WO2020135779A1 - 一种固体浮力材料及其制备方法和用途 - Google Patents

一种固体浮力材料及其制备方法和用途 Download PDF

Info

Publication number
WO2020135779A1
WO2020135779A1 PCT/CN2019/129432 CN2019129432W WO2020135779A1 WO 2020135779 A1 WO2020135779 A1 WO 2020135779A1 CN 2019129432 W CN2019129432 W CN 2019129432W WO 2020135779 A1 WO2020135779 A1 WO 2020135779A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow glass
parts
vacuum
glass microspheres
solid buoyancy
Prior art date
Application number
PCT/CN2019/129432
Other languages
English (en)
French (fr)
Inventor
严开祺
廖斌
张敬杰
潘顺龙
安振国
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Publication of WO2020135779A1 publication Critical patent/WO2020135779A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the invention relates to the technical field of buoyancy materials, in particular to a solid buoyancy material used in the deep sea and a preparation method and application thereof.
  • the Russian Institute of Marine Technology has also developed solid buoyancy materials for 6000m water depth automatic submersibles, with a density of 0.70g/cm 3 and a pressure resistance of 70MPa.
  • the Marine Chemical Research Institute has formed a series of solid buoyancy materials from the surface to 7000m underwater, with a density of 0.35-0.56g/cm 3 and a compressive strength of 8-66.8MPa, which can be applied to a depth of 2000-7000m .
  • High-strength solid buoyancy materials developed at home and abroad are composed of resin-based systems and light fillers. They are a low-density, high-strength, and low-water-absorbing solid substance. Although a series of low-density buoyancy materials have been prepared in the prior art, However, their compressive strength is not high enough, and the safety factor is low, which cannot meet the demand for high compressive strength of deep-sea solid buoyancy materials.
  • Ron Allum's 10,000-meter solid buoyancy material has a safety factor of 1.38
  • Trelleborg's 10,000-meter solid buoyancy material has a safety factor of 1.2
  • the domestic Henan Panrui Composite Materials Research Institute has a 10,000-meter solid buoyancy material's safety factor of 1.1.
  • Chinese patent document CN107474486A discloses a solid buoyant material, the density of the prepared solid buoyant material is 0.60-82g/cm 3 , and the compressive strength is 102MPa-120MPa, because the density is too high under its depth of service, it cannot be satisfied
  • the existing technology requires low density of solid buoyancy materials, and on the other hand, its compressive strength is also insufficient to meet the high safety factor requirements of existing deep-sea submersibles.
  • Chinese patent document CN102702679A discloses a method for preparing high-strength solid buoyancy materials for deep diving. Hollow glass microspheres are filled into a mold by vibrating assembling, after vibrating and vibrating, and then mixed with low viscosity epoxy resin The liquid booster pump is used to inject the mold from the bottom of the forming mold and solidify to obtain a solid buoyancy material product, but this process is too complicated to be suitable for large-scale mass production, and the solid buoyancy material prepared by it does not pass through after injection of epoxy resin Vacuum defoaming will still have certain defects, the compressive strength only reaches 80-120MPa, and its safety factor is not enough to meet the requirements of 10,000 meters deep sea applications.
  • Chinese patent document CN103483774A discloses a high-performance solid buoyant material, using millimeter-level hollow glass microspheres and micrometer-level hollow glass microspheres as fillers to obtain a solid with a density of 0.34-0.65g/cm 3 and a pressure of 5-75MPa
  • the solid buoyancy material prepared in the examples has a density of 0.35 g/cm 3 and a hydrostatic pressure resistance of 9.8 MPa.
  • the compressive strength of the solid buoyancy material prepared above is not high enough.
  • the purpose of the present invention is to provide a solid buoyancy material and its preparation method and use in view of the current situation that the low-density solid buoyancy material of the prior art has low compressive strength and low safety factor, and the solid buoyancy material provided by the present invention has a low The density and the high compressive strength and safety factor, as well as the low water absorption rate and long service life, the solid buoyancy material is easy to make, and it is suitable for use as a deep-sea solid buoyancy material.
  • a solid buoyant material includes resin, hollow glass microspheres A and hollow glass microspheres B, and the particle size range of the hollow glass microspheres A and the hollow glass microspheres B is 1-230 microns ,
  • the D 50 value of the hollow glass microsphere A and the hollow glass microsphere B is in the range of 25-70 microns, and the D 90 value of the hollow glass microsphere A and the hollow glass microsphere B is 50- 140 microns; said hollow glass microspheres B is greater than D 50 of the hollow glass microspheres a of the D 50 value, and / or the hollow glass microspheres B is greater than D 90 of the hollow glass Ball A has a D 90 value.
  • the hollow glass microspheres A and hollow glass microspheres B are not particularly limited, for example, selected from products known in the art, exemplarily, the hollow glass microspheres A and hollow glass microspheres B
  • the particle size is normally distributed in the range of 1-230 microns, as shown in Figure 1-3.
  • the difference value D 50 value of 50 of the hollow glass microspheres B and the hollow glass microspheres A is D is less than or equal to 40 micrometers.
  • the difference value D 50 value of 50 of the hollow glass microspheres B and the hollow glass microspheres A is D is less than or equal to 30 micrometers.
  • the difference value D 50 value of 50 of the hollow glass microspheres B and the hollow glass microspheres A D is less than 20 microns, for example 15 microns or less, 10 microns or less.
  • the difference value D 90 of the hollow glass microspheres B and the value D 90 of the hollow glass microspheres A is less than 70 microns.
  • the difference value D 90 of the hollow glass microspheres B and the value D 90 of the hollow glass microspheres A is less than or equal to 50 micrometers.
  • the difference value D 90 of the hollow glass microspheres B and the value D 90 of the hollow glass microspheres A is less than or equal to 40 microns, for example less than or equal to 30 micrometers, less than 20 microns, less than or equal to 10 micrometers .
  • the particle size of the hollow glass microsphere A and the hollow glass microsphere B is 1-230 microns, for example, the particle size of the hollow glass microsphere A and the hollow glass microsphere B is 1 micron, 5 microns , 10 microns, 20 microns, 30 microns, 40 microns, 50 microns, 60 microns, 80 microns, 90 microns, 100 microns, 120 microns, 150 microns, 150 microns, 180 microns, 190 microns, 200 microns, 210 microns, 220 Microns, 230 microns.
  • the hollow glass microspheres, hollow glass microspheres A and B is in the range 25-70 microns, for example, the hollow glass microspheres and hollow glass microspheres A B D 50 value of 25 Micron, 30 microns, 35 microns, 40 microns, 45 microns, 50 microns, 55 microns, 60 microns, 65 microns, 70 microns.
  • D 90 values of example, the hollow glass microspheres, hollow glass microspheres A and B is in the range 50-140 microns, for example, the hollow glass microspheres are hollow glass microspheres A and B of a D 90 value 50 Micrometer, 55 micrometer, 60 micrometer, 65 micrometer, 70 micrometer, 75 micrometer, 80 micrometer, 85 micrometer, 90 micrometer, 95 micrometer, 100 micrometer, 110 micrometer, 120 micrometer, 130 micrometer, 140 micrometer, 150 micrometer.
  • the mass ratio of the hollow glass microsphere A and the hollow glass microsphere B is 3-12:1, such as 4-10:1, for example, 3:1, 4:1, 5:1 6:1, 7:1, 8:1, 9:1, 10:1, 11:1 or 12:1.
  • the density of the hollow glass microsphere A and the hollow glass microsphere B is 0.2-0.5g/cm 3 (for example, 0.2g/cm 3 , 0.25g/cm 3 , 0.3g/cm 3 , 0.35g/cm 3 , 0.4g/cm 3 , 0.45g/cm 3 or 0.5g/cm 3 ), compressive strength (isostatic strength of 20% breakage rate) is 2-55MPa (for example, 2MPa, 5MPa , 8MPa, 10MPa, 12MPa, 15MPa, 18MPa, 20MPa, 25MPa, 30MPa, 35MPa, 40MPa, 45MPa, 50MPa or 55MPa).
  • the hollow glass microspheres A and the hollow glass microspheres B are density and compressive strength regulators, which are of great help in reducing the density of solid buoyant materials and improving the mechanical properties and water pressure resistance of solid buoyant materials.
  • the compressive strength of the hollow glass microspheres B is greater than the compressive strength of the hollow glass microspheres A.
  • the density of the hollow glass microspheres B is greater than the density of the hollow glass microspheres A.
  • the resin is selected from epoxy resins and/or polyurethanes, preferably epoxy resins.
  • the solid buoyancy material is obtained from raw materials containing the following parts by mass:
  • Epoxy resin 100 parts; hollow glass microsphere A and hollow glass microsphere B: 100-500 parts.
  • the solid buoyancy material is obtained from raw materials containing the following parts by mass:
  • Epoxy resin 100 parts; hollow glass microsphere A and hollow glass microsphere B: 200-450 parts.
  • the solid buoyancy material is obtained from raw materials containing the following parts by mass:
  • Epoxy resin 100 parts; hollow glass microsphere A and hollow glass microsphere B: 240-350 parts.
  • the solid buoyancy material is obtained from raw materials containing the following parts by mass:
  • Epoxy resin 100 parts; curing agent: 100-600 parts; surface treatment agent: 1-10 parts; hollow glass microsphere A and hollow glass microsphere B: 100-500 parts.
  • the solid buoyancy material is obtained from raw materials containing the following parts by mass:
  • Epoxy resin 100 parts; curing agent: 120-500 parts; surface treatment agent: 1.5-5 parts; hollow glass microsphere A and hollow glass microsphere B: 200-450 parts.
  • the solid buoyancy material is obtained from raw materials containing the following parts by mass:
  • Epoxy resin 100 parts; curing agent: 150-480 parts; surface treatment agent: 2-3 parts; hollow glass microsphere A and hollow glass microsphere B: 240-350 parts.
  • the raw material further contains the following parts by mass of components:
  • Thinner 0-300 parts; accelerator: 0-10 parts; fibrous material: 0-5 parts.
  • the raw material further contains the following parts by mass of components:
  • the raw material further contains the following parts by mass of components:
  • the mass parts of the hollow glass microspheres A and the hollow glass microspheres B are 100 parts, 120 parts, 150 parts, 180 parts, 200 parts, 220 parts, 240 parts, 250 parts, 260 parts, 270, 280, 290, 300, 320, 350, 380, 400, 420, 450, 480 or 500;
  • the mass parts of the curing agent are 100 parts, 120 parts, 150 parts, 180 parts, 200 parts, 220 parts, 240 parts, 250 parts, 260 parts, 270 parts, 280 parts, 290 parts, 300 parts , 320, 350, 380, 400, 420, 450, 480, 500, 550, 580 or 600;
  • the mass parts of the surface treatment agent are 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts, 4.5 parts, 5 parts, 6 parts, 7 parts, 8 parts, 9 Copies or 10 copies;
  • the mass parts of the diluent are 0 parts, 5 parts, 10 parts, 20 parts, 30 parts, 40 parts, 50 parts, 70 parts, 80 parts, 90 parts, 100 parts, 120 parts, 150 parts , 180, 200, 220, 240, 250, 260, 270, 280, 290 or 300;
  • the mass parts of the accelerator are 0 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts, 4.5 parts, 5 parts, 6 parts, 7 parts, 8 parts , 9 or 10 copies;
  • the mass parts of the fibrous material are 0 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts, 4.5 parts or 5 parts.
  • the accelerator is N,N-dimethylbenzylamine; the present invention has no special requirements on the source of the accelerator, and an accelerator from a source known to those skilled in the art may be used.
  • the surface treatment agent is a silane coupling agent, for example, ⁇ -aminopropyltriethoxysilane and/or ⁇ -glycidyloxypropyltrimethoxysilane; the surface treatment of the invention
  • a silane coupling agent for example, ⁇ -aminopropyltriethoxysilane and/or ⁇ -glycidyloxypropyltrimethoxysilane
  • the surface treatment agent is a silane coupling agent, for example, ⁇ -aminopropyltriethoxysilane and/or ⁇ -glycidyloxypropyltrimethoxysilane; the surface treatment of the invention
  • a surface treatment agent of a source well known to those skilled in the art may be used.
  • the curing agent is methylhexahydrophthalic anhydride and/or dodecenyl succinic anhydride; the curing agent has a lower viscosity (such as less than or equal to 1000 cP at room temperature) and a longer application In order to ensure that the mixture has good manufacturability and sufficient operable time.
  • the source of the curing agent there is no special requirement for the source of the curing agent, and a curing agent of a source well known to those skilled in the art may be used.
  • the diluent is n-butyl glycidyl ether.
  • the fibrous material is used to increase the strength of the solid buoyant material, and the fiber length of the fibrous material is 0.1-5 mm.
  • the fibrous material is selected from at least one of glass fiber, carbon fiber, and Kevlar fiber. The fibrous material also helps to improve the pressure resistance of solid buoyancy materials.
  • the density of the solid buoyancy material is 0.25-0.72g/cm 3
  • the isostatic crushing strength is 12-199.2MPa, which can be used in water depths of 1000-12450 meters, such as 1000 meters, 2000 meters, Waters at depths of 3000m, 4000m, 5000m, 6000m, 7000m, 8000m, 9000m, 10000m, 11000m, 12000m, 12450m.
  • the invention also provides a method for preparing the solid buoyancy material, including the following steps:
  • step 2) Add hollow glass microspheres A and hollow glass microspheres B to the vacuum premix in step 2), put it under vacuum again, and stir at low speed to obtain a vacuum mixture;
  • step 4) The vacuum mixture material of step 3) is extruded and poured into a mold, vibrated, vacuum defoamed, heated and solidified to prepare the solid buoyant material.
  • step 1) the rotation speed of the high-speed stirring is 60-80r/min, and the time of the high-speed stirring is 10min-2h.
  • the rotation speed of the low-speed stirring is 10-50r/min, and the time of the low-speed stirring is 20min-2h.
  • step 2) the rotation speed of the high-speed stirring is 50-60r/min, the time of the high-speed stirring is 10min-1h; the vacuum degree of the vacuum condition is -0.08 to -0.1 MPa.
  • step 3 the rotation speed of the low-speed stirring is 10-40r/min, the time of the low-speed stirring is 20min-2h; the vacuum degree of the vacuum condition is -0.08 to -0.1 MPa.
  • step 4) includes the following steps:
  • the heating and curing process is a pre-curing stage with a temperature of 60-90°C, maintained for 2-4h, a first curing stage of 100-140°C, maintained for 3-6h, and a second curing stage of 150-180°C. Keep it for 3-6h, and control the rate at 2-5°C/min in the cooling stage.
  • the preparation method includes the following steps:
  • the epoxy resin and optionally the diluent and optionally the fibrous material are thoroughly mixed under a high-speed stirring mixer, and after mixing evenly, the mixture is cooled to room temperature by stirring at a low speed for a period of time to obtain a mixture;
  • step (1) Put the curing agent, optional accelerator, surface treatment agent and the mixture in step (1) in a vacuum mixer, draw a vacuum to make the vacuum degree in the vacuum mixer reach -0.08 to -0.1MPa, continue Stir at high speed for 10min-2h to get vacuum premix;
  • (4-1) Use a high-pressure extruder to extrude and pour the vacuum mixture in a vacuum mixer into a mold treated with a release agent;
  • the blank block of the solid buoyancy material is processed by CNC turning to remove the surface layer to obtain a solid buoyancy material with a smooth and smooth surface.
  • the order of addition of the curing agent, optionally the accelerator and the surface modifier is not limited; the diluent, hollow glass microspheres A and hollow glass microspheres B can be added simultaneously or independently etc. Divide into several parts and join in alternately. The diluent, hollow glass microspheres A and hollow glass microspheres B can be added simultaneously or independently divided into several portions and then added alternately.
  • the invention also provides the use of the above-mentioned solid buoyancy material, which is used in the field of deep-sea exploration or the use of deep-sea solid buoyancy material.
  • it is suitable for water areas with a depth of 1000-12450 meters, such as 1000 meters, 2000 meters, 3000 meters, 4000 Meters, 5000 meters, 6000 meters, 7000 meters, 8000 meters, 9000 meters, 10000 meters, 11000 meters, 12000 meters, and 12450 meters in depth.
  • the "range” includes endpoint values.
  • the hollow glass microsphere A and the hollow glass microsphere B have a particle size range of 1-230 microns, that is, the hollow glass microsphere A
  • the particle size of the hollow glass microspheres B may be 1 micron or 230 micrometers; for example, the D 50 value of the hollow glass microspheres A and the hollow glass microspheres B is in the range of 25-70 micrometers, that is The D 50 value of the hollow glass microsphere A and the hollow glass microsphere B can be 25 ⁇ m or 70 ⁇ m.
  • the present invention provides a solid buoyancy material and a preparation method and use thereof.
  • the solid buoyancy material includes resin, hollow glass microsphere A and hollow glass microsphere B.
  • the hollow glass microsphere A and the hollow glass microsphere B are selected from hollow glass microspheres with different particle size distributions, different densities and different strengths, the hollow glass microspheres A and the hollow glass microspheres B Adding can increase the filling amount of the hollow glass microspheres in the resin matrix, and reduce the density of the solid buoyant material. Since the high-strength microspheres with small particle size can effectively disperse the stress on the large-diameter hollow glass microspheres, the solid buoyant material The strength of the solid buoyancy material against water pressure can be increased at the same time.
  • the solid buoyancy material of the present invention further includes a curing agent, a surface treatment agent, and an accelerator.
  • High-strength solid buoyancy material is one of the important components of modern deep-sea diving technology, providing the largest possible net buoyancy for underwater installations and playing a role in buoyancy compensation.
  • the solid buoyancy material of the present invention can greatly improve the isostatic crushing strength (up to 1.6 times the depth of service pressure) while ensuring low density and excellent low water absorption rate, providing higher safety guarantee and longer Service life.
  • the preparation method is simple in operation and easy to implement.
  • Figure 1 Optical microscope photo and electron scanning photo of hollow glass microsphere TG45;
  • Figure 2 The particle size distribution of hollow glass microspheres TG20;
  • Figure 3 The particle size distribution of hollow glass microspheres TG45;
  • FIG. 6 is a breaking pressure test curve of the solid buoyant material prepared in Example 8 of FIG. 6.
  • D 50 refers to the particle size of 50% of the cumulative distribution of particles, also known as the median diameter or median diameter, which is a typical value indicating the size of the particle size, which accurately divides the population into two equal parts, In other words, 50% of the particles exceed this value, and 50% of the particles are below this value.
  • D 90 refers to a particle size of 90% of the cumulative particle size distribution, which is a typical value indicating the size of the particle size, that is, the volume content of particles smaller than this particle size accounts for 90% of all particles.
  • test method of the compressive strength of the solid buoyant material in the following examples is performed on an isostatic pressure testing machine with reference to ASTM D2736.
  • test methods for the density and water absorption of the solid buoyancy materials in the following examples refer to the provisions of MIL-S-24154.
  • the hollow glass microspheres described in the following embodiments can be purchased, for example, from the patented (CN 102102973973A) product of the Institute of Physical and Chemical Technology of the Chinese Academy of Sciences. For details, see Table 1 below. You can also choose other product models and manufacturers.
  • the curing temperature and time control are independently the pre-curing stage temperature of 85 °C, keep it for 2 hours, and the first curing stage is 100 °C , Hold for 6h, 160°C for the second curing stage, hold for 2h, and after the curing is finished, control its cooling rate, the cooling stage rate is controlled at 2°C/min; the composite material filled with polymer and filler is lifted from the mold
  • the rough block of solid buoyancy material is obtained by processing; the solid buoyancy material is processed by CNC lathe to remove the surface layer to obtain the solid buoyancy material with smooth and smooth surface.
  • the solid buoyant material prepared according to the above method has a density of 0.42g/cm 3 , a compressive strength of 35MPa, a safety factor of 1.17, a water absorption rate of 0.21% (30MPa, 24h), and is suitable for a service depth of 3000m.
  • the vacuum degree in the vacuum forming box reaches -0.08 to -0.1 MPa, then take out and place on the vibrating platform to vibrate, repeat the above vibration-extraction Vacuum process until there are no obvious bubbles on the surface of the material; place the mold filled with the vacuum mixture in the blast drying oven, use the program-controlled temperature to heat and solidify, and the curing temperature and time control are independently the pre-curing stage temperature of 85 °C, maintain 2h, 100°C in the first curing stage, hold for 6h, 160°C in the second curing stage, hold for 2h, and after curing, control its cooling rate, the cooling stage rate is controlled at 2°C/min; it will be filled with polymer and filled
  • the composite material of the agent is ejected from the mold to obtain a solid buoyancy material blank block; the solid buoyancy material is processed by CNC lathe to remove the surface layer to obtain a solid buoyancy material with a smooth and smooth surface.
  • the electron scanning microscope photo of the solid buoyant material prepared according to the above method is shown in Fig. 4, it can be seen that the hollow glass microspheres are densely packed in the resin matrix, the density is 0.4g/cm 3 , the compressive strength is 47MPa, and the safety factor It is 1.57, water absorption rate is 0.19% (30MPa, 24h), suitable for service depth 3000m. At the same time, it can be seen that the density of the solid buoyant material has been reduced compared with that when only TG20 hollow glass microspheres are used as the filler, and the compressive strength and safety factor have been greatly improved.
  • the curing temperature and time control are independently the pre-curing stage temperature of 60 °C, maintained for 2 hours, the first curing stage is 100 °C, maintained for 4 hours, and the second curing stage is 150 °C, hold for 3h, and after the end of curing, control its cooling rate, the cooling stage rate is controlled at 4 °C/min; the composite material filled with polymer and filler is ejected from the mold to obtain a solid buoyant material block; The solid buoyancy material is processed by numerical control lathe to remove the surface layer to obtain a solid buoyancy material with a smooth and smooth surface.
  • the solid buoyant material prepared according to the above method has a density of 0.58 g/cm 3 , a compressive strength of 95 MPa, a safety factor of 1.36, a water absorption rate of 0.1% (70 MPa, 24 h), and is suitable for a service depth of 7000 m.
  • the vacuum degree in the vacuum forming box reaches -0.08 to -0.1 MPa. Then take it out and place it on a vibrating platform to vibrate. Repeat the above vibration-vacuum extraction process until the surface of the material is not obvious Air bubbles; place the mold filled with the vacuum mixture in the blast drying oven, and use the program temperature control to heat and solidify.
  • the curing temperature and time control are independently the pre-curing stage temperature of 60 °C, keep it for 2 hours, and the first curing stage is 100 °C.
  • the cooling stage rate is controlled at 4°C/min; eject the composite material filled with polymer and filler from the mold To obtain a rough block of solid buoyancy material; the solid buoyancy material is processed by numerical control turning to remove the surface layer to obtain a solid buoyancy material with a smooth and smooth surface.
  • the optical microscope photo of the solid buoyant material prepared according to the above method is shown in Figure 5, the density is 0.56g/cm 3 , the compressive strength is 105MPa, the safety factor is 1.5, the water absorption rate is 0.1% (70MPa, 24h), suitable for The service depth is 7000m.
  • the compressive strength of solid buoyancy materials prepared by adding a small amount of TG40 and TG30 is significantly changed, and the safety factor reaches 1.5, which can provide a safer guarantee for underwater submersibles.
  • its density has also decreased significantly, increasing the submarine's load.
  • the vacuum degree in the vacuum forming box reaches -0.08 to -0.1 MPa, then take it out and place it on the vibrating platform to vibrate, repeat the above vibration-vacuum extraction Process until there are no obvious bubbles on the surface of the material; place the mold filled with the vacuum mixture in the blast drying oven, and use the program-controlled temperature to heat and solidify.
  • the curing temperature and time control are independently 90°C in the pre-curing stage, and maintain for 2h.
  • the first curing stage is 132°C for 4h
  • the second curing stage is 175°C for 6h
  • the cooling rate is controlled, and the cooling stage rate is controlled at 3°C/min
  • the composite material is ejected from the mold to obtain a solid buoyancy material blank block
  • the solid buoyancy material is processed by CNC turning to remove the surface layer to obtain a solid buoyancy material with a smooth and smooth surface.
  • the solid buoyant material prepared according to the above method has a density of 0.64g/cm 3 , a compressive strength of 143MPa, a safety factor of 1.3, a water absorption rate of 0.13% (110MPa, 24h), and is suitable for a service depth of 11000m.
  • the vacuum degree in the vacuum forming box reaches -0.08 to -0.1 MPa, and then removed and placed on the vibrating platform to vibrate , Repeat the above vibration-vacuum extraction process until there are no obvious bubbles on the surface of the material; place the mold filled with the vacuum mixture in the blast drying oven, use program-controlled temperature heating and curing, and the curing temperature and time control are independently pre-curing
  • the temperature of the stage is 90°C, keep it for 2h
  • the first curing stage is 132°C, keep it for 4h
  • the second curing stage is 175°C, keep it for 6h, and after the curing is finished, the cooling rate is controlled, and the cooling stage rate is controlled at 3°C/min;
  • the composite material filled with polymer and filler is ejected from the mold to obtain a solid buoyancy material blank block; the solid buoyancy material is processed by CNC turning to remove the surface layer to obtain a solid buoyancy material with a smooth and smooth surface.
  • the solid buoyant material prepared according to the above method has a density of 0.62 g/cm 3 , a compressive strength of 160 MPa, a safety factor of 1.45, a water absorption rate of 0.13% (110 MPa, 24 h), and is suitable for a service depth of 11000 m.
  • the vacuum degree in the vacuum forming box reaches -0.08 to -0.1 MPa, and then removed and placed on the vibrating platform to vibrate , Repeat the above vibration-vacuum extraction process until there are no obvious bubbles on the surface of the material; place the mold filled with the vacuum mixture in the blast drying oven, use program-controlled temperature heating and curing, and the curing temperature and time control are independently pre-curing
  • the temperature of the stage is 90°C, keep it for 2h
  • the first curing stage is 132°C, keep it for 4h
  • the second curing stage is 175°C, keep it for 6h, and after the curing is finished, the cooling rate is controlled, and the cooling stage rate is controlled at 3°C/min;
  • the composite material filled with polymer and filler is ejected from the mold to obtain a solid buoyancy material blank block; the solid buoyancy material is processed by CNC turning to remove the surface layer to obtain a solid buoyancy material with a smooth and smooth surface.
  • the density of the solid buoyant material prepared according to the above method is 0.60g/cm 3 , the compressive strength is 115MPa, the water absorption rate is 5% (110MPa, 24h), the water absorption rate is too high, and it is not suitable for a service depth of 11000m.
  • the curing temperature and time control are independently the pre-curing stage temperature of 60 °C, maintained for 2 hours, and the first curing stage is 100 °C, maintained for 4 hours.
  • the second curing stage is 150°C, keep it for 3h, and after the curing is finished, the cooling rate is controlled, and the cooling stage rate is controlled at 5°C/min; the composite material filled with polymer and filler is ejected from the mold to obtain Blank block of solid buoyancy material; the solid buoyancy material is processed by CNC lathe to remove the surface layer to obtain a solid buoyancy material with smooth and smooth surface.
  • the solid buoyant material prepared according to the above method has a density of 0.73g/cm 3 , a compressive strength of 163MPa, a safety factor of 1.48, a water absorption rate of 0.25% (110MPa, 24h), and is suitable for a service depth of 11000m.
  • the vacuum degree in the vacuum forming box reaches -0.08 to -0.1 MPa, then take it out and place it on a vibrating platform to vibrate, repeat the above vibration-vacuum extraction process Until there are no obvious bubbles on the surface of the material; place the mold filled with the vacuum mixture in the blast drying oven, and use the program-controlled temperature to heat and solidify.
  • the curing temperature and time control are independently the pre-curing stage temperature of 60 °C, and maintain it for 2h.
  • the first curing stage is 100°C, keep it for 4h
  • the second curing stage is 150°C, keep it for 3h
  • the cooling rate is controlled, and the cooling stage rate is controlled at 5°C/min
  • the compound filled with polymer and filler The material is ejected from the mold to obtain a solid buoyancy material blank block; the solid buoyancy material is processed by CNC turning to remove the surface layer to obtain a solid buoyancy material with a smooth and smooth surface.
  • the solid buoyant material prepared according to the above method has a density of 0.72g/cm 3 , a compressive strength of 199.2MPa, a safety factor of 1.60, a water absorption rate of 0.1% (124.5MPa, 24h), and is suitable for a service depth of 12450m.
  • TG40 is used as an additive alone
  • the compressive strength of solid buoyancy materials prepared by adding a small amount of TG50 and TG40 is significantly changed, and the safety factor reaches 1.6, which can provide a safer guarantee for underwater submersibles.
  • the service depth also reached 12,450 meters.
  • the solid buoyant material prepared according to the above method has a density of 0.49g/cm 3 , a compressive strength of 76MPa, a safety factor of 1.52, a water absorption rate of 0.27% (50MPa, 24h), and is suitable for a service depth of 5000m.
  • the solid buoyant material prepared according to the above method has a density of 0.38g/cm 3 , a compressive strength of 30MPa, a safety factor of 1.5, a water absorption rate of 0.1% (20MPa, 24h), and is suitable for a service depth of 2000m.
  • the vacuum degree in the vacuum forming box reaches -0.08 to -0.1 MPa, then take it out and place it on the vibrating platform to vibrate, repeat the above vibration -The process of vacuum extraction until there are no obvious bubbles on the surface of the material; the mold filled with the vacuum mixture is placed in a blast drying oven, and the temperature is controlled by a program to heat and solidify, and the curing temperature and time are independently controlled at the pre-curing stage temperature of 60 °C , Hold for 4h, 100°C for the first curing stage, hold for 4h, 150°C for the second curing stage, hold for 4h, and control the cooling rate after curing, the cooling stage rate is controlled at 3°C/min; it will be filled with polymer
  • the composite material with the filler is ejected from the mold to obtain a solid buoyancy material blank block; the solid buoyancy material is processed by CNC turning to remove the surface layer to obtain a solid buoyancy material with a smooth and smooth surface.
  • the solid buoyant material prepared according to the above method has a density of 0.45g/cm 3 , a compressive strength of 59.2MPa, a safety factor of 1.48, a water absorption rate of 0.22% (40MPa, 24h), and is suitable for a service depth of 4000m.
  • the vacuum degree in the vacuum forming box reaches -0.08 to -0.1 MPa, and then removed and placed on the vibrating platform to vibrate, repeat The above vibration-vacuum extraction process until there are no obvious bubbles on the surface of the material; the mold filled with the vacuum mixture is placed in the blast drying oven, and the temperature is controlled by the program to heat and solidify, and the curing temperature and time control are independently the temperature of the pre-curing stage 90°C, hold for 2h, the first curing stage is 132°C, keep for 4h, the second curing stage is 175°C, keep for 4h, and after curing, control its cooling rate, the cooling stage rate is controlled at 4°C/min; it will be filled with The composite material of the polymer and the filler is ejected from the mold to obtain a solid buoyancy material blank block; the solid buoyancy material is processed by CNC lathe to remove the surface layer to obtain a solid buoyancy material with a smooth and smooth surface.
  • the density of the solid buoyancy material prepared according to the above method is 0.67g/cm 3 , the compressive strength is 173.5MPa, the compressive strength test curve is shown in Figure 6, the safety factor is 1.58, the water absorption rate is 0.14% (110MPa, 24h) , Suitable for service depth 11000m.
  • the vacuum degree in the vacuum forming box reaches -0.08 to -0.1 MPa. Then take it out and place it on a vibrating platform to vibrate. Repeat the above vibration-vacuum extraction process until the surface of the material is not obvious Air bubbles; place the mold filled with the vacuum mixture in the blast drying oven, and use the program temperature control to heat and solidify.
  • the curing temperature and time control are independently the pre-curing stage temperature of 60 °C, keep it for 2 hours, and the first curing stage is 100 °C.
  • the cooling stage rate is controlled at 4°C/min; eject the composite material filled with polymer and filler from the mold To obtain a rough block of solid buoyancy material; the solid buoyancy material is processed by numerical control turning to remove the surface layer to obtain a solid buoyancy material with a smooth and smooth surface.
  • the solid buoyant material prepared according to the above method has a density of 0.57g/cm 3 , a compressive strength of 110MPa, a safety factor of 1.375, a water absorption rate of 0.13% (80MPa, 24h), and is suitable for a service depth of 8000m.
  • T is 4,5-epoxycyclohexane-1,2-dicarboxylic acid diglycidyl ester
  • U is 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexyl formate
  • E It is bisphenol A type E51 epoxy resin
  • M is methyl hexahydrophthalic anhydride
  • D is dodecenyl succinic anhydride
  • diluent is n-butyl glycidyl ether.
  • TG30 For example, if a certain amount of TG30 is compounded in TG20, the density of the obtained solid buoyant material is reduced from 0.42g/cm 3 to 0.4g/cm 3 , and the breaking strength of the solid buoyant material is increased from 35MPa to 47MPa; Add a certain amount of TG40 to the solid buoyancy material density from 0.64g/cm 3 to 0.62g/cm 3 , the destruction strength of the solid buoyancy material from 143MPa to 160MPa, and correspondingly, add TG40 and TG40 With the same amount of TG35, the density of the obtained solid buoyant material is reduced from 0.64 g/cm 3 to 0.60 g/cm 3 , and the breaking strength of the solid buoyant material is reduced from 143 MPa to 115 MPa.
  • the hollow glass microsphere A and the hollow glass microsphere B are normally distributed hollow glass microspheres and a suitable particle size distribution, so that the hollow glass microspheres can achieve the maximum dense packing in the resin matrix and improve
  • the filling amount of hollow glass microspheres in the resin matrix reduces the density of solid buoyant materials.
  • the solid buoyancy material can simultaneously increase the strength of the solid buoyancy material against water pressure. And by adding fibrous materials, the pressure resistance of buoyancy materials is improved.
  • the solid buoyancy material of the present invention is improved in density and compressive strength, and has a higher safety factor, and can be applied to different service depths; in addition, under the same service depth, compared with the prior art, the present invention prepares
  • the obtained solid buoyancy material has lower density and higher destruction strength, which can further increase the counterweight of the deep-sea submersible, improve its economic and scientific research benefits, and increase the safety factor can guarantee the safety of deep-sea submersibles and submersible personnel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Epoxy Resins (AREA)

Abstract

本发明提供了一种固体浮力材料及其制备方法和用途,所述固体浮力材料包括树脂、空心玻璃微球A和空心玻璃微球B。所述空心玻璃微球A和空心玻璃微球B是选用具有不同粒径分布、不同密度和不同强度的空心玻璃微球,能够提高树脂基体中空心玻璃微球的填充量,降低固体浮力材料密度,由于小粒径的高强度微球可以有效的分散大粒径中空微球承受的应力,使得所述固体浮力材料可以同时提升固体浮力材料耐水压的强度。本发明所述固体浮力材料还包括固化剂、表面处理剂、促进剂,通过对环氧树脂,促进剂和固化剂的合适选择以及复配,在提供固体浮力材料足够的耐水压强度的同时,能够有效地改进固体浮力材料的抗湿热性能。

Description

一种固体浮力材料及其制备方法和用途
本申请要求2018年12月29日向中国国家知识产权局提交的专利申请号为201811636758.9,发明名称为“一种固体浮力材料及其制备方法和用途”的在先申请的优先权。这篇在先申请的全文通过引用的方式结合于本申请中。
技术领域
本发明涉及浮力材料技术领域,特别是涉及一种用于深海的固体浮力材料及其制备方法和用途。
背景技术
目前,深海勘探、开发主要以深潜技术为基础,而高强度固体浮力材料是现代深潜技术的重要组成部分之一,为水下装置提供尽可能大的净浮力,起到浮力补偿作用。欧、美、澳、日等国外企业如美国的Cumming corp.公司、澳大利亚Matrix公司、欧洲的Balmoral Offshore Engineering公司、Trelleborg Offshore公司、Marin Subsea Group公司等,所开发的浮力材料广泛应用于水下潜器。美国Emerson&Cuming公司研制了7000m载人潜水器用固体浮力材料,密度为0.56g/cm 3,能用于7000m水深。俄罗斯海洋技术研究所(IMTP)也研制出用于6000m水深自动潜水器用固体浮力材料,密度为0.70g/cm 3,耐压70MPa。在国内,海洋化工研究院已经形成从水面至水下7000m用固体浮力材料系列化产品,密度从0.35-0.56g/cm 3,耐压强度从8-66.8MPa,可应用于2000-7000m的深度。
国内外研制的高强度固体浮力材料大多由树脂基体系和轻质填料组成,是一种低密度、高强度、少吸水的固体物质,虽然现有技术中已经制备出一系列低密度浮力材料,但其抗压强度均不够高、安全系数低、不能满足深海用固体浮力材料对高抗压强度的需求。比如Ron Allum公司万米级别固体浮力材料安全系数为1.38,Trelleborg公司万米级别固体浮力材料安全系数为1.2,国内河南泛锐复合材料研究院万米级别固体浮力材料安全系数为1.1。
中国专利文献CN107474486A公开了一种固体浮力材料,其制备得到的固体浮力材料的密度为0.60-82g/cm 3,抗压强度为102MPa-120MPa,由于在其服役深度条件下密度太高,不能满足现有技术对固体浮力材料低密度的要求,另一方面它的抗压强度也不足以满足现有深海潜器高安全系数的要求。
中国专利文献CN102702679A公开了一种深潜用高强度固体浮力材料的制备方法,将空心玻璃微球采用振动组装的方法填充于模具中,经过振动振实,然后将混合好的低粘度环氧树脂用液体增压泵从成型模具的底部注入模具,固化得到固体浮力材料产品,但此过程过于 复杂,不适合规模化大量生产,并且其制备得到的固体浮力材料由于在注入环氧树脂后没有经过真空脱泡仍然会存在一定的缺陷,抗压强度只达到80-120MPa,其安全系数不足以满足万米深海应用的要求。
中国专利文献CN103483774A公开了一种高性能固体浮力材料,采用毫米级空心玻璃微球和微米级空心玻璃微球作为填充剂,得到密度为0.34-0.65g/cm 3,承压5-75MPa的固体浮力材料,实施例中制备得到的固体浮力材料密度为0.35g/cm 3,耐静水压为9.8MPa。但是上述制备得到的固体浮力材料的抗压强度不够高。
发明内容
本发明的目的在于针对现有技术低密度固体浮力材料抗压强度低,安全系数不高的现状,提供一种固体浮力材料及其制备方法和用途,本发明提供的固体浮力材料具有较低的密度和较高的抗压强度和安全系数,且吸水率低、服役时间长,所述固体浮力材料的制作方法简单,其适用于作为深海固体浮力材料使用。
为了实现上述发明目的,本发明提供以下技术方案:
一种固体浮力材料,所述固体浮力材料包括树脂、空心玻璃微球A和空心玻璃微球B,所述空心玻璃微球A和所述空心玻璃微球B的粒径范围为1-230微米,所述空心玻璃微球A和所述空心玻璃微球B的D 50值在25-70微米范围内,所述空心玻璃微球A和所述空心玻璃微球B的D 90值在50-140微米范围内;所述空心玻璃微球B的D 50值大于所述空心玻璃微球A的D 50值,和/或,所述空心玻璃微球B的D 90值大于所述空心玻璃微球A的D 90值。
根据本发明,所述空心玻璃微球A和空心玻璃微球B没有特别的限定,例如选自本领域已知的产品,示例性地,所述空心玻璃微球A和空心玻璃微球B的粒径在1-230微米的范围内呈正态分布,具体如图1-图3所示。
根据本发明,所述空心玻璃微球B的D 50值与所述空心玻璃微球A的D 50值的差值小于等于40微米。
根据本发明,所述空心玻璃微球B的D 50值与所述空心玻璃微球A的D 50值的差值小于等于30微米。
根据本发明,所述空心玻璃微球B的D 50值与所述空心玻璃微球A的D 50值的差值小于等于20微米,例如小于等于15微米,小于等于10微米。
根据本发明,所述空心玻璃微球B的D 90值与所述空心玻璃微球A的D 90值的差值小于等于70微米。
根据本发明,所述空心玻璃微球B的D 90值与所述空心玻璃微球A的D 90值的差值小于等于50微米。
根据本发明,所述空心玻璃微球B的D 90值与所述空心玻璃微球A的D 90值的差值小于等于 40微米,例如小于等于30微米,小于等于20微米,小于等于10微米。
示例性地,所述空心玻璃微球A和空心玻璃微球B的粒径范围为1-230微米,例如所述空心玻璃微球A和空心玻璃微球B的粒径为1微米、5微米、10微米、20微米、30微米、40微米、50微米、60微米、80微米、90微米、100微米、120微米、150微米、150微米、180微米、190微米、200微米、210微米、220微米、230微米。
示例性地,所述空心玻璃微球A和空心玻璃微球B的D 50值在25-70微米范围内,例如,所述空心玻璃微球A和空心玻璃微球B的D 50值为25微米、30微米、35微米、40微米、45微米、50微米、55微米、60微米、65微米、70微米。
示例性地,所述空心玻璃微球A和空心玻璃微球B的D 90值在50-140微米范围内,例如,所述空心玻璃微球A和空心玻璃微球B的D 90值为50微米、55微米、60微米、65微米、70微米、75微米、80微米、85微米、90微米、95微米、100微米、110微米、120微米、130微米、140微米、150微米。
根据本发明,所述空心玻璃微球A和所述空心玻璃微球B的质量比为3-12:1,如4-10:1,例如为3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1、11:1或12:1。
根据本发明,所述空心玻璃微球A和所述空心玻璃微球B的密度为0.2-0.5g/cm 3(例如为0.2g/cm 3、0.25g/cm 3、0.3g/cm 3、0.35g/cm 3、0.4g/cm 3、0.45g/cm 3或0.5g/cm 3),抗压强度(破损率为20%的等静压强度)为2-55MPa(例如为2MPa、5MPa、8MPa、10MPa、12MPa、15MPa、18MPa、20MPa、25MPa、30MPa、35MPa、40MPa、45MPa、50MPa或55MPa)。所述空心玻璃微球A和所述空心玻璃微球B是密度和抗压强度调节剂,对于降低固体浮力材料密度,改善固体浮力材料的力学性能和耐水压性能有很大的帮助。
根据本发明,所述空心玻璃微球B的抗压强度大于所述空心玻璃微球A的抗压强度。
根据本发明,所述空心玻璃微球B的密度大于所述空心玻璃微球A的密度。
根据本发明,所述树脂选自环氧树脂和/或聚氨酯,优选为环氧树脂。示例性地,所述环氧树脂选自4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯、3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯或双酚A型E51环氧树脂中的一种或者几种的混合物;当所述环氧树脂为上述具体原料中的两种或者三种时,各原料的优选质量比为:T:U=10:1-1:10;U:E=10:1-1:10;T:E=10:1-1:10;T:U:E=1-10:1-10:1-10,其中T为4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,U为3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯,E为双酚A型E51环氧树脂;本发明对所述环氧树脂的来源没有特殊要求,采用本领域技术人员所熟知来源的环氧树脂即可。
根据本发明,所述固体浮力材料由包含如下质量份的原料得到:
环氧树脂:100份;空心玻璃微球A和空心玻璃微球B:100-500份。
根据本发明,所述固体浮力材料由包含如下质量份的原料得到:
环氧树脂:100份;空心玻璃微球A和空心玻璃微球B:200-450份。
根据本发明,所述固体浮力材料由包含如下质量份的原料得到:
环氧树脂:100份;空心玻璃微球A和空心玻璃微球B:240-350份。
根据本发明,所述固体浮力材料由包含如下质量份的原料得到:
环氧树脂:100份;固化剂:100-600份;表面处理剂:1-10份;空心玻璃微球A和空心玻璃微球B:100-500份。
根据本发明,所述固体浮力材料,由包含如下质量份的原料得到:
环氧树脂:100份;固化剂:120-500份;表面处理剂:1.5-5份;空心玻璃微球A和空心玻璃微球B:200-450份。
根据本发明,所述固体浮力材料,由包含如下质量份的原料得到:
环氧树脂:100份;固化剂:150-480份;表面处理剂:2-3份;空心玻璃微球A和空心玻璃微球B:240-350份。
根据本发明,所述原料还包含如下质量份的组分:
稀释剂:0-300份;促进剂:0-10份;纤维状材料:0-5份。
根据本发明,所述原料还包含如下质量份的组分:
稀释剂:40-250份;促进剂:1.5-5份;纤维状材料:0-3份。
根据本发明,所述原料还包含如下质量份的组分:
稀释剂:100-220份;促进剂:2-3份;纤维状材料:0-2份。
示例性的,所述空心玻璃微球A和所述空心玻璃微球B的质量份为100份、120份、150份、180份、200份、220份、240份、250份、260份、270份、280份、290份、300份、320份、350份、380份、400份、420份、450份、480份或500份;
示例性地,所述固化剂的质量份为100份、120份、150份、180份、200份、220份、240份、250份、260份、270份、280份、290份、300份、320份、350份、380份、400份、420份、450份、480份、500份、550份、580份或600份;
示例性地,所述表面处理剂的质量份为1份、1.5份、2份、2.5份、3份、3.5份、4份、4.5份、5份、6份、7份、8份、9份或10份;
示例性地,所述稀释剂的质量份为0份、5份、10份、20份、30份、40份、50份、70份、80份、90份、100份、120份、150份、180份、200份、220份、240份、250份、260份、270份、280份、290份或300份;
示例性地,所述促进剂的质量份为0份、1份、1.5份、2份、2.5份、3份、3.5份、4份、4.5份、5份、6份、7份、8份、9份或10份;
示例性地,所述纤维状材料的质量份为0份、1份、1.5份、2份、2.5份、3份、3.5份、4 份、4.5份或5份。
根据本发明,所述促进剂为N,N-二甲基苄胺;本发明对所述促进剂的来源没有特殊要求,采用本领域技术人员所熟知来源的促进剂即可。
根据本发明,所述表面处理剂为硅烷偶联剂,例如为γ-氨丙基三乙氧基硅烷和/或γ-缩水甘油醚氧丙基三甲氧基硅烷;本发明对所述表面处理剂的来源没有特殊要求,采用本领域技术人员所熟知来源的表面处理剂即可。
根据本发明,所述固化剂为甲基六氢邻苯二甲酸酐和/或十二烯基丁二酸酐;固化剂具有较低的粘度(如小于等于1000cP,室温下)和较长的适用期,以保障混合物料具有良好工艺性和充足的可操作时间。本发明对所述固化剂的来源没有特殊要求,采用本领域技术人员所熟知来源的固化剂即可。
根据本发明,所述稀释剂为正丁基缩水甘油醚。
根据本发明,所述纤维状材料用于提升固体浮力材料的强度,所述纤维状材料的纤维长度为0.1-5mm。示例性地,所述纤维状材料选自玻璃纤维、碳纤维和凯夫拉纤维中的至少一种。所述纤维状材料还有助于改善固体浮力材料的耐压性能。
根据本发明,所述的固体浮力材料的密度为0.25-0.72g/cm 3,等静压破坏强度为12-199.2MPa,可用于1000-12450米水域深度,如适用于1000米、2000米、3000米、4000米、5000米、6000米、7000米、8000米、9000米、10000米、11000米、12000米、12450米深度的水域。
本发明还提供了上述固体浮力材料的制备方法,包括以下步骤:
1)将树脂和任选地稀释剂以及任选地纤维状材料在高速搅拌下混合,混合均匀后低速搅拌一段时间使其冷却至室温,得到混合物料;
2)将固化剂、任选地促进剂、表面处理剂和步骤1)的混合物料置于真空条件下,高速搅拌,得到真空预混料;
3)将空心玻璃微球A和空心玻璃微球B加入到步骤2)的真空预混料中,再次置于真空条件下,低速搅拌,得到真空混合物料;
4)将步骤3)的真空混合物料挤出并浇注到模具中,振动,真空脱泡,加热固化,制备得到所述固体浮力材料。
根据本发明,步骤1)中,所述的高速搅拌的转数为60-80r/min,所述的高速搅拌的时间为10min-2h。所述的低速搅拌的转数为10-50r/min,所述的低速搅拌的时间为20min-2h。
根据本发明,步骤2)中,所述的高速搅拌的转数为50-60r/min,所述的高速搅拌的时间为10min-1h;所述的真空条件的真空度为-0.08至-0.1MPa。
根据本发明,步骤3)中,所述的低速搅拌的转数为10-40r/min,所述的低速搅拌的时间 为20min-2h;所述的真空条件的真空度为-0.08至-0.1MPa。
根据本发明,步骤4)包括如下步骤:
将浇注后的模具置于振动平台上振动5-30min,然后放入真空成型箱中进行真空脱泡处理1-5min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出再次置于振动平台上振动,重复振动和真空脱泡处理的操作过程,直至真空混合物料表面没有明显气泡,随后进行加热固化处理;
根据本发明,步骤4)中,加热固化处理为预固化阶段温度60-90℃,保持2-4h,第一固化阶段100-140℃,保持3-6h,第二固化阶段150-180℃,保持3-6h,降温阶段速率控制在2-5℃/min。
根据本发明,所述制备方法包括如下步骤:
(1)将环氧树脂和任选地稀释剂以及任选地纤维状材料在高速搅拌混料机下充分混合,混合均匀后低速搅拌一段时间使其冷却至室温,得到混合物料;
(2)将固化剂、任选地促进剂、表面处理剂和步骤的(1)中混合物料置于真空搅拌机中,抽取真空,使真空搅拌机中的真空度达到-0.08至-0.1MPa,持续高速搅拌10min-2h,得到真空预混料;
(3)将空心玻璃微球A和空心玻璃微球B加入到真空搅拌机中,抽取真空,使真空搅拌机中的真空度达到-0.08至-0.1MPa,持续低速搅拌20min-2h,使得空心玻璃微球A和空心玻璃微球B和预混料充分混合,得到真空混合物料;
(4-1)利用高压挤出机将真空搅拌机中的真空混合物料挤出并浇注到经过脱模剂处理的模具中;
(4-2)将装有真空混合物料的模具置于振动平台上持续振动5-30min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中的真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复振动和真空脱泡处理的操作过程,直至物料表面没有明显气泡;
(4-3)将注有真空混合物料的模具置于鼓风干燥箱中,加热固化,并且在固化结束后,控制其降温速率,消除材料内部热应力;
(4-4)将固化产物从模具中取出,得到固体浮力材料的毛坯块;
(4-5)将固体浮力材料的毛坯块经数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
根据本发明,所述的固化剂、任选地促进剂和表面改性剂的添加顺序没有任何限制;所述稀释剂、空心玻璃微球A和空心玻璃微球B可以同时加入或者独立地等分为若干份后交替加入。所述稀释剂、空心玻璃微球A和空心玻璃微球B可以同时加入或者独立地等分为若干份后交替加入。
本发明还提供上述固体浮力材料的用途,其用于深海勘探领域或深海固体浮力材料使用,优选地,适用于1000-12450米深度的水域,如适用于1000米、2000米、3000米、4000米、5000米、6000米、7000米、8000米、9000米、10000米、11000米、12000米、12450米深度的水域。
本发明中,所述的“范围”是包括端点值的,例如所述的空心玻璃微球A和空心玻璃微球B的粒径范围为1-230微米,即所述的空心玻璃微球A和空心玻璃微球B的粒径可以为1微米,也可以为230微米;还例如所述的空心玻璃微球A和空心玻璃微球B的D 50值在25-70微米范围内,即所述的空心玻璃微球A和空心玻璃微球B的D 50值可以为25微米,也可以为70微米。
有益效果:
本发明提供了一种固体浮力材料及其制备方法和用途,所述固体浮力材料包括树脂、空心玻璃微球A和空心玻璃微球B。所述空心玻璃微球A和所述空心玻璃微球B是选用具有不同粒径分布、不同密度和不同强度的空心玻璃微球,所述空心玻璃微球A和所述空心玻璃微球B的加入能够提高树脂基体中空心玻璃微球的填充量,降低固体浮力材料密度,由于小粒径的高强度微球可以有效的分散大粒径空心玻璃微球承受的应力,使得所述固体浮力材料可以同时提升固体浮力材料耐水压的强度。
本发明所述固体浮力材料还包括固化剂、表面处理剂、促进剂,通过对环氧树脂,促进剂和固化剂的合适选择以及复配,在提供固体浮力材料足够的耐水压强度的同时,能够有效地改进固体浮力材料的抗湿热性能;并且通过添加纤维状材料,提高了固体浮力材料的耐压性能。
高强度固体浮力材料是现代深潜技术的重要组成部分之一,为水下装置提供尽可能大的净浮力,起到浮力补偿作用。本发明的固体浮力材料在保证低密度和优异的低吸水率情况下,等静压破坏强度得到大幅度提高(最高可达服役深度压力的1.6倍),提供更高的安全保障和更长的服役寿命。所述制备方法,操作简单,易于实施。
附图说明
图1空心玻璃微球TG45的光学显微镜照片和电子扫描照片;
图2空心玻璃微球TG20的粒径分布;
图3空心玻璃微球TG45的粒径分布;
图4实施例1中制备得到的固体浮力材料的扫描电子显微镜照片;
图5实施例2中制备得到的固体浮力材料的扫描电子显微镜照片;
图6实施例8中制备得到的固体浮力材料的破坏压力测试曲线。
具体实施方式
下文将结合具体实施例对本发明的制备方法做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
术语“D 50”是指颗粒累积分布为50%的粒径,也叫中位径或中值粒径,这是一个表示粒度大小的典型值,该值准确地将总体划分为二等份,也就是说有50%的颗粒超过此值,有50%的颗粒低于此值。
术语“D 90”是指颗粒累积分布为90%的粒径,这是一个表示粒度大小的典型值,即小于此粒径的颗粒体积含量占全部颗粒的90。
仪器和设备
下述实施例中的固体浮力材料的抗压强度的测试方法为参照ASTM D2736,在等静压测试机器上完成的。
下述实施例中的固体浮力材料的密度和吸水率的测试方法为参照MIL-S-24154的规定进行测试。
下述实施例中所述的份没有特别的定义时,均指质量份。
下述实施例中所述的空心玻璃微球均可购买,例如来自中国科学院理化技术研究所专利(CN 102583973 A)产品,具体参见如下表1所示,还可以选择其它产品型号及生产厂家。
表1空心玻璃微球型号及其性能
Figure PCTCN2019129432-appb-000001
对比例1(TG20)
称取25份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,25份3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯和50份双酚A型E51环氧树脂,200份稀释剂正丁基缩水甘油醚,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取520份固化剂十二烯基丁二酸酐,2份表面处理剂γ-氨丙基三乙氧基硅烷一起放入到真空搅拌机中,抽取真空,使得搅拌釜 中真空度达到-0.08至-0.1MPa,持续高速搅拌45min,得到真空预混料;将280份TG20空心玻璃微球加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌45min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动30min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度85℃,保持2h,第一固化阶段100℃,保持6h,第二固化阶段160℃,保持2h,并且在固化结束后,控制其降温速率,降温阶段速率控制在2℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.42g/cm 3,抗压强度为35MPa,安全系数为1.17,吸水率为0.21%(30MPa,24h),适用于服役深度3000m。
实施例1(TG20/TG30)
称取25份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,25份3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯和50份双酚A型E51环氧树脂,200份稀释剂正丁基缩水甘油醚,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取520份固化剂十二烯基丁二酸酐,2份表面处理剂γ-氨丙基三乙氧基硅烷一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌45min,得到真空预混料;将280份TG20空心玻璃微球和40份TG30空心玻璃微球加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌45min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动30min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度85℃,保持2h,第一固化阶段100℃,保持6h,第二固化阶段160℃,保持2h,并且在固化结束后,控制其降温速率,降温阶段速率控制在2℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料的电子扫描显微镜照片为如图4所示,可以看到空心玻璃微球致密堆积在树脂基体中,密度为0.4g/cm 3,抗压强度为47MPa,安全系数为1.57,吸 水率为0.19%(30MPa,24h),适用于服役深度3000m。同时可以看出相比只用TG20空心玻璃微球作为填充剂时得到的固体浮力材料密度有所下降,并且抗压强度和安全系数得到了极大的提升。
对比例2(TG30)
称取100份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,150份稀释剂正丁基缩水甘油醚和2份短切碳纤维,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取300份固化剂甲基六氢苯二甲酸酐,2份促进剂N,N-二甲基苄胺,2份表面处理剂γ-缩水甘油醚氧丙基三甲氧基硅烷与上述混合物一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌30min,得到真空预混料;将240份TG30空心玻璃微球一起加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌30min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动5min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度60℃,保持2h,第一固化阶段100℃,保持4h,第二固化阶段150℃,保持3h,并且在固化结束后,控制其降温速率,降温阶段速率控制在4℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.58g/cm 3,抗压强度为95MPa,安全系数为1.36,吸水率为0.1%(70MPa,24h),适用于服役深度7000m。
实施例2(TG30/TG40)
称取100份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,150份稀释剂正丁基缩水甘油醚和2份短切碳纤维,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取300份固化剂甲基六氢苯二甲酸酐,2份促进剂N,N-二甲基苄胺,2份表面处理剂γ-缩水甘油醚氧丙基三甲氧基硅烷与上述混合物一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌30min,得到真空预混料;将240份TG30空心玻璃微球和30份TG40空心玻璃微球一起加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌30min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动5min,然后放入真空成型箱中进行真空脱泡处理 3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度60℃,保持2h,第一固化阶段100℃,保持4h,第二固化阶段150℃,保持3h,并且在固化结束后,控制其降温速率,降温阶段速率控制在4℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料的光学显微镜照片如图5所示,密度为0.56g/cm 3,抗压强度为105MPa,安全系数为1.5,吸水率为0.1%(70MPa,24h),适用于服役深度7000m。相比于以TG30单独作为添加剂的时候,通过添加少量TG40与TG30混合复配制备的固体浮力材料其抗压强度发生明显变化,安全系数达到1.5,能够为水下潜器提供更加安全的保障。同时,其密度也发生了较为明显的降低,提高水下潜器的载重。
对比例3(TG35)
称取25份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯和75份3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯,100份稀释剂正丁基缩水甘油醚,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取240份固化剂甲基六氢苯二甲酸酐,2份促进剂N,N-二甲基苄胺,2份表面处理剂γ-缩水甘油醚氧丙基三甲氧基硅烷一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌30min,得到真空预混料;将240份TG35空心玻璃微球加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌30min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动5min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度90℃,保持2h,第一固化阶段132℃,保持4h,第二固化阶段175℃,保持6h,并且在固化结束后,控制其降温速率,降温阶段速率控制在3℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.64g/cm 3,抗压强度为143MPa,安全系数为1.3,吸水率为0.13%(110MPa,24h),适用于服役深度11000m。
实施例3(TG35/TG40)
称取25份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯和75份3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯,100份稀释剂正丁基缩水甘油醚,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取240份固化剂甲基六氢苯二甲酸酐,2份促进剂N,N-二甲基苄胺,2份表面处理剂γ-缩水甘油醚氧丙基三甲氧基硅烷一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌30min,得到真空预混料;将240份TG35空心玻璃微球和30份TG40空心玻璃微球加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌30min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动5min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度90℃,保持2h,第一固化阶段132℃,保持4h,第二固化阶段175℃,保持6h,并且在固化结束后,控制其降温速率,降温阶段速率控制在3℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.62g/cm 3,抗压强度为160MPa,安全系数为1.45,吸水率为0.13%(110MPa,24h),适用于服役深度11000m。
对比例4(TG35/TG35)
称取25份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯和75份3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯,100份稀释剂正丁基缩水甘油醚,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取240份固化剂甲基六氢苯二甲酸酐,2份促进剂N,N-二甲基苄胺,2份表面处理剂γ-缩水甘油醚氧丙基三甲氧基硅烷一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌30min,得到真空预混料;将240份TG35空心玻璃微球和30份TG35空心玻璃微球加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌30min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动5min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温 度90℃,保持2h,第一固化阶段132℃,保持4h,第二固化阶段175℃,保持6h,并且在固化结束后,控制其降温速率,降温阶段速率控制在3℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.60g/cm 3,抗压强度为115MPa,吸水率为5%(110MPa,24h),吸水率过高,不适用于服役深度11000m。
对比例5(TG40)
称取100份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,120份固化剂甲基六氢苯二甲酸酐,2份促进剂N,N-二甲基苄胺,2份表面处理剂γ-缩水甘油醚氧丙基三甲氧基硅烷一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌15min,得到真空预混料;将140份TG40空心玻璃微球加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌30min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动20min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度60℃,保持2h,第一固化阶段100℃,保持4h,第二固化阶段150℃,保持3h,并且在固化结束后,控制其降温速率,降温阶段速率控制在5℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.73g/cm 3,抗压强度为163MPa,安全系数为1.48,吸水率为0.25%(110MPa,24h),适用于服役深度11000m。
实施例4(TG40/TG50)
称取100份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,120份固化剂甲基六氢苯二甲酸酐,2份促进剂N,N-二甲基苄胺,2份表面处理剂γ-缩水甘油醚氧丙基三甲氧基硅烷一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌15min,得到真空预混料;将140份TG40空心玻璃微球和20份TG50空心玻璃微球加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌30min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动20min,然后 放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度60℃,保持2h,第一固化阶段100℃,保持4h,第二固化阶段150℃,保持3h,并且在固化结束后,控制其降温速率,降温阶段速率控制在5℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.72g/cm 3,抗压强度为199.2MPa,安全系数为1.60,吸水率为0.1%(124.5MPa,24h),适用于服役深度12450m。相比于以TG40单独作为添加剂的时候,通过添加少量TG50与TG40混合复配制备的固体浮力材料其抗压强度发生明显变化,安全系数达到1.6,能够为水下潜器提供更加安全的保障,服役深度也达到12450米。
实施例5(TG25/TG30)
称取50份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯和50份双酚A型E51环氧树脂,220份稀释剂正丁基缩水甘油醚和1.5份短切碳纤维,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取500份固化剂十二烯基丁二酸酐,2份表面处理剂γ-缩水甘油醚氧丙基三甲氧基硅烷一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌25min,得到真空预混料;将310份TG25空心玻璃微球和40份TG30空心玻璃微球加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌45min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动5min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度75℃,保持4h,第一固化阶段100℃,保持4h,第二固化阶段150℃,保持6h,并且在固化结束后,控制其降温速率,降温阶段速率控制在4℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.49g/cm 3,抗压强度为76MPa,安全系数为1.52,吸水率为0.27%(50MPa,24h),适用于服役深度5000m。
实施例6(TG20/TG25)
称取60份3,4-环氧环己基甲基3,4-环氧环己基甲酸酯和40份双酚A型E51环氧树脂,150份稀释剂正丁基缩水甘油醚和1份玻璃纤维,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取370份固化剂十二烯基丁二酸酐,2份表面处理剂γ-氨丙基三乙氧基硅烷一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌2h,得到真空预混料;将240份TG20空心玻璃微球和30份TG25空心玻璃微球加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌50min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动5min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度60℃,保持2h,第一固化阶段100℃,保持6h,第二固化阶段150℃,保持3h,并且在固化结束后,控制其降温速率,降温阶段速率控制在2℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.38g/cm 3,抗压强度为30MPa,安全系数为1.5,吸水率为0.1%(20MPa,24h),适用于服役深度2000m。
实施例7(TG25/TG30)
称取10份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,30份3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯和60份双酚A型E51环氧树脂,200份稀释剂正丁基缩水甘油醚,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取480份固化剂十二烯基丁二酸酐,2份表面处理剂γ-缩水甘油醚氧丙基三甲氧基硅烷一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌10min,得到真空预混料;将420份TG25空心玻璃微球和35份TG30空心玻璃微球加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌20min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动5min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度60℃,保持4h,第一固化阶段100℃,保持4h,第二固化阶段150℃,保持4h,并且在固化结束后,控制其降温速率,降温阶段速率控制在3℃/min;将填充有聚合物和填充剂的复合材 料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.45g/cm 3,抗压强度为59.2MPa,安全系数为1.48,吸水率为0.22%(40MPa,24h),适用于服役深度4000m。
实施例8(TG35/TG45)
称取90份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯和10份3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯,100份稀释剂正丁基缩水甘油醚,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取240份固化剂甲基六氢苯二甲酸酐,2份促进剂N,N-二甲基苄胺,2份表面处理剂γ-氨丙基三乙氧基硅烷一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌40min,得到真空预混料;将210份TG35空心玻璃微球和70份TG45空心玻璃微球加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌45min,使得填充剂和物料充分混合,得到真空混合物料;利用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动10min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度90℃,保持2h,第一固化阶段132℃,保持4h,第二固化阶段175℃,保持4h,并且在固化结束后,控制其降温速率,降温阶段速率控制在4℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.67g/cm 3,抗压强度为173.5MPa,其抗压强度测试曲线如图6所示,安全系数为1.58,吸水率为0.14%(110MPa,24h),适用于服役深度11000m。
实施例9(TG30/TG50)
称取100份4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,150份稀释剂正丁基缩水甘油醚和2份短切碳纤维,在高速搅拌混料机下充分混合,低速搅拌放置一段时间使其冷却至室温;称取300份固化剂甲基六氢苯二甲酸酐,2份促进剂N,N-二甲基苄胺,2份表面处理剂γ-缩水甘油醚氧丙基三甲氧基硅烷与上述混合物一起放入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续高速搅拌30min,得到真空预混料;将220份TG30空心玻璃微球和40份TG50空心玻璃微球一起加入到真空搅拌机中,抽取真空,使得搅拌釜中真空度达到-0.08至-0.1MPa,持续低速搅拌30min,使得填充剂和物料充分混合,得到真空混合物料;利 用高压挤出机将搅拌釜中的真空混合物料挤出浇注到经过脱模剂处理的模具中;将装有真空混合物料的模具置于振动平台上持续震动5min,然后放入真空成型箱中进行真空脱泡处理3min,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出置于振动平台上振动,重复上述振动-抽取真空的过程,直至物料表面没有明显气泡;将注有真空混合物料的模具置于鼓风干燥箱中,采用程序控温加热固化,固化温度和时间控制独立地为预固化阶段温度60℃,保持2h,第一固化阶段100℃,保持4h,第二固化阶段150℃,保持3h,并且在固化结束后,控制其降温速率,降温阶段速率控制在4℃/min;将填充有聚合物和填充剂的复合材料从模具中顶出,得到固体浮力材料毛坯块;将固体浮力材料经过数控车加工,去除表层,得到表面平整光滑的固体浮力材料。
按照上述方法制备的固体浮力材料密度为0.57g/cm 3,抗压强度为110MPa,安全系数为1.375,吸水率为0.13%(80MPa,24h),适用于服役深度8000m。
表2实施例和对比例制备得到的固体浮力材料的性能参数
Figure PCTCN2019129432-appb-000002
Figure PCTCN2019129432-appb-000003
注:T为4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,U为3,4-环氧环己基甲基3,4-环氧环己基甲酸酯,E为双酚A型E51环氧树脂;M为甲基六氢邻苯二甲酸酐,D为十二烯基丁二酸酐;稀释剂为正丁基缩水甘油醚。
通过上述实施例,可以发现当分别以不同D 50及D 90的空心玻璃微球进行相互复配时,可以有效的降低所得到的固体浮力材料的密度,同时还能提高固体浮力材料的破坏强度。例如,在TG20中复配一定量TG30,所得到的固体浮力材料的密度从0.42g/cm 3降到0.4g/cm 3,固体浮力材料的破坏强度从35MPa提高到47MPa;又例如,在TG35中加入一定量TG40,所得到的固体浮力材料的密度从0.64g/cm 3降到0.62g/cm 3,固体浮力材料的破坏强度从143MPa提高到160MPa,而相应的,在TG35中加入和TG40同样量的TG35,所得到的固体浮力材料的密度从0.64g/cm 3降到0.60g/cm 3,固体浮力材料的破坏强度从143MPa降低到115MPa。
其主要原因在于所述空心玻璃微球A和空心玻璃微球B是选用正态分布的空心玻璃微球以及合适的粒径分布,使得空心玻璃微球在树脂基体中能够达到最大密堆积,提高空心玻璃微球在树脂基体中的填充量,降低固体浮力材料密度。同时由于小粒径的高强度微球能够有效的分散大粒径中空微球承受的应力,使得所述固体浮力材料可以同时提升固体浮力材料耐水压的强度。并通过添加纤维状材料,提高了浮力材料的耐压性能。
本发明的固体浮力材料在密度和抗压强度上均得到改善,且具有较高的安全系数,能够适用于不同的服役深度;此外在同等服役深度情况下,相对于现有技术,本发明制备得到的固体浮力材料拥有更低的密度和更高破坏强度,能够进一步提高深海潜器的配重,提高其经济和科研效益,同时安全系数的提高能够保障深海潜器和下潜人员的安全。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种固体浮力材料,所述固体浮力材料包括树脂、空心玻璃微球A和空心玻璃微球B,所述空心玻璃微球A和所述空心玻璃微球B的粒径范围为1-230微米,所述空心玻璃微球A和所述空心玻璃微球B的D 50值在25-70微米范围内,所述空心玻璃微球A和所述空心玻璃微球B的D 90值在50-140微米范围内;所述空心玻璃微球B的D 50值大于所述空心玻璃微球A的D 50值,和/或,所述空心玻璃微球B的D 90值大于所述空心玻璃微球A的D 90值。
  2. 根据权利要求1所述的材料,其中,所述空心玻璃微球B的D 50值与所述空心玻璃微球A的D 50值的差值小于等于40微米;优选地,所述空心玻璃微球B的D 50值与所述空心玻璃微球A的D 50值的差值小于等于30微米;优选地,所述空心玻璃微球B的D 50值与所述空心玻璃微球A的D 50值的差值小于等于20微米。
    优选地,所述空心玻璃微球B的D 90值与所述空心玻璃微球A的D 90值的差值小于等于70微米;优选地,所述空心玻璃微球B的D 90值与所述空心玻璃微球A的D 90值的差值小于等于50微米;优选地,所述空心玻璃微球B的D 90值与所述空心玻璃微球A的D 90值的差值小于等于40微米,例如小于等于30微米。
    优选地,所述空心玻璃微球A和所述空心玻璃微球B的质量比为3-12:1,如4-10:1。
    优选地,所述空心玻璃微球A和所述空心玻璃微球B的密度为0.2-0.5g/cm 3,抗压强度为2-55MPa。
    优选地,所述空心玻璃微球B的抗压强度大于所述空心玻璃微球A的抗压强度。
    优选地,所述空心玻璃微球B的密度大于所述空心玻璃微球A的密度。
  3. 根据权利要求1或2所述的材料,其中,所述树脂选自环氧树脂和/或聚氨酯,优选为环氧树脂。示例性地,所述环氧树脂选自4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯、3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯或双酚A型E51环氧树脂中的一种或者几种的混合物;当所述环氧树脂为上述具体原料中的两种或者三种时,各原料的质量比为:T:U=10:1-1:10;U:E=10:1-1:10;T:E=10:1-1:10;T:U:E=1-10:1-10:1-10,其中T为4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯,U为3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯,E为双酚A型E51环氧树脂。
    优选地,所述固体浮力材料由包含如下质量份的原料得到:
    环氧树脂:100份;空心玻璃微球A和空心玻璃微球B:100-500份。
    优选地,所述固体浮力材料由包含如下质量份的原料得到:
    环氧树脂:100份;空心玻璃微球A和空心玻璃微球B:200-450份。
    优选地,所述固体浮力材料由包含如下质量份的原料得到:
    环氧树脂:100份;空心玻璃微球A和空心玻璃微球B:240-350份。
  4. 根据权利要求1-3任一项所述的材料,其中,所述固体浮力材料由包含如下质量份的原料得到:
    环氧树脂:100份;固化剂:100-600份;表面处理剂:1-10份;空心玻璃微球A和空心玻璃微球B:100-500份。
    优选地,所述固体浮力材料,由包含如下质量份的原料得到:
    环氧树脂:100份;固化剂:120-500份;表面处理剂:1.5-5份;空心玻璃微球A和空心玻璃微球B:200-450份。
    优选地,所述固体浮力材料,由包含如下质量份的原料得到:
    环氧树脂:100份;固化剂:150-480份;表面处理剂:2-3份;空心玻璃微球A和空心玻璃微球B:240-350份。
  5. 根据权利要求3或4所述的材料,其中,所述原料还包含如下质量份的组分:
    稀释剂:0-300份;促进剂:0-10份;纤维状材料:0-5份。
    优选地,所述原料还包含如下质量份的组分:
    稀释剂:40-250份;促进剂:1.5-5份;纤维状材料:0-3份。
    优选地,所述原料还包含如下质量份的组分:
    稀释剂:100-220份;促进剂:2-3份;纤维状材料:0-2份。
    优选地,所述的固体浮力材料的密度为0.25-0.72g/cm 3,等静压破坏强度为12-199.2MPa。
  6. 权利要求1-5任一项所述的固体浮力材料的制备方法,包括以下步骤:
    1)将树脂和任选地稀释剂以及任选地纤维状材料混合,搅拌一段时间;
    2)将固化剂、任选地促进剂、表面处理剂和步骤1)中得到物料置于真空条件下,搅拌,得到真空预混料;
    3)将空心玻璃微球A和空心玻璃微球B加入到步骤2)的真空预混料中,再次置于真空条件下,搅拌,得到真空混合物料;
    4)将步骤3)的真空混合物料挤出并浇注到模具中,加热固化,制备得到所述固体浮力材料。
  7. 根据权利要求6所述的制备方法,其中,步骤1)中,将树脂和任选地稀释剂以及任选地纤维状材料在高速搅拌下混合,所述高速搅拌的转数为60-80r/min,混合均匀后低速搅拌一段时间使其冷却至室温,所述低速搅拌的转数为10-50r/min。
    优选地,步骤2)中,所述搅拌的转数为50-60r/min;所述真空条件的真空度为-0.08至-0.1MPa。
    优选地,步骤3)中,所述搅拌的转数为10-40r/min;所述的真空条件的真空度为-0.08至-0.1MPa。
  8. 根据权利要求6或7所述的制备方法,其中,步骤4)包括如下步骤:将浇注后的模具置于振动平台上振动,然后放入真空成型箱中进行真空脱泡处理,真空成型箱中真空度达到-0.08至-0.1MPa,随后取出,优选再次置于振动平台上振动,重复振动和真空脱泡处理的操作过程,直至真空混合物料表面没有明显气泡,随后进行加热固化处理。
  9. 根据权利要求6-8任一项所述的制备方法,其中,步骤4)中,加热固化处理分为三个阶段进行:预固化阶段温度为60-90℃,第一固化阶段温度为100-140℃,第二固化阶段温度为150-180℃;优选的,降温阶段速率控制在2-5℃/min。
  10. 权利要求1-5任一项所述的固体浮力材料的用途,其用于深海勘探或用作深海固体浮力材料,优选地,适用于1000-12450米深度的水域。
PCT/CN2019/129432 2018-12-29 2019-12-27 一种固体浮力材料及其制备方法和用途 WO2020135779A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811636758.9 2018-12-29
CN201811636758.9A CN111378244B (zh) 2018-12-29 2018-12-29 一种固体浮力材料及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2020135779A1 true WO2020135779A1 (zh) 2020-07-02

Family

ID=71128848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129432 WO2020135779A1 (zh) 2018-12-29 2019-12-27 一种固体浮力材料及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN111378244B (zh)
WO (1) WO2020135779A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112920554A (zh) * 2021-04-07 2021-06-08 国网内蒙古东部电力有限公司呼伦贝尔供电公司 一种增韧型环氧树脂隔声材料及其制备方法
CN113402849A (zh) * 2021-07-05 2021-09-17 安徽凯盛基础材料科技有限公司 一种超高强低密全海深固体浮力材料及其制备方法
CN114644809A (zh) * 2020-12-17 2022-06-21 财团法人金属工业研究发展中心 浮力材料的组合物、浮力材料及其制造方法
CN116200004A (zh) * 2022-12-28 2023-06-02 哈尔滨工程大学 大孔径碳纤维圆管浮力材料结构及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073806A (zh) * 2021-03-14 2022-09-20 蓝金长 一种复合空心球及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250278A1 (fr) * 1986-05-16 1987-12-23 Institut Français du Pétrole Nouveau matériau de remplissage et de flottabilité-procédé de fabrication et ensembles tubulaires incorporant ce matériau
CN102775727A (zh) * 2011-05-09 2012-11-14 海洋化工研究院 一种阻燃固体浮力材料及其制备方法
DE202013104909U1 (de) * 2013-11-03 2013-11-14 Sascha Fechner Druckfeste und reversibel formbare Leichtmasse
CN103483773A (zh) * 2013-09-24 2014-01-01 滕州市华海新型保温材料有限公司 一种深海用固体浮力材料及其制作方法
CN103483774A (zh) * 2013-09-24 2014-01-01 滕州市华海新型保温材料有限公司 一种高性能固体浮力材料及其制备方法
CN106832791A (zh) * 2015-12-05 2017-06-13 青岛纵横农业科技有限公司 一种低密度高强度结构泡沫材料制备方法
CN108891042A (zh) * 2018-06-27 2018-11-27 巩义市泛锐熠辉复合材料有限公司 一种可加工固体浮力材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849350A (en) * 1973-06-06 1974-11-19 Atomic Energy Commission Process of making low density syntactic foams
CN104072950A (zh) * 2014-07-17 2014-10-01 天津中材工程研究中心有限公司 一种常温固化的固体浮力材料的原料配方及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250278A1 (fr) * 1986-05-16 1987-12-23 Institut Français du Pétrole Nouveau matériau de remplissage et de flottabilité-procédé de fabrication et ensembles tubulaires incorporant ce matériau
CN102775727A (zh) * 2011-05-09 2012-11-14 海洋化工研究院 一种阻燃固体浮力材料及其制备方法
CN103483773A (zh) * 2013-09-24 2014-01-01 滕州市华海新型保温材料有限公司 一种深海用固体浮力材料及其制作方法
CN103483774A (zh) * 2013-09-24 2014-01-01 滕州市华海新型保温材料有限公司 一种高性能固体浮力材料及其制备方法
DE202013104909U1 (de) * 2013-11-03 2013-11-14 Sascha Fechner Druckfeste und reversibel formbare Leichtmasse
CN106832791A (zh) * 2015-12-05 2017-06-13 青岛纵横农业科技有限公司 一种低密度高强度结构泡沫材料制备方法
CN108891042A (zh) * 2018-06-27 2018-11-27 巩义市泛锐熠辉复合材料有限公司 一种可加工固体浮力材料的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644809A (zh) * 2020-12-17 2022-06-21 财团法人金属工业研究发展中心 浮力材料的组合物、浮力材料及其制造方法
CN112920554A (zh) * 2021-04-07 2021-06-08 国网内蒙古东部电力有限公司呼伦贝尔供电公司 一种增韧型环氧树脂隔声材料及其制备方法
CN113402849A (zh) * 2021-07-05 2021-09-17 安徽凯盛基础材料科技有限公司 一种超高强低密全海深固体浮力材料及其制备方法
CN116200004A (zh) * 2022-12-28 2023-06-02 哈尔滨工程大学 大孔径碳纤维圆管浮力材料结构及其制备方法
CN116200004B (zh) * 2022-12-28 2023-12-15 哈尔滨工程大学 大孔径碳纤维圆管浮力材料结构及其制备方法

Also Published As

Publication number Publication date
CN111378244B (zh) 2022-02-01
CN111378244A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2020135779A1 (zh) 一种固体浮力材料及其制备方法和用途
CN100378166C (zh) 深海用可加工固体浮力材料及其制备方法
CN101824206B (zh) 一种超高强浮力材料及其制备方法
US20170266882A1 (en) Method for manufacturing composite product from chopped fiber reinforced thermosetting resin by 3d printing
CN102702679A (zh) 一种深潜用高强固体浮力材料的制备方法
CN110628180B (zh) 一种固体浮力材料及其制备方法
CN109651764A (zh) 一种微珠复配的固体浮力材料及其制备方法
CN105538738B (zh) 一种碳纤维复合材料管制造工艺及碳纤维复合材料管
CN101735566B (zh) 可加工全海深浮力材料及制造方法
CN105542219B (zh) 一种轻质高强复合空心球的制备方法
CN106633645A (zh) 一种碳纤维增强高强轻质复合材料及其制备方法
CN101709130A (zh) 超低密度固体浮力材料及制作方法
CN103483774A (zh) 一种高性能固体浮力材料及其制备方法
CN110698815B (zh) 一种高强度固体浮力材料及其制备方法
CN102936395A (zh) 一种制造高强度固体浮力材料的方法
CN114605697B (zh) 一种低密度高强度浮力材料及其制备方法
CN107383665A (zh) 一种低水率固体浮力材料及其制备方法
CN110105665A (zh) 一种热固/热塑共聚型复合泡沫及其制备方法和应用
CN104448719B (zh) 有机与无机空心微球复配的深水浮力材料及制备方法
CN108891042B (zh) 一种可加工固体浮力材料的制备方法
CN113402851B (zh) 一种水下用异形构件及其制备方法
CN106832791A (zh) 一种低密度高强度结构泡沫材料制备方法
CN105778420B (zh) 一种环氧树脂基复合材料及其制备方法
CN1420813A (zh) 玻璃纤维增强塑料管的离心制造方法
CN105985610A (zh) 一种固体浮力材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901501

Country of ref document: EP

Kind code of ref document: A1