WO2023152837A1 - フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法 - Google Patents

フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2023152837A1
WO2023152837A1 PCT/JP2022/005175 JP2022005175W WO2023152837A1 WO 2023152837 A1 WO2023152837 A1 WO 2023152837A1 JP 2022005175 W JP2022005175 W JP 2022005175W WO 2023152837 A1 WO2023152837 A1 WO 2023152837A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
adhesive
component
mass
semiconductor chip
Prior art date
Application number
PCT/JP2022/005175
Other languages
English (en)
French (fr)
Inventor
孝明 丹羽
孝博 黒田
紘平 谷口
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to PCT/JP2022/005175 priority Critical patent/WO2023152837A1/ja
Publication of WO2023152837A1 publication Critical patent/WO2023152837A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present disclosure relates to a film adhesive, a dicing/die bonding integrated film, a semiconductor device, and a method for manufacturing the same.
  • stacked MCPs Multi Chip Packages
  • semiconductor chips are stacked in multiple layers, and are mounted as memory semiconductor packages for mobile phones and portable audio equipment.
  • speeding up, high-density, high-integration, etc. of semiconductor packages are being promoted.
  • Patent Literatures 1 and 2 disclose film-like adhesives used for adhesive layers in such systems.
  • the film-like adhesive used is required to be thin (for example, 20 ⁇ m or less in thickness).
  • the thin film-like adhesive is required to be resistant to breakage so that it does not break during processing steps (for example, peeling from the support film, winding up the film-like adhesive itself, etc.).
  • wire bonding failures may occur when connecting the semiconductor chips by wire bonding. It is presumed that this is because the semiconductor chip becomes fragile due to the thinning of the semiconductor chip and the increase in the number of circuit layers inside the semiconductor chip, and bonding defects or chip cracks occur due to vibration during wire bonding. From the viewpoint of suppressing such wire bonding defects, the film adhesive used for the dicing/die bonding integrated film should have a sufficiently high high-temperature storage elastic modulus after curing (for example, 150 ° C. storage elastic modulus at 100 MPa or more) is required.
  • the main object of the present disclosure is to provide a film-like adhesive that has excellent rupture resistance and a sufficiently high high-temperature storage elastic modulus after curing.
  • the film adhesive contains a thermosetting resin component, an elastomer, and an inorganic filler.
  • the total content of the thermosetting resin component and elastomer is 58% by mass or more based on the total amount of the thermosetting resin component, elastomer and inorganic filler.
  • the mass ratio of the thermosetting resin component to the elastomer is 1.3 or more.
  • the breakage resistance is excellent. There is a tendency.
  • thermosetting resin component to the elastomer when the mass ratio of the thermosetting resin component to the elastomer is 1.3 or more, the high-temperature storage elastic modulus after curing tends to be sufficiently high.
  • the total content of the thermosetting resin component and elastomer may be 95% by mass or less based on the total amount of the thermosetting resin component, elastomer and inorganic filler.
  • the mass ratio of thermosetting resin component to elastomer may be 4.0 or less.
  • the average particle size of the inorganic filler may be 0.35 ⁇ m or less from the viewpoint of achieving both rupture resistance and high-temperature storage modulus after curing.
  • the thermosetting resin component may be epoxy resin and phenol resin.
  • the thermosetting resin component may contain an epoxy resin having a naphthalene skeleton as the epoxy resin.
  • the content of the epoxy resin having a naphthalene skeleton may be 20 to 80% by mass based on the total amount of the epoxy resin contained in the thermosetting resin component.
  • the film adhesive may further contain a curing accelerator.
  • the thickness of the film adhesive may be 20 ⁇ m or less.
  • the film-like adhesive may be used in the manufacturing process of a semiconductor device in which multiple semiconductor chips are laminated.
  • the semiconductor device may be a three-dimensional NAND memory.
  • the dicing/die-bonding integrated film includes a substrate layer, an adhesive layer, and an adhesive layer made of the film-like adhesive in this order.
  • the semiconductor device includes a semiconductor chip, a support member on which the semiconductor chip is mounted, and a cured film adhesive provided between the semiconductor chip and the support member for bonding the semiconductor chip and the support member.
  • the semiconductor device may further include another semiconductor chip laminated on the surface of the semiconductor chip.
  • the manufacturing method of the semiconductor device includes a step of attaching the adhesive layer of the dicing and die bonding integrated film to the semiconductor wafer, and cutting the semiconductor wafer to which the adhesive layer is attached to form a plurality of individual pieces. and bonding the semiconductor chip with the adhesive piece to the supporting member via the adhesive piece.
  • the manufacturing method of the semiconductor device may further include a step of bonding another semiconductor chip with adhesive piece to the surface of the semiconductor chip bonded to the supporting member via the adhesive piece.
  • a film-like adhesive that has excellent rupture resistance and a sufficiently high high-temperature storage elastic modulus after curing. Further, according to the present disclosure, a dicing/die bonding integrated film and a semiconductor device using such a film-like adhesive are provided. Further, according to the present disclosure, there is provided a method of manufacturing a semiconductor device using such a dicing/die bonding integrated film.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a film adhesive.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a dicing/die-bonding integrated film.
  • FIG. 3 is a schematic cross-sectional view showing one embodiment of a semiconductor device.
  • FIG. 4 is a schematic cross-sectional view showing another embodiment of the semiconductor device.
  • FIG. 5 is a schematic cross-sectional view showing another embodiment of the semiconductor device.
  • the numerical range indicated using “to” indicates the range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other steps. good.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • the upper limit value and the lower limit value described individually can be combined arbitrarily.
  • “A or B" may include either one of A and B, or may include both.
  • each component in the composition means the total amount of the plurality of substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition.
  • (meth)acrylate means acrylate or its corresponding methacrylate.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a film adhesive.
  • the film-like adhesive 1 adheresive film shown in FIG.
  • component (C) an inorganic filler
  • the film adhesive 1 contains, in addition to components (A), (B), and (C), a curing accelerator (hereinafter sometimes referred to as "(D) component”), a coupling agent (hereinafter , and may be referred to as "(E) component”), other components, and the like.
  • the film-like adhesive 1 may be thermosetting, and may be in a semi-cured (B-stage) state and then in a completely cured (C-stage) state after curing.
  • Thermosetting Resin Component (A) may be, for example, a combination of a thermosetting resin and a curing agent for the thermosetting resin.
  • the thermosetting resin may be an epoxy resin (hereinafter sometimes referred to as "(A1) component”).
  • the curing agent for the thermosetting resin may be a phenolic resin (hereinafter sometimes referred to as "component (A2)") that can act as a curing agent for epoxy resins. That is, the (A) component may be a combination of the (A1) component and the (A2) component.
  • Epoxy Resin Component (A1) can be used without any particular limitation as long as it has an epoxy group in its molecule.
  • the (A1) component contains an epoxy resin having a naphthalene skeleton (hereinafter sometimes referred to as "(A1a) component”) from the viewpoint of sufficiently increasing the high-temperature storage modulus of the cured film adhesive. You can
  • the (A1a) component may be an epoxy resin having a tetrafunctional or higher epoxy group.
  • component (A1a) Commercially available products of component (A1a) include, for example, HP-4700, HP-4710, HP-4770 (trade names, all manufactured by DIC Corporation), NC-7000-L, NC-7300-L (trade names, All of them are manufactured by Nippon Kayaku Co., Ltd.) and the like.
  • the (A1a) component may contain, for example, an epoxy resin represented by the following formula (X).
  • the softening point of the (A1a) component may be 30°C or higher from the viewpoint of sufficiently increasing the high-temperature storage modulus of the cured film adhesive.
  • the softening point of component (A1a) may be 40° C. or higher, 80° C. or higher, or 90° C. or higher, and may be 120° C. or lower, 110° C. or lower, or 100° C. or lower.
  • the epoxy equivalent of the (A1a) component is not particularly limited, but may be 10-600 g/eq, 100-500 g/eq, or 120-450 g/eq. When the epoxy equivalent of the component (A1a) is within this range, better reactivity and fluidity tend to be obtained.
  • the content of the (A1a) component may be 20 to 80% by mass based on the total amount of the (A1) component, from the viewpoint of sufficiently increasing the high-temperature storage modulus after curing in the film adhesive.
  • the content of component (A1a) is 25% by mass or more, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, 50% by mass or more, based on the total amount of component (A1), or It may be 55% by mass or more, and may be 75% by mass or less, 70% by mass or less, or 65% by mass or less.
  • the content of the component (A1a) is the total amount of the components (A1) and (A2) (or the total amount of the component (A)) from the viewpoint of sufficiently increasing the high temperature storage modulus after curing in the film adhesive. It may be 10 to 50% by mass based on.
  • the content of component (A1a) is 15% by mass or more, 20% by mass or more, 25% by mass or more, or 30% by mass, based on the total amount of components (A1) and (A2) (or the total amount of component (A)). % or more, or 35 mass % or more, and may be 48 mass % or less, 45 mass % or less, or 42 mass % or less.
  • the (A1) component may contain, in addition to the (A1a) component, an epoxy resin having no naphthalene skeleton (hereinafter sometimes referred to as "(A1b) component").
  • (A1b) component includes, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolak type Epoxy resins, stilbene type epoxy resins, triazine skeleton-containing epoxy resins, fluorene skeleton-containing epoxy resins, triphenolmethane type epoxy resins, biphenyl type epoxy resins, xylylene type epoxy resins, phenylaralkyl type epoxy resins, biphenylaralkyl type epoxy resins, Diglycidyl ether compounds of functional phenols, polycyclic aromatics such as anthracene (excluding naphthalene), and the like.
  • the epoxy equivalent of the (A1b) component is not particularly limited, but may be 90-600 g/eq, 100-500 g/eq, or 120-450 g/eq. When the epoxy equivalent of component (A-2) is within this range, better reactivity and fluidity tend to be obtained.
  • the content of component (A1b) may be 20 to 80% by mass based on the total amount of component (A1).
  • the content of component (A1b), based on the total amount of component (A1) may be 25% by mass or more, 30% by mass or more, or 35% by mass or more, 75% by mass or less, 70% by mass or less, It may be 65% by mass or less, 60% by mass or less, 55% by mass or less, 50% by mass or less, or 45% by mass or less.
  • the content of component (A1) may be 10 to 50% by mass based on the total amount of components (A), (B), and (C).
  • the content of component (A) is 15% by mass or more, 20% by mass or more, 25% by mass or more, or 30% by mass or more based on the total amount of components (A), (B), and (C). may be 45% by mass or less, 42% by mass or less, or 40% by mass or less.
  • Component (A2) Phenolic resin Component (A2) can be used without any particular limitation as long as it has a phenolic hydroxyl group in its molecule.
  • Component (A2) includes, for example, phenols such as phenol, cresol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, and/or naphthols such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • Phenols such as novolac-type phenolic resins, allylated bisphenol A, allylated bisphenol F, allylated naphthalenediol, phenol novolak, and phenol obtained by condensing or co-condensing a compound having an aldehyde group such as formaldehyde in the presence of an acidic catalyst and/or phenol aralkyl resins, naphthol aralkyl resins, biphenyl aralkyl phenol resins, and phenyl aralkyl phenol resins synthesized from naphthols and dimethoxyparaxylene or bis(methoxymethyl)biphenyl. You may use these individually by 1 type or in combination of 2 or more types.
  • the (A2) component may be a novolak-type phenolic resin.
  • component (A2) Commercially available products of component (A2) include, for example, Resitop series (manufactured by Gun Ei Chemical Industry Co., Ltd.), Phenolite KA series, TD series (manufactured by DIC Corporation), Milex XLC series, and XL series (Mitsui Chemicals Co., Ltd.). company), HE series (manufactured by Air Water Inc.), and the like.
  • the hydroxyl equivalent of component (A2) is not particularly limited, but may be 80-400 g/eq, 90-350 g/eq, or 100-300 g/eq. When the hydroxyl equivalent of component (A2) is within this range, better reactivity and fluidity tend to be obtained.
  • the ratio of the epoxy equivalent of component (A1) to the hydroxyl equivalent of component (A2) is 0.30/0.70 from the viewpoint of curability. ⁇ 0.70/0.30, 0.35/0.65 ⁇ 0.65/0.35, 0.40/0.60 ⁇ 0.60/0.40, or 0.45/0.55 ⁇ It may be 0.55/0.45.
  • the corresponding amount ratio is 0.30/0.70 or more, more sufficient curability tends to be obtained.
  • the corresponding amount ratio is 0.70/0.30 or less, it is possible to prevent the viscosity from becoming too high and obtain more sufficient fluidity.
  • the content of component (A2) may be 5 to 30% by mass based on the total amount of components (A), (B), and (C).
  • the content of component (A2) may be 8% by mass or more, 10% by mass or more, or 12% by mass or more based on the total amount of components (A), (B), and (C). , 28% by mass or less, 25% by mass or less, or 22% by mass or less.
  • Component (B) Elastomer
  • the component (B) include acrylic resins, polyester resins, polyamide resins, polyimide resins, silicone resins, butadiene resins; modified products of these resins. You may use these individually by 1 type or in combination of 2 or more types.
  • the component (B) is derived from a (meth)acrylic ester because it has few ionic impurities and is excellent in heat resistance, it is easy to ensure the connection reliability of a semiconductor device, and it is excellent in fluidity. It may be an acrylic resin (acrylic rubber) having structural units as a main component.
  • the content of structural units derived from (meth)acrylic acid ester in component (B) may be, for example, 70% by mass or more, 80% by mass or more, or 90% by mass or more based on the total amount of structural units.
  • the acrylic resin (acrylic rubber) may contain structural units derived from a (meth)acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, or a carboxyl group.
  • the glass transition temperature (Tg) of component (B) may be -50 to 50°C or -30 to 30°C.
  • Tg of component (B) is -50°C or higher, it tends to be possible to prevent the flexibility of the film adhesive from becoming too high. This makes it easier to cut the film-like adhesive during wafer dicing, making it possible to prevent the occurrence of burrs.
  • Tg of the component (B) is 50° C. or less, it tends to be possible to suppress a decrease in the flexibility of the film-like adhesive. This tends to make it easier to sufficiently fill voids when the film-like adhesive is attached to the semiconductor wafer. Also, it is possible to prevent chipping during dicing due to deterioration of adhesion of the semiconductor wafer.
  • the glass transition temperature (Tg) means a value measured using a DSC (differential scanning calorimeter) (for example, "Thermo Plus 2" manufactured by Rigaku Corporation).
  • the Tg of component (B) is the type and content of structural units that constitute component (B) (structural units derived from (meth)acrylic acid ester when component (B) is an acrylic resin (acrylic rubber)). can be adjusted to a desired range by adjusting .
  • the weight average molecular weight (Mw) of component (B) may be 100,000 to 3,000,000 or 200,000 to 1,000,000.
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
  • component (B) Commercially available products of component (B) include SG-70L, SG-708-6, WS-023 EK30, SG-P3, SG-280 EK23, SG-80H, HTR-860P, HTR-860P-3, HTR- 860P-3CSP, HTR-860P-3CSP-3DB, HTR-860P-30B (all manufactured by Nagase ChemteX Corporation) and the like.
  • the content of component (B) may be 5 to 50% by mass based on the total amount of components (A), (B), and (C).
  • the content of component (B) when the content of component (B) is 5% by mass or more based on the total amount of component (A), component (B), and component (C), rupture resistance tends to be superior. and when it is 50% by mass or less, the high-temperature storage modulus after curing tends to be sufficiently high.
  • the content of component (B) is 10% by mass or more, 15% by mass or more, 20% by mass or more, or 25% by mass or more, based on the total amount of components (A), (B), and (C). may be 45% by mass or less, 40% by mass or less, or 35% by mass or less.
  • the total content of components (A) and (B) is 58% by mass or more based on the total amount of components (A), (B), and (C).
  • the total content of components (A) and (B) is 60% by mass or more, 65% by mass or more, and 70% by mass, based on the total amount of components (A), (B), and (C). or more, or 75% by mass or more.
  • the total content of components (A) and (B) is 95% by mass or less, 92% by mass or less, or 90% by mass, based on the total amount of components (A), (B), and (C). % or less.
  • the total content of components (A) and (B) is 95% by mass or less based on the total amount of components (A), (B), and (C)
  • high-temperature storage after curing The elastic modulus tends to be much higher.
  • the mass ratio of component (A) to component (B) is 1.3 or more.
  • the mass ratio of component (A) to component (B) may be 1.4 or greater, 1.5 or greater, 1.6 or greater, or 1.7 or greater.
  • the mass ratio of component (A) to component (B) may be, for example, 4.0 or less, 3.5 or less, 3.0 or less, 2.5 or less, or 2.0 or less.
  • Component (C) Inorganic filler
  • component (C) include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, Fillers made of aluminum borate whiskers, boron nitride, crystalline silica, amorphous silica, and the like are included.
  • the component (C) may be a filler made of silica (crystalline silica or amorphous silica).
  • the average particle size of component (C) may be 0.35 ⁇ m or less from the viewpoint of achieving both rupture resistance and high-temperature storage modulus after curing.
  • the average particle size of component (C) may be 0.30 ⁇ m or less, 0.25 ⁇ m or less, or 0.20 ⁇ m or less.
  • the lower limit of the average particle size of component (C) may be, for example, 0.01 ⁇ m or more, 0.03 ⁇ m or more, or 0.05 ⁇ m or more.
  • the average particle diameter of component (C) can be determined by the following method. First, component (C) is dispersed in a solvent to prepare a dispersion. Then, a particle size distribution is obtained by applying a dynamic light scattering method to the produced dispersion.
  • the average particle size of component (C) can be determined.
  • the average particle size of component (C) can also be determined from the film-like adhesive containing component (C). In this case, the residue obtained by heating the film-like adhesive to decompose the resin component is dispersed in a solvent to prepare a dispersion. Then, a particle size distribution is obtained by applying a dynamic light scattering method to the produced dispersion. Then, based on the obtained particle size distribution, the average particle size of component (C) can be determined.
  • the (C) component may be surface-treated with a surface treatment agent from the viewpoint of compatibility between the surface and solvents, other components, etc., and adhesive strength.
  • surface treatment agents include silane coupling agents.
  • the functional group of the silane coupling agent include vinyl group, (meth)acryloyl group, epoxy group, mercapto group, amino group, diamino group, alkoxy group and ethoxy group.
  • the content of component (C) may be 5 to 60% by mass based on the total amount of components (A), (B) and (C).
  • the content of component (C) may be 8% by mass or more or 10% by mass or more, and 50% by mass or less, based on the total amount of components (A), (B), and (C). It may be 45% by mass or less, 40% by mass or less, 35% by mass or less, 30% by mass or less, or 25% by mass or less.
  • Component (D) Curing Accelerator
  • the film-like adhesive may further contain component (D).
  • component (D) includes, for example, imidazoles and their derivatives, organophosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts and the like. You may use these individually by 1 type or in combination of 2 or more types. Among these, from the viewpoint of reactivity, the component (D) may be imidazoles and derivatives thereof.
  • imidazoles examples include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. You may use these individually by 1 type or in combination of 2 or more types.
  • the ratio of the reactive group equivalent of component (D) to the hydroxyl equivalent of component (A2) is, for example, 0.1 to 2.0, 0 .2 to 1.8, 0.25 to 1.5, or 0.3 to 1.3.
  • the content of component (D) may be 0.01 to 1.0% by mass based on the total amount of components (A), (B), and (C).
  • component (E) Component Coupling Agent (E) Component may be further contained. When the film-like adhesive contains component (E), it tends to be possible to further enhance the interfacial bonding between different components.
  • component (E) include silane coupling agents, titanate coupling agents, and aluminum coupling agents. Among these, the (E) component may be a silane coupling agent.
  • Silane-based coupling agents include, for example, ⁇ -ureidopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltrimethoxysilane, and the like. mentioned.
  • the content of component (E) may be 0.1 to 5.0% by mass based on the total amount of components (A), (B), and (C).
  • the film-like adhesive may further contain antioxidants, rheology control agents, leveling agents, pigments, ion trapping agents, antioxidants and the like as other components.
  • the content of other components may be 0.01 to 3% by mass based on the total amount of components (A), (B) and (C).
  • the thickness of the film adhesive 1 may be 20 ⁇ m or less, 18 ⁇ m or less, 15 ⁇ m or less, 12 ⁇ m or less, or 10 ⁇ m or less. Although the lower limit of the thickness of the film adhesive 1 is not particularly limited, it may be, for example, 1 ⁇ m or more.
  • the storage elastic modulus of the cured product of the film adhesive 1 at 150°C may be, for example, 100 MPa or higher, 110 MPa or higher, or 120 MPa or higher.
  • the cured product of film adhesive 1 means a cured product obtained by heating film adhesive 1 at 150° C. for 50 minutes.
  • the high-temperature storage modulus of the film-like adhesive after curing is 100 MPa or more, it is possible to suppress bonding defects or chip cracks due to vibration during wire bonding.
  • the high temperature storage modulus of the film adhesive after curing may be, for example, 500 MPa or less, 300 MPa or less, 200 MPa or less, or 180 MPa or less. In this specification, the high-temperature storage modulus of the film-like adhesive after curing can be measured by the method described in Examples.
  • the film-like adhesive 1 (adhesive film) shown in FIG. ) component, other components, etc.) is formed into a film.
  • the film adhesive 1 can be formed, for example, by applying an adhesive composition to a support film.
  • a varnish of an adhesive composition (adhesive varnish) may be used.
  • the film-like adhesive 1 can be obtained by mixing or kneading in a solvent to prepare an adhesive varnish, applying the obtained adhesive varnish to a support film, and removing the solvent by heating and drying.
  • the support film is not particularly limited as long as it can withstand the heat drying described above. It's okay.
  • the support film may be a multi-layer film in which two or more types are combined, or the surface thereof may be treated with a release agent such as a silicone-based or silica-based release agent.
  • the thickness of the support film may be, for example, 10-200 ⁇ m or 20-170 ⁇ m.
  • Mixing or kneading can be carried out by using a dispersing machine such as a normal stirrer, squeegee machine, triple roll, ball mill, etc., and combining them appropriately.
  • a dispersing machine such as a normal stirrer, squeegee machine, triple roll, ball mill, etc., and combining them appropriately.
  • the solvent used for preparing the adhesive varnish is not limited as long as it can uniformly dissolve, knead, or disperse each component, and conventionally known solvents can be used.
  • solvents include ketone-based solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene and xylene.
  • the solvent may be methyl ethyl ketone or cyclohexanone from a drying speed and cost point of view.
  • a known method can be used, for example, a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, a curtain coating method, or the like is used. be able to.
  • the heat drying conditions are not particularly limited as long as the solvent used is sufficiently volatilized, but may be 50 to 150° C. for 1 to 30 minutes.
  • the film-like adhesive 1 can be thinned, it can be suitably used in the manufacturing process of a semiconductor device in which a plurality of semiconductor chips are laminated.
  • the semiconductor device may be a stacked MCP or a three-dimensional NAND memory.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a dicing/die-bonding integrated film.
  • a dicing/die-bonding integrated film 10 shown in FIG. 2 includes a substrate layer 2, an adhesive layer 3, and an adhesive layer 1A composed of the film adhesive 1 described above in this order.
  • the base material layer 2 and the adhesive layer 3 may be a dicing tape 4 .
  • the lamination process to the semiconductor wafer is reduced to one step, so that work efficiency can be improved.
  • the dicing/die-bonding integrated film may be in the form of a film, a sheet, a tape, or the like.
  • the dicing tape 4 includes a base layer 2 and an adhesive layer 3 provided on the base layer 2 .
  • the base material layer 2 examples include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film. These substrate layers 2 may be subjected to surface treatments such as primer coating, UV treatment, corona discharge treatment, polishing treatment, etching treatment, etc., as required.
  • the adhesive layer 3 is a layer made of an adhesive.
  • the adhesive is not particularly limited as long as it has sufficient adhesive strength to prevent the semiconductor chips from scattering during dicing and has low adhesive strength to the extent that the semiconductor chips are not damaged in the subsequent step of picking up the semiconductor chips. can be used.
  • the adhesive may be either pressure sensitive or radiation curable.
  • a pressure-sensitive adhesive is an adhesive that exhibits a certain amount of adhesiveness when pressurized for a short period of time.
  • a radiation-curable pressure-sensitive adhesive is a pressure-sensitive adhesive that has the property of decreasing its adhesiveness when irradiated with radiation (for example, ultraviolet rays).
  • the thickness of the dicing tape 4 may be 60 to 150 ⁇ m or 70 to 130 ⁇ m from the viewpoint of economy and film handling.
  • the dicing/die bonding integrated film 10 can be obtained, for example, by preparing a film adhesive 1 and a dicing tape 4 and bonding the film adhesive 1 and the adhesive layer 3 of the dicing tape 4 together. Further, the dicing/die-bonding integrated film 10 can be obtained, for example, by preparing the dicing tape 4 and applying an adhesive composition (adhesive varnish) to the dicing tape 4 in the same manner as in the method of forming the film adhesive 1 described above. It can also be obtained by coating on the pressure-sensitive adhesive layer 3 .
  • the dicing/die bonding integrated film 10 is applied under predetermined conditions (for example, room temperature (20° C.) or It can be formed by laminating the film adhesive 1 on the dicing tape 4 in a heated state).
  • predetermined conditions for example, room temperature (20° C.) or It can be formed by laminating the film adhesive 1 on the dicing tape 4 in a heated state.
  • the dicing/die-bonding integrated film 10 can be continuously produced and is highly efficient, so it may be formed using a roll laminator in a heated state.
  • the film adhesive and the dicing/die bonding integrated film may be used in the manufacturing process of a semiconductor device, or may be used in the manufacturing process of a semiconductor device in which a plurality of semiconductor chips are laminated. good.
  • the film-like adhesive and the dicing/die-bonding integrated film are applied to a semiconductor wafer or a semiconductor chip that has already been singulated, and the adhesive layer of the film-like adhesive or the dicing/die-bonding integrated film is applied at 0°C to 90°C. a step of obtaining a semiconductor chip with an adhesive piece by cutting with a rotary blade, laser or stretching, and a step of adhering the semiconductor chip with an adhesive piece onto a support member or another semiconductor chip via an adhesive piece. and may be used for manufacturing a semiconductor device including
  • a film-like adhesive is also suitably used as an adhesive for bonding semiconductor chips together in a stacked MCP (for example, a three-dimensional NAND memory), which is a semiconductor device formed by stacking a plurality of semiconductor chips.
  • a stacked MCP for example, a three-dimensional NAND memory
  • the film adhesive is, for example, a protective sheet for protecting the back surface of a semiconductor chip of a flip chip type semiconductor device, or a sealing sheet for sealing between the surface of a semiconductor chip of a flip chip type semiconductor device and an adherend. etc. can also be used.
  • a semiconductor device manufactured using a film-like adhesive and a dicing/die-bonding integrated film will be specifically described below with reference to the drawings.
  • semiconductor devices with various structures have been proposed, and the application of the film-like adhesive and dicing/die bonding integrated film of the present embodiment is not limited to the semiconductor devices having the structures described below. do not have.
  • FIG. 3 is a schematic cross-sectional view showing one embodiment of a semiconductor device.
  • a semiconductor device 100 shown in FIG. 3 includes a semiconductor chip 11 , a support member 12 on which the semiconductor chip 11 is mounted, and an adhesive member 15 .
  • the adhesive member 15 is provided between the semiconductor chip 11 and the support member 12 and bonds the semiconductor chip 11 and the support member 12 together.
  • the adhesive member 15 is a cured film adhesive.
  • Connection terminals (not shown) of the semiconductor chip 11 are electrically connected to external connection terminals (not shown) via wires 13 and sealed with a sealing material 14 .
  • FIG. 4 is a schematic cross-sectional view showing another embodiment of the semiconductor device.
  • the semiconductor chip 11a in the first stage is adhered to the support member 12 on which the terminals 16 are formed by the adhesive member 15a (hardened film-like adhesive).
  • a second semiconductor chip 11b is adhered onto 11a with an adhesive member 15b (hardened film adhesive).
  • Connection terminals (not shown) of the first-stage semiconductor chip 11 a and the second-stage semiconductor chip 11 b are electrically connected to external connection terminals via wires 13 and sealed with a sealing material 14 .
  • the semiconductor device 110 shown in FIG. 4 further includes another semiconductor chip (11b) laminated on the surface of the semiconductor chip (11a) in the semiconductor device 100 shown in FIG.
  • FIG. 5 is a schematic cross-sectional view showing another embodiment of the semiconductor device.
  • a semiconductor device 120 shown in FIG. 5 includes a support member 12 and semiconductor chips 11 a, 11 b, 11 c, and 11 d stacked on the support member 12 .
  • the four semiconductor chips 11a, 11b, 11c, and 11d are offset from each other in the lateral direction (direction perpendicular to the stacking direction) for connection with connection terminals (not shown) formed on the surface of the support member 12. position (see FIG. 5).
  • the semiconductor chip 11a is adhered to the support member 12 by an adhesive member 15a (hardened film adhesive), and adhesive members 15b, 15c and 15d (film hardened adhesive) are interposed respectively.
  • the semiconductor device 120 shown in FIG. 5 further includes other semiconductor chips (11b, 11c, 11d) stacked on the surface of the semiconductor chip (11a) in the semiconductor device 100 shown in FIG. .
  • FIG. 5 illustrates a semiconductor device in which four semiconductor chips are stacked, but the number of stacked semiconductor chips is not limited to this.
  • FIG. 5 illustrates the semiconductor device in which the semiconductor chips are stacked at positions shifted in the lateral direction (direction perpendicular to the stacking direction)
  • the semiconductor chips are stacked in the lateral direction (direction perpendicular to the stacking direction) direction) may be stacked at positions that are not shifted from each other.
  • the semiconductor device (semiconductor package) shown in FIGS. 3, 4, and 5 is provided between a semiconductor chip and a supporting member, or between a semiconductor chip (first semiconductor chip) and another semiconductor chip (second semiconductor chip). chip), and bonding the semiconductor chip and the support member, or the first semiconductor chip and the second semiconductor chip. More specifically, the film-like adhesive is interposed between the semiconductor chip and the supporting member, or between the first semiconductor chip and the second semiconductor chip, and these are heat-pressed to bond them together. It can be obtained by bonding, and then, if necessary, a wire bonding process, a sealing process using a sealing material, a heat melting process including solder reflow, and the like.
  • a semiconductor chip with an adhesive piece is prepared in advance as described later. After that, it may be attached to a supporting member or a semiconductor chip.
  • the method of manufacturing a semiconductor device using the dicing/die-bonding integrated film is not limited to the method of manufacturing a semiconductor device described below.
  • a semiconductor device is produced by, for example, a step of attaching a semiconductor wafer to the adhesive layer of the dicing/die bonding integrated film (lamination step), and cutting the semiconductor wafer to which the adhesive layer is attached, thereby forming a plurality of pieces. Obtained by a method comprising a step of producing separated semiconductor chips with adhesive strips (dicing step) and a step of adhering the semiconductor chips with adhesive strips to a support member via the adhesive strips (first bonding step) be able to.
  • the method of manufacturing a semiconductor device may further include a step of bonding another semiconductor chip with an adhesive piece to the surface of the semiconductor chip bonded to the support member via the adhesive piece (second bonding step). .
  • the lamination step is a step of pressing a semiconductor wafer onto the adhesive layer 1A of the dicing/die bonding integrated film 10, holding it by adhesion, and attaching it. This step may be performed while pressing with a pressing means such as a pressing roll.
  • semiconductor wafers include monocrystalline silicon, polycrystalline silicon, various ceramics, and compound semiconductors such as gallium arsenide.
  • a dicing process is a process of dicing a semiconductor wafer.
  • a semiconductor wafer can be cut into a predetermined size to manufacture a plurality of individualized semiconductor chips with adhesive strips. Dicing can be performed, for example, from the circuit surface side of the semiconductor wafer according to a conventional method.
  • a method called full cut in which cuts are provided up to the dicing tape, a method in which half cuts are provided in the semiconductor wafer, and a method in which the semiconductor wafer is cut by cooling and pulling, a method in which cutting is performed by laser, etc. can be adopted.
  • the dicing device used in this step is not particularly limited, and conventionally known devices can be used.
  • Examples of semiconductor chips include ICs (integrated circuits).
  • Examples of supporting members include lead frames such as 42 alloy lead frames and copper lead frames; plastic films such as polyimide resin and epoxy resin; glass non-woven fabric and other substrates impregnated with plastics such as polyimide resin and epoxy resin and cured. modified plastic film; ceramics such as alumina;
  • the method of manufacturing a semiconductor device may include a pick-up process, if necessary.
  • the pick-up step is a step of picking up a semiconductor chip with an adhesive piece in order to peel off the semiconductor chip with an adhesive piece adhered to the dicing/die bonding integrated film.
  • the pickup method is not particularly limited, and conventionally known various methods can be employed. As such a method, for example, a method of pushing up individual semiconductor chips with adhesive strips from the dicing/die bonding integrated film side with a needle and picking up the pushed-up semiconductor chips with adhesive strips with a pickup device.
  • the pick-up can be performed after irradiating the adhesive layer with radiation.
  • the adhesive force of the adhesive layer to the adhesive piece is lowered, and the semiconductor chip with the adhesive piece is easily peeled off.
  • the first bonding step is a step of bonding a semiconductor chip with an adhesive piece formed by dicing to a support member for mounting the semiconductor chip via the adhesive piece.
  • the method of manufacturing a semiconductor device includes, if necessary, a step of bonding another semiconductor chip with an adhesive piece to the surface of the semiconductor chip bonded to the support member via the adhesive piece (second bonding step).
  • the crimping conditions are not particularly limited, and can be appropriately set according to need.
  • the pressing conditions may be, for example, a temperature of 80 to 160° C., a load of 5 to 15 N, and a time of 1 to 10 seconds.
  • the support member can illustrate the same support member as the above.
  • the method of manufacturing a semiconductor device may include a step of further thermosetting the adhesive piece (thermosetting step), if necessary.
  • thermosetting step By further thermally curing the adhesive piece that bonds the semiconductor chip and the supporting member or the first semiconductor chip and the second semiconductor chip, it becomes possible to bond and fix them more firmly.
  • pressure may be applied at the same time for curing.
  • the heating temperature in this step can be appropriately changed depending on the composition of the adhesive piece.
  • the heating temperature may be, for example, 60-200.degree. Note that the temperature or pressure may be changed stepwise.
  • a method of manufacturing a semiconductor device includes, if necessary, a step (wire bonding step) of electrically connecting tips of terminal portions (inner leads) of a supporting member and electrode pads on a semiconductor chip with bonding wires. good too.
  • the bonding wire for example, gold wire, aluminum wire, copper wire, or the like is used.
  • the temperature during wire bonding may be in the range of 80-250°C or 80-220°C.
  • the heating time can be from a few seconds to several minutes.
  • the wire bonding may be performed by using both vibrational energy of ultrasonic waves and crimping energy of applied pressure in a heated state within the above temperature range.
  • the method of manufacturing a semiconductor device may optionally include a step of sealing the semiconductor chip with a sealing material (sealing step). This step is performed to protect the semiconductor chip or bonding wires mounted on the support member. This step can be performed by molding resin for sealing (sealing resin) with a mold.
  • a sealing resin for example, an epoxy resin may be used.
  • the support member and residue are embedded by heat and pressure during sealing, and peeling due to air bubbles at the adhesion interface can be prevented.
  • the method of manufacturing a semiconductor device may include, if necessary, a process (post-curing process) for completely curing the sealing resin that is insufficiently cured in the sealing process. Even if the adhesive piece is not heat-cured in the sealing process, the adhesive piece can be heat-cured together with the curing of the sealing resin in the present process to enable adhesive fixation.
  • the heating temperature in this step can be appropriately set according to the type of sealing resin, and may be, for example, within the range of 165 to 185° C., and the heating time may be approximately 0.5 to 8 hours.
  • the method of manufacturing a semiconductor device may include, if necessary, a step of heating the semiconductor chip with the adhesive piece adhered to the support member using a reflow furnace (heating and melting step).
  • a resin-sealed semiconductor device may be surface-mounted on the supporting member.
  • surface mounting methods include reflow soldering in which solder is preliminarily supplied onto a printed wiring board and then heated and melted by hot air or the like for soldering.
  • Examples of the heating method include hot air reflow and infrared reflow.
  • the heating method may be a method of heating the whole or a method of locally heating. The heating temperature may be within the range of 240-280° C., for example.
  • C component inorganic filler (C-1) silica filler dispersion (manufactured by CIK Nanotech Co., Ltd., silica filler, average particle size: 0.10 ⁇ m) (C-2) K180SV-CH1 (trade name, Admatechs Co., Ltd., silica filler, average particle size: 0.18 ⁇ m) (C-3) 0.3 ⁇ m SE-CH1 (trade name, Admatechs Co., Ltd., silica filler, average particle size: 0.30 ⁇ m) (C-4) SC2050-HLG (trade name, Admatechs Co., Ltd., silica filler, average particle size: 0.50 ⁇ m)
  • D Component: Curing accelerator (D-1) 2PZ-CN (trade name, manufactured by Shikoku Kasei Co., Ltd., 1-cyanoethyl-2-phenylimidazole) (D-2) 2PZ (trade name, manufactured by Shikoku Kasei Co., Ltd., 2-phenylimidazole)
  • a release-treated polyethylene terephthalate (PET) film having a thickness of 38 ⁇ m was prepared as a support film, and an adhesive varnish was applied on the PET film.
  • the applied adhesive varnish is dried by heating at 110 ° C. for 5 minutes, and the film adhesive of Examples 1 to 4 and Comparative Examples 1 to 3 in the B stage state on the support film and the support film.
  • a laminate was obtained.
  • the thickness of the film adhesive was adjusted to 10 ⁇ m by adjusting the coating amount of the adhesive varnish.
  • the high temperature storage modulus after curing was measured.
  • the high-temperature storage modulus after curing was measured by the following method. That is, a film-like adhesive with a thickness of 10 ⁇ m was laminated in multiple layers to a thickness of about 160 ⁇ m, and a sample for measurement was prepared by making the thickness 4 mm ⁇ 33 mm. After curing the prepared sample at 150 ° C. for 50 minutes, the cured sample was set in a dynamic viscoelasticity measuring device (Rheogel E-4000, manufactured by UBM Co., Ltd.), and a tensile load was applied.
  • the viscoelasticity is measured in a temperature-dependent measurement mode that measures from 30 to 300 ° C. under the conditions of a frequency of 10 Hz and a heating rate of 3 ° C./min, and the value of the storage elastic modulus at 150 ° C. is the high-temperature storage elastic modulus. did.
  • the higher the high-temperature storage modulus (for example, 100 MPa or higher), the more likely it is that wire bonding defects can be suppressed. Table 1 shows the results.
  • the total content of the thermosetting resin component and elastomer is 58% by mass or more based on the total amount of the thermosetting resin component, elastomer, and inorganic filler, and the thermosetting resin relative to the elastomer
  • the film adhesives of Examples 1 to 4 in which the mass ratio of the components is 1.3 or more, have better rupture resistance and high-temperature storage elasticity than the film adhesives of Comparative Examples 1 to 3, which do not satisfy these requirements. Both rates were excellent. From these results, it was confirmed that the film-like adhesive of the present disclosure has excellent rupture resistance and sufficiently high high-temperature storage elastic modulus after curing.
  • a film-like adhesive that has excellent rupture resistance and a sufficiently high high-temperature storage elastic modulus after curing. Further, according to the present disclosure, a dicing/die bonding integrated film and a semiconductor device using such a film-like adhesive are provided. Further, according to the present disclosure, there is provided a method of manufacturing a semiconductor device using such a dicing/die bonding integrated film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

フィルム状接着剤が開示される。当該フィルム状接着剤は、熱硬化性樹脂成分と、エラストマーと、無機フィラーとを含有する。熱硬化性樹脂成分及びエラストマーの合計の含有量は、熱硬化性樹脂成分、エラストマー、及び無機フィラーの総量を基準として、58質量%以上である。エラストマーに対する熱硬化性樹脂成分の質量比は、1.3以上である。

Description

フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
 本開示は、フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法に関する。
 近年、半導体チップを多段に積層したスタックドMCP(Multi Chip Package)が普及しており、携帯電話、携帯オーディオ機器用のメモリ半導体パッケージ等として搭載されている。また、携帯電話等の多機能化に伴い、半導体パッケージの高速化、高密度化、高集積化等も推し進められている。
 現在、半導体装置の製造方法として、半導体ウェハの裏面に、接着剤層及び粘着剤層を備えるダイシング・ダイボンディング一体型フィルムを貼り付け、その後、半導体ウェハ、接着剤層、及び粘着剤層の一部を切断して個片化する半導体ウェハ裏面貼付け方式が、一般的に用いられている。例えば、特許文献1、2には、このような方式における接着剤層に使用されるフィルム状接着剤が開示されている。
国際公開第2013/133275号 国際公開第2020/013250号
 ところで、スタックドMCPにおいては、半導体チップが多段に積層されることから、使用されるフィルム状接着剤には、薄膜化(例えば、厚さ20μm以下)が求められている。これとともに、薄膜のフィルム状接着剤には、加工工程(例えば、支持フィルムから剥離する、フィルム状接着剤自体を巻き取る等)において破断しない、耐破断性が求められている。
 また、スタックドMCPにおいては、半導体チップをワイヤボンディング接続するに際して、ワイヤボンディング不良が生じることがある場合がある。これは半導体チップの薄化、半導体チップ内部の回路層数の増加により、半導体チップが脆くなり、ワイヤボンディング時の振動によるボンディング不良又はチップクラックが発生するためであると推測される。このようなワイヤボンディング不良を抑制する観点から、ダイシング・ダイボンディング一体型フィルムに使用されるフィルム状接着剤には、硬化後の高温貯蔵弾性率が充分に高いこと(例えば、硬化後の150℃における貯蔵弾性率が100MPa以上であること)が求められている。
 そこで、本開示は、耐破断性に優れるとともに、硬化後の高温貯蔵弾性率が充分に高いフィルム状接着剤を提供することを主な目的とする。
 本開示の一側面は、フィルム状接着剤に関する。当該フィルム状接着剤は、熱硬化性樹脂成分と、エラストマーと、無機フィラーとを含有する。熱硬化性樹脂成分及びエラストマーの合計の含有量は、熱硬化性樹脂成分、エラストマー、及び無機フィラーの総量を基準として、58質量%以上である。エラストマーに対する熱硬化性樹脂成分の質量比は、1.3以上である。フィルム状接着剤において、熱硬化性樹脂成分及びエラストマーの合計の含有量が、熱硬化性樹脂成分、エラストマー、及び無機フィラーの総量を基準として、58質量%以上であると、耐破断性に優れる傾向にある。また、フィルム状接着剤において、エラストマーに対する熱硬化性樹脂成分の質量比が1.3以上であると、硬化後の高温貯蔵弾性率が充分に高い傾向にある。熱硬化性樹脂成分及びエラストマーの合計の含有量は、熱硬化性樹脂成分、エラストマー、及び無機フィラーの総量を基準として、95質量%以下であってよい。エラストマーに対する熱硬化性樹脂成分の質量比は、4.0以下であってよい。
 無機フィラーの平均粒径は、耐破断性及び硬化後の高温貯蔵弾性率を両立する観点から、0.35μm以下であってよい。
 熱硬化性樹脂成分は、エポキシ樹脂及びフェノール樹脂であってよい。熱硬化性樹脂成分は、エポキシ樹脂として、ナフタレン骨格を有するエポキシ樹脂を含んでいてもよい。この場合、ナフタレン骨格を有するエポキシ樹脂の含有量は、熱硬化性樹脂成分に含まれるエポキシ樹脂の総量を基準として、20~80質量%であってよい。
 フィルム状接着剤は、硬化促進剤をさらに含有してもよい。
 フィルム状接着剤の厚さは、20μm以下であってよい。
 フィルム状接着剤は、複数の半導体チップを積層してなる半導体装置の製造プロセスに用いられるものであってよい。半導体装置は、三次元NAND型メモリであってよい。
 本開示の他の側面は、ダイシング・ダイボンディング一体型フィルムに関する。当該ダイシング・ダイボンディング一体型フィルムは、基材層と、粘着剤層と、上記のフィルム状接着剤からなる接着剤層とをこの順に備える。
 本開示の他の側面は、半導体装置に関する。当該半導体装置は、半導体チップと、半導体チップを搭載する支持部材と、半導体チップ及び支持部材の間に設けられ、半導体チップと支持部材とを接着する、上記のフィルム状接着剤の硬化物とを備える。半導体装置は、半導体チップの表面上に積層された他の半導体チップをさらに備えていてもよい。
 本開示の他の側面は、半導体装置の製造方法に関する。当該半導体装置の製造方法は、上記のダイシング・ダイボンディング一体型フィルムの接着剤層を半導体ウェハに貼り付ける工程と、接着剤層を貼り付けた半導体ウェハを切断することによって、複数の個片化された接着剤片付き半導体チップを作製する工程と、接着剤片付き半導体チップを支持部材に接着剤片を介して接着する工程とを備える。当該半導体装置の製造方法は、他の接着剤片付き半導体チップを、支持部材に接着された半導体チップの表面に接着剤片を介して接着する工程をさらに備えていてもよい。
 本開示によれば、耐破断性に優れるとともに、硬化後の高温貯蔵弾性率が充分に高いフィルム状接着剤が提供される。また、本開示によれば、このようなフィルム状接着剤を用いたダイシング・ダイボンディング一体型フィルム及び半導体装置が提供される。さらに、本開示によれば、このようなダイシング・ダイボンディング一体型フィルムを用いた半導体装置の製造方法が提供される。
図1は、フィルム状接着剤の一実施形態を示す模式断面図である。 図2は、ダイシング・ダイボンディング一体型フィルムの一実施形態を示す模式断面図である。 図3は、半導体装置の一実施形態を示す模式断面図である。 図4は、半導体装置の他の実施形態を示す模式断面図である。 図5は、半導体装置の他の実施形態を示す模式断面図である。
 以下、図面を適宜参照しながら、本開示の実施形態について説明する。ただし、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。
 本開示における数値及びその範囲についても同様であり、本開示を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、個別に記載した上限値及び下限値は任意に組み合わせ可能である。また、「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。また、以下で例示する材料は、特に断らない限り、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書において、(メタ)アクリレートは、アクリレート又はそれに対応するメタクリレートを意味する。(メタ)アクリロイル基、(メタ)アクリル共重合体等の他の類似表現についても同様である。
[フィルム状接着剤]
 図1は、フィルム状接着剤の一実施形態を示す模式断面図である。図1に示されるフィルム状接着剤1(接着剤フィルム)は、熱硬化性樹脂成分(以下、「(A)成分」という場合がある。)と、エラストマー(以下、「(B)成分」という場合がある。)と、無機フィラー(以下、「(C)成分」という場合がある。)とを含有する。フィルム状接着剤1は、(A)成分、(B)成分、及び(C)成分に加えて、硬化促進剤(以下、「(D)成分」という場合がある。)、カップリング剤(以下、「(E)成分」という場合がある。)、その他の成分等をさらに含有していてもよい。フィルム状接着剤1は、熱硬化性であってよく、半硬化(Bステージ)状態を経て、硬化処理後に完全硬化(Cステージ)状態となり得るものであってよい。
(A)成分:熱硬化性樹脂成分
 (A)成分は、例えば、熱硬化性樹脂と熱硬化性樹脂の硬化剤との組み合わせからなる成分であってよい。熱硬化性樹脂は、エポキシ樹脂(以下、「(A1)成分」という場合がある。)であってよい。熱硬化性樹脂の硬化剤は、エポキシ樹脂の硬化剤として作用し得る、フェノール樹脂(以下、「(A2)成分」という場合がある。)であってよい。すなわち、(A)成分は、(A1)成分と(A2)成分との組み合わせであってよい。
(A1)成分:エポキシ樹脂
 (A1)成分は、分子内にエポキシ基を有するものであれば、特に制限なく用いることができる。(A1)成分は、フィルム状接着剤の硬化後の高温貯蔵弾性率をより充分に高める観点から、ナフタレン骨格を有するエポキシ樹脂(以下、「(A1a)成分」という場合がある。)を含んでいてもよい。(A1a)成分は、4官能以上のエポキシ基を有するエポキシ樹脂であってよい。
 (A1a)成分の市販品としては、例えば、HP-4700、HP-4710、HP-4770(商品名、いずれもDIC株式会社製)、NC-7000-L、NC-7300-L(商品名、いずれも日本化薬株式会社製)等が挙げられる。
 (A1a)成分は、例えば、下記式(X)で表されるエポキシ樹脂を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000001
 (A1a)成分の軟化点は、フィルム状接着剤の硬化後の高温貯蔵弾性率をより充分に高める観点から、30℃以上であってよい。(A1a)成分の軟化点は、40℃以上、80℃以上、又は90℃以上であってもよく、120℃以下、110℃以下、又は100℃以下であってもよい。
 (A1a)成分のエポキシ当量は、特に制限されないが、10~600g/eq、100~500g/eq、又は120~450g/eqであってよい。(A1a)成分のエポキシ当量がこのような範囲にあると、より良好な反応性及び流動性が得られる傾向にある。
 (A1a)成分の含有量は、フィルム状接着剤において、硬化後の高温貯蔵弾性率をより充分に高める観点から、(A1)成分の総量を基準として、20~80質量%であってよい。(A1a)成分の含有量は、(A1)成分の総量を基準として、25質量%以上、30質量%以上、35質量%以上、40質量%以上、45質量%以上、50質量%以上、又は55質量%以上であってもよく、75質量%以下、70質量%以下、又は65質量%以下であってもよい。
 (A1a)成分の含有量は、フィルム状接着剤において、硬化後の高温貯蔵弾性率をより充分に高める観点から、(A1)成分及び(A2)成分の総量(又は(A)成分の総量)を基準として、10~50質量%であってよい。(A1a)成分の含有量は、(A1)成分及び(A2)成分の総量(又は(A)成分の総量)を基準として、15質量%以上、20質量%以上、25質量%以上、30質量%以上、又は35質量%以上であってもよく、48質量%以下、45質量%以下、又は42質量%以下であってもよい。
 (A1)成分は、(A1a)成分に加えて、ナフタレン骨格を有しないエポキシ樹脂(以下、「(A1b)成分」という場合がある。)を含んでいてもよい。(A1b)成分としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、フェニルアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、多官能フェノール類、アントラセン等の多環芳香族類(ただし、ナフタレンを除く。)のジグリシジルエーテル化合物などが挙げられる。(A1b)成分は、例えば、ビスフェノール型エポキシ樹脂であってよく、ビスフェノールF型エポキシ樹脂であってよい。
 (A1b)成分のエポキシ当量は、特に制限されないが、90~600g/eq、100~500g/eq、又は120~450g/eqであってよい。(A-2)成分のエポキシ当量がこのような範囲にあると、より良好な反応性及び流動性が得られる傾向にある。
 (A1b)成分の含有量は、(A1)成分の総量を基準として、20~80質量%であってよい。(A1b)成分の含有量は、(A1)成分の総量を基準として、25質量%以上、30質量%以上、又は35質量%以上であってもよく、75質量%以下、70質量%以下、65質量%以下、60質量%以下、55質量%以下、50質量%以下、又は45質量%以下であってもよい。
 (A1)成分の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、10~50質量%であってよい。(A)成分の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、15質量%以上、20質量%以上、25質量%以上、又は30質量%以上であってもよく、45質量%以下、42質量%以下、又は40質量%以下であってもよい。
(A2)成分:フェノール樹脂
 (A2)成分は、分子内にフェノール性水酸基を有するものであれば特に制限なく用いることができる。(A2)成分としては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化ナフタレンジオール、フェノールノボラック、フェノール等のフェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニルアラルキル型フェノール樹脂、フェニルアラルキル型フェノール樹脂などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。(A2)成分は、ノボラック型フェノール樹脂であってよい。
 (A2)成分の市販品としては、例えば、レヂトップシリーズ(群栄化学工業株式会社製)、フェノライトKAシリーズ、TDシリーズ(DIC株式会社製)、ミレックスXLCシリーズ、XLシリーズ(三井化学株式会社製)、HEシリーズ(エア・ウォーター株式会社製)等が挙げられる。
 (A2)成分の水酸基当量は、特に制限されないが、80~400g/eq、90~350g/eq、又は100~300g/eqであってよい。(A2)成分の水酸基当量がこのような範囲にあると、より良好な反応性及び流動性が得られる傾向にある。
 (A1)成分のエポキシ当量と(A2)成分の水酸基当量との比((A1)成分のエポキシ当量/(A2)成分の水酸基当量)は、硬化性の観点から、0.30/0.70~0.70/0.30、0.35/0.65~0.65/0.35、0.40/0.60~0.60/0.40、又は0.45/0.55~0.55/0.45であってよい。当該当量比が0.30/0.70以上であると、より充分な硬化性が得られる傾向にある。当該当量比が0.70/0.30以下であると、粘度が高くなり過ぎることを防ぐことができ、より充分な流動性を得ることができる。
 (A2)成分の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、5~30質量%であってよい。(A2)成分の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、8質量%以上、10質量%以上、又は12質量%以上であってもよく、28質量%以下、25質量%以下、又は22質量%以下であってもよい。
(B)成分:エラストマー
 (B)成分としては、例えば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、シリコーン樹脂、ブタジエン樹脂;これら樹脂の変性体等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(B)成分は、イオン性不純物が少なく耐熱性により優れること、半導体装置の接続信頼性をより確保し易いこと、流動性により優れることから、(メタ)アクリル酸エステルに由来する構成単位を主成分として有するアクリル樹脂(アクリルゴム)であってよい。(B)成分における(メタ)アクリル酸エステルに由来する構成単位の含有量は、構成単位全量を基準として、例えば、70質量%以上、80質量%以上、又は90質量%以上であってよい。アクリル樹脂(アクリルゴム)は、エポキシ基、アルコール性又はフェノール性水酸基、カルボキシル基等の架橋性官能基を有する(メタ)アクリル酸エステルに由来する構成単位を含むものであってよい。
 (B)成分のガラス転移温度(Tg)は、-50~50℃又は-30~30℃であってよい。(B)成分のTgが-50℃以上であると、フィルム状接着剤の柔軟性が高くなり過ぎることを防ぐことができる傾向にある。これによって、ウェハダイシング時にフィルム状接着剤を切断し易くなり、バリの発生を防ぐことが可能となる。(B)成分のTgが50℃以下であると、フィルム状接着剤の柔軟性の低下を抑えることができる傾向にある。これにより、フィルム状接着剤を半導体ウェハに貼り付ける際に、ボイドを充分に埋め込み易くなる傾向にある。また、半導体ウェハの密着性の低下によるダイシング時のチッピングを防ぐことが可能となる。ここで、ガラス転移温度(Tg)は、DSC(熱示差走査熱量計)(例えば、株式会社リガク製「Thermo Plus 2」)を用いて測定した値を意味する。(B)成分のTgは、(B)成分を構成する構成単位((B)成分がアクリル樹脂(アクリルゴム)である場合、(メタ)アクリル酸エステルに由来する構成単位)の種類及び含有量を調整することによって、所望の範囲に調整することができる。
 (B)成分の重量平均分子量(Mw)は、10万~300万又は20万~100万であってよい。(B)成分のMwがこのような範囲にあると、フィルム形成性、フィルム強度、可撓性、タック性等を適切に制御することができるとともに、リフロー性に優れ、埋め込み性を向上することができる。ここで、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。
 (B)成分の市販品としては、SG-70L、SG-708-6、WS-023 EK30、SG-P3、SG-280 EK23、SG-80H、HTR-860P、HTR-860P-3、HTR-860P-3CSP、HTR-860P-3CSP-3DB、HTR-860P-30B(いずれもナガセケムテックス株式会社製)等が挙げられる。
 (B)成分の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、5~50質量%であってよい。フィルム状接着剤において、(B)成分の含有量が、(A)成分、(B)成分、及び(C)成分の総量を基準として、5質量%以上であると、耐破断性により優れる傾向にあり、50質量%以下であると、硬化後の高温貯蔵弾性率がより充分に高い傾向にある。(B)成分の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、10質量%以上、15質量%以上、20質量%以上、又は25質量%以上であってもよく、45質量%以下、40質量%以下、又は35質量%以下であってもよい。
 (A)成分及び(B)成分の合計の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、58質量%以上である。(A)成分及び(B)成分の合計の含有量が、(A)成分、(B)成分、及び(C)成分の総量を基準として、58質量%以上であると、耐破断性に優れる傾向にある傾向にある。(A)成分及び(B)成分の合計の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、60質量%以上、65質量%以上、70質量%以上、又は75質量%以上であってもよい。(A)成分及び(B)成分の合計の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、95質量%以下、92質量%以下、又は90質量%以下であってよい。(A)成分及び(B)成分の合計の含有量が、(A)成分、(B)成分、及び(C)成分の総量を基準として、95質量%以下であると、硬化後の高温貯蔵弾性率がより充分に高い傾向にある。
 (B)成分に対する(A)成分の質量比((A)成分の質量/(B)成分の質量)は、1.3以上である。フィルム状接着剤において、(B)成分に対する(A)成分の質量比が1.3以上であると、硬化後の高温貯蔵弾性率が充分に高い傾向にある。(B)成分に対する(A)成分の質量比は、1.4以上、1.5以上、1.6以上、又は1.7以上であってもよい。(B)成分に対する(A)成分の質量比は、例えば、4.0以下、3.5以下、3.0以下、2.5以下、又は2.0以下であってよい。
(C)成分:無機フィラー
 (C)成分としては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ等からなるフィラーなどが挙げられる。これらの中でも、(C)成分は、シリカ(結晶性シリカ又は非晶性シリカ)からなるフィラーであってよい。
 (C)成分の平均粒径は、耐破断性及び硬化後の高温貯蔵弾性率を両立する観点から、0.35μm以下であってよい。(C)成分の平均粒径は、0.30μm以下、0.25μm以下、又は0.20μm以下であってもよい。(C)成分の平均粒径の下限は、例えば、0.01μm以上、0.03μm以上、又は0.05μm以上であってよい。ここで、(C)成分の平均粒径は、以下の方法によって求めることができる。まず、(C)成分を溶媒に分散して分散液を作製する。次いで、作製した分散液に対して動的光散乱法を適用して粒度分布を得る。次いで、得られた粒度分布に基づき、(C)成分の平均粒径を求めることができる。なお、(C)成分の平均粒径は、(C)成分が含有されるフィルム状接着剤からも求めることができる。この場合、フィルム状接着剤を加熱して樹脂成分を分解することによって得られる残渣を溶媒に分散して分散液を作製する。次いで、作製した分散液に対して動的光散乱法を適用して粒度分布を得る。次いで、得られた粒度分布に基づき、(C)成分の平均粒径を求めることができる。
 (C)成分は、その表面と溶剤、他の成分等との相溶性、接着強度の観点から表面処理剤によって表面処理されていてもよい。表面処理剤としては、例えば、シラン系カップリング剤等が挙げられる。シラン系カップリング剤の官能基としては、例えば、ビニル基、(メタ)アクリロイル基、エポキシ基、メルカプト基、アミノ基、ジアミノ基、アルコキシ基、エトキシ基等が挙げられる。
 (C)成分の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、5~60質量%であってよい。フィルム状接着剤において、(C)成分の含有量が、(A)成分、(B)成分、及び(C)成分の総量を基準として、5質量%以上であると、硬化後の高温貯蔵弾性率がより充分に高い傾向にあり、60質量%以下であると、耐破断性により優れる傾向にある。(C)成分の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、8質量%以上又は10質量%以上であってもよく、50質量%以下、45質量%以下、40質量%以下、35質量%以下、30質量%以下、又は25質量%以下であってもよい。
(D)成分:硬化促進剤
 フィルム状接着剤は、(D)成分をさらに含有していてもよい。フィルム状接着剤が(D)成分を含有することによって、接着性と接続信頼性とをより両立することができる傾向にある。(D)成分としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、第四級アンモニウム塩等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、反応性の観点から、(D)成分は、イミダゾール類及びその誘導体であってよい。
 イミダゾール類としては、例えば、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
 (D)成分の反応基当量と(A2)成分の水酸基当量との比((D)成分の反応基当量/(A2)成分の水酸基当量)は、例えば、0.1~2.0、0.2~1.8、0.25~1.5、又は0.3~1.3であってよい。
 (D)成分の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、0.01~1.0質量%であってよい。
(E)成分:カップリング剤
 (E)成分をさらに含有していてもよい。フィルム状接着剤が(E)成分を含有することによって、異種成分間の界面結合をより高めることができる傾向にある。(E)成分としては、例えば、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられる。これらの中でも、(E)成分は、シラン系カップリング剤であってよい。
 シラン系カップリング剤としては、例えば、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等が挙げられる。
 (E)成分の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、0.1~5.0質量%であってよい。
その他の成分
 フィルム状接着剤は、その他の成分として、抗酸化剤、レオロジーコントロール剤、レベリング剤、顔料、イオン補捉剤、酸化防止剤等をさらに含有していてもよい。その他の成分の含有量は、(A)成分、(B)成分、及び(C)成分の総量を基準として、0.01~3質量%であってよい。
 フィルム状接着剤1の厚さは、20μm以下、18μm以下、15μm以下、12μm以下、又は10μm以下であってよい。フィルム状接着剤1の厚さの下限は、特に制限されないが、例えば、1μm以上であってよい。
 フィルム状接着剤1の硬化物の150℃における貯蔵弾性率(硬化後の高温貯蔵弾性率)は、例えば、100MPa以上であってよく、110MPa以上又は120MPa以上であってもよい。ここで、フィルム状接着剤1の硬化物は、フィルム状接着剤1を150℃で50分の条件で加熱することによって得られる硬化物を意味する。フィルム状接着剤の硬化後の高温貯蔵弾性率が100MPa以上であると、ワイヤボンディング時の振動によるボンディング不良又はチップクラックを抑制することが可能となる。フィルム状接着剤の硬化後の高温貯蔵弾性率は、例えば、500MPa以下であってよく、300MPa以下、200MPa以下、又は180MPa以下であってもよい。本明細書において、フィルム状接着剤の硬化後の高温貯蔵弾性率は、実施例に記載の方法によって測定することができる。
 図1に示されるフィルム状接着剤1(接着剤フィルム)は、(A)成分、(B)成分、及び(C)成分、並びに必要に応じて添加される成分((D)成分、(E)成分、その他の成分等)を含有する接着剤組成物をフィルム状に成形してなるものである。フィルム状接着剤1は、例えば、接着剤組成物を支持フィルムに塗布することによって形成することができる。フィルム状接着剤1の形成においては、接着剤組成物のワニス(接着剤ワニス)を用いてもよい。接着剤ワニスを用いる場合は、(A)成分、(B)成分、及び(C)成分、並びに必要に応じて添加される成分((D)成分、(E)成分、その他の成分等)を溶剤中で混合又は混練して接着剤ワニスを調製し、得られた接着剤ワニスを支持フィルムに塗布し、溶剤を加熱乾燥して除去することによってフィルム状接着剤1を得ることができる。
 支持フィルムは、上記の加熱乾燥に耐えるものであれば特に限定されないが、例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエチレンナフタレートフィルム、ポリメチルペンテンフィルム等であってよい。支持フィルムは、2種以上を組み合わせた多層フィルムであってもよく、表面がシリコーン系、シリカ系等の離型剤などで処理されたものであってもよい。支持フィルムの厚さは、例えば、10~200μm又は20~170μmであってよい。
 混合又は混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル等の分散機を用い、これらを適宜組み合わせて行うことができる。
 接着剤ワニスの調製に用いられる溶剤は、各成分を均一に溶解、混練、又は分散できるものであれば制限はなく、従来公知のものを使用することができる。このような溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン、トルエン、キシレン等が挙げられる。溶剤は、乾燥速度及び価格の観点から、メチルエチルケトン又はシクロヘキサノンであってよい。
 接着剤ワニスを支持フィルムに塗布する方法としては、公知の方法を用いることができ、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等を用いることができる。加熱乾燥条件は、使用した溶剤が充分に揮散する条件であれば特に制限はないが、50~150℃で、1~30分であってよい。
 フィルム状接着剤1は、薄膜化が可能であることから、複数の半導体チップを積層してなる半導体装置の製造プロセスに好適に用いることができる。この場合、半導体装置は、スタックドMCPであってよく、三次元NAND型メモリであってもよい。
[ダイシング・ダイボンディング一体型フィルム]
 図2は、ダイシング・ダイボンディング一体型フィルムの一実施形態を示す模式断面図である。図2に示されるダイシング・ダイボンディング一体型フィルム10は、基材層2と、粘着剤層3と、上記のフィルム状接着剤1からなる接着剤層1Aとをこの順に備える。基材層2及び粘着剤層3は、ダイシングテープ4であり得る。このようなダイシング・ダイボンディング一体型フィルム10を用いると、半導体ウェハへのラミネート工程が1回となることから、作業の効率化が可能である。ダイシング・ダイボンディング一体型フィルムは、フィルム状、シート状、テープ状等であってもよい。
 ダイシングテープ4は、基材層2と、基材層2上に設けられた粘着剤層3とを備えている。
 基材層2としては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムなどが挙げられる。これらの基材層2は、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が行われていてもよい。
 粘着剤層3は、粘着剤からなる層である。粘着剤は、ダイシング時には半導体チップが飛散しない充分な粘着力を有し、その後の半導体チップのピックアップ工程においては半導体チップを傷つけない程度の低い粘着力を有するものであれば特に制限なく、ダイシングテープの分野で従来公知のものを使用することができる。粘着剤は、感圧型又は放射線硬化型のいずれであってもよい。感圧型粘着剤は、短時間の加圧で一定の粘着性を示す粘着剤である。一方、放射線硬化型粘着剤は、放射線(例えば、紫外線)の照射によって、粘着性が低下する性質を有する粘着剤である。
 ダイシングテープ4(基材層2及び粘着剤層3)の厚さは、経済性及びフィルムの取扱い性の観点から、60~150μm又は70~130μmであってよい。
 ダイシング・ダイボンディング一体型フィルム10は、例えば、フィルム状接着剤1及びダイシングテープ4を準備し、フィルム状接着剤1とダイシングテープ4の粘着剤層3とを貼り合わせることによって得ることができる。また、ダイシング・ダイボンディング一体型フィルム10は、例えば、ダイシングテープ4を準備し、上記のフィルム状接着剤1を形成する方法と同様に、接着剤組成物(接着剤ワニス)をダイシングテープ4の粘着剤層3上に塗布することによっても得ることができる。
 フィルム状接着剤1とダイシングテープ4の粘着剤層3とを貼り合わせる場合、ダイシング・ダイボンディング一体型フィルム10は、ロールラミネーター、真空ラミネーター等を用いて所定条件(例えば、室温(20℃)又は加熱状態)でダイシングテープ4にフィルム状接着剤1をラミネートすることによって形成することができる。ダイシング・ダイボンディング一体型フィルム10は、連続的に製造ができ、効率に優れることから、加熱状態でロールラミネーターを用いて形成してもよい。
 フィルム状接着剤及びダイシング・ダイボンディング一体型フィルムは、半導体装置の製造プロセスに用いられるものであってよく、複数の半導体チップを積層してなる半導体装置の製造プロセスに用いられるものであってもよい。フィルム状接着剤及びダイシング・ダイボンディング一体型フィルムは、半導体ウェハ又はすでに個片化されている半導体チップに、フィルム状接着剤又はダイシング・ダイボンディング一体型フィルムの接着剤層を0℃~90℃で貼り合わせて、回転刃、レーザー又は伸張による分断で接着剤片付き半導体チップを得る工程と、当該接着剤片付き半導体チップを、支持部材又は他の半導体チップ上に接着剤片を介して接着する工程とを含む半導体装置の製造に用いられるものであってよい。
 フィルム状接着剤は、複数の半導体チップを積層してなる半導体装置であるスタックドMCP(例えば、三次元NAND型メモリ)において、半導体チップ同士を接着するための接着剤としても好適に用いられる。
 フィルム状接着剤は、例えば、フリップチップ型半導体装置の半導体チップの裏面を保護する保護シート、フリップチップ型半導体装置の半導体チップの表面と被着体との間を封止するための封止シート等としても用いることできる。
 フィルム状接着剤及びダイシング・ダイボンディング一体型フィルムを用いて製造された半導体装置について、以下、図面を用いて具体的に説明する。なお、近年は様々な構造の半導体装置が提案されており、本実施形態のフィルム状接着剤及びダイシング・ダイボンディング一体型フィルムの用途は、以下に説明する構造の半導体装置に限定されるものではない。
[半導体装置]
 図3は、半導体装置の一実施形態を示す模式断面図である。図3に示される半導体装置100は、半導体チップ11と、半導体チップ11を搭載する支持部材12と、接着部材15とを備えている。接着部材15は、半導体チップ11及び支持部材12の間に設けられ、半導体チップ11と支持部材12とを接着している。接着部材15は、フィルム状接着剤の硬化物である。半導体チップ11の接続端子(図示せず)はワイヤ13を介して外部接続端子(図示せず)と電気的に接続され、封止材14によって封止されている。
 図4は、半導体装置の他の実施形態を示す模式断面図である。図4に示される半導体装置110において、一段目の半導体チップ11aは、接着部材15a(フィルム状接着剤の硬化物)によって、端子16が形成された支持部材12に接着され、一段目の半導体チップ11a上にさらに接着部材15b(フィルム状接着剤の硬化物)によって二段目の半導体チップ11bが接着されている。一段目の半導体チップ11a及び二段目の半導体チップ11bの接続端子(図示せず)は、ワイヤ13を介して外部接続端子と電気的に接続され、封止材14によって封止されている。図4に示される半導体装置110は、図3に示される半導体装置100において、半導体チップ(11a)の表面上に積層された他の半導体チップ(11b)をさらに備えているともいえる。
 図5は、半導体装置の他の実施形態を示す模式断面図である。図5に示される半導体装置120は、支持部材12と、支持部材12上に積層された半導体チップ11a,11b,11c,11dとを備える。四つの半導体チップ11a,11b,11c,11dは、支持部材12の表面に形成された接続端子(図示せず)との接続のために、横方向(積層方向と直交する方向)に互いにずれた位置に積層されている(図5参照)。半導体チップ11aは、接着部材15a(フィルム状接着剤の硬化物)によって支持部材12に接着されており、三つの半導体チップ11b,11c,11dの間にも、接着部材15b,15c,15d(フィルム状接着剤の硬化物)がそれぞれ介在している。図5に示される半導体装置120は、図3に示される半導体装置100において、半導体チップ(11a)の表面上に積層された他の半導体チップ(11b,11c,11d)をさらに備えているともいえる。
 以上、本開示の実施形態について半導体装置(パッケージ)を詳細に説明したが、本開示は上記実施形態に限定されるものではない。例えば、図5においては、四つの半導体チップが積層された態様の半導体装置を例示したが、積層する半導体チップの数はこれに限定されるものではない。また、図5においては、半導体チップが横方向(積層方向と直交する方向)に互いにずれた位置に積層されている態様の半導体装置を例示したが、半導体チップが横方向(積層方向と直交する方向)に互いにずれていない位置に積層されている態様の半導体装置であってもよい。
[半導体装置の製造方法]
 図3、図4、及び図5に示される半導体装置(半導体パッケージ)は、半導体チップと支持部材との間、又は、半導体チップ(第1の半導体チップ)と他の半導体チップ(第2の半導体チップ)との間に上記のフィルム状接着剤を介在させ、半導体チップ及び支持部材、又は、第1の半導体チップ及び第2の半導体チップを接着させる工程を備える方法によって得ることができる。より具体的には、半導体チップと支持部材との間、又は、第1の半導体チップと第2の半導体チップとの間に上記のフィルム状接着剤を介在させ、これらを加熱圧着して両者を接着させ、その後、必要に応じてワイヤボンディング工程、封止材による封止工程、はんだによるリフローを含む加熱溶融工程等を経ることによって得ることができる。
 半導体チップと支持部材との間、又は、第1の半導体チップと第2の半導体チップとの間にフィルム状接着剤を介在させる方法としては、後述のように、予め接着剤片付き半導体チップを作製した後、支持部材又は半導体チップに貼り付ける方法であってよい。
 次に、図2に示されるダイシング・ダイボンディング一体型フィルムを用いて半導体装置の製造方法の一実施形態について説明する。なお、ダイシング・ダイボンディング一体型フィルムによる半導体装置の製造方法は、以下に説明する半導体装置の製造方法に限定されるものではない。
 半導体装置は、例えば、上記のダイシング・ダイボンディング一体型フィルムの接着剤層に半導体ウェハを貼り付ける工程(ラミネート工程)と、接着剤層を貼り付けた半導体ウェハを切断することによって、複数の個片化された接着剤片付き半導体チップを作製する工程(ダイシング工程)と、接着剤片付き半導体チップを支持部材に接着剤片を介して接着する工程(第1の接着工程)とを備える方法によって得ることができる。半導体装置の製造方法は、他の接着剤片付き半導体チップを、支持部材に接着された半導体チップの表面に接着剤片を介して接着する工程(第2の接着工程)をさらに備えていてもよい。
 ラミネート工程は、ダイシング・ダイボンディング一体型フィルム10における接着剤層1Aに半導体ウェハを圧着し、これを接着保持させて貼り付ける工程である。本工程は、圧着ロール等の押圧手段によって押圧しながら行ってもよい。
 半導体ウェハとしては、例えば、単結晶シリコン、多結晶シリコン、各種セラミック、ガリウムヒ素等の化合物半導体などが挙げられる。
 ダイシング工程は、半導体ウェハのダイシングを行う工程である。これによって、半導体ウェハを所定のサイズに切断して、複数の個片化された接着剤片付き半導体チップを製造することができる。ダイシングは、例えば、半導体ウェハの回路面側から常法に従って行うことができる。また、本工程では、例えば、ダイシングテープまで切込みを設けるフルカットと呼ばれる方式、半導体ウェハに半分切込みを設け、冷却化して引っ張ることによって分断する方式、レーザーによって分断する方式等を採用できる。本工程で用いるダイシング装置としては、特に限定されず、従来公知のものを用いることができる。
 半導体チップとしては、例えば、IC(集積回路)等が挙げられる。支持部材としては、例えば、42アロイリードフレーム、銅リードフレーム等のリードフレーム;ポリイミド樹脂、エポキシ樹脂等のプラスチックフィルム;ガラス不織布等基材にポリイミド樹脂、エポキシ樹脂等のプラスチックを含浸、硬化させた変性プラスチックフィルム;アルミナ等のセラミックスなどが挙げられる。
 半導体装置の製造方法は、必要に応じて、ピックアップ工程を備えていてもよい。ピックアップ工程は、ダイシング・ダイボンディング一体型フィルムに接着固定された接着剤片付き半導体チップを剥離するために、接着剤片付き半導体チップのピックアップを行う工程である。ピックアップの方法としては、特に限定されず、従来公知の種々の方法を採用できる。このような方法としては、例えば、個々の接着剤片付き半導体チップをダイシング・ダイボンディング一体型フィルム側からニードルによって突き上げ、突き上げられた接着剤片付き半導体チップをピックアップ装置によってピックアップする方法等が挙げられる。
 ここでピックアップは、粘着剤層が放射線(例えば、紫外線)硬化型の場合、該粘着剤層に放射線を照射した後に行うことができる。これによって、粘着剤層の接着剤片に対する粘着力が低下し、接着剤片付き半導体チップの剥離が容易になる。その結果、接着剤片付き半導体チップを損傷させることなく、ピックアップが可能となる。
 第1の接着工程は、ダイシングによって形成された接着剤片付き半導体チップを、半導体チップを搭載するための支持部材に接着剤片を介して接着する工程である。半導体装置の製造方法は、必要に応じて、他の接着剤片付き半導体チップを、支持部材に接着された半導体チップの表面に接着剤片を介して接着する工程(第2の接着工程)を備えていてもよい。接着はいずれも圧着によって行うことができる。圧着条件としては、特に限定されず、適宜必要に応じて設定することができる。圧着条件は、例えば、80~160℃の温度、5~15Nの荷重、1~10秒の時間であってよい。なお、支持部材は、上記と同様の支持部材を例示することができる。
 半導体装置の製造方法は、必要に応じて、接着剤片をさらに熱硬化させる工程(熱硬化工程)を備えていてもよい。半導体チップ及び支持部材、又は、第1の半導体チップ及び第2の半導体チップを接着している接着剤片をさらに熱硬化させることによって、より強固に接着固定が可能となる。熱硬化を行う場合、圧力を同時に加えて硬化させてもよい。本工程における加熱温度は、接着剤片を構成成分によって適宜変更することができる。加熱温度は、例えば、60~200℃であってよい。なお、温度又は圧力は、段階的に変更しながら行ってもよい。
 半導体装置の製造方法は、必要に応じて、支持部材の端子部(インナーリード)の先端と半導体チップ上の電極パッドとをボンディングワイヤで電気的に接続する工程(ワイヤボンディング工程)を備えていてもよい。ボンディングワイヤとしては、例えば、金線、アルミニウム線、銅線等が用いられる。ワイヤボンディングを行う際の温度は、80~250℃又は80~220℃の範囲内であってよい。加熱時間は数秒~数分であってよい。ワイヤボンディングは、上記温度範囲内で加熱された状態で、超音波による振動エネルギーと印加加圧とによる圧着エネルギーの併用によって行ってもよい。
 半導体装置の製造方法は、必要に応じて、封止材によって半導体チップを封止する工程(封止工程)を備えていてもよい。本工程は、支持部材に搭載された半導体チップ又はボンディングワイヤを保護するために行われる。本工程は、封止用の樹脂(封止樹脂)を金型で成型することによって行うことができる。封止樹脂としては、例えばエポキシ系の樹脂であってよい。封止時の熱及び圧力によって支持部材及び残渣が埋め込まれ、接着界面での気泡による剥離を防止することができる。
 半導体装置の製造方法は、必要に応じて、封止工程で硬化不足の封止樹脂を完全に硬化させる工程(後硬化工程)を備えていてもよい。封止工程において、接着剤片が熱硬化されない場合でも、本工程において、封止樹脂の硬化とともに接着剤片を熱硬化させて接着固定が可能になる。本工程における加熱温度は、封止樹脂の種類よって適宜設定することができ、例えば、165~185℃の範囲内であってよく、加熱時間は0.5~8時間程度であってよい。
 半導体装置の製造方法は、必要に応じて、支持部材に接着された接着剤片付き半導体チップに対して、リフロー炉を用いて加熱する工程(加熱溶融工程)を備えていてもよい。本工程では支持部材上に、樹脂封止した半導体装置を表面実装してもよい。表面実装の方法としては、例えば、プリント配線板上に予めはんだを供給した後、温風等によって加熱溶融し、はんだ付けを行うリフローはんだ付けなどが挙げられる。加熱方法としては、例えば、熱風リフロー、赤外線リフロー等が挙げられる。また、加熱方法は、全体を加熱するものであってもよく、局部を加熱するものであってもよい。加熱温度は、例えば、240~280℃の範囲内であってよい。
 以下に、本開示を実施例に基づいて具体的に説明するが、本開示はこれらに限定されるものではない。
[フィルム状接着剤の作製]
(実施例1~4及び比較例1~3)
<接着剤ワニスの調製>
 表1に示す成分及び含有量(単位:質量部)で、(A)成分((A1)成分及び及び(A2))、並びに(C)成分からなる混合物にシクロヘキサノンを加え、撹拌混合した。これに、表1に示す成分及び含有量(単位:質量部)で、(B)成分を加えて撹拌し、さらに(D)成分及び(E)成分を加えて、各成分が均一になるまで撹拌して、固形分22質量%の接着剤ワニスを調製した。なお、表1に示す各成分は下記のものを意味し、表1に示す数値は固形分の質量部を意味する。
(A)成分:熱硬化性樹脂成分
(A1)成分:エポキシ樹脂
(A1a)成分:ナフタレン骨格を有するエポキシ樹脂
(A1a-1)HP-4710(商品名、DIC株式会社製、上記の式(X)で表されるエポキシ樹脂、エポキシ当量:170g/eq、軟化点:95℃)
(A1b)成分:ナフタレン骨格を有しないエポキシ樹脂
(A1b-1)EXA-830CRP(商品名、DIC株式会社製、ビスフェノールF型エポキシ樹脂、エポキシ当量:160g/eq、軟化点:85℃)
(A1b-2)N-500P-10(商品名、DIC株式会社製、o-クレゾールノボラック型エポキシ樹脂、エポキシ当量:204g/eq、軟化点:75~85℃)
(A1b-3)YDF-8170C(商品名、日鉄ケミカル&マテリアル株式会社製、ビスフェノールF型エポキシ樹脂、エポキシ当量:159g/eq、30℃で液状)
(A2)成分:フェノール樹脂
(A2-1)PSM-4326(商品名、群栄化学工業株式会社製、フェノールノボラック型フェノール樹脂、水酸基当量:105g/eq、軟化点:120℃)
(B)成分:エラストマー
(B-1)HTR-860P-3CSP(商品名、ナガセケムテックス株式会社製、アクリルゴム、ガラス転移点:-7℃、重量平均分子量:80万)
(C)成分:無機フィラー
(C-1)シリカフィラー分散液(CIKナノテック株式会社製、シリカフィラー、平均粒径:0.10μm)
(C-2)K180SV-CH1(商品名、アドマテックス株式会社製、シリカフィラー、平均粒径:0.18μm)
(C-3)0.3μmSE-CH1(商品名、アドマテックス株式会社製、シリカフィラー、平均粒径:0.30μm)
(C-4)SC2050-HLG(商品名、アドマテックス株式会社製、シリカフィラー、平均粒径:0.50μm)
(D)成分:硬化促進剤
(D-1)2PZ-CN(商品名、四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール)
(D-2)2PZ(商品名、四国化成工業株式会社製、2-フェニルイミダゾール)
(E)成分:カップリング剤
(E-1)A-189(商品名、日本ユニカー株式会社製、γ-メルカプトプロピルトリメトキシシラン)
(E-2)A-1160(商品名、日本ユニカー株式会社製、γ-ウレイドプロピルトリエトキシシラン)
<フィルム状接着剤の作製>
 支持フィルムとして、厚さ38μmの離型処理を施したポリエチレンテレフタレート(PET)フィルムを用意し、接着剤ワニスをPETフィルム上に塗布した。塗布した接着剤ワニスを、110℃で5分の条件で加熱乾燥し、支持フィルムと、支持フィルム上に、Bステージ状態にある実施例1~4及び比較例1~3のフィルム状接着剤とを備える積層体を得た。フィルム状接着剤においては、接着剤ワニスの塗布量によって、フィルム状接着剤の厚さが10μmになるように調整した。
[フィルム状接着剤の評価]
<耐破断性の評価>
 実施例1~4及び比較例1~3のフィルム状接着剤を備える積層体を、長さ100mm及び幅20mmに切り出し、これを試験片とした。試験片のフィルム状接着剤側の端部にセロハンテープを貼り付けた。フィルム状接着剤をセロハンテープごと、支持フィルム(PETフィルム)から剥離し、剥離したフィルム状接着剤の状態を観察した。フィルム状接着剤が全て破断なく剥離できた場合を耐破断性に優れるとして「A」、8割以上破断なく剥離できた場合を「B」、8割未満で破断した場合を「C」と評価した。表1に結果を示す。
<硬化後の高温貯蔵弾性率の測定>
 実施例1~4及び比較例1~3のフィルム状接着剤を用いて、硬化後の高温貯蔵弾性率を測定した。硬化後の高温貯蔵弾性率は、以下の方法で測定した。すなわち、厚さ10μmのフィルム状接着剤を複数積層することによって厚さを約160μmとし、これを幅4mm×長さ33mmのサイズにすることによって測定用の試料を作製した。作製した試料を150℃、50分の条件で硬化させた後、硬化後の試料を動的粘弾性測定装置(Rheogel E-4000、株式会社ユービーエム製)にセットし、引張り荷重をかけて、周波数10Hz、昇温速度3℃/分の条件で30~300℃まで測定する温度依存性測定モードにて、粘弾性を測定し、150℃のときの貯蔵弾性率の値を高温貯蔵弾性率とした。高温貯蔵弾性率は、数値が大きい(例えば、100MPa以上)ほど、ワイヤボンディング不良を抑制できることを意味する。表1に結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示すとおり、熱硬化性樹脂成分及びエラストマーの合計の含有量が、熱硬化性樹脂成分、エラストマー、及び無機フィラーの総量を基準として、58質量%以上であり、エラストマーに対する熱硬化性樹脂成分の質量比が1.3以上である実施例1~4のフィルム状接着剤は、これらの要件を満たさない比較例1~3のフィルム状接着剤に比べて、耐破断性及び高温貯蔵弾性率の両方の点で優れていた。これらの結果から、本開示のフィルム状接着剤が、耐破断性に優れるとともに、硬化後の高温貯蔵弾性率が充分に高いことが確認された。
 本開示によれば、耐破断性に優れるとともに、硬化後の高温貯蔵弾性率が充分に高いフィルム状接着剤が提供される。また、本開示によれば、このようなフィルム状接着剤を用いたダイシング・ダイボンディング一体型フィルム及び半導体装置が提供される。さらに、本開示によれば、このようなダイシング・ダイボンディング一体型フィルムを用いた半導体装置の製造方法が提供される。
 1…フィルム状接着剤、1A…接着剤層、2…基材層、3…粘着剤層、4…ダイシングテープ、10…ダイシング・ダイボンディング一体型フィルム、11,11a,11b,11c,11d…半導体チップ、12…支持部材、13…ワイヤ、14…封止材、15,15a,15b,15c,15d…接着部材、16…端子、100,110,120…半導体装置。

Claims (16)

  1.  熱硬化性樹脂成分と、エラストマーと、無機フィラーとを含有し、
     前記熱硬化性樹脂成分及び前記エラストマーの合計の含有量が、前記熱硬化性樹脂成分、前記エラストマー、及び前記無機フィラーの総量を基準として、58質量%以上であり、
     前記エラストマーに対する前記熱硬化性樹脂成分の質量比が1.3以上である、
     フィルム状接着剤。
  2.  前記熱硬化性樹脂成分及び前記エラストマーの合計の含有量が、前記熱硬化性樹脂成分、前記エラストマー、及び前記無機フィラーの総量を基準として、95質量%以下である、
     請求項1に記載のフィルム状接着剤。
  3.  前記エラストマーに対する前記熱硬化性樹脂成分の質量比が4.0以下である、
     請求項1又は2に記載のフィルム状接着剤。
  4.  前記無機フィラーの平均粒径が0.35μm以下である、
     請求項1~3のいずれか一項に記載のフィルム状接着剤。
  5.  前記熱硬化性樹脂成分がエポキシ樹脂及びフェノール樹脂である、
     請求項1~4のいずれか一項に記載のフィルム状接着剤。
  6.  前記熱硬化性樹脂成分が、前記エポキシ樹脂として、ナフタレン骨格を有するエポキシ樹脂を含む、
     請求項5に記載のフィルム状接着剤。
  7.  前記ナフタレン骨格を有するエポキシ樹脂の含有量が、前記熱硬化性樹脂成分に含まれる前記エポキシ樹脂の総量を基準として、20~80質量%である、
     請求項6に記載のフィルム状接着剤。
  8.  硬化促進剤をさらに含有する、
     請求項1~7のいずれか一項に記載のフィルム状接着剤。
  9.  厚さが20μm以下である、
     請求項1~8のいずれか一項に記載のフィルム状接着剤。
  10.  複数の半導体チップを積層してなる半導体装置の製造プロセスに用いられる、
     請求項1~9のいずれか一項に記載のフィルム状接着剤。
  11.  前記半導体装置が三次元NAND型メモリである、
     請求項10に記載のフィルム状接着剤。
  12.  基材層と、粘着剤層と、請求項1~9のいずれか一項に記載のフィルム状接着剤からなる接着剤層とをこの順に備える、
     ダイシング・ダイボンディング一体型フィルム。
  13.  半導体チップと、
     前記半導体チップを搭載する支持部材と、
     前記半導体チップ及び前記支持部材の間に設けられ、前記半導体チップと前記支持部材とを接着する、請求項1~9のいずれか一項に記載のフィルム状接着剤の硬化物と、
    を備える、
     半導体装置。
  14.  前記半導体チップの表面上に積層された他の半導体チップをさらに備える、
     請求項13に記載の半導体装置。
  15.  請求項12に記載のダイシング・ダイボンディング一体型フィルムの前記接着剤層を半導体ウェハに貼り付ける工程と、
     前記接着剤層を貼り付けた前記半導体ウェハを切断することによって、複数の個片化された接着剤片付き半導体チップを作製する工程と、
     前記接着剤片付き半導体チップを支持部材に接着剤片を介して接着する工程と、
    を備える、
     半導体装置の製造方法。
  16.  他の前記接着剤片付き半導体チップを、前記支持部材に接着された半導体チップの表面に接着剤片を介して接着する工程をさらに備える、
     請求項15に記載の半導体装置の製造方法。
PCT/JP2022/005175 2022-02-09 2022-02-09 フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法 WO2023152837A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005175 WO2023152837A1 (ja) 2022-02-09 2022-02-09 フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005175 WO2023152837A1 (ja) 2022-02-09 2022-02-09 フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2023152837A1 true WO2023152837A1 (ja) 2023-08-17

Family

ID=87563834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005175 WO2023152837A1 (ja) 2022-02-09 2022-02-09 フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法

Country Status (1)

Country Link
WO (1) WO2023152837A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028717A (ja) * 2011-07-28 2013-02-07 Nitto Denko Corp フィルム状接着剤
JP2016100532A (ja) * 2014-11-25 2016-05-30 日東電工株式会社 接着シート、ダイシングシート付き接着シート及び半導体装置の製造方法
JP2018014501A (ja) * 2017-08-07 2018-01-25 日立化成株式会社 フィルム状接着剤及びダイシングダイボンディング一体型接着シート
JP2018195746A (ja) * 2017-05-19 2018-12-06 日東電工株式会社 ダイシングダイボンドフィルム
WO2020013250A1 (ja) * 2018-07-11 2020-01-16 日立化成株式会社 半導体装置の製造方法、熱硬化性樹脂組成物及びダイシング・ダイボンディング一体型フィルム
WO2020026757A1 (ja) * 2018-08-03 2020-02-06 日立化成株式会社 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028717A (ja) * 2011-07-28 2013-02-07 Nitto Denko Corp フィルム状接着剤
JP2016100532A (ja) * 2014-11-25 2016-05-30 日東電工株式会社 接着シート、ダイシングシート付き接着シート及び半導体装置の製造方法
JP2018195746A (ja) * 2017-05-19 2018-12-06 日東電工株式会社 ダイシングダイボンドフィルム
JP2018014501A (ja) * 2017-08-07 2018-01-25 日立化成株式会社 フィルム状接着剤及びダイシングダイボンディング一体型接着シート
WO2020013250A1 (ja) * 2018-07-11 2020-01-16 日立化成株式会社 半導体装置の製造方法、熱硬化性樹脂組成物及びダイシング・ダイボンディング一体型フィルム
WO2020026757A1 (ja) * 2018-08-03 2020-02-06 日立化成株式会社 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法

Similar Documents

Publication Publication Date Title
JP7298613B2 (ja) 半導体装置の製造方法、熱硬化性樹脂組成物及びダイシング・ダイボンディング一体型フィルム
JP7327416B2 (ja) 接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
JP6977588B2 (ja) 半導体装置の製造方法及び接着フィルム
JP6662074B2 (ja) 接着フィルム
JP2011174010A (ja) 粘接着剤組成物、回路部材接続用粘接着剤シート及び半導体装置の製造方法
WO2019220540A1 (ja) 半導体装置、並びに、その製造に使用する熱硬化性樹脂組成物及びダイシングダイボンディング一体型テープ
WO2020158490A1 (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
WO2023152837A1 (ja) フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
JP7322897B2 (ja) 接着フィルム、ダイシング・ダイボンディング一体型フィルム及び半導体パッケージの製造方法
JP7375764B2 (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
JP7255146B2 (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
TW202105489A (zh) 半導體裝置的製造方法、黏晶膜及切晶-黏晶一體型接著片
WO2023157846A1 (ja) フィルム状接着剤及びその製造方法、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2023048188A1 (ja) フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2022149582A1 (ja) フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
WO2022149581A1 (ja) 接着剤組成物、フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
JP2022033064A (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
JPWO2020065783A1 (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
JP7283399B2 (ja) 熱硬化性樹脂組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法
WO2022054718A1 (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
WO2022163465A1 (ja) 半導体装置及びその製造方法、並びに、熱硬化性樹脂組成物、接着フィルム及びダイシング・ダイボンディング一体型フィルム
WO2022186285A1 (ja) フィルム状接着剤、ダイシング・ダイボンディング一体型フィルム、並びに半導体装置及びその製造方法
JP7435458B2 (ja) フィルム状接着剤、接着シート、並びに半導体装置及びその製造方法
JP2022044991A (ja) ダイボンディングフィルム、接着シート、並びに半導体装置及びその製造方法
WO2020136903A1 (ja) 半導体装置の製造方法、フィルム状接着剤及びダイシング・ダイボンディング一体型フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925858

Country of ref document: EP

Kind code of ref document: A1