WO2020137256A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2020137256A1
WO2020137256A1 PCT/JP2019/045136 JP2019045136W WO2020137256A1 WO 2020137256 A1 WO2020137256 A1 WO 2020137256A1 JP 2019045136 W JP2019045136 W JP 2019045136W WO 2020137256 A1 WO2020137256 A1 WO 2020137256A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
positive electrode
negative electrode
electrode current
electrode terminal
Prior art date
Application number
PCT/JP2019/045136
Other languages
English (en)
French (fr)
Inventor
英一 古賀
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020562918A priority Critical patent/JP7417843B2/ja
Priority to CN201980070741.8A priority patent/CN112913064A/zh
Publication of WO2020137256A1 publication Critical patent/WO2020137256A1/ja
Priority to US17/343,637 priority patent/US20210305664A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to batteries.
  • Patent Document 1 discloses a bipolar battery having an electrode tab capable of taking out an electric current from a current collector in a plurality of stacked unit cell layers. .. The electrode tab is connected to the current collector and is drawn out of the battery.
  • Patent Document 2 discloses an all-solid-state battery in which a current collector for terminals is attached to an end surface of a laminated body.
  • This disclosure is A plurality of cells electrically connected in parallel, A positive electrode terminal and a negative electrode terminal, Equipped with Each of the plurality of cells is A positive electrode layer and a negative electrode layer, A positive electrode current collector electrically connected to each of the positive electrode layer and the positive electrode terminal, A negative electrode current collector electrically connected to each of the negative electrode layer and the negative electrode terminal, A solid electrolyte layer located between the positive electrode current collector and the negative electrode current collector, Have The positive electrode current collector and the negative electrode terminal are electrically separated from each other through a gap, The negative electrode current collector and the positive electrode terminal are electrically separated from each other through a gap, Provide batteries.
  • a battery suitable for miniaturization and having high reliability can be realized.
  • FIG. 1 is a cross-sectional view and a top view for schematically explaining the configuration of the battery according to the first embodiment.
  • FIG. 2 is a cross-sectional view and a top view for schematically explaining the configuration of the battery according to the second embodiment.
  • FIG. 3 is a cross-sectional view and a top view for schematically explaining the configuration of the battery according to the third embodiment.
  • FIG. 4 is a cross-sectional view and a top view for schematically explaining the configuration of the battery according to the fourth embodiment.
  • the battery according to the first aspect of the present disclosure is A plurality of cells electrically connected in parallel, A positive electrode terminal and a negative electrode terminal, Equipped with Each of the plurality of cells is A positive electrode layer and a negative electrode layer, A positive electrode current collector electrically connected to each of the positive electrode layer and the positive electrode terminal, A negative electrode current collector electrically connected to each of the negative electrode layer and the negative electrode terminal, A solid electrolyte layer located between the positive electrode current collector and the negative electrode current collector, Have The positive electrode current collector and the negative electrode terminal are electrically separated from each other through a gap, The negative electrode current collector and the positive electrode terminal are electrically separated from each other through a gap.
  • the first aspect it is not necessary to directly connect the wiring or the electrode tab for taking out the current from the current collector included in each of the plurality of cells to the current collector, and to draw it out of the battery. Therefore, this battery is suitable for miniaturization. Thereby, a battery having a high energy density and a large capacity can be realized. Further, in each of the plurality of cells, the positive electrode current collector and the negative electrode terminal are electrically separated from each other through the gap, and the negative electrode current collector and the positive electrode terminal are electrically separated from each other through the gap. ing. Therefore, this battery has high reliability.
  • each of the plurality of cells is located between the positive electrode current collector and the negative electrode current collector, and includes the solid electrolyte layer. You may further have the surrounding insulating sealing member. According to the second aspect, the battery has high reliability.
  • each of the plurality of cells is connected to the positive electrode terminal and is electrically connected to the negative electrode current collector via a gap. Further includes a first anchor portion that is electrically separated, and a second anchor portion that is connected to the negative electrode terminal and that is electrically separated from the positive electrode current collector through a gap. May be.
  • each of the plurality of cells has an anchor part. According to the anchor portion, even when external stress such as stress or cold heat is applied to the battery, it is difficult for the positive electrode terminal and the negative electrode terminal to come off from the battery. Therefore, according to the anchor portion, it is possible to reduce the possibility of defective connection in the battery and improve the reliability of the battery.
  • a part of the first anchor part may be embedded in the positive electrode terminal, or a part of the second anchor part may be provided. It may be embedded in the negative electrode terminal. According to the fourth aspect, the reliability of the connection between the plurality of cells and the positive electrode terminal or the negative electrode terminal can be improved.
  • the fifth aspect of the present disclosure for example, in the battery according to the fourth aspect, even if a portion of the first anchor portion up to a distance of 1 ⁇ m or more from the end portion of the first anchor portion is embedded in the positive electrode terminal. Or, a portion of the second anchor portion up to a distance of 1 ⁇ m or more from the end portion of the second anchor portion may be embedded in the negative electrode terminal. According to the fifth aspect, it is possible to further improve the reliability of connection between the plurality of cells and the positive electrode terminal or the negative electrode terminal.
  • the positive electrode terminal includes a positive electrode current collector included in an outermost cell of the plurality of cells.
  • the main surface of the negative electrode terminal may cover the main surface of the negative electrode current collector included in the outermost cell among the plurality of cells. According to the sixth aspect, the bonding strength between the plurality of cells can be improved.
  • a part of the positive electrode current collector may be embedded in the positive electrode terminal, or the negative electrode.
  • a part of the current collector may be embedded in the negative electrode terminal. According to the seventh aspect, the reliability of the connection between the plurality of cells and the positive electrode terminal or the negative electrode terminal can be improved.
  • the eighth aspect of the present disclosure for example, in the battery according to the seventh aspect, even if a portion of the positive electrode current collector up to a distance of 1 ⁇ m or more from the end portion of the positive electrode current collector is embedded in the positive electrode terminal. Or, a portion of the negative electrode current collector up to a distance of 1 ⁇ m or more from the end portion of the negative electrode current collector may be embedded in the negative electrode terminal. According to the eighth aspect, it is possible to further improve the reliability of the connection between the plurality of cells and the positive electrode terminal or the negative electrode terminal.
  • the ninth aspect of the present disclosure for example, in the battery according to any one of the first to eighth aspects, even if the positive electrode current collector is electrically connected to the positive electrode terminal via a first alloy. Or, the negative electrode current collector may be electrically connected to the negative electrode terminal via a second alloy. According to the ninth aspect, reliability of electrical connection between the plurality of cells and the positive electrode terminal or the negative electrode terminal can be improved.
  • FIG. 1 is a schematic diagram illustrating the configuration of the battery 100 according to the first embodiment.
  • the battery 100 is a laminated battery. Therefore, in the present specification, the “battery 100” may be referred to as the “laminated battery 100”.
  • FIG. 1A is a cross-sectional view of the battery 100 according to this embodiment.
  • FIG. 1B is a top view of the battery 100.
  • the battery 100 includes a plurality of cells 30, a positive electrode terminal 16 and a negative electrode terminal 17.
  • “cell” may be referred to as “solid battery cell”.
  • the plurality of cells 30 are electrically connected in parallel.
  • each of the plurality of cells 30 has, for example, a rectangular shape in plan view.
  • Each of the plurality of cells 30 has two pairs of end faces facing each other.
  • a plurality of cells 30 are stacked.
  • the first direction x is a direction from one of the pair of end faces of the specific cell 30 to the other.
  • the second direction y is a direction from one of the other pair of end faces of the specific cell 30 toward the other, and is a direction orthogonal to the first direction x.
  • the third direction z is a stacking direction of the plurality of cells 30, and is a direction orthogonal to each of the first direction x and the second direction y.
  • the number of the plurality of cells 30 is not particularly limited, and may be 2 or more and 100 or less, or 2 or more and 10 or less. The number of the plurality of cells 30 may be 20 or more and 100 or less in some cases.
  • the battery 100 includes a plurality of cells 30a, 30b, 30c and 30d. A plurality of cells 30a, 30b, 30c and 30d are stacked in this order.
  • the positive electrode terminal 16 and the negative electrode terminal 17 are electrically connected to the plurality of cells 30, respectively.
  • the shape of each of the positive electrode terminal 16 and the negative electrode terminal 17 is, for example, a plate shape.
  • the positive electrode terminal 16 and the negative electrode terminal 17 face each other.
  • the positive electrode terminal 16 and the negative electrode terminal 17 are arranged in the first direction x.
  • a plurality of cells 30 are located between the positive electrode terminal 16 and the negative electrode terminal 17.
  • the surfaces of the positive electrode terminal 16 and the negative electrode terminal 17 are not covered with an insulating layer, for example.
  • the positive electrode terminal 16 and the negative electrode terminal 17 may be simply referred to as “terminal”.
  • Each of the plurality of cells 30 has a positive electrode current collector 11, a positive electrode layer 12, a negative electrode current collector 13, a negative electrode layer 14, and a solid electrolyte layer 15.
  • the positive electrode current collector 11, the positive electrode layer 12, the solid electrolyte layer 15, the negative electrode layer 14, and the negative electrode current collector 13 are arranged in this order in the third direction z or in the direction opposite to the third direction z.
  • the positive electrode current collector 11 and the negative electrode current collector 13 may be simply referred to as “current collector”.
  • the positive electrode current collector 11 has, for example, a plate shape.
  • the positive electrode current collector 11 is electrically connected to each of the positive electrode layer 12 and the positive electrode terminal 16.
  • the positive electrode current collector 11 may be in direct contact with each of the positive electrode layer 12 and the positive electrode terminal 16.
  • the main surface of the positive electrode current collector 11 may be in direct contact with the positive electrode layer 12.
  • the “main surface” means the surface of the positive electrode current collector 11 having the largest area.
  • the end surface of the positive electrode current collector 11 may be in direct contact with the positive electrode terminal 16.
  • the positive electrode current collector 11 and the negative electrode terminal 17 are electrically separated from each other through a gap.
  • the shortest distance between the positive electrode current collector 11 and the negative electrode terminal 17 is not particularly limited, and may be 1 ⁇ m or more and 100 ⁇ m or less, or 1 ⁇ m or more and 10 ⁇ m or less.
  • the shortest distance between the positive electrode current collector 11 and the negative electrode terminal 17 may be 20 ⁇ m or more and 100 ⁇ m or less in some cases.
  • the vicinity of the end face of the cell 30 may be referred to as the “end region” of the cell 30.
  • the positive electrode current collector 11 and the negative electrode terminal 17 are electrically separated from each other with a gap, for example, in an end region of the cell 30.
  • the positive electrode layer 12 has, for example, a rectangular shape in a plan view.
  • the positive electrode layer 12 is arranged on the positive electrode current collector 11.
  • the positive electrode layer 12 partially covers the main surface of the positive electrode current collector 11, for example.
  • the positive electrode layer 12 may cover a region including the center of gravity of the main surface of the positive electrode current collector 11.
  • the positive electrode layer 12 is not formed in the end region of the cell 30, for example.
  • the negative electrode current collector 13 has, for example, a plate shape.
  • the negative electrode current collector 13 is electrically connected to each of the negative electrode layer 14 and the negative electrode terminal 17.
  • the negative electrode current collector 13 may be in direct contact with each of the negative electrode layer 14 and the negative electrode terminal 17.
  • the main surface of the negative electrode current collector 13 may be in direct contact with the negative electrode layer 14.
  • the end surface of the negative electrode current collector 13 may be in direct contact with the negative electrode terminal 17.
  • the negative electrode current collector 13 and the positive electrode terminal 16 are electrically separated from each other through a gap.
  • the shortest distance between the negative electrode current collector 13 and the positive electrode terminal 16 is not particularly limited, and may be 1 ⁇ m or more and 100 ⁇ m or less, or 1 ⁇ m or more and 10 ⁇ m or less.
  • the shortest distance between the negative electrode current collector 13 and the positive electrode terminal 16 may be 20 ⁇ m or more and 100 ⁇ m or less in some cases.
  • the negative electrode current collector 13 and the positive electrode terminal 16 are electrically separated from each other via a gap, for example, in an end region of the cell 30.
  • the position of the negative electrode current collector 13 is displaced from the position of the positive electrode current collector 11 in the first direction x, for example.
  • the gap between the negative electrode current collector 13 and the positive electrode terminal 16 does not overlap with the gap between the positive electrode current collector 11 and the negative electrode terminal 17, for example.
  • the negative electrode layer 14 has, for example, a rectangular shape in a plan view.
  • the negative electrode layer 14 is disposed on the negative electrode current collector 13.
  • the negative electrode layer 14 partially covers the main surface of the negative electrode current collector 13, for example.
  • the negative electrode layer 14 may cover a region including the center of gravity of the main surface of the negative electrode current collector 13.
  • the negative electrode layer 14 is not formed in the end region of the cell 30, for example.
  • the solid electrolyte layer 15 has, for example, a rectangular shape in plan view.
  • the solid electrolyte layer 15 is located between the positive electrode current collector 11 and the negative electrode current collector 13. In other words, the solid electrolyte layer 15 is located between the positive electrode layer 12 and the negative electrode layer 14.
  • the solid electrolyte layer 15 may be in contact with each of the positive electrode terminal 16 and the negative electrode terminal 17.
  • the solid electrolyte layer 15 may be in contact with each of the positive electrode layer 12 and the negative electrode layer 14.
  • the battery 100 includes a plurality of cells 30a, 30b, 30c and 30d.
  • the cell 30a has a positive electrode current collector 11a, a positive electrode layer 12a, a negative electrode current collector 13a, a negative electrode layer 14a, and a solid electrolyte layer 15a.
  • the cell 30b has a positive electrode current collector 11b, a positive electrode layer 12b, a negative electrode current collector 13a, a negative electrode layer 14b, and a solid electrolyte layer 15b.
  • the cell 30c has a positive electrode current collector 11b, a positive electrode layer 12c, a negative electrode current collector 13b, a negative electrode layer 14c, and a solid electrolyte layer 15c.
  • the cell 30d has a positive electrode current collector 11c, a positive electrode layer 12d, a negative electrode current collector 13b, a negative electrode layer 14d, and a solid electrolyte layer 15d.
  • the negative electrode current collector 13a is shared by the cells 30a and 30b.
  • the negative electrode current collector 13b is shared by the cells 30c and 30d.
  • the positive electrode current collector 11b is shared by the cells 30b and 30c.
  • the plurality of positive electrode collectors 11a, 11b and 11c and the plurality of negative electrode collectors 13a and 13b are alternately arranged in the third direction z. In the gap between the negative electrode current collector 13a and the positive electrode terminal 16, the solid electrolyte layer 15a may be in contact with the solid electrolyte layer 15b.
  • the solid electrolyte layer 15b may be in contact with the solid electrolyte layer 15c.
  • the solid electrolyte layer 15c may be in contact with the solid electrolyte layer 15d.
  • Each of the plurality of cells 30 may further include a first anchor portion 18 and a second anchor portion 19.
  • first anchor portion 18 and the second anchor portion 19 may be simply referred to as “anchor portion”.
  • the first anchor portion 18 is connected to the positive electrode terminal 16 and is electrically separated from the negative electrode current collector 13 via a gap.
  • the first anchor portion 18 may be in direct contact with the positive electrode terminal 16.
  • the first anchor portion 18 and the negative electrode current collector 13 are arranged, for example, in the first direction x.
  • the shortest distance between the first anchor portion 18 and the negative electrode current collector 13 is not particularly limited, and may be 1 ⁇ m or more and 20 ⁇ m or less, or 1 ⁇ m or more and 5 ⁇ m or less.
  • the shortest distance between the first anchor portion 18 and the negative electrode current collector 13 may be 10 ⁇ m or more and 20 ⁇ m or less depending on the case.
  • the second anchor portion 19 is connected to the negative electrode terminal 17, and is electrically separated from the positive electrode current collector 11 via a gap.
  • the second anchor portion 19 may be in direct contact with the negative electrode terminal 17.
  • the second anchor portion 19 and the positive electrode current collector 11 are arranged, for example, in the first direction x.
  • the shortest distance between the second anchor portion 19 and the positive electrode current collector 11 is not particularly limited, and may be 1 ⁇ m or more and 20 ⁇ m or less, or 1 ⁇ m or more and 5 ⁇ m or less.
  • the shortest distance between the second anchor portion 19 and the positive electrode current collector 11 may be 10 ⁇ m or more and 20 ⁇ m or less depending on the case.
  • the cell 30a has a first anchor portion 18a and a second anchor portion 19a.
  • the cell 30b has a first anchor portion 18a and a second anchor portion 19b.
  • the cell 30c has a first anchor portion 18b and a second anchor portion 19b.
  • the cell 30d has a first anchor portion 18b and a second anchor portion 19c.
  • the first anchor portion 18a is shared by the cells 30a and 30b.
  • the first anchor portion 18b is shared by the cells 30c and 30d.
  • the second anchor portion 19b is shared by the cells 30b and 30c.
  • the first anchor portion 18 and the second anchor portion 19 are basically located in a region that does not affect the power generation element of the cell 30.
  • the first anchor portion 18 and the second anchor portion 19 are embedded inside the solid electrolyte layer 15, for example.
  • the positive electrode terminal 16 and the negative electrode terminal 17 can connect the plurality of cells 30 in parallel in an integrated structure without affecting the battery characteristics of the cells 30 and the volume of the cells 30.
  • the positive electrode terminal 16 and the negative electrode terminal 17 are firmly bonded to the positive electrode current collector 11 and the negative electrode current collector 13 inside the laminated battery 100, respectively. Therefore, the battery 100 can have a large capacity. That is, a large-capacity laminated battery having a small shape, high impact resistance, and improved reliability with respect to stress caused by the deflection of the current collectors 11 and 13, and having high energy density and high reliability. 100 can be realized.
  • the positive electrode current collector 11 may be electrically connected to the positive electrode terminal 16 via the first alloy.
  • the first alloy includes, for example, the material of the positive electrode current collector 11 and the material of the positive electrode terminal 16.
  • the first alloy is formed, for example, by mixing the metal contained in the positive electrode current collector 11 and the metal contained in the positive electrode terminal 16 at the interface between the positive electrode current collector 11 and the positive electrode terminal 16.
  • the region where the first alloy is formed may be referred to as a "first alloy portion" or a "first diffusion layer".
  • the reliability of the electrical connection of the battery 100 with respect to is improved.
  • the first alloy portion improves the connection strength between the positive electrode current collector 11 and the positive electrode terminal 16. When the first alloy is diffused from the first alloy portion to the surrounding members, the connection strength between the positive electrode current collector 11 and the positive electrode terminal 16 is further improved.
  • the negative electrode current collector 13 may be electrically connected to the negative electrode terminal 17 via the second alloy.
  • the second alloy includes, for example, the material of the negative electrode current collector 13 and the material of the negative electrode terminal 17.
  • the second alloy is formed, for example, by mixing the metal contained in the negative electrode current collector 13 and the metal contained in the negative electrode terminal 17 at the interface between the negative electrode current collector 13 and the negative electrode terminal 17.
  • the region where the second alloy is formed may be referred to as a "second alloy portion" or a "second diffusion layer".
  • the reliability of the electrical connection of the battery 100 with respect to is improved.
  • the second alloy portion improves the connection strength between the negative electrode current collector 13 and the negative electrode terminal 17. When the second alloy is diffused from the second alloy portion to the surrounding members, the connection strength between the negative electrode current collector 13 and the negative electrode terminal 17 is further improved.
  • the first anchor portion 18 may be connected to the positive electrode terminal 16 via the third alloy.
  • the third alloy includes, for example, the material of the first anchor portion 18 and the material of the positive electrode terminal 16.
  • the third alloy is formed, for example, by mixing the metal contained in the first anchor portion 18 and the metal contained in the positive electrode terminal 16 at the interface between the first anchor portion 18 and the positive electrode terminal 16.
  • the region where the third alloy is formed may be referred to as a “third alloy portion” or a “third diffusion layer”.
  • the third alloy portion improves the connection strength between the first anchor portion 18 and the positive electrode terminal 16.
  • the second anchor portion 19 may be connected to the negative electrode terminal 17 via the fourth alloy.
  • the fourth alloy includes, for example, the material of the second anchor portion 19 and the material of the negative electrode terminal 17.
  • the fourth alloy is formed, for example, by mixing the metal contained in the second anchor portion 19 and the metal contained in the negative electrode terminal 17 at the interface between the second anchor portion 19 and the negative electrode terminal 17.
  • the region where the fourth alloy is formed may be referred to as a “fourth alloy portion” or a “fourth diffusion layer”.
  • the fourth alloy portion improves the connection strength between the second anchor portion 19 and the negative electrode terminal 17.
  • the battery 100 having high energy density and high reliability can be provided by firmly and compactly integrating the plurality of cells 30 electrically connected in parallel.
  • the wiring or the electrode tab for taking out the current from the current collectors 11 and 13 is connected to the current collectors 11 and 13 and integrated without being drawn out of the battery 100.
  • a laminated battery connected in parallel can be obtained.
  • the plurality of cells 30 connected in parallel can be firmly and compactly integrated by the anchor portions 18 and 19, the battery 100 having a large capacity and a high energy density and high reliability can be realized.
  • the positive electrode layer 12 functions as a positive electrode active material layer containing a positive electrode active material.
  • the positive electrode layer 12 may include a positive electrode active material as a main component.
  • the main component means a component contained in the positive electrode layer 12 in the most weight ratio.
  • the positive electrode active material is a material in which metal ions such as lithium (Li) ions and magnesium (Mg) ions are inserted or desorbed in the crystal structure at a potential higher than that of the negative electrode, and oxidation or reduction is carried out accordingly.
  • the type of positive electrode active material can be appropriately selected according to the type of battery, and a known positive electrode active material can be used. Examples of the positive electrode active material include compounds containing lithium and a transition metal element.
  • this compound examples include an oxide containing lithium and a transition metal element, and a phosphoric acid compound containing lithium and a transition metal element.
  • the oxide containing lithium and a transition metal element for example, LiNi x M 1-x O 2 (M is, Co, Al, Mn, V , Cr, Mg, Ca, Ti, Zr, Nb, Mo and W Is at least one element selected from the group consisting of, x is a lithium nickel composite oxide such as 0 ⁇ x ⁇ 1, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), manganic acid Layered oxides such as lithium (LiMn 2 O 4 ) and lithium manganate (LiMn 2 O 4 , Li 2 MnO 3 , LiMnO 2 ) having a spinel structure are used.
  • lithium iron phosphate having an olivine structure LiFePO 4
  • a sulfide such as sulfur (S) or lithium sulfide (Li 2 S) can be used as the positive electrode active material. It is also possible to use, as the positive electrode active material, particles obtained by coating or adding lithium niobate (LiNbO 3 ) to particles containing sulfide.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the positive electrode layer 12 is not particularly limited as long as it contains a positive electrode active material.
  • the positive electrode layer 12 may be a mixture layer composed of a mixture of a positive electrode active material and another additive material.
  • Other additive materials that can be used include solid electrolytes such as inorganic solid electrolytes, conductive aids such as acetylene black, and binders such as polyethylene oxide and polyvinylidene fluoride.
  • the thickness of the positive electrode layer 12 is, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • the negative electrode layer 14 functions as a negative electrode active material layer containing a negative electrode material such as a negative electrode active material.
  • the negative electrode layer 14 may include a negative electrode material as a main component.
  • the negative electrode active material is a material in which metal ions such as lithium (Li) ions and magnesium (Mg) ions are inserted or desorbed in the crystal structure at a potential lower than that of the positive electrode, and oxidation or reduction is performed with it.
  • the type of negative electrode active material can be appropriately selected according to the type of battery, and a known negative electrode active material can be used.
  • a carbon material such as natural graphite, artificial graphite, graphite carbon fiber, resin-fired carbon, or an alloy material to be mixed with the solid electrolyte may be used.
  • alloy-based materials include lithium alloys such as LiAl, LiZn, Li 3 Bi, Li 3 Cd, Li 3 Sb, Li 4 Si, Li 4.4 Pb, Li 4.4 Sn, Li 0.17 C and LiC 6 , lithium titanate (Li.
  • An oxide of lithium and a transition metal element such as 4 Ti 5 O 12
  • a metal oxide such as zinc oxide (ZnO) or silicon oxide (SiO x ) may be used.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the negative electrode layer 14 is not particularly limited as long as it contains the negative electrode active material.
  • the negative electrode layer 14 may be a mixture layer composed of a mixture of a negative electrode active material and another additive material.
  • Other additive materials that can be used include solid electrolytes such as inorganic solid electrolytes, conductive aids such as acetylene black, and binders such as polyethylene oxide and polyvinylidene fluoride.
  • the thickness of the negative electrode layer 14 is, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • the solid electrolyte layer 15 contains a solid electrolyte.
  • the solid electrolyte is not particularly limited as long as it has ionic conductivity, and known electrolytes for batteries can be used.
  • an electrolyte that conducts metal ions such as Li ions and Mg ions can be used.
  • the solid electrolyte can be appropriately selected according to the conductive ionic species.
  • an inorganic solid electrolyte such as a sulfide-based solid electrolyte or an oxide-based solid electrolyte can be used.
  • Examples of the sulfide-based solid electrolyte include Li 2 S-P 2 S 5 , Li 2 S-SiS 2 , Li 2 S-B 2 S 3 , Li 2 S-GeS 2 , Li 2 S-SiS 2 -LiI. , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—Ge 2 S 2 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—GeS 2 —ZnS, and other lithium-containing sulfides are used. Can be done.
  • oxide-based solid electrolyte examples include lithium-containing metal oxides such as Li 2 O—SiO 2 and Li 2 O—SiO 2 —P 2 O 5, and lithium-containing metal nitrides such as Li x P y O 1-z N z.
  • lithium-containing metal oxides such as Li 2 O—SiO 2 and Li 2 O—SiO 2 —P 2 O 5
  • lithium-containing metal nitrides such as Li x P y O 1-z N z.
  • Compounds, lithium phosphate (Li 3 PO 4 ), lithium-containing transition metal oxides such as lithium titanium oxide, and the like can be used.
  • As the solid electrolyte only one of these materials may be used, or two or more of these materials may be used in combination.
  • the solid electrolyte layer 15 may contain a binder for binding such as polyethylene oxide and polyvinylidene fluoride, in addition to the above solid electrolyte.
  • the thickness of the solid electrolyte layer 15 is, for example, 5 ⁇ m or more and 150 ⁇ m or less.
  • the solid electrolyte may have a particle shape.
  • the solid electrolyte may be a sintered body.
  • terminals 16 and 17 are made of, for example, low-resistance conductors.
  • the terminals 16 and 17 for example, those obtained by curing a conductive resin containing conductive metal particles such as Ag are used.
  • a conductive resin paste described later can be used.
  • the terminals 16 and 17 may be a conductive metal plate such as a SUS plate coated with a conductive adhesive.
  • a thermosetting conductive paste described later can be used. With the conductive adhesive, the stacked body of the plurality of cells 30 can be sandwiched between the two metal plates.
  • the conductive adhesive is not particularly limited as long as it can maintain conductivity and bondability in the operating temperature range of the laminated battery 100 and in the manufacturing process of the laminated battery 100.
  • the composition, thickness, and material of the conductive adhesive are such that when the conductive adhesive is supplied with a current at the maximum rate required under the usage environment of the laminated battery 100, There is no particular limitation as long as it does not affect the life characteristics and the battery characteristics and can maintain the durability of the conductive adhesive.
  • the terminals 16 and 17 may be plated with Ni—Sn or the like.
  • the positive electrode current collector 11 and the negative electrode current collector 13 are not particularly limited as long as they are made of a conductive material.
  • Examples of the material of the current collectors 11 and 13 include stainless steel, nickel, aluminum, iron, titanium, copper, palladium, gold and platinum.
  • the materials for the current collectors 11 and 13 may be used alone or as an alloy in which two or more kinds are combined.
  • the current collectors 11 and 13 may be foil-shaped bodies, plate-shaped bodies, mesh-shaped bodies, or the like.
  • the material of the current collectors 11 and 13 is not particularly limited as long as the current collectors 11 and 13 do not melt and decompose due to the manufacturing process of the battery 100, the operating temperature of the battery 100, and the pressure inside the battery 100.
  • the materials of the current collectors 11 and 13 can be selected depending on the tensile strength and heat resistance required for the current collectors 11 and 13.
  • examples of materials for the current collectors 11 and 13 include copper, aluminum, and alloys containing them as the main components.
  • the current collectors 11 and 13 may be electrolytic copper foil having high strength, or a clad material in which different metal foils are laminated.
  • the thickness of the current collectors 11 and 13 is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the materials of the first anchor portion 18 and the second anchor portion 19 are not particularly limited. Examples of the material of the anchor portions 18 and 19 include the materials exemplified as the material of the current collectors 11 and 13.
  • the material of the first anchor portion 18 may be the same as the material of the negative electrode current collector 13.
  • the material of the second anchor portion 19 may be the same as the material of the positive electrode current collector 11.
  • the thickness of the anchor portions 18 and 19 is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the configuration of the battery 100 of this embodiment differs from the configurations of the batteries described in Patent Documents 1 and 2 in the following points.
  • Patent Document 1 discloses a bipolar battery having a structure in which electrode tabs for taking out current from current collectors in a plurality of stacked unit cell layers are connected to the current collectors and are drawn out of the batteries. It is disclosed. In the battery structure of Patent Document 1, the plurality of unit cell layers are not rigidly integrated.
  • Patent Document 2 discloses an all-solid-state battery in which a terminal current collector is attached to an end surface of a laminated body including a parallel current collector. However, in the all-solid-state battery of Patent Document 2, there is no gap between the terminal current collector and the parallel current collector. Furthermore, the all-solid-state battery of Patent Document 2 does not have an anchor portion.
  • the electrode tab is connected to the current collector and pulled out of the battery. It may be difficult to miniaturize such a battery and to maintain reliability such as connection strength of members included in the battery. Therefore, the battery of Patent Document 1 is not suitable for increasing the capacity and downsizing. When a shock is applied to the battery of Patent Document 1, the reliability of the electrical connection of the battery is low. As described above, in the battery configuration of Patent Document 1, it is difficult to reduce the size and the capacity of the battery, and there are problems in the characteristics relating to the reliability of the battery such as impact resistance.
  • a terminal current collector is arranged on the end surface of the laminated body.
  • the terminal current collector is a member that brings out the characteristics of the battery. Therefore, the terminal current collector needs to have not only initial characteristics but also reliability of electrical connection under various conditions.
  • the laminated body is sandwiched by plate-shaped current collectors for terminals, and the battery cells are electrically connected to each other in a structure having no anchor portion. Therefore, the battery of Patent Document 2 may have a problem in mechanical strength and electrical connection strength against impact.
  • an insulating layer is formed on the terminal current collector. When the battery of Patent Document 2 is impacted and the parallel current collector is displaced, the end surface of the parallel current collector that was in contact with the insulating layer may contact the terminal current collector. This may cause a short circuit.
  • Patent Documents 1 and 2 in the battery 100 of this embodiment, a plurality of cells 30 are electrically connected in parallel and integrated.
  • the positive electrode current collector 11 and the negative electrode terminal 17 are electrically separated from each other through the gap
  • the negative electrode current collector 13 and the positive electrode terminal 16 are electrically separated from each other through the gap.
  • the anchor portions 18 and 19 are connected to the terminals 16 and 17. Therefore, the battery 100 of the present embodiment is unlikely to cause the above problems.
  • Patent Documents 1 and 2 do not disclose the above configuration of the battery 100 of the present embodiment.
  • the battery 100 according to this embodiment can be manufactured by, for example, a sheet manufacturing method.
  • the process of manufacturing the cell 30 may be referred to as a “sheet manufacturing process”.
  • a laminated body in which the precursors of the respective constituents of the cells 30 included in the battery 100 according to the present embodiment are laminated is produced.
  • the precursor of the positive electrode current collector 11, the sheet of the positive electrode layer 12, the sheet of the solid electrolyte layer 15, the sheet of the negative electrode layer 14, and the precursor of the negative electrode current collector 13 are laminated in this order. ..
  • a predetermined number of laminated bodies are produced in accordance with the number of cells 30 to be connected in parallel.
  • the order of forming the members included in the laminated body is not particularly limited.
  • the sheet production step includes a step of producing a sheet that is a precursor of each component of the cell 30 and laminating the sheet.
  • the sheet of the positive electrode layer 12 can be produced by the following method, for example. First, a positive electrode active material, a solid electrolyte as a mixture, a conductive aid, a binder and a solvent are mixed to obtain a slurry for producing a sheet of the positive electrode layer 12.
  • the slurry for producing the sheet of the positive electrode layer 12 may be referred to as “positive electrode active material slurry”.
  • the positive electrode active material slurry is applied onto the precursor of the positive electrode current collector 11 by using a printing method or the like.
  • the sheet of the positive electrode layer 12 is formed by drying the obtained coating film.
  • the precursor of the positive electrode current collector 11 for example, a copper foil having a thickness of about 30 ⁇ m can be used.
  • the positive electrode active material it is possible to use, for example, a powder of Li.Ni.Co.Al composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) having an average particle size of about 5 ⁇ m and having a layered structure.
  • a glass powder of Li 2 SP 2 S 5 sulfide having an average particle diameter of about 10 ⁇ m and containing triclinic crystals as a main component can be used. ..
  • the solid electrolyte has a high ionic conductivity of, for example, 2 ⁇ 10 ⁇ 3 S/cm or more and 3 ⁇ 10 ⁇ 3 S/cm or less.
  • the positive electrode active material slurry can be applied to one surface of a copper foil, which is a precursor of the positive electrode current collector 11, by a screen printing method, for example.
  • the obtained coating film has, for example, a predetermined shape and a thickness of about 50 ⁇ m or more and 100 ⁇ m or less.
  • the coating film is dried to obtain a sheet of the positive electrode layer 12.
  • the coating film may be dried at a temperature of 80° C. or higher and 130° C. or lower.
  • the sheet of the positive electrode layer 12 has a thickness of, for example, 30 ⁇ m or more and 60 ⁇ m or less.
  • the sheet of the negative electrode layer 14 can be produced, for example, by the following method. First, a negative electrode active material, a solid electrolyte, a conductive auxiliary agent, a binder and a solvent are mixed to obtain a slurry for producing a sheet of the negative electrode layer 14.
  • the slurry for producing the sheet of the negative electrode layer 14 may be referred to as “negative electrode active material slurry”.
  • the negative electrode active material slurry is applied onto the precursor of the negative electrode current collector 13 by using a printing method or the like.
  • the sheet of the negative electrode layer 14 is formed by drying the obtained coating film.
  • the precursor of the negative electrode current collector 13 for example, a copper foil having a thickness of about 30 ⁇ m can be used.
  • the negative electrode active material for example, natural graphite powder having an average particle diameter of about 10 ⁇ m can be used.
  • the solid electrolyte for example, those exemplified in the method for producing the sheet of the positive electrode layer 12 can be used.
  • the negative electrode active material slurry can be applied to one surface of a copper foil, which is a precursor of the negative electrode current collector 13, by a screen printing method, for example.
  • the obtained coating film has, for example, a predetermined shape and a thickness of about 50 ⁇ m or more and 100 ⁇ m or less.
  • the coating film is dried to obtain a sheet of the negative electrode layer 14.
  • the coating film may be dried at a temperature of 80° C. or higher and 130° C. or lower.
  • the sheet of the negative electrode layer 14 has a thickness of, for example, 30 ⁇ m or more and 60 ⁇ m or less.
  • the sheet of the solid electrolyte layer 15 is arranged between the sheet of the positive electrode layer 12 and the sheet of the negative electrode layer 14.
  • the sheet of the solid electrolyte layer 15 can be produced, for example, by the following method. First, the solid electrolyte, the conductive additive, the binder and the solvent are mixed to obtain a slurry for producing a sheet of the solid electrolyte layer 15.
  • the slurry for producing the sheet of the solid electrolyte layer 15 may be referred to as “solid electrolyte slurry”.
  • the solid electrolyte slurry is applied onto the sheet of the positive electrode layer 12. Similarly, the solid electrolyte slurry is applied onto the sheet of the negative electrode layer 14.
  • the solid electrolyte slurry is applied by, for example, a printing method using a metal mask.
  • the obtained coating film has a thickness of, for example, about 100 ⁇ m.
  • the coating film is dried.
  • the coating film may be dried at a temperature of 80° C. or higher and 130° C. or lower. As a result, a sheet of the solid electrolyte layer 15 is formed on each of the sheet of the positive electrode layer 12 and the sheet of the negative electrode layer 14.
  • the method for producing the sheet of the solid electrolyte layer 15 is not limited to the above method.
  • the sheet of the solid electrolyte layer 15 may be manufactured by the following method. First, the solid electrolyte slurry is applied onto a substrate by using a printing method or the like.
  • the base material is not particularly limited as long as the sheet of the solid electrolyte layer 15 can be formed thereon, and includes, for example, Teflon (registered trademark), polyethylene terephthalate (PET) and the like.
  • PET polyethylene terephthalate
  • the shape of the base material is, for example, a film shape or a foil shape.
  • the sheet of the solid electrolyte layer 15 is obtained by drying the coating film formed on the base material.
  • the sheet of the solid electrolyte layer 15 can be peeled off from the base material and used.
  • the solvent used for the positive electrode active material slurry, the negative electrode active material slurry, and the solid electrolyte slurry is not particularly limited as long as it can dissolve the binder and does not adversely affect the battery characteristics.
  • the solvent include alcohols such as ethanol, isopropanol, n-butanol, and benzyl alcohol, toluene, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol ethyl ether, isophorone, butyl lactate, dioctyl phthalate,
  • An organic solvent such as dioctyl adipate, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) and water can be used. These solvents may be used alone or in combination of two or more.
  • the screen printing method is exemplified as the method of applying the positive electrode active material slurry, the negative electrode active material slurry, and the solid electrolyte slurry, but the application method is not limited to this.
  • a coating method a doctor blade method, a calendar method, a spin coating method, a dip coating method, an inkjet method, an offset method, a die coating method, a spray method or the like may be used.
  • an auxiliary agent such as a plasticizer as necessary. May be mixed.
  • the slurry mixing method is not particularly limited. Additives such as a thickener, a plasticizer, a defoaming agent, a leveling agent, and an adhesion-imparting agent may be added to the slurry as needed.
  • the sheet of the solid electrolyte layer 15 formed on the sheet of the positive electrode layer 12 and the sheet of the solid electrolyte layer 15 formed on the sheet of the negative electrode layer 14 are superposed.
  • a laminated body is obtained in which the precursor of the positive electrode current collector 11, the positive electrode layer 12, the solid electrolyte layer 15, the negative electrode layer 14, and the precursor of the negative electrode current collector 13 are laminated in this order.
  • the end surface of the precursor of the positive electrode current collector 11 overlaps with the end surface of the precursor of the negative electrode current collector 13 in a plan view, for example.
  • the precursor of the positive electrode current collector 11 is cut so that the positive electrode current collector 11 is obtained.
  • the precursor of the positive electrode current collector 11 is cut so that the positive electrode current collector 11 and the negative electrode terminal 17 are electrically separated from each other through a gap.
  • the cut surface of the positive electrode current collector 11 extends straight in the second direction y, for example.
  • the cutting of the precursor of the positive electrode current collector 11 can be performed by, for example, a laser.
  • the second anchor portion 19 can be formed together with the positive electrode current collector 11.
  • the shortest distance between the positive electrode current collector 11 and the second anchor portion 19 is, for example, 10 ⁇ m.
  • the gap between the positive electrode current collector 11 and the second anchor portion 19 electrically separates the positive electrode current collector 11 and the second anchor portion 19 from each other. That is, the gap between the positive electrode current collector 11 and the second anchor portion 19 is electrically insulated.
  • the precursor of the negative electrode current collector 13 is cut so that the negative electrode current collector 13 is obtained.
  • the precursor of the negative electrode current collector 13 is cut so that the negative electrode current collector 13 and the positive electrode terminal 16 are electrically separated from each other with a gap.
  • the cut surface of the negative electrode current collector 13 extends straight in the second direction y, for example.
  • the precursor of the negative electrode current collector 13 can be cut by, for example, a laser.
  • the first anchor portion 18 can be formed together with the negative electrode current collector 13.
  • the shortest distance between the negative electrode current collector 13 and the first anchor portion 18 is, for example, 10 ⁇ m.
  • the negative electrode current collector 13 and the first anchor portion 18 are electrically separated from each other by the gap between the negative electrode current collector 13 and the first anchor portion 18. That is, the gap between the negative electrode current collector 13 and the first anchor portion 18 is electrically insulated.
  • the order of cutting the precursor of the positive electrode current collector 11 and cutting the precursor of the negative electrode current collector 13 is not particularly limited.
  • the precursor of the negative electrode current collector 13 may be cut after cutting the precursor of the positive electrode current collector 11, and the precursor of the positive electrode current collector 11 may be cut after cutting the precursor of the negative electrode current collector 13. You may disconnect.
  • the cutting of the precursor of the positive electrode current collector 11 and the cutting of the precursor of the negative electrode current collector 13 are performed on the sheet of the solid electrolyte layer 15 formed on the sheet of the positive electrode layer 12 and the sheet of the negative electrode layer 14. It may be performed before the sheet of the solid electrolyte layer 15 formed on top is overlapped.
  • the cutting of the precursor of the positive electrode current collector 11 and the cutting of the precursor of the negative electrode current collector 13 may be performed using a means such as dicing.
  • the insulating portion may be provided by cutting the precursor of the positive electrode current collector 11 and removing a part of the precursor.
  • the insulating portion may be provided by cutting the precursor of the negative electrode current collector 13 and removing a part of the precursor.
  • the cell 30 is obtained by cutting the precursor of the positive electrode current collector 11 and further cutting the precursor of the negative electrode current collector 13.
  • the positive electrode current collector 11 has a main surface exposed to the outside of the cell 30.
  • the negative electrode current collector 13 also has a main surface exposed to the outside of the cell 30.
  • a conductive adhesive is applied to each of the main surface of the positive electrode current collector 11 exposed to the outside of the cell 30 and the main surface of the negative electrode current collector 13 exposed to the outside of the cell 30.
  • the method of applying the conductive adhesive include a screen printing method.
  • the main surface coated with the adhesive material may be referred to as an “adhesive surface”.
  • the bonding surface of the positive electrode current collector 11 of the cell 30 is bonded to the bonding surface of the positive electrode current collector 11 of another cell 30, or the bonding surface of the negative electrode current collector 13 of the cell 30 is bonded to another cell 30.
  • the negative electrode current collector 13 is bonded to the bonding surface.
  • the bonding surfaces can be bonded to each other by, for example, pressure bonding.
  • the temperature at which the bonding surfaces are bonded together is, for example, 50° C. or higher and 100° C. or lower.
  • the pressure applied to the cell 30 when the bonding surfaces are bonded together is, for example, 300 MPa or more and 400 MPa or less.
  • the time for applying pressure to the cell 30 is, for example, 90 seconds or more and 120 seconds or less.
  • a low-resistance conductive tape can be used for bonding.
  • paste-like silver powder or copper powder may be used.
  • the current collectors can be mechanically bonded by the anchor effect via the metal particles.
  • the method of stacking the plurality of cells 30 is not particularly limited as long as the method has adhesiveness and conductivity.
  • each of the plurality of cells 30 is electrically connected to the positive electrode terminal 16 and the negative electrode terminal 17.
  • Each of the plurality of cells 30 and the terminals 16 and 17 can be electrically connected by, for example, the following method.
  • a conductive resin paste is applied to the surface on which the terminals 16 and 17 are to be arranged.
  • the terminals 16 and 17 are formed by curing the conductive resin paste.
  • the temperature for curing the conductive resin paste is, for example, about 100° C. or higher and 300° C. or lower.
  • the time for curing the conductive resin paste is, for example, 60 minutes.
  • the conductive resin paste for example, high melting point high conductive metal particles containing Ag, Cu, Ni, Zn, Al, Pd, Au, Pt or alloys thereof, low melting point metal particles, and resin are used.
  • a thermosetting conductive paste containing the same can be used.
  • the melting point of the highly conductive metal particles is, for example, 400° C. or higher.
  • the melting point of the low melting point metal particles may be equal to or lower than the curing temperature of the conductive resin paste, or may be equal to or lower than 300° C.
  • Examples of the material of the low melting point metal particles include Sn, SnZn, SnAg, SnCu, SnAl, SnPb, In, InAg, InZn, InSn, Bi, BiAg, BiNi, BiSn, BiZn and BiPb.
  • a conductive paste containing such a low-melting point metal powder at a thermosetting temperature lower than the melting point of the low-melting point metal particles, the conductive paste, the contact portion of the current collector or the anchor portion At, solid-phase and liquid-phase reactions proceed. Thereby, for example, an alloy containing the metal contained in the conductive paste and the metal contained in the current collector or the anchor portion is formed.
  • a diffusion layer containing an alloy is formed near the connection between the current collector or the anchor and the terminal.
  • Ag or Ag alloy is used as the conductive particles and Cu is used as the current collector, a highly conductive alloy containing AgCu is formed.
  • AgNi, AgPd, etc. can be formed by combining the material of the conductive particles and the material of the current collector.
  • the terminal and the current collector or anchor portion are integrally joined by the diffusion layer containing the alloy. According to the above configuration, the terminal and the current collector or the anchor portion are connected more firmly than the anchor effect. Therefore, the problem of disconnection of each member due to a difference in thermal expansion due to a thermal cycle or the like in each member of the battery 100 or an impact is unlikely to occur.
  • the shape of the high-conductivity metal particles and the low-melting metal particles is not particularly limited, and may be spherical, scale-like, needle-like or the like.
  • the resin used for the thermosetting conductive paste is not particularly limited as long as it functions as a binder for binding, and an appropriate one can be selected according to the manufacturing process to be adopted such as suitability for printing method and coatability.
  • the resin used for the thermosetting conductive paste includes, for example, a thermosetting resin.
  • the thermosetting resin include amino resins such as urea resin, melamine resin and guanamine resin, bisphenol A type, bisphenol F type, phenol novolac type, alicyclic type epoxy resin, oxetane resin, resol type and novolac type. And a silicone-modified organic resin such as silicone epoxy and silicone polyester. These resins may be used alone or in combination of two or more.
  • the manufacturing method of the present embodiment shows an example in which the battery 100 is manufactured by the powder compacting process.
  • a firing process may be used to produce a laminate of sintered bodies, and then the terminals 16 and 17 may be produced by a baking process.
  • FIG. 2 is a schematic diagram illustrating the configuration of the battery 200 according to the second embodiment.
  • FIG. 2A is a cross-sectional view of the battery 200 according to this embodiment.
  • FIG. 2B is a top view of the battery 200.
  • each of the plurality of cells 30 further includes an insulating sealing member 20.
  • the structure of the battery 200 is the same as the structure of the battery 100 of the first embodiment. Therefore, the elements common to the battery 100 of the first embodiment and the battery 200 of the present embodiment are denoted by the same reference numerals, and the description thereof may be omitted. That is, the following description of each embodiment can be applied to each other as long as there is no technical contradiction. Further, the respective embodiments may be combined with each other as long as there is no technical contradiction.
  • the sealing member 20 is located between the positive electrode current collector 11 and the negative electrode current collector 13.
  • the sealing member 20 surrounds the solid electrolyte layer 15. That is, the sealing member 20 is located outside the solid electrolyte layer 15 in plan view.
  • the sealing member 20 may be in contact with the solid electrolyte layer 15. In detail, the sealing member 20 may be in contact with the entire side surface of the solid electrolyte layer 15.
  • the sealing member 20 may be in contact with each of the positive electrode terminal 16 and the negative electrode terminal 17. In the battery 200, the solid electrolyte layer 15 is not in contact with the terminals 16 and 17, for example.
  • the sealing member 20 may be in contact with each of the positive electrode current collector 11, the negative electrode current collector 13, the first anchor portion 18, and the second anchor portion 19. A part of the positive electrode current collector 11 may be embedded in the sealing member 20. A part of the negative electrode current collector 13 may be embedded in the sealing member 20. The first anchor portion 18 may be embedded in the sealing member 20. The second anchor portion 19 may be embedded in the sealing member 20.
  • the cell 30a has the sealing member 20a.
  • the cell 30b has a sealing member 20b.
  • the cell 30c has a sealing member 20c.
  • the cell 30d has a sealing member 20d.
  • the sealing member 20a may be in contact with the sealing member 20b in the gap between the negative electrode current collector 13a and the positive electrode terminal 16.
  • the sealing member 20b may be in contact with the sealing member 20c in the gap between the positive electrode current collector 11b and the negative electrode terminal 17.
  • the sealing member 20c may be in contact with the sealing member 20d in the gap between the negative electrode current collector 13b and the positive electrode terminal 16.
  • the material of the sealing member 20 is not particularly limited as long as it has an insulating property.
  • Examples of the material of the sealing member 20 include insulating resins such as polypropylene, polyethylene, and polyamide.
  • the sealing member 20 can shield the solid electrolyte layer 15 that is easily deteriorated by water or the like from the external environment. As a result, it is possible to improve the environment resistance of the large-capacity laminated battery 200 having high energy density and high reliability.
  • the sealing member 20 functions as a shock absorbing layer by integrating with the terminal and the anchor portion.
  • the shock absorbing layer protects the power generating element inside the battery 200, and thus the shock resistance of the battery 200 is further improved.
  • the sealing member 20 may be located outside the power generation element.
  • the outside of the power generation element is a portion of the cell 30 that does not affect the electrical characteristics, and means, for example, the outside of the portion surrounded by the positive electrode layer 12 and the negative electrode layer 14.
  • the sealing member 20 may be located inside the power generation element.
  • the inside of the power generation element means, for example, the inside of the portion surrounded by the positive electrode layer 12 and the negative electrode layer 14.
  • the first anchor portion 18 and the second anchor portion 19 are located, for example, in a region of the cell 30 that does not affect the power generation element. However, the anchor portions 18 and 19 may be located inside the power generation element in order to block the outside of the cell 30 and improve the protection performance as long as the change in the characteristics of the battery 100 is allowable.
  • the surfaces of the first anchor portion 18 and the second anchor portion 19 that are in contact with the solid electrolyte layer 15 or the sealing member 20 may be subjected to a surface roughening treatment, if necessary, and have irregularities. Alternatively, a bent portion may be formed. Holes may be formed in the surfaces of the anchor portions 18 and 19. At this time, in the anchor parts 18 and 19, the grip property with respect to the solid electrolyte layer 15 or the sealing member 20 can be improved. This can further improve the impact resistance of the battery 200. As described above, by enhancing the anchor effect by the first anchor portion 18 and the second anchor portion 19, it is possible to obtain the laminated battery 200 having higher reliability.
  • the first anchor portion 18 and the second anchor portion 19 have high thermal conductivity due to their electrical conductivity.
  • the anchor portions 18 and 19 also have an effect of releasing the heat generated inside the laminated battery 200 to the outside of the power generation element via the terminals 16 and 17. As a result, it is also possible to suppress the deterioration of the life due to the operation under high temperature conditions that may become apparent in a battery having a large capacity.
  • FIG. 3 is a schematic diagram illustrating the configuration of the battery 300 according to the third embodiment.
  • FIG. 3A is a cross-sectional view of the battery 300 according to this embodiment.
  • FIG. 3B is a top view of the battery 300.
  • the positive electrode terminal 22 covers the main surfaces of the positive electrode current collectors 11 a and 11 c included in the outermost cells 30 a and 30 d of the plurality of cells 30, respectively. There is.
  • the positive electrode terminal 22 may partially cover the main surfaces of the positive electrode current collectors 11a and 11c or may entirely cover the main surfaces.
  • the positive electrode terminal 22 covers at least a part of the upper surface of the positive electrode current collector 11a located at the upper end of the battery 300 and at least a part of the lower surface of the positive electrode current collector 11c located at the lower end of the battery 300. ing.
  • the positive electrode terminal 22 has a main body portion 22a and fixing portions 22b and 22c.
  • the main body portion 22a extends in the third direction z.
  • the fixing portions 22b and 22c fix the plurality of cells 30.
  • a plurality of cells 30 are sandwiched between the fixed parts 22b and 22c.
  • the fixed portions 22b and 22c are respectively connected to the pair of end faces of the main body portion 22a.
  • Each of the fixed portions 22b and 22c extends in the first direction x.
  • the fixed portion 22b covers the main surface of the positive electrode current collector 11a.
  • the fixed portion 22c covers the main surface of the positive electrode current collector 11c.
  • the negative electrode terminal 23 may cover the main surfaces of the second anchor portions 19a and 19c included in the outermost cells 30a and 30d of the plurality of cells 30, respectively. In other words, the negative electrode terminal 23 may cover the upper surface of the second anchor portion 19a located at the upper end of the battery 300 and the lower surface of the second anchor portion 19c located at the lower end of the battery 300.
  • the negative electrode terminal 23 has a main body portion 23a and fixing portions 23b and 23c.
  • the main body portion 23a extends in the third direction z.
  • the fixing portions 23b and 23c fix the plurality of cells 30.
  • a plurality of cells 30 are sandwiched between the fixed parts 23b and 23c.
  • the fixed portions 23b and 23c are respectively connected to the pair of end faces of the main body portion 23a.
  • Each of the fixed portions 23b and 23c extends in the direction opposite to the first direction x.
  • the fixed portion 23b covers the main surface of the second anchor portion 19a.
  • the fixed portion 23c covers the main surface of the second anchor portion 19c.
  • the negative electrode current collector 13 and the first anchor portion 18 may be located at the upper end or the lower end of the battery 300.
  • the negative electrode terminal 23 may cover the main surface of the negative electrode current collector 13 included in the outermost cell 30 of the plurality of cells 30.
  • the negative electrode terminal 23 may partially cover the main surface of the negative electrode current collector 13 included in the outermost cell 30, or may entirely cover the main surface. In other words, the negative electrode terminal 23 covers at least part of the upper surface of the negative electrode current collector 13 located at the upper end of the battery 300 or at least part of the lower surface of the negative electrode current collector 13 located at the lower end of the battery 300.
  • the positive electrode terminal 22 may cover the main surface of the first anchor portion 18 included in the outermost cell 30 of the plurality of cells 30. In other words, the positive electrode terminal 22 may cover the upper surface of the first anchor portion 18 located at the upper end of the battery 300 or the lower surface of the first anchor portion 18 located at the lower end of the battery 300.
  • the fixing portions 22b, 22c, 23b and 23c of the terminals 22 and 23 can be manufactured by the following method, for example.
  • the conductive resin paste is applied to the upper surface of the positive electrode current collector 11a located at the upper end of the stacked body of the plurality of cells 30 and the upper surface of the second anchor portion 19a.
  • the negative electrode current collector 13 and the first anchor portion 18 are located at the upper end of the stacked body of the plurality of cells 30, the upper surface of the negative electrode current collector 13 located at the upper end of the stacked body and the first anchor A conductive resin paste is applied to the upper surface of the portion 18.
  • a conductive resin paste is applied to the lower surface of the positive electrode current collector 11c located at the lower end of the stacked body of the plurality of cells 30 and the lower surface of the second anchor portion 19c.
  • the conductive resin paste can be applied by, for example, a screen printing method.
  • the fixing portions 22b, 22c, 23b and 23c are formed by thermosetting the conductive resin paste.
  • the fixing portions 22b and 23b should be formed so that the positive electrode current collector 11a and the second anchor portion 19a are not short-circuited.
  • the fixing portions 22c and 23c should be formed so that the positive electrode current collector 11c and the second anchor portion 19c are not short-circuited.
  • the laminated body of the plurality of cells 30 can be held by the fixing portions 22b, 22c, 23b and 23c. As a result, it is possible to realize the laminated battery 300 having improved durability against impacts from multiple directions.
  • thermosetting resin paste containing the above-mentioned high-conductivity metal particles, low-melting-point metal particles and resin as the conductive resin paste
  • a diffusion layer containing an alloy can be formed at the interface between the fixed portions 23b and 23c and the second anchor portions 19a and 19c.
  • FIG. 4 is a schematic diagram illustrating the configuration of the battery 400 according to the fourth embodiment.
  • FIG. 4A is a cross-sectional view of the battery 400 according to this embodiment.
  • FIG. 4B is a top view of the battery 400.
  • the positive electrode current collectors 24 a, 24 b and 24 c, and the first anchor portions 26 a and 26 b are partially embedded in the positive electrode terminal 16.
  • At least one of the plurality of positive electrode current collectors 24 and the plurality of first anchor portions 26 in the battery 400 may be partially embedded in the positive electrode terminal 16.
  • the negative electrode current collectors 25 a and 25 b and the second anchor portions 27 a, 27 b and 27 c are partially embedded in the negative electrode terminal 17.
  • At least one of the plurality of negative electrode current collectors 25 and the plurality of second anchor portions 27 of the battery 400 may be partially embedded in the negative electrode terminal 17. This further improves the reliability of connection between the terminals 16 and 17 and the stacked body of the plurality of cells 30. With this configuration, the reliability of the thermal cycle of the battery 400 and the reliability against impact can be further improved.
  • the size of these portions is not particularly limited. Not done. For example, a portion of the positive electrode current collector 24 up to a distance of 1 ⁇ m or more from the end of the positive electrode current collector 24 is embedded in the positive electrode terminal 16. For example, the portion of the first anchor portion 26 up to a distance of 1 ⁇ m or more from the end portion of the first anchor portion 26 is embedded in the positive electrode terminal 16.
  • the size of these portions is It is not particularly limited.
  • a portion of the negative electrode current collector 25 up to a distance of 1 ⁇ m or more from the end portion of the negative electrode current collector 25 is embedded in the negative electrode terminal 17.
  • the portion of the second anchor portion 27 up to a distance of 1 ⁇ m or more from the end portion of the second anchor portion 27 is embedded in the negative electrode terminal 17.
  • the current collectors 24 and 25 of the battery 400 and the anchor portions 26 and 27 can be manufactured, for example, by the following method.
  • a solid electrolyte that is sintered during the thermosetting process for producing the terminals 16 and 17 is used as the solid electrolyte contained in the solid electrolyte layer 15.
  • examples of such a solid electrolyte include Li 2 S—P 2 S 5 -based sulfide glass and the like.
  • the solid electrolyte contracts by sintering.
  • the current collectors 24 and 25 included in the plurality of cells 30 and the anchor portions 26 and 27 are in the third direction z and the third direction. Pressure is applied in the opposite direction of direction z.
  • the positive electrode current collector 24 and the first anchor portion 26 project toward the positive electrode terminal 16. Further, the negative electrode current collector 25 and the second anchor portion 27 project toward the negative electrode terminal 17.
  • the current collectors 24 and 25 of the battery 400 and the anchor portions 26 and 27 can also be produced by subjecting a laminate of a plurality of cells 30 to pressure treatment. In the pressure treatment, the pressure is applied in the third direction z, for example.
  • the pressure of the pressure treatment is, for example, 20 kg/cm 2 or more and 100 kg/cm 2 or less.
  • the electrical connection and the mechanical connection between the positive electrode current collector 24, the negative electrode current collector 25, the first anchor portion 26 and the second anchor portion 27, and the terminals 16 and 17 are stronger. Therefore, the connection failure due to thermal shock can be suppressed, and the highly reliable laminated battery 400 having excellent shock resistance can be obtained.
  • the battery according to the present disclosure can be used as a secondary battery such as an all-solid-state battery used in various electronic devices and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本開示の電池は、電気的に並列に接続された複数のセルと、正極端子及び負極端子と、を備え、前記複数のセルのそれぞれは、正極層及び負極層と、前記正極層及び前記正極端子のそれぞれと電気的に接続された正極集電体と、前記負極層及び前記負極端子のそれぞれと電気的に接続された負極集電体と、前記正極集電体と前記負極集電体との間に位置する固体電解質層と、を有し、前記正極集電体と前記負極端子とは、間隙を介して互いに電気的に分離しており、前記負極集電体と前記正極端子とは、間隙を介して互いに電気的に分離している。

Description

電池
 本開示は、電池に関する。
 電池を電気的に並列に接続することによって容量を増加することができる。このような並列接続に関連する技術として、例えば、特許文献1には、積層された複数の単電池層内の集電体から電流を取り出すことができる電極タブを有するバイポーラ電池が開示されている。電極タブは、集電体に接続され、かつ電池の外部に引き出されている。特許文献2には、積層体の端面に端子用集電体が取り付けられた全固体電池が開示されている。
特開2005-310402号公報 特開2013-120717号公報
 従来技術においては、電池のさらなる小型化及び電池の信頼性の向上が求められている。
 本開示は、
 電気的に並列に接続された複数のセルと、
 正極端子及び負極端子と、
を備え、
 前記複数のセルのそれぞれは、
 正極層及び負極層と、
 前記正極層及び前記正極端子のそれぞれと電気的に接続された正極集電体と、
 前記負極層及び前記負極端子のそれぞれと電気的に接続された負極集電体と、
 前記正極集電体と前記負極集電体との間に位置する固体電解質層と、
を有し、
 前記正極集電体と前記負極端子とは、間隙を介して互いに電気的に分離しており、
 前記負極集電体と前記正極端子とは、間隙を介して互いに電気的に分離している、
電池を提供する。
 本開示によれば、小型化に適しており、かつ高い信頼性を有する電池を実現できる。
図1は、実施形態1に係る電池の構成を模式的に説明するための断面図及び上面図である。 図2は、実施形態2に係る電池の構成を模式的に説明するための断面図及び上面図である。 図3は、実施形態3に係る電池の構成を模式的に説明するための断面図及び上面図である。 図4は、実施形態4に係る電池の構成を模式的に説明するための断面図及び上面図である。
 (本開示に係る一態様の概要)
 本開示の第1態様にかかる電池は、
 電気的に並列に接続された複数のセルと、
 正極端子及び負極端子と、
を備え、
 前記複数のセルのそれぞれは、
 正極層及び負極層と、
 前記正極層及び前記正極端子のそれぞれと電気的に接続された正極集電体と、
 前記負極層及び前記負極端子のそれぞれと電気的に接続された負極集電体と、
 前記正極集電体と前記負極集電体との間に位置する固体電解質層と、
を有し、
 前記正極集電体と前記負極端子とは、間隙を介して互いに電気的に分離しており、
 前記負極集電体と前記正極端子とは、間隙を介して互いに電気的に分離している。
 第1態様によれば、複数のセルのそれぞれに含まれる集電体から電流を取り出すための配線又は電極タブを集電体に直接接続させて、電池の外部に引き出す必要がない。そのため、この電池は、小型化に適している。これにより、高いエネルギー密度を有し、大容量の電池を実現できる。さらに、複数のセルのそれぞれにおいて、正極集電体と負極端子とが間隙を介して互いに電気的に分離しており、負極集電体と正極端子とが間隙を介して互いに電気的に分離している。そのため、この電池は、高い信頼性を有する。
 本開示の第2態様において、例えば、第1態様にかかる電池では、前記複数のセルのそれぞれは、前記正極集電体と前記負極集電体との間に位置するとともに、前記固体電解質層を囲んでいる絶縁性の封止部材をさらに有していてもよい。第2態様によれば、電池は、高い信頼性を有する。
 本開示の第3態様において、例えば、第1又は第2態様にかかる電池では、前記複数のセルのそれぞれは、前記正極端子に接続されており、かつ前記負極集電体と間隙を介して電気的に分離している第1アンカー部と、前記負極端子に接続されており、かつ前記正極集電体と間隙を介して電気的に分離している第2アンカー部と、をさらに有していてもよい。第3態様によれば、複数のセルのそれぞれは、アンカー部を有している。アンカー部によれば、応力、冷熱などの外的なストレスが電池に印加された場合であっても、正極端子及び負極端子が電池から外れにくい。そのため、アンカー部によれば、電池内での接続不良の可能性を低減することができ、電池の信頼性を向上できる。
 本開示の第4態様において、例えば、第3態様にかかる電池では、前記第1アンカー部の一部が前記正極端子に埋め込まれていてもよい、又は、前記第2アンカー部の一部が前記負極端子に埋め込まれていてもよい。第4態様によれば、複数のセルと、正極端子又は負極端子との接続の信頼性を向上できる。
 本開示の第5態様において、例えば、第4態様にかかる電池では、前記第1アンカー部の端部から1μm以上の距離までの前記第1アンカー部の部分が前記正極端子に埋め込まれていてもよい、又は、前記第2アンカー部の端部から1μm以上の距離までの前記第2アンカー部の部分が前記負極端子に埋め込まれていてもよい。第5態様によれば、複数のセルと、正極端子又は負極端子との接続の信頼性をより向上できる。
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つにかかる電池では、前記正極端子は、前記複数のセルのうち最も外側に位置するセルに含まれる正極集電体の主面を被覆していてもよい、又は、前記負極端子は、前記複数のセルのうち最も外側に位置するセルに含まれる負極集電体の主面を被覆していてもよい。第6態様によれば、複数のセル同士の接合強度を向上できる。
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つにかかる電池では、前記正極集電体の一部が前記正極端子に埋め込まれていてもよい、又は、前記負極集電体の一部が前記負極端子に埋め込まれていてもよい。第7態様によれば、複数のセルと、正極端子又は負極端子との接続の信頼性を向上できる。
 本開示の第8態様において、例えば、第7態様にかかる電池では、前記正極集電体の端部から1μm以上の距離までの前記正極集電体の部分が前記正極端子に埋め込まれていてもよい、又は、前記負極集電体の端部から1μm以上の距離までの前記負極集電体の部分が前記負極端子に埋め込まれていてもよい。第8態様によれば、複数のセルと、正極端子又は負極端子との接続の信頼性をより向上できる。
 本開示の第9態様において、例えば、第1から第8態様のいずれか1つにかかる電池では、前記正極集電体が第1合金を介して前記正極端子と電気的に接続されていてもよい、又は、前記負極集電体が第2合金を介して前記負極端子と電気的に接続されていてもよい。第9態様によれば、複数のセルと、正極端子又は負極端子との電気的な接続の信頼性を向上できる。
 以下、実施の形態について図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する。
 (実施形態1)
 [積層電池の概要]
 まず、本実施形態に係る電池について説明する。
 図1は、本実施形態1に係る電池100の構成を説明する概略図である。本実施形態において、電池100は、積層電池である。そのため、本明細書では、「電池100」を「積層電池100」と呼ぶことがある。図1(a)は、本実施形態に係る電池100の断面図である。図1(b)は、電池100の上面図である。
 図1(a)に示すように、電池100は、複数のセル30、正極端子16及び負極端子17を備える。本明細書では、「セル」を「固体電池セル」と呼ぶことがある。複数のセル30は、電気的に並列に接続されている。図1(b)に示すように、複数のセル30のそれぞれは、例えば、平面視で矩形の形状を有する。複数のセル30のそれぞれは、互いに向かい合う1対の端面を2組有する。電池100において、複数のセル30が積層されている。本実施形態において、第1方向xは、特定のセル30の1対の端面の一方から他方に向かう方向である。第2方向yは、特定のセル30の他の1対の端面の一方から他方に向かう方向であり、第1方向xに直交する方向である。第3方向zは、複数のセル30の積層方向であり、第1方向x及び第2方向yのそれぞれに直交する方向である。
 複数のセル30の数は、特に限定されず、2以上100以下であってもよく、2以上10以下であってもよい。複数のセル30の数は、場合によっては、20以上100以下であってもよい。本実施形態では、電池100は、複数のセル30a,30b,30c及び30dを備えている。複数のセル30a,30b,30c及び30dがこの順番で積層されている。
 正極端子16及び負極端子17は、それぞれ、複数のセル30と電気的に接続されている。正極端子16及び負極端子17のそれぞれの形状は、例えば、板状である。正極端子16及び負極端子17は、互いに対向している。正極端子16及び負極端子17は、第1方向xに並んでいる。正極端子16と負極端子17との間に、複数のセル30が位置している。正極端子16及び負極端子17のそれぞれの表面は、例えば、絶縁層によって被覆されていない。本明細書では、正極端子16及び負極端子17を単に「端子」と呼ぶことがある。
 複数のセル30のそれぞれは、正極集電体11、正極層12、負極集電体13、負極層14及び固体電解質層15を有している。正極集電体11、正極層12、固体電解質層15、負極層14及び負極集電体13は、第3方向z又は第3方向zの反対方向にこの順番で並んでいる。本明細書では、正極集電体11及び負極集電体13を単に「集電体」と呼ぶことがある。
 正極集電体11は、例えば、板状の形状を有している。正極集電体11は、正極層12及び正極端子16のそれぞれと電気的に接続されている。正極集電体11は、正極層12及び正極端子16のそれぞれと直接接していてもよい。例えば、正極集電体11の主面が正極層12と直接接していてもよい。「主面」は、正極集電体11の最も広い面積を有する面を意味する。正極集電体11の端面が正極端子16と直接接していてもよい。正極集電体11と負極端子17とは、間隙を介して互いに電気的に分離している。正極集電体11と負極端子17との最短距離は、特に限定されず、1μm以上100μm以下であってもよく、1μm以上10μm以下であってもよい。正極集電体11と負極端子17との最短距離は、場合によっては、20μm以上100μm以下であってもよい。本明細書では、セル30の端面の近傍をセル30の「端部領域」と呼ぶことがある。正極集電体11と負極端子17とは、例えば、セル30の端部領域において、間隙を介して互いに電気的に分離している。
 正極層12は、例えば、平面視で矩形の形状を有する。正極層12は、正極集電体11の上に配置されている。正極層12は、例えば、正極集電体11の主面を部分的に被覆している。正極層12は、正極集電体11の主面の重心を含む領域を被覆していてもよい。正極層12は、例えば、セル30の端部領域に形成されていない。
 負極集電体13は、例えば、板状の形状を有している。負極集電体13は、負極層14及び負極端子17のそれぞれと電気的に接続されている。負極集電体13は、負極層14及び負極端子17のそれぞれと直接接していてもよい。例えば、負極集電体13の主面が負極層14と直接接していてもよい。負極集電体13の端面が負極端子17と直接接していてもよい。負極集電体13と正極端子16とは、間隙を介して互いに電気的に分離している。負極集電体13と正極端子16との最短距離は、特に限定されず、1μm以上100μm以下であってもよく、1μm以上10μm以下であってもよい。負極集電体13と正極端子16との最短距離は、場合によっては、20μm以上100μm以下であってもよい。負極集電体13と正極端子16とは、例えば、セル30の端部領域において、間隙を介して互いに電気的に分離している。
 負極集電体13の位置は、例えば、正極集電体11の位置と第1方向xにずれている。平面視において、負極集電体13と正極端子16との間隙は、例えば、正極集電体11と負極端子17との間隙に重ならない。
 負極層14は、例えば、平面視で矩形の形状を有する。負極層14は、負極集電体13の上に配置されている。負極層14は、例えば、負極集電体13の主面を部分的に被覆している。負極層14は、負極集電体13の主面の重心を含む領域を被覆していてもよい。負極層14は、例えば、セル30の端部領域に形成されていない。
 固体電解質層15は、例えば、平面視で矩形の形状を有する。固体電解質層15は、正極集電体11と負極集電体13との間に位置する。言い換えると、固体電解質層15は、正極層12と負極層14との間に位置する。固体電解質層15は、正極端子16及び負極端子17のそれぞれに接していてもよい。固体電解質層15は、正極層12及び負極層14のそれぞれに接していてもよい。
 上述のとおり、電池100は、複数のセル30a,30b,30c及び30dを備えている。セル30aは、正極集電体11a、正極層12a、負極集電体13a、負極層14a及び固体電解質層15aを有している。セル30bは、正極集電体11b、正極層12b、負極集電体13a、負極層14b及び固体電解質層15bを有している。セル30cは、正極集電体11b、正極層12c、負極集電体13b、負極層14c及び固体電解質層15cを有している。セル30dは、正極集電体11c、正極層12d、負極集電体13b、負極層14d及び固体電解質層15dを有している。負極集電体13aは、セル30a及び30bに共用されている。負極集電体13bは、セル30c及び30dに共用されている。正極集電体11bは、セル30b及び30cに共用されている。複数の正極集電体11a,11b及び11cと、複数の負極集電体13a及び13bとは、第3方向zに交互に並んでいる。負極集電体13aと正極端子16との間隙において、固体電解質層15aは、固体電解質層15bと接していてもよい。正極集電体11bと負極端子17との間隙において、固体電解質層15bは、固体電解質層15cと接していてもよい。負極集電体13bと正極端子16との間隙において、固体電解質層15cは、固体電解質層15dと接していてもよい。
 複数のセル30のそれぞれは、第1アンカー部18及び第2アンカー部19をさらに有していてもよい。本明細書では、第1アンカー部18及び第2アンカー部19を単に「アンカー部」と呼ぶことがある。
 第1アンカー部18は、正極端子16に接続されており、かつ負極集電体13と間隙を介して電気的に分離している。第1アンカー部18は、正極端子16に直接接していてもよい。第1アンカー部18及び負極集電体13は、例えば、第1方向xに並んでいる。第1アンカー部18と負極集電体13との最短距離は、特に限定されず、1μm以上20μm以下であってもよく、1μm以上5μm以下であってもよい。第1アンカー部18と負極集電体13との最短距離は、場合によっては、10μm以上20μm以下であってもよい。
 第2アンカー部19は、負極端子17に接続されており、かつ正極集電体11と間隙を介して電気的に分離している。第2アンカー部19は、負極端子17に直接接していてもよい。第2アンカー部19及び正極集電体11は、例えば、第1方向xに並んでいる。第2アンカー部19と正極集電体11との最短距離は、特に限定されず、1μm以上20μm以下であってもよく、1μm以上5μm以下であってもよい。第2アンカー部19と正極集電体11との最短距離は、場合によっては、10μm以上20μm以下であってもよい。
 詳細には、電池100において、セル30aは、第1アンカー部18a及び第2アンカー部19aを有している。セル30bは、第1アンカー部18a及び第2アンカー部19bを有している。セル30cは、第1アンカー部18b及び第2アンカー部19bを有している。セル30dは、第1アンカー部18b及び第2アンカー部19cを有している。第1アンカー部18aは、セル30a及び30bに共用されている。第1アンカー部18bは、セル30c及び30dに共用されている。第2アンカー部19bは、セル30b及び30cに共用されている。
 第1アンカー部18及び第2アンカー部19は、基本的には、セル30の発電要素に影響しない領域に位置している。第1アンカー部18及び第2アンカー部19は、例えば、固体電解質層15の内部に埋め込まれている。
 以上の構成によれば、正極端子16及び負極端子17は、セル30の電池特性及びセル30の体積に影響を与えることなく、複数のセル30を一体構造で並列接続することができる。これにより、積層電池100の内部において、正極端子16及び負極端子17は、それぞれ、正極集電体11及び負極集電体13と強固に接合される。そのため、電池100を大容量化することができる。すなわち、小型形状で、かつ耐衝撃性を有し、さらに、集電体11及び13のたわみに起因する応力に対する信頼性を向上できるとともに、高いエネルギー密度及び高い信頼性を有する大容量の積層電池100を実現できる。
 複数のセル30のそれぞれにおいて、正極集電体11は、第1合金を介して正極端子16と電気的に接続されていてもよい。第1合金は、例えば、正極集電体11の材料と正極端子16の材料とを含む。第1合金は、例えば、正極集電体11と正極端子16との界面において、正極集電体11に含まれる金属と正極端子16に含まれる金属とが混合されることによって形成される。本明細書では、第1合金が形成されている領域を「第1合金部」又は「第1拡散層」と呼ぶことがある。正極集電体11及び正極端子16が第1拡散層を介して一体化している場合、アンカー効果を利用して正極集電体11及び正極端子16を接合する場合に比べて、熱衝撃及び振動に対する電池100の電気的接続の信頼性が向上する。第1合金部によれば、正極集電体11及び正極端子16の接続強度が向上する。第1合金部から周囲の部材に第1合金が拡散していると、正極集電体11及び正極端子16の接続強度がより向上する。
 複数のセル30のそれぞれにおいて、負極集電体13は、第2合金を介して負極端子17と電気的に接続されていてもよい。第2合金は、例えば、負極集電体13の材料と負極端子17の材料とを含む。第2合金は、例えば、負極集電体13と負極端子17との界面において、負極集電体13に含まれる金属と負極端子17に含まれる金属とが混合されることによって形成される。本明細書では、第2合金が形成されている領域を「第2合金部」又は「第2拡散層」と呼ぶことがある。負極集電体13及び負極端子17が第2拡散層を介して一体化している場合、アンカー効果を利用して負極集電体13及び負極端子17を接合する場合に比べて、熱衝撃及び振動に対する電池100の電気的接続の信頼性が向上する。第2合金部によれば、負極集電体13及び負極端子17の接続強度が向上する。第2合金部から周囲の部材に第2合金が拡散していると、負極集電体13及び負極端子17の接続強度がより向上する。
 複数のセル30のそれぞれにおいて、第1アンカー部18は、第3合金を介して正極端子16と接続されていてもよい。第3合金は、例えば、第1アンカー部18の材料と正極端子16の材料とを含む。第3合金は、例えば、第1アンカー部18と正極端子16との界面において、第1アンカー部18に含まれる金属と正極端子16に含まれる金属とが混合されることによって形成される。本明細書では、第3合金が形成されている領域を「第3合金部」又は「第3拡散層」と呼ぶことがある。第3合金部によれば、第1アンカー部18及び正極端子16の接続強度が向上する。
 複数のセル30のそれぞれにおいて、第2アンカー部19は、第4合金を介して負極端子17と接続されていてもよい。第4合金は、例えば、第2アンカー部19の材料と負極端子17の材料とを含む。第4合金は、例えば、第2アンカー部19と負極端子17との界面において、第2アンカー部19に含まれる金属と負極端子17に含まれる金属とが混合されることによって形成される。本明細書では、第4合金が形成されている領域を「第4合金部」又は「第4拡散層」と呼ぶことがある。第4合金部によれば、第2アンカー部19及び負極端子17の接続強度が向上する。
 以上の構成によれば、電気的に並列に接続された複数のセル30を強固に小型一体化することによって、高いエネルギー密度及び高い信頼性を有する電池100を提供できる。
 すなわち、以上の構成によれば、集電体11及び13から電流を取り出すための配線又は電極タブを集電体11及び13に接続させて、電池100の外部に引き出すことなく、一体化された並列接続の積層電池を得ることができる。さらに、アンカー部18及び19によって、並列接続された複数のセル30を強固に小型一体化できるため、大容量かつ高いエネルギー密度で、高い信頼性を有する電池100を実現できる。
 [積層電池の具体的な構成]
 以下、電池100の各構成についてより具体的に説明する。
 まず、本発明の一実施形態の積層電池100の各構成について説明する。
 正極層12は、正極活物質を含む正極活物質層として機能する。正極層12は、正極活物質を主成分として含んでいてもよい。主成分とは、正極層12に重量比で最も多く含まれた成分を意味する。正極活物質は、負極よりも高い電位において、その結晶構造内にリチウム(Li)イオン、マグネシウム(Mg)イオンなどの金属イオンが挿入又は脱離され、それに伴って酸化又は還元が行われる物質をいう。正極活物質の種類は、電池の種類に応じて適宜選択することができ、公知の正極活物質が用いられうる。正極活物質としては、リチウムと遷移金属元素とを含む化合物が挙げられる。この化合物としては、例えば、リチウムと遷移金属元素とを含む酸化物、及び、リチウムと遷移金属元素とを含むリン酸化合物が挙げられる。リチウムと遷移金属元素とを含む酸化物としては、例えば、LiNix1-x2(Mは、Co、Al、Mn、V、Cr、Mg、Ca、Ti、Zr、Nb、Mo及びWからなる群より選ばれる少なくとも1つの元素であり、xは、0<x≦1を満たす)などのリチウムニッケル複合酸化物、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)などの層状酸化物、スピネル構造を有するマンガン酸リチウム(LiMn24、Li2MnO3、LiMnO2)などが用いられる。リチウムと遷移金属元素とを含むリン酸化合物としては、オリビン構造を有するリン酸鉄リチウム(LiFePO4)などが用いられる。正極活物質には、硫黄(S)、硫化リチウム(Li2S)などの硫化物を用いることもできる。硫化物を含む粒子に、ニオブ酸リチウム(LiNbO3)などをコーティング又は添加したものを正極活物質として用いることもできる。正極活物質は、1種又は2種以上を組み合わせて使用してもよい。
 上述のとおり、正極層12は、正極活物質を含んでいれば特に限定されない。正極層12は、正極活物質と他の添加材料との合剤から構成される合剤層であってもよい。他の添加材料としては、無機系固体電解質などの固体電解質、アセチレンブラックなどの導電助剤、ポリエチレンオキシド、ポリフッ化ビニリデンなどの結着用バインダーなどが用いられうる。正極層12において、正極活物質と他の添加材料とを所定の割合で混合することによって、正極層12内でのリチウムイオン導電性を向上させることができるとともに、電子伝導性も向上させることができる。
 正極層12の厚さは、例えば、5μm以上300μm以下である。
 負極層14は、負極活物質などの負極材料を含む負極活物質層として機能する。負極層14は、負極材料を主成分として含んでいてもよい。負極活物質は、正極よりも低い電位において、その結晶構造内にリチウム(Li)イオン、マグネシウム(Mg)イオンなどの金属イオンが挿入又は脱離され、それに伴って酸化又は還元が行われる物質をいう。負極活物質の種類は、電池の種類に応じて適宜選択することができ、公知の負極活物質が用いられうる。負極活物質としては、天然黒鉛、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素などの炭素材料、固体電解質と合剤化されるべき合金系材料などが用いられうる。合金系材料としては、LiAl、LiZn、Li3Bi、Li3Cd、Li3Sb、Li4Si、Li4.4Pb、Li4.4Sn、Li0.17C、LiC6などのリチウム合金、チタン酸リチウム(Li4Ti512)などのリチウムと遷移金属元素との酸化物、酸化亜鉛(ZnO)、酸化ケイ素(SiOx)などの金属酸化物などが用いられうる。負極活物質は、1種又は2種以上を組み合わせて使用してもよい。
 上述のとおり、負極層14は、負極活物質を含んでいれば特に限定されない。負極層14は、負極活物質と他の添加材料との合剤から構成される合剤層であってもよい。他の添加材料としては、無機系固体電解質などの固体電解質、アセチレンブラックなどの導電助剤、ポリエチレンオキシド、ポリフッ化ビニリデンなどの結着用バインダーなどが用いられうる。負極層14において、負極活物質と他の添加材料とを所定の割合で混合することによって、負極層14内でのリチウムイオン導電性を向上させることができるとともに、電子伝導性も向上させることができる。
 負極層14の厚さは、例えば、5μm以上300μm以下である。
 固体電解質層15は、固体電解質を含む。固体電解質は、イオン導電性を有していれば特に限定されず、公知の電池用の電解質を用いることができる。固体電解質としては、例えば、Liイオン、Mgイオンなどの金属イオンを伝導する電解質が用いられうる。固体電解質は、伝導イオン種に応じて適宜選択できる。固体電解質としては、例えば、硫化物系固体電解質、酸化物系固体電解質などの無機系固体電解質が用いられうる。硫化物系固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li2S-SiS2-LiI、Li2S-SiS2-Li3PO4、Li2S-Ge22、Li2S-GeS2-P25、Li2S-GeS2-ZnSなどのリチウム含有硫化物が用いられうる。酸化物系固体電解質としては、Li2O-SiO2、Li2O-SiO2-P25などのリチウム含有金属酸化物、Lixy1-zzなどのリチウム含有金属窒化物、リン酸リチウム(Li3PO4)、リチウムチタン酸化物などのリチウム含有遷移金属酸化物などが用いられうる。固体電解質として、これらの材料の1種のみが用いられてもよく、これらの材料のうちの2種以上が組み合わされて用いられてもよい。
 固体電解質層15は、上記の固体電解質に加えて、ポリエチレンオキシド、ポリフッ化ビニリデンなどの結着用バインダーなどを含有しうる。
 固体電解質層15の厚さは、例えば、5μm以上150μm以下である。
 固体電解質は、粒子の形状を有していてもよい。固体電解質は、焼結体であってもよい。
 次に、正極端子16及び負極端子17について説明する。これらの端子16及び17は、例えば、低抵抗の導体で構成されている。端子16及び17としては、例えば、Agなどの導電性金属粒子を含む導電性樹脂を硬化したものが用いられる。導電性樹脂としては、例えば、後述する導電性樹脂ペーストを用いることができる。端子16及び17は、SUS板などの導電性の金属板に導電性接着剤を塗布したものであってもよい。導電性接着剤としては、例えば、後述する熱硬化性導電ペーストを用いることができる。導電性接着剤によれば、2つの金属板によって複数のセル30の積層体を挟持することができる。導電性接着剤は、積層電池100の使用温度の範囲及び積層電池100の製造プロセスにおいて、導電性及び接合性を維持できるものであれば特に限定されない。導電性接着剤の構成、厚さ及び材料は、積層電池100の使用環境下で要求される最大レートでの電流が導電性接着剤に通電されたときに、導電性接着剤が積層電池100の寿命特性及び電池特性に影響を与えず、導電性接着剤の耐久性を維持できる限り特に限定されない。端子16及び17は、Ni-Snなどによってめっき処理されていてもよい。
 正極集電体11及び負極集電体13は、導電性を有する材料で構成されていれば特に限定されない。集電体11及び13の材料としては、例えば、ステンレス、ニッケル、アルミニウム、鉄、チタン、銅、パラジウム、金及び白金が挙げられる。これらの集電体11及び13の材料は、単独で使用してもよいし、2種以上を組み合わせた合金として使用してもよい。集電体11及び13は、箔状体、板状体、網目状体などであってもよい。集電体11及び13の材料は、電池100の製造プロセス、電池100の使用温度、及び、電池100内の圧力によって、集電体11及び13が溶融及び分解しなければ特に限定されず、集電体11及び13に印加される電池100の動作電位と、集電体11及び13の導電性を考慮して適宜選択できる。さらに、集電体11及び13の材料は、集電体11及び13に要求される引張強度及び耐熱性に応じても選択されうる。集電体11及び13の材料の例としては、銅、アルミ及びそれらを主成分として含む合金が挙げられる。集電体11及び13は、高い強度を有する電解銅箔、又は、異種金属箔を積層したクラッド材であってもよい。集電体11及び13の厚さは、例えば、10μm以上100μm以下である。
 第1アンカー部18及び第2アンカー部19の材料は、特に限定されない。アンカー部18及び19の材料としては、例えば、集電体11及び13の材料として例示した材料が挙げられる。第1アンカー部18の材料は、負極集電体13の材料と同じであってもよい。第2アンカー部19の材料は、正極集電体11の材料と同じであってもよい。アンカー部18及び19の厚さは、例えば、10μm以上100μm以下である。
 上述の積層電池100の構成は、適宜、互いに組み合わされてもよい。
 本実施形態の電池100の構成は、特許文献1及び特許文献2に記載された電池の構成と比べて下記の点で相違している。
 特許文献1には、積層された複数の単電池層内の集電体から電流を取り出すための電極タブを当該集電体に接続させて、電池の外部に引き出している構造を有するバイポーラ電池が開示されている。特許文献1の電池の構造において、複数の単電池層は、リジッドに一体化されていない。
 特許文献2には、並列集電体を含む積層体の端面に、端子用集電体を取り付けた全固体電池が開示されている。しかし、特許文献2の全固体電池において、端子用集電体と並列集電体との間には間隙が存在しない。さらに、特許文献2の全固体電池は、アンカー部を有していない。
 特許文献1及び特許文献2に記載の電池の構成では、集電体から電流を取り出すための電極の配置、集電体の構成、及び、アンカー部の有無が本実施形態の電池100の構成と異なるため、下記の問題が生じることがある。
 特許文献1の電池の構成では、電極タブを集電体と接続させ、電池の外部に引き出す。このような電池を小型化すること、及び、電池に含まれる部材の接続強度などの信頼性を維持することは難しいことがある。そのため、特許文献1の電池は、大容量化及び小型化に適していない。特許文献1の電池に衝撃が加わった場合、電池の電気的な接続の信頼性も低い。このように、特許文献1の電池の構成では、電池を小型化及び大容量化しづらく、耐衝撃性などの電池の信頼性に関する特性に問題があることがある。
 特許文献2の電池では、積層体の端面に端子用集電体が配置されている。端子用集電体は、電池の特性を引き出す部材である。そのため、端子用集電体は、初期特性のみならず、様々な条件における電気的な接続の信頼性を有している必要がある。しかし、特許文献2の電池では、板状の端子用集電体で積層体を挟持し、かつアンカー部を有さない構造で電池セル同士の間を電気的に接続している。そのため、特許文献2の電池は、衝撃に対する機械的強度及び電気的な接続強度に問題があることがある。さらに、特許文献2では、端子用集電体に絶縁層が形成されている。特許文献2の電池に衝撃が加わり、並列集電体にずれが生じた場合、絶縁層に接していた並列集電体の端面が端子用集電体に接触することがある。これにより、短絡が生じることがある。
 特許文献1及び2に対して、本実施形態の電池100では、複数のセル30が電気的に並列に接続されており、かつ一体化されている。電池100では、正極集電体11と負極端子17とが間隙を介して互いに電気的に分離しており、かつ、負極集電体13と正極端子16とが間隙を介して互いに電気的に分離している。さらに、本実施形態の電池100において、例えば、アンカー部18及び19が端子16及び17に接続されている。そのため、本実施形態の電池100では、上述のような問題が生じにくい。特許文献1及び2は、本実施形態の電池100における上記の構成を開示していない。
 [電池の製造方法]
 次に、本実施形態に係る電池100の製造方法の一例を説明する。本実施形態に係る電池100は、例えば、シート作製法によって作製することができる。
 本明細書では、セル30を作製する工程を「シート作製工程」と呼ぶことがある。シート作製工程では、例えば、本実施形態に係る電池100に含まれるセル30の各構成の前駆体が積層された積層体を作製する。積層体では、例えば、正極集電体11の前駆体、正極層12のシート、固体電解質層15のシート、負極層14のシート及び負極集電体13の前駆体がこの順番で積層されている。並列接続されるべきセル30の数に併せて、所定の数の積層体を作製する。積層体に含まれる部材を形成する順番は、特に限定されない。
 まず、シート作製工程について説明する。シート作製工程は、セル30の各構成の前駆体であるシートを作製し、そのシートを積層する工程を含む。
 正極層12のシートは、例えば、次の方法で作製できる。まず、正極活物質、合剤としての固体電解質、導電助剤、バインダー及び溶媒を混合し、正極層12のシートを作製するためのスラリーを得る。本明細書では、正極層12のシートを作製するためのスラリーを「正極活物質スラリー」と呼ぶことがある。次に、正極活物質スラリーを正極集電体11の前駆体上に、印刷法などを利用して塗布する。得られた塗布膜を乾燥させることによって、正極層12のシートが形成される。
 正極集電体11の前駆体としては、例えば、約30μmの厚さを有する銅箔を用いることができる。正極活物質としては、例えば、約5μmの平均粒子径を有するとともに、層状構造を有するLi・Ni・Co・Al複合酸化物(LiNi0.8Co0.15Al0.052)の粉末を用いることができる。合剤としての固体電解質としては、例えば、約10μmの平均粒子径を有するとともに、三斜晶系結晶を主成分として含むLi2S-P25系硫化物のガラス粉末を用いることができる。固体電解質は、例えば、2×10-3S/cm以上3×10-3S/cm以下の高いイオン導電性を有する。
 正極活物質スラリーは、例えば、スクリーン印刷法によって、正極集電体11の前駆体である銅箔の片方の表面上に塗布することができる。得られた塗布膜は、例えば、所定形状を有するとともに、約50μm以上100μm以下の厚さを有する。次に、塗布膜を乾燥させることによって、正極層12のシートが得られる。塗布膜の乾燥は、80℃以上130℃以下の温度で行ってもよい。正極層12のシートの厚さは、例えば、30μm以上60μm以下である。
 負極層14のシートは、例えば、次の方法で作製できる。まず、負極活物質、固体電解質、導電助剤、バインダー及び溶媒を混合し、負極層14のシートを作製するためのスラリーを得る。本明細書では、負極層14のシートを作製するためのスラリーを「負極活物質スラリー」と呼ぶことがある。負極活物質スラリーを負極集電体13の前駆体上に、印刷法などを利用して塗布する。得られた塗布膜を乾燥させることによって、負極層14のシートが形成される。
 負極集電体13の前駆体としては、例えば、約30μmの厚さを有する銅箔を用いることができる。負極活物質としては、例えば、約10μmの平均粒子径を有する天然黒鉛の粉末を用いることができる。固体電解質としては、例えば、正極層12のシートの作製方法で例示したものを用いることができる。
 負極活物質スラリーは、例えば、スクリーン印刷法によって、負極集電体13の前駆体である銅箔の片方の表面上に塗布することができる。得られた塗布膜は、例えば、所定形状を有するとともに、約50μm以上100μm以下の厚さを有する。次に、塗布膜を乾燥させることによって、負極層14のシートが得られる。塗布膜の乾燥は、80℃以上130℃以下の温度で行ってもよい。負極層14のシートの厚さは、例えば、30μm以上60μm以下である。
 固体電解質層15のシートは、正極層12のシートと負極層14のシートとの間に配置される。固体電解質層15のシートは、例えば、次の方法で作製できる。まず、固体電解質、導電助剤、バインダー及び溶媒を混合し、固体電解質層15のシートを作製するためのスラリーを得る。本明細書では、固体電解質層15のシートを作製するためのスラリーを「固体電解質スラリー」と呼ぶことがある。固体電解質スラリーを正極層12のシートの上に塗布する。同様に、固体電解質スラリーを負極層14のシートの上に塗布する。固体電解質スラリーの塗布は、例えば、メタルマスクを用いた印刷法によって行う。得られた塗布膜は、例えば、約100μmの厚さを有する。次に、塗布膜を乾燥させる。塗布膜の乾燥は、80℃以上130℃以下の温度で行ってもよい。これにより、正極層12のシートの上、及び、負極層14のシートの上のそれぞれに固体電解質層15のシートが形成される。
 固体電解質層15のシートの作製方法は、上述の方法に限定されない。固体電解質層15のシートは、次の方法によって作製されてもよい。まず、印刷法などを利用して、固体電解質スラリーを基材上に塗布する。基材としては、その上に固体電解質層15のシートを形成できるものであれば特に限定されず、例えば、テフロン(登録商標)、ポリエチレンテレフタレート(PET)などを含む。基材の形状は、例えば、フィルム状又は箔状である。次に、基材上に形成された塗布膜を乾燥させることによって固体電解質層15のシートが得られる。固体電解質層15のシートは、基材から剥がして用いることができる。
 正極活物質スラリー、負極活物質スラリー及び固体電解質スラリーに用いられる溶媒は、バインダーを溶解可能であり、かつ電池特性へ悪影響を及ぼさないものであれば、特に限定されない。溶媒としては、例えば、エタノール、イソプロパノール、n-ブタノール、ベンジルアルコールなどのアルコール類、トルエン、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、エチレングリコールエチルエーテル、イソホロン、乳酸ブチル、ジオクチルフタレート、ジオクチルアジペート、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)などの有機溶剤及び水を用いることができる。これらの溶媒は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 本実施形態では、正極活物質スラリー、負極活物質スラリー及び固体電解質スラリーを塗布する方法として、スクリーン印刷法を例示したが、塗布方法は、これに限られない。塗布方法として、ドクターブレード法、カレンダー法、スピンコート法、ディップコート法、インクジェット法、オフセット法、ダイコート法、スプレー法などを用いてもよい。
 正極活物質スラリー、負極活物質スラリー及び固体電解質スラリーには、上述した正極活物質、負極活物質、固体電解質、導電助剤、バインダー及び溶媒の他に、必要に応じて可塑剤などの助剤が混合されていてもよい。スラリーの混合方法は、特に限定されない。スラリーには、必要に応じて、増粘剤、可塑剤、消泡剤、レベリング剤、密着性付与剤などの添加剤が添加されていてもよい。
 次に、正極層12のシートの上に形成された固体電解質層15のシートと、負極層14のシートの上に形成された固体電解質層15のシートとを重ね合わせる。これにより、正極集電体11の前駆体、正極層12、固体電解質層15、負極層14及び負極集電体13の前駆体がこの順番で積層された積層体が得られる。積層体において、正極集電体11の前駆体の端面は、例えば、平面視で負極集電体13の前駆体の端面と重なっている。
 次に、正極集電体11が得られるように正極集電体11の前駆体を切断する。詳細には、負極端子17を配置したときに、正極集電体11と負極端子17とが間隙を介して互いに電気的に分離するように、正極集電体11の前駆体を切断する。正極集電体11の切断面は、例えば、第2方向yにまっすぐ延びている。正極集電体11の前駆体の切断は、例えば、レーザーによって行うことができる。正極集電体11の前駆体を切断することによって、正極集電体11とともに第2アンカー部19を形成することができる。正極集電体11と第2アンカー部19との最短距離は、例えば、10μmである。正極集電体11と第2アンカー部19との間の間隙によって、正極集電体11と第2アンカー部19とが互いに電気的に分離している。すなわち、正極集電体11と第2アンカー部19との間の間隙は、電気的に絶縁している。
 次に、負極集電体13が得られるように負極集電体13の前駆体を切断する。詳細には、正極端子16を配置したときに、負極集電体13と正極端子16とが間隙を介して互いに電気的に分離するように、負極集電体13の前駆体を切断する。負極集電体13の切断面は、例えば、第2方向yにまっすぐ延びている。負極集電体13の前駆体の切断は、例えば、レーザーによって行うことができる。負極集電体13の前駆体を切断することによって、負極集電体13とともに第1アンカー部18を形成することができる。負極集電体13と第1アンカー部18との最短距離は、例えば、10μmである。負極集電体13と第1アンカー部18との間の間隙によって、負極集電体13と第1アンカー部18とが互いに電気的に分離している。すなわち、負極集電体13と第1アンカー部18との間の間隙は、電気的に絶縁している。
 正極集電体11の前駆体の切断、及び、負極集電体13の前駆体の切断の順番は、特に限定されない。正極集電体11の前駆体を切断したあとに負極集電体13の前駆体を切断してもよく、負極集電体13の前駆体を切断したあとに正極集電体11の前駆体を切断してもよい。正極集電体11の前駆体の切断、及び、負極集電体13の前駆体の切断は、正極層12のシートの上に形成された固体電解質層15のシートと、負極層14のシートの上に形成された固体電解質層15のシートとを重ね合わせる前に行ってもよい。正極集電体11の前駆体の切断、及び、負極集電体13の前駆体の切断は、ダイシングなどの手段を用いて行ってもよい。正極集電体11の前駆体を切断するとともに、その前駆体の一部を除去することによって絶縁部を設けてもよい。負極集電体13の前駆体を切断するとともに、その前駆体の一部を除去することによって絶縁部を設けてもよい。
 以上のとおり、正極集電体11の前駆体を切断し、さらに、負極集電体13の前駆体を切断することによってセル30が得られる。セル30において、正極集電体11は、セル30の外部に露出した主面を有している。負極集電体13もセル30の外部に露出した主面を有している。
 次に、所定の数のセル30を準備する。セル30の外部に露出した正極集電体11の主面、及び、セル30の外部に露出した負極集電体13の主面のそれぞれに、例えば導電性接着剤を塗布する。導電性接着剤を塗布する方法としては、例えば、スクリーン印刷法が挙げられる。本明細書では、正極集電体11及び負極集電体13において、接着性材料が塗布された主面を「接着面」と呼ぶことがある。次に、セル30の正極集電体11の接着面を他のセル30の正極集電体11の接着面と接着させる、又は、セル30の負極集電体13の接着面を他のセル30の負極集電体13の接着面と接着させる。これにより、複数のセル30を積層することができる。接着面同士は、例えば、加圧接着によって互いに接着させることができる。接着面同士を接着させるときの温度は、例えば、50℃以上100℃以下である。接着面同士を接着させるときに、セル30に印加する圧力は、例えば、300MPa以上400MPa以下である。セル30に圧力を印加する時間は、例えば、90秒以上120秒以下である。接着には、導電性接着剤に代えて、低抵抗の導電性テープを用いることもできる。導電性接着剤に代えて、ペースト状の銀粉又は銅粉を用いることもできる。ペースト状の銀粉又は銅粉が塗布されたセル30の接着面を他のセル30の接着面に加圧圧着すれば、金属粒子を介して集電体同士をアンカー効果によって機械的に接合できる。接着性及び導電性が得られる方法である限り、複数のセル30を積層する方法は、特に限定されない。
 次に、複数のセル30のそれぞれと、正極端子16及び負極端子17とを電気的に接続させる。複数のセル30のそれぞれと端子16及び17とは、例えば、次の方法によって電気的に接続させることができる。まず、複数のセル30の積層体において、端子16及び17が配置されるべき面に、導電性樹脂ペーストを塗布する。導電性樹脂ペーストを硬化させることによって、端子16及び17が形成される。これにより、本実施形態に係る電池100が得られる。導電性樹脂ペーストを硬化させるときの温度は、例えば、約100℃以上300℃以下である。導電性樹脂ペーストを硬化させる時間は、例えば、60分である。
 導電性樹脂ペーストとしては、例えば、Ag、Cu、Ni、Zn、Al、Pd、Au、Pt又はこれらの合金を含む高融点の高導電性金属粒子と、低融点の金属粒子と、樹脂とを含む熱硬化性導電ペーストを用いることができる。高導電性金属粒子の融点は、例えば、400℃以上である。低融点の金属粒子の融点は、導電性樹脂ペーストの硬化温度以下であってもよく、300℃以下であってもよい。低融点の金属粒子の材料としては、例えば、Sn、SnZn、SnAg、SnCu、SnAl、SnPb、In、InAg、InZn、InSn、Bi、BiAg、BiNi、BiSn、BiZn及びBiPbが挙げられる。このような低融点の金属粉末を含有する導電性ペーストを使用することによって、低融点の金属粒子の融点よりも低い熱硬化温度で、導電性ペーストと、集電体又はアンカー部との接触部位において、固相及び液相反応が進行する。これにより、例えば、導電性ペーストに含まれる金属と、集電体又はアンカー部に含まれる金属とを含む合金が形成される。集電体又はアンカー部と端子との接続部近傍に、合金を含む拡散層が形成される。導電性粒子としてAg又はAg合金を使用し、集電体にCuを使用した場合には、AgCuを含む高導電性合金が形成される。さらに、導電性粒子の材料と集電体の材料との組み合わせによって、AgNi、AgPdなども形成されうる。このようにして、端子と集電体又はアンカー部とは、合金を含む拡散層によって一体的に接合される。以上の構成によれば、端子と集電体又はアンカー部とは、アンカー効果よりも強固に接続される。そのため、電池100の各部材での熱サイクルなどによる熱膨張の差、又は、衝撃に起因して、各部材の接続が外れるという問題が生じにくい。
 高導電性金属粒子及び低融点の金属粒子の形状は、特に限定されず、球状、鱗片状、針状などであってもよい。これらの金属粒子の粒子サイズは、小さければ小さいほど、低温度で合金化反応及び合金の拡散が進行する。そのため、これらの金属粒子の粒子サイズ及び形状は、プロセス設計及び電池特性への熱履歴の影響を考慮して、適宜調節されうる。
 熱硬化性導電ペーストに用いられる樹脂は、結着用バインダーとして機能するものであれば特に限定されず、印刷法に対する適性、塗布性など、採用するべき製造プロセスによって適切なものを選択できる。熱硬化性導電ペーストに用いられる樹脂は、例えば、熱硬化性樹脂を含む。熱硬化性樹脂としては、例えば、尿素樹脂、メラミン樹脂、グアナミン樹脂などのアミノ樹脂、ビスフェノールA型、ビスフェノールF型、フェノールノボラック型、脂環式などのエポキシ樹脂、オキセタン樹脂、レゾール型、ノボラック型などのフェノール樹脂、シリコーンエポキシ、シリコーンポリエステルなどのシリコーン変性有機樹脂が挙げられる。これらの樹脂は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 本実施形態の製造方法では、圧粉プロセスで電池100を作製する例を示している。ただし、焼成プロセスを使用して焼結体の積層体を作製し、さらに、焼け付けプロセスによって端子16及び17を作製してもよい。
 (実施形態2)
 図2は、本実施形態2に係る電池200の構成を説明する概略図である。図2(a)は、本実施形態に係る電池200の断面図である。図2(b)は、電池200の上面図である。図2に示すように、積層電池200において、複数のセル30のそれぞれは、絶縁性の封止部材20をさらに有している。以上を除き、電池200の構造は、実施形態1の電池100の構造と同じである。したがって、実施形態1の電池100と本実施形態の電池200とで共通する要素には同じ参照符号を付し、それらの説明を省略することがある。すなわち、以下の各実施形態に関する説明は、技術的に矛盾しない限り、相互に適用されうる。さらに、技術的に矛盾しない限り、各実施形態は、相互に組み合わされてもよい。
 封止部材20は、正極集電体11と負極集電体13との間に位置している。封止部材20は、固体電解質層15を囲んでいる。すなわち、封止部材20は、平面視で固体電解質層15よりも外側に位置している。封止部材20は、固体電解質層15に接していてもよい。詳細には、封止部材20は、固体電解質層15の側面全体に接していてもよい。封止部材20は、正極端子16及び負極端子17のそれぞれと接していてもよい。電池200において、固体電解質層15は、例えば、端子16及び17に接していない。
 封止部材20は、正極集電体11、負極集電体13、第1アンカー部18及び第2アンカー部19のそれぞれに接していてもよい。正極集電体11の一部は、封止部材20に埋め込まれていてもよい。負極集電体13の一部は、封止部材20に埋め込まれていてもよい。第1アンカー部18は、封止部材20に埋め込まれていてもよい。第2アンカー部19は、封止部材20に埋め込まれていてもよい。
 詳細には、電池200において、セル30aは、封止部材20aを有している。セル30bは、封止部材20bを有している。セル30cは、封止部材20cを有している。セル30dは、封止部材20dを有している。負極集電体13aと正極端子16との間隙において、封止部材20aは、封止部材20bと接していてもよい。正極集電体11bと負極端子17との間隙において、封止部材20bは、封止部材20cに接していてもよい。負極集電体13bと正極端子16との間隙において、封止部材20cは、封止部材20dに接していてもよい。
 封止部材20の材料は、絶縁性を有していれば特に限定されない。封止部材20の材料としては、例えば、ポリプロピレン、ポリエチレン、ポリアミドなどの絶縁性樹脂が挙げられる。
 以上の構成により、正極集電体11と負極集電体13とが接触して短絡することを抑制できる。正極集電体11と負極端子17とが接触して短絡することを抑制できる。負極集電体13と正極端子16とが接触して短絡することを抑制できる。封止部材20によれば、水などで劣化しやすい固体電解質層15を外部環境から遮断できる。これにより、高いエネルギー密度及び高い信頼性を有し、かつ大容量の積層電池200の耐環境性を向上させることができる。
 封止部材20は、端子及びアンカー部と一体化して衝撃緩衝層として機能する。衝撃緩衝層は、電池200の内部の発電要素を保護するため、電池200の耐衝撃性能がより向上する。封止部材20は、発電要素の外側に位置していてもよい。発電要素の外側とは、電気特性に影響を与えないセル30の部分であり、例えば、正極層12及び負極層14によって囲まれた部分の外側を意味する。ただし、セル30における短絡を防止し、耐衝撃性を向上するために、封止部材20は、発電要素の内側に位置していてもよい。発電要素の内側とは、例えば、正極層12及び負極層14によって囲まれた部分の内側を意味する。
 第1アンカー部18及び第2アンカー部19は、例えば、セル30において、発電要素に影響しない領域に位置している。ただし、電池100の特性変化が許容できる範囲であれば、セル30の外部を遮断し、保護性能を向上させるために、アンカー部18及び19は、発電要素の内側に位置していてもよい。
 第1アンカー部18及び第2アンカー部19において、固体電解質層15又は封止部材20と接する面には、必要に応じて、粗面化処理が施されていてもよく、凹凸が形成されていてもよく、屈曲部が形成されていてもよい。アンカー部18及び19の表面には、孔が形成されていてもよい。このとき、アンカー部18及び19において、固体電解質層15又は封止部材20に対するグリップ性を向上できる。これにより、電池200の耐衝撃性をより向上できる。このように、第1アンカー部18及び第2アンカー部19によるアンカー効果を高めることによって、さらに高い信頼性を有する積層電池200を得ることができる。第1アンカー部18及び第2アンカー部19は、その導電性により高い熱伝導性を有する。そのため、アンカー部18及び19によれば、端子16及び17を介して、積層電池200の内部に発生する熱を発電要素の外部に放出する効果も得られる。これにより、大容量化した電池で顕在化することがある高温条件下での動作に起因した寿命の劣化を抑制することもできる。
 (実施形態3)
 図3は、本実施形態3に係る電池300の構成を説明する概略図である。図3(a)は、本実施形態に係る電池300の断面図である。図3(b)は、電池300の上面図である。図3に示すように、電池300において、正極端子22は、複数のセル30のうち最も外側に位置するセル30a及び30dに含まれる正極集電体11a及び11cのそれぞれの主面を被覆している。正極端子22は、正極集電体11a及び11cの主面を部分的に被覆していてもよく、全体的に被覆していてもよい。言い換えると、正極端子22は、電池300の上端に位置する正極集電体11aの上面の少なくとも一部、及び、電池300の下端に位置する正極集電体11cの下面の少なくとも一部を被覆している。
 詳細には、正極端子22は、本体部22aと固定部22b及び22cとを有する。本体部22aは、第3方向zに延びている。固定部22b及び22cは、複数のセル30を固定している。複数のセル30が固定部22b及び22cに挟持されている。固定部22b及び22cは、それぞれ、本体部22aの一対の端面に接続されている。固定部22b及び22cのそれぞれは、第1方向xに延びている。固定部22bが正極集電体11aの主面を被覆している。固定部22cが正極集電体11cの主面を被覆している。
 電池300において、負極端子23は、複数のセル30のうち最も外側に位置するセル30a及び30dに含まれる第2アンカー部19a及び19cのそれぞれの主面を被覆していてもよい。言い換えると、負極端子23は、電池300の上端に位置する第2アンカー部19aの上面、及び、電池300の下端に位置する第2アンカー部19cの下面を被覆していてもよい。
 詳細には、負極端子23は、本体部23aと固定部23b及び23cとを有する。本体部23aは、第3方向zに延びている。固定部23b及び23cは、複数のセル30を固定している。複数のセル30が固定部23b及び23cに挟持されている。固定部23b及び23cは、それぞれ、本体部23aの一対の端面に接続されている。固定部23b及び23cのそれぞれは、第1方向xと反対方向に延びている。固定部23bが第2アンカー部19aの主面を被覆している。固定部23cが第2アンカー部19cの主面を被覆している。
 複数のセル30の配置によっては、負極集電体13及び第1アンカー部18が電池300の上端又は下端に位置していることがある。このとき、負極端子23は、複数のセル30のうち最も外側に位置するセル30に含まれる負極集電体13の主面を被覆していてもよい。負極端子23は、最も外側に位置するセル30に含まれる負極集電体13の主面を部分的に被覆していてもよく、全体的に被覆していてもよい。言い換えると、負極端子23は、電池300の上端に位置する負極集電体13の上面の少なくとも一部、又は、電池300の下端に位置する負極集電体13の下面の少なくとも一部を被覆していてもよい。さらに、電池300において、正極端子22は、複数のセル30のうち最も外側に位置するセル30に含まれる第1アンカー部18の主面を被覆していてもよい。言い換えると、正極端子22は、電池300の上端に位置する第1アンカー部18の上面、又は、電池300の下端に位置する第1アンカー部18の下面を被覆していてもよい。
 以上の構成によって、より高い接合強度により一体化された積層電池300を実現することができる。特に、この構成により、端子22及び23周辺に集中して発生する、集電体11及び13のたわみに起因する応力に対する電池300の信頼性を向上させることができる。
 端子22及び23の固定部22b,22c,23b及び23cは、例えば、次の方法で作製できる。まず、複数のセル30の積層体の上端に位置する正極集電体11aの上面、及び、第2アンカー部19aの上面に導電性樹脂ペーストを塗布する。複数のセル30の積層体の上端に負極集電体13及び第1アンカー部18が位置している場合には、積層体の上端に位置する負極集電体13の上面、及び、第1アンカー部18の上面に導電性樹脂ペーストを塗布する。さらに、複数のセル30の積層体の下端に位置する正極集電体11cの下面、及び、第2アンカー部19cの下面に導電性樹脂ペーストを塗布する。複数のセル30の積層体の下端に負極集電体13及び第1アンカー部18が位置している場合には、積層体の下端に位置する負極集電体13の下面、及び、第1アンカー部18の下面に導電性樹脂ペーストを塗布する。導電性樹脂ペーストの塗布は、例えば、スクリーン印刷法によって行うことができる。導電性樹脂ペーストを熱硬化することによって、固定部22b,22c,23b及び23cが形成される。
 このとき、正極集電体11aと第2アンカー部19aとが短絡しないように、固定部22b及び23bを形成するべきである。同様に、正極集電体11cと第2アンカー部19cとが短絡しないように、固定部22c及び23cを形成するべきである。
 この端子22及び23の構成により、固定部22b,22c,23b及び23cによって、複数のセル30の積層体を挟持できる。これにより、多方向からの衝撃への耐久性が向上した積層電池300を実現できる。
 導電性樹脂ペーストとして、上述した高導電性金属粒子、低融点の金属粒子及び樹脂を含有する熱硬化性樹脂ペーストを用いることにより、固定部22b及び22cと正極集電体11a及び11cとの界面、並びに、固定部23b及び23cと第2アンカー部19a及び19cとの界面に合金を含む拡散層を形成することができる。複数のセル30の積層体の上端又は下端に負極集電体13が位置している場合、負極集電体13と固定部23b又は23cとの界面に合金を含む拡散層を形成することができる。これにより、端子22及び23と複数のセル30の積層体とをより強固に一体化することができる。そのため、耐衝撃性に一層優れた積層電池300を実現できる。
 (実施の形態4)
 図4は、本実施形態4に係る電池400の構成を説明する概略図である。図4(a)は、本実施形態に係る電池400の断面図である。図4(b)は、電池400の上面図である。図4に示すように、正極集電体24a,24b及び24c、並びに、第1アンカー部26a及び26bは、正極端子16に部分的に埋め込まれている。電池400における複数の正極集電体24及び複数の第1アンカー部26のうちの少なくとも1つが正極端子16に部分的に埋め込まれていてもよい。同様に、負極集電体25a及び25b、並びに、第2アンカー部27a,27b及び27cは、負極端子17に部分的に埋め込まれている。電池400における複数の負極集電体25及び複数の第2アンカー部27のうちの少なくとも1つが負極端子17に部分的に埋め込まれていてもよい。これにより、端子16及び17と、複数のセル30の積層体との接続の信頼性がより向上する。この構成により、電池400の冷熱サイクルの信頼性及び衝撃に対する信頼性をさらに向上できる。
 正極端子16に埋め込まれている正極集電体24の部分及び第1アンカー部26の部分が正極端子16の厚さ方向に正極端子16を貫通しない限り、これらの部分の大きさは、特に限定されない。例えば、正極集電体24の端部から1μm以上の距離までの正極集電体24の部分が正極端子16に埋め込まれている。例えば、第1アンカー部26の端部から1μm以上の距離までの第1アンカー部26の部分が正極端子16に埋め込まれている。
 同様に、負極端子17に埋め込まれている負極集電体25の部分及び第2アンカー部27の部分が負極端子17の厚さ方向に負極端子17を貫通しない限り、これらの部分の大きさは、特に限定されない。例えば、負極集電体25の端部から1μm以上の距離までの負極集電体25の部分が負極端子17に埋め込まれている。例えば、第2アンカー部27の端部から1μm以上の距離までの第2アンカー部27の部分が負極端子17に埋め込まれている。
 電池400の集電体24及び25、並びに、アンカー部26及び27は、例えば、次の方法で作製することができる。まず、固体電解質層15に含まれる固体電解質として、端子16及び17を作製するときの熱硬化処理中に焼結する固体電解質を用いる。このような固体電解質としては、Li2S-P25系硫化物のガラスなどが挙げられる。固体電解質は、焼結することによって収縮する。このような固体電解質によれば、端子16及び17を作製するときに、複数のセル30に含まれる集電体24及び25、並びに、アンカー部26及び27に対して第3方向z及び第3方向zの反対方向に圧力が印加される。これらの圧力の作用効果により、正極端子16に向かって正極集電体24及び第1アンカー部26が突出する。さらに、負極端子17に向かって負極集電体25及び第2アンカー部27が突出する。これにより、正極集電体24、負極集電体25、第1アンカー部26及び第2アンカー部27が、それぞれ、対応する端子16及び17に部分的に埋め込まれた積層電池400を作製できる。電池400の集電体24及び25、並びに、アンカー部26及び27は、複数のセル30の積層体を加圧処理することによっても作製できる。加圧処理において、圧力は、例えば、第3方向zに印加される。加圧処理の圧力は、例えば、20kg/cm2以上100kg/cm2以下である。
 電池400の構成によれば、正極集電体24、負極集電体25、第1アンカー部26及び第2アンカー部27と、端子16及び17との電気的接続及び機械的接続がより強固であるため、熱衝撃による接続不良を抑制でき、さらに耐衝撃性に優れた、高信頼性の積層電池400が得られる。
 以上、本開示に係る電池について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 本開示に係る電池は、各種の電子機器、自動車などに用いられる全固体電池などの二次電池として利用されうる。
 11,24 正極集電体
 12 正極層
 13,25 負極集電体
 14 負極層
 15 固体電解質層
 16,22 正極端子
 17,23 負極端子
 18,26 第1アンカー部
 19,27 第2アンカー部
 20 封止部材
 30 セル
 100,200,300,400 電池

Claims (9)

  1.  電気的に並列に接続された複数のセルと、
     正極端子及び負極端子と、
    を備え、
     前記複数のセルのそれぞれは、
     正極層及び負極層と、
     前記正極層及び前記正極端子のそれぞれと電気的に接続された正極集電体と、
     前記負極層及び前記負極端子のそれぞれと電気的に接続された負極集電体と、
     前記正極集電体と前記負極集電体との間に位置する固体電解質層と、
    を有し、
     前記正極集電体と前記負極端子とは、間隙を介して互いに電気的に分離しており、
     前記負極集電体と前記正極端子とは、間隙を介して互いに電気的に分離している、
    電池。
  2.  前記複数のセルのそれぞれは、前記正極集電体と前記負極集電体との間に位置するとともに、前記固体電解質層を囲んでいる絶縁性の封止部材をさらに有する、請求項1に記載の電池。
  3.  前記複数のセルのそれぞれは、
     前記正極端子に接続されており、かつ前記負極集電体と間隙を介して電気的に分離している第1アンカー部と、
     前記負極端子に接続されており、かつ前記正極集電体と間隙を介して電気的に分離している第2アンカー部と、
    をさらに有する、請求項1又は2に記載の電池。
  4.  前記第1アンカー部の一部が前記正極端子に埋め込まれている、又は、前記第2アンカー部の一部が前記負極端子に埋め込まれている、請求項3に記載の電池。
  5.  前記第1アンカー部の端部から1μm以上の距離までの前記第1アンカー部の部分が前記正極端子に埋め込まれている、又は、前記第2アンカー部の端部から1μm以上の距離までの前記第2アンカー部の部分が前記負極端子に埋め込まれている、請求項4に記載の電池。
  6.  前記正極端子は、前記複数のセルのうち最も外側に位置するセルに含まれる正極集電体の主面を被覆している、又は、前記負極端子は、前記複数のセルのうち最も外側に位置するセルに含まれる負極集電体の主面を被覆している、請求項1から5のいずれか1項に記載の電池。
  7.  前記正極集電体の一部が前記正極端子に埋め込まれている、又は、前記負極集電体の一部が前記負極端子に埋め込まれている、請求項1から6のいずれか1項に記載の電池。
  8.  前記正極集電体の端部から1μm以上の距離までの前記正極集電体の部分が前記正極端子に埋め込まれている、又は、前記負極集電体の端部から1μm以上の距離までの前記負極集電体の部分が前記負極端子に埋め込まれている、請求項7に記載の電池。
  9.  前記正極集電体が第1合金を介して前記正極端子と電気的に接続されている、又は、前記負極集電体が第2合金を介して前記負極端子と電気的に接続されている、請求項1から8のいずれか1項に記載の電池。
PCT/JP2019/045136 2018-12-28 2019-11-18 電池 WO2020137256A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020562918A JP7417843B2 (ja) 2018-12-28 2019-11-18 電池
CN201980070741.8A CN112913064A (zh) 2018-12-28 2019-11-18 电池
US17/343,637 US20210305664A1 (en) 2018-12-28 2021-06-09 Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018248598 2018-12-28
JP2018-248598 2018-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/343,637 Continuation US20210305664A1 (en) 2018-12-28 2021-06-09 Battery

Publications (1)

Publication Number Publication Date
WO2020137256A1 true WO2020137256A1 (ja) 2020-07-02

Family

ID=71126570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045136 WO2020137256A1 (ja) 2018-12-28 2019-11-18 電池

Country Status (4)

Country Link
US (1) US20210305664A1 (ja)
JP (1) JP7417843B2 (ja)
CN (1) CN112913064A (ja)
WO (1) WO2020137256A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145223A1 (ja) * 2022-01-25 2023-08-03 パナソニックIpマネジメント株式会社 電池および電池の製造方法
WO2024005181A1 (ja) * 2022-06-30 2024-01-04 Tdk株式会社 全固体二次電池
WO2024062777A1 (ja) * 2022-09-21 2024-03-28 パナソニックIpマネジメント株式会社 電池およびその製造方法
WO2024122105A1 (ja) * 2022-12-08 2024-06-13 パナソニックIpマネジメント株式会社 電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021118405A1 (de) 2021-07-16 2023-01-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Herstellung einer Batteriezelle bzw. eines Stapels von Batteriezellen unter Anwendung additiver Fertigungsverfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224173A (ja) * 2008-03-17 2009-10-01 Sumitomo Electric Ind Ltd 電池
JP2011198692A (ja) * 2010-03-23 2011-10-06 Namics Corp リチウムイオン二次電池及びその製造方法
JP2016001601A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 固体電池及びそれを用いた組電池
JP2016001599A (ja) * 2014-05-20 2016-01-07 パナソニックIpマネジメント株式会社 薄膜全固体電池
WO2018203474A1 (ja) * 2017-05-01 2018-11-08 株式会社村田製作所 固体電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373242B2 (ja) * 1993-02-05 2003-02-04 ティーディーケイ株式会社 積層型電池とその製造方法
JP3547959B2 (ja) * 1997-11-21 2004-07-28 三洋電機株式会社 リチウム電池及びその製造方法
CN103069639B (zh) 2010-08-09 2015-05-20 株式会社村田制作所 层叠型固体电池
JP2013120717A (ja) * 2011-12-08 2013-06-17 Toyota Motor Corp 全固体電池
JP6295819B2 (ja) * 2014-05-19 2018-03-20 Tdk株式会社 全固体二次電池
CN105552295B (zh) * 2014-10-24 2019-01-22 日立金属株式会社 电池用端子、电池用端子的制造方法和电池
JP2016091634A (ja) * 2014-10-30 2016-05-23 三菱マテリアル株式会社 蓄電デバイス及び蓄電デバイスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224173A (ja) * 2008-03-17 2009-10-01 Sumitomo Electric Ind Ltd 電池
JP2011198692A (ja) * 2010-03-23 2011-10-06 Namics Corp リチウムイオン二次電池及びその製造方法
JP2016001601A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 固体電池及びそれを用いた組電池
JP2016001599A (ja) * 2014-05-20 2016-01-07 パナソニックIpマネジメント株式会社 薄膜全固体電池
WO2018203474A1 (ja) * 2017-05-01 2018-11-08 株式会社村田製作所 固体電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145223A1 (ja) * 2022-01-25 2023-08-03 パナソニックIpマネジメント株式会社 電池および電池の製造方法
WO2024005181A1 (ja) * 2022-06-30 2024-01-04 Tdk株式会社 全固体二次電池
WO2024062777A1 (ja) * 2022-09-21 2024-03-28 パナソニックIpマネジメント株式会社 電池およびその製造方法
WO2024122105A1 (ja) * 2022-12-08 2024-06-13 パナソニックIpマネジメント株式会社 電池

Also Published As

Publication number Publication date
US20210305664A1 (en) 2021-09-30
JPWO2020137256A1 (ja) 2021-11-11
JP7417843B2 (ja) 2024-01-19
CN112913064A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2020137256A1 (ja) 電池
JP7474977B2 (ja) 電池
JP4720384B2 (ja) バイポーラ電池
CN111492527B (zh) 全固体电池
EP4109585A1 (en) Battery
US20220077546A1 (en) Battery
JP4670275B2 (ja) バイポーラ電池および組電池
US20210305665A1 (en) Battery
JP5181422B2 (ja) 双極型二次電池
JP7515059B2 (ja) 電池
JP5812884B2 (ja) 二次電池
JP7432858B2 (ja) 電池
CN115428223A (zh) 电池
WO2018154987A1 (ja) 二次電池およびその製造方法
US20230327232A1 (en) Electrical device
WO2022239449A1 (ja) 電池および積層電池
US20220037713A1 (en) Battery
JP4367220B2 (ja) バイポーラ電池、バイポーラ電池の製造方法、組電池、およびこの組電池を用いた自動車
WO2022153642A1 (ja) 電池及び積層電池
CN115066780A (zh) 电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903675

Country of ref document: EP

Kind code of ref document: A1