WO2020136902A1 - ダイボンディングフィルム、接着シート、並びに半導体パッケージ及びその製造方法 - Google Patents

ダイボンディングフィルム、接着シート、並びに半導体パッケージ及びその製造方法 Download PDF

Info

Publication number
WO2020136902A1
WO2020136902A1 PCT/JP2018/048585 JP2018048585W WO2020136902A1 WO 2020136902 A1 WO2020136902 A1 WO 2020136902A1 JP 2018048585 W JP2018048585 W JP 2018048585W WO 2020136902 A1 WO2020136902 A1 WO 2020136902A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding film
die bonding
component
semiconductor package
film
Prior art date
Application number
PCT/JP2018/048585
Other languages
English (en)
French (fr)
Inventor
祐也 平本
昌典 夏川
紘平 谷口
麻未 上田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/048585 priority Critical patent/WO2020136902A1/ja
Publication of WO2020136902A1 publication Critical patent/WO2020136902A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Definitions

  • the present invention relates to a die bonding film, an adhesive sheet, a semiconductor package and a method for manufacturing the same.
  • silver paste has been mainly used for joining the semiconductor element and the semiconductor element mounting support member.
  • supporting members for mounting semiconductor elements used are also required to be downsized and miniaturized.
  • silver paste cannot sufficiently cope with problems such as wet spreadability, protrusion, defects during wire bonding caused by inclination of semiconductor elements, difficulty in controlling thickness, and occurrence of voids. Is coming. Therefore, in recent years, an adhesive sheet including a die bonding film has been used in place of the silver paste (see, for example, Patent Documents 1 and 2).
  • Such an adhesive sheet is used in a semiconductor package manufacturing method such as an individual sticking method or a wafer backside sticking method.
  • the reel-shaped adhesive sheet is cut into individual pieces by cutting or punching, and then the die bonding film is stuck to the semiconductor element mounting support member. After that, the semiconductor elements that have been diced by the dicing process are joined to a semiconductor element mounting support member with a die bonding film. After that, a semiconductor package is manufactured through an assembly process such as wire bonding and sealing (see, for example, Patent Document 3).
  • the manufacturing cost is higher than the method using the silver paste. There is a problem.
  • a die bonding film is pasted on the backside of the semiconductor wafer, and then a dicing sheet is pasted on the other side of the die bonding film. Then, by dicing, the semiconductor wafer is divided into individual pieces with the die bonding film bonded to each other to produce semiconductor elements. Then, the semiconductor element with the die bonding film is picked up and bonded to the semiconductor element mounting support member. Then, a semiconductor package is manufactured through an assembly process such as wire bonding and sealing (see, for example, Patent Document 4).
  • This wafer backside attachment method is different from the individual piece attachment method and does not require a dedicated assembling apparatus, and the conventional assembling apparatus for silver paste is unchanged or a part of the apparatus such as adding a heating plate is improved. Can be used. Therefore, the wafer back surface sticking method tends to relatively reduce the manufacturing cost in the manufacturing method of the semiconductor package using the adhesive sheet.
  • the adhesive film that joins the semiconductor element mounting support members is also required to have the capability to handle high frequencies.
  • energy loss in the transmission process called dielectric loss occurs.
  • the dielectric loss is proportional to the product of the frequency f of the signal, the relative permittivity ⁇ , and the dielectric loss tangent (tan ⁇ ) of the material. Therefore, in order to suppress energy loss in a semiconductor package having a high signal frequency f (that is, a high frequency), a die bonding film made of a material having a low dielectric loss tangent (tan ⁇ ) is particularly used. It becomes effective (for example, refer to Patent Document 5).
  • the main object of the present invention is to provide a die bonding film capable of sufficiently reducing the dielectric loss tangent.
  • One aspect of the present invention provides a die bonding film containing an epoxy resin, an active ester resin, an elastomer, and a filler.
  • a die bonding film can have a sufficiently low dielectric loss tangent. Further, such a die bonding film tends to be excellent in low-temperature stickability and adhesive strength.
  • the content of the active ester resin may be 10 to 40% by mass based on the total amount of the die bonding film.
  • the content of the elastomer may be 5 to 50% by mass based on the total amount of the die bonding film.
  • the die bonding film may further contain a curing accelerator.
  • the thickness of the die bonding film may be 5 to 150 ⁇ m.
  • the present invention is also an application of the composition as a die bonding film or an application for manufacturing a die bonding film, wherein the composition contains an epoxy resin, an active ester resin, an elastomer and a filler. It may relate to application.
  • the present invention provides an adhesive sheet including a base material and the die bonding film described above provided on one surface of the base material.
  • the base material may be a dicing tape.
  • an adhesive sheet whose base material is a dicing tape may be referred to as a "dicing/die-bonding integrated adhesive sheet”.
  • the present invention includes a semiconductor element, a supporting member on which the semiconductor element is mounted, and an adhesive member provided between the semiconductor element and the supporting member, for adhering the semiconductor element and the supporting member to each other.
  • a semiconductor package wherein the member is a cured product of the above die bonding film.
  • the semiconductor package may be an antenna module.
  • the present invention provides a method for manufacturing a semiconductor package, which includes a step of bonding a semiconductor element and a supporting member with each other using the die bonding film described above.
  • a die bonding film capable of sufficiently reducing the dielectric loss tangent.
  • the die bonding film according to some embodiments is also excellent in low-temperature adhesiveness and adhesive strength.
  • an adhesive sheet, a semiconductor package, and a method for manufacturing the same, using such a die bonding film are provided.
  • FIG. 1 is a schematic sectional view showing an embodiment of a die bonding film.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of the adhesive sheet.
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the adhesive sheet.
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of the semiconductor package.
  • FIG. 5 is a schematic cross-sectional view showing one embodiment of a method for manufacturing a semiconductor package, and FIGS. 5A, 5B, 5C, and 5D are schematic cross-sectional views showing a series of steps. is there.
  • FIG. 6 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a semiconductor package, and FIGS. 6A and 6B are schematic cross-sectional views showing a series of steps.
  • (meth)acrylic acid means acrylic acid or methacrylic acid corresponding thereto.
  • a die bonding film contains (A) epoxy resin, (B) active ester resin, (C) elastomer, and (D) filler.
  • the die bonding film is thermosetting, and can be in a semi-cured (B stage) state and then in a completely cured product (C stage) state after the curing treatment.
  • the component (A) is a component having a property of forming a three-dimensional bond between molecules by a heating or the like and curing, and a component exhibiting an adhesive action after curing.
  • the component (A) can be used without particular limitation as long as it has an epoxy group in the molecule.
  • the component (A) may have two or more epoxy groups in the molecule.
  • Examples of the component (A) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type.
  • the component (A) may be a cresol novolac type epoxy resin, a bisphenol type epoxy resin, or a dicyclopentadiene type epoxy resin from the viewpoint of tackiness and flexibility of the film.
  • the epoxy equivalent of the component (A) is not particularly limited, but may be 90 to 300 g/eq, 110 to 290 g/eq, or 110 to 290 g/eq. When the epoxy equivalent of the component (A) is in such a range, it tends to easily secure the fluidity of the adhesive composition when forming the die bonding film while maintaining the bulk strength of the die bonding film.
  • the content of the component (A) may be 5 to 40 mass% based on the total amount of the die bonding film.
  • the content of the component (A) may be 8% by mass or more, 10% by mass or more, or 12% by mass or more, based on the total amount of the die bonding film, 30% by mass or less, 25% by mass or less, or 20% by mass or less. It may be less than or equal to mass %.
  • the component (B) is a component that has an active ester bond in the epoxy group in the molecule and acts as an epoxy resin curing agent.
  • the ester bond can react with the epoxy group of the component (A) to form a three-dimensional bond between molecules. Since the component (B) reacts with the epoxy group of the component (A) and does not generate a secondary hydroxyl group unlike an amine-based or phenol-based epoxy resin curing agent, the cured product of the die bonding film has a dielectric loss tangent. It is possible to reduce it sufficiently.
  • the component (B) is not particularly limited as long as it has an ester bond in the molecule, and examples thereof include an aliphatic or aromatic carboxylic acid compound, an aliphatic hydroxy compound, an aromatic hydroxy compound (phenol compound), and an aromatic compound. Examples thereof include ester compounds composed of group thiol compounds (thiophenol compounds), N-hydroxyamine compounds, and heterocyclic hydroxy compounds. Since the ester compound obtained from the aliphatic carboxylic acid compound or the aliphatic hydroxy compound contains an aliphatic chain, it tends to be able to improve solubility in an organic solvent and compatibility with an epoxy resin. Since the ester compound obtained from the aromatic carboxylic acid compound or the aromatic hydroxy compound (phenol compound) has an aromatic ring, the heat resistance tends to be improved.
  • the component (B) may be an ester compound obtained from an aromatic carboxylic acid compound and an aromatic hydroxy compound (phenol compound).
  • the aromatic carboxylic acid compound is, for example, benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenyl ether, diphenyl sulfonic acid, or the like in which 2 to 4 hydrogen atoms of the aromatic ring are substituted with a carboxy group (polyvalent carboxylic acid).
  • the aromatic hydroxy compound is a compound obtained by substituting one of the hydrogen atoms of the above-mentioned aromatic ring with a hydroxy group (monohydric phenol) or a compound obtained by substituting 2 to 4 of the above-mentioned aromatic ring hydrogen atoms with a hydroxy group (polyphenol). (Hydric phenol).
  • Examples of commercially available products of the component (B) include “EXB9451”, “EXB9460”, “EXB9460S”, “HPC-8000-65T” (all manufactured by DIC Corporation), and naphthalene, which have a dicyclopentadiene type bisphenol structure.
  • EXL9416-70BK (made by DIC Corporation) having a structure
  • DC808 having an acetyl structure of phenol novolac (manufactured by Mitsubishi Chemical Corporation)
  • “YLH1026” having a benzoyl structure of phenol novolac (Mitsubishi Chemical Corporation) Company made) etc.
  • the ester equivalent of the component (B) is not particularly limited, but may be 80 to 400 g/eq, 90 to 350 g/eq, or 100 to 300 g/eq. When the ester equivalent of the component (B) is in such a range, better reactivity and fluidity tend to be obtained.
  • the ratio of the epoxy equivalent of the component (A) to the ester equivalent of the component (B) is 0.30/0.70. ⁇ 0.70/0.30, 0.35/0.65 to 0.65/0.35, 0.40/0.60 to 0.60/0.40, or 0.45/0.55 to It may be 0.55/0.45.
  • the equivalent ratio is 0.30/0.70 or more, more sufficient curability tends to be obtained.
  • the equivalent ratio is 0.70/0.30 or less, it is possible to prevent the viscosity of the adhesive composition when forming the die bonding film from becoming too high, and to obtain more sufficient fluidity. it can.
  • the content of the component (B) may be 10 to 40% by mass based on the total amount of the die bonding film.
  • the content of the component (B) may be 10% by mass or more based on the total amount of the die bonding film, the dielectric loss tangent tends to be more sufficiently reduced, and when it is 40% by mass or less, sufficient low temperature sticking is achieved. Tends to be obtained.
  • the content of the component (B) may be 12% by mass or more, 15% by mass or more, or 18% by mass or more, and 35% by mass or less, 30% by mass or less, or 25% by mass based on the total amount of the die bonding film. It may be less than or equal to mass %.
  • the component (C) examples include polyimide resins, acrylic resins, urethane resins, polyphenylene ether resins, polyetherimide resins, phenoxy resins, modified polyphenylene ether resins, and the like, which have a crosslinkable functional group.
  • the acrylic resin means a polymer containing a structural unit derived from a (meth)acrylic acid ester.
  • the acrylic resin is preferably a polymer containing, as a constituent unit, a constituent unit derived from a (meth)acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, and a carboxy group.
  • the acrylic resin may be acrylic rubber such as a copolymer of (meth)acrylic acid ester and acrylonitrile. These may be used alone or in combination of two or more.
  • acrylic resins examples include “SG-70L”, “SG-708-6”, “WS-023 EK30”, “SG-280 EK23”, “HTR-860P-3”, and “HTR-860P”.
  • -3CSP and “HTR-860P-3CSP-3DB” (both manufactured by Nagase Chemtex Co., Ltd.).
  • the glass transition temperature (Tg) of the component (C) may be -50 to 50°C or -30 to 20°C.
  • Tg of the acrylic resin is ⁇ 50° C. or higher, the tackiness of the die bonding film becomes low, and the handleability tends to be further improved.
  • Tg of the acrylic resin is 50° C. or less, the fluidity of the adhesive composition at the time of forming the die bonding film tends to be more sufficiently secured.
  • the glass transition temperature (Tg) of the component (C) means a value measured using a DSC (Thermal Differential Scanning Calorimeter) (for example, “Thermo Plus 2” manufactured by Rigaku Corporation).
  • the weight average molecular weight (Mw) of the component (C) may be 50,000 to 1.2 million, 100,000 to 1.2 million, or 300,000 to 900,000. When the weight average molecular weight of the component (C) is 50,000 or more, the film formability tends to be more excellent. When the weight average molecular weight of the component (C) is 1.2 million or less, the fluidity of the adhesive composition when forming the die bonding film tends to be more excellent.
  • the weight average molecular weight (Mw) is a value measured by gel permeation chromatography (GPC) and converted using a calibration curve based on standard polystyrene.
  • the measuring device of the weight average molecular weight (Mw) of the component (C), the measuring conditions and the like are as follows.
  • the content of the component (C) may be 5 to 50 mass% based on the total amount of the die bonding film.
  • the content of the component (C) may be 8% by mass or more, 10% by mass or more, or 12% by mass or more, based on the total amount of the die bonding film, 40% by mass or less, 30% by mass or less, or 20% by mass or less. It may be less than or equal to mass %.
  • the component (D) may be an inorganic filler.
  • the component (D) include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, and boron nitride. , Crystalline silica, amorphous silica and the like. These may be used alone or in combination of two or more. Of these, the component (D) may be silica.
  • the average particle size of the component (D) may be 0.005 to 2.0 ⁇ m, 0.005 to 1.5 ⁇ m, and 0.005 to 1.0 ⁇ m from the viewpoint of further improving the adhesiveness.
  • the average particle diameter means a value obtained by converting from the BET specific surface area.
  • the component (D) may be surface-treated with a surface-treating agent from the viewpoint of compatibility between the surface and the solvent, other components, etc., and adhesive strength.
  • a surface treatment agent include silane coupling agents.
  • the functional group of the silane coupling agent include a vinyl group, a (meth)acryloyl group, an epoxy group, a mercapto group, an amino group, a diamino group, an alkoxy group and an ethoxy group.
  • the content of the component (D) may be 30 to 70 mass% based on the total amount of the die bonding film.
  • the content of the component (D) may be 35% by mass or more, 40% by mass or more, or 45% by mass or more, and 65% by mass or less, 60% by mass or less, or 55 based on the total amount of the die bonding film. It may be less than or equal to mass %.
  • the die bonding film according to one embodiment may further contain (E) a coupling agent and (F) a curing accelerator.
  • ⁇ (E) component coupling agent>
  • the component (E) include a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent. These may be used alone or in combination of two or more. Among these, the component (E) may be a silane coupling agent.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxy.
  • Silane ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane , ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -anilinopropyltrimethoxysilane, ⁇ -anilinopropyltriethoxysilane, ⁇ -(N,N-dimethyl)aminopropyltrimethoxysilane , ⁇ -(N,N-diethyl)aminopropyltrimethoxysilane, ⁇ -(N,N-dibutyl)aminopropyltrimethoxysilane,
  • the content of the component (E) may be 0.01 to 3.0 mass% based on the total amount of the die bonding film. When the content of the component (E) is in such a range, the interfacial bonding between different components tends to be further enhanced.
  • ⁇ (F) component curing accelerator>
  • the adhesiveness and the connection reliability tend to be more compatible with each other.
  • the component (F) include imidazoles and their derivatives, organic phosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more.
  • the component (F) may be an imidazole or a derivative thereof from the viewpoint of reactivity.
  • imidazoles examples include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. These may be used alone or in combination of two or more.
  • the content of the component (F) may be 0.01 to 1% by mass based on the total amount of the die bonding film. When the content of the component (F) is in such a range, the adhesiveness and the connection reliability tend to be more compatible with each other.
  • the die bonding film may further contain an antioxidant, a rheology control agent, a leveling agent and the like as other components.
  • the content of these components may be 0.02 to 3% by mass based on the total amount of the die bonding film.
  • FIG. 1 is a schematic sectional view showing an embodiment of a die bonding film.
  • the die bonding film 10 can be produced by forming an adhesive composition containing the above-mentioned components (A) to (F) and other components into a film.
  • Such a die bonding film 10 can be formed by applying an adhesive composition to a support film.
  • the adhesive composition may be used as a varnish of the adhesive composition diluted with a solvent.
  • the die bonding film 10 can be formed by applying the varnish of the adhesive composition to a support film and heating and drying to remove the solvent.
  • the solvent is not particularly limited as long as it can dissolve components other than the component (D).
  • the solvent include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene; aliphatic hydrocarbons such as hexane and heptane; cyclic alkanes such as methylcyclohexane; tetrahydrofuran, 1,4-dioxane and the like.
  • Cyclic ethers such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, ⁇ -butyrolactone; Carbonic acid esters such as ethylene carbonate and propylene carbonate; amides such as N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidone. These may be used alone or in combination of two or more.
  • the solvent may be toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, or cyclohexane from the viewpoint of solubility and boiling point.
  • the solid component concentration in the varnish of the adhesive composition may be 10 to 80% by weight, based on the total weight of the varnish of the adhesive composition.
  • the varnish of the adhesive composition can be prepared by mixing and kneading the components (A) to (F), other components, and a solvent.
  • the order of mixing and kneading each component is not particularly limited and can be set appropriately.
  • the mixing and kneading can be carried out by appropriately combining an ordinary stirrer, a raker, a three-roller, a ball mill, a bead mill and other dispersing machines.
  • air bubbles in the varnish may be removed by vacuum deaeration or the like.
  • the supporting film is not particularly limited, and examples thereof include films of polytetrafluoroethylene, polyethylene, polypropylene, polymethylpentene, polyethylene terephthalate, polyimide and the like.
  • the thickness of the support film may be, for example, 10 to 200 ⁇ m or 20 to 170 ⁇ m.
  • a known method can be used, and for example, a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, a curtain coating method.
  • Etc. The heating and drying conditions are not particularly limited as long as the solvent used is sufficiently volatilized, but may be, for example, 50 to 200° C. and 0.1 to 90 minutes.
  • the thickness of the die bonding film can be adjusted appropriately according to the application.
  • the thickness of the die bonding film may be 5 to 150 ⁇ m, 10 to 100 ⁇ m, or 15 to 50 ⁇ m.
  • the die bonding film according to the present embodiment can sufficiently reduce the dielectric loss tangent.
  • the dielectric loss tangent (frequency: 10 GHz, measurement temperature: 25° C.) of the cured product of the die bonding film obtained by curing the die bonding film at 170° C. for 1 hour is, for example, 0.018 or less, 0.015 or less, or 0. It may be .012 or less.
  • FIG. 2 is a schematic cross-sectional view showing the adhesive sheet according to the embodiment.
  • the adhesive sheet 100 includes a base material 20 and the die bonding film 10 described above provided on one surface of the base material 20.
  • the base material 20 is not particularly limited, but may be a base material film.
  • the base film may be similar to the support film described above.
  • the base material 20 may be a dicing tape.
  • Such an adhesive sheet can be used as a dicing/die-bonding integrated adhesive sheet. In this case, since the process of laminating on the semiconductor wafer is performed once, the work efficiency can be improved.
  • the dicing tape examples include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film.
  • the dicing tape may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, and etching treatment, if necessary.
  • the dicing tape is preferably adhesive.
  • Such a dicing tape may be one in which the above-mentioned plastic film is provided with adhesiveness, or one in which the above-mentioned plastic film is provided with an adhesive layer.
  • the adhesive sheet 100 can be formed by applying the adhesive composition or the varnish of the adhesive composition to the base film, as in the method for producing the die bonding film described above.
  • the method of applying the adhesive composition to the base material 20 may be the same as the method of applying the adhesive composition to the support film.
  • the adhesive sheet 100 may be formed by using a die-bonding film prepared in advance.
  • the adhesive sheet 100 can be formed by laminating under a predetermined condition (for example, room temperature (20° C.) or a heated state) using a roll laminator, a vacuum laminator, or the like. Since the adhesive sheet 100 can be continuously manufactured and is highly efficient, it is preferably formed by using a roll laminator in a heated state.
  • FIG. 3 is a schematic cross-sectional view showing an adhesive sheet according to another embodiment.
  • the adhesive sheet 110 further includes a protective film 30 laminated on the surface of the die bonding film 10 opposite to the base material 20.
  • the protective film 30 may be the same as the support film described above.
  • the thickness of the protective film may be, for example, 15 to 200 ⁇ m or 70 to 170 ⁇ m.
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of the semiconductor package.
  • the semiconductor package 200 includes a semiconductor element 42, a support member 50 on which the semiconductor element 42 is mounted, an adhesive member 10c that is provided between the semiconductor element 42 and the support member 50, and bonds the semiconductor element 42 and the support member 50 to each other.
  • the adhesive member 10c is a cured product of the die bonding film described above. More specifically, in the semiconductor package 200, the support member 50 and the semiconductor element 42 are bonded via the adhesive member 10c on the surface of the semiconductor element 42 opposite to the surface on which the circuit pattern 43 is provided. It is a semiconductor package.
  • a rewiring layer 48 having a rewiring pattern 47 connected to the circuit pattern 43 of the semiconductor element 42 is provided, and a solder ball 49 connected to the rewiring pattern 47 is provided on the rewiring layer 48. Is provided.
  • the semiconductor element 42 is sealed with a sealing material 46.
  • a patch antenna conductor may be provided on the surface of the support member 50 opposite to the semiconductor element 42 (not shown).
  • the die bonding film of the present embodiment can sufficiently reduce the dielectric loss tangent. Therefore, the semiconductor package including such a cured product of the die bonding film may be useful as an antenna module.
  • FIG. 5 is a schematic cross-sectional view showing one embodiment of a method for manufacturing a semiconductor package
  • FIGS. 5A, 5B, 5C, and 5D are schematic cross-sectional views showing a series of steps.
  • FIG. 6 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a semiconductor package
  • FIGS. 6A and 6B are schematic cross-sectional views showing a series of steps.
  • a series of steps of the method for manufacturing the semiconductor package shown in FIGS. 5 and 6 is a Face-up type Chip-first step in a FO-WLP (Fan Out Wafer Level Package).
  • the semiconductor element 42 provided with the circuit pattern 43 is arranged on the support member 50 via the die bonding film 10 (see FIG. 5A).
  • the supporting member 50 and the surface of the semiconductor element 42 opposite to the surface on which the circuit pattern 43 is provided are bonded (face-up type).
  • a plurality of semiconductor elements 42 may be arranged.
  • the die bonding film 10 is pressed under the conditions of 80 to 180° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds to cure the die bonding film 10, and the semiconductor element 42 and the supporting member 50.
  • the adhesive member 10c is formed between them (see FIG. 5B).
  • the timing of curing the die bonding film 10 is not particularly limited. For example, the die bonding film 10 is not cured in the step shown in FIG.
  • the die bonding film 10 may be cured while curing 46.
  • the plurality of semiconductor elements 42 on the supporting member 50 are sealed with the sealing material 46 (see FIG. 5C).
  • the sealing material 46 is polished to expose the circuit pattern 43 (see FIG. 5D).
  • a rewiring layer 48 having a rewiring pattern 47 is formed from the circuit patterns 43 in the plurality of semiconductor elements 42 sealed by the sealing material 46, and the rewiring pattern 47 is provided outside the region of the semiconductor element 42. Solder balls 49 connected to 42 are provided (see FIG. 6A). Next, the semiconductor element 42, the support member 50, and the solder balls 49 are individually separated into a group, whereby a plurality of semiconductor packages 200 can be obtained.
  • a varnish of the adhesive composition was prepared by the following procedure.
  • the type and content (solid content) of each component are as shown in Table 1.
  • (A) epoxy resin, (B) active ester resin or (G) phenol resin, and (D) filler were mixed, and cyclohexanone was added thereto and stirred.
  • (C) an elastomer, (E) a coupling agent, and (F) a curing accelerator were added, and the mixture was stirred until each component became uniform, whereby a varnish of an adhesive composition was obtained.
  • Component (F) curing accelerator (F1) 1-cyanoethyl-2-phenylimidazole (manufactured by Shikoku Chemicals Co., Ltd., trade name "CUREZOL 2PZ-CN")
  • the varnish of the obtained adhesive composition was applied onto a polyethylene terephthalate (PET) film that was a release film having a thickness of 38 ⁇ m, which was a base film (supporting film).
  • PET polyethylene terephthalate
  • the applied varnish was dried by heating at 140° C. for 5 minutes.
  • the adhesive sheets of Examples 1 to 3 and Comparative Examples 1 and 2 including the die-bonding film having a thickness of 20 ⁇ m in the semi-cured (B stage) state on the base film were obtained.
  • the die shear strength (adhesive strength) of the die bonding film was measured by the following method for the examples in which the results were good in the evaluation of the dielectric properties.
  • the die bonding film of the adhesive sheet was attached to a semiconductor wafer having a thickness of 400 ⁇ m at 70° C.
  • they were diced into a 5 mm square to obtain a semiconductor chip with a die bonding film.
  • the die-bonding film side of the individualized semiconductor chip with die-bonding film is attached to a lead frame (Dainippon Printing Co., Ltd., product name "42 Alloy LF810TR" by thermocompression bonding under the conditions of 120°C/0.1 MPa/5 seconds.
  • the die bonding film was completely cured by curing in an oven at 170° C. for 1 hour, using a universal bond tester (manufactured by Nordson Advanced Technology Co., Ltd., series 4000) at 6.7 MPa/
  • the die shear strength was measured under a temperature condition of 250° C. for 250 seconds and used as the adhesive strength. If the die shear strength is 1.0 MPa or more, it can be said that the adhesive strength is sufficient, and the results are shown in Table 1.
  • the die bonding films of Examples 1 to 3 using the component (B) as the epoxy resin curing agent were compared with the die bonding films of Comparative Examples 1 and 2 using the component (G) as the epoxy resin curing agent.
  • Has a low dielectric loss tangent This is because a hydroxyl group is generated when the component (A) and the component (G) are reacted with each other, whereas a hydroxyl group is not generated when the component (A) and the component (B) are reacted with each other. it is conceivable that. It was also found that the die bonding films of Examples 1 to 3 were excellent in low-temperature stickability and adhesive strength.
  • the die bonding film of the present invention can sufficiently reduce the dielectric loss tangent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Die Bonding (AREA)

Abstract

エポキシ樹脂と、活性エステル樹脂と、エラストマーと、フィラーと、を含有する、ダイボンディングフィルムが開示される。

Description

ダイボンディングフィルム、接着シート、並びに半導体パッケージ及びその製造方法
 本発明は、ダイボンディングフィルム、接着シート、並びに半導体パッケージ及びその製造方法に関する。
 従来、半導体素子と半導体素子搭載用支持部材との接合には、銀ペーストが主に使用されている。しかしながら、近年の半導体素子の大型化、半導体パッケージの小型化及び高性能化に伴い、使用される半導体素子搭載用支持部材にも小型化、細密化が要求されている。このような要求に対して、濡れ広がり性、はみ出し、半導体素子の傾き等に起因して発生するワイヤボンディング時における不具合、厚み制御の困難性、ボイド発生などによって、銀ペーストでは充分に対処できなくなってきている。そのため、近年、銀ペーストに代わって、ダイボンディングフィルムを備える接着シートが使用されるようになっている(例えば、特許文献1、2参照)。このような接着シートは、個片貼付け方式、ウェハ裏面貼付方式等の半導体パッケージの製造方法において使用されている。
 個片貼付け方式によって半導体パッケージを製造する場合、まず、リール状の接着シートをカッティング又はパンチングによって個片に切り出した後、ダイボンディングフィルムを半導体素子搭載用支持部材に貼り合わせる。その後、ダイシング工程によって個片化された半導体素子を、ダイボンディングフィルム付き半導体素子搭載用支持部材に接合する。その後、ワイヤボンド、封止等の組立工程を経て、半導体パッケージが製造される(例えば、特許文献3参照)。しかし、個片貼付け方式の場合、接着シートを切り出して半導体素子搭載用支持部材に接着するための専用の組立装置が必要であることから、銀ペーストを使用する方法に比べて製造コストが高くなるという問題がある。
 一方、ウェハ裏面貼付け方式によって半導体パッケージを製造する場合、まず、半導体ウェハの裏面にダイボンディングフィルムを貼付け、さらにダイボンディングフィルムの他方の面にダイシングシートを貼り合わせる。その後、ダイシングによって、ダイボンディングフィルムが貼り合わされた状態で半導体ウェハを個片化して半導体素子を作製する。次いでダイボンディングフィルム付き半導体素子をピックアップして、半導体素子搭載用支持部材に接合する。その後、ワイヤボンド、封止等の組立工程を経て、半導体パッケージが製造される(例えば、特許文献4参照)。このウェハ裏面貼付け方式は、個片貼付け方式とは異なり、専用の組立装置を必要とすることなく、従来の銀ペースト用の組立装置をそのまま、又は熱盤を付加する等の装置を一部改良して用いることができる。そのため、ウェハ裏面貼付け方式は、接着シートを用いた半導体パッケージの製造方法の中で製造コストを比較的抑えることができる傾向にある。
 ところで、近年の情報・通信機器における情報処理の高速化、通信電波の高周波化等に伴い、半導体素子搭載用支持部材を接合する接着フィルムにも高周波に対応できる性能が求められている。通常、半導体パッケージ内では、誘電損失といわれる伝送過程におけるエネルギー損失が発生する。ここで、誘電損失は、信号の周波数fと、比誘電率εと、材料の誘電正接(tanδ)との積に比例することが知られている。そのため、信号の周波数fが高い(すなわち、高周波)の半導体パッケージ内において、エネルギー損失を抑制するためには、特に、誘電正接(tanδ)の低い材料で構成されるダイボンディングフィルムを使用することが有効となる(例えば、特許文献5参照)。
特開平3-192178号公報 特開平4-234472号公報 特開平9-017810号公報 特開平4-196246号公報 特開2003-027035号公報
 そこで、本発明は、誘電正接を充分に低減可能なダイボンディングフィルムを提供することを主な目的とする。
 本発明の一側面は、エポキシ樹脂と、活性エステル樹脂と、エラストマーと、フィラーと、を含有する、ダイボンディングフィルムを提供する。このようなダイボンディングフィルムは、充分に低い誘電正接を有するものとなり得る。また、このようなダイボンディングフィルムは、低温貼付性及び接着強度の点においても優れる傾向にある。
 活性エステル樹脂の含有量は、ダイボンディングフィルム全量を基準として、10~40質量%であってよい。エラストマーの含有量は、ダイボンディングフィルム全量を基準として、5~50質量%であってよい。
 ダイボンディングフィルムは、硬化促進剤をさらに含有していてもよい。
 ダイボンディングフィルムの厚みは、5~150μmであってよい。
 本発明はさらに、組成物のダイボンディングフィルムとしての応用又はダイボンディングフィルムの製造のための応用であって、組成物が、エポキシ樹脂と、活性エステル樹脂と、エラストマーと、フィラーと、を含有する応用に関するものであってよい。
 別の側面において、本発明は、基材と、基材の一方の面上に設けられた上述のダイボンディングフィルムと、を備える、接着シートを提供する。
 基材は、ダイシングテープであってよい。本明細書において、基材がダイシングテープである接着シートを「ダイシング・ダイボンディング一体型接着シート」という場合がある。
 別の側面において、本発明は、半導体素子と、半導体素子を搭載する支持部材と、半導体素子及び支持部材の間に設けられ、半導体素子と支持部材とを接着する接着部材と、を備え、接着部材が、上述のダイボンディングフィルムの硬化物である、半導体パッケージを提供する。
 半導体パッケージは、アンテナモジュールであってよい。
 別の側面において、本発明は、上述のダイボンディングフィルムを用いて、半導体素子と支持部材とを接着する工程を備える、半導体パッケージの製造方法を提供する。
 本発明によれば、誘電正接を充分に低減可能なダイボンディングフィルムが提供される。いくつかの形態に係るダイボンディングフィルムは、低温貼付性及び接着強度の点においても優れる。また、本発明によれば、このようなダイボンディングフィルムを用いた接着シート並びに半導体パッケージ及びその製造方法が提供される。
図1は、ダイボンディングフィルムの一実施形態を示す模式断面図である。 図2は、接着シートの一実施形態を示す模式断面図である。 図3は、接着シートの他の実施形態を示す模式断面図である。 図4は、半導体パッケージの一実施形態を示す模式断面図である。 図5は、半導体パッケージの製造方法の一実施形態を示す模式断面図であり、図5(a)、(b)、(c)、及び(d)は、一連の工程を示す模式断面図である。 図6は、半導体パッケージの製造方法の一実施形態を示す模式断面図であり、図6(a)及び(b)は、一連の工程を示す模式断面図である。
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 本明細書において、(メタ)アクリル酸はアクリル酸又はそれに対応するメタクリル酸を意味する。(メタ)アクリロイル基等の他の類似表現についても同様である。
[ダイボンディングフィルム]
 一実施形態に係るダイボンディングフィルムは、(A)エポキシ樹脂と、(B)活性エステル樹脂と、(C)エラストマーと、(D)フィラーと、を含有する。ダイボンディングフィルムは、熱硬化性であり、半硬化(Bステージ)状態を経て、硬化処理後に完全硬化物(Cステージ)状態となり得る。
<(A)成分:エポキシ樹脂>
 (A)成分は、加熱等によって、分子間で三次元的な結合を形成し硬化する性質を有する成分であり、硬化後に接着作用を示す成分である。(A)成分は、分子内にエポキシ基を有するものであれば、特に制限なく用いることができる。(A)成分は、分子内に2以上のエポキシ基を有していてもよい。
 (A)成分としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、多官能フェノール類、アントラセン等の多環芳香族類のジグリシジルエーテル化合物などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(A)成分は、フィルムのタック性、柔軟性等の観点から、クレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、又はジシクロペンタジエン型エポキシ樹脂であってもよい。
 (A)成分のエポキシ当量は、特に制限されないが、90~300g/eq、110~290g/eq、又は110~290g/eqであってよい。(A)成分のエポキシ当量がこのような範囲にあると、ダイボンディングフィルムのバルク強度を維持しつつ、ダイボンディングフィルムを形成する際の接着剤組成物の流動性を確保し易い傾向にある。
 (A)成分の含有量は、ダイボンディングフィルム全量を基準として、5~40質量%であってよい。(A)成分の含有量は、ダイボンディングフィルム全量を基準として、8質量%以上、10質量%以上、又は12質量%以上であってもよく、30質量%以下、25質量%以下、又は20質量%以下であってもよい。
<(B)成分:活性エステル樹脂>
 (B)成分は、分子内にエポキシ基に活性なエステル結合を有し、エポキシ樹脂硬化剤として作用する成分である。(B)成分は、当該エステル結合が(A)成分のエポキシ基と反応して、分子間で三次元的な結合を形成し得る。(B)成分は、(A)成分のエポキシ基と反応した後、アミン系又はフェノール系のエポキシ樹脂硬化剤と異なり、2級水酸基を生じないため、ダイボンディングフィルムの硬化物において、誘電正接を充分に低減することが可能となる。(B)成分としては、分子内にエステル結合を有するものであれば特に制限されないが、例えば、脂肪族又は芳香族カルボン酸化合物と、脂肪族ヒドロキシ化合物、芳香族ヒドロキシ化合物(フェノール化合物)、芳香族チオール化合物(チオフェノール化合物)、N-ヒドロキシアミン化合物、複素環ヒドロキシ化合物と、から構成されるエステル化合物等が挙げられる。脂肪族カルボン酸化合物又は脂肪族ヒドロキシ化合物から得られるエステル化合物は、脂肪族鎖を含むことから、有機溶媒への可溶性及びエポキシ樹脂との相溶性を向上させることができる傾向にある。芳香族カルボン酸化合物又は芳香族ヒドロキシ化合物(フェノール化合物)から得られるエステル化合物は、芳香族環を有することから、耐熱性を向上させることができる傾向にある。
 これらの中でも、(B)成分は、芳香族カルボン酸化合物及び芳香族ヒドロキシ化合物(フェノール化合物)から得られるエステル化合物であってもよい。芳香族カルボン酸化合物は、例えば、ベンゼン、ナフタレン、ビフェニル、ジフェニルプロパン、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン酸等の芳香環の水素原子の2~4個をカルボキシ基で置換したもの(多価カルボン酸)であってもよい。芳香族ヒドロキシ化合物は、上述の芳香環の水素原子の1個をヒドロキシ基で置換したもの(1価フェノール)又は上述の芳香環の水素原子の2~4個をヒドロキシ基で置換したもの(多価フェノール)であってよい。
 (B)成分の市販品としては、例えば、ジシクロペンタジエン型ビスフェノール構造を有する、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」(いずれもDIC株式会社製)、ナフタレン構造を有する、「EXB9416-70BK」(DIC株式会社製)、フェノールノボラックのアセチル構造を有する、「DC808」(三菱化学株式会社製)、フェノールノボラックのベンゾイル構造を有する、「YLH1026」(三菱化学株式会社製)等が挙げられる。
 (B)成分のエステル当量は、特に制限されないが、80~400g/eq、90~350g/eq、又は100~300g/eqであってよい。(B)成分のエステル当量がこのような範囲にあると、より良好な反応性及び流動性が得られる傾向にある。
 (A)成分のエポキシ当量と(B)成分のエステル当量との比((A)成分のエポキシ当量/(B)成分のエステル当量)は、硬化性の観点から、0.30/0.70~0.70/0.30、0.35/0.65~0.65/0.35、0.40/0.60~0.60/0.40、又は0.45/0.55~0.55/0.45であってよい。当該当量比が0.30/0.70以上であると、より充分な硬化性が得られる傾向にある。当該当量比が0.70/0.30以下であると、ダイボンディングフィルムを形成する際の接着剤組成物の粘度が高くなり過ぎることを防ぐことができ、より充分な流動性を得ることができる。
 (B)成分の含有量は、ダイボンディングフィルム全量を基準として、10~40質量%であってよい。(B)成分の含有量が、ダイボンディングフィルム全量を基準として、10質量%以上であると、誘電正接をより充分に低減できる傾向にあり、40質量%以下であると、より充分な低温貼付性が得られる傾向にある。(B)成分の含有量は、ダイボンディングフィルム全量を基準として、12質量%以上、15質量%以上、又は18質量%以上であってもよく、35質量%以下、30質量%以下、又は25質量%以下であってもよい。
<(C)成分:エラストマー>
 (C)成分としては、例えば、ポリイミド樹脂、アクリル樹脂、ウレタン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、フェノキシ樹脂、変性ポリフェニレンエーテル樹脂等であって、架橋性官能基を有するものが挙げられる。ここで、アクリル樹脂とは、(メタ)アクリル酸エステルに由来する構成単位を含むポリマーを意味する。アクリル樹脂は、構成単位として、エポキシ基、アルコール性又はフェノール性水酸基、カルボキシ基等の架橋性官能基を有する(メタ)アクリル酸エステルに由来する構成単位を含むポリマーであることが好ましい。また、アクリル樹脂は、(メタ)アクリル酸エステルとアクリルニトリルとの共重合体等のアクリルゴムであってもよい。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
 アクリル樹脂の市販品としては、例えば、「SG-70L」、「SG-708-6」、「WS-023 EK30」、「SG-280 EK23」、「HTR-860P-3」、「HTR-860P-3CSP」、「HTR-860P-3CSP-3DB」(いずれもナガセケムテックス株式会社製)が挙げられる。
 (C)成分のガラス転移温度(Tg)は、-50~50℃又は-30~20℃であってよい。アクリル樹脂のTgが-50℃以上であると、ダイボンディングフィルムのタック性が低くなるため取り扱い性がより向上する傾向にある。アクリル樹脂のTgが50℃以下であると、ダイボンディングフィルムを形成する際の接着剤組成物の流動性をより充分に確保できる傾向にある。ここで、(C)成分のガラス転移温度(Tg)は、DSC(熱示差走査熱量計)(例えば、株式会社リガク製「Thermo Plus 2」)を用いて測定した値を意味する。
 (C)成分の重量平均分子量(Mw)は、5万~120万、10万~120万、又は30万~90万であってよい。(C)成分の重量平均分子量が5万以上であると、成膜性により優れる傾向にある。(C)成分の重量平均分子量が120万以下であると、ダイボンディングフィルムを形成する際の接着剤組成物の流動性により優れる傾向にある。なお、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値である。
 (C)成分の重量平均分子量(Mw)の測定装置、測定条件等は、以下のとおりである。
 ポンプ:L-6000(株式会社日立製作所製)
 カラム:ゲルパック(Gelpack)GL-R440(日立化成株式会社製)、ゲルパック(Gelpack)GL-R450(日立化成株式会社製)、及びゲルパックGL-R400M(日立化成株式会社製)(各10.7mm(直径)×300mm)をこの順に連結したカラム
 溶離液:テトラヒドロフラン(以下、「THF」という。)
 サンプル:試料120mgをTHF5mLに溶解させた溶液
 流速:1.75mL/分
 (C)成分の含有量は、ダイボンディングフィルム全量を基準として、5~50質量%であってよい。(C)成分の含有量が、ダイボンディングフィルム全量を基準として、5質量%以上であると、より良好な低温貼付性が得られる傾向にあり、50質量%以下であると、より充分な高温貯蔵弾性率が得られる傾向にある。(C)成分の含有量は、ダイボンディングフィルム全量を基準として、8質量%以上、10質量%以上、又は12質量%以上であってもよく、40質量%以下、30質量%以下、又は20質量%以下であってもよい。
<(D)成分:フィラー>
 (D)成分は、無機フィラーであってよい。(D)成分としては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうち、(D)成分は、シリカであってよい。
 (D)成分の平均粒径は、接着性がより向上する観点から、0.005~2.0μm、0.005~1.5μm、0.005~1.0μmであってよい。ここで、平均粒径は、BET比表面積から換算することによって求められる値を意味する。
 (D)成分は、その表面と溶剤、他の成分等との相溶性、接着強度の観点から表面処理剤によって表面処理されていてよい。表面処理剤としては、例えば、シラン系カップリング剤等が挙げられる。シラン系カップリング剤の官能基としては、例えば、ビニル基、(メタ)アクリロイル基、エポキシ基、メルカプト基、アミノ基、ジアミノ基、アルコキシ基、エトキシ基等が挙げられる。
 (D)成分の含有量は、ダイボンディングフィルム全量を基準として、30~70質量%であってよい。(D)成分の含有量は、ダイボンディングフィルム全量を基準として、35質量%以上、40質量%以上、又は45質量%以上であってもよく、65質量%以下、60質量%以下、又は55質量%以下であってもよい。
 一実施形態に係るダイボンディングフィルムは、(E)カップリング剤及び(F)硬化促進剤をさらに含有していてもよい。
<(E)成分:カップリング剤>
 ダイボンディングフィルムが(E)成分を含有することによって、異種成分間の界面結合をより高めることができる傾向にある。(E)成分としては、例えば、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(E)成分は、シラン系カップリング剤であってよい。
 シラン系カップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-(N,N-ジメチル)アミノプロピルトリメトキシシラン、γ-(N,N-ジエチル)アミノプロピルトリメトキシシラン、γ-(N,N-ジブチル)アミノプロピルトリメトキシシラン、γ-(N-メチル)アニリノプロピルトリメトキシシラン、γ-(N-エチル)アニリノプロピルトリメトキシシラン、γ-(N,N-ジメチル)アミノプロピルトリエトキシシラン、γ-(N,N-ジエチル)アミノプロピルトリエトキシシラン、γ-(N,N-ジブチル)アミノプロピルトリエトキシシラン、γ-(N-メチル)アニリノプロピルトリエトキシシラン、γ-(N-エチル)アニリノプロピルトリエトキシシラン、γ-(N,N-ジメチル)アミノプロピルメチルジメトキシシラン、γ-(N,N-ジエチル)アミノプロピルメチルジメトキシシラン、γ-(N,N-ジブチル)アミノプロピルメチルジメトキシシラン、γ-(N-メチル)アニリノプロピルメチルジメトキシシラン、γ-(N-エチル)アニリノプロピルメチルジメトキシシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
 (E)成分の含有量は、ダイボンディングフィルム全量を基準として、0.01~3.0質量%であってよい。(E)成分の含有量がこのような範囲にあると、異種成分間の界面結合をより高めることができる傾向にある。
<(F)成分:硬化促進剤>
 ダイボンディングフィルムが(F)成分を含有することによって、接着性と接続信頼性とをより両立することができる傾向にある。(F)成分としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、第四級アンモニウム塩等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、反応性の観点から(F)成分はイミダゾール類及びその誘導体であってよい。
 イミダゾール類としては、例えば、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
 (F)成分の含有量は、ダイボンディングフィルム全量を基準として、0.01~1質量%であってよい。(F)成分の含有量がこのような範囲にあると、接着性と接続信頼性とをより両立することができる傾向にある。
<その他の成分>
 ダイボンディングフィルムは、その他の成分として、抗酸化剤、レオロジーコントロール剤、レベリング剤等をさらに含有していてもよい。これらの成分の含有量は、ダイボンディングフィルム全量を基準として、0.02~3質量%であってよい。
 図1は、ダイボンディングフィルムの一実施形態を示す模式断面図である。ダイボンディングフィルム10は、上述の(A)成分~(F)成分、及びその他の成分を含有する接着剤組成物をフィルム状に形成することによって作製することができる。このようなダイボンディングフィルム10は、接着剤組成物を支持フィルムに塗布することによって形成することができる。接着剤組成物は、溶剤で希釈された接着剤組成物のワニスとして用いてもよい。接着剤組成物のワニスを用いる場合は、接着剤組成物のワニスを支持フィルムに塗布し、溶剤を加熱乾燥して除去することによってダイボンディングフィルム10を形成することができる。
 溶剤は、(D)成分以外の成分を溶解できるものであれば特に制限されない。溶剤としては、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;ヘキサン、ヘプタン等の脂肪族炭化水素;メチルシクロヘキサンなどの環状アルカン;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミドなどが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらのうち、溶剤は、溶解性及び沸点の観点から、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、又はシクロヘキサンであってもよい。接着剤組成物のワニス中の固形成分濃度は、接着剤組成物のワニスの全質量を基準として、10~80質量%であってよい。
 接着剤組成物のワニスは、(A)成分~(F)成分、その他の成分、及び溶剤を混合、混練することによって調製することができる。なお、各成分の混合、混練の順序は特に制限されず、適宜設定することができる。混合及び混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル、ビーズミル等の分散機を適宜、組み合わせて行うことができる。接着剤組成物のワニスを調製した後、真空脱気等によってワニス中の気泡を除去してもよい。
 支持フィルムとしては、特に制限はなく、例えば、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリエチレンテレフタレート、ポリイミド等のフィルムが挙げられる。支持フィルムの厚みは、例えば、10~200μm又は20~170μmであってよい。
 接着剤組成物のワニスを支持フィルムに塗布する方法としては、公知の方法を用いることができ、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等が挙げられる。加熱乾燥の条件は、使用した溶剤が充分に揮発する条件であれば特に制限はないが、例えば、50~200℃で0.1~90分間であってもよい。
 ダイボンディングフィルムの厚みは、用途に合わせて、適宜調整することができる。ダイボンディングフィルムの厚みは、5~150μm、10~100μm、又は15~50μmであってよい。
 本実施形態に係るダイボンディングフィルムは、誘電正接を充分に低減することが可能となる。ダイボンディングフィルムを170℃で1時間硬化させて得られるダイボンディングフィルムの硬化物の誘電正接(周波数:10GHz、測定温度:25℃)は、例えば、0.018以下、0.015以下、又は0.012以下であってよい。
[接着シート]
 図2は、一実施形態に係る接着シートを示す模式断面図である。接着シート100は、基材20と、基材20の一方の面上に上に設けられた上述のダイボンディングフィルム10と、を備える。
 基材20は、特に制限されないが、基材フィルムであってよい。基材フィルムは、上述の支持フィルムと同様のものであってよい。
 基材20は、ダイシングテープであってもよい。このような接着シートは、ダイシング・ダイボンディング一体型接着シートとして使用することができる。この場合、半導体ウェハへのラミネート工程が1回となることから、作業の効率化が可能である。
 ダイシングテープとしては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルム等が挙げられる。また、ダイシングテープは、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が行われていてもよい。ダイシングテープは、粘着性を有するものであることが好ましい。このようなダイシングテープは、上述のプラスチックフィルムに粘着性を付与したものであってもよく、上述のプラスチックフィルムの片面に粘着剤層を設けたものであってもよい。
 接着シート100は、上述のダイボンディングフィルムの作製方法と同様に、接着剤組成物又は接着剤組成物のワニスを基材フィルムに塗布することによって形成することができる。接着剤組成物を基材20に塗布する方法は、上述の接着剤組成物を支持フィルムに塗布する方法と同様であってよい。
 接着シート100は、予め作製したダイボンディングフィルムを用いて形成してもよい。この場合、接着シート100は、ロールラミネーター、真空ラミネーター等を用いて所定条件(例えば、室温(20℃)又は加熱状態)でラミネートすることによって形成することができる。接着シート100は、連続的に製造ができ、効率が良いことから、加熱状態でロールラミネーターを用いて形成することが好ましい。
 図3は、他の実施形態に係る接着シートを示す模式断面図である。接着シート110は、ダイボンディングフィルム10の基材20とは反対側の面に積層された保護フィルム30をさらに備える。保護フィルム30は、上述の支持フィルムと同様のものであってよい。保護フィルムの厚みは、例えば、15~200μm又は70~170μmであってよい。
[半導体パッケージ]
 図4は、半導体パッケージの一実施形態を示す模式断面図である。半導体パッケージ200は、半導体素子42と、半導体素子42を搭載する支持部材50と、半導体素子42及び支持部材50の間に設けられ、半導体素子42と支持部材50とを接着する接着部材10cと、を備え、接着部材10cが、上述のダイボンディングフィルムの硬化物である。より具体的には、半導体パッケージ200は、支持部材50と半導体素子42とが、半導体素子42の回路パターン43が設けられた面とは反対側の面で、接着部材10cを介して接着されてなる半導体パッケージである。半導体パッケージ200では、半導体素子42の回路パターン43に接続された再配線パターン47を有する再配線層48が設けられており、再配線層48上に、再配線パターン47に接続されたはんだボール49が設けられている。また、半導体素子42は、封止材46によって封止されている。また、半導体パッケージ200は、支持部材50の半導体素子42とは反対側の面に、パッチアンテナ導体が設けられていてもよい(図示せず)。
 本実施形態のダイボンディングフィルムは、誘電正接を充分に低減することが可能となる。そのため、このようなダイボンディングフィルムの硬化物を備える半導体パッケージは、アンテナモジュールとしても有用となり得る。
[半導体パッケージの製造方法]
 半導体パッケージの製造方法は、上述のダイボンディングフィルムを用いて、半導体素子と支持部材とを接着する工程を備える。図5は、半導体パッケージの製造方法の一実施形態を示す模式断面図であり、図5(a)、(b)、(c)、及び(d)は、一連の工程を示す模式断面図である。図6は、半導体パッケージの製造方法の一実施形態を示す模式断面図であり、図6(a)及び(b)は、一連の工程を示す模式断面図である。図5及び図6で示す半導体パッケージの製造方法の一連の工程は、FO-WLP(Fan Out Wafer Level Package)におけるFace-up型のChip-firstの工程である。
 まず、支持部材50上に、ダイボンディングフィルム10を介して、回路パターン43が設けられた半導体素子42を配置する(図5(a)参照)。このとき、支持部材50と半導体素子42の回路パターン43が設けられた面とは反対側の面とが接着されるように配置する(Face-up型)。半導体素子42は複数配置するものであってよい。次いで、ダイボンディングフィルム10を80~180℃、0.01~0.50MPaの条件で0.5~3.0秒間圧着することによって、ダイボンディングフィルム10を硬化させ、半導体素子42及び支持部材50の間に接着部材10cを形成する(図5(b)参照)。なお、ダイボンディングフィルム10の硬化のタイミングは、特に制限されず、例えば、図5(b)に示す工程でダイボンディングフィルム10を硬化させないで、後述の図5(c)示す工程で封止材46を硬化させるとともに、ダイボンディングフィルム10を硬化させてもよい。次いで、支持部材50上の複数の半導体素子42を封止材46によって封止する(図5(c)参照)。この際、半導体素子42の回路パターン43が設けられた面とは反対側の面が支持部材50と接しているので、当該面は封止されず、半導体素子42の回路パターン43が設けられた面及び半導体素子42の4つの側面が封止される。次いで、封止材46を研磨し、回路パターン43を露出させる(図5(d)参照)。
 封止材46によって封止された複数の半導体素子42における回路パターン43から、再配線パターン47を有する再配線層48を形成して、半導体素子42の領域外に、再配線パターン47によって半導体素子42に接続されたはんだボール49を設ける(図6(a)参照)。次いで、半導体素子42、支持部材50、及びはんだボール49を一群として個片することによって、複数の半導体パッケージ200を得ることができる。
 以下、本発明について実施例を挙げてより具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
<ダイボンディングフィルム及び接着シートの作製>
 以下の手順によって接着剤組成物のワニスを調製した。各成分の種類及び含有量(固形分量)は表1に示すとおりである。まず、(A)エポキシ樹脂、(B)活性エステル樹脂又は(G)フェノール樹脂、並びに(D)フィラーを配合し、これにシクロヘキサノンを加えて撹拌した。続いて、(C)エラストマー、(E)カップリング剤、及び(F)硬化促進剤を加えて、各成分が均一になるまで撹拌することによって、接着剤組成物のワニスを得た。
 なお、表1中の各成分は以下のとおりである。
(A)成分:エポキシ樹脂
(A1)クレゾールノボラック型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、商品名「YDCN-700-10」、エポキシ当量:210g/eq)
(A2)ジシクロペンタジエン型エポキシ樹脂(DIC株式会社製、商品名「HP-7200L」、エポキシ当量:248g/eq)
(A3)ビスフェノールA型エポキシ樹脂(DIC株式会社製、商品名「EXA-830CRP」、エポキシ当量:159g/eq)
(B)成分:活性エステル樹脂(エポキシ樹脂硬化剤)
(B1)活性エステル樹脂(DIC株式会社製、商品名「HPC-8000-65T」、エステル当量:223g/eq、トルエン希釈品、固形分濃度:65質量%)
(C)成分:エラストマー
(C1)アクリルゴム(ナガセケムテックス株式会社製、商品名「HTR-860P-3」、重量平均分子量80万、ガラス転移点:-13℃)
(D)成分:フィラー
(D1)シリカフィラー(株式会社アドマテックス製、商品名「SC2050-HLG」、平均粒径0.500μm)
(E)成分:カップリング剤
(E1)γ-メルカプトプロピルトリメトキシシラン(株式会社NUC製、商品名「NUC A-189」)
(E2)γ-ウレイドプロピルトリエトキシシラン、株式会社NUC製、商品名「NUC A-1160」)
(F)成分:硬化促進剤
(F1)1-シアノエチル-2-フェニルイミダゾール(四国化成工業株式会社製、商品名「キュアゾール2PZ-CN」)
(G)成分:フェノール樹脂(エポキシ樹脂硬化剤)
(G1)フェノールノボラック型フェノール樹脂(群栄化学工業株式会社製、商品名「レヂトップPSM-4326」、軟化点:126℃、水酸基当量105g/eq)
(G2)フェノールアラルキル型フェノール樹脂(三井化学株式会社製、商品名「ミレックスXLC-LL」、軟化点:77℃、水酸基当量:176g/eq)
 次に、得られた接着剤組成物のワニスを、基材フィルム(支持フィルム)である厚み38μmの離型処理を施したポリエチレンテレフタレート(PET)フィルム上に塗布した。塗布したワニスを、140℃で5分間加熱乾燥した。このようにして、基材フィルム上に、半硬化(Bステージ)状態にある厚み20μmのダイボンディングフィルムを備える実施例1~3及び比較例1、2の接着シートを得た。
<誘電特性の評価>
 実施例及び比較例で得られた各接着シートを170℃で1時間硬化させ、幅50mm、長さ80mmの試験片に切り出し、ネットワークアナライザ(アジレント・テクノロジー株式会社製、商品名「E8364B」)及び10GHz対応空洞共振器を用いて、誘電正接を測定した。測定温度は25℃とした。評価結果を表1に示す。誘電正接が低いほど、誘電特性に優れることを示す。
<低温貼付性の評価>
 誘電特性の評価において結果が良好であった実施例について、低温貼付性の評価を行った。実施例で得られた各接着シートから、幅50mm、長さ100mmの試験片を切り出した。この試験片を、支持台上に載せたシリコンウェハ(8インチ径、厚み400μm)の裏面(支持台と反対側の面)に、ダイボンディングフィルムがシリコンウェハに接する向きで積層した。積層は、ロール(温度70℃、線圧39.2N/cm(4kgf/cm)、送り速度0.5m/分)で加圧する方法により行った。シリコンウェハとダイボンディングフィルムとの間における空隙(ボイド)の有無を確認し、空隙(ボイド)がなかった場合を「A」、空隙(ボイド)があった場合を「B」とした。結果を表1に示す。
<接着強度の評価>
 誘電特性の評価において結果が良好であった実施例について、ダイボンディングフィルムのダイシェア強度(接着強度)を下記の方法により測定した。まず、接着シートのダイボンディングフィルムを厚み400μmの半導体ウェハに70℃で貼り付けた。次に、それらを5mm角にダイシングしてダイボンディングフィルム付き半導体チップを得た。個片化したダイボンディングフィルム付き半導体チップのダイボンディングフィルム側をリードフレーム(大日本印刷株式会社製、商品名「42アロイ LF810TR」上に、120℃/0.1MPa/5秒の条件で熱圧着した。次に、オーブンで170℃/1時間のキュアを行い、ダイボンディングフィルムを完全硬化させた。万能ボンドテスター(ノードソン・アドバンスト・テクノロジー株式会社製、シリーズ4000)を用いて、6.7MPa/秒、250℃の温度条件でダイシェア強度を測定し、これを接着強度とした。ダイシェア強度は、1.0MPa以上であると、充分な接着強度を有するといえる。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 エポキシ樹脂硬化剤として、(B)成分を用いた実施例1~3のダイボンディングフィルムは、エポキシ樹脂硬化剤として、(G)成分を用いた比較例1、2のダイボンディングフィルムと比較して、低い誘電正接を有することが判明した。これは、(A)成分と(G)成分とが反応した場合には水酸基が生じるのに対して、(A)成分と(B)成分とが反応した場合には水酸基が生じないためであると考えられる。また、実施例1~3のダイボンディングフィルムは、低温貼付性及び接着強度の点においても優れることが判明した。
 以上の結果より、本発明のダイボンディングフィルムが、誘電正接を充分に低減可能であることが確認された。
 10…ダイボンディングフィルム、10c…接着部材(ダイボンディングフィルムの硬化物)、20…基材、30…保護フィルム、42…半導体素子、43…回路パターン、46…封止材、47…再配線パターン、48…再配線層、49…はんだボール、50…支持部材、100、110…接着シート、200…半導体パッケージ。

Claims (10)

  1.  エポキシ樹脂と、
     活性エステル樹脂と、
     エラストマーと、
     フィラーと、
    を含有する、ダイボンディングフィルム。
  2.  前記活性エステル樹脂の含有量が、ダイボンディングフィルム全量を基準として、10~40質量%である、請求項1に記載のダイボンディングフィルム。
  3.  前記エラストマーの含有量が、ダイボンディングフィルム全量を基準として、5~50質量%である、請求項1又は2に記載のダイボンディングフィルム。
  4.  硬化促進剤をさらに含有する、請求項1~3のいずれか一項に記載のダイボンディングフィルム。
  5.  前記ダイボンディングフィルムの厚みが、5~150μmである、請求項1~4のいずれか一項に記載のダイボンディングフィルム。
  6.  基材と、
     前記基材の一方の面上に設けられた請求項1~5のいずれか一項に記載のダイボンディングフィルムと、
    を備える、接着シート。
  7.  前記基材が、ダイシングテープである、請求項6に記載の接着シート。
  8.  半導体素子と、
     前記半導体素子を搭載する支持部材と、
     前記半導体素子及び前記支持部材の間に設けられ、前記半導体素子と前記支持部材とを接着する接着部材と、
    を備え、
     前記接着部材が、請求項1~5のいずれか一項に記載のダイボンディングフィルムの硬化物である、半導体パッケージ。
  9.  アンテナモジュールである、請求項8に記載の半導体パッケージ。
  10.  請求項1~5のいずれか一項に記載のダイボンディングフィルムを用いて、半導体素子と支持部材とを接着する工程を備える、半導体パッケージの製造方法。
PCT/JP2018/048585 2018-12-28 2018-12-28 ダイボンディングフィルム、接着シート、並びに半導体パッケージ及びその製造方法 WO2020136902A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048585 WO2020136902A1 (ja) 2018-12-28 2018-12-28 ダイボンディングフィルム、接着シート、並びに半導体パッケージ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048585 WO2020136902A1 (ja) 2018-12-28 2018-12-28 ダイボンディングフィルム、接着シート、並びに半導体パッケージ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2020136902A1 true WO2020136902A1 (ja) 2020-07-02

Family

ID=71127874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048585 WO2020136902A1 (ja) 2018-12-28 2018-12-28 ダイボンディングフィルム、接着シート、並びに半導体パッケージ及びその製造方法

Country Status (1)

Country Link
WO (1) WO2020136902A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014435A1 (ja) * 2022-07-12 2024-01-18 株式会社レゾナック 硬化性樹脂組成物、硬化性フィルム、及び、積層フィルム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061478A1 (ja) * 2011-10-26 2013-05-02 味の素株式会社 樹脂組成物
JP2016219720A (ja) * 2015-05-26 2016-12-22 日東電工株式会社 接着シート、ダイシングテープ一体型接着シート、フィルム、半導体装置の製造方法および半導体装置
JP2017107731A (ja) * 2015-12-09 2017-06-15 日立化成株式会社 導電性シート、その製造方法、及びそれを用いて得られる半導体装置及び電子部品
JP2018060850A (ja) * 2016-10-03 2018-04-12 日東電工株式会社 ダイシングテープ一体型接着シート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061478A1 (ja) * 2011-10-26 2013-05-02 味の素株式会社 樹脂組成物
JP2016219720A (ja) * 2015-05-26 2016-12-22 日東電工株式会社 接着シート、ダイシングテープ一体型接着シート、フィルム、半導体装置の製造方法および半導体装置
JP2017107731A (ja) * 2015-12-09 2017-06-15 日立化成株式会社 導電性シート、その製造方法、及びそれを用いて得られる半導体装置及び電子部品
JP2018060850A (ja) * 2016-10-03 2018-04-12 日東電工株式会社 ダイシングテープ一体型接着シート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014435A1 (ja) * 2022-07-12 2024-01-18 株式会社レゾナック 硬化性樹脂組成物、硬化性フィルム、及び、積層フィルム

Similar Documents

Publication Publication Date Title
JP7298613B2 (ja) 半導体装置の製造方法、熱硬化性樹脂組成物及びダイシング・ダイボンディング一体型フィルム
WO2021002248A1 (ja) 接着剤組成物、フィルム状接着剤、接着シート、ダイシング・ダイボンディング一体型接着シート、並びに半導体装置及びその製造方法
WO2020184490A1 (ja) 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
JP2023017948A (ja) 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
JP6977588B2 (ja) 半導体装置の製造方法及び接着フィルム
JP7136200B2 (ja) 半導体装置、並びに、その製造に使用する熱硬化性樹脂組成物及びダイシングダイボンディング一体型テープ
WO2020136902A1 (ja) ダイボンディングフィルム、接着シート、並びに半導体パッケージ及びその製造方法
JP7380565B2 (ja) 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
WO2020195981A1 (ja) 半導体装置の製造方法、ダイボンディングフィルム、及びダイシング・ダイボンディング一体型接着シート
JP7322897B2 (ja) 接着フィルム、ダイシング・ダイボンディング一体型フィルム及び半導体パッケージの製造方法
JP7028264B2 (ja) フィルム状接着剤及びその製造方法、並びに半導体装置及びその製造方法
WO2022163465A1 (ja) 半導体装置及びその製造方法、並びに、熱硬化性樹脂組成物、接着フィルム及びダイシング・ダイボンディング一体型フィルム
JP7283399B2 (ja) 熱硬化性樹脂組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
WO2023152837A1 (ja) フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
TW202242057A (zh) 膜狀接著劑、切割晶粒接合一體型膜、以及半導體裝置及其製造方法
WO2020136903A1 (ja) 半導体装置の製造方法、フィルム状接着剤及びダイシング・ダイボンディング一体型フィルム
TW202237786A (zh) 接著劑組成物、膜狀接著劑、切割晶粒接合一體型膜、以及半導體裝置及其製造方法
TW202414550A (zh) 半導體裝置的製造方法、接著層及切晶黏晶一體型膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18945217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP