WO2020135849A1 - 一种光交换装置、系统及功率计算方法 - Google Patents

一种光交换装置、系统及功率计算方法 Download PDF

Info

Publication number
WO2020135849A1
WO2020135849A1 PCT/CN2019/129729 CN2019129729W WO2020135849A1 WO 2020135849 A1 WO2020135849 A1 WO 2020135849A1 CN 2019129729 W CN2019129729 W CN 2019129729W WO 2020135849 A1 WO2020135849 A1 WO 2020135849A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength division
laser
port
demultiplexer
optical switch
Prior art date
Application number
PCT/CN2019/129729
Other languages
English (en)
French (fr)
Inventor
章春晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020135849A1 publication Critical patent/WO2020135849A1/zh
Priority to US17/362,874 priority Critical patent/US11641246B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0015Construction using splitting combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0049Crosstalk reduction; Noise; Power budget

Definitions

  • the embodiments of the present application belong to the technical field of optical communication, and in particular, to an optical switching device, an optical switching system, and a power calculation method based on the device.
  • a networking method of the all-optical communication network is an optical cross-connect (OXC) optical switching system.
  • OXC optical cross-connect
  • An optical splitter 103 is connected in series between each optical channel of the AWG 102 and the optical switch 101 (using the 5% optical splitter in FIG. 1 as an example), and a photodetector (photodetector) is connected to the optical splitter port of the optical splitter 103 , PD) 104.
  • An optical splitter 106 is also connected in series with each branch port of the optical switch 101, and a PD 105 is connected to the optical splitter port of the optical splitter 106.
  • the optical power detected by the PD 104 and the optical splitting ratio of the optical splitter 104 can calculate the optical power input to the optical switch 101 And output the optical power of the optical switch 101. Furthermore, the insertion loss of the optical switch can be calculated from the optical power of the input optical switch 101 and the optical power of the output optical switch 101.
  • the insertion loss of the optical switch can only be detected when there is service light in the optical channel.
  • the PD cannot detect the optical power at this time, it cannot monitor the insertion of the optical switch. damage.
  • An embodiment of the present application provides an optical switching device to solve the problem of how to monitor the insertion loss of an optical switch for an optical channel without service light.
  • an embodiment of the present application provides an optical switching device, including: a first optical switch, L first wavelength division multiplexers/demultiplexers and L second wavelength divisions connected to the first optical switch Multiplexer/demultiplexer, beam generating device connected to L first wavelength division multiplexers/demultiplexers, and connected to the L second wavelength division multiplexers/demultiplexers Detection device, L is a positive integer.
  • the first wavelength division multiplexer/demultiplexer and the second wavelength division multiplexer/demultiplexer include multiple multiplexing ports and multiple demultiplexing ports. One of the multiplexing ports of the first wavelength division multiplexer/demultiplexer is the signal optical port, and the remaining multiplexing ports are connected to the beam generating device.
  • the first wavelength division multiplexer/demultiplexer The multiple demultiplexing ports are connected to the first optical switch.
  • One of the multiplexing ports of the second wavelength division multiplexer/demultiplexer is a signal optical port, and the remaining multiplexing ports are connected to the detection device.
  • the second wavelength division multiplexer/demultiplexer The multiple branch ports are connected to the first optical switch.
  • the optical switching device includes L first wavelength division multiplexers/demultiplexers and L second wavelength division multiplexers/demultiplexers.
  • Each wavelength division multiplexer/demultiplexer has a signal optical port and other multiplexing ports, so that the remaining multiplexing ports in the L first wavelength division multiplexer/demultiplexer can be input through the beam generating device Laser, and then the first optical switch inputs the received laser to the wavelength division ports in the L second wavelength division multiplexers/demultiplexers.
  • any one of the L second wavelength division multiplexers/demultiplexers receives the laser light from the second wavelength division multiplexer/demultiplexer, from the second wavelength division multiplexer/demultiplexer
  • the remaining multiplexing ports send the received laser to the detection device, so that the detection device obtains the output power of the output laser.
  • the optical switching device provided by the embodiments of the present application can still calculate the output power of the output laser without signal light, so as to obtain the insertion of the first optical switch according to the input power of the laser damage. In this way, even in the channel closed-loop, power-on self-test, and unused channel detection scenarios, even if there is no service light in the channel, the insertion loss of the first optical switch can be obtained.
  • the beam generating device includes: a tunable laser and a second optical switch; the second optical switch is respectively combined with the tunable laser and the remaining multiplexing ports of the first wavelength division multiplexer/demultiplexer Connected to switch the laser output by the tunable laser to the target multiplexing port of the first wavelength division multiplexer/demultiplexer.
  • the detection device further includes: a detector and a coupler; the coupler is connected to the detector and the remaining multiplexing ports of the second wavelength division multiplexer/demultiplexer, respectively
  • the laser output from the remaining multiplexing ports of the two-wavelength division multiplexer/demultiplexer is coupled to the detector.
  • the laser output from the remaining multiplexing ports of each second wavelength division multiplexer/demultiplexer of the L second wavelength division multiplexers/demultiplexers can be sequentially coupled to the detector through the coupler, so that L A second wavelength division multiplexer/demultiplexer shares a detector, which greatly reduces the cost and volume of the optical switching device.
  • the beam generating device includes: a plurality of first tunable lasers, each of the plurality of first tunable lasers and L first wavelength division multiplexers/demultiplexers A multiplexing port other than the signal optical port in the device is connected.
  • the detection device includes: a plurality of detectors, and each detector is combined with one of the L second wavelength division multiplexers/demultiplexers except the signal optical port The port is connected.
  • a detector is connected to a multiplexing port of each second wavelength division multiplexer/demultiplexer except the signal optical port to ensure that the detector accurately detects the second wavelength division multiplexer connected to it/ The reliability of the output power of the laser output from the demultiplexer.
  • the first optical switch further includes M first branch ports
  • the optical switching device further includes a third optical switch, where the third optical switch is separately connected to the beam generating device and the M first branches Road port is connected, M is a positive integer. In this way, the detection of the upper wave channel and/or lower wave channel can be realized.
  • the optical switching device further includes multiple circulators; each of the multiple circulators The first port of each circulator is connected to the beam generating device, and the second port of each circulator is connected to a multiplexing port other than the signal optical port in the first wavelength division multiplexer/demultiplexer, each ring The third port of the device is connected to the detection device. This can effectively isolate the laser light input to the first wavelength division multiplexer/demultiplexer from the laser light output from the first wavelength division multiplexer/demultiplexer.
  • the first optical switch further includes N second branch ports
  • the optical switching device further includes a fourth optical switch, where the fourth optical switch is connected to the beam generating device and the first optical The N second branch ports of the switch are connected, and N is a positive integer.
  • the first optical switch further includes M first branch ports
  • the optical switching device includes a multi-wavelength laser source
  • multiple output ports of the multi-wavelength laser source are respectively connected to the M The first branch port is connected.
  • the optical switches connected to the M first branch ports can be omitted, which reduces the cost and volume, and the speed of the round-trip monitoring of the insertion loss of all channels is not affected by the light connected to the M first branch ports The speed limit of the switch.
  • the optical switching device provided by the embodiment of the present application further includes: a processor, connected to the output port of the detection device, for acquiring the input power of the laser and the output power of the laser obtained by the detection device, and It is used to determine the insertion loss of the first optical switch according to the output power and the input power.
  • an embodiment of the present application provides an optical switching system including at least two optical switching devices as described in any one possible implementation manner of the first aspect to the first aspect.
  • an embodiment of the present application provides a laser power calculation method, which is applied to an optical switching device.
  • the optical switching device includes: a first optical switch, and L first wavelength-division complex connected to the first optical switch Device/demultiplexer and L second wavelength division multiplexers/demultiplexers, a beam generating device connected to the L first wavelength division multiplexers/demultiplexers, and L A detection device connected to the second wavelength division multiplexer/demultiplexer, L is a positive integer
  • the method includes: the beam generating device sends a first wave to any one of the L first wavelength division multiplexers/demultiplexers Among the multiplexing ports of the multiplexer/demultiplexer, except for the signal light port, the multiplexing port inputs the first laser; the first wavelength division multiplexer/demultiplexer receiving the first laser A laser is input to the first optical switch from one of the multiple wavelength-division ports of the first wavelength division multiplexer/demultiplexer; the first optical switch inputs the first laser to L second
  • the beam generating device includes: a tunable laser and a second optical switch, and the beam generating device multiplexes to any one of the L first wavelength division multiplexers/demultiplexers
  • the input of the first laser beam to the multiplexing port of the multiplexer port of the multiplexer/demultiplexer except for the signal optical port includes: a tunable laser to generate the first laser, and inputting the first laser to the second An optical switch; a second optical switch switches the first laser to the target multiplexing port of any one of the first wavelength division multiplexer/demultiplexer.
  • the detection device includes: a detector and a coupler; the detection device obtains the output power of the first laser, including: the coupler transfers the output power from the second wavelength division multiplexer/demultiplexer The first laser is coupled to the detector; the detector detects the output power of the first laser output by the second wavelength division multiplexer/demultiplexer.
  • the beam generating device includes: a plurality of first tunable lasers, each of the plurality of first tunable lasers and L first wavelength division multiplexers/demultiplexers A multiplexing port other than the signal optical port in the device is connected; the beam generating device is connected to any of the first wavelength division multiplexer/demultiplexer among the L first wavelength division multiplexer/demultiplexer.
  • Inputting the first laser light to the multiplexing port except the signal light port among the multiplexing ports includes: each first tunable laser inputs the first laser to the connected multiplexing port.
  • the detection device includes multiple detectors, each of the multiple detectors and the L second wavelength division multiplexer/demultiplexer divide the signal light A multiplexing port outside the port is connected.
  • the detection device acquiring the output power of the first laser includes: each detector detects the output power of the first laser output from the connected multiplexing port.
  • the first optical switch further includes M first branch ports
  • the optical switching device further includes a third optical switch.
  • the third optical switch is respectively connected to the beam generating device and the M first branch ports, M is a positive integer
  • the method provided in this embodiment of the present application further includes: the beam generating device passes the third optical switch to the M first branches
  • the second laser is input to the port to input the second laser to the first optical switch.
  • the first optical switch inputs the second laser to the target wavelength division port of one of the L first wavelength division multiplexers/demultiplexers;
  • the first wavelength division multiplexer/demultiplexer of the two lasers inputs the second laser to the detection device; the detection device obtains the output power of the second laser.
  • the optical switching device further includes multiple circulators, and each of the multiple circulators The first port of each circulator is connected to the beam generating device, and the second port of each circulator is connected to a multiplexing port other than the signal optical port in the first wavelength division multiplexer/demultiplexer, each ring
  • the third port of the device is connected to the detection device; the first wavelength division multiplexer/demultiplexer that receives the second laser inputs the second laser to the detection device, including: the first wavelength division multiplex that receives the second laser
  • the second laser is input to the second port of the circulator with a device/demultiplexer.
  • the circulator inputs the second laser to the detection device from the third port.
  • the method provided in this embodiment of the present application further includes: the beam generating device inputs a second laser to the M first branch ports of the first optical switch through the third optical switch, where M is a positive integer.
  • the first branch port that receives the second laser inputs the second laser to the first optical switch.
  • the first optical switch inputs the second laser to the target wavelength division port of one of the second wavelength division multiplexers/demultiplexers among the L second wavelength division multiplexers/demultiplexers.
  • the second wavelength division multiplexer/demultiplexer that receives the second laser inputs the second laser to the detection device; the detection device obtains the output power of the second laser.
  • the method provided by the embodiment of the present application further includes: the M first branch ports included in the first optical switch receive laser light from a multi-wavelength laser source.
  • the method provided in this embodiment of the present application further includes: the processor obtains the output power of the laser obtained by the detection device, and calculates the power loss of the laser according to the input power of the laser generated by the beam generating device.
  • FIG. 1 is a schematic diagram of any node in an optical switching system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an optical switching system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an optical path of a through channel provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an optical path of an up-wave channel provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an optical path of a down-wave channel provided by an embodiment of the present application.
  • FIGS. 6 to 17 are schematic structural diagrams of an optical switching device provided by an embodiment of the present application.
  • FIG. 19 is a second schematic flowchart of a power calculation method according to an embodiment of the present application.
  • the words “first” and “second” are used to distinguish the same or similar items that have substantially the same functions and functions.
  • the first laser and the second laser are only for distinguishing different lasers, and their order is not limited.
  • the words “first” and “second” do not limit the number and execution order, and the words “first” and “second” do not necessarily mean different.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the relationship of the related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related object is a “or” relationship.
  • “At least one of the following” or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • At least one item (a) in a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or multiple .
  • any node includes: an optical switch 10 and at least one arrayed waveguide grating (Arrayed Waveguide Grating, AWG) 20.
  • AWG20 includes one multiplexing port 201 and N splitting ports 202.
  • the multiplexing port 201 is used as a line port to communicate with other nodes in the OXC optical switching system, and the demultiplexing port 202 is connected to the optical switch 10.
  • the port in the optical switch 10 that is not connected to the AWG 20 is used as a tributary port for communication with the local service board.
  • An embodiment of the present application provides an optical switching device, including L first wavelength division multiplexers/demultiplexers and L second wavelength division multiplexers/demultiplexers, each wavelength division multiplexer/ The demultiplexer has a signal optical port and the remaining multiplexing ports, so that the laser can be input to the remaining multiplexing ports in the L first wavelength division multiplexer/demultiplexer through the beam generating device, and then the first optical switch will The received laser is input to the wavelength division ports in the L second wavelength division multiplexers/demultiplexers, and then any one of the L second wavelength division multiplexers/demultiplexers receives the second laser The wavelength division multiplexer/demultiplexer will send the received laser to the detection device from the remaining multiplexing ports of the second wavelength division multiplexer/demultiplexer, so that the detection device obtains the output of the output laser power.
  • the optical switching device provided in the embodiments of the present application can still obtain the output power of the laser without signal light. Therefore, according to the input power of the laser and
  • Pass-through channel refers to the optical signal channel from the line port to the line port. That is, the laser light is input to the first optical switch through the first wavelength division multiplexer/demultiplexer, and then input into the second wavelength division multiplexer/demultiplexer from the first optical switch. The laser light is then output by the second wavelength division multiplexer/demultiplexer. Or the laser light is input to the first optical switch through the second wavelength division multiplexer/demultiplexer, and then input into the first wavelength division multiplexer/demultiplexer from the first optical switch. The laser light is then output by the first wavelength division multiplexer/demultiplexer.
  • the transmission direction of the monitoring light in the first optical switch may be the same as the transmission direction of the signal light in the first optical switch, or may be reversed.
  • FIG. 3 takes the case where the transmission direction of the monitoring light in the optical switch may be opposite to the transmission direction of the signal light in the optical switch.
  • the signal light with a wavelength of ⁇ 3 Input from the signal optical port of AWG3, and output from the branch port 3 of AWG3.
  • the signal light with a wavelength of ⁇ 3 is input from the demultiplexing port 3 of AWG 2 and is output from the signal optical port of AWG 2.
  • the wavelength ⁇ 'of light from the monitor 3 is used as the monitor light multiplexer input port AWG2 port, the port 3 is outputted from the demultiplexer AWG2.
  • the wavelength ⁇ 'of the monitor 3 passes through the first optical switch from the demultiplexer 3 AWG3 input port, an output port AWG3 multiplexing from the received detecting probe. Detected by the detector as the wavelength ⁇ 'of the monitor light output power of 3. This is according to the wavelength ⁇ 'of the monitor light output power and a wavelength 3 for ⁇ ' 3, the input power of the monitor light to obtain wavelength ⁇ '3 to monitor the entire optical path through an insertion loss.
  • Using 1 minus the insertion loss wavelength ⁇ '3 monitor light passes through the optical path components in the channel insertion loss (e.g., AWG2 AWG3 and insertion loss) can be obtained through the wavelength channels ⁇ '
  • the insertion loss of the monitoring light of 3 in the first optical switch Since the first switch is not sensitive to the wavelength of light, through the channel wavelength ⁇ '3 monitor light in the first optical insertion loss in the switch, may be considered to be approximately [lambda] 3 wavelength signal light loss in the optical switch of the first
  • the signal insertion loss of the optical signal channel corresponding to AWG2 can be monitored.
  • Wave channel optical signal channel from branch port to line port. That is, the laser is input to the first optical switch through the first branch port or the second branch port, and then input to the second wavelength division multiplexer/demultiplexer or the first wavelength division multiplexer/ Demultiplexer. The laser light is then output by the second wavelength division multiplexer/demultiplexer or the first wavelength division multiplexer/demultiplexer.
  • the monitoring method of the upper wave channel is as shown in FIG. 4 below, and the transmission direction of the monitoring light in the first optical switch may be the same as the transmission direction of the signal light in the first optical switch, or may be reversed.
  • Figure 4 takes the case where the monitoring light and signal light transmission directions are the same as an example:
  • the signal light with a wavelength of ⁇ 2 is input from the 95% port of the coupler, enters a first branch port of the first optical switch, and enters the branch port 2 of AWG1 after the first optical switch, and the signal with a wavelength of ⁇ 2 Light is output from the signal optical port of AWG1.
  • the probe detects a wavelength ⁇ 'of the monitor light output power and wavelength 2 for ⁇ ' 2 the input power of the monitor light can be obtained as the wavelength ⁇ '2 the monitoring optical insertion loss in the wave channel 1.
  • a wavelength of ⁇ '2 the monitoring light wave in the channel insertion loss by subtracting 1 1 insertion loss wavelength ⁇ ' of the monitor 2 through the light path of the light wave in the channel insertion loss components (e.g., AWG1 and 5% coupler insertion loss), to give the wave channel wavelength ⁇ '2 the monitoring optical insertion loss in the first optical switch.
  • the channel insertion loss components e.g., AWG1 and 5% coupler insertion loss
  • the wave channel wavelength ⁇ '2 the monitoring optical insertion loss in the first optical switch can be approximately considered to be the signal wave wavelength channel [lambda] 2 light in a first Insertion loss in the optical switch.
  • the monitoring method of the down-wave channel is as shown in FIG. 5 below.
  • the transmission directions of the monitoring light and the signal light in the first optical switch must be opposite.
  • the signal light with a wavelength of ⁇ 2 is input from the signal optical port of AWG2, output from the demultiplexing port 2, output from a branch port of the first optical switch after passing through the first optical switch, and is transmitted to the local service board through a coupler.
  • the wavelength of the monitor light output power of 2 for ⁇ ' of the light input power monitor 2 may be a wavelength ⁇ '2 the monitoring optical insertion loss is lower in a wave channel.
  • 1' e.g., AWG1 5% coupling and Insertion loss of the device
  • the wave channel wavelength ⁇ '2 the monitoring optical insertion loss in the first optical switch can be approximately considered to be the wave of the signal channel wavelength [lambda] 2 light in a first Insertion loss in the optical switch.
  • the insertion loss of the monitoring light in the first optical switch in the lower wave channel/upper wave channel/through channel can be obtained to obtain the signal light of the wavelength ⁇ 2 in the first optical switch Insertion loss. If the need to calculate the signal of wavelength ⁇ 2 of light at the wave channel / channels on the wave / insertion loss through the through passage, depending on the signal of wavelength ⁇ 2 light insertion loss in the first optical switch, together with the wavelength [lambda] The insertion loss of the signal light of 2 in the components of the optical path through which the signal light in the lower wave channel/upper wave channel/through channel passes.
  • the lower wave channel, the upper wave channel, and the through channel in the embodiments of the present application transmit in units of wavelengths.
  • FIG. 6 shows an optical switching device 200 provided by an embodiment of the present application.
  • the optical switching device 200 includes: a first optical switch 201, and L first optical switches 201 connected to the first optical switch 201.
  • the wavelength division multiplexer/demultiplexer 202 for example, the first wavelength division multiplexer/demultiplexer 21, the first wavelength division multiplexer/demultiplexer 22 shown in FIG. 6, ..., First wavelength division multiplexer/demultiplexer 2L
  • L second wavelength division multiplexer/demultiplexer 203 for example, the second wavelength division multiplexer/demultiplexer 31 in FIG.
  • Second wavelength division multiplexer/demultiplexer 32 ..., second wavelength division multiplexer/demultiplexer 3L
  • L is a positive integer.
  • the first wavelength division multiplexer/demultiplexer 202 includes a plurality of multiplexing ports and multiple demultiplexing ports (for example, the multiplexing port 2021 and the multiplexing port 2022 and the demultiplexing port 2023 shown in FIG. 6. It should be understood that two multiplexing ports are illustrated in FIG. 6, and the number of multiplexing ports may be 3 or more in actual processes.
  • the second wavelength division multiplexer/demultiplexer 203 includes multiple multiplexing ports and multiple demultiplexing ports (for example, multiplexing port 2031 and multiplexing port 2032 and demultiplexing port 2033 shown in FIG. 6) ,
  • One of the multiplexing ports of the first wavelength division multiplexer/demultiplexer 202 is a signal optical port (for example, as shown in FIG. 6, the multiplexing port 2021 is a signal optical port), and the remaining multiplexing ports
  • the wave port is connected to the light beam generating device 204, and the multiple wave division ports of the first wavelength division multiplexer/demultiplexer 202 are connected to the first optical switch 201.
  • One of the multiplexing ports of the second wavelength division multiplexer/demultiplexer 203 is a signal optical port (for example, the multiplexing port 2031 is a signal optical port), and the remaining multiplexing ports are connected to the detection device 205
  • the multiple wavelength division ports of the second wavelength division multiplexer/demultiplexer 203 are connected to the first optical switch 201. It should be understood that two multiplexing ports are illustrated in FIG. 6, and the number of multiplexing ports may be 3 or more in actual processes.
  • the signal light port is used to input signal light or output signal light.
  • the signal optical port of the first wavelength division multiplexer/demultiplexer 202 is used to input signal light.
  • the signal optical port of the second wavelength division multiplexer/demultiplexer 203 is used to output signal light.
  • multiple multiplexing ports of any one of the first wavelength division multiplexers/demultiplexers 202 and L second wavelength divisions among the L first wavelength division multiplexers/demultiplexers 202 A plurality of multiplexing ports of any second wavelength division multiplexer/demultiplexer 203 in the multiplexer/demultiplexer 203 can be used as line ports for communicating with other nodes.
  • the signal optical port of any one of the first wavelength division multiplexers/demultiplexers 202 in the L first wavelength division multiplexer/demultiplexer 202, and the L second wavelength division multiplexers uses DWDM signal light.
  • the light beam generating device 204 is also used to provide signal light to the L first wavelength division multiplexers/demultiplexers 202, the light beam generating device 204 is also connected to the L first wavelength division multiplexers/demultiplexers The signal optical port of each first wavelength division multiplexer/demultiplexer 202 in the user 202 is connected.
  • the beam generating device 204 in the embodiment of the present application is used to provide monitoring light to the remaining multiplexing ports of the L first wavelength division multiplexers/demultiplexers 202.
  • the remaining multiplexing ports in the embodiments of the present application may be referred to as monitoring optical ports.
  • the signal light in the embodiments of the present application refers to laser light that is modulated and has a service signal.
  • the monitoring light in the embodiments of the present application refers to laser light that has not been modulated and has no service signal.
  • the first wavelength division multiplexer/demultiplexer 202 and the second wavelength division multiplexer/demultiplexer 203 in the embodiment of the present application may be arrayed waveguide grating (Arrayed Waveguide Grating, AWG).
  • the optical switch in the embodiment of the present application is a key device for realizing the all-optical switching system, which can realize the functions of all-optical layer routing, wavelength selection, optical cross-connect, and self-healing protection.
  • Current optical switches mainly include traditional mechanical structure optical switches, MicroElectrical-Mechanical System (MEMS) optical switches, liquid crystal optical switches, waveguide optical switches, and semiconductor optical amplifier optical switches.
  • MEMS MicroElectrical-Mechanical System
  • the optical switching device includes L first wavelength division multiplexers/demultiplexers and L second wavelength division multiplexers/demultiplexers.
  • Each wavelength division multiplexer/demultiplexer has a signal optical port and other multiplexing ports, so that the remaining multiplexing ports in the L first wavelength division multiplexer/demultiplexer can be input through the beam generating device Laser, and then the first optical switch inputs the received laser to the wavelength division ports in the L second wavelength division multiplexers/demultiplexers.
  • any one of the L second wavelength division multiplexers/demultiplexers receives the laser light from the second wavelength division multiplexer/demultiplexer, from the second wavelength division multiplexer/demultiplexer
  • the remaining multiplexing ports send the received laser to the detection device, so that the detection device obtains the output power of the output laser.
  • the optical switching device provided in the embodiments of the present application can still obtain the output power of the laser without signal light.
  • the insertion loss of the first optical switch can be obtained according to the input power and output power of the laser. In this way, even in the channel closed-loop, power-on self-test, and unused channel detection scenarios, even if there is no service light in the channel, the insertion loss of the first optical switch can be obtained.
  • the first optical switch 201 in the embodiment of the present application is used to complete the establishment and switching of the through channel, the upper wave channel, and the lower wave channel.
  • signal light and monitoring light with the same wavelength are output from different branch ports.
  • the wavelengths of the signal light and the monitoring light satisfy a specific relationship, the signal light and the monitoring light with the same wavelength can be input from different multiplexing ports and output from the same splitting port.
  • monitoring light of different wavelengths can be input from the same multiplexing port or from different multiplexing ports.
  • Signal light of different wavelengths can be input from the same signal light port.
  • multiplexing port 1 is a signal optical port
  • multiplexing port 2 and multiplexing port 3 are monitoring optical ports.
  • the signal light wavelength [lambda] 1, [lambda] is the wavelength of signal light 2, a signal light wavelength [lambda] 3, ..., ⁇ N wavelength signal light can be input from the multiplexing port 1.
  • the wavelength ⁇ 'monitor light a wavelength of 1 to ⁇ ' monitor light wavelength 2 for ⁇ 'monitor light 3, ..., wavelength ⁇ ' N of monitor light or multiplexing port 2 input from the multiplexing port 3.
  • signal light with a wavelength of ⁇ 1 , signal light with a wavelength of ⁇ 2 , signal light with a wavelength of ⁇ 3 , ..., signal light with a wavelength of ⁇ N are multiplexed from the first wavelength division
  • the multiplexing port 2021 of the multiplexer/demultiplexer 202 is input.
  • Wavelength ⁇ ' is a monitor light, a wavelength ⁇ ' monitor light wavelength 2 for ⁇ 'monitor light 3, ..., wavelength ⁇ ' N of monitor light from the first wavelength division multiplexer / demultiplexer 202 multiplexing port 2022 input.
  • the optical signal wavelength ⁇ , the wavelength ⁇ 1 of light output monitor 1 'from the diplexer port is input.
  • Signal light wavelength [lambda] 2 the wavelength ⁇ '2 the monitoring light from the second output port of the demultiplexer.
  • the signal light with the wavelength ⁇ i in the embodiment of the present application is input from the demultiplexing port i and can be output from the multiplexing port 2021, and the power of the signal light output from the multiplexing port 2022 is very small (crosstalk light ) Or no signal light.
  • the signal light with a wavelength of ⁇ i is input from the demultiplexing port j (j ⁇ i), and the optical power output from the multiplexing port 2021 is very small (crosstalk light) or no light.
  • the port can be output from the multiplexer 2022, multiplexer 2021 output ports of the monitor light is small (light crosstalk) light or no monitoring.
  • ⁇ 'i from the demultiplexing ports j (j ⁇ i) the input optical power combiner output port 2032 is small (light crosstalk) light or no monitoring.
  • j is taken from 1,...,N.
  • the wavelength division multiplexer/demultiplexer is made according to the principle of interference and is a wavelength-dependent device.
  • the transmission path from a multiplexing port to a demultiplexing port can only pass a specific wavelength of laser.
  • the transmission path from a demultiplexing port to a multiplexing port can only pass a specific wavelength of laser.
  • a multiplexing port can form a transmission channel with a demultiplexing port, that is, if there are X multiplexing ports and Y demultiplexing ports, X*Y transmission channels can be formed .
  • a demultiplexing port can simultaneously form a transmission path with a multiplexing port used as a signal optical port, or a multiplexing port used as a monitoring optical port. For example, in FIG.
  • the multiplexing port 2021 and the multiplexing port 2022 form two transmission paths with the demultiplexing port 1 , respectively, the signal light with the wavelength ⁇ 1 input into the multiplexing port 2021 and the wavelength input into the multiplexing port 2022 are ⁇ 'may monitor an optical output port from the demultiplexer.
  • the L first wavelength division multiplexers/demultiplexers 202 may share one beam generating device 204.
  • the beam generating device 204 in the embodiment of the present application includes a tunable laser (Tunable) (TL) 2041 and a second optical switch 2042.
  • the second optical switch 2042 is respectively connected to the tunable laser 2041 and the remaining multiplexing ports of the first wavelength division multiplexer/demultiplexer 202, and is used to switch the laser output by the tunable laser 2041 to the first wavelength division The target multiplexing port of the multiplexer/demultiplexer 202.
  • the second optical switch 2042 is used to select which of the L first wavelength division multiplexer/demultiplexer 202 to switch the laser light generated by the tunable laser 2041 to the first wavelength division multiplexer/demultiplexer With device 202. That is, the second optical switch 2042 is used to select which of the L first wavelength division multiplexer/demultiplexer 202 the lasers of the same wavelength generated by the tunable laser 2041 are sequentially input to /Demultiplexer 202.
  • the second optical switch 2042 may be a 1 ⁇ T coupler or a 1 ⁇ T optical switch, where T is a positive integer.
  • the second optical switch 2042 may use the following second example to sequentially input different wavelengths into the first wavelength division multiplexer/demultiplexer 202 Laser.
  • the tunable laser 2041 generates laser light of one wavelength at a time
  • the second optical switch 2042 sequentially inputs the laser light of the same wavelength generated by the tunable laser 2041 each time into L first wavelength divisions Multiplexer/demultiplexer 202.
  • to adjust the second optical switch 2042 is switched to a first wavelength division multiplexer / demultiplexer 202.
  • the multiplexing port 2022 then generates a wavelength tunable laser 2041 from ⁇ '1 to ⁇ ' The monitoring light of N , and then the monitoring lights of wavelengths from ⁇ ′ 1 to ⁇ ′ N are sequentially input to the multiplexing port 2022 of the first wavelength division multiplexer/demultiplexer 202 to which the second optical switch 2042 is switched.
  • a first example, beam generating device 204 during operation to generate laser light as the monitor light, for example, a wavelength tunable laser 2041 to generate ⁇ '1 of the monitor light, a second optical switch 2042 wavelength ⁇ '
  • the monitoring light of 1 is switched to the multiplexing port 2022 of the first wavelength division multiplexer/demultiplexer 21.
  • the wavelength ⁇ 'of the monitor 1 is switched to a first optical wavelength division multiplexer / demultiplexer 22 and multiplexer port 2022, ..., the wavelength ⁇ ' of the monitor 1 to the first wavelength division multiplexing optical switching Multiplexer 2022 of the multiplexer/demultiplexer 2L.
  • the optical switch 2042 to a second wavelength ⁇ ' 2 the monitoring light are sequentially switched to the first wavelength division multiplexer / demultiplexer 21 to the first Wavelength division multiplexer/demultiplexer 2L. That is, the purpose of the second optical switch 2042 is to sequentially switch the monitoring light of any wavelength generated by the beam generating device 204 to the L first wavelength division multiplexers/demultiplexers 202.
  • the second optical switch 2042 is first adjusted so that the second optical switch 2042 is switched to the multiplexing port 2022 of the first wavelength division multiplexer/demultiplexer 21, and then the tunable laser 2041 sequentially generates wavelengths from ⁇ '1 to ⁇ ' N of the monitor light.
  • the wavelength tunable laser 2041 N monitor light generated from ⁇ '1 to ⁇ ' , Will be sequentially input to the multiplexing port 2022 of the first wavelength division multiplexer/demultiplexer 21.
  • adjusting the second optical switch 2042 such that the second optical switch 2042 is switched to a first wavelength division multiplexer / demultiplexer 22 and multiplexer port 2022, and 2041 sequentially generates a laser tunable in wavelength from ⁇ '1 to [lambda] ' N 's surveillance light.
  • the wavelength tunable laser 2041 N monitor light generated from ⁇ '1 to ⁇ ' , Sequentially input to the multiplexing port 2022 of the first wavelength division multiplexer/demultiplexer 22, and so on, so that each of the first wavelength division multiplexers/demultiplexers in the L first wavelength division multiplexer/demultiplexer demultiplexer / demultiplexer in N sequentially input from the monitor light wavelength ⁇ '1 to ⁇ '.
  • the L second wavelength division multiplexers/demultiplexers 203 may share a detection device 205.
  • the detection device 205 further includes: a detector 2051 and a coupler 2052.
  • the coupler 2052 is connected to the remaining multiplexing ports of the detector 2051 and the second wavelength division multiplexer/demultiplexer 203, respectively, and is used to combine the remaining multiplexing ports of the second wavelength division multiplexer/demultiplexer
  • the laser output from the port is coupled to the detector 2051.
  • the coupler 2052 sequentially couples the laser light output from the remaining multiplexing ports of each of the second wavelength division multiplexer/demultiplexer 203 in the L second wavelength division multiplexer/demultiplexer 203 to detection ⁇ 2051.
  • the coupler 2052 first receives the laser output from the remaining multiplexing port of the second wavelength division multiplexer/demultiplexer 203, then the rest of the second wavelength division multiplexer/demultiplexer 203 The laser output from the multiplexing port is coupled to the detector 2051, so that the detector 2051 can detect the output power of the laser output from the remaining multiplexing port of each second wavelength division multiplexer/demultiplexer 203.
  • the detector 2051 is used to obtain the output power of the laser beam of each wavelength among the laser beams of different wavelengths output by the remaining multiplexing ports of each second wavelength division multiplexer/demultiplexer 203.
  • the wavelength of the second wavelength division multiplexer / demultiplexer 31 is output to the multiplexer ⁇ 'of the laser 1, the wavelength of the coupler 2052 ⁇ ' 1 is coupled to the laser detector 2051, the detector 2051 to detect a wavelength ⁇ 'output of the laser 1. If the wavelength of the second wavelength division multiplexer / demultiplexer 31 outputs ⁇ '2 laser, the wavelength of the coupler 2052 ⁇ ' 2 is coupled to the laser detector 2051, the detector 2051 to detect a wavelength ⁇ ' 2 The output power of the laser.
  • the coupler 2052 may be a 1 ⁇ T optical switch or a 1 ⁇ T coupler.
  • the 1 ⁇ multiple-port optical switch in the embodiment of the present application can be replaced with a coupler having the same number of ports according to system characteristics and monitoring requirements.
  • 1 ⁇ multi-port couplers can be replaced with optical switches with the same number of ports according to system characteristics and monitoring requirements.
  • the second optical switch in the beam generating device 204 needs to be a 1 ⁇ T optical switch.
  • the coupler 2052 may be a 1 ⁇ T optical switch, and the second optical switch is a 1 ⁇ T optical switch.
  • the coupler 2052 may be a 1 ⁇ T coupler, and the second optical switch is a 1 ⁇ T optical switch.
  • the coupler 2052 may be a 1 ⁇ T optical switch, and the second optical switch is a 1 ⁇ T coupler.
  • L first wavelength division multiplexers/demultiplexers 202 share a beam generating device 204 and L second wavelength division multiplexers/demultiplexers in the embodiment of the present application
  • the multiplexer 203 shares a detection device 205
  • the tunable laser 2041, the second optical switch 2042, the coupler 2052, and the detector 2051 in the embodiment of the present application can be made into a single monitoring board.
  • the optical switching device adopts the structure shown in FIG. 8, the insertion loss of the signal light of the wavelength ⁇ i in the through channel in the first optical switch can be detected.
  • the wavelength ⁇ ' of the monitor light inputted to the first wavelength division i / demultiplexer After the multiplexing port 2022 of 21, one demultiplexing port from the first wavelength division multiplexer/demultiplexer 21 is input to the first optical switch 201.
  • the first optical switch 201 to select a second wavelength division multiplexer / demultiplexer (a second wavelength division multiplexer / demultiplexer 32 as an example), a wavelength ⁇ 'i monitoring light from the first
  • a wavelength division port of the two-wavelength division multiplexer/demultiplexer 32 enters the second wavelength division multiplexer/demultiplexer 32 and multiplexes from the second wavelength division multiplexer/demultiplexer 32
  • the output of port 2032 enters the detector 2051 through the 1*T coupler 2052. Then, the detector 2051 detects the output power of the received monitor light with the wavelength ⁇ ′ i .
  • the wavelength of the monitor light output power of i is ⁇ ' i of the input power of the monitor light can be calculated through the wavelength channels ⁇ 'i monitoring a light insertion loss.
  • wavelength channels ⁇ 'i of monitor light having a wavelength of one minus the insertion loss ⁇ ' i of monitor light path through the channel i.e., from the first wavelength division multiplexer / demultiplexer 21 to the detector 2051 in addition to the components of the first optical switch insertion loss, can be obtained as the wavelength ⁇ 'i of monitor light in the first optical insertion loss in the switch.
  • the insertion loss of the monitor light with the wavelength ⁇ ′ i in the first optical switch is the insertion loss of the signal light with the wavelength ⁇ i in the through channel in the first optical switch.
  • the second optical switch 2042 can switch the monitoring light of wavelength ⁇ i to a different first wavelength division multiplexer/demultiplexer 202, so that the detector 2051 acquires the monitoring light of different wavelengths through the channel The output power in.
  • a first tunable laser can be configured for each first wavelength division multiplexer/demultiplexer 202.
  • the beam generating device 204 includes: a plurality of first tunable lasers (for example, including L first tunable lasers.
  • each of the first tunable lasers in the plurality of first tunable lasers is divided by L first wavelength division multiplexers/demultiplexers A multiplexing port outside the signal optical port is connected.
  • the first tunable laser 41 is connected to the multiplexing port 2022 in the first wavelength division multiplexer/demultiplexer 21.
  • the first tunable laser 42 is connected to the multiplexing port 2022 in the first wavelength division multiplexer/demultiplexer 22.
  • the first tunable laser 4L is connected to the multiplexing port 2022 in the first wavelength division multiplexer/demultiplexer 2L.
  • any first tunable laser is used to sequentially generate laser light of different wavelengths, and then sequentially input laser lights of different wavelengths to the first wavelength division multiplexer/demultiplexer 202 connected thereto.
  • the first tunable laser 41 is used to sequentially generate monitoring light with wavelengths from ⁇ ′ 1 to ⁇ ′ N , so that the first wavelength division multiplexer/demultiplex connected to the first tunable laser 41 the adapter may be sequentially received from the wavelength ⁇ '1 to ⁇ ' N of the monitor light.
  • the detection device 205 includes a plurality of detectors.
  • the detection device 205 includes: a detector 51, a detector 52, ..., a detector 5L.
  • each detector in the plurality of detectors is connected to a multiplexing port other than the signal optical port in a second wavelength division multiplexer/demultiplexer.
  • the detector in the embodiment of the present application may be a photodetector (PD).
  • PD photodetector
  • the multiplexing port 2032 in the second wavelength division multiplexer/demultiplexer 31 is connected to the detector 51.
  • the multiplexing port 2032 in the second wavelength division multiplexer/demultiplexer 32 is connected to the detector 52.
  • the multiplexing port 2032 in the second wavelength division multiplexer/demultiplexer 3L is connected to the detector 5L.
  • any detector as shown in FIG. 9 is used to detect the output power of the laser light of each wavelength in the different wavelengths output by the second wavelength division multiplexer/demultiplexer connected to the detector.
  • the optical switching device shown in any one of the drawings in FIGS. 6 to 9 may calculate the output power of the laser light output through the through channel.
  • the transmission direction of the signal light input into the signal optical port of any one of the first wavelength division multiplexer/demultiplexer 202 in the L first wavelength division multiplexer/demultiplexer 202 The transmission direction of the monitoring light input in the other multiplexing ports is the same, or it can be reversed.
  • the output power of the laser light through switching means may calculate the channel output beam generating means 204 to either a first wavelength division multiplexer / demultiplexer 202 provides a wavelength " ⁇ i of the laser.
  • Wavelength ⁇ 'i from the laser according to any one of the first wavelength division multiplexer / demultiplexer of the multiplexer 202 to any one of the first port 2022 into the wavelength division multiplexer / demultiplexer 202, and then from either The input of the wavelength division port of the first wavelength division multiplexer/demultiplexer 202 enters the first optical switch 201.
  • the first tunable laser 41 in FIG. 9 is used to input the monitoring light of wavelength ⁇ i to the multiplexing port 2022 of the first wavelength division multiplexer/demultiplexer 21 connected thereto, according to FIG. 3 the wavelength monitoring through the principles described herein, the received wavelength ⁇ 'i of monitor light of a first wavelength division multiplexer / demultiplexer to a wavelength demultiplexer 21 from the port 2023 to ⁇ ' i of monitor light input to the first ⁇ 201 ⁇ Optical switch 201.
  • a first optical switch 201 to select a second wavelength division multiplexer / demultiplexer (e.g., the second wavelength division multiplexer / demultiplexer 32) Then, the wavelength ⁇ 'i of monitor light to be input The selected wavelength division port 2033 of the second wavelength division multiplexer/demultiplexer 32. Then the monitoring light of ⁇ ′ i is output from the multiplexing port 2032 of the second wavelength division multiplexer/demultiplexer 32 and received by the detector 52 connected to the second wavelength division multiplexer/demultiplexer 32. The detector 52 detects the output power of the received ⁇ ′ i monitor light.
  • a second wavelength division multiplexer / demultiplexer e.g., the second wavelength division multiplexer / demultiplexer 32
  • ⁇ 'input power and wavelength of the monitor light i is ⁇ ' i of monitor light output power can be calculated depending on the wavelength tunable laser 41 to provide a first wavelength of ⁇ 'i of monitor light through Insertion loss in the channel 1.
  • the insertion loss is subtracted by 1 in FIG. 9 wavelength ⁇ 'i of monitor light in the light path other than the first component of the optical switch insertion loss, can be obtained through channel wavelength ⁇ ' i of monitor light in the first Insertion loss in the optical switch.
  • the insertion loss of the first optical switch is not sensitive to the wavelength, it can be approximated that the insertion loss of the monitor light with the wavelength ⁇ ′ i in the through channel in the first optical switch is the signal light with the wavelength ⁇ i in the through channel in the first Insertion loss in the optical switch. Or, it can be considered that the insertion loss 1 of the monitoring light with the wavelength ⁇ ′ i in the through channel is the insertion loss of the signal light with the wavelength ⁇ i in the through channel.
  • the first optical switch 201 provided in this embodiment of the present application further includes M first branch ports 206, and the optical switching device further includes a third optical switch 2043.
  • the third optical switch 2043 is respectively connected to the beam generating device 204 and the M first branch ports 206, where M is a positive integer.
  • the third optical switch 2043 is connected to the second optical switch 2042 and the M first branch ports 206, respectively.
  • the beam generating device 204 is used to provide laser light to the M first branch ports 206.
  • the third optical switch 2043 is a 1*M optical switch or a 1*M coupler.
  • the second optical switch 2042 is used to switch the laser light from the tunable laser 2041 to the third optical switch 2043.
  • the third optical switch 2043 is used to select which one of the M first branch ports 206 the laser light from the tunable laser 2041 is input to.
  • the lasers of different wavelengths generated by the tunable laser 2041 are sequentially input to each first branch port.
  • the third optical switch 2043 can change the wavelength from ⁇ '1 to ⁇ ' N of monitor light are sequentially inputted to the same first branch port. That first case, the optical switch after the third switch 2043 to a first branch port, Xianxiang input from the first branch port N of monitor light [lambda] 'to [lambda] 1', then the third optical switch 2043 Switch to another first branch port. Then, the tunable laser 2041 sequentially generates monitoring light with wavelengths from ⁇ ′ 1 to ⁇ ′ N to another first branch port.
  • the third optical switch 2043 may sequentially input the monitoring light of the same wavelength into the M first branch ports 206.
  • the M first branch ports 206 may be located on the same branch board, or may be located on multiple branch boards. When the M first branch ports 206 are located on the same branch board, in order to reduce the cost and volume of the optical switching device, the M first branch ports 206 may share a third optical switch 2043.
  • the sum of the number of distributed first branch ports 206 on the multiple branch boards is equal to M.
  • the number of multiple branch boards as P for example, and the number of first branch ports 206 distributed on each branch board as Q as an example, it should be understood that the number of first branch ports 206 on different branch boards The number may be the same or different, but it is necessary to ensure that the sum of the number of all the first branch ports 206 on the P branch boards is M.
  • the P branch boards may share a third optical switch 2043.
  • An optical switch can also be connected to each tributary board.
  • the third optical switch 2043 includes P optical switches 20431.
  • the P optical switches 20431 are respectively connected to the beam generating device 204 and one of the P branch boards.
  • the light beam generating device 204 is used to input the generated laser light to any one of the P optical switches 20431.
  • the optical switch 20431 that receives the laser light from the beam generating device 204 is used to select which first branch port 206 of the branch board to which the received laser light is input.
  • the optical switch 20431 may be a 1*Q optical switch.
  • the M first branch ports 206 may share a first beam generating device.
  • each of the M first branch ports 206 may also be connected to a tunable laser.
  • the L first wavelength division multiplexers/demultiplexers share a second beam generating device.
  • the second beam generating device and the first beam generating device are different beam generating devices. It should be understood that in FIG. 10, the second beam generating device and the first beam generating device are the same beam generating device as an example, that is, M first branch ports 206 and L first wavelength division multiplexers/demultiplexers
  • the device 202 shares a beam generating device 204.
  • a second tunable laser 207 may also be configured for the M first branch ports 206.
  • the optical switching device in the embodiment of the present application further includes: a second tunable laser 208 and a fifth optical switch 209.
  • the fifth optical switch 209 is respectively connected to the second tunable laser 208 and the M first branch ports 206.
  • the fifth optical switch 209 is used to select the first branch port 206 to which the laser from the second tunable laser 208 is switched.
  • FIG. 10 the difference between FIG. 10 and FIG. 11 or FIG. 12 is that in FIG. 10, the M first branch ports 206 and the L first wavelength division multiplexer/demultiplexer 202 share one beam generating device.
  • the M first branch ports 206 provide laser light through the second tunable laser 208.
  • the L first wavelength division multiplexers/demultiplexers 202 provide laser light through a tunable laser.
  • M first branch ports 206 provide laser light through a second tunable laser 208, and each of the first wavelength division multiplexer/demultiplexer 202 in the L first wavelength division multiplexer/demultiplexer 202
  • the user 202 is supplied with laser light by a first tunable laser connected thereto.
  • each of the M first branch ports has a splitter or a 1*2 coupler 207 on each branch port.
  • optical splitter or the 1*2 coupler 207 connected in series on each branch port is used to couple the monitoring light into the optical path.
  • the splitter or coupler 207 has multiple ports, one of the multiple ports is a signal optical port 2061, and the remaining ports 2062 can be used as monitoring optical ports.
  • the remaining ports 2062 are connected to the fifth optical switch 209 or the third optical switch 2043.
  • the signal light When there is signal light, the signal light enters the first optical switch through the signal light port 2061, and the monitoring light enters the first optical switch through the remaining ports 2062.
  • the optical switching device when it adopts the structure shown in FIG. 10, in addition to calculating the insertion loss of the signal light with the wavelength ⁇ i in the through channel in the first optical switch, it can also be used to calculate the wavelength in the upper wave channel as The insertion loss of the signal light of ⁇ i at the first optical switch.
  • the port is connected to each splitter on the first branch port.
  • the tunable laser 2041, 2041 of the first branched output wavelength tunable laser is ⁇ 'i of monitor light, the wave channel according to the monitoring principle described in FIG. 4, the wavelength ⁇ ' i monitoring light detected from the A first wavelength division multiplexer/demultiplexer 202 corresponding to the port 206 (taking the first wavelength division multiplexer/demultiplexer 21 as an example) or a second wavelength division multiplexer/demultiplexer 203 (Taking the second wavelength division multiplexer/demultiplexer 31 as an example) outputs a multiplexing port other than the signal optical port.
  • Detector 2052 for detecting the received wavelength ⁇ output 'i of monitor light.
  • the processor may then ⁇ 'i of the input power of the monitor light, the wavelength ⁇ ' i of monitor light output power can be calculated as the wavelength ⁇ 'i of monitor light in an insertion loss on the whole according to the wavelength of the wave channel .
  • ⁇ 'i of monitor light in the entire wave channel 1 minus the insertion loss wavelength ⁇ ' i of monitor light in the optical path of the wave in the channel insertion loss components other than the first optical switch, it It can be obtained as the wavelength ⁇ 'i of monitor light in the first optical insertion loss in the switch. Since the first optical switch insensitive to wavelength, that wavelength may be approximately ⁇ 'i of monitor light in the first optical switch insertion loss is the signal wave wavelength channel [lambda] i is inserted in the light of the first optical switch damage. Or, it can be considered that the insertion loss 1 of the monitoring light with the wavelength ⁇ ′ i in the entire upper wave channel is the insertion loss of the signal light with the wavelength ⁇ i in the entire upper wave channel.
  • the monitoring process of the insertion loss of the monitoring light with the wavelength ⁇ ′ i in the first optical switch differs from that in FIG. 10 in that:
  • the 1*M fifth optical switch 209 corresponding to the measured first branch port connects the output port of the second tunable laser 208 and the 1*2 coupler on the first branch port to be tested.
  • FIG. 10 for how to monitor the insertion loss of the monitoring light with the wavelength ⁇ ′ i in the first optical switch, and details are not described here.
  • the optical switching device further includes a plurality of circulators 210.
  • the first port b of each circulator 210 in the plurality of circulators 210 is connected to the beam generating device 204, and the second port a of each circulator 210 is connected to the first wavelength division multiplexer/demultiplexer 202 to remove signals A multiplexing port 2022 outside the optical port is connected, and the third port c of each circulator 210 is connected to the detection device 205.
  • a wavelength ⁇ 'i from either a laser beam 206 to the input port of the first branch of the first optical switch 201. Then, after the first optical switch 201 to select a first wavelength division multiplexer / demultiplexer 202 or a second wavelength division multiplexer / demultiplexer 203, a first optical switch 201 to ⁇ 'the laser input i to a first wavelength division multiplexer / demultiplexer 202 or a second wavelength division multiplexer / demultiplexer to a wavelength multiplexer 203 ⁇ 'i port of the demultiplexer.
  • the M first branch ports 206 corresponding to the L first wavelength division multiplexer/demultiplexer 202 may refer to: any one of the M first branch ports 206 of the first branch
  • the laser light output in the way port 206 is output from the remaining multiplexing ports 2022 of one of the first wavelength division multiplexer/demultiplexer 202 among the L first wavelength division multiplexer/demultiplexer 202.
  • each circulator 210 is connected to the second optical switch 2042, and the third port c of each circulator 210 is coupled to
  • the detection device 205 further includes L detectors. Each detector of the L detectors is connected to the third port c of a circulator 210. One port b is connected to the respective first tunable laser.
  • the circulator 210 may be an optical circulator.
  • the circulator 210 is used to separate the laser light input to the first wavelength division multiplexer/demultiplexer 202 and the laser light output from the first wavelength division multiplexer/demultiplexer 202.
  • monitoring wavelength ⁇ 'i of monitor light in the first optical switch insertion loss is the monitoring process that differs from the FIG. 11 or 12: if a first wavelength division multiplexer / demultiplexing a demultiplexer 202 receives the wavelength ⁇ 'i of monitor light, the wavelength ⁇ ' i monitoring light from the first wavelength division multiplexer / demultiplexer multiplexed signal light output port except the port 202 from the circulators Port a enters the circulator 210, and then enters the detector from port c of the circulator 210.
  • FIG. 14 and FIG. 11 or FIG. 12 reference may be made to the description at FIG. 11, and details are not repeated here.
  • the optical switching device may not be provided with a circulator 210.
  • the first optical switch 201 further includes N second branch ports 211
  • the optical switching device further includes a fourth optical switch 212
  • the fourth optical switch 212 is respectively connected to the N second branch ports 211 of the beam generating device 204 and the first optical switch 201, where N is a positive integer.
  • the fourth optical switch 212 is a 1*N optical switch or coupler. It should be understood that the difference between FIG. 16 and FIG. 15 is that, in FIG. 15, the N second branch ports 211 and the L first wavelength division multiplexer/demultiplexer 202 share one beam generating device.
  • the N second branch ports 211 are connected to the second optical switch 2042 through the fourth optical switch 212.
  • the optical switching device may further include: a third tunable laser 213 and a sixth optical switch 214.
  • the sixth optical switch 214 is connected to the third tunable laser 213 and the N second branch ports 211.
  • the third tunable laser 213 is used to provide laser light to the N second branch ports 211.
  • the N second branch ports 211 are used to select which second branch port 211 the laser light generated by the third tunable laser 213 enters.
  • each second branch port 211 is supplied with laser light by the third tunable laser 213.
  • the monitoring light is from the branch port to the line port, and the transmission direction of the monitoring light is opposite to the signal light transmission direction. Therefore, the second branch port should also be connected to the third tunable laser 213 to input the monitoring light.
  • the sixth optical switch 214 in the embodiment of the present application may be a 1*N optical switch, and the fifth optical switch 209 may be a 1*M optical switch.
  • any one of the N second branch ports 211 is used to communicate with one of the L first wavelength division multiplexer/demultiplexer 202/
  • the demultiplexer 202 forms a down-wave channel.
  • any one of the second branch ports 211 is used to form a down-wave channel with one of the second wavelength division multiplexers/demultiplexers 203 among the L second wavelength division multiplexers/demultiplexers 203.
  • the optical switching device may have both N second branch ports and M first branch ports. Or, a part of the first branch ports of the M first branch ports may be used as an up-wave port, and another part of the first branch ports may be used as a down-wave port. At this time, N second branch ports may not be set. Or when the down-wave channel and the up-wave channel do not exist at the same time in the optical switching device, M first branch ports may be used as the up-wave port during the up-wave channel. In the down-wave channel, M first branch ports are used as down-wave ports. In this case, N second branch ports may not be provided.
  • an optical splitter 207 may be serially connected to each second branch port.
  • the signal light in the first optical switch insertion loss of the monitoring process may specifically be:
  • the tunable laser 2041, 2041 so that the output of the tunable laser wavelength ⁇ 'i of monitor light, according to the principle of the wave monitoring channel described in FIG.
  • the wavelength ⁇ ' i monitoring light branched from the second test The output of the multiplexing port except the signal optical port of the second wavelength division multiplexer/demultiplexer 203 corresponding to the channel port passes through the 1*T coupler 2051 and enters the detector 2052. Detector 2052 detecting a wavelength ⁇ 'i of the output power of the monitor light. After that, the processor may obtain insertion loss 1 based on the input power of the monitoring light with a wavelength of ⁇ ′ i and the output power of the monitoring light with a wavelength of ⁇ ′ i generated by the tunable laser 2041.
  • the insertion loss of the monitor light with the wavelength ⁇ ′ i in the first optical switch is the insertion loss of the signal light with the wavelength ⁇ i in the first optical switch.
  • the process differs from FIG. 15 in that the control of the second branch port to be tested is controlled first.
  • the 1*N sixth optical switch 214 connects the output port of the third tunable laser 213 and the 1*2 coupler 207 on the second branch port to be tested.
  • adjusted third tunable laser 213, the output 213 of the third tunable laser wavelength ⁇ 'i of monitor light, the wavelength ⁇ ' i monitoring the optical path of the light wave of the lower channels may be described with reference to FIG. 15, this I will not repeat them here. Further, in FIG.
  • the first optical switch further includes M first branch ports 206, and the optical switching device includes a multi-wavelength laser source, and multiple output ports of the multi-wavelength laser source are respectively connected to the M first branches The road port 206 is connected.
  • each of the first wavelength division multiplexer/demultiplexer 202 in the L first wavelength division multiplexer/demultiplexer 202 is connected to a first tunable laser, and the L number
  • each second wavelength division multiplexer/demultiplexer 203 in the two wavelength division multiplexer/demultiplexer 203 is connected to one detector.
  • the L first wavelength division multiplexers/demultiplexers 202 may share one beam generating device 204.
  • the L second wavelength division multiplexers/demultiplexers 203 may also share one detection device 205. The embodiments of the present application will not be repeated here.
  • the multi-wavelength laser source may be a business board.
  • the wavelengths of the optical switch and the tunable laser connected to each first branch port 206 or each second branch port 211 can be adjusted according to the needs of the scene.
  • the insertion loss of the channel to be tested is monitored round-robin.
  • each second wavelength division multiplexer/demultiplexer 203 corresponds to a group of feed-through channels, and each group of upper-wave channels or lower-wave channels has a tunable laser, and each group of channels can Simultaneous round robin detection can effectively reduce the round robin time.
  • the monitoring light passing through the channel does not pass through the second optical switch 2042, and the round-robin detection is not limited by the switching time of the second optical switch 2042.
  • one first wavelength division multiplexer/demultiplexer 202 and one second wavelength division multiplexer/demultiplexer 203 can be fabricated on one circuit board, Called the circuit board.
  • a group of upper-wave ports and a group of lower-wave ports are made on a circuit board, which is called a tributary board.
  • the detector and the tunable laser in the embodiments of the present application can be distributed to each branch board or circuit board, which is more convenient to implement.
  • the optical switching device may further include: a processor, connected to the output port of the detection device 205, used to obtain the input power of the laser and the output power of the laser obtained by the detection device 205, and used to The insertion loss of the first optical switch 201 is determined according to the output power of the laser and the input power of the laser.
  • a processor connected to the output port of the detection device 205, used to obtain the input power of the laser and the output power of the laser obtained by the detection device 205, and used to The insertion loss of the first optical switch 201 is determined according to the output power of the laser and the input power of the laser.
  • the processor is specifically used to calculate the insertion loss of the laser in the entire channel to be measured (through channel, upper wave channel or lower wave channel) according to the output power of the laser and the input power of the laser acquired by the detection device 205 .
  • the insertion loss 1 of the components other than the first optical switch 201 is subtracted and removed by the insertion loss 1 to obtain the insertion loss 3 of the laser in the first optical switch 201. Since the insertion loss of the first optical switch 201 is not sensitive to the wavelength, it can be approximated that the insertion loss 3 is the insertion loss of the signal light in the channel under test in the first optical switch 201.
  • the processor in the embodiment of the present application may be a general-purpose central processing unit (central processing unit, CPU), microprocessor, application-specific integrated circuit (ASIC), or one or more used to control the An integrated circuit for application program execution.
  • the input power may be obtained from the beam generating device, or may be pre-configured in the processor, which is not limited in the embodiments of the present application.
  • an embodiment of the present application provides an optical switching system.
  • the optical switching system includes at least two optical switching devices as shown in any one of FIGS. 6 to 17. Communication between any two optical switching devices through the line port.
  • FIG. 18 shows a schematic flowchart of a power calculation method provided by the present application, which can be applied to an optical switching device, for example, any one of the optical switching devices shown in FIGS. 6 to 17.
  • the method when the method is applied to the structure shown in FIG. 6 (the specific structure can refer to the description in FIG. 6 and will not be repeated here), the method includes:
  • Step 101 The beam generating device 204 removes the signal optical port from the multiplexed multiplexing ports of any one of the L first wavelength division multiplexers/demultiplexers 202
  • the external multiplexing port 2022 receives the first laser.
  • the beam generating device 204 generates the first laser light of one wavelength at a time, and then sends the first wavelength division multiplexer/demultiplexer to any one of the L first wavelength division multiplexers/demultiplexers 202 Among the multiplexing ports of 202, the multiplexing port 2022 except the signal light port receives the first laser.
  • Step 102 The first wavelength division multiplexer/demultiplexer 202 that has received the first laser removes the first laser from one of the multiple wavelength division ports 2023 of the first wavelength division multiplexer/demultiplexer 202
  • the branching port 2023 is input to the first optical switch 201.
  • Step 103 The first optical switch 201 inputs the first laser to any one of the second wavelength division multiplexer/demultiplexer 202 among the L second wavelength division multiplexer/demultiplexer 202. Port 2033.
  • Step 104 The second wavelength division multiplexer/demultiplexer 203 that receives the first laser removes the first laser from the multiplexed multiplexing ports of the second wavelength division multiplexer/demultiplexer.
  • An external multiplexing port 2032 is input to the detection device 205.
  • Step 105 The detection device 205 calculates the output power of the first laser.
  • the power calculation method provided by the embodiment of the present application includes L first wavelength division multiplexers/demultiplexers and L second wavelength division multiplexers/demultiplexers.
  • Each wavelength division multiplexer/demultiplexer has a signal optical port and other multiplexing ports, so that the remaining multiplexing ports in the L first wavelength division multiplexer/demultiplexer can be input through the beam generating device Laser, and then the first optical switch inputs the received laser to the wavelength division ports in the L second wavelength division multiplexers/demultiplexers.
  • any one of the L second wavelength division multiplexers/demultiplexers receives the laser light from the second wavelength division multiplexer/demultiplexer, from the second wavelength division multiplexer/demultiplexer
  • the remaining multiplexing ports send the received laser to the detection device, so that the detection device obtains the output power of the output laser.
  • the optical switching device provided in the embodiments of the present application can still obtain the output power of the laser without signal light.
  • the insertion loss of the first optical switch can be obtained according to the input power and output power of the laser. In this way, even in the channel closed-loop, power-on self-test, and unused channel detection scenarios, even if there is no service light in the channel, the insertion loss of the first optical switch can be obtained.
  • step 101 may be specifically implemented in the following manner: the tunable laser 2041 generates the first laser, and the first laser is input to the second optical switch 2042.
  • the second optical switch 2042 switches the first laser to the target multiplexing port of any first wavelength division multiplexer/demultiplexer 202.
  • the second optical switch 2042 switches the first laser to any target multiplexing port of the first wavelength division multiplexer/demultiplexer 202 means that the second optical switch 2042 switches the first laser to any first A multiplexing port of a wavelength division multiplexer/demultiplexer 202 except the signal optical port.
  • the number of lasers should be the same as the number of monitoring optical ports.
  • step 105 may be specifically implemented in the following manner: the coupler 2052 couples the first laser from the second wavelength division multiplexer/demultiplexer 203 to the detector 2051.
  • the detector 2051 detects the output power of the first laser light output by the second wavelength division multiplexer/demultiplexer 203.
  • the coupler 2052 receives multiple first lasers from different second wavelength division multiplexers/demultiplexers 203, then the coupler 2052 will come from each second wavelength division multiplexer/demultiplexer
  • the first laser of the device 203 is sequentially coupled to the detector 2051, so that the detector 2051 can detect the output power of the first laser from a second wavelength division multiplexer/demultiplexer 203 at a time.
  • step 101 may be specifically implemented in the following manner: each first tunable laser (for example, the first tunable laser 41, the first tunable laser 42...
  • the first tunable laser 4L) inputs the first laser to the connected multiplexing port.
  • the first tunable laser 41 inputs the first laser light to the multiplexing port 2022 of a first wavelength division multiplexer/demultiplexer 21 connected thereto.
  • step 105 may be specifically implemented in the following manner: each detector detects the output power of the first laser output from the connected multiplexing port.
  • the detector 51 detects the output power of the first laser light output from the multiplexing port 2032 of the second wavelength division multiplexer/demultiplexer 31.
  • the detector 52 detects the output power of the first laser light output from the multiplexing port 2032 of the second wavelength division multiplexer/demultiplexer 32.
  • the optical switching device when the optical switching device adopts the structure shown in FIG. 10, that is, when the first optical switch 201 further includes M first branch ports 206, the optical switching device further includes a third optical switch 2043, where, The third optical switch 2043 is respectively connected to the beam generating device 204 and the M first branch ports 206, where M is a positive integer.
  • the method provided in this embodiment of the present application further includes:
  • Step 106 The light beam generating device 204 inputs the second laser light to the M first branch ports 206 through the third optical switch 2043.
  • step 106 in FIG. 10 may be specifically implemented in the following manner: the tunable laser 2041 generates the second laser, and the second laser is input to the second optical switch 2042.
  • the second optical switch 2042 switches the second laser to the third optical switch 2043.
  • the third optical switch 2043 selects one first branch port 206 from the M first branch ports 206, and inputs the second laser light into the selected first branch port 26.
  • the third optical switch 2043 inputs to the monitoring optical port of the splitter or coupler 207 connected in series with the selected first branch port 26 Second laser.
  • Step 107 The first branch port that receives the second laser inputs the second laser to the first optical switch 201.
  • Step 108 The first optical switch 201 inputs the second laser to a target wavelength division port of one of the first wavelength division multiplexers/demultiplexers among the L first wavelength division multiplexers/demultiplexers.
  • Step 109 The first wavelength division multiplexer/demultiplexer that receives the second laser inputs the second laser to the detection device 205.
  • Step 110 The detection device 205 obtains the output power of the second laser.
  • step 110 may be specifically implemented in the following manner: the detector 2052 sequentially detects the second laser output from the first wavelength division multiplexer/demultiplexer output to the detection device Output Power.
  • step 109 can also be replaced by the following manner: the second wavelength division multiplexer/demultiplexer that receives the second laser light inputs the second laser light to the detection device 205.
  • step 106 provided in this embodiment of the present application may also be replaced in the following manner: the second tunable laser 208 passes through the fifth optical switch 209 to M A first branch port 206 inputs a second laser.
  • step 109 can also be replaced by the following way: The two wavelength division multiplexer/demultiplexer inputs the second laser to the detector connected to it.
  • the optical switching device further includes multiple circulators 210, multiple The first port of each circulator 210 in the circulator 210 is connected to the beam generating device, and the second port of each circulator 210 is connected to the first wavelength division multiplexer/demultiplexer except the signal optical port A multiplexing port is connected, and the third port of each circulator 210 is connected to the detection device 205.
  • step 109 may be specifically implemented by the following way: the circulator receives the second laser from the second port , And the second laser is input to the detection device 205 from the third port. For example, the circulator inputs the second laser to the coupler 2051 from the third port, and the coupler 2051 couples the second laser to 2052.
  • any first branch of the M first branch ports The second laser in the port will be output from one second wavelength division multiplexer/demultiplexer out of L second wavelength division multiplexers/demultiplexers.
  • the above step 109 can also be passed The following manner is replaced: a second wavelength division multiplexer/demultiplexer that receives the second laser light inputs the second laser light to the detection device.
  • the first wavelength division multiplexer/demultiplexer that receives the second laser inputs the second laser to the coupler 2051, and the coupler 2051 inputs/demultiplexes the received second laser from the first wavelength division multiplexer
  • the second laser of the detector is coupled to the detector 2052.
  • the method provided in this embodiment of the present application further includes: the M first branch ports included in the first optical switch receive laser light from a multi-wavelength laser source.
  • the method provided in this embodiment of the present application further includes: the processor acquiring the output power of the laser acquired by the detection device, and calculating the power loss of the laser according to the input power of the laser.
  • the input power of the laser can be obtained from the beam generating device.
  • the processor acquires the output power of the first laser acquired by the detection device, and calculates the power loss of the first laser according to the input power of the first laser.
  • the processor acquires the output power of the second laser acquired by the detection device, and calculates the power loss of the second laser according to the input power of the second laser.
  • the power loss of the first laser in the embodiment of the present application may be the insertion loss of the first laser in the channel to be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供一种光交换装置,用以解决对于没有业务光的光通道,如何监测光开关的插损问题。该装置包括:第一光开关,L个第一波分复用器/解复用器和L个第二波分复用器/解复用器,与L个第一波分复用器/解复用器连接的光束生成装置,与L个第二波分复用器/解复用器连接的检测装置。第一波分复用器/解复用器的多个合波端口中一个合波端口为信号光端口,其余合波端口与光束生成装置相连,第一波分复用器/解复用器的多个分波端口与第一光开关相连。第二波分复用器/解复用器的多个合波端口中一个合波端口为信号光端口,其余合波端口与检测装置相连,第二波分复用器/解复用器的多个分波端口与第一光开关相连。

Description

一种光交换装置、系统及功率计算方法
本申请要求于2018年12月29日提交的申请号为201811640720.9、发明名称为“一种光交换装置、系统及功率计算方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例属于光通信技术领域,尤其涉及一种光交换装置、光交换系统以及基于该装置的功率计算方法。
背景技术
随着密集波分复用(Dense Wavelength Division Multiplexing,DWDM)技术的发展,光纤通信链路中信息传输的速度和容量日益增长,对光通信网络(例如城域网、数据中心等)中信息交换速度和容量的需求也随之增长。全光交换系统成为光通信网络的发展趋势。
全光通信网的一种组网方式为光交叉连接(optical cross-connect,OXC)光交换系统。通常采用分光检测的办法来监测OXC光交换系统中任一个节点的插损。如图1所示,在AWG102和光开关101的每一个光通道中间串联一个分光器103(图1中以5%分光器为例),在分光器103的分光端口上接一个光电探测器(photodetector,PD)104。在光开关101的每一个支路端口也串联一个分光器106,分光器106的分光端口接一个PD105。
当AWG102和光开关101的光通道有业务光通过时,一部分业务光会通过分光器103进入PD104,通过PD104检测到的光功率和分光器104的分光比,可以计算出输入光开关101的光功率和输出光开关101的光功率。进而可以根据输入光开关101的光功率和输出光开关101的光功率计算出光开关的插损。
但是,图1中只能在光通道中存在业务光时,检测到光开关的插损,对于没有业务光的光通道,由于此时PD检测不到光功率,也就无法监测光开关的插损。
发明内容
本申请实施例提供一种光交换装置,用以解决对于没有业务光的光通道,如何监测光开关的插损问题。
为了解决上述技术问题,本申请实施例提供如下技术方案:
第一方面,本申请实施例提供一种光交换装置,包括:第一光开关,与第一光开关连接的L个第一波分复用器/解复用器和L个第二波分复用器/解复用器,与L个第一波分复用器/解复用器连接的光束生成装置,以及与所述L个第二波分复用器/解复用器连接的检测装置,L为正整数。其中,第一波分复用器/解复用器和第二波分复用器/解复用器包括多个合波端口和多个分波端口。第一波分复用器/解复用器的多个合波端口中一个合波端口为信号光端口,其余合波端口与光束生成装置相连,第一波分复用器/解复用器的多个分波端口与第一光开关相连。第二波分复用器/解复用器的多个合波端口中一个合波端口为信号光端口,其余合波端口与检测装置相连,第二波分复用器/解复用器的多个分波端口与第一光开关相 连。
本申请实施例提供的光交换装置,包括L个第一波分复用器/解复用器和L个第二波分复用器/解复用器。每个波分复用器/解复用器具有信号光端口和其余合波端口,这样可以通过光束生成装置向L个第一波分复用器/解复用器中的其余合波端口输入激光,然后第一光开关将接收到的激光输入至L个第二波分复用器/解复用器中的分波端口。然后L个第二波分复用器/解复用器中任一个接收到激光的第二波分复用器/解复用器,将从第二波分复用器/解复用器的其余合波端口将接收到的激光发送给检测装置,以使得检测装置获取输出的激光的输出功率。与现有技术相比,本申请实施例提供的光交换装置可以在无信号光的情况下,依然可以计算出输出的激光的输出功率,从而根据激光的输入功率,得到第一光开关的插损。这样对于通道闭环、上电自检和未用通道检测场景中,即使通道中没有业务光,也可以得到第一光开关的插损。
在一种可能的实现方式中,光束生成装置包括:可调激光器和第二光开关;第二光开关分别与可调激光器和第一波分复用器/解复用器的其余合波端口相连,用于将可调激光器输出的激光切换到第一波分复用器/解复用器的目标合波端口上。通过第二光开关将可调激光器生成的激光依次切换至L个第一波分复用器/解复用器中,可以使得L个第一波分复用器/解复用器共享一个可调激光器。大大降低了光交换装置的成本和体积。
在一种可能的实现方式中,检测装置还包括:探测器和耦合器;耦合器分别与探测器和第二波分复用器/解复用器的其余合波端口相连,用于将第二波分复用器/解复用器的其余合波端口输出的激光耦合到探测器。通过耦合器可以将L个第二波分复用器/解复用器中每个第二波分复用器/解复用器的其余合波端口输出的激光依次耦合到探测器,使得L个第二波分复用器/解复用器共用一个探测器,大大降低了光交换装置的成本和体积。
在一种可能的实现方式中,光束生成装置包括:多个第一可调激光器,多个第一可调激光器中每个第一可调激光器与L个第一波分复用器/解复用器中除信号光端口外的一个合波端口相连。通过为每个第一波分复用器/解复用器连接一个第一可调激光器,可以保证每个第一波分复用器/解复用器接收到激光的可靠性。此外,还可以降低成本和光交换装置的体积。
在一种可能的实现方式中,检测装置包括:多个探测器,每个探测器与L个第二波分复用器/解复用器中的除所述信号光端口外的一个合波端口相连。为每个第二波分复用器/解复用器除所述信号光端口外的一个合波端口连接一个探测器,可以保证探测器准确地探测与其相连的第二波分复用器/解复用器输出的激光的输出功率的可靠性。
在一种可能的实现方式中,第一光开关还包括M个第一支路端口,光交换装置还包括第三光开关,其中,第三光开关分别与光束生成装置和M个第一支路端口相连,M为正整数。这样可以实现上波通道和/或下波通道的检测。
在一种可能的实现方式中,当M个第一支路端口对应L个第一波分复用器/解复用器时,光交换装置还包括多个环形器;多个环形器中每个环形器的第一端口与光束生成装置相连,每个环形器的第二端口与第一波分复用器/解复用器中除信号光端口外的一个合波端口相连,每个环形器的第三端口与所述检测装置相连。这样可以有效隔离输入至第一波分复用器/解复用器的激光和从第一波分复用器/解复用器输出的激光。
在一种可能的实现方式中,第一光开关还包括N个第二支路端口,光交换装置还包括 第四光开关,其中,第四光开关分别与所述光束生成装置和第一光开关的N个第二支路端口相连,N为正整数。
在一种可能的实现方式中,第一光开关还包括M个第一支路端口,所述光交换装置包括多波长激光源,所述多波长激光源的多个输出端口分别与所述M个第一支路端口相连。在这种情况下,可以省略与M个第一支路端口连接的光开关,降低了成本和体积,并且轮循监测所有通道插损的速度不受与M个第一支路端口连接的光开关的速度限制。
在一种可能的实现方式中,本申请实施例提供的光交换装置还包括:处理器,与检测装置的输出端口连接,用于获取激光的输入功率和检测装置获取的激光的输出功率,以及用于根据所述输出功率和所述输入功率,确定第一光开关的插损。
第二方面,本申请实施例提供一种光交换系统,该光交换系统包括至少两个如第一方面至第一方面的任意一种可能的实现方式描述的光交换装置。
第三方面,本申请实施例提供一种激光的功率计算方法,应用于光交换装置中,光交换装置包括:第一光开关,与所述第一光开关连接的L个第一波分复用器/解复用器和L个第二波分复用器/解复用器,与所述L个第一波分复用器/解复用器连接的光束生成装置,以及与L个第二波分复用器/解复用器连接的检测装置,L为正整数,该方法包括:光束生成装置向L个第一波分复用器/解复用器中任一个第一波分复用器/解复用器的多个合波端口中除信号光端口外的合波端口输入第一激光;接收到第一激光的第一波分复用器/解复用器将第一激光从所述第一波分复用器/解复用器的多个分波端口中的一个分波端口输入至第一光开关;第一光开关将第一激光输入至L个第二波分复用器/解复用器中的任一个第二波分复用器/解复用器对应的分波端口;接收到第一激光的第二波分复用器/解复用器将所述第一激光从所述第二波分复用器/解复用器的多个合波端口中除信号光端口外的一个合波端口输入至所述检测装置;检测装置获取第一激光的输出功率。
在一种可能的实现方式中,光束生成装置包括:可调激光器和第二光开关,光束生成装置向L个第一波分复用器/解复用器中任一个第一波分复用器/解复用器的多个合波端口中除信号光端口外的合波端口输入第一激光,包括:可调激光器生成所述第一激光,以及将第一激光输入至所述第二光开关;第二光开关将所述第一激光切换到所述任一个第一波分复用器/解复用器的目标合波端口上。
在一种可能的实现方式中,检测装置包括:探测器和耦合器;检测装置获取所述第一激光的输出功率,包括:耦合器将来自第二波分复用器/解复用器的所述第一激光耦合到所述探测器;探测器探测所述第二波分复用器/解复用器输出的所述第一激光的输出功率。
在一种可能的实现方式中,光束生成装置包括:多个第一可调激光器,多个第一可调激光器中每个第一可调激光器与L个第一波分复用器/解复用器中除信号光端口外的一个合波端口相连;光束生成装置向L个第一波分复用器/解复用器中任一个第一波分复用器/解复用器的多个合波端口中除信号光端口外的合波端口输入第一激光,包括:每个第一可调激光器向相连的合波端口输入所述第一激光。
在一种可能的实现方式中,检测装置包括多个探测器,多个探测器中每个探测器与所述L个第二波分复用器/解复用器中的除所述信号光端口外的一个合波端口相连。检测装置获取所述第一激光的输出功率,包括:每个探测器探测从相连的合波端口输出的所述第一激光的输出功率。
在一种可能的实现方式中,第一光开关还包括M个第一支路端口,所述光交换装置还包括第三光开关。其中,第三光开关分别与光束生成装置和M个第一支路端口相连,M为正整数,本申请实施例提供的方法还包括:光束生成装置通过第三光开关向M个第一支路端口输入第二激光,以将第二激光输入至第一光开关。第一光开关将第二激光输入至所述L个第一波分复用器/解复用器中的一个第一波分复用器/解复用器的目标分波端口;接收到第二激光的第一波分复用器/解复用器将所述第二激光输入至所述检测装置;检测装置获取第二激光的输出功率。
在一种可能的实现方式中,当M个第一支路端口对应L个第一波分复用器/解复用器时,光交换装置还包括多个环形器,多个环形器中每个环形器的第一端口与光束生成装置相连,每个环形器的第二端口与第一波分复用器/解复用器中除信号光端口外的一个合波端口相连,每个环形器的第三端口与检测装置相连;接收到第二激光的第一波分复用器/解复用器将第二激光输入至检测装置,包括:接收到第二激光的第一波分复用器/解复用器将第二激光输入至所述环形器的第二端口。环形器从第三端口将第二激光输入至检测装置。
在一种可能的实现方式中,本申请实施例提供的方法还包括:光束生成装置通过第三光开关向第一光开关的M个第一支路端口输入第二激光,M为正整数。接收到第二激光的第一支路端口将第二激光输入至第一光开关。第一光开关将第二激光输入至L个第二波分复用器/解复用器中的一个第二波分复用器/解复用器的目标分波端口。接收到第二激光的第二波分复用器/解复用器将第二激光输入至检测装置;检测装置获取第二激光的输出功率。
在一种可能的实现方式中,本申请实施例提供的方法还包括:第一光开关包括的M个第一支路端口接收来自多波长激光源的激光。
在一种可能的实现方式中,本申请实施例提供的方法还包括:处理器获取检测装置获取的激光的输出功率,以及根据光束生成装置生成的激光的输入功率,计算激光的功率损耗。
附图说明
图1为本申请实施例提供的一种光交换系统的中任一个节点的示意图;
图2为本申请实施例提供的一种光交换系统的结构示意图;
图3为本申请实施例提供的穿通通道的光路径示意图;
图4为本申请实施例提供的上波通道的光路径示意图;
图5为本申请实施例提供的下波通道的光路径示意图;
图6-图17为本申请实施例提供的一种光交换装置的结构示意图;
图18为本申请实施例提供的一种功率计算方法的流程示意图一;
图19为本申请实施例提供的一种功率计算方法的流程示意图二。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一激光和第二激光仅仅是为了区分不同的激光,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定 不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
如图2所示,在OXC光交换系统中,任一个节点包括:光开关10和至少一个阵列波导光栅(Arrayed Waveguide Grating,AWG)20。其中,AWG20包括1个合波端口201和N个分波端口202。合波端口201作为线路端口用于和OXC光交换系统中的其他节点通信,分波端口202与光开关10相连。光开关10中未与AWG20相连的端口作为支路端口,用于和本地业务板通信。
本申请实施例提供一种光交换装置,包括L个第一波分复用器/解复用器和L个第二波分复用器/解复用器,每个波分复用器/解复用器具有信号光端口和其余合波端口,这样可以通过光束生成装置向L个第一波分复用器/解复用器中的其余合波端口输入激光,然后第一光开关将接收到的激光输入至L个第二波分复用器/解复用器中的分波端口,然后L个第二波分复用器/解复用器中任一个接收到激光的第二波分复用器/解复用器,将从第二波分复用器/解复用器的其余合波端口将接收到的激光发送给检测装置,以使得检测装置获取输出的激光的输出功率。与现有技术相比,本申请实施例提供的光交换装置可以在无信号光的情况下,依然可以获取激光的输出功率。从而根据激光的输入功率和激光的输出功率,得到第一光开关的插损。
下面结合本申请的实施例对实施例中涉及到的名词做相关解释:
1)穿通通道,指线路端口到线路端口之间的光信号通道。即激光经第一波分复用器/解复用器输入至第一光开关,再由第一光开关输入至第二波分复用器/解复用器。然后激光由第二波分复用器/解复用器输出。或者激光经第二波分复用器/解复用器输入至第一光开关,再由第一光开关输入至第一波分复用器/解复用器。然后激光由第一波分复用器/解复用器输出。
需要说明的是,在穿通通道时,监控光在第一光开关中的传输方向可以与信号光在第一光开关中的传输方向相同,也可以相反。下述实施例图3中以监控光在光开关中的传输方向可以与信号光在光开关中的传输方向相反的情况为例。
示例性的,如图3所示,以第二波分复用器/解复用器为AWG3、第一波分复用器/解复用器为AGW2为例,波长为λ 3的信号光从AWG3的信号光端口输入,从AWG3的分波端口3输出。经过第一光开关之后波长为λ 3的信号光从AWG2的分波端口3输入,并从AWG2的信号光端口输出。波长为λ' 3的监控光从AWG2的用作监控光端口的合波端口输入,从AWG2的分波端口3输出。波长为λ' 3的监控光经过第一光开关后从AWG3的分波端口3 输入,从AWG3的合波端口输出,被探测器接收检测。通过探测器检测到波长为λ' 3的监控光的输出功率。这样可以根据波长为λ' 3的监控光的输出功率以及波长为λ' 3的监控光的输入功率,得到波长为λ' 3的监控光在整个穿通通道中的插损1。使用插损1减去波长为λ' 3的监控光在穿通通道中的光路径中经过的元器件的插损(例如,AWG2和AWG3的插损),即可得到穿通通道中波长为λ' 3的监控光在第一光开关中的插损。由于第一光开关对波长不敏感,穿通通道中波长为λ' 3的监控光在第一光开关中的插损,可以近似认为是波长为λ 3的信号光在第一光开关中的损耗值。
调节可调光源的波长,即可对AWG2对应的光信号通道的信号光插损进行监测。
2)上波通道,支路端口到线路端口之间的光信号通道。即激光经第一支路端口或者第二支路端口输入至第一光开关,再由第一光开关输入至第二波分复用器/解复用器或者第一波分复用器/解复用器。然后由激光由第二波分复用器/解复用器或者第一波分复用器/解复用器输出。
示例性的,上波通道的监测方法如下图4所示,监控光在第一光开关中的传输方向可以与信号光在第一光开关中的传输方向相同,也可以相反。图4以监控光和信号光传输方向相同的情况为例:
波长为λ 2的信号光从耦合器的95%端口输入,进入第一光开关的一个第一支路端口,经过第一光开关之后从AWG1的分波端口2输入,波长为λ 2的信号光从AWG1的信号光端口输出。
波长为λ' 2的监控光从耦合器的5%端口输入,进入第一光开关的一个第一支路端口,经过第一光开关后从AWG1的分波端口2输入,波长为λ' 2的监控光从AWG1的合波端口输出,被探测器接收检测,这样探测器可以检测波长为λ' 2的监控光的输出功率。
最终,根据探测器检测到的波长为λ' 2的监控光的输出功率和波长为λ' 2的监控光的输入功率,可以得到波长为λ' 2的监控光在上波通道中的插损1。使用波长为λ' 2的监控光在上波通道中的插损1插损1减去波长为λ' 2的监控光在上波通道中的光路径中经过的元器件的插损(例如,AWG1和5%耦合器的插损),即可得到上波通道中波长为λ' 2的监控光在第一光开关中的插损。由于第一光开关对波长不敏感,上波通道中波长为λ' 2的监控光在第一光开关中的插损,可以近似认为是上波通道中波长为λ 2的信号光在第一光开关中的插损。
3)下波通道,线路端口到支路端口的光信号通道。即激光经第二波分复用器/解复用器或者第一波分复用器/解复用器输入至第一光开关,再由第一光开关输入至第一支路端口或者第二支路端口。然后由激光由第一支路端口或者第二支路端口输出。
示例性的,下波通道的监测方法如下图5所示,在下波通道中监控光和信号光在第一光开关中的传输方向必须相反。
波长为λ 2信号光从AWG2的信号光端口输入,从分波端口2输出,经过第一光开关之后从第一光开关的一个支路端口输出,穿过一个耦合器向本地业务板传输。
波长为λ' 2监控光从耦合器的5%端口输入,进入第一光开关的支路端口;经过第一光开关后从AWG2的分波端口2输入,从AWG2的合波端口输出,被探测器接收检测,这样探测器可以探测得到波长为λ' 2的监控光的输出功率。
最终,通过探测器检测到的波长为λ' 2的监控光的输出功率和波长为λ' 2的监控光的输入功率,可以波长为λ' 2的监控光在下波通道中的插损1。使用波长为λ' 2的监控光在下波 通道中的插损1减去波长为λ' 2的监控光在下波通道中的光路径中经过的元器件的插损(例如,AWG1和5%耦合器的插损),即可得到下波通道中波长为λ' 2的监控光在第一光开关中的插损。由于第一光开关对波长不敏感,下波通道中波长为λ' 2的监控光在第一光开关中的插损,可以近似认为是下波通道中波长为λ 2的信号光在第一光开关中的插损。
需要说明的是,本申请实施例中可以根据下波通道/上波通道/穿通通道中监控光在第一光开关中的插损,得到波长为λ 2的信号光在第一光开关中的插损。如果需要计算波长为λ 2的信号光下波通道/上波通道/穿通通道中的插损时,可以根据波长为λ 2的信号光在第一光开关中的插损,加上波长为λ 2的信号光在下波通道/上波通道/穿通通道中所经的光路径中元器件中的插损。
应理解,本申请实施例中的下波通道、上波通道以及穿通通道以波长为单位进行传输。
需要说明的是,本申请实施例中的箭头表示信号光或监控光的传播方向。
如图6所示,图6示出了本申请实施例提供的一种光交换装置200,该光交换装置200,包括:第一光开关201,与第一光开关201连接的L个第一波分复用器/解复用器202(例如,图6中示出的第一波分复用器/解复用器21、第一波分复用器/解复用器22、…、第一波分复用器/解复用器2L)和L个第二波分复用器/解复用器203(例如,图6中的第二波分复用器/解复用器31、第二波分复用器/解复用器32、…、第二波分复用器/解复用器3L),与L个第一波分复用器/解复用器202连接的光束生成装置204,以及与L个第二波分复用器/解复用器203连接的检测装置205,L为正整数。
其中,第一波分复用器/解复用器202包括多个合波端口和多个分波端口(例如,图6中所示的合波端口2021和合波端口2022、分波端口2023。应理解,图6中示意出了2个合波端口,在实际过程中合波端口的数量可以为3个或3个以上。
其中,第二波分复用器/解复用器203包括多个合波端口和多个分波端口(例如,图6中所示的合波端口2031和合波端口2032、分波端口2033),第一波分复用器/解复用器202的多个合波端口中一个合波端口为信号光端口(例如,如图6所示,合波端口2021为信号光端口),其余合波端口与光束生成装置204相连,第一波分复用器/解复用器202的多个分波端口与第一光开关201相连。第二波分复用器/解复用器203的多个合波端口中一个合波端口为信号光端口(例如,合波端口2031为信号光端口),其余合波端口与检测装置205相连,第二波分复用器/解复用器203的多个分波端口与第一光开关201相连。应理解,图6中示意出了2个合波端口,在实际过程中合波端口的数量可以为3个或3个以上。
应理解,信号光端口用于输入信号光,或者输出信号光。例如,第一波分复用器/解复用器202的信号光端口用于输入信号光。第二波分复用器/解复用器203的信号光端口用于输出信号光。
本申请实施例中L个第一波分复用器/解复用器202中任一个第一波分复用器/解复用器202的多个合波端口,以及L个第二波分复用器/解复用器203中任一个第二波分复用器/解复用器203的多个合波端口可以作为线路端口用于和其他节点通信。
本申请实施例中L个第一波分复用器/解复用器202中任一个第一波分复用器/解复用器202的信号光端口,以及L个第二波分复用器/解复用器203中任一个第二波分复用器/解复用器203的信号光端口,使用DWDM信号光。
应理解,如果光束生成装置204还用于向L个第一波分复用器/解复用器202提供信号 光,则光束生成装置204还与L个第一波分复用器/解复用器202中每个第一波分复用器/解复用器202的信号光端口相连。
其中,本申请实施例中的光束生成装置204用于向L个第一波分复用器/解复用器202的其余合波端口提供监控光。本申请实施例中的其余合波端口可以称为监控光端口。
应理解,本申请实施例中的信号光指经过调制,具有业务信号的激光。本申请实施例中的监控光指未进行调制,不带有业务信号的激光。
示例性的,本申请实施例中的第一波分复用器/解复用器202和第二波分复用器/解复用器203可以为阵列波导光栅(Arrayed Waveguide Grating,AWG)。
本申请实施例中的光开关是实现全光交换系统的关键器件,它可以实现全光层的路由选择、波长选择、光交叉连接、自愈保护等功能。目前的光开关主要包括传统的机械结构光开关、微电子机械系统(MicroElectrical-Mechanical System,MEMS)光开关、液晶光开关、波导型光开关和半导体光放大器光开关等。
本申请实施例提供的光交换装置,包括L个第一波分复用器/解复用器和L个第二波分复用器/解复用器。每个波分复用器/解复用器具有信号光端口和其余合波端口,这样可以通过光束生成装置向L个第一波分复用器/解复用器中的其余合波端口输入激光,然后第一光开关将接收到的激光输入至L个第二波分复用器/解复用器中的分波端口。然后L个第二波分复用器/解复用器中任一个接收到激光的第二波分复用器/解复用器,将从第二波分复用器/解复用器的其余合波端口将接收到的激光发送给检测装置,以使得检测装置获取输出的激光的输出功率。与现有技术相比,本申请实施例提供的光交换装置可以在无信号光的情况下,依然可以获取激光的输出功率。进而使得可以根据激光的输入功率和输出功率,得到第一光开关的插损。这样对于通道闭环、上电自检和未用通道检测场景中,即使通道中没有业务光,也可以得到第一光开关的插损。
可选的,本申请实施例中的第一光开关201,用于完成穿通通道、上波通道、下波通道的建立和切换。
应理解,本申请实施例中波长相同的信号光和监控光从不同的分波端口输出。但是,当信号光和监控光波长满足特定关系时,波长相同的信号光和监控光可以从不同的合波端口输入,而从相同的分波端口输出。
通常情况下,不同波长的监控光可以从同一个合波端口输入,也可以从不同的合波端口输入。不同波长的信号光可以从同一个信号光端口输入。
例如,以第一波分复用器/解复用器202具有三个合波端口为例,如果合波端口1为信号光端口、合波端口2和合波端口3为监控光端口。则波长为λ 1的信号光、波长为λ 2的信号光、波长为λ 3的信号光、…、波长为λ N的信号光可以从合波端口1输入。波长为λ' 1的监控光、波长为λ' 2的监控光从合波端口2输入,波长为λ' 3的监控光、…、波长为λ' N的监控光从合波端口3输入。或者波长为λ' 1的监控光、波长为λ' 2的监控光、波长为λ' 3的监控光、…、波长为λ' N的监控光从合波端口3或者合波端口2输入。
示例性的,如图7所示,波长为λ 1的信号光、波长为λ 2的信号光、波长为λ 3的信号光、…、波长为λ N的信号光从第一波分复用器/解复用器202的合波端口2021输入。波长为λ' 1的监控光、波长为λ' 2的监控光、波长为λ' 3的监控光、…、波长为λ' N的监控光从第一波分复用器/解复用器202的合波端口2022输入。然后,波长为λ 1的信号光、波长为λ' 1的监控光从分 波端口1输出。波长为λ 2的信号光、波长为λ' 2的监控光从分波端口2输出。波长为λ 3的信号光、波长为λ' 3的监控光从分波端口3输出。波长为λ N的信号光、波长为λ' N的监控光从分波端口N输出。
应理解,在图7中,本申请实施例中波长为λ i的信号光从分波端口i输入,可以从合波端口2021输出,合波端口2022输出的信号光的功率很小(串扰光)或无信号光。波长为λ i的信号光从分波端口j(j≠i)输入,合波端口2021输出的光功率很小(串扰光)或无光。
波长为λ' i的监控光从分波端口i输入,可以从合波端口2022输出,合波端口2021输出的监控光的功率很小(串扰光)或无监控光。λ' i从分波端口j(j≠i)输入,合波端口2032输出的光功率很小(串扰光)或无监控光。j取自1、…、N。波分复用器/解复用器是根据干涉原理制成的,是波长相关器件。从一个合波端口到一个分波端口的传输通路只能通过特定波长的激光。同理,从一个分波端口到一个合波端口的传输通路只能通过特定波长的激光。
根据以上关系,显然λ i和λ' i不能相同。但是λ 1到λ N的集合,和λ' 1到λ' N的集合,可以相同,也可以不相同。
需要说明的是,本申请实施例中一个合波端口可以和一个分波端口形成一个传输通路,也即如果有X个合波端口,Y个分波端口,则可以形成X*Y个传输通路。一个分波端口可以同时和用作信号光端口的合波端口形成传输通路,也可以和用作监控光端口的合波端口形成传输通路。例如,在图7中合波端口2021和合波端口2022分别和分波端口1形成两个传输通路,则合波端口2021中输入的波长为λ 1的信号光和合波端口2022中输入的波长为λ' 1的监控光可以从分波端口1输出。
在第一种可选的实现方式中,L个第一波分复用器/解复用器202可以共享一个光束生成装置204。在这种情况下,如图8所示,本申请实施例中的光束生成装置204包括:可调激光器(Tunable Laser,TL)2041和第二光开关2042。
其中,第二光开关2042分别与可调激光器2041和第一波分复用器/解复用器202的其余合波端口相连,用于将可调激光器2041输出的激光切换到第一波分复用器/解复用器202的目标合波端口上。
应理解,第二光开关2042用于选择将可调激光器2041生成的激光切换至L个第一波分复用器/解复用器202中的哪一个第一波分复用器/解复用器202中。即第二光开关2042用于选择将可调激光器2041生成的相同波长的激光,依次输入至L个第一波分复用器/解复用器202中的哪一个第一波分复用器/解复用器202中。
例如,第二光开关2042可以为1×T的耦合器或者1×T的光开关,T为正整数。
应理解,当第二光开关2042为1×T的耦合器时,第二光开关2042可以采用下述第二种示例向第一波分复用器/解复用器202中依次输入不同波长的激光。
示例性的,当L个第一波分复用器/解复用器202可以共享一个光束生成装置204时。一方面,本申请实施例中可调激光器2041每次生成一个波长的激光,然后由第二光开关2042将可调激光器2041每次生成的同一个波长的激光依次输入至L个第一波分复用器/解复用器202中。或者,另一方面,调节第二光开关2042先切换至一个第一波分复用器/解复用器202的合波端口2022,这时可调激光器2041生成波长从λ' 1到λ' N的监控光,然后该波长从λ' 1到λ' N的监控光依次输入至第二光开关2042切换到的第一波分复用器/解复用器202的合波 端口2022。
例如,第一种示例,光束生成装置204在工作过程中,以生成的激光为监控光为例,可调激光器2041生成波长为λ' 1的监控光,第二光开关2042将波长为λ' 1的监控光切换至第一波分复用器/解复用器21的合波端口2022。然后将波长为λ' 1的监控光切换至第一波分复用器/解复用器22的合波端口2022、…、将波长为λ' 1的监控光切换至第一波分复用器/解复用器2L的合波端口2022。如果光束生成装置204再生成波长为λ' 2的监控光,则第二光开关2042将波长为λ' 2的监控光依次切换至第一波分复用器/解复用器21至第一波分复用器/解复用器2L中。即第二光开关2042的目的在于将光束生成装置204生成的任一个波长的监控光依次切换至L个第一波分复用器/解复用器202中。
例如,第二种示例,首先调节第二光开关2042使得第二光开关2042切换到第一波分复用器/解复用器21的合波端口2022,然后可调激光器2041依次生成波长从λ' 1到λ' N的监控光。由于此时第二光开关2042切换到第一波分复用器/解复用器21的合波端口2022,这时,可调激光器2041生成的波长从λ' 1到λ' N的监控光,将依次输入至第一波分复用器/解复用器21的合波端口2022。然后,再调节第二光开关2042使得第二光开关2042切换到第一波分复用器/解复用器22的合波端口2022,然后可调激光器2041依次生成波长从λ' 1到λ' N的监控光。由于此时第二光开关2042切换到第一波分复用器/解复用器22的合波端口2022,这时,可调激光器2041生成的波长从λ' 1到λ' N的监控光,将依次输入至第一波分复用器/解复用器22的合波端口2022,依次类推,使得L个第一波分复用器/解复用器中每个第一波分复用器/解复用器中依次输入波长从λ' 1到λ' N的监控光。
在第二种可选的实现方式中,L个第二波分复用器/解复用器203可以共享一个检测装置205。在这种情况下,如图8所示,检测装置205还包括:探测器2051和耦合器2052。其中,耦合器2052分别与探测器2051和第二波分复用器/解复用器203的其余合波端口相连,用于将第二波分复用器/解复用器的其余合波端口输出的激光耦合到探测器2051。
应理解,耦合器2052依次将L个第二波分复用器/解复用器203中每个第二波分复用器/解复用器203的其余合波端口输出的激光耦合到探测器2051。
例如,耦合器2052先接收到哪个第二波分复用器/解复用器203的其余合波端口输出的激光,则先将该第二波分复用器/解复用器203的其余合波端口输出的激光耦合到探测器2051,以使得探测器2051可以探测到每个第二波分复用器/解复用器203的其余合波端口输出的激光的输出功率。
应理解,探测器2051用于获取每个第二波分复用器/解复用器203的其余合波端口输出的不同波长的激光中每个波长的激光的输出功率。
例如,如果第二波分复用器/解复用器31输出的波长为λ' 1的激光,则耦合器2052将波长为λ' 1的激光耦合至探测器2051,探测器2051探测波长为λ' 1的激光的输出功率。如果第二波分复用器/解复用器31输出的波长为λ' 2的激光,则耦合器2052将波长为λ' 2的激光耦合至探测器2051,探测器2051探测波长为λ' 2的激光的输出功率。
示例性的,耦合器2052可以为1×T的光开关或者1×T的耦合器。
应理解,对于本申请实施例中1×多个端口的光开关,可以根据系统特性和监控需求,可以替换成端口数相同的耦合器。1×多个端口的耦合器,可以根据系统特性和监控需求,可以替换成端口数相同的光开关。但是,如果检测装置中采用耦合器时,光束生成装置204 中的第二光开关需要为1×T的光开关。例如,耦合器2052可以为1×T的光开关,第二光开关为1×T的光开关。耦合器2052可以为1×T的耦合器,第二光开关为1×T的光开关。耦合器2052可以为1×T的光开关,第二光开关为1×T的耦合器。
可选的,如图8所示,当本申请实施例中当L个第一波分复用器/解复用器202共享一个光束生成装置204,L个第二波分复用器/解复用器203共享一个检测装置205时,本申请实施例中的可调激光器2041、第二光开关2042、耦合器2052、探测器2051可以做成一个单独的监控板。
具体的,当光交换装置采用如图8所示的结构时,可以检测穿通通道中波长λ i的信号光在第一光开关中的插损。例如,首先控制可调激光器2041输出端口的1*T的第二光开关2042,将其切换至任一个第一波分复用器/解复用器202(以第一波分复用器/解复用器21为例)的合波端口2022,以使得可调激光器2041与第一波分复用器/解复用器21的合波端口2022连通。然后,调节可调激光器2041输出波长为λ' i的监控光,根据图3所描述的穿通通道监测原理,波长为λ' i的监控光输入至第一波分复用器/解复用器21的合波端口2022后,将从第一波分复用器/解复用器21的一个分波端口输入至第一光开关201。然后第一光开关201选择一个第二波分复用器/解复用器(以第二波分复用器/解复用器32为例),波长为λ' i的监控光将从第二波分复用器/解复用器32的一个分波端口进入第二波分复用器/解复用器32,并从第二波分复用器/解复用器32的合波端口2032输出,经过1*T的耦合器2052进入探测器2051。然后,探测器2051探测接收到的波长为λ' i的监控光的输出功率。最终,根据波长为λ' i的监控光的输出功率和波长为λ' i的监控光的输入功率,可以计算出穿通通道中波长为λ' i的监控光的插损1。使用穿通通道中波长为λ' i的监控光的插损1减去波长为λ' i的监控光在穿通通道的路径(即从第一波分复用器/解复用器21到探测器2051)中除第一光开关以外元器件的插损,就可以得到波长为λ' i的监控光在第一光开关中的插损。可以近似认为波长为λ' i的监控光在第一光开关的插损即为穿通通道中波长为λ i的信号光在第一光开关中的插损。
应理解,第二光开关2042可以将波长为λ i的监控光切换至不同的第一波分复用器/解复用器202中,从而使得探测器2051获取不同波长的监控光在穿通通道中的输出功率。
在另一种可选的实现方式中,为了对L个第一波分复用器/解复用器202中每个第一波分复用器/解复用器202输入的激光实现灵活控制,可以为每个第一波分复用器/解复用器202配置一个第一可调激光器。如图9所示,图9与图8的区别在于:光束生成装置204包括:多个第一可调激光器(例如,包括L个第一可调激光器。以第一可调激光器41、第一可调激光器42、…、以及第一可调激光器4L为例),多个第一可调激光器中每个第一可调激光器与L个第一波分复用器/解复用器中除信号光端口外的一个合波端口相连。
例如,如图9所示,第一可调激光器41与第一波分复用器/解复用器21中的合波端口2022连接。第一可调激光器42与第一波分复用器/解复用器22中的合波端口2022连接。第一可调激光器4L与第一波分复用器/解复用器2L中的合波端口2022连接。
在图9所示的结构中,任一个第一可调激光器用于依次生成不同波长的激光,然后向与其相连的第一波分复用器/解复用器202依次输入不同波长的激光。
例如,在图9中第一可调激光器41用于依次生成波长从λ' 1到λ' N的监控光,以使得与第一可调激光器41连接的第一波分复用器/解复用器可以依次接收到波长从λ' 1到λ' N的 监控光。
进一步可选的,为了精确获取从L个第二波分复用器/解复用器203中每个第二波分复用器/解复用器203输出的激光的输出功率,可以为每个第二波分复用器/解复用器203配置一个探测器。在这种情况下,检测装置205包括:多个探测器。例如,如图9所示,包括:探测器51、探测器52、…、探测器5L。如图9所示,多个探测器中每个探测器与一个第二波分复用器/解复用器中的除信号光端口外的一个合波端口相连。
本申请实施例中的探测器可以为光电探测器(photodetector,PD)。
例如,如图9所示,第二波分复用器/解复用器31中的合波端口2032与探测器51连接。第二波分复用器/解复用器32中的合波端口2032与探测器52连接。第二波分复用器/解复用器3L中的合波端口2032与探测器5L连接。
应理解的,如图9中任一个探测器用于探测与该探测器连接的第二波分复用器/解复用器输出的不同波长中每个波长的激光的输出功率。
需要说明的是,本申请实施例中如图6-图9中任一个附图中的光交换装置可以计算穿通通道中输出的激光的输出功率。在实现穿通通道检测时,L个第一波分复用器/解复用器202中任一个第一波分复用器/解复用器202的信号光端口中输入的信号光的传输方向和其余合波端口中输入的监控光的传输方向相同,也可以相反。当光交换装置可以计算穿通通道中输出的激光的输出功率时,光束生成装置204向任一个第一波分复用器/解复用器202提供波长为λ' i的激光。波长为λ' i的激光从该任一个第一波分复用器/解复用器202的合波端口2022进入任一个第一波分复用器/解复用器202,然后从任一个第一波分复用器/解复用器202的分波端口输入进入第一光开关201。然后第一光开关201为波长为λ' i的激光选择一个第二波分复用器/解复用器203之后,将波长为λ' i的激光输入至被选择的第二波分复用器/解复用器203的分波端口进入第二波分复用器/解复用器203。然后从第二波分复用器/解复用器203的一个合波端口2032输出至检测装置205。
具体的,当光交换装置采用如图9所示的结构时,计算波长为λ i的信号光在穿通通道中的插损与图8所示的结构的区别在于:以第一可调激光器41为例,图9中第一可调激光器41用于向与其连接的第一波分复用器/解复用器21的合波端口2022输入波长为λ i的监控光,根据如图3所描述的穿通波长监测原理,接收到波长为λ' i的监控光的第一波分复用器/解复用器21将从分波端口2023将波长为λ' i的监控光输入至第一光开关201。第一光开关201选择一个第二波分复用器/解复用器(例如,第二波分复用器/解复用器32)之后,将波长为λ' i的监控光输入至被选择的第二波分复用器/解复用器32的分波端口2033。然后λ' i的监控光从第二波分复用器/解复用器32的合波端口2032输出,由与第二波分复用器/解复用器32连接的探测器52接收。探测器52探测接收到的λ' i的监控光的输出功率。这样之后便可以根据第一可调激光器41提供的波长为λ' i的监控光的输入功率和波长为λ' i的监控光的输出功率,可以计算出波长为λ' i的监控光在穿通通道中的插损1。用这个插损1减去图9中波长λ' i的监控光在光路径中除第一光开关以外元器件的插损,就可以得到穿通通道中波长为λ' i的监控光在第一光开关中的插损。由于第一光开关的插损对波长不敏感,可以近似认为穿通通道中波长为λ' i的监控光在第一光开关中的插损即为穿通通道中波长λ i的信号光在第一光开关中的插损。或者,可以认为波长为λ' i的监控光在穿通通道中的插损1即为波长为λ i的信号光在穿通通道中的插损。
可选的,为了实现上波通道或者下波通道的插损检测,本申请实施例提供的第一光开关201还包括M个第一支路端口206,光交换装置还包括第三光开关2043。其中,第三光开关2043分别与光束生成装置204和M个第一支路端口206相连,M为正整数。
示例性的,在如图10所示的结构中,第三光开关2043分别与第二光开关2042和M个第一支路端口206相连。光束生成装置204用于向M个第一支路端口206提供激光。
示例性的,第三光开关2043为1*M的光开关或者1*M的耦合器。
在上波通道检测时,第二光开关2042用于将来自可调激光器2041的激光切换至第三光开关2043。第三光开关2043用于选择将来自可调激光器2041的激光输入至M个第一支路端口206中的哪一个第一支路端口。最终使得可调激光器2041生成的不同波长的激光依次输入至每个第一支路端口。
应理解,以第三光开关2043为1*M的耦合器为例,如果可调激光器2041依次生成波长从λ' 1到λ' N的监控光,则第三光开关2043可以将波长从λ' 1到λ' N的监控光依次输入至同一个第一支路端口。也即此时首先,将第三光开关2043切换至一个第一支路端口,先向该第一支路端口输入从λ' 1到λ' N的监控光后,再将第三光开关2043切换至另一个第一支路端口。然后再将可调激光器2041依次生成波长从λ' 1到λ' N的监控光输入至另一个第一支路端口。
如果可调激光器2041每次输入同一个波长的监控光,则第三光开关2043可以依次将同一个波长的监控光输入至M个第一支路端口206中。
需要说明的是,M个第一支路端口206可以位于同一个支路板上,也可以位于多个支路板上。当M个第一支路端口206位于同一个支路板上时,为了减少光交换装置的成本和体积,M个第一支路端口206可以共享一个第三光开关2043。
当M个第一支路端口206位于多个支路板上时,多个支路板上的分布的第一支路端口206的数量之和等于M。以多个支路板的数量为P为例,每个支路板上分布的第一支路端口206的数量为Q为例,应理解,不同支路板上的第一支路端口206的数量可以相同,也可以不同,但是需要保证P个支路板上的所有第一支路端口206的数量之和为M。
如果M个第一支路端口206位于P个支路板上,每个支路板上包括Q个第一支路端口206,该P个支路板可以共享一个第三光开关2043。也可以为每个支路板连接一个光开关。则第三光开关2043包括P个光开关20431。其中,P个光开关20431分别与光束生成装置204和P个支路板中的一个支路板连接。光束生成装置204用于将生成的激光输入P个光开关20431中的任一个光开关20431。接收到来自光束生成装置204的激光的光开关20431用于选择将接收到的激光输入至与其连接的支路板上的哪一个第一支路端口206。此时光开关20431可以为1*Q的光开关。
应理解,M个第一支路端口206可以共享一个第一光束生成装置,当然,M个第一支路端口206中每个第一支路端口206也可以连接一个可调激光器。L个第一波分复用器/解复用器共享一个第二光束生成装置。第二光束生成装置和第一光束生成装置为不同的光束生成装置。应理解,图10中以第二光束生成装置和第一光束生成装置为同一个光束生成装置为例,即M个第一支路端口206和L个第一波分复用器/解复用器202共享一个光束生成装置204。
为了实现向M个第一支路端口206灵活的输入激光,本申请实施例中还可以为M个第 一支路端口206配置一个第二可调激光器207。在这种情况下,在图11所示的结构中,本申请实施例中的光交换装置还包括:第二可调激光器208和第五光开关209。其中,第五光开关209分别与第二可调激光器208和M个第一支路端口206相连。其中,第五光开关209用于选择来自第二可调激光器208的激光切换至哪个第一支路端口206。
应理解,图10与图11或图12的区别在于:在图10中M个第一支路端口206和L个第一波分复用器/解复用器202共用一个光束生成装置。在图11中M个第一支路端口206通过第二可调激光器208提供激光。L个第一波分复用器/解复用器202通过可调激光器提供激光。在图12中M个第一支路端口206通过第二可调激光器208提供激光,L个第一波分复用器/解复用器202中每个第一波分复用器/解复用器202由与其连接的第一可调激光器提供激光。
可选的,对于如图11或图12所示的结构,如果M个第一支路端口206位于P个支路板上,每个支路板上包括Q个第一支路端口206,则第五光开关的结构可以参考第三光开关2043的结构,此处不再赘述。
可选的,在图10-图12所示的结构中,M个第一支路端口中每个支路端口上具有一个分光器或者1*2的耦合器207。
应理解,串接在每个支路端口上的分光器或者1*2的耦合器207用于将监控光耦合到光路中。
示例性的,该分光器或者耦合器207具有多个端口,该多个端口中一个端口为信号光端口2061,其余端口2062可以作为监控光端口。其中,其余端口2062与第五光开关209或者第三光开关2043连接。
当有信号光时,信号光会通过信号光端口2061进入第一光开关,监控光通过其余端口2062进入第一光开关。
具体的,当光交换装置采用如图10所示的结构时,除了可以计算穿通通道中波长为λ i的信号光在第一光开关的插损,还可以用于计算上波通道中波长为λ i的信号光在第一光开关的插损。首先控制可调激光器2041输出端口的1*T的第二光开2042,以及上波通道的M个第一支路端口所对应的1*M的第三光开关2043,使可调激光器2041输出端口和第一支路端口上的每个分光器连通。然后调节可调激光器2041,使可调激光器2041输出波长为λ' i的监控光,根据图4描述的上波通道的监测原理,波长为λ' i的监控光将从被检测的第一支路端口206对应的一个第一波分复用器/解复用器202(以第一波分复用器/解复用器21为例)或者第二波分复用器/解复用器203(以第二波分复用器/解复用器31为例)的除信号光端口外的一个合波端口输出。然后被与第一波分复用器/解复用器21或第二波分复用器/解复用器31连接的耦合器2051耦合至探测器2052。探测器2052探测接收到的波长为λ' i的监控光的输出功率。然后处理器可以根据波长为λ' i的监控光的输入功率、波长为λ' i的监控光的输出功率,可以计算出波长为λ' i的监控光在整个上波通道中的插损1。使用波长为λ' i的监控光在整个上波通道中的插损1减去波长为λ' i的监控光在上波通道的光路径中除第一光开关以外元器件的插损,就可以得到波长为λ' i的监控光在第一光开关中的插损。由于第一光开关对波长不敏感,可以近似认为波长为λ' i的监控光在第一光开关中的插损就是上波通道中波长为λ i的信号光在第一光开关中的插损。或者,可以认为波长为λ' i的监控光在整个上波通道中的插损1即为波长为λ i的信号光在整个上波通道中的插损。
具体的,当光交换装置采用如图11或图12所示的结构时,波长为λ' i的监控光在第一光开关中的插损的监测过程与图10的区别在于:首先控制待测的第一支路端口所对应的1*M的第五光开关209,使第二可调激光器208输出端口和待测的第一支路端口上的1*2的耦合器连通。其余过程可以参考图10中如何监测波长为λ' i的监控光在第一光开关中的插损的过程,此处不再赘述。
可选的,当图10-图12所示的结构既有上波通道又有穿通通道时,且当M个第一支路端口206对应L个第一波分复用器/解复用器202时,光交换装置还包括多个环形器210。多个环形器210中每个环形器210的第一端口b与光束生成装置204相连,每个环形器210的第二端口a与第一波分复用器/解复用器202中除信号光端口外的一个合波端口2022相连,每个环形器210的第三端口c与检测装置205相连。
应理解,在上波通道时,波长为λ' i的激光从任一个第一支路端口206中输入至第一光开关201。然后第一光开关201选择一个第一波分复用器/解复用器202或者一个第二波分复用器/解复用器203之后,第一光开关201将λ' i的激光输入至第一波分复用器/解复用器202或者一个第二波分复用器/解复用器203中的波长为λ' i的分波端口。
应理解,M个第一支路端口206对应L个第一波分复用器/解复用器202可以指:在上波通道时,M个第一支路端口206中任一个第一支路端口206中输出的激光从L个第一波分复用器/解复用器202中的一个第一波分复用器/解复用器202的其余合波端口2022输出。
应理解,图13和图14的区别在于:在图13所示的结构中每个环形器210的第一端口b与第二光开关2042连接,每个环形器210的第三端口c与耦合器2051连接,在图14所示的结构中检测装置205还包括L个探测器,L个探测器中每个探测器与一个环形器210的第三端口c连接,每个环形器210的第一端口b与各自相连的第一可调激光器连接。
需要说明的是,环形器210可以为光环形器。环形器210用于分离输入至第一波分复用器/解复用器202的激光和从第一波分复用器/解复用器202输出的激光。
应理解,使用图13所示的结构监测波长为λ' i的监控光在第一光开关中的插损的过程与图10的区别在于,在图13中如果一个第一波分复用器/解复用器202接收到波长λ' i的监控光,波长λ' i的监控光从第一波分复用器/解复用器202的除信号光端口外的合波端口输出,从环形器的a口进入环形器210中,然后从环形器210的c口进入耦合器2051中。图13与图10相同之处可以参考图10处的描述,此处不再赘述。
使用图14所示的结构监测波长为λ' i的监控光在第一光开关中的插损的监测过程与图11或图12的区别在于:如果一个第一波分复用器/解复用器202接收到波长λ' i的监控光,波长λ' i的监控光从第一波分复用器/解复用器202的除信号光端口外的合波端口输出,从环形器的a口进入环形器210中,然后从环形器210的c口进入探测器中。图14与图11或图12相同之处可以参考图11处的描述,此处不再赘述。
需要说明的是,当图10-图12所示的结构既有上波通道又有穿通通道时,当M个第一支路端口206对应L个第二波分复用器/解复用器203时,或者该光交换装置中不具有上波通道时,光交换装置可以不设置环形器210。
可选的,在一种可选的实施例中,如图15或图16所示,第一光开关201还包括N个第二支路端口211,光交换装置还包括第四光开关212,其中,第四光开关212分别与光束生成装置204和第一光开关201的N个第二支路端口211相连,N为正整数。
其中,第四光开关212为1*N的光开关或者耦合器。应理解,图16与图15的区别在于,在图15中N个第二支路端口211和L个第一波分复用器/解复用器202共享一个光束生成装置。例如,N个第二支路端口211通过第四光开关212与第二光开关2042连接。在图16中光交换装置还可以包括:第三可调激光器213以及第六光开关214。其中,第六光开关214与第三可调激光器213和N个第二支路端口211连接。其中,第三可调激光器213用于向N个第二支路端口211提供激光。N个第二支路端口211用于选择第三可调激光器213生成的激光进入哪个第二支路端口211。
应理解,在下波通道时,由于输入至第一光开关201中的信号光和输入至第一光开关201中的监控光的传输方向必须相反,因此,如果信号光从一个第二支路端口211输出时,监控光需要从第二支路端口211输入,在这种情况下,每个第二支路端口211由第三可调激光器213提供激光。对于下波通道,监控光是从支路端口到线路端口的,监控光的传输方向与信号光传输方向相反。所以第二支路端口也要接第三可调激光器213来输入监控光。
本申请实施例中的第六光开关214可以为1*N的光开关,第五光开关209可以为1*M的光开关。
应理解,N个第二支路端口211中的任一个第二支路端口211用于与L个第一波分复用器/解复用器202中的一个第一波分复用器/解复用器202形成下波通道。或者任一个第二支路端口211用于与L个第二波分复用器/解复用器203中的一个第二波分复用器/解复用器203形成下波通道。
应理解,当光交换装置中同时存在下波通道和上波通道时,该光交换装置可以既有N个第二支路端口,又有M个第一支路端口。或者将M个第一支路端口中的一部分第一支路端口用作上波端口,将另一部分第一支路端口用作下波端口。此时可以不设置N个第二支路端口。或者当光交换装置中下波通道和上波通道不是同时存在时,可以在上波通道时使用M个第一支路端口作为上波端口。在下波通道时,使用M个第一支路端口作为下波端口,这时,也可以不设置N个第二支路端口。
可选的,本申请实施例中每个第二支路端口上可以串接分光器207。
使用如图15所示的结构监测波长为λ' i的信号光在第一光开关中的插损的监测过程具体可以为:当需要监控一个波长为λ i的信号光在下波通道中的插损时,首先控制可调激光器2041输出端口的1*T的第二光开关2042,以及待测第二支路端口所对应的1*N的第四光开关212,使可调激光器输出端口和待测第二支路端口上的1*2耦合器207连通。然后调节可调激光器2041,使可调激光器2041输出波长为λ' i的监控光,根据如图5描述的下波通道的监测原理,波长为λ' i的监控光将从待测第二支路端口对应的第二波分复用器/解复用器203的除信号光端口外的合波端口输出,经过1*T的耦合器2051之后进入探测器2052。探测器2052探测波长为λ' i的监控光的输出功率。此后,处理器可以基于可调激光器2041生成的波长为λ' i的监控光的输入功率和波长为λ' i的监控光的输出功率得到插损1。用这个插损1减去波长为λ' i的监控光在下波通道的光路径中除第一光开关201以外器件的插损,就可以得到波长为λ' i的监控光在第一光开关中的插损。可以近似认为波长为λ' i的监控光在第一光开关中的插损即为波长为λ i的信号光在第一光开关中的插损。
当采用如图16所示的结构监测波长为λ' i的信号光在第一光开关中的插损时,该过程与图15的区别在于,首先控制待测第二支路端口所对应的1*N的第六光开关214,使第三 可调激光器213输出端口和待测第二支路端口上的1*2的耦合器207连通。然后调节第三可调激光器213,使第三可调激光器213输出波长为λ' i的监控光,波长为λ' i的监控光在下波通道中的光路径可以参考图15出的描述,此处不再赘述。此外,在图16中波长为λ' i的监控光的输出功率由与接收到波长为λ' i的监控光的第二波分复用器/解复用器相连的探测器探测,波长为λ' i的监控光的输入功率由第三可调激光器213提供。
可选的,如图17所示,第一光开关还包括M个第一支路端口206,光交换装置包括多波长激光源,多波长激光源的多个输出端口分别与M个第一支路端口206相连。
应理解,图17中以L个第一波分复用器/解复用器202中每个第一波分复用器/解复用器202与一个第一可调激光器连接,L个第二波分复用器/解复用器203中每个第二波分复用器/解复用器203与一个探测器连接为例。在实际过程中,多波长激光源的多个输出端口分别与M个第一支路端口206相连时,L个第一波分复用器/解复用器202可以共享一个光束生成装置204。L个第二波分复用器/解复用器203也可以共享一个检测装置205。本申请实施例在此不再赘述。
示例性的,多波长激光源可以为业务板。
在由图17所示的结构计算波长为λ' i的监控光的在上波通道或者下波通道中的插损时,具体可以参考上述相关地方的描述,此处不再赘述。区别在于,在图17中波长为λ' i的监控光由本地业务板产生。
在实际的监测过程中,可以根据场景需要,有序的调节每个第一支路端口206或者每个第二支路端口211连接的光开关和可调激光器的波长,对光交换装置中所有待测通道的插损进行轮循监测。
本实施例的方案的每个第二波分复用器/解复用器203对应的一组穿通通道,和每组上波通道或下波通道,都有一个可调激光器,各组通道可以同时进行轮循检测,可以有效减少轮循时间。此外穿通通道的监控光没有经过第二光开关2042,轮循检测不受第二光开关2042的切换时间限制,选用波长快速可调的激光器,可以获得很快的轮循检测速度。
需要说明的是,在实现过程中,可以将1个第一波分复用器/解复用器202和1个第二波分复用器/解复用器203制作在一个电路板上,称为线路板。将一组上波端口和一组下波端口制作在、一个电路板上,称为支路板。本申请实施例中的探测器和可调激光器可以分配到每个支路板或者线路板上,实现比较方便。
可选的,本申请实施例提供的光交换装置还可以包括:处理器,与检测装置205的输出端口连接,用于获取激光的输入功率和检测装置205获取的激光的输出功率,以及用于根据激光的输出功率和激光的输入功率,确定第一光开关201的插损。
具体的,处理器具体用于,根据检测装置205获取的激光的输出功率和激光的输入功率可以计算出激光在整个待测通道(穿通通道、上波通道或者下波通道)中的插损1。以及用插损1减去除第一光开关201以外元器件的插损2,就可以得到激光在第一光开关201中的插损3。由于第一光开关201的插损对波长不敏感,可以近似认为插损3即为待测通道中信号光在第一光开关201中的插损。
本申请实施例中的处理器可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。输入功率可以从光束生成装置获取,也可以预 先配置在处理器中,本申请实施例不做限定。
可选的,本申请实施例提供一种光交换系统,该光交换系统包括至少两个如图6到图17中任一个所示的光交换装置。任意两个光交换装置之间通过线路端口通信。
需要指出的是,本申请各实施例之间可以相互借鉴或参考,例如,相同或相似的步骤,方法实施例和装置实施例之间,均可以相互参考,不予限制。
如图18所示,图18示出了本申请提供的一种功率计算方法的流程示意图,可以应用于光交换装置中,例如,图6至图17所示的任一种光交换装置。
示例性的,当该方法应用于图6所示的结构(具体结构可以参考图6中的描述,此处不再赘述)时,该方法包括:
步骤101、光束生成装置204向L个第一波分复用器/解复用器202中任一个第一波分复用器/解复用器202的多个合波端口中除信号光端口外的合波端口2022输入第一激光。
应理解,光束生成装置204每次生成一种波长的第一激光,然后向L个第一波分复用器/解复用器202中任一个第一波分复用器/解复用器202的多个合波端口中除信号光端口外的合波端口2022输入第一激光。
步骤102、接收到第一激光的第一波分复用器/解复用器202将第一激光从第一波分复用器/解复用器202的多个分波端口2023中的一个分波端口2023输入至第一光开关201。
步骤103、第一光开关201将第一激光输入至L个第二波分复用器/解复用器202中的任一个第二波分复用器/解复用器202对应的分波端口2033。
步骤104、接收到第一激光的第二波分复用器/解复用器203将第一激光从第二波分复用器/解复用器的多个合波端口中除信号光端口外的一个合波端口2032输入至检测装置205。
步骤105、检测装置205计算第一激光的输出功率。
本申请实施例提供的功率计算方法,包括L个第一波分复用器/解复用器和L个第二波分复用器/解复用器。每个波分复用器/解复用器具有信号光端口和其余合波端口,这样可以通过光束生成装置向L个第一波分复用器/解复用器中的其余合波端口输入激光,然后第一光开关将接收到的激光输入至L个第二波分复用器/解复用器中的分波端口。然后L个第二波分复用器/解复用器中任一个接收到激光的第二波分复用器/解复用器,将从第二波分复用器/解复用器的其余合波端口将接收到的激光发送给检测装置,以使得检测装置获取输出的激光的输出功率。与现有技术相比,本申请实施例提供的光交换装置可以在无信号光的情况下,依然可以获取激光的输出功率。进而使得可以根据激光的输入功率和输出功率,得到第一光开关的插损。这样对于通道闭环、上电自检和未用通道检测场景中,即使通道中没有业务光,也可以得到第一光开关的插损。
可选的,当该光交换装置采用如图8所示的结构时,步骤101具体可以通过以下方式实现:可调激光器2041生成第一激光,以及将第一激光输入至第二光开关2042。第二光开关2042将第一激光切换到任一个第一波分复用器/解复用器202的目标合波端口上。
应理解,第二光开关2042将第一激光切换到任一个第一波分复用器/解复用器202的目标合波端口指:第二光开关2042将第一激光切换到任一个第一波分复用器/解复用器202的除信号光端口外的一个合波端口上。
需要说明的是,如果有两个或两个以上的监控光端口,此时激光器数量应该和监控光 端口的数量一致。
当该光交换装置采用如图8所示的结构时,步骤105具体可以通过以下方式实现:耦合器2052将来自第二波分复用器/解复用器203的第一激光耦合到探测器2051。探测器2051探测第二波分复用器/解复用器203输出的第一激光的输出功率。
应理解,如果耦合器2052接收到多个来自不同第二波分复用器/解复用器203的第一激光,则耦合器2052将来自每个第二波分复用器/解复用器203的第一激光依次耦合到探测器2051,以使得探测器2051每次可以探测来自一个第二波分复用器/解复用器203的第一激光的输出功率。
可选的,当光束生成装置204采用如图9所示的结构时,步骤101具体可以采用如下方式实现:每个第一可调激光器(例如,第一可调激光器41、第一可调激光器42、…、第一可调激光器4L)向相连的合波端口输入第一激光。
例如,第一可调激光器41向与其相连的一个第一波分复用器/解复用器21的合波端口2022输入第一激光。
可选的,当检测装置205采用如图9所示的结构时,步骤105具体可以通过以下方式实现:每个探测器探测从相连的合波端口输出的第一激光的输出功率。
例如,探测器51探测从第二波分复用器/解复用器31的合波端口2032输出的第一激光的输出功率。探测器52探测从第二波分复用器/解复用器32的合波端口2032输出的第一激光的输出功率。
可选的,当该光交换装置采用如图10所示的结构时,即第一光开关201还包括M个第一支路端口206时,光交换装置还包括第三光开关2043,其中,第三光开关2043分别与光束生成装置204和M个第一支路端口206相连,M为正整数,如图19所示,本申请实施例提供的方法还包括:
步骤106、光束生成装置204通过第三光开关2043向M个第一支路端口206输入第二激光。
具体的,在图10中步骤106可以通过以下方式具体实现:可调激光器2041生成第二激光,以及将第二激光输入至第二光开关2042。第二光开关2042将第二激光切换到第三光开关2043。第三光开关2043从M个第一支路端口206中选择一个第一支路端口206,并将第二激光输入至被选择的第一支路端口26中。
具体的,当每个第一支路端口上存在分光器或者耦合器207时,第三光开关2043向被选择的第一支路端口26串接的分光器或者耦合器207的监控光端口输入第二激光。
步骤107、接收到第二激光的第一支路端口将第二激光输入至第一光开关201。
步骤108、第一光开关201将第二激光输入至L个第一波分复用器/解复用器中的一个第一波分复用器/解复用器的目标分波端口。
步骤109、接收到第二激光的第一波分复用器/解复用器将第二激光输入至检测装置205。
步骤110、检测装置205获取第二激光的输出功率。
应理解,在图10所示的结构中,步骤110具体可以通过以下方式实现:探测器2052依次探测输入至检测装置中的第一波分复用器/解复用器输出的第二激光的输出功率。
此外,在上波通道时,步骤109还可以通过如下方式替换:接收到第二激光的第二波 分复用器/解复用器将第二激光输入至检测装置205。
可选的,当光交换装置采用如图11或图12所示的结构时,本申请实施例提供的步骤106还可以通过以下方式替换:第二可调激光器208通过第五光开关209向M个第一支路端口206输入第二激光。当光交换装置采用如图12所示的结构,即每个第一波分复用器/解复用器与一个探测器连接,步骤109还可以通过以下方式替换:接收到第二激光的第二波分复用器/解复用器将第二激光输入至与其相连的探测器。
可选的,如图13所示,当M个第一支路端口206对应L个第一波分复用器/解复用器202时,光交换装置还包括多个环形器210,多个环形器210中每个环形器210的第一端口与光束生成装置相连,所述每个环形器210的第二端口与第一波分复用器/解复用器中除信号光端口外的一个合波端口相连,所述每个环形器210的第三端口与所述检测装置205相连,在这种情况下,步骤109具体可以通过以下方式实现:环形器从第二端口接收第二激光,以及从第三端口将第二激光输入至检测装置205。例如,环形器从第三端口将第二激光输入至耦合器2051,耦合器2051将第二激光耦合至2052。
可选的,当本申请实施例中的M个第一支路端口对应的L个第二波分复用器/解复用器时,即M个第一支路端口中任一个第一支路端口中的第二激光将从L个第二波分复用器/解复用器中的一个第二波分复用器/解复用器中输出,此时,上述步骤109还可以通过以下方式替换:接收到所述第二激光的第二波分复用器/解复用器将所述第二激光输入至所述检测装置。
具体的,接收到第二激光的第一波分复用器/解复用器将第二激光输入至耦合器2051,耦合器2051将接收到的来自第一波分复用器/解复用器的第二激光耦合至探测器2052。
可选的,本申请实施例提供的方法还包括:第一光开关包括的M个第一支路端口接收来自多波长激光源的激光。
可选的,本申请实施例提供的方法还包括:处理器获取检测装置获取的激光的输出功率,以及根据激光的输入功率,计算激光的功率损耗。
例如,激光的输入功率可以从光束生成装置处获取。
示例性的,处理器获取检测装置获取的第一激光的输出功率,以及根据第一激光的输入功率,计算第一激光的功率损耗。
例如,处理器获取检测装置获取的第二激光的输出功率,以及根据第二激光的输入功率,计算第二激光的功率损耗。
应理解,本申请实施例中第一激光的功率损耗可以为第一激光在所在待测通道中的插损。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (21)

  1. 一种光交换装置,其特征在于,包括:第一光开关,与所述第一光开关连接的L个第一波分复用器/解复用器和L个第二波分复用器/解复用器,与所述L个第一波分复用器/解复用器连接的光束生成装置,以及与所述L个第二波分复用器/解复用器连接的检测装置,L为正整数;
    其中,所述第一波分复用器/解复用器和所述第二波分复用器/解复用器包括多个合波端口和多个分波端口;
    所述第一波分复用器/解复用器的多个合波端口中一个合波端口为信号光端口,其余合波端口与所述光束生成装置相连,所述第一波分复用器/解复用器的多个分波端口与所述第一光开关相连;
    所述第二波分复用器/解复用器的多个合波端口中一个合波端口为信号光端口,其余合波端口与所述检测装置相连,所述第二波分复用器/解复用器的多个分波端口与所述第一光开关相连。
  2. 根据权利要求1所述的装置,其特征在于,所述光束生成装置包括:可调激光器和第二光开关;
    所述第二光开关分别与所述可调激光器和所述第一波分复用器/解复用器的所述其余合波端口相连,用于将所述可调激光器输出的激光切换到所述第一波分复用器/解复用器的目标合波端口上。
  3. 根据权利要求2所述的装置,其特征在于,所述检测装置还包括:探测器和耦合器;
    所述耦合器分别与所述探测器和所述第二波分复用器/解复用器的所述其余合波端口相连,用于将所述第二波分复用器/解复用器的所述其余合波端口输出的激光耦合到所述探测器。
  4. 根据权利要求1所述的装置,其特征在于,所述光束生成装置包括:多个第一可调激光器,所述多个第一可调激光器中每个第一可调激光器与所述L个第一波分复用器/解复用器中除所述信号光端口外的一个合波端口相连。
  5. 根据权利要求4所述的装置,其特征在于,所述检测装置包括:多个探测器,每个探测器与所述L个第二波分复用器/解复用器中的除所述信号光端口外的一个合波端口相连。
  6. 根据权利要求1-5任一项所述的装置,其特征在于,所述第一光开关还包括M个第一支路端口,所述光交换装置还包括第三光开关,其中,所述第三光开关分别与所述光束生成装置和所述M个第一支路端口相连,M为正整数。
  7. 根据权利要求6所述的装置,其特征在于,当所述M个第一支路端口对应所述L个第一波分复用器/解复用器时,所述光交换装置还包括多个环形器;
    所述多个环形器中每个环形器的第一端口与所述光束生成装置相连,所述每个环形器的第二端口与所述第一波分复用器/解复用器中除所述信号光端口外的一个合波端口相连,所述每个环形器的第三端口与所述检测装置相连。
  8. 根据权利要求6所述的装置,其特征在于,所述第一光开关还包括N个第二支路端口,所述光交换装置还包括第四光开关,其中,所述第四光开关分别与所述光束生成装置和所述第一光开关的N个第二支路端口相连,N为正整数。
  9. 根据权利要求1-5任一项所述的装置,其特征在于,所述第一光开关还包括M个第一支路端口,所述光交换装置包括多波长激光源,所述多波长激光源的多个输出端口分别与所述M个第一支路端口相连。
  10. 根据权利要求1-5任一项所述的装置,其特征在于,所述装置还包括:
    处理器,与所述检测装置的输出端口连接,用于获取激光的输出功率,以及用于根据所述输出功率和输入功率,确定所述第一光开关的插损。
  11. 一种光交换系统,其特征在于,所述光交换系统包括至少两个如权利要求1-10任一项所述的光交换装置。
  12. 一种功率计算方法,其特征在于,应用于光交换装置中,所述光交换装置包括:第一光开关,与所述第一光开关连接的L个第一波分复用器/解复用器和L个第二波分复用器/解复用器,与所述L个第一波分复用器/解复用器连接的光束生成装置,以及与所述L个第二波分复用器/解复用器连接的检测装置,L为正整数,所述方法包括:
    所述光束生成装置向所述L个第一波分复用器/解复用器中任一个第一波分复用器/解复用器的多个合波端口中除信号光端口外的合波端口输入第一激光;
    接收到所述第一激光的第一波分复用器/解复用器将所述第一激光从所述第一波分复用器/解复用器的多个分波端口中的一个分波端口输入至所述第一光开关;
    所述第一光开关将所述第一激光输入至L个第二波分复用器/解复用器中的任一个第二波分复用器/解复用器对应的分波端口;
    接收到所述第一激光的第二波分复用器/解复用器将所述第一激光从所述第二波分复用器/解复用器的多个合波端口中除信号光端口外的一个合波端口输入至所述检测装置;
    所述检测装置获取所述第一激光的输出功率。
  13. 根据权利要求12所述的方法,其特征在于,所述光束生成装置包括:可调激光器和第二光开关,
    所述光束生成装置向L个第一波分复用器/解复用器中任一个第一波分复用器/解复用器的多个合波端口中除信号光端口外的合波端口输入第一激光,包括:
    所述可调激光器生成所述第一激光,以及将所述第一激光输入至所述第二光开关;
    所述第二光开关将所述第一激光切换到所述任一个第一波分复用器/解复用器的目标合波端口上。
  14. 根据权利要求13所述的方法,其特征在于,所述检测装置包括:探测器和耦合器;
    所述检测装置获取所述第一激光的输出功率,包括:
    所述耦合器将来自所述第二波分复用器/解复用器的所述第一激光耦合到所述探测器;
    所述探测器计算所述第二波分复用器/解复用器输出的所述第一激光的输出功率。
  15. 根据权利要求12所述的方法,其特征在于,所述光束生成装置包括:多个第一可调激光器,所述多个第一可调激光器中每个第一可调激光器与所述L个第一波分复用器/解复用器中除所述信号光端口外的一个合波端口相连;
    所述光束生成装置向L个第一波分复用器/解复用器中任一个第一波分复用器/解复用器的多个合波端口中除信号光端口外的合波端口输入第一激光,包括:
    所述每个第一可调激光器向相连的合波端口输入所述第一激光。
  16. 根据权利要求15所述的方法,其特征在于,所述检测装置包括多个探测器,所述多 个探测器中每个探测器与所述L个第二波分复用器/解复用器中的除所述信号光端口外的一个合波端口相连;
    所述检测装置获取所述第一激光的输出功率,包括:
    所述每个探测器探测从相连的合波端口输出的所述第一激光的输出功率。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,所述第一光开关还包括M个第一支路端口,所述光交换装置还包括第三光开关,其中,所述第三光开关分别与所述光束生成装置和所述M个第一支路端口相连,M为正整数,所述方法还包括:
    所述光束生成装置通过第三光开关向所述M个第一支路端口输入第二激光;
    所述第一光开关将所述第二激光输入至所述L个第一波分复用器/解复用器中的一个第一波分复用器/解复用器的目标分波端口;
    接收到所述第二激光的第一波分复用器/解复用器将所述第二激光输入至所述检测装置;
    所述检测装置获取所述第二激光的输出功率。
  18. 根据权利要求17所述的方法,其特征在于,当所述M个第一支路端口对应所述L个第一波分复用器/解复用器时,所述光交换装置还包括多个环形器,所述多个环形器中每个环形器的第一端口与所述光束生成装置相连,所述每个环形器的第二端口与所述第一波分复用器/解复用器中除所述信号光端口外的一个合波端口相连,所述每个环形器的第三端口与所述检测装置相连;
    所述接收到所述第二激光的第一波分复用器/解复用器将所述第二激光输入至所述检测装置,包括:
    所述接收到所述第二激光的第一波分复用器/解复用器将所述第二激光输入至所述环形器的第二端口;
    所述环形器从所述第三端口将所述第二激光输入至所述检测装置。
  19. 根据权利要求12-16任一项所述的方法,其特征在于,所述方法还包括:
    所述光束生成装置通过第三光开关向所述第一光开关的M个第一支路端口输入第二激光,M为正整数;
    所述第一光开关将所述第二激光输入至所述L个第二波分复用器/解复用器中的一个第二波分复用器/解复用器的目标分波端口;
    接收到所述第二激光的第二波分复用器/解复用器将所述第二激光输入至所述检测装置;
    所述检测装置获取所述第二激光的输出功率。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述第一光开关包括的M个第一支路端口接收来自多波长激光源的激光。
  21. 根据权利要求12-20任一项所述的方法,其特征在于,所述方法还包括:
    处理器获取所述检测装置获取的激光的输出功率,以及根据所述激光的输入功率,计算所述激光的功率损耗。
PCT/CN2019/129729 2018-12-29 2019-12-30 一种光交换装置、系统及功率计算方法 WO2020135849A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/362,874 US11641246B2 (en) 2018-12-29 2021-06-29 Optical switching apparatus and system, and power calculation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811640720.9 2018-12-29
CN201811640720.9A CN111385052B (zh) 2018-12-29 2018-12-29 一种光交换装置、系统及功率计算方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/362,874 Continuation US11641246B2 (en) 2018-12-29 2021-06-29 Optical switching apparatus and system, and power calculation method

Publications (1)

Publication Number Publication Date
WO2020135849A1 true WO2020135849A1 (zh) 2020-07-02

Family

ID=71128844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129729 WO2020135849A1 (zh) 2018-12-29 2019-12-30 一种光交换装置、系统及功率计算方法

Country Status (3)

Country Link
US (1) US11641246B2 (zh)
CN (1) CN111385052B (zh)
WO (1) WO2020135849A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116015477A (zh) * 2022-12-01 2023-04-25 中国人民解放军国防科技大学 一种支持波分复用和时分复用的光量子转发方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112217569B (zh) * 2020-09-27 2021-11-16 武汉光迅科技股份有限公司 一种功率调节方法、装置及存储介质
CN115278403A (zh) * 2021-04-29 2022-11-01 华为技术有限公司 电交换集群系统
WO2023197164A1 (zh) * 2022-04-12 2023-10-19 华为技术有限公司 一种基带单元及接入网设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256125B1 (en) * 1997-04-30 2001-07-03 Nec Corporation WDM optical transmission system
US6538782B1 (en) * 1998-02-02 2003-03-25 Fujitsu Limited Light branching/inserting apparatus and light branching apparatus using wavelength selection filter
US7254327B1 (en) * 2003-01-31 2007-08-07 Ciena Corporation Switching status and performance monitoring technology for wavelength selective switch and optical networks
US20090274459A1 (en) * 2007-02-28 2009-11-05 Fujitsu Limited Optical node apparatus
CN108370268A (zh) * 2015-12-21 2018-08-03 国立研究开发法人产业技术综合研究所 光开关、光节点的监视系统以及监视方法
CN108964754A (zh) * 2018-08-17 2018-12-07 深圳市亚派光电器件有限公司 光通信器件的插损校正方法、系统及插损测量系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980047794A (ko) 1996-12-16 1998-09-15 김영귀 차량항법장치 차량의 사고위치정보 전송방법
AU2001230871A1 (en) 2000-01-10 2001-07-24 The Johns-Hopkins University Optical communication system using a high altitude tethered balloon
GB2376531A (en) 2001-06-13 2002-12-18 Bookham Technology Plc Multichannel wavelength monitoring apparatus
US7149425B2 (en) 2002-04-30 2006-12-12 Lucent Technologies Inc. Monitoring system for an optical transmitter
US7130505B2 (en) 2003-07-23 2006-10-31 Jds Uniphase Corporation Optical performance monitor
CN101227247A (zh) * 2007-10-30 2008-07-23 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置
CN102696194B (zh) * 2011-07-22 2014-12-10 华为技术有限公司 可重构的光分插复用器及波长交叉连接器
JP6008371B2 (ja) 2013-04-10 2016-10-19 日本電信電話株式会社 光波長分割多重伝送システム
CN104661117A (zh) * 2013-11-22 2015-05-27 华为技术有限公司 一种光网络交换设备
CA2942107C (en) * 2014-03-10 2021-01-05 Aeponyx Inc. Optical device with tunable optical wavelength selective circuit
US10395168B2 (en) 2015-10-26 2019-08-27 International Business Machines Corporation Tunable optical neuromorphic network
CN207135105U (zh) 2017-07-03 2018-03-23 无锡市德科立光电子技术有限公司 一种多波长无中继传输系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256125B1 (en) * 1997-04-30 2001-07-03 Nec Corporation WDM optical transmission system
US6538782B1 (en) * 1998-02-02 2003-03-25 Fujitsu Limited Light branching/inserting apparatus and light branching apparatus using wavelength selection filter
US7254327B1 (en) * 2003-01-31 2007-08-07 Ciena Corporation Switching status and performance monitoring technology for wavelength selective switch and optical networks
US20090274459A1 (en) * 2007-02-28 2009-11-05 Fujitsu Limited Optical node apparatus
CN108370268A (zh) * 2015-12-21 2018-08-03 国立研究开发法人产业技术综合研究所 光开关、光节点的监视系统以及监视方法
CN108964754A (zh) * 2018-08-17 2018-12-07 深圳市亚派光电器件有限公司 光通信器件的插损校正方法、系统及插损测量系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116015477A (zh) * 2022-12-01 2023-04-25 中国人民解放军国防科技大学 一种支持波分复用和时分复用的光量子转发方法及装置
CN116015477B (zh) * 2022-12-01 2023-10-31 中国人民解放军国防科技大学 一种支持波分复用和时分复用的光量子转发方法及装置

Also Published As

Publication number Publication date
CN111385052B (zh) 2021-10-01
CN111385052A (zh) 2020-07-07
US20210328702A1 (en) 2021-10-21
US11641246B2 (en) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2020135849A1 (zh) 一种光交换装置、系统及功率计算方法
US8131151B2 (en) Testing and measurement in optical networks
US7574080B2 (en) Technique for photonic switching
US8811817B2 (en) Optical signal transmission device, optical signal reception device, wavelength division multiplexing optical communication device, and wavelength path system
WO2014203789A1 (ja) 光クロスコネクト装置
EP3327956B1 (en) Wavelength selective switch and optical signal transmission system
US11444715B2 (en) Optical protection switch with broadcast multi-directional capability
CN111355554A (zh) 路由合波器、路由合波方法、波分路由方法及网络系统
JP2000501909A (ja) メッシュ状光ネットワーク
JP2020088642A (ja) 伝送システム、伝送装置、及び伝送方法
JP6510444B2 (ja) 波長クロスコネクト装置及びモジュール
KR20100040532A (ko) 파장 분할 다중화 시스템에서 광 회선 분배 장치 및 방법
US20020135840A1 (en) Connection verification and monitoring in optical wavelength multiplexed communications systems
CA2235050A1 (en) Wavelength dividing circuit with arrayed-waveguide grating monitor port
US20180316991A1 (en) COLORLESS, DIRECTIONLESS, CONTENTIONLESS OPTICAL NETWORK USING MxN WAVELENGTH SELECTIVE SWITCHES
JP6625946B2 (ja) 光伝送システム、光ノード装置及び光伝送方法
US11863295B2 (en) Identifying and monitoring connections in an optical system
JPH11243564A (ja) 光クロスコネクト装置
JPH10224829A (ja) 波長多重/分離装置
JP3616991B2 (ja) 光通信ネットワーク
KR20000033945A (ko) 파장분할다중방식 광전송망에서의 동적 라우팅 기능을 갖는 파장분할다중 전송장치
JP2005012278A (ja) 波長多重ponシステム
KR19980034531A (ko) 광교환 시스템 장치
JPS63131687A (ja) 光交換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904099

Country of ref document: EP

Kind code of ref document: A1