁層31と、回路パターン層34と、支持層35と、蛍光体層36と、裏面パターン層38とを備えている(図1B~図1D、図2A及び図2B参照)。図2Aでは支持層35及び蛍光体層36を省略している。
 具体的には、蛍光体層36は、図1Cに示されるように、一例として、支持層35の+Z方向側の面(すなわち外表面35x)に配置されている。ただし、発光素子20が設けられる領域には蛍光体層36は設けられていない。さらに、発光素子20が設けられた領域から一定幅(所定距離L2)の領域には蛍光体層36が設けられず、支持層35が露出した支持層露出部70となっている。
 支持層露出部70の幅、すなわち所定距離L2は、例えば、50μm~200μmに設定することが好ましい。所定距離L2を50μm未満とすると、蛍光体層36を形成する際に、製造誤差や蛍光体塗料の粘性によって発光素子20側に流れてしまい、発光素子20の実装面である光学素子搭載領域75(図3C、3D参照)に付着し、適正な実装ができなくなるおそれがある。所定距離L2を200μm以上とすると、発光素子20から出力した光が蛍光体層36に十分に届かず、蛍光体基板30としての機能の効率(すなわち色温度シフト機能)が低下するおそれがある。
 また、蛍光体基板30には、図1B及び図2Aに示されるように、四つ角付近の4箇所及び中央付近の2箇所の6箇所に貫通孔39が形成されている。6箇所の貫通孔39は、蛍光体基板30及び発光基板10の製造時に位置決め孔として利用されるようになっている。また、6箇所の貫通孔39は、(発光)灯具筐体への熱引き効果確保(基板反り及び浮き防止)のための取り付け用のネジ穴として利用されるようになっている。なお、本実施形態の蛍光体基板30は、後述するように、絶縁板の両面に銅箔層が設けられた両面板(以下、マザーボードMBという。図3A参照)をエッチング等の加工をして製造されるが、マザーボードMBの一例としては、利昌工業株式会社製のCS-3305Aが用いられる。
〈絶縁層〉
 以下、本実施形態の絶縁層31の主な特徴について説明する。
 形状は、前述のとおり、一例として表面32側(+Z方向側)及び裏面33側(-Z方向側)から見て矩形である。
 材質は、一例としてビスマレイミド樹脂及びガラスクロスを含む絶縁材である。
 厚みT1は、一例として100μmである。
 縦方向及び横方向の熱膨張係数(CTE)は、それぞれ、一例として、50℃~100℃の範囲において10ppm/℃以下である。また、別の見方をすると、縦方向及び横方向の熱膨張係数(CTE)は、それぞれ、一例として、6ppm/Kである。この値は、本実施形態の発光素子20の場合とほぼ同等(90%~110%、すなわち±10%以内)である。
 ガラス転移温度は、一例として、300℃よりも高い。
 貯蔵弾性率は、一例として、100℃~300℃の範囲において、1.0×1010Paよりも大きく1.0×1011Paよりも小さい。
 縦方向及び横方向の曲げ弾性率は、一例として、それぞれ、常態において35GPa及び34GPaである。
 縦方向及び横方向の熱間曲げ弾性率は、一例として、250℃において19GPaである。吸水率は、一例として、23℃の温度環境で24時間放置した場合に0.13%である。比誘電率は、一例として、1MHz常態において4.6である。誘電正接は、一例として、1MHz常態において、0.010である。
〈回路パターン層〉
 回路パターン層34は、絶縁層31の表面32側(+Z方向側)に設けられた金属層であって、一例として銅箔層(Cu製の層)であり、コネクタ(図示省略)に接合される端子37と導通している。そして、回路パターン層34は、コネクタを介して外部電源(図示省略)から給電された電力を、発光基板10を構成している状態において複数の発光素子20に供給する。そのため、回路パターン層34の一部は、複数の発光素子20がそれぞれ接合される複数の電極対34Aとなっている。すなわち、回路パターン層34は、絶縁層31の表面32に配置され、各電極対34Aの外表面である接合面34A1で各発光素子20に接続されている。
 前述のとおり、複数の発光素子20は絶縁層31の表面32の全体に亘って規則的に並べられていることから(図1A参照)、複数の電極対34Aも表面32の全体に亘って規則的に並べられている(図2A参照)。ここで、回路パターン層34における複数の電極対34A以外の部分を、配線部分34Bという。配線部分34Bの外表面(すなわち回路パターン層34の外表面における接合面34A1以外の部分)を非接合面34B1という。非接合面34B1は、回路パターン層34におけるすべての発光素子20に接合される部分以外の部分である。
 絶縁層31の表面32における回路パターン層34が配置されている領域(回路パターン層34の占有面積)は、一例として、絶縁層31の表面32の60%以上の領域(面積)である(図2A参照)。回路パターン層34の厚みT3は一例として175μmである。ただし、各図では、回路パターン層34の厚みT3、絶縁層31の厚みT1、蛍光体層36の厚みT5等の関係が寸法どおりとなっていない。
〈支持層〉
 支持層35は、絶縁層31の表面32上、または回路パターン層34が設けられている領域では回路パターン層34の上に設けられ、蛍光体層36を支持している。ただし、はんだペーストSPが設けられている領域には、蛍光体層36は設けられていない。また、回路パターン層34において、一対の電極対34A間の領域であって回路パターン層34が取り除かれ凹部34xとなった領域には、その凹部34xを埋めるように凹部支持層35bが設けられている。
 なお、図1C、図3E等に示されるように、回路パターン層34上に設けられている領域の支持層35の厚みT4は、一例として、回路パターン層34の厚みT3よりも薄く、より具体的には20μmに設定されている。なお、回路パターン層34が設けられていない領域の支持層35は、それが設けられた最表面の位置において、回路パターン層34上に設けられている領域の支持層35の最表面と同じ(すなわち厚みT3+T4)に設定されている。すなわち、支持層35は、蛍光体基板30全体で概ね面一になるように設けられている。支持層35の厚みT3は、上記のように回路パターン層34の厚みT3より薄くともよいし、厚くてもよいし、また同じでもよく、要求される仕様に応じて適宜設定することができる。
 支持層35は、後述する蛍光体層36と異なり蛍光体(複数の蛍光体粒子の集合体)を含まずに、白色顔料(複数の白色粒子の集合体)とバインダーとを含み、複数の白色粒子が当該バインダーに分散された絶縁層である。
 支持層35は、一例として、単層構造である。ここで、複数の白色粒子は、一例として酸化チタンであるが、酸化カルシウムその他の白色粒子でもよい。また、バインダーは、例えば、エポキシ系、アクリレート系、シリコーン系等のバインダーであって、ソルダーレジストに含まれるバインダーと同等の絶縁性を有するものであればよい。
 なお、支持層35が白色顔料を含むことの技術的意義については、後述する第1実施形態の効果の説明の中で説明する。
〈蛍光体層〉
 蛍光体層36は、図1Cや図2B、図3Eに示されるように、一例として、支持層35における絶縁層31に接触する側の面と反対側の面(外表面35x)に設けられている。絶縁層31の表面32における蛍光体層36が配置されている領域は、一例として、絶縁層31の表面32における80%以上の領域となっている。
 なお、蛍光体層36における厚み方向の下側(-Z方向側)の面、すなわち支持層35の外表面35xとの境界は、LED22のジャンクション25の位置よりも低く設定されている(図1C及び図3E参照)。言い換えると、CSPである発光素子20の実装レベルと蛍光体層36の下面レベルが同じになっている。ここで、LED22のジャンクション25とは、LED22のPN接合領域を指し、このジャンクション25において発光する。
 蛍光体層36は、一例として、後述する蛍光体(複数の蛍光体粒子の集合体)とバインダーとを含み、複数の蛍光体粒子が当該バインダーに分散された絶縁層である。蛍光体層36に含まれる蛍光体は、各発光素子20の発光を励起光として励起する性質を有する。具体的には、本実施形態の蛍光体は、発光素子20の発光を励起光としたときの発光ピーク波長が可視光領域にある性質を有する。なお、当該バインダーは、例えば、エポキシ系、アクリレート系、シリコーン系等のバインダーであって、ソルダーレジストに含まれるバインダーと同等の絶縁性を有するものであればよい。
 ここで、本明細書では、蛍光体層36に含まれる複数の蛍光体粒子における、レーザー回折散乱法により測定される体積基準のメジアン径(D50)をD150と表記する。また、前述の支持層35に含まれる複数の白色粒子における、レーザー回折散乱法により測定される体積基準のメジアン径(D50)をD250と表記する。そうすると、本実施形態の蛍光体基板30では、D150とD250とは、下記の(式1)の関係を有する。
   (式1)0.8≦D250/D150≦1.2
 すなわち、本実施形態では、白色顔料を構成する複数の白色粒子のメジアン径(D50)が蛍光体を構成する複数の蛍光体粒子のメジアン径(D50)に対して80%以上120%以下の範囲となるように設定されている。
(蛍光体の具体例)
 ここで、本実施形態の蛍光体層36に含まれる蛍光体は、一例として、Euを含有するα型サイアロン蛍光体、Euを含有するβ型サイアロン蛍光体、Euを含有するCASN蛍光体及びEuを含有するSCASN蛍光体からなる群から選ばれる少なくとも1種の蛍光体である。なお、前述の蛍光体は、本実施形態での一例であり、YAG、LuAG、BOSその他の可視光励起の蛍光体のように、前述の蛍光体以外の蛍光体であってもよい。
 Euを含有するα型サイアロン蛍光体は、一般式:MEuSi12-(m+n)Al(m+n)16-nで表される。上記一般式中、MはLi、Mg、Ca、Y及びランタニド元素(ただし、LaとCeを除く)からなる群から選ばれる、少なくともCaを含む1種以上の元素であり、Mの価数をaとしたとき、ax+2y=mであり、xが0<x≦1.5であり、0.3≦m<4.5、0<n<2.25である。
 Euを含有するβ型サイアロン蛍光体は、一般式:Si6-zAl8-z(z=0.005~1)で表されるβ型サイアロンに発光中心として二価のユーロピウム(Eu2+)を固溶した蛍光体である。
 また、窒化物蛍光体として、Euを含有するCASN蛍光体、Euを含有するSCASN蛍光体等が挙げられる。
 Euを含有するCASN蛍光体は、例えば、式CaAlSiN:Eu2+で表され、Eu2+を付活剤とし、アルカリ土類ケイ窒化物からなる結晶を母体とする赤色蛍光体をいう。なお、本明細書におけるEuを含有するCASN蛍光体の定義では、Euを含有するSCASN蛍光体が除かれる。
 Euを含有するSCASN蛍光体は、例えば、式(Sr,Ca)AlSiN:Eu2+で表され、Eu2+を付活剤とし、アルカリ土類ケイ窒化物からなる結晶を母体とする赤色蛍光体をいう。
〈裏面パターン層〉
 裏面パターン層38は、絶縁層31の裏面33側に設けられた金属層であって、一例として銅箔層(Cu製の層)である。
 裏面パターン層38の厚みT2は、一例として、175μmである。
 裏面パターン層38は、図1Bに示されるように、絶縁層31の長手方向に沿って直線状に並べられている複数の矩形部分の塊が短手方向において位相をずらしたよう隣接して並べられた層となっている。また、裏面パターン層38は、一例として、独立フローティング層である。
 なお、裏面パターン層38は、一例として、絶縁層31の厚み方向において表面32に配置されている回路パターン層34の80%以上の領域と重なっている。
 以上が、本実施形態の発光基板10及び蛍光体基板30の構成についての説明である。
<第1実施形態の発光基板の製造方法>
 次に、本実施形態の発光基板10の製造方法について図3A~図3Eを参照しながら説明する。本実施形態の発光基板10の製造方法は第1工程、第2工程、第3工程、第4工程及び第5工程を含んでおり、各工程はこれらの記載順で行われる。
 なお、以降の説明の中で詳細に説明するが、本実施形態の蛍光体基板30の製造方法及び発光基板10の製造方法の基本的な構成は、それぞれ、以下のとおりである。
・蛍光体基板の製造方法の基本的な構成
 本実施形態の蛍光体基板30の製造方法は、絶縁層31(絶縁基板の一例)の表面32(一面の一例)に、少なくとも1つの発光素子20に接合される回路パターン層34を形成する第1工程(回路パターン層形成工程)と、絶縁層31の表面32側に、少なくとも1つの発光素子20の発光を励起光としたときの発光ピーク波長が可視光領域にある蛍光体を含む蛍光体層36を形成する第3工程(蛍光体層形成工程)と、絶縁層31と蛍光体層36との間に、前記蛍光体を含まない層であって蛍光体層36を支持する支持層35を形成する第2工程(支持層形成工程)と、を含み、蛍光体層形成工程は、支持層35に蛍光体層36をスクリーン印刷手法により、発光素子20が搭載される領域を積層領域から除いて、積層する。
・発光基板の製造方法の基本的な構成
 本実施形態の発光基板10の製造方法は、前述の本実施形態の蛍光体基板30の製造方法と、回路パターン層34に少なくとも1つの発光素子20を接合する第5工程(接合工程)と、を含む。
〔第1工程〕
 図3Aは、第1工程の開始時及び終了時を示す図である。第1工程(回路パターン層形成工程の一例)は、マザーボードMBの絶縁層31の表面32に回路パターン層34を、裏面33に裏面パターン層38を形成する工程である。本工程は、例えばマスクパターン(図示省略)を用いたエッチングにより行われる。
〔第2工程〕
 図3Bは、第2工程の開始時及び終了時を示す図である。第2工程(支持層形成工程の一例)は、絶縁層31と第3工程で形成される蛍光体層36との間に、蛍光体を含まない層であって第3工程で形成される蛍光体層36を支持する支持層35を形成する工程である。
 本工程では、絶縁層31の表面32における、回路パターン層34が配置されている領域では回路パターン層34の表面に、回路パターン層34が配置されていない領域では絶縁層31の表面に、白色塗料(図示省略)を塗布して、支持層35を形成する。
 白色塗料とは支持層35を構成する白色顔料(複数の白色粒子の集合体)及びバインダーに溶剤を加えた塗料であり、塗布された白色塗料の層は硬化後に支持層35となる。その結果、本工程が終了すると、支持層35として、白色顔料を含む単層構造の層が形成される。
 なお、本工程により形成される支持層35は、絶縁層31の厚み方向に白色塗料を1回で塗布しても、複数回塗布して形成してもよい。
〔第3工程〕
 図3Cは、第3工程の開始時及び終了時を示す図である。第3工程(蛍光体層形成工程の一例)は、支持層35の外表面35xに、蛍光体塗料(図示省略)を塗布して、蛍光体層36を形成する工程である。具体的には、本工程では、第2工程で形成した支持層35の外表面35xであって、発光素子20が搭載される光学素子搭載領域75(すなわちCSP搭載領域)及びその周囲に設けられた支持層露出部70を除いて領域に、スクリーン印刷手法を用いて蛍光体塗料を塗布する。
 本工程では、蛍光体層36が支持層35の外表面35xに形成されるが、蛍光体層36の外表面36xが平坦となるように形成される。
〔第4工程〕
 図3Dは、第4工程の開始時及び終了時を示す図である。第4工程は、支持層35の一部を除去して、回路パターン層34のすべての接合面34A1を露出させる工程である。ここで、加熱により支持層35を硬化させた後に2次元レーザー加工装置(図示省略)を用いて支持層35における各接合面34A1上の部分に選択的にレーザー光を照射する。その結果、支持層35における各接合面34A1上の部分がアブレーションされて、各接合面34A1が露出する。レーザー光照射により除去方法の他に、第2工程(支持層形成工程)において写真印刷法、スクリーン印刷法などの手法を用いて予め接合面34A1を露出させた状態としてもよい。
 本工程が終了すると、蛍光体基板30が製造される。
〔第5工程〕
 図3Eは、第5工程の開始時及び終了時を示す図である。第5工程(接合工程の一例)は、蛍光体基板30に複数の発光素子20を搭載する工程である。本工程は、蛍光体基板30の支持層35が凹状に取り除かれて露出した各接合面34A1にはんだペーストSPを印刷し、各接合面34A1に複数の発光素子20の各電極を位置合わせした状態ではんだペーストを溶かす。その後、はんだペーストSPが冷却され固化すると、各電極対34A(各接合面34A1)に各発光素子20が接合される。なお、本工程は、一例として、リフロー工程により行われる。
 本工程が終了すると、発光基板10が製造される。
<第1実施形態の発光基板の発光動作>
 次に、本実施形態の発光基板10の発光動作について図4を参照しながら説明する。ここで、図4は、本実施形態の発光基板10の発光動作を説明するための図であり、蛍光体層36に着目して示し、支持層35は省いている。後述する比較形態の発光基板10aを示す図5も同様である。
 まず、複数の発光素子20を作動させる作動スイッチ(図示省略)がオンになると、コネクタ(図示省略)を介して外部電源(図示省略)から回路パターン層34への給電が開始され、複数の発光素子20は光Lを放射状に発散出射し、その光Lの一部は蛍光体基板30の表面(すなわち蛍光体層36の外表面36x)に到達する。以下、出射された光Lの進行方向に分けて光Lの挙動について説明する。
 各発光素子20から出射された光Lの一部は、蛍光体層36に入射することなく外表面36xで反射し外部に出射される。この場合、光Lの波長は、各発光素子20から出射された際の光Lの波長と同じままである。
 また、各発光素子20から出射された光Lの一部分の中のLED22自身の光は、蛍光体層36に入射する。ここで、前述の「光Lの一部分の中のLED22自身の光」とは、出射された光Lのうち各発光素子20(CSP自身)の蛍光体により色変換されていない光、すなわち、LED22自身の光(一例として青色(波長が470nm近傍)の光)を意味する。
 LED22自身の光Lが蛍光体層36に分散されている蛍光体に衝突すると、蛍光体が励起して励起光を発する。ここで、蛍光体が励起する理由は、蛍光体層36に分散されている蛍光体が青色の光に励起ピークを持つ蛍光体(可視光励起蛍光体)を使用しているためである。これに伴い、光Lのエネルギーの一部は蛍光体の励起に使われることで、光Lはエネルギーの一部を失う。その結果、光Lの波長が変換される(波長変換がなされる)。例えば、蛍光体層36の蛍光体の種類によっては(例えば、蛍光体に赤色系CASNを用いた場合には)光Lの波長が長くなる(例えば650nm等)。
 また、蛍光体層36での励起光はそのまま蛍光体層36から出射するものもあるが、一部の励起光は下側の支持層35に向かう。そして、支持層35に向かった励起光は、支持層35での反射により外部に出射する。支持層35が上述のように白色顔料により形成されている場合、可視光の全波長領域における反射効果を高めることができる。
 以上のとおり、各発光素子20が出射した光L(各発光素子20が放射状に出射した光L)は、それぞれ、上記のような複数の光路を経由して上記励起光とともに外部に照射される。そのため、蛍光体層36に含まれる蛍光体の発光波長と、発光素子20(CSP)におけるLED22を封止した(又は覆う)蛍光体の発光波長とが異なる場合、本実施形態の発光基板10は、各発光素子20が出射した際の光Lの束を、各発光素子20が出射した際の光Lの波長と異なる波長の光Lを含む光Lの束として上記励起光とともに照射する。例えば、本実施形態の発光基板10は、発光素子20が出射した光(波長)と蛍光体層36より出射された光(波長)との合成光を照射する。
 これに対して、蛍光体層36に含まれる蛍光体の発光波長と、発光素子20(CSP)におけるLED22を封止した(又は覆う)蛍光体の発光波長とが同じ場合(同じ相関色温度の場合)、本実施形態の発光基板10は、各発光素子20が出射した際の光Lの束を、各発光素子20が出射した際の光Lの波長と同じ波長の光Lを含む光Lの束として上記励起光とともに照射する。
 なお、CSPである発光素子20を構成するジャンクション25が蛍光体層36より下部(-Z方向側)に位置すると、蛍光体基板30の発光効率が低下する。すなわち、LED22自身の発光が蛍光体層36に届かず、CSPに対して蛍光体基板30の色温度シフトが小さくなる。なお、上記機能を考慮すると、ジャンクション25と蛍光体層36の上記関係は、発光素子20の近傍領域において特に重要であり、言い換えると、発光素子20の光が届かないような領域、例えば、発光基板10の周縁部分等においては、このような関係を必ずしも満たす必要は無い。
 以上が、本実施形態の発光基板10の発光動作についての説明である。
<第1実施形態の効果>
 次に、本実施形態の効果について図面を参照しながら纏めて説明する。
〔第1の効果〕
 第1の効果については、本実施形態を以下に説明する比較形態(図5参照)と比較して説明する。ここで、比較形態の説明において、本実施形態と同じ構成要素等を用いる場合は、その構成要素等に本実施形態の場合と同じ名称、符号等を用いることとする。図5は、比較形態の発光基板10aの発光動作を説明するための図である。比較形態の発光基板10a(複数の発光素子20を搭載する基板30a)は、蛍光体層36を備えていない点以外は、本実施形態の発光基板10(蛍光体基板30)と同じ構成とされている。
 比較形態の発光基板10aの場合、各発光素子20から出射され、基板30aの表面32に入射した光Lは、波長が変換されることなく反射又は散乱する。そのため、比較形態の基板30aの場合、発光素子20が搭載された場合に発光素子20が発光する光と異なる発光色の光に調整することができない。すなわち、比較形態の発光基板10aの場合、発光素子20が発光する光と異なる発光色の光に調整することができない。
 これに対して、本実施形態の場合、絶縁層31の厚み方向から見て、発光基板10の表面(図1Cでは支持層35の支持層表面35X)であって、各発光素子20の周囲には蛍光体層36が配置されている。そのため、各発光素子20から放射状に出射された光Lの一部は、蛍光体層36に入射して、蛍光体層36により波長変換されて、外部に照射される。この場合、各発光素子20から放射状に出射された光Lの一部は、蛍光体層36に入射して、蛍光体層36に含まれる蛍光体を励起させ、励起光を発生させる。
 したがって、本実施形態の蛍光体基板30によれば、発光素子20が搭載された場合に、蛍光体基板30から発光される光Lを発光素子20が発光する光Lと異なる発光色の光に調整することができる。これに伴い、本実施形態の発光基板10によれば、蛍光体基板30から発光される光Lを発光素子20が発光する光Lと異なる発光色の光Lに調整することができる。別の見方をすると、本実施形態の発光基板10によれば、発光素子20が発光する光Lと異なる発光色の光Lを外部に照射することができる。
〔第2の効果〕
 第2の効果については、本実施形態を比較形態(図5参照)と比較して説明する。比較形態の場合、図5に示されるように、各発光素子20の配置間隔に起因して外部に照射される光Lに斑が発生する。ここで、光Lの斑が大きいほど、グレアが大きいという。
 これに対して、本実施形態の蛍光体基板30の表面には、図1Cや図1D、図2BCに示されるように、光学素子搭載領域75及びその近傍の支持層露出部70を除いて、蛍光体層36が全体的に設けられている。そのため、本実施形態の発光基板10では、各発光素子20の周囲からも励起光が発光される。したがって、本実施形態によれば、比較形態に比べて、グレアを小さくすることができる。
 なお、本効果は、蛍光体層36が発光基板10の全面に亘って設けられている場合、具体的には、蛍光体層36が配置されている領域が、絶縁層31の表面32の80%以上の領域のような場合により効果的となる。
〔第3の効果〕
 本実施形態の場合、発光素子20がCSPであって、CSPを構成するLED22のPN接合領域(すなわちジャンクション25)において最も絶縁層31側(-Z方向側)の位置が、蛍光体層36の厚さ方向の範囲にある。言い換えると、CSP(LED22)の実装レベルが、蛍光体層36の積層下位位置(蛍光体層36と支持層35の境界レベル)である。したがって、ジャンクション25から出力されるLED22の光が蛍光体層36に確実に到達し、蛍光体層36による機能を効率的に実現できる。
〔第4の効果〕
 本実施形態の場合、蛍光体層36が支持層35に支持されている(図1C及び図3E参照)。より具体的には、蛍光体層36の全領域が白色顔料を含む単層構造の支持層35により支持されている。そのため、蛍光体層36の全領域において、可視光とされる励起光の全波長領域の反射効果を高めることができる。
 ここで、支持層35を構成する白色顔料は蛍光体層36を構成する蛍光体よりも安価であることから、支持層35を形成するための白色塗料は蛍光体塗料よりも安価である。したがって、本実施形態の蛍光体基板30は、支持層35が蛍光体層36で形成されている場合に比べて、安価である。これに伴い、本実施形態の蛍光体基板30の製造方法は、支持層35が蛍光体層36で形成されている蛍光体基板の製造方法に比べて、蛍光体基板30の製造コストが安価である。
 なお、本実施形態の発光基板10の場合、複数のLED22の発光時の発熱及び励起する蛍光体層36の発熱の影響を考慮し、例えば、回路パターン層34の厚みを通常の回路基板よりも厚く(一例として175μm)設定している。そのうえで、支持層35を回路パターン層34と蛍光体層36の間に介在させている。したがって、回路パターン層34が設けられない領域では、支持層35無しの構成であると蛍光体層36の体積が多くなるが、本実施形態では支持層35があるため、製造コストを十分に抑制できる。
〔第5の効果〕
 本実施形態では、発光素子20が搭載される光学素子搭載領域75の周囲には、蛍光体層36が設けられず支持層35が露出した支持層露出部70を有する。
 これによって、蛍光体層36を支持層35に積層する際に、光学素子搭載領域75(特に、はんだペーストSPを設ける)に蛍光体層36が付着し、発光素子20の実装に悪影響を及ぼすことを回避できる。
 また、支持層露出部70において蛍光体層36から発光素子20までの距離(すなわち図1Cや図1Dの所定距離L2)が50μ~200μmである。これによって、
 所定距離L2が50μm以上であるため、蛍光体層36の積層時に、蛍光体塗料が光学素子搭載領域75に付着してまうことを効果的に抑制できる。また、所定距離L2が200μm以下であるため、発光素子20から出力した光が蛍光体層36に十分に届かなくなり色温度シフト機能が低下してしまうことを回避できる。
〔第6の効果〕
 本実施形態の場合、D150とD250とは、下記の(式1)の関係を有する。
   (式1)0.8≦D250/D150≦1.2
 以上の構成により、各層の微粒子(複数の蛍光体粒子及び複数の白色粒子)のメジアン径の差が比較的小さく設定されている。
 したがって、本実施形態の蛍光体基板30は、支持層35と蛍光体層36との界面に生じる応力が低減されている。
≪第2実施形態≫
 次に、第2実施形態について図6を参照しながら説明する。以下、本実施形態における、第1実施形態(図1C、図3A~図3E等参照)と異なる部分のみについて説明する。
<第2実施形態の構成>
 本実施形態の発光基板110は、第1実施形態の発光基板10(図1C参照)に対して、支持層35の支持層露出部70に、溝状の支持層凹部77が設けられている点で異なる。
<第2実施形態の蛍光体基板の製造方法>
 本実施形態の発光基板110の製造方法は、第1実施形態の製造方法に加えて、溝状の支持層凹部77を形成する工程を有する。接合面34A1を形成する場合と同様に、レーザー光照射により支持層35の一部を除去して形成してもよいし、第2工程(支持層形成工程)において写真印刷法、スクリーン印刷法を用いる場合には、支持層35の形成することもできる。
<第2実施形態の効果>
 本実施形態の場合、第1実施形態の場合の効果に加えて、支持層凹部77を有することで、製造時に蛍光体塗料を塗布する際に、蛍光体塗料が光学素子搭載領域75に流れてしまうことを効果的に防止できる。
 以上のとおり、本発明について前述の各実施形態を例として説明したが、本発明は前述の各実施形態に限定されるものではない。本発明の技術的範囲には、例えば、下記のような形態(変形例)も含まれる。
 例えば、上記の実施形態では、発光素子20の一例をCSPであるとした。しかしながら、発光素子20の一例はCSP以外でもよい。例えば、単にフリップチップを搭載したものでもよい。また、COBデバイスの基板自身に応用することもできる。いずれの場合であっても、実際に光が出力する領域が、蛍光体層36と支持層35の境界領域よりも厚さ方向上側(+Z方向側)であればよい。
 上記の実施形態では、蛍光体基板30には複数の発光素子20が搭載され、発光基板10は複数の発光素子20を備えているとした。しかしながら、前述の第1の効果の説明のメカニズムを考慮すると、発光素子20が1つであっても第1の効果を奏することは明らかである。しかたがって、蛍光体基板30に搭載される発光素子20の数は少なくとも1つ以上であればよい。
 上記の実施形態では、蛍光体基板30の裏面33に裏面パターン層38が備えられているとした(図1B参照)が、裏面パターン層38が備えられていなくてもよい。
 また、本実施形態の説明では、蛍光体層36は、発光素子20が搭載される絶縁層31及び回路パターン層34の表面32における、複数の電極対34A以外の部分に配置されているとした(図2B参照)。しかしながら、蛍光体層36は、蛍光体基板30の表面32における複数の電極対34A以外の部分の全域に亘って配置されていなくてもよい。
 また、各実施形態の説明では、蛍光体基板30及び発光基板10を製造するに当たり、利昌工業株式会社製のCS-3305AをマザーボードMBとして用いると説明した。しかしながら、これは一例であり、異なるマザーボードMBを用いてもよい。例えば、利昌工業株式会社製のCS-3305Aの絶縁層厚、銅箔厚等の標準仕様にこだわるものではなく、特に銅箔圧は更に厚いものを用いてもよい。
 なお、各実施形態の発光基板10、110(その変形例も含む)は、他の構成要素と組み合せて、照明装置に応用することができる。この場合における他の構成要素は、発光基板10の発光素子20を発光させるための電力を供給する電源等である。
 この出願は、2022年9月21日に出願された日本出願特願2022-150178号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10、110 発光基板
20 発光素子
22 LED
24A 電極対
25 ジャンクション
30、30A 蛍光体基板
31 絶縁層(絶縁基板の一例)
34 回路パターン層
34x 凹部34
34A 電極対
34A1 接合面
34A2 非接合面
34B 配線部分
34B1 非接合面
35 支持層
35b 凹部支持層
35x 外表面
36 蛍光体層
36x 外表面
37 端子
38 裏面パターン層
39 貫通孔
70 支持層露出部
75 光学素子搭載領域
77 支持層凹部
L 光
MB マザーボード
SP はんだペースト

Claims (10)

  1.  少なくとも1つの発光素子が搭載される蛍光体基板であって、
     絶縁基板と、
     前記絶縁基板の一面に配置され、前記少なくとも1つの発光素子に接合される回路パターン層と、
     前記絶縁基板の一面側に配置され、前記少なくとも1つの発光素子の発光を励起光としたときの発光ピーク波長が可視光領域にある蛍光体を含む蛍光体層と、
     前記絶縁基板と前記蛍光体層との間に配置され、かつ、前記蛍光体を含まない層であって、前記蛍光体層を支持する支持層と、
     を備え、
     前記支持層は、前記回路パターン層が設けられた領域においては、前記回路パターン層に積層されて設けられており、
     前記発光素子の発光領域の最も絶縁基板側の位置が、前記蛍光体層の厚さ方向の範囲にある、蛍光体基板。
  2.  前記発光素子がLEDである場合に、前記LEDのPN接合領域において最も絶縁基板側の位置が、前記蛍光体層の厚さ方向の範囲にある、請求項1に記載の蛍光体基板。
  3.  前記支持層は、白色顔料を含む単層構造である、
     請求項1または2に記載の蛍光体基板。
  4.  前記蛍光体層は、前記発光素子が搭載される領域には設けられていない、
     請求項1または2に記載の蛍光体基板。
  5.  前記発光素子が搭載される領域の周囲には、前記蛍光体層が設けられず前記支持層が露出した支持層露出部を有する、請求項4に記載の蛍光体基板。
  6.  前記支持層露出部において前記蛍光体層から前記発光素子までの距離が50μ~200μmである、請求項5に記載の蛍光体基板。
  7.  前記支持層露出部は、厚さ方向に凹形状となった支持層凹部を有する、
     請求項5に記載の蛍光体基板。
  8.  前記蛍光体は、複数の蛍光体粒子で構成され、
     前記支持層に含まれる白色顔料は、複数の白色粒子で構成され、
     前記複数の蛍光体粒子における、レーザー回折散乱法により測定される体積基準のメジアン径(D50)であるD150と、前記複数の白色粒子における、レーザー回折散乱法により測定される体積基準のメジアン径(D50)であるD250とは、下記の(式1)の関係を有する、
     請求項1または2に記載の蛍光体基板。
       (式1)0.8≦D250/D150≦1.2
  9.  請求項1または2に記載の蛍光体基板と、
     前記少なくとも1つの発光素子と、
     を備える発光基板。
  10.  請求項9に記載の発光基板と、
     前記少なくとも1つの発光素子を発光させるための電力を供給する電源と、
     を備える照明装置。
PCT/JP2023/033869 2022-09-21 2023-09-19 蛍光体基板、発光基板及び照明装置 WO2024063043A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-150178 2022-09-21
JP2022150178 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024063043A1 true WO2024063043A1 (ja) 2024-03-28

Family

ID=90454547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033869 WO2024063043A1 (ja) 2022-09-21 2023-09-19 蛍光体基板、発光基板及び照明装置

Country Status (1)

Country Link
WO (1) WO2024063043A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168559A (ja) * 2016-03-15 2017-09-21 東芝ライテック株式会社 発光装置
WO2022045017A1 (ja) * 2020-08-28 2022-03-03 デンカ株式会社 蛍光体基板の製造方法及び発光基板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168559A (ja) * 2016-03-15 2017-09-21 東芝ライテック株式会社 発光装置
WO2022045017A1 (ja) * 2020-08-28 2022-03-03 デンカ株式会社 蛍光体基板の製造方法及び発光基板の製造方法

Similar Documents

Publication Publication Date Title
JP7410881B2 (ja) 蛍光体基板、発光基板及び照明装置
JP7457657B2 (ja) 発光基板及び照明装置
WO2022045017A1 (ja) 蛍光体基板の製造方法及び発光基板の製造方法
JP7444537B2 (ja) 蛍光体基板の製造方法、発光基板の製造方法及び照明装置の製造方法
JP7425750B2 (ja) 蛍光体基板、発光基板及び照明装置
JP7449271B2 (ja) 蛍光体基板、発光基板、照明装置、蛍光体基板の製造方法及び発光基板の製造方法
JP7491849B2 (ja) 蛍光体基板、発光基板及び照明装置
WO2024063043A1 (ja) 蛍光体基板、発光基板及び照明装置
WO2024063045A1 (ja) 蛍光体基板の製造方法及び発光基板の製造方法
JP7352358B2 (ja) 複数の実装基板の製造方法
JP7430650B2 (ja) 蛍光体基板、発光基板及び照明装置
WO2022045013A1 (ja) 蛍光体基板、発光基板及び照明装置
JP7416755B2 (ja) 回路基板、実装基板、照明装置、回路基板の製造方法及び実装基板の製造方法
TW202418611A (zh) 螢光體基板的製造方法及發光基板的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868164

Country of ref document: EP

Kind code of ref document: A1