WO2020137459A1 - インクジェット印刷用水系インク - Google Patents

インクジェット印刷用水系インク Download PDF

Info

Publication number
WO2020137459A1
WO2020137459A1 PCT/JP2019/047923 JP2019047923W WO2020137459A1 WO 2020137459 A1 WO2020137459 A1 WO 2020137459A1 JP 2019047923 W JP2019047923 W JP 2019047923W WO 2020137459 A1 WO2020137459 A1 WO 2020137459A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pigment
ink
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2019/047923
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
剛 江川
隆一 赤木
克之 小酒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to CN201980086678.7A priority Critical patent/CN113260685B/zh
Priority to ES19902445T priority patent/ES2974976T3/es
Priority to EP19902445.6A priority patent/EP3904471B1/en
Publication of WO2020137459A1 publication Critical patent/WO2020137459A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/40Ink-sets specially adapted for multi-colour inkjet printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/009After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using thermal means, e.g. infrared radiation, heat

Definitions

  • the present invention relates to a water-based ink for inkjet printing and an inkjet printing method using the same.
  • the inkjet printing method is a printing method in which ink droplets are directly ejected from fine nozzles and adhered to a printing medium to obtain a printed matter on which characters and images are printed.
  • This method is easy to achieve full color and is inexpensive, and has many advantages in that it is non-contact with the printing medium, and thus has been widely used.
  • the use of a pigment as a colorant has become mainstream.
  • Patent Document 1 discloses that a water-based inkjet ink having good ejection stability after long-term storage contains at least an organic pigment, a water-soluble organic solvent, water and a polymer dispersant.
  • the present invention is a water-based ink for inkjet printing on a low liquid-absorbent printing medium, A pigment, a polymer dispersant, a water-soluble organic solvent, and water, and in the water-soluble organic solvent, an alkanediol having 4 to 6 carbon atoms having hydroxyl groups at both ends, dipropylene glycol, and 2-pyrrolidone
  • the present invention relates to a water-based ink for inkjet printing containing 85% by mass or more of one or more selected organic solvents.
  • the conventional water-based ink as disclosed in Patent Document 1 has a problem that a good image cannot be formed on a low liquid-absorbent printing medium used for flexible packaging.
  • drying of the ink is important, and a drying operation is generally performed after printing.
  • the vicinity of the print head is also warmed, if the ink around the hole of the discharge nozzle is dried after the ink discharge is temporarily stopped, a coagulated thickened substance is generated around the hole of the discharge nozzle and the nozzle is likely to be clogged. ..
  • the nozzle clogging cannot be eliminated even when the print head is purged, and the ejection direction of ink droplets may be bent, resulting in deterioration of image quality. Therefore, it is necessary to be able to easily clear the nozzle clogging even if the nozzle clogging occurs temporarily. Even if the ink dries, the re-dispersibility that allows the coagulated thickened substance to be dispersed again by the subsequent ink. There is a demand for excellent ink.
  • a solvent having a high boiling point is used for the purging operation of the print head, but there is a problem in that the drying property after inkjet printing is deteriorated and the image tends to bleed.
  • water which is the main solvent for water-based inks, has a high surface tension, so it is difficult to wet and spread on a low-absorbent printing medium, and it is also difficult to penetrate into the printing medium.
  • blurring occurs at the boundary due to coalescence of droplets, which easily leads to deterioration of image quality.
  • the present invention relates to an aqueous ink for inkjet printing, which has excellent redispersibility and can suppress bleeding of an obtained image, and an inkjet printing method using the same.
  • the present inventors by adding a specific amount of a water-soluble organic solvent selected from a specific alkanediol, dipropylene glycol, and 2-pyrrolidone to an aqueous ink containing a pigment, a polymer dispersant, and a water-soluble organic solvent, It has been found that the above problems can be solved.
  • a water-soluble organic solvent selected from a specific alkanediol, dipropylene glycol, and 2-pyrrolidone
  • a water-based ink for ink-jet printing on a low liquid-absorbent printing medium Contains a pigment, a polymer dispersant, a water-soluble organic solvent, and water, Inkjet printing, wherein the water-soluble organic solvent contains 85% by mass or more of one or more kinds of organic solvents having hydroxyl groups at both ends and having 4 to 6 carbon atoms, alkanediol, dipropylene glycol, and 2-pyrrolidone Water-based ink.
  • the present invention it is possible to provide a water-based ink for inkjet printing, which has excellent redispersibility and can suppress bleeding of an obtained image, and an inkjet printing method using the same.
  • the water-based ink for ink-jet printing of the present invention is a water-based ink for ink-jet printing on a low liquid-absorbent printing medium (hereinafter, also referred to as “ink of the present invention”), Contains a pigment, a polymer dispersant, a water-soluble organic solvent, and water,
  • the water-soluble organic solvent contains 85% by mass or more of at least one organic solvent selected from alkanediol having hydroxyl groups at both ends and having 4 to 6 carbon atoms, dipropylene glycol, and 2-pyrrolidone.
  • water system means that water occupies the maximum ratio in the medium.
  • Low liquid absorption is a concept including low liquid absorption and non-liquid absorption of ink.
  • the low liquid absorption can be evaluated by the water absorption of pure water. More specifically, it means that the amount of water absorption per surface area of the print medium in the contact time of 100 msec between the print medium and pure water is 0 g/m 2 or more and 10 g/m 2 or less.
  • Print is a concept including printing for printing characters and images.
  • the ink of the present invention is excellent in redispersibility and is capable of obtaining a high-quality printed matter with little bleeding of the obtained image.
  • the reason is not clear, but it is considered as follows.
  • at least one selected from alkane diols having hydroxyl groups at both ends and having 4 to 6 carbon atoms, dipropylene glycol, and 2-pyrrolidone is contained in an amount of 85% by mass or more in all the solvents. It is considered that the polymer is hardly detached from the surface of the pigment even in the drying process, and the increase in viscosity can be suppressed, so that the redispersibility can be improved.
  • a specific water-soluble organic solvent with relatively high hydrophilicity it is easy to collect the ejected ink droplets on the low liquid absorption print medium while ensuring redispersibility, and suppress bleeding. It is thought to be possible.
  • the pigment used in the present invention may be either an inorganic pigment or an organic pigment, and a lake pigment or a fluorescent pigment can also be used. Further, if necessary, they can be used in combination with an extender pigment.
  • inorganic pigments include metal oxides such as carbon black, titanium oxide, iron oxide, red iron oxide, and chromium oxide, and pearlescent pigments.
  • Carbon black is particularly preferable for black ink. Examples of carbon black include furnace black, thermal lamp black, acetylene black, channel black and the like.
  • organic pigments include azo pigments such as azo lake pigments, insoluble monoazo pigments, insoluble disazo pigments and chelate azo pigments; phthalocyanine pigments, perylene pigments, perinone pigments, anthraquinone pigments, quinacridone pigments, dioxazine pigments, thioindigo pigments, isoindo pigments.
  • azo pigments such as azo lake pigments, insoluble monoazo pigments, insoluble disazo pigments and chelate azo pigments
  • phthalocyanine pigments such as azo lake pigments, insoluble monoazo pigments, insoluble disazo pigments and chelate azo pigments
  • phthalocyanine pigments such as azo lake pigments, insoluble monoazo pigments, insoluble disazo pigments and chelate azo pigments
  • phthalocyanine pigments such as azo lake pigments, insoluble monoazo pigments, insoluble disazo pigments and chelate azo pigments
  • the hue is not particularly limited, and achromatic color pigments such as white, black and gray; chromatic color pigments such as yellow, magenta, cyan, blue, red, orange and green can all be used.
  • chromatic color pigments such as yellow, magenta, cyan, blue, red, orange and green
  • extender pigments include silica, calcium carbonate, talc and the like. The pigments may be used alone or in combination of two or more.
  • Preferred forms of the pigment used in the present invention include self-dispersion pigment particles and pigment particles in which a pigment is contained in a polymer dispersant, but the redispersibility of the ink and the suppression of bleeding of the obtained image.
  • pigment particles in which a pigment is contained in a polymer dispersant that is, polymer particles A containing a pigment are preferable.
  • polymer particles A containing a pigment refers to a form in which a polymer dispersant includes a pigment, a form in which a part of the pigment is exposed on the surface of particles including the polymer dispersant and the pigment, a polymer dispersant. Include particles in the form of being adsorbed on a part of the pigment.
  • the polymer particles A containing a pigment in the present invention maintain a dispersed state with a particle diameter of 200 nm or less.
  • the polymer dispersant has the ability to disperse the pigment in a medium containing water as a main component, and is preferably used as one component that constitutes the polymer particles A containing the pigment.
  • the polymer constituting the polymer dispersant (hereinafter, also referred to as “polymer a”) may be either a water-soluble polymer or a water-insoluble polymer, but a water-insoluble polymer is more preferable. That is, the pigment is preferably in the form of water-insoluble polymer particles containing the pigment.
  • water-insoluble polymer as used herein means a polymer having a dissolved amount of less than 10 g when it is dried at 105°C for 2 hours and the constant amount of the polymer is dissolved in 100 g of water at 25°C until it is saturated.
  • the dissolution amount is preferably 5 g or less, more preferably 1 g or less.
  • the amount of dissolution is the amount of dissolution when the anionic groups of the polymer are 100% neutralized with sodium hydroxide.
  • the polymer particles A containing the pigment are preferably crosslinked with a crosslinking agent as described later. In this case, even if the polymer used is a water-soluble polymer, it becomes a water-insoluble polymer by crosslinking with a crosslinking agent.
  • the ionic group contained in the molecule of the polymer a is introduced into the polymer skeleton by the ionic monomer (a-1) from the viewpoint of improving the dispersion stability and the storage stability of the pigment-containing polymer particles A.
  • the polymer a preferably contains a constitutional unit derived from the ionic monomer (a-1).
  • the polymer a include vinyl resins, polyester resins, polyurethane resins and the like. Among these, vinyl resins are preferable, and vinyl resins obtained by copolymerizing the raw material monomer (a) containing the ionic monomer (a-1) and the hydrophobic monomer (a-2) are more preferable.
  • the vinyl-based resin preferably contains a structural unit derived from (a-1) and a structural unit derived from (a-2).
  • the vinyl-based resin may further contain a constitutional unit derived from the nonionic monomer (a-3) from the viewpoint of improving the dispersion stability and fixing property of the polymer particles A containing a pigment.
  • ionic monomer (a-1) examples include anionic monomers and cationic monomers, preferably anionic monomers, more preferably monomers having an acid group, still more preferably monomers having a carboxy group.
  • Specific examples of the ionic monomer (a-1) include those described in paragraph [0017] of JP-A-2018-80255. Among these, at least one selected from acrylic acid and methacrylic acid is preferable.
  • the “hydrophobicity” of the hydrophobic monomer (a-2) means that when the monomer is dissolved in 100 g of ion-exchanged water at 25° C. until it is saturated, the amount of dissolution is less than 10 g.
  • the amount of the hydrophobic monomer (a-2) to be dissolved is preferably 5 g or less, more preferably 1 g or less, from the viewpoint of fixability to the pigment.
  • Examples of the hydrophobic monomer (a-2) include an alkyl (meth)acrylate, an aromatic ring-containing monomer, and a macromonomer.
  • One or more kinds selected from an alkyl (meth)acrylate and an aromatic ring-containing monomer are preferable, and an aromatic ring-containing Monomers are more preferred.
  • Specific examples of the hydrophobic monomer (a-2) include those described in paragraphs [0018] to [0021] of JP-A-2018-80255. Among these, at least one selected from styrene, ⁇ -methylstyrene and benzyl (meth)acrylate is preferable.
  • Nonionic monomer (a-3) examples include polyalkylene glycol (meth)acrylate. Specific examples of the nonionic monomer (a-3) include those described in paragraphs [0022] to [0023] of JP-A-2018-80255.
  • the content of the constitutional unit derived from (a-1), the constitutional unit derived from (a-2), and the constitutional unit derived from (a-3) in the base resin is the dispersion stability of the polymer particles A containing a pigment. From the viewpoint of improving
  • the content of (a-1) is preferably 10% by mass or more, more preferably 20% by mass or more, further preferably 30% by mass or more, and preferably 60% by mass or less, more preferably 50% by mass.
  • the content of (a-2) is preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, and preferably 90% by mass or less, more preferably 80% by mass. Hereafter, it is more preferably 75% by mass or less.
  • (a-3) When (a-3) is contained, its content is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 30% by mass or less, more preferably 20% by mass or less. ..
  • the mass ratio of (a-1) to (a-2) [(a-1)/(a-2)] is preferably 0.2 or more, more preferably 0.25 or more, still more preferably 0.3. It is above, and preferably 1.2 or less, more preferably 1.0 or less, still more preferably 0.8 or less.
  • the content of the structural units derived from (a-1), (a-2) and (a-3) in the vinyl resin can be determined by measurement, and can be determined at the time of vinyl resin production.
  • the raw material monomer (a) containing (a-1), (a-2) and (a-3) may be charged in the charged ratio.
  • (a-1) is preferably obtained by potentiometric titration
  • (a-2) and (a-3) are preferably obtained by using the charging ratio of the raw material monomers.
  • the vinyl-based resin is produced by copolymerizing the raw material monomer (a) by a known polymerization method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method or an emulsion polymerization method. Among these polymerization methods, the solution polymerization method is preferable.
  • the solvent used in the solution polymerization method is not particularly limited, but a polar organic solvent is preferable. Examples of the polar organic solvent include aliphatic alcohols having 1 to 3 carbon atoms, ketones having 3 to 5 carbon atoms, ethers, and esters such as ethyl acetate.
  • ethanol, acetone, methyl ethyl ketone, or a mixed solvent of one or more of these with water is preferable, and methyl ethyl ketone or a mixed solvent of water with water is preferable.
  • a polymerization initiator or a polymerization chain transfer agent can be used.
  • the polymerization initiator include azo compounds such as 2,2′-azobisisobutyronitrile and 2,2′-azobis(2,4-dimethylvaleronitrile), tert-butylperoxyoctoate and benzoyl peroxide.
  • Known polymerization initiators such as organic peroxides can be used.
  • the amount of the radical polymerization initiator is preferably 0.001 mol or more and 5 mol or less, more preferably 0.01 mol or more and 2 mol or less, per mol of the raw material monomer (a).
  • Polymerization chain transfer agents include mercaptans containing carboxy groups such as 2-mercaptopropionic acid; alkyl mercaptans such as octanethiol; mercaptans containing hydroxy groups such as 2-mercaptoethanol and 3-mercapto-1,2-propanediol.
  • the known polymerization chain transfer agent can be used. Further, there is no limitation on the manner of chain of the polymerized monomers, and any manner of polymerization such as random, block, and graft may be used.
  • Preferred polymerization conditions vary depending on the type of polymerization initiator, monomer, solvent used, etc., but normally the polymerization temperature is preferably 30° C. or higher, more preferably 50° C. or higher, and preferably 95° C. or lower, It is more preferably 80°C or lower.
  • the polymerization time is preferably 1 hour or longer, more preferably 2 hours or longer, and preferably 20 hours or shorter, more preferably 10 hours or shorter.
  • the polymerization atmosphere is preferably a nitrogen gas atmosphere or an inert gas atmosphere such as argon.
  • the produced polymer can be isolated from the reaction solution by a known method such as reprecipitation or solvent removal. The obtained polymer can be purified by removing unreacted monomers and the like by reprecipitation, membrane separation, chromatographic method, extraction method and the like.
  • the number average molecular weight of the vinyl resin is preferably 2,000 or more, more preferably 5,000 or more, and preferably 20,000 or less, from the viewpoint of improving the adsorptivity to pigments and the dispersion stability. More preferably, it is 18,000 or less.
  • the number average molecular weight is measured by the method described in Examples.
  • the polymer particles A containing a pigment can be efficiently produced by a method including the following steps 1 and 2 as an aqueous pigment dispersion. Further, from the viewpoint of improving redispersibility of the obtained ink and suppressing bleeding of the obtained image, it is preferable to further perform step 3 (crosslinking step).
  • Step 1 a step of obtaining a dispersion-treated product by subjecting a pigment mixture containing a pigment, a polymer a constituting a polymer dispersant, an organic solvent, and water to a dispersion treatment.
  • Step 2 From the dispersion-treated product obtained in step 1.
  • Step 3 Pigment aqueous dispersion (i obtained in Step 2 ) Is added to crosslink some or all of the pigment-containing polymer particles a1 to obtain an aqueous dispersion (I) of the pigment-containing polymer particles a2 (hereinafter referred to as “pigment water dispersion (I)”). Also referred to as ".")
  • the polymer particles A containing the pigment according to the present invention include the polymer particles a1 containing the pigment and the polymer particles a2 containing the pigment.
  • the polymer a is dissolved in an organic solvent, and then the pigment, water, and optionally a neutralizing agent, a surfactant, etc. are added to the obtained organic solvent solution and mixed, and It is preferably obtained by a method of obtaining an oil type dispersion.
  • the order of adding the polymer a to the organic solvent solution is not limited, but it is preferable to add water, a neutralizing agent, and a pigment in this order.
  • a ketone having 4 to 8 carbon atoms is more preferable, methyl ethyl ketone and methyl isobutyl ketone are still more preferable, and methyl ethyl ketone is still more preferable.
  • the solvent used in the polymerization may be used as it is.
  • the mass ratio of the organic solvent to the polymer a in the pigment mixture [organic solvent/polymer a] is preferably 0.5 or more, more preferably 0, from the viewpoint of wettability with pigment, adsorbability, and solubility of the polymer a. 0.8 or more, more preferably 1 or more, and preferably 2.5 or less, more preferably 2 or less, still more preferably 1.5 or less.
  • the polymer a has an acid group
  • at least a part of the acid group is preferably neutralized with a neutralizing agent.
  • a neutralizing agent As a result, the charge repulsive force developed after neutralization is increased, the aggregation of the polymer particles A containing the pigment in the ink of the present invention can be suppressed, the thickening can be suppressed, and the dispersion of the polymer particles A containing the pigment can be suppressed. It is considered that stability and storage stability can be improved.
  • the pH it is preferable that the pH be 7 or more and 11 or less.
  • the neutralizing agent examples include bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, ammonia and various amines, and sodium hydroxide and ammonia are preferable.
  • the neutralizing agent can be used alone or in combination of two or more kinds.
  • the polymer a may be neutralized in advance. From the viewpoint of improving storage stability, the use equivalent of the neutralizing agent is preferably 10 mol% or more, more preferably 20 mol% or more, further preferably 30 mol% or more, and preferably 150 mol% or less. , More preferably 120 mol% or less, still more preferably 100 mol% or less.
  • the equivalent amount of the neutralizing agent to be used can be determined by the following formula when the polymer a before neutralization is “polymer a′”.
  • Equivalent amount of the neutralizing agent (mol %) [ ⁇ added mass of neutralizing agent (g)/equivalent amount of neutralizing agent ⁇ /[ ⁇ acid value of polymer a′ (mgKOH/g) ⁇ mass of polymer a′( g) ⁇ /(56 ⁇ 1,000)]] ⁇ 100
  • the pigment can be atomized to a desired particle diameter only by main dispersion by shear stress, but from the viewpoint of obtaining a uniform pigment water dispersion, after predispersing the pigment mixture, Further, main dispersion is preferable.
  • the disperser used for the preliminary dispersion generally used mixing and stirring devices such as anchor blades and disper blades can be used.
  • means for applying shearing stress used for the main dispersion include a kneader such as a roll mill and a kneader, a high pressure homogenizer such as a microfluidizer, and a media type disperser such as a paint shaker and a bead mill.
  • Step 2 is a step of removing the organic solvent from the dispersion-treated product obtained in Step 1 to obtain a pigment water dispersion (i).
  • the organic solvent can be removed by a known method.
  • the organic solvent in the obtained pigment water dispersion (i) is preferably substantially removed, but may remain as long as the object of the present invention is not impaired.
  • the amount of residual organic solvent is preferably 0.1% by mass or less, more preferably 0.01% by mass or less.
  • step 3 a cross-linking agent is added to the pigment water dispersion (i) obtained in step 2 to cross-link the pigment-containing polymer particles a1 to obtain a pigment water dispersion (containing a pigment-containing polymer particle a2 ( This is the step of obtaining I).
  • step 3 some or all of the carboxy groups of the polymer a constituting the pigment-containing polymer particles a1 are crosslinked to form a crosslinked structure in some or all of the pigment-containing polymer particles a1.
  • the polymer is strongly adsorbed or immobilized on the pigment surface, aggregation of the pigment is suppressed, and as a result, redispersibility of the obtained ink is improved and image bleeding is suppressed.
  • the crosslinking agent is preferably a compound having 2 or more and 6 or less, preferably 4 or less epoxy groups in one molecule, more preferably 2 or less glycidyl ether groups, from the viewpoint of efficiently performing a crosslinking reaction and improving storage stability.
  • the molecular weight of the cross-linking agent is preferably 120 or more, more preferably 150 or more, still more preferably 200 or more, and preferably 2,000 or less, more preferably from the viewpoint of improving the reaction easiness and storage stability. It is 1,500 or less, more preferably 1,000 or less.
  • the epoxy equivalent of the crosslinking agent is preferably 90 or more, more preferably 100 or more, further preferably 110 or more, and preferably 300 or less, more preferably 200 or less, still more preferably 150 or less.
  • the water solubility of the cross-linking agent is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 35% by mass or less from the viewpoint of efficiently cross-linking with the carboxy group of the polymer a in a medium mainly containing water. Is.
  • the water solubility means the solubility (% by mass) when 10 parts by mass of the crosslinking agent is dissolved in 90 parts by mass of water at room temperature of 25°C.
  • cross-linking agent examples include polypropylene glycol diglycidyl ether (water solubility 31 mass%), glycerol polyglycidyl ether, polyglycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether (water solubility 27 mass%), sorbitol polyglycidyl ether.
  • Polyglycidyl ether such as pentaerythritol polyglycidyl ether (water solubility 0% by mass), resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, hydrogenated bisphenol A type diglycidyl ether, etc.
  • pentaerythritol polyglycidyl ether water solubility 0% by mass
  • resorcinol diglycidyl ether resorcinol diglycidyl ether
  • neopentyl glycol diglycidyl ether 1,6-hexanediol diglycidyl ether
  • hydrogenated bisphenol A type diglycidyl ether etc.
  • at least one selected from trimethylolpropane polyglycidyl ether and pentaerythritol polyglycidyl ether is preferable
  • the crosslinking ratio in step 3 is the ratio of the molar equivalent number of the crosslinkable functional group of the crosslinking agent to the molar equivalent number of the carboxy group of the polymer a, preferably 10 mol% or more, and more preferably Is 20 mol% or more, more preferably 30 mol% or more, even more preferably 40 mol% or more, and preferably 80 mol% or less, more preferably 70 mol% or less, further preferably 60 mol% or less. is there.
  • the temperature of the crosslinking treatment is preferably 40° C. or higher, more preferably 50° C. or higher, even more preferably 60° C. or higher, and preferably 95° C.
  • the time of the crosslinking treatment is preferably 0.5 hours or more, more preferably 1 hour or more, and preferably 12 hours or less, more preferably 8 hours or less, from the viewpoint of completion of the crosslinking reaction and economy. It is preferably 5 hours or less.
  • the solid content concentration of the pigment water dispersion (I) is preferably 10% by mass or more, more preferably 15% by mass from the viewpoint of improving the dispersion stability of the pigment water dispersion (I) and facilitating the production of the ink. It is not less than 40% by weight, and more preferably not more than 35% by weight.
  • the solid content concentration is measured by the method described in Examples.
  • the content of the pigment in the pigment water dispersion (I) is preferably 5% by mass or more, more preferably 7% by mass or more, further preferably 10% by mass or more from the viewpoint of dispersion stability, and preferably Is 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less.
  • the mass ratio of the pigment to the polymer a in the pigment water dispersion (I) [pigment/polymer a] is preferably 50/50 or more, more preferably 55/45 or more, still more preferably 60/40 or more, and , Preferably 90/10 or less, more preferably 85/15 or less, still more preferably 80/20 or less.
  • the average particle size of the pigment particles of the pigment water dispersion (I) is preferably 40 nm or more, more preferably 50 nm or more, still more preferably 60 nm or more, still more preferably 70 nm or more, from the viewpoint of improving storage stability.
  • the average particle size is measured by the method described in the examples.
  • the ink of the present invention preferably further contains a pigment-free polymer particle B as a fixing aid polymer.
  • the pigment-free polymer particles B are preferably those which can take the form of a dispersion in a medium containing water as a main component.
  • the polymer forming the polymer particles B containing no pigment (hereinafter, also referred to as “polymer b”) may be a water-soluble polymer or a water-insoluble polymer, but a water-insoluble polymer is more preferable.
  • the definition of “water-insoluble polymer” is as described above.
  • the polymer b and the polymer a may have different compositions, or may be the same polymer including the compositions and differ only in the presence or absence of a pigment.
  • the ink contains the polymer particles A containing a pigment and the polymer particles B not containing a pigment
  • the content of the polymer in the ink is the total amount of the polymer a and the polymer b.
  • the polymer particles B containing no pigment may be crosslinked with a crosslinking agent.
  • the polymer b is preferably one or more selected from acrylic resins, polyester resins, and polyurethane resins.
  • the polymer b is preferably an acrylic resin containing a structural unit derived from (meth)acrylic acid (b-1) and a structural unit derived from (meth)acrylic acid ester (b-2).
  • the (meth)acrylic acid (b-1) is preferably at least one selected from acrylic acid and methacrylic acid, and more preferably methacrylic acid.
  • (meth)acrylic acid ester (b-2) is methyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, (meth)acrylic. At least one selected from tert-butyl acidate, 2-ethylhexyl (meth)acrylate, and cyclohexyl (meth)acrylate is preferred, and methyl (meth)acrylate, butyl (meth)acrylate, (meth)acrylic acid 2 -Ethylhexyl and at least one selected from cyclohexyl (meth)acrylate are more preferable, and 2-ethylhexyl (meth)acrylate is more preferable.
  • the polymer b may include a structural unit derived from a monomer other than (meth)acrylic acid (b-1) and acrylic acid ester (b-2).
  • the other monomer include an ionic monomer other than (meth)acrylic acid, a hydrophobic monomer having an aromatic group, or a nonionic monomer, and among them, the hydrophobic monomer (b-3) having an aromatic group is preferable. ..
  • the hydrophobic monomer (b-3) include the above-mentioned styrene-based monomer, aromatic group-containing (meth)acrylate, aromatic group-containing monomer-based macromonomer and the like.
  • the content of the constituent unit derived from each component in the polymer b is as follows from the viewpoint of improving the redispersibility of the ink and suppressing image bleeding.
  • the content of the structural unit derived from (meth)acrylic acid (b-1) in the polymer b is preferably 1% by mass or more, more preferably 1.5% by mass or more, further preferably 2% by mass or more, And it is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
  • the content of the structural unit derived from the (meth)acrylic acid ester (b-2) in the polymer b is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and , Preferably 99% by mass or less, more preferably 98.5% by mass or less, further preferably 98% by mass or less.
  • Mass ratio of (meth)acrylic acid (b-1) and (meth)acrylic acid ester (b-2) [(meth)acrylic acid (b-1)/(meth)acrylic acid ester (b-2)] Is preferably 0.01 or more, more preferably 0.02 or more, and preferably 0.5 or less, more preferably 0.2 or less, still more preferably 0.1 or less.
  • the weight average molecular weight of the polymer b is preferably 50,000 or more, more preferably 100,000 or more, and further preferably 200,000 or more, from the viewpoint of improving redispersibility of the ink and suppressing image bleeding, and It is preferably 2 million or less, more preferably 1.5 million or less, and further preferably 1 million or less.
  • the weight average molecular weight is measured by the method described in Examples.
  • the average particle size of the polymer particles B containing no pigment is preferably 20 nm or more, more preferably 40 nm or more, further preferably 60 nm or more, from the viewpoint of improving redispersibility of the ink and suppressing image bleeding, And, it is preferably 150 nm or less, more preferably 130 nm or less, and further preferably 110 nm or less.
  • the average particle size is measured by the method described in the examples.
  • the polymer particles B not containing a pigment may be appropriately synthesized or may be commercially available products, but those capable of taking the form of an aqueous dispersion are preferable.
  • the polymer b constituting the polymer particles B containing no pigment is preferably neutralized with a neutralizing agent.
  • An aqueous dispersion of polymer particles B containing no pigment is obtained by obtaining a polymer b′ before neutralization by a known polymerization method, and then adding a mixture containing the polymer b′, water, and optionally a neutralizing agent. It can be produced by a method of stirring while heating and then lowering the temperature.
  • the preferable constitutional unit of the polymer b′ before neutralization, its content, physical properties and the like are the same as those of the above-mentioned polymer b, and it is preferable to obtain it by the same polymerization method as that of the above vinyl-based resin.
  • the acid value of the polymer b′ is preferably 0 mgKOH/g or more, more preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, further preferably 15 mgKOH/g or more, and preferably 200 mgKOH/g or less, It is more preferably 100 mgKOH/g or less, still more preferably 50 mgKOH/g or less, still more preferably 20 mgKOH/g or less.
  • the temperature for stirring the mixture is preferably 60° C.
  • the stirring time is preferably 0.5 hours or longer, more preferably 0.8 hours or longer, and preferably 10 hours or shorter, more preferably 5 hours or shorter.
  • the neutralizing agent used in the production of the aqueous dispersion of the polymer particles B containing no pigment is preferably a hydroxide of an alkali metal such as lithium hydroxide, sodium hydroxide or potassium hydroxide, ammonia or an organic amine. More preferred are sodium hydroxide and triethanolamine.
  • the amount of the neutralizing agent used is 0 mol% or more, preferably 10 mol% or more, more preferably 30 mol% or more, further preferably 50 mol% or more, from the viewpoint of dispersion stability of the polymer particles B containing no pigment. And is preferably 160 mol% or less, more preferably 130 mol% or less, still more preferably 110 mol% or less.
  • the equivalent amount of the neutralizing agent used can be determined by the method described above.
  • the ink of the present invention comprises a pigment water dispersion (I), a water-soluble organic solvent described later, an aqueous dispersion of polymer particles B containing no pigment, a surfactant, and other organic solvent, if necessary. Can be efficiently produced by mixing There is no particular limitation on the mixing method thereof.
  • the water-soluble organic solvent used in the present invention may be a liquid or a solid at 25° C., but when the organic solvent is dissolved in 100 ml of water at 25° C., the dissolved amount is 10 ml or more. is there.
  • the water-soluble organic solvent used in the present invention is an alkanediol having 4 to 6 carbon atoms and having a hydroxyl group at both ends, dipropylene glycol, and It contains at least one selected from 2-pyrrolidone.
  • the alkanediol having hydroxyl groups at both ends and having 4 to 6 carbon atoms is selected from 1,4-butanediol, 1,5-pentanediol (boiling point 242° C.), and 1,6-hexanediol.
  • 1,4-butanediol (boiling point 230° C.) and 1,6-hexanediol (boiling point 250° C.) 1 are selected from the viewpoint of improving the redispersibility of the ink and suppressing the bleeding of the obtained image. More than one species are preferred.
  • the boiling point of dipropylene glycol is 231°C and the boiling point of 2-pyrrolidone is 245°C.
  • at least one water-soluble organic solvent selected from the group consisting of alkanediols having a hydroxyl group at both ends and having 4 to 6 carbon atoms, dipropylene glycol, and 2-pyrrolidone is From the viewpoint of suppressing bleeding, it is at least 85% by mass, preferably at least 90% by mass, more preferably at least 95% by mass, and preferably at most 100% by mass, more preferably at least 100% by mass, based on the entire water-soluble organic solvent. Is 98% by mass or less.
  • the ink of the present invention may contain a polyhydric alcohol other than the water-soluble organic solvent, a polyhydric alcohol alkyl ether, or the like, if necessary.
  • a polyhydric alcohol examples include ethylene glycol (boiling point 197° C., in this paragraph, the numerical value in parentheses below indicates boiling point), propylene glycol (1,2-propanediol) (188° C.), 1,2-butane.
  • 1,3-alkanediol having 3 to 8 carbon atoms triethylene glycol (287° C.) and other polyalkylene glycols; 1,2,6-hexanetriol (346° C.), 1,2,4-butanetriol (345° C.), 1,2,3-butanetriol (293° C.), Petri All (216° C., 0.5 mmHg), 1,8-octanediol (299° C.) and the like can be mentioned.
  • polyhydric alcohol alkyl ether ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monopropyl ether, Diethylene glycol monoisobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoisobutyl ether, tetraethylene glycol monomethyl ether (boiling point 158°C, 5 mmHg), propylene glycol monoethyl ether, dipropylene glycol monobutyl ether, dipropylene glycol Examples include monomethyl ether, tripropylene glycol monomethyl ether (boiling point 241° C.), tripropylene glycol monobutyl ether, and the like
  • the ink of the present invention preferably contains a surfactant from the viewpoint of improving the wettability to the print medium. Further, various additives such as a viscosity modifier, a defoaming agent, an antiseptic, an antifungal agent, and an antirust agent, which are usually used in ink, can be added.
  • the surfactant is preferably a nonionic surfactant, and is selected from acetylene glycol-based surfactants and silicone-based surfactants from the viewpoint of appropriately maintaining the surface tension of the ink and improving the wettability to the print medium.
  • acetylene glycol-based surfactants and silicone-based surfactants from the viewpoint of appropriately maintaining the surface tension of the ink and improving the wettability to the print medium.
  • One or more kinds are more preferable, and it is further preferable to use the acetylene glycol-based surfactant and the silicone-based surfactant in combination.
  • acetylene glycol-based surfactant examples include 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 3,6-dimethyl-4-octyne-3,6-diol, and 3, 5-dimethyl-1-hexyne-3-ol, 2,4-dimethyl-5-hexyne-3-ol, 2,5-dimethyl-3-hexyne-2,5-diol, 2,5,8,11- Acetylene-based diols such as tetramethyl-6-dodecine-5,8-diol, and ethylene oxide adducts thereof are included.
  • the sum (n) of average addition mole numbers of ethyleneoxy groups (EO) of the ethylene oxide adduct is preferably 1 or more, more preferably 1.5 or more, and preferably 20 or less, more preferably 10 or less.
  • acetylene glycol-based surfactants include "Surfynol” series, “Olfin” series manufactured by Nissin Chemical Industry Co., Ltd., and "acetylenol” series manufactured by Kawaken Fine Chemicals Co., Ltd. Among these, Surfynol 420 (n:1.3), Surfynol 440 (n:3.5), Surfynol 465 (n:10.0), Surfynol 485 (n:30.0), Olphin E1010.
  • Acetylenol E100, acetylenol E200, acetylenol E40 (n:4), acetylenol E60 (n:6), acetylenol E81 (n:8), acetylenol E100 (n:10) and the like are preferable.
  • silicone-based surfactant examples include dimethylpolysiloxane, polyether-modified silicone, amino-modified silicone, carboxy-modified silicone, and the like. From the same viewpoints as above, the polyether-modified silicone is preferable.
  • the polyether-modified silicone surfactant has a structure in which a side chain and/or a terminal hydrocarbon group of silicone oil is replaced with a polyether group.
  • polyether group a polyethyleneoxy group, a polypropyleneoxy group, or a polyalkyleneoxy group in which an ethyleneoxy group (EO) and a propyleneoxy group (PO) are added in a block form or at random is preferable, and a polyeneoxy group is added to the silicone main chain.
  • EO ethyleneoxy group
  • PO propyleneoxy group
  • a compound in which an ether group is grafted, a compound in which silicone and a polyether group are bonded in a block shape, or the like can be used.
  • the HLB (hydrophilic/lipophilic balance) value of the polyether-modified silicone surfactant is preferably 2 or more, more preferably 3 or more, and further preferably 4 or more from the viewpoint of solubility in ink.
  • the HLB value can be obtained by the Griffin method.
  • the kinematic viscosity at 25° C. of the polyether-modified silicone surfactant is preferably 50 mm 2 /s or more, more preferably 80 mm 2 /s or more, and preferably 500 mm 2 /s or less, more preferably It is 300 mm 2 /s or less.
  • the kinematic viscosity can be determined with an Ubbelohde viscometer.
  • polyether modified silicone surfactant examples include KF series manufactured by Shin-Etsu Chemical Co., Ltd.; KF-353, KF-355A, KF-642, Silface SAG005 manufactured by Nisshin Chemical Co., Ltd., stock FZ-2191 manufactured by NUC Co., Ltd., BYK-348 manufactured by Big Chemie Japan Co., Ltd. and the like can be mentioned.
  • the content of each component of the ink of the present invention and the physical properties of the ink are as follows.
  • the content of the pigment in the ink of the present invention is preferably 1% by mass or more, more preferably 3% by mass or more, further preferably 4% by mass or more, from the viewpoint of printing density, and the ink viscosity when the solvent is volatilized. From the viewpoint of lowering the storage stability and improving storage stability, it is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 7% by mass or less.
  • the content of the polymer particles A containing a pigment in the ink of the present invention is preferably 3% by mass or more, more preferably 4% by mass or more, further preferably 5% by mass or more, from the viewpoint of improving the printing density. From the viewpoint of improving storage stability, it is preferably 15% by mass or less, more preferably 13% by mass or less, and further preferably 10% by mass or less.
  • the content of the polymer particles B containing no pigment in the ink of the present invention is preferably 0.3% by mass or more, more preferably 1% by mass or more, further preferably 2% by mass or more, from the viewpoint of improving fixability. And preferably 8% by mass or less, more preferably 7% by mass or less, still more preferably 6% by mass or less.
  • the total amount of the polymer a and the pigment-free polymer particles B (polymer b) in the ink of the present invention is preferably 1.3% by mass or more, more preferably 2% by mass or more, further from the viewpoint of improving fixability.
  • the content of the water-soluble organic solvent in the ink of the present invention is 15% by mass or more, preferably 20% by mass or more, and more preferably from the viewpoint of improving redispersibility of the ink and suppressing bleeding of the obtained image. It is 25 mass% or more. Further, it is preferably 45% by mass or less, more preferably 40% by mass or less, and further preferably 35% by mass or less.
  • the content of the surfactant in the ink of the present invention is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.1% by mass or more from the viewpoint of improving the wettability to the printing medium. It is 5% by mass or more, and preferably 5% by mass or less, more preferably 4% by mass or less, and further preferably 3% by mass or less. From the same viewpoint as above, the content of the acetylene glycol-based surfactant in the ink of the present invention is preferably 0.2% by mass or more, more preferably 0.4% by mass or more, and further preferably 0.6% by mass.
  • the content of the silicone-based surfactant in the ink of the present invention is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, and further preferably 0.05% by mass or more. And preferably 3% by mass or less, more preferably 2% by mass or less, still more preferably 1% by mass or less.
  • the content of water in the ink of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass from the viewpoint of improving the redispersibility of the ink and suppressing the bleeding of the obtained image. It is above, and preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the mass ratio of the polymer particles A containing a pigment to the total water-soluble organic solvent is from the viewpoint of improving redispersibility of the ink and suppressing bleeding of the obtained image.
  • the viscosity of the ink of the present invention at 32° C. is preferably 2 mPa ⁇ s or more, more preferably 3 mPa ⁇ s or more, further preferably 5 mPa ⁇ s or more from the viewpoint of improving the redispersibility of the ink and suppressing the bleeding of the obtained image. And preferably 12 mPa ⁇ s or less, more preferably 9 mPa ⁇ s or less, still more preferably 7 mPa ⁇ s or less.
  • the viscosity of the ink is measured by the method described in the examples.
  • the pH of the ink is preferably 7.0 or more, more preferably 7.2 or more, still more preferably 7.5 or more, and preferably 11 or less, from the viewpoints of storage stability, member resistance, and skin irritation. , More preferably 10 or less, still more preferably 9.5 or less.
  • the ink of the present invention is particularly suitable for printing on flexible packaging.
  • the soft packaging printing means printing on a thin flexible material such as a resin film alone or on a laminated material.
  • the printed matter that is soft-wrap printed using the ink of the present invention is suitable for packaging foods, daily necessities, and the like.
  • the inks of the present invention are preferably used in combination as a set, and are suitable for full-color printing.
  • the ink jet printing method of the present invention is a method of printing on a low liquid absorbing print medium using the ink of the present invention.
  • the ink of the present invention is loaded into a known ink jet printing apparatus to form an ink liquid on the low liquid absorbing print medium.
  • An image or the like is printed by discharging as a droplet.
  • Examples of the low liquid absorbing print medium include low liquid absorbing coated paper and resin film.
  • Examples of the coated paper include general-purpose glossy paper and multicolor foam gloss paper.
  • Examples of the resin film include transparent synthetic resin films such as polyester film, vinyl chloride film, polypropylene film, polyethylene film and nylon film. These films may be biaxially stretched films, uniaxially stretched films, or non-stretched films.
  • polyester films and oriented polypropylene films are more preferable, and polyester films such as corona discharge treated polyethylene terephthalate (PET) films and oriented polypropylene films such as corona discharge treated biaxially oriented polypropylene (OPP) films are preferred. More preferable.
  • the inkjet printing device includes a thermal type and a piezo type, and the piezo type is more preferable.
  • the piezo method a large number of nozzles are in communication with each pressure chamber, and ink droplets are ejected from the nozzles by vibrating the wall surface of the pressure chamber with a piezo element.
  • the voltage applied to the print head is preferably 5 V or higher, more preferably 10 V or higher, still more preferably 15 V or higher, and preferably 40 V or lower, more preferably 35 V or lower, from the viewpoint of high-speed printing efficiency and the like. It is preferably 30 V or less.
  • the driving frequency is preferably 2 kHz or more, more preferably 5 kHz or more, further preferably 8 kHz or more, and preferably 80 kHz or less, more preferably 70 kHz or less, further preferably 60 kHz from the viewpoint of efficiency of high-speed printing. It is as follows. From the viewpoint of maintaining the accuracy of the landing positions of the ink droplets and improving the image quality, the amount of ejected ink droplets is preferably 0.5 pL or more, more preferably 1.0 pL or more, still more preferably 1.5 pL or more, per droplet. It is more preferably 1.8 pL or more, and preferably 20 pL or less, more preferably 15 pL or less, and further preferably 13 pL or less.
  • the print head resolution is preferably 400 dpi (dots/inch) or more, more preferably 500 dpi or more, and further preferably 550 dpi or more.
  • the surface temperature of the print medium (the surface temperature of the area facing the area where ink is ejected from the print head) is preferably 70° C. or lower, more preferably 65° C. or lower from the viewpoint of suppressing thermal deformation of printed matter and suppressing energy consumption. , More preferably 60° C. or lower, still more preferably 55° C. or lower, and from the viewpoint of color mixing prevention, preferably 30° C. or higher, more preferably 35° C. or higher, even more preferably 40° C. or higher, even more preferably 45° C. That is all.
  • the temperature of the print medium can be adjusted by adjusting the temperature of an under heater provided on the back side of the print medium facing the print head.
  • the printing speed is preferably 10 m/min or more, more preferably 15 m/min or more, still more preferably 20 m/min or more in terms of transport speed in the moving direction of the print medium, and the operation From the viewpoint of the property, it is preferably 150 m/min or less.
  • heat energy of a heater or the like is further added in order to print an image by ejecting one kind of ink and prevent the droplets of each ink from being mixed with each other even if the next ink is subsequently ejected. It is also possible to provide a fixing/curing means for imparting.
  • the measurement sample was prepared by mixing 0.1 g of the polymer in a glass vial with 10 mL of the eluent, stirring the mixture with a magnetic stirrer at 25° C. for 10 hours, and using a syringe filter (DISMIC-13HP PTFE 0.2 ⁇ m, manufactured by Advantech Co., Ltd.). What was filtered with.
  • Production Example 1 (Production of water-insoluble polymer a solution) 84 parts of acrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 108 parts of styrene (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and 8 parts of ⁇ -methylstyrene (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) are mixed to mix monomers. A liquid was prepared.
  • a reaction vessel 20 parts of methyl ethyl ketone (MEK, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 0.3 part of a polymerization chain transfer agent (2-mercaptoethanol manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), and the monomer mixture liquid. was added and mixed, and nitrogen gas replacement was sufficiently performed. On the other hand, the remaining 90% of the monomer mixture liquid, 0.27 parts of the above-mentioned polymerization chain transfer agent, 60 parts of MEK, and an azo radical polymerization initiator (2,2'-azobis(2,4-dimethylvaleronitrile) were placed in a dropping funnel.
  • MEK methyl ethyl ketone
  • Preparation Example 1 (Preparation of aqueous dispersion of polymer particles A1 containing black pigment) (1) 58.1 parts of a polymer obtained by drying the water-insoluble polymer a solution obtained in Production Example 1 under reduced pressure was mixed with 71.5 parts of MEK, and further, a 5N sodium hydroxide aqueous solution (sodium hydroxide solid content 16 1.9%, 23.6 parts by Fuji Film Wako Pure Chemical Industries, Ltd. (for volumetric titration), and neutralized so that the ratio of the number of moles of sodium hydroxide to the number of moles of the carboxy group of the polymer is 40 mole %. (Neutralization degree 40%).
  • ion-exchanged water was added to 400 g of the filtrate (76.0 g of CI Pigment Black 7 and 22.1 g of the water-insoluble polymer a), and Proxel LVS (manufactured by Arch Chemicals Japan Ltd.: antifungal agent) , Effective content 20%) 1.08 g, and 5.20 g of a crosslinking agent (Denacol EX-321L, manufactured by Nagase Chemtex Co., Ltd., trimethylolpropane polyglycidyl ether, epoxy equivalent 129, water solubility: 27%). Add and stir at 70° C. for 3 hours.
  • the mixture was filtered through the 5 ⁇ m filter, and ion-exchanged water was further added so that the solid content concentration was 18% to obtain an aqueous dispersion of polymer particles A1 containing a black pigment.
  • the average particle size of the polymer particles A1 containing the black pigment in the obtained aqueous dispersion was 90 nm.
  • Preparation Examples 2 to 4 (Production of aqueous dispersion of polymer particles A2 to 4 containing cyan, magenta and yellow pigments)
  • a black pigment was a cyan pigment (PIC 15:3, manufactured by DIC Corporation), a magenta pigment (PR 122, manufactured by Dainichiseika Co., Ltd.), or a yellow pigment (Dainichi Seika).
  • PIC 15:3, manufactured by DIC Corporation a magenta pigment
  • PR 122 manufactured by Dainichiseika Co., Ltd.
  • a yellow pigment Dainichi Seika
  • Manufactured by Kogyo Co., Ltd., PY 74 Manufactured by Kogyo Co., Ltd., PY 74), and the same operation as in Preparation Example 1 was performed to obtain an aqueous dispersion of cyan, magenta, and yellow pigment-containing polymer particles.
  • Production Example 2 Production of an aqueous dispersion of polymer particles B containing no pigment
  • the monomers shown in "Initial charging monomer solution" in Table 1 Latemur E-118B (sodium polyoxyethylene alkyl ether sulfate, manufactured by Kao Corporation, surfactant), and a polymerization initiator were added.
  • a certain potassium persulfate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) and ion-exchanged water were added and mixed, and the atmosphere was replaced with nitrogen gas to obtain an initially charged monomer solution.
  • a monomer, a surfactant, a polymerization initiator, and ion-exchanged water shown in "Dropped monomer solution" in Table 1 were mixed to obtain a dropped monomer solution, which was placed in a dropping funnel and subjected to nitrogen gas replacement. Under a nitrogen atmosphere, the initial charged monomer solution in the reaction vessel was heated from room temperature to 80°C over 30 minutes while stirring, and the monomer in the dropping funnel was gradually added to the reaction vessel over 3 hours while maintaining the temperature at 80°C. It was dripped in. After the completion of dropping, the mixture was stirred for 1 hour while maintaining the temperature inside the reaction container.
  • the mixture was filtered through 200 mesh to obtain an aqueous dispersion of pigment-free polymer particles B (solid content concentration: 44.1%, average particle diameter: 94 nm).
  • the weight average molecular weight of the polymer b constituting the polymer particles B containing no pigment was 750,000, and the acid value was 16 mgKOH/g.
  • Example 1 (Production of water-based ink) 33.3 g of each aqueous dispersion (solid content concentration: 18%, pigment: 13%, polymer: 5%) of the polymer particles A1 to 4 containing the pigment obtained in Preparation Examples 1 to 4, in Production Example 2
  • the obtained pigment-free polymer particles B (solid content concentration: 44.1 mass%) 6.8 g, dipropylene glycol monomethyl ether (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) 1.0 g, 1,4-butanediol (Fujifilm Wako Pure Chemical Industries, Ltd.) 30.0 g, acetylene glycol-based surfactant (Nisshin Chemical Industry Co., Ltd., Surfynol 440; ethylene oxide (40%) adduct of Surfynol 104, average number of moles of ethylene oxide added) : 3.5) 1.0 g, polyether-modified silicone surfactant (manufactured by Ni
  • Examples 2 to 13 and Comparative Examples 1 to 9 production of water-based ink
  • Black, cyan, magenta, and yellow aqueous inks were obtained in the same manner as in Example 1, except that the compositions shown in Tables 2 and 3 were changed.
  • the amounts of the water dispersion, the water-soluble organic solvent, and the surfactant in Tables 2 and 3 indicate the blending amount (% by mass) in the ink, and the water dispersion of the polymer particles A containing the pigment and the pigment.
  • the amount of the aqueous dispersion of polymer particles B containing no is a solid content.
  • ⁇ Inkjet printing method Ink in a print evaluation device (manufactured by Tritec Co., Ltd.) equipped with an inkjet head (Kyocera Corporation, “KJ4B-HD06MHG-STDV”, piezo type) in an environment of a temperature of 25 ⁇ 1° C. and a relative humidity of 30 ⁇ 5%.
  • A4 size film heater with a head applied voltage of 26 V, a drive frequency of 20 kHz, an appropriate amount of ejection liquid of 12 pL, a print head temperature of 32° C., a resolution of 600 dpi, a pre-ejection flushing frequency of 200, and a negative pressure of -4.0 kPa.
  • the average value is 70 ⁇ m or more and less than 80 ⁇ m, and color mixing is hardly noticeable.
  • 3 The average value is 80 ⁇ m or more and less than 150 ⁇ m, and some color mixture is confirmed.
  • 2 The average value is 150 ⁇ m or more and less than 200 ⁇ m, and clear color mixing is confirmed.
  • 1 The average value is 200 ⁇ m or more, and clear color mixing is confirmed.
  • the water-based ink for inkjet printing of the present invention is excellent in redispersibility and can suppress image bleeding even on a low liquid-absorbent printing medium, so that it is particularly suitable for use in soft packaging printing such as food packaging. You can

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
PCT/JP2019/047923 2018-12-26 2019-12-06 インクジェット印刷用水系インク Ceased WO2020137459A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980086678.7A CN113260685B (zh) 2018-12-26 2019-12-06 喷墨印刷用水性油墨
ES19902445T ES2974976T3 (es) 2018-12-26 2019-12-06 Tinta de base acuosa para impresión por chorro de tinta
EP19902445.6A EP3904471B1 (en) 2018-12-26 2019-12-06 Water-based ink for inkjet printing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018243723A JP7162525B2 (ja) 2018-12-26 2018-12-26 インクジェット印刷用水系インク
JP2018-243723 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020137459A1 true WO2020137459A1 (ja) 2020-07-02

Family

ID=71127976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047923 Ceased WO2020137459A1 (ja) 2018-12-26 2019-12-06 インクジェット印刷用水系インク

Country Status (5)

Country Link
EP (1) EP3904471B1 (enExample)
JP (1) JP7162525B2 (enExample)
CN (1) CN113260685B (enExample)
ES (1) ES2974976T3 (enExample)
WO (1) WO2020137459A1 (enExample)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7545291B2 (ja) * 2020-10-26 2024-09-04 花王株式会社 水系インク

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082709A (ja) * 2002-06-24 2004-03-18 Ricoh Co Ltd インクジェット記録装置及びインクジェット記録方法
JP2005320382A (ja) * 2004-05-06 2005-11-17 Sony Corp 記録液
JP2009066946A (ja) * 2007-09-14 2009-04-02 Ricoh Co Ltd インク、インクメディアセット、インクジェット記録方法および記録物
JP2012097129A (ja) 2010-10-29 2012-05-24 Konica Minolta Ij Technologies Inc インクジェットインク及びインクジェット記録方法
JP2014070162A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp インク組成物、画像形成方法及び印画物
JP2017119845A (ja) * 2015-12-28 2017-07-06 花王株式会社 水系顔料分散体
JP2018015968A (ja) * 2016-07-27 2018-02-01 セイコーエプソン株式会社 インクジェット記録方法、インクジェットインク組成物及びインクセット
JP2018028080A (ja) * 2016-08-12 2018-02-22 花王株式会社 顔料水分散体
JP2018080255A (ja) 2016-11-16 2018-05-24 花王株式会社 水系インク
JP2019059855A (ja) * 2017-09-27 2019-04-18 富士フイルム株式会社 インクジェット記録用水性インク組成物及び画像形成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063482B2 (ja) * 2000-07-07 2008-03-19 株式会社リコー 記録用インク及び該インクを使用した記録方法
CN101778912B (zh) * 2007-08-21 2012-10-10 花王株式会社 喷墨记录用水性油墨
JP2013082209A (ja) * 2011-09-29 2013-05-09 Fujifilm Corp 画像形成方法
EP3006519B1 (en) * 2013-06-06 2019-08-07 Kao Corporation Water-based ink for inkjet recording
JP6285824B2 (ja) * 2014-08-19 2018-02-28 花王株式会社 インクジェット記録用水系インク
US10774229B2 (en) 2016-06-17 2020-09-15 Kao Corporation Aqueous ink

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082709A (ja) * 2002-06-24 2004-03-18 Ricoh Co Ltd インクジェット記録装置及びインクジェット記録方法
JP2005320382A (ja) * 2004-05-06 2005-11-17 Sony Corp 記録液
JP2009066946A (ja) * 2007-09-14 2009-04-02 Ricoh Co Ltd インク、インクメディアセット、インクジェット記録方法および記録物
JP2012097129A (ja) 2010-10-29 2012-05-24 Konica Minolta Ij Technologies Inc インクジェットインク及びインクジェット記録方法
JP2014070162A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp インク組成物、画像形成方法及び印画物
JP2017119845A (ja) * 2015-12-28 2017-07-06 花王株式会社 水系顔料分散体
JP2018015968A (ja) * 2016-07-27 2018-02-01 セイコーエプソン株式会社 インクジェット記録方法、インクジェットインク組成物及びインクセット
JP2018028080A (ja) * 2016-08-12 2018-02-22 花王株式会社 顔料水分散体
JP2018080255A (ja) 2016-11-16 2018-05-24 花王株式会社 水系インク
JP2019059855A (ja) * 2017-09-27 2019-04-18 富士フイルム株式会社 インクジェット記録用水性インク組成物及び画像形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904471A4

Also Published As

Publication number Publication date
EP3904471A1 (en) 2021-11-03
EP3904471A4 (en) 2022-09-14
CN113260685A (zh) 2021-08-13
EP3904471B1 (en) 2024-02-21
ES2974976T3 (es) 2024-07-02
CN113260685B (zh) 2022-12-09
JP2020105298A (ja) 2020-07-09
JP7162525B2 (ja) 2022-10-28

Similar Documents

Publication Publication Date Title
JP7472230B2 (ja) インクジェット印刷用水系インク
JP7249776B2 (ja) インクジェット印刷用水系インク
JP7162526B2 (ja) インクジェット印刷用水系インク
JP7430831B2 (ja) インクジェット印刷用水系インク
JP2020143201A (ja) インクジェット印刷用水系インク
CN113260684B (zh) 喷墨印刷用水性油墨
CN113260685B (zh) 喷墨印刷用水性油墨
CN113316617B (zh) 喷墨印刷用水性油墨
JP7422838B2 (ja) インクジェット印刷用水系インク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019902445

Country of ref document: EP

Effective date: 20210726