WO2020135133A1 - 洗衣机 - Google Patents

洗衣机 Download PDF

Info

Publication number
WO2020135133A1
WO2020135133A1 PCT/CN2019/125744 CN2019125744W WO2020135133A1 WO 2020135133 A1 WO2020135133 A1 WO 2020135133A1 CN 2019125744 W CN2019125744 W CN 2019125744W WO 2020135133 A1 WO2020135133 A1 WO 2020135133A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
water supply
water
washing machine
electrode
Prior art date
Application number
PCT/CN2019/125744
Other languages
English (en)
French (fr)
Inventor
森大树
野吕胜
松下丈也
Original Assignee
青岛海尔洗衣机有限公司
Aqua株式会社
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, Aqua株式会社, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Priority to CN201980081753.0A priority Critical patent/CN113167003B/zh
Publication of WO2020135133A1 publication Critical patent/WO2020135133A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements

Definitions

  • the present invention relates to a washing machine that performs, for example, a washing process, a rinsing process, and a dehydration process.
  • washing machine that does not have a drying function, which automatically performs from a washing process to a rinsing process and a dehydration process
  • a washing machine having a drying function which automatically performs from a washing process to a rinsing process , Dehydration process and drying process.
  • a washing machine that performs sterilization and rinsing includes a water supply path for normal water supply to the drum, an ozone water supply path for ozone water supply to the drum, and an ozone generating device that generates ozone in the ozone water supply path.
  • the ozone generating device has an ozone electrode for electrolyzing water in the ozone water supply path, and generates ozone by energizing the ozone electrode. Therefore, after the ozone generated by the ozone generating device is dissolved in the water in the ozone water supply path, it is supplied to the drum as ozone water.
  • FIG. 16 shows the solubility of oxygen and ozone in pure water (cited from the literature: Table 1-6 of the actual use of ozone in the environmental field (Medical and Environmental Ozone Research Society, Supplement 3, 2007)).
  • the solubility of ozone is 1.124 g/L when the water temperature is 0°C, whereas it is 0.613g/L when the water temperature is 25°C. Therefore, it can be seen that ozone is not easily soluble in water when the water temperature is 25°C as compared with the case where the water temperature is 0°C.
  • a predetermined concentration of ozone water is required in the drum.
  • the ozone electrode is energized.
  • the concentration of ozone water supplied into the drum becomes high, and the energization time of the ozone electrode is short.
  • the concentration of ozone water supplied into the drum becomes low, and the energization time of the ozone electrode becomes long.
  • the ozone water supply circuit is used instead of the ordinary water supply circuit when energizing the ozone electrode during the sterilization and rinsing process, in order to control the amount of water supplied to the ozone electrode within a certain range, the ozone water supply channel and the ordinary water supply channel Water supply is low. Therefore, since it takes a long time for the water level of the ozone water supplied into the drum to reach the ozone rinsing set water level, the energization time of the ozone electrode becomes long, and the durability of the ozone electrode as a consumable is problematic.
  • the current washing machine sets the energization time of the ozone electrode to be constant regardless of the water supply temperature, when the water supply temperature is low, the energization time of the ozone electrode is set to exceed the required time. As a result, there is a problem that the energization time of the ozone electrode becomes long, resulting in deterioration of the durability of the ozone electrode, an increase in the number of replacements, and an increase in maintenance costs.
  • the door of the washing machine is locked so that it cannot be opened.
  • the ozone concentration in the drum may exceed the required concentration. Therefore, even when the ozone concentration in the drum after the sterilization and rinsing in the washing machine is high, it is necessary to set the door lock time to be long to sufficiently reduce the ozone concentration in the drum.
  • the existing washing machine sets the door lock time to be constant regardless of the water supply temperature, the door lock time is set to exceed the required time.
  • the durability of the ozone electrode deteriorates due to the longer energization time of the ozone electrode.
  • Patent Document 1 Japanese Patent Laid-Open No. 2018-33512
  • An object of the present invention is to provide a washing machine that can improve the durability of ozone electrodes in a washing machine that performs sterilization and rinsing.
  • a concentration detection device that detects the concentration of ozone water is very expensive and increases the manufacturing cost of the washing machine, so it is difficult to install the concentration detection device in the washing machine.
  • the inventors of the present invention found that, even without directly detecting the concentration of ozone water supplied into the drum, the concentration of ozone water supplied into the drum can be estimated from the water supply temperature and the solubility of ozone at the water supply temperature. This shortens the energizing time of the ozone electrode during the sterilization and rinsing process or reduces the current value of the ozone electrode.
  • the washing machine of the present invention is characterized by comprising: a water supply path for general water supply to the drum arranged in the main body of the washing machine; an ozone water supply path for supplying ozone water to the drum; and an ozone electrode Ozone is generated in the ozone water supply path; the water supply temperature sensor detects the temperature of the water supplied to the drum; and the control unit, in the sterilization and rinsing process of rinsing in a state where ozone water is supplied from the ozone water supply path, according to The water supply temperature detected by the water supply temperature sensor controls at least one of the ozone water supply valve and the ozone electrode provided in the ozone water supply path.
  • the control unit controls such that the lower the water supply temperature detected by the water supply temperature sensor, the shorter the energization time of the ozone electrode.
  • the ozone electrode controls such that the lower the water supply temperature detected by the water supply temperature sensor, the shorter the energization time of the ozone electrode.
  • the control unit is such that the lower the water supply temperature detected by the water supply temperature sensor, the greater the amount of water supplied to the ozone electrode Control the ozone water supply valve.
  • the control unit supplies the ozone water supply path into the drum from the ozone water supply path during the sterilization and rinsing process so that the lower the water supply temperature detected by the water supply temperature sensor
  • the ozone water supply valve is controlled in a way that the amount of ozone water supply is smaller.
  • the control unit makes the lower the water supply temperature detected by the water supply temperature sensor, the smaller the current value energized to the ozone electrode Way to control the ozone electrode.
  • the washing machine of the present invention is provided with a plurality of the ozone electrodes, and the control unit makes the plurality of ozone the lower the water supply temperature detected by the water supply temperature sensor during the sterilization and rinsing process
  • the plurality of ozone electrodes are controlled in such a way that the number of the ozone electrodes that are energized is smaller.
  • the concentration of ozone water supplied to the drum is estimated based on the water supply temperature, and at least one of the ozone water supply valve and the ozone electrode provided in the ozone water supply path is controlled.
  • the invention can improve the durability of the ozone electrode, shorten the water supply time in the sterilization and rinsing process, shorten the ozone elimination time when the error occurs, and keep the sterilization performance in the sterilization and rinsing process above a certain level.
  • the energization time of the ozone electrode is controlled according to the temperature of the water supply, whereby the energization time of the ozone electrode can be shortened compared to the conventional washing machine.
  • the amount of water supplied to the ozone electrode is controlled according to the temperature control of the water supply, whereby the energization time of the ozone electrode can be shortened compared to the existing washing machine.
  • the amount of ozone water supplied to the drum from the ozone water supply path is controlled according to the water supply temperature, thereby enabling the energization time of the ozone electrode to be shortened compared to the conventional washing machine.
  • the current value energized to the ozone electrode is controlled according to the temperature of the water supply, whereby the energization load of the ozone electrode can be reduced compared to the existing washing machine.
  • the number of ozone electrodes to be energized among the plurality of ozone electrodes is controlled according to the water supply temperature, whereby the energization time of the ozone electrode can be shortened compared to the existing washing machine.
  • FIG. 1 is a side cross-sectional view showing the structure of the washing machine 1 according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of the washing machine 1 of FIG. 1.
  • FIG. 3 is a diagram showing the configuration of the ozone generating device of FIG. 1.
  • FIG. 4 is a control block diagram of the washing machine 1 of FIG. 1.
  • FIG. 5 is a diagram showing the energization time of the ozone electrode corresponding to the water supply temperature.
  • FIG. 6 is a diagram showing the operation of the washing mode of the washing machine 1 of FIG. 1.
  • FIG. 7 is a flowchart of ozone rinsing control of the washing machine 1 of FIG. 1.
  • FIG. 8 is a diagram showing the amount of ozone water channel water supply corresponding to the water supply temperature in the washing machine according to the second embodiment of the present invention.
  • FIG. 9 is a flowchart of ozone rinsing control of the washing machine of FIG. 8.
  • FIG. 10 is a diagram of the ozone rinse setting water level corresponding to the water supply temperature in the washing machine according to the third embodiment of the present invention.
  • FIG. 11 is a flowchart of ozone rinsing control of the washing machine of FIG. 10.
  • FIG. 12 is a graph showing the ozone electrode current value corresponding to the water supply temperature in the washing machine according to the fourth embodiment of the present invention.
  • FIG. 13 is a flowchart of ozone rinsing control of the washing machine of FIG. 12.
  • FIG. 14 is a diagram showing the number of ozone electrodes corresponding to the water supply temperature in the washing machine according to the fifth embodiment of the present invention.
  • FIG. 15 is a flowchart of ozone rinsing control of the washing machine of FIG. 14.
  • Fig. 16 is a graph showing the solubility of ozone in water.
  • washing machine 10: washing machine main body; 22: drum; 51: water supply path; 52: ozone water supply path; 52a: ozone water supply valve; 63: ozone electrode; 80: control unit (control unit); 85: water supply temperature sensor.
  • the washing machine 1 is a drum-type washing machine, and includes a washing machine main body 10 that constitutes a cabinet.
  • the front surface 10a of the washing machine body 10 is inclined from the central portion to the upper portion, and the laundry inlet 11 is formed on the inclined surface.
  • the entrance 11 is covered by a door 12 that can be opened and closed freely.
  • the outer tub 20 is elastically supported by a plurality of shock absorbers 21.
  • a drum 22 is rotatably arranged inside the outer cylinder 20.
  • the outer cylinder 20 and the drum 22 are inclined with respect to the horizontal direction so that the rear surface side becomes lower. Thereby, the drum 22 rotates around the rotation axis extending in the direction inclined with respect to the horizontal direction.
  • a number of dehydration holes 22b are formed in the peripheral wall of the drum 22.
  • three lifting ribs 23 are provided at substantially equal intervals in the circumferential direction.
  • a rotary wing 24 is rotatably arranged.
  • the rotary wing 24 has a substantially disc shape.
  • the rotor 24 rotates coaxially with the drum 22.
  • a motor 30 that generates torque that drives the drum 22 and the rotary blade 24 is arranged.
  • the washing machine 1 includes a water supply path 51 for performing general water supply to the drum 22 in the outer tub 20, an ozone water supply path 52 branching from the water supply path 51, and a hot water supply tub for the outer tub 20
  • the water supply path 51, the hot water supply path 53, the softener supply path 55, and the detergent supply path 56 are connected to the water collection inlet 57 provided above the outer cylinder 20, and the ozone water supply path 52 is connected to the upper portion of the outer cylinder 20 to drain
  • the road 54 is connected below the outer cylinder 20. Near the upper end of the outer cylinder 20, an overflow passage 58 for discharging water exceeding the upper limit of the water level is provided.
  • a water supply temperature sensor 85 that detects the temperature of the water supplied into the drum 22 is arranged in the centralized introduction part 57. In this embodiment, the water supply temperature sensor 85 detects the water temperature during normal water supply, and the water temperature detected during normal water supply is used to indirectly detect the water temperature for ozone water supply.
  • the washing machine 1 can implement a cleaning process, a rinsing process, a sterilization rinsing process, a dehydration process, and the like. Therefore, in the washing machine 1, by normally opening and closing the water supply valve 51a, the ozone water supply valve 52a, the hot water supply valve 53a, and the drain valve 54a, which are valves of the respective supply and exhaust systems, general water supply, ozone water supply, hot water supply, drain. Upstream of the water supply valve 51a and the hot water supply valve 53a, water supply strainers 51b and 53b are arranged, respectively.
  • An exhaust passage 60 is connected near the upper end of the outer cylinder 20, and the air and ozone in the drum 22 are discharged to the outside of the machine through the exhaust passage 60.
  • Activated carbon 60a is arranged in the exhaust passage 60, and the gas passing through the exhaust passage 60 is discharged outside the machine after passing through the activated carbon 60a. Therefore, part of the ozone passing through the exhaust passage 60 is consumed by the activated carbon 60a.
  • the washing machine 1 can perform a process of supplying ozone water to the drum 22 and rinsing the laundry with the ozone water (so-called sterilization rinsing). Therefore, an ozone generating device 61 that generates ozone is arranged in the ozone water supply path 52 for supplying ozone water into the drum 22.
  • the ozone generating device 61 includes an ozone electrode 63 that is disposed in an ozone generating region 62 that is provided substantially horizontally in a part of the ozone water supply path 52.
  • three ozone electrodes 63a, 63b, and 63c are arranged as the ozone electrode 63.
  • three ozone electrodes 63a, 63b, and 63c are passed in series to generate ozone by electrolysis of water.
  • a first connecting portion 62a extending upward is formed on the upstream side, and a second connecting portion 62b extending downward is formed on the downstream side. Therefore, by energizing the ozone electrode 63, water in contact with the surface of the ozone electrode 63 is decomposed to generate ozone gas, and the ozone gas is dissolved in the water to become ozone water.
  • FIG. 4 is a control block diagram of the washing machine 1 of this embodiment.
  • the control unit 80 of the washing machine 1 is composed of, for example, a microcomputer and the like, and includes a CPU, a ROM that stores a program that controls the operation of the washing machine 1, and a RAM that temporarily stores data and the like used to execute the above-mentioned program. The operation of the washing machine 1 is controlled by the control unit 80.
  • the control unit 80 has an appropriate value determination unit 80a.
  • the control unit 80 is connected to an operation unit 81, a motor 30, a water supply valve 51a, a drain valve 54a, an ozone water supply valve 52a, an ozone generating device 61, and a door lock device 82.
  • the appropriate value determination unit 80a determines the energization time to the ozone electrode 63 based on the water supply temperature as an appropriate value when ozone is generated during the sterilization and rinsing process. Specifically, as shown in FIG. 5, when the water supply temperature T p is lower than T p1 °C, the appropriate value determination unit 80a sets the energization time of the ozone electrode 63 to T 1 , and the water supply temperature T p is T p1 °C When the temperature is above and below T p2 °C, the appropriate value determination unit sets the energization time of the ozone electrode 63 as T 2.
  • the appropriate value determination unit sets the ozone electrode 63
  • the power-on time is set at T 3 .
  • the appropriate value determination unit 80a sets the energization time of the ozone electrode 63 to a short time .
  • the appropriate value determination unit 80a sets the energization time of the ozone electrode 63 to be long time. Therefore, when the water supply temperature is low, the energization time of the ozone electrode 63 can be shortened.
  • ozone water in the drum 22 needs to have a predetermined concentration or more.
  • the concentration of the ozone water that needs to be supplied until the ozone water reaches the ozone rinsing set water level in the drum 22 needs to be the following concentration: After the water supply is performed until the ordinary water reaches the prescribed water level in the drum 22, the ozone water in the drum 22 The concentration reaches above the specified concentration.
  • the operation section 81 includes a sterilization rinse button 81a for performing sterilization rinse.
  • the operation unit 81 outputs the input signal corresponding to the button operated by the user to the control unit 80.
  • the control unit 80 controls the rotation speed of the drum 22 by controlling the motor 30.
  • the control unit 80 controls the water supply valve 51 a and the drain valve 54 a to supply water to the outer cylinder 20 and drain water from the outer cylinder 20.
  • the control unit 80 controls the ozone water supply valve 52a and the ozone generating device 61 to supply ozone water from the ozone water supply path 52 into the drum 22 when performing sterilization and rinsing.
  • the control unit 80 controls the door lock device 82 that switches the door 12 to the locked state or the unlocked state, thereby locking and unlocking the door 12.
  • the washing machine 1 has, for example, a washing process, a rinsing process, and a spin-drying process, and can operate in a washing mode without a drying process. It should be noted that in this embodiment, the following will be described: Before the end of the cleaning process, the user presses the sterilization and rinsing button 81a of the operation section 81 and puts in a predetermined amount to perform sterilization and rinsing using ozone water process.
  • step S1 first, the user opens the door 12, puts laundry in the drum 22, and closes the door 12.
  • the control section 80 opens the water supply valve 51a for supplying ordinary washing water, and supplies ordinary water to the drum 22.
  • the control unit 80 closes the drain valve 54a, and the supplied water is stored in the outer cylinder 20 and the drum 22.
  • the control unit 80 closes the water supply valve 51a, drives (turns on) the motor 30, and rotates the drum 22.
  • the control unit 80 opens the drain valve 54a, and the washing water in the drum 22 is discharged to the outside of the machine body through the drain passage 54. After draining water, the control unit 80 rotates the drum 22 at a high speed by the motor 30 to perform intermediate dehydration to remove the washing water contained in the laundry. The washing water removed from the laundry by intermediate dehydration is discharged into the drum 22 and is discharged to the outside of the machine body through the drain 54.
  • step S2 When the washing process in step S1 ends, a rinsing process is performed in step S2.
  • the control section 80 closes the drain valve 54a, opens the water supply valve 51a for supplying ordinary washing water, and supplies a predetermined amount of rinsing water to the drum 22. Then, when a predetermined amount of water is supplied, the control unit 80 closes the water supply valve 51a, rotates the drum 22 by the motor 30, and rinses the laundry in the drum 22 for a predetermined time.
  • the control unit 80 opens the drain valve 54 a and discharges the rinsing water in the drum 22 to the outside of the machine body through the drain 54.
  • intermediate dehydration is performed by the same dehydration operation as described above to remove the rinse water contained in the laundry.
  • the removed rinse water is also drained to the outside of the machine body through the drain 54 as described above.
  • step S3 a sterilization rinsing process is performed in step S3.
  • the control unit 80 closes the drain valve 54a, opens the ozone water supply valve 52a, and supplies ozone water to the drum 22 via the ozone water supply path 52. Then, the control unit 80 closes the ozone water supply valve 52a, stops the supply of ozone water, opens the water supply valve 51a for supplying ordinary water, and supplies the ordinary water to the drum 22 as rinsing water.
  • the control unit 80 rotates the drum 22 by the motor 30, and performs sterilization and rinsing of the laundry in the drum 22 using ozone water for a predetermined time.
  • the control unit 80 opens the drain valve 54 a and discharges the rinsing water in the drum 22 to the outside of the machine body through the drain 54.
  • step S4 When the sterilization and rinsing process in step S3 ends, a dehydration process is performed in step S4.
  • the control unit 80 increases the rotation speed of the drum 22 to the target rotation speed, and when the target rotation speed is reached, the dehydration operation is performed until a predetermined dehydration time passes.
  • the control unit 80 stops the rotation of the drum 22 and ends the operation in the washing mode. The water removed during the dehydration process is also discharged to the outside of the machine body via the drain 54 as described above.
  • step S101 when the sterilization and rinsing process starts, the control unit 80 opens the ozone water supply valve 52a, and starts the energization of the ozone electrode 63, and starts to supply ozone water to the drum 22 via the ozone water supply path 52.
  • step S102 the control unit 80 detects the water supply temperature by the water supply temperature sensor 85.
  • the control unit 80 detects the water supply temperature T p which is the temperature of the water supplied to the ozone electrode 63 disposed in the ozone water supply path 52.
  • step S103 the control unit 80 determines whether the water supply temperature is lower than Tp1 °C.
  • step S104 the control unit 80 sets the energization time of the ozone electrode 63 to T 1 and proceeds to step S108.
  • step S103 When the control unit 80 determines that the water supply temperature is T p1 °C or higher in step S103, the process proceeds to step S105, and the control unit 80 determines whether the water supply temperature is lower than T p2 °C.
  • step S106 the control unit 80 sets the energization time of the ozone electrode 63 to T 2 and proceeds to step S108.
  • step S106 the control unit 80 determines that the water temperature is T P2 deg.] C or more, the process proceeds to step S108, the control unit 80 to the ozone electrode 63 energizing time as T 3, proceeds to step S108.
  • step S108 the control unit 80 determines whether the water level of the ozone water supplied into the drum 22 has reached the ozone rinsing set water level.
  • the process proceeds to step S102.
  • step S105 when the control unit 80 determines that the water level of the ozone water supplied to the drum 22 has reached the ozone rinsing set water level, in step S109, the control unit 80 closes the ozone water supply valve 52a and stops the energization of the ozone electrode 63 To stop the supply of ozone water.
  • step S110 the control unit 80 opens the water supply valve 51a, and supplies ordinary water until the amount of water in the drum 22 reaches a predetermined water level.
  • step S111 the control unit 80 rotates the drum 22 by the motor 30, and performs sterilization and rinsing of the laundry in the drum 22 with ozone water.
  • step S112 the control unit 80 opens the drain valve 54a, discharges the rinsing water, and ends the sterilization and rinsing process.
  • the washing machine 1 of the present embodiment includes: a water supply path 51 for general water supply to the drum 22 disposed in the washing machine body 10; an ozone water supply path 52 for water supply of ozone water to the drum 22; an ozone electrode 63 for ozone Ozone is generated in the water supply path 52; the water supply temperature sensor 85 detects the temperature of the water supplied to the drum 22; and the control unit performs sterilization and rinsing in the state where ozone water is supplied from the ozone water supply path 52 to the drum 22 Based on the water supply temperature detected by the water supply temperature sensor 85, at least one of the ozone water supply valve 52a and the ozone electrode 63 provided in the ozone water supply path 52 is controlled.
  • the concentration of ozone water supplied to the drum 22 is estimated from the water supply temperature, and at least one of the ozone water supply valve 52a and the ozone electrode 63 provided in the ozone water supply path 52 is controlled.
  • the energization time of the ozone electrode 63 can be shortened, and the current value for energizing the ozone electrode 63 can be reduced.
  • the durability of the ozone electrode 63 can be improved, the water supply time in the sterilization and rinsing process can be shortened, the ozone elimination time in the event of an error can be shortened, and the sterilization performance in the sterilization and rinsing process can be kept above a certain level.
  • control unit 80 as a control unit controls the ozone electrode 63 such that the lower the water supply temperature detected by the water supply temperature sensor 85 is, the shorter the energization time of the ozone electrode 63 is. .
  • the energization time of the ozone electrode 63 is controlled according to the water supply temperature, whereby the energization time of the ozone electrode 63 can be shortened compared to the conventional washing machine. Therefore, the durability of the ozone electrode 63 can be improved, the number of replacements can be reduced, and maintenance costs can be reduced. In addition, by shortening the energization time of the ozone electrode 63, the amount of water supplied from the ordinary water supply path 51 can be increased, and the operation time of the washing machine 1 can be shortened.
  • the main difference between the washing machine of this embodiment and the washing machine 1 of the first embodiment is that in the first embodiment, the appropriate value determination unit 80a determines the energization time of the ozone electrode 63 based on the water supply temperature as when ozone is generated during the sterilization and rinsing process On the other hand, in this embodiment, the appropriate value determination unit determines the amount of water supplied to the ozone electrode 63 based on the water supply temperature. A description of the same configuration as the washing machine 1 of the first embodiment in the configuration of the washing machine of this embodiment will be omitted.
  • the appropriate value determination unit determines the amount of water supplied to the ozone electrode 63 as the appropriate value when ozone is generated during the sterilization and rinsing process based on the supply temperature.
  • the amount of ozone water supply is the amount of water (L/s) supplied to the ozone electrode 63 per unit time in the ozone water supply 52. Specifically, as shown in FIG.
  • the appropriate value determination unit sets the ozone water channel water supply amount to L 1 , and the water supply temperature T p is T p1 °C or more and low In the case of T p2 °C, the appropriate value determination unit sets the ozone water supply amount to L 2 , and when the water supply temperature T p is T p2 °C or more, the appropriate value determination unit sets the ozone water supply amount to L 3 .
  • T p1 ⁇ T p2 L 1 >L 2 >L 3 .
  • the appropriate value determination unit sets the ozone water channel water supply amount supplied to the ozone electrode 63 to a large amount.
  • the appropriate value determination unit sets the amount of ozone water supply to the ozone electrode 63 to a small amount.
  • step S201 when the sterilization and rinsing process starts, the control unit 80 opens the ozone water supply valve 52a, and starts energization of the ozone electrode 63, and starts supplying ozone water to the drum 22 via the ozone water supply path 52.
  • step S202 the control unit 80 detects the water supply temperature by the water supply temperature sensor 85.
  • the control unit 80 detects the water supply temperature T p which is the temperature of the water supplied to the ozone electrode 63 disposed in the ozone water supply path 52.
  • step S203 the control unit 80 determines whether the water supply temperature is lower than T p1 °C.
  • step S203 the control unit 80 determines that the water temperature is lower than in the case of T p1 °C, in step S204, the control unit 80 the amount of water supplied to the electrode 63, i.e., the ozone water supply amount of ozone as L 1, proceeds to step S208.
  • step S203 When the control unit 80 determines in step S203 that the water supply temperature is T p1 °C or higher, the process proceeds to step S205 and the control unit 80 determines whether the water supply temperature is lower than T p2 °C.
  • step S206 the control unit 80 sets the ozone water supply amount to L 2 and proceeds to step S208.
  • step S206 When the control unit 80 determines that the water supply temperature is T p2 °C or higher in step S206, the process proceeds to step S208, and the control unit 80 sets the ozone water supply amount to L 3 , and proceeds to step S208.
  • steps S208 to S212 is the same as the content of steps S108 to S112 of FIG. 7 of the first embodiment, and the description thereof is omitted.
  • control unit 80 as a control unit controls the ozone water supply valve so that the lower the water supply temperature detected by the water supply temperature sensor 85 is, the greater the amount of water supplied to the ozone electrode 63 is. 52a.
  • the amount of water supplied to the ozone electrode 63 is controlled according to the water supply temperature, whereby the energization time of the ozone electrode 63 can be shortened compared to the conventional washing machine. Therefore, the durability of the ozone electrode 63 can be improved, the number of replacements can be reduced, and maintenance costs can be reduced. In addition, by shortening the energization time of the ozone electrode 63, the amount of water supplied from the ordinary water supply path 51 can be increased, and the operation time of the washing machine can be shortened.
  • the main difference between the washing machine of this embodiment and the washing machine 1 of the first embodiment is that in the first embodiment, the appropriate value determination unit 80a determines the energization time of the ozone electrode 63 based on the water supply temperature as when ozone is generated during the sterilization and rinsing process In contrast to this, in the present embodiment, the appropriate value determination unit determines the water level of the ozone water supplied into the drum 22 during the sterilization and rinsing based on the water supply temperature. A description of the same configuration as the washing machine 1 of the first embodiment in the configuration of the washing machine of this embodiment will be omitted.
  • the appropriate value determination unit determines the ozone water set level, which is the water level of the ozone water supplied to the drum 22 during the sterilization rinse, as the appropriate value when ozone is generated during the sterilization rinse, based on the water supply temperature.
  • the ozone rinsing set water level is the height (m) from the lower end of the drum 22 to the surface of the ozone water in the drum 22. Specifically, as shown in FIG.
  • the appropriate value determination unit sets the ozone rinse set water level to H 1 , and when the water supply temperature T p is T p1 °C or more and When it is lower than T p2 °C, the appropriate value determination unit sets the ozone rinse set water level as H 2 , and when the water supply temperature T p is T p2 °C or more, the appropriate value determination unit sets the ozone rinse set water level as H 3 .
  • the appropriate value determination unit sets the set water level of the ozone water supplied into the drum 22 to a lower water level.
  • the appropriate value determination unit sets the ozone rinsing set water level of the ozone water supplied to the drum 22 to a higher water level.
  • the concentration of ozone water supplied into the drum 22 becomes high in a short time, and the amount of ozone water supplied into the drum 22 becomes small, so that ozone rinsing by reducing the ozone water can be performed Setting the water level makes the supply time of the ozone water shorter, and shortens the energizing time of the ozone electrode 63.
  • step S301 when the sterilization and rinsing process starts, the control unit 80 opens the ozone water supply valve 52a, starts the energization of the ozone electrode 63, and starts to supply ozone water to the drum 22 via the ozone water supply path 52.
  • step S302 the control unit 80 detects the water supply temperature by the water supply temperature sensor 85.
  • the control unit 80 detects the water supply temperature Tp, which is the temperature of the water supplied to the ozone electrode 63 disposed in the ozone water supply path 52.
  • step S303 the control unit 80 determines whether the water supply temperature is lower than Tp1 °C.
  • step S303 when the control unit 80 determines that the water supply temperature is lower than T p1 °C, in step S304, the control unit 80 sets the ozone rinsing set water level of the ozone water supplied to the drum 22 to H 1 , and proceeds to step S308.
  • step S303 When the control unit 80 determines that the water supply temperature is T p1 °C or higher in step S303, the process proceeds to step S305, and the control unit 80 determines whether the water supply temperature is lower than T p2 °C.
  • step S306 the control unit 80 sets the ozone rinse set water level to H 2 and proceeds to step S308.
  • step S305 When the control unit 80 determines that the water supply temperature is T p2 ° C. or higher in step S305, the process proceeds to step S307, and the control unit 80 sets the ozone rinse set water level to H 3 , and proceeds to step S308.
  • steps S308 to S312 is the same as the content of steps S108 to S112 of FIG. 7 of the first embodiment, and the description thereof is omitted.
  • the control unit 80 controls the supply of ozone water from the ozone water supply path 52 to the drum 22 as the water supply temperature detected by the water supply temperature sensor 85 becomes lower.
  • the ozone water supply valve 52a is controlled so that the amount is smaller.
  • the amount of ozone water supplied from the ozone water supply channel 52 is controlled according to the water supply temperature, so that the energization time of the ozone electrode 63 can be shortened compared to the conventional washing machine. Therefore, the durability of the ozone electrode 63 can be improved, the number of replacements can be reduced, and maintenance costs can be reduced. In addition, by shortening the energization time of the ozone electrode 63, the amount of water supplied from the ordinary water supply path 51 can be increased, and the operation time of the washing machine can be shortened.
  • the main difference between the washing machine of this embodiment and the washing machine 1 of the first embodiment is that in the first embodiment, the appropriate value determination unit 80a determines the energization time of the ozone electrode 63 based on the water supply temperature as when ozone is generated during the sterilization and rinsing process In contrast to this, in the present embodiment, the appropriate value determination unit determines the current value energized to the ozone electrode 63 based on the water supply temperature.
  • a description of the same configuration as the washing machine 1 of the first embodiment in the configuration of the washing machine of this embodiment will be omitted.
  • the appropriate value determination unit determines the current value energized to the ozone electrode 63 according to the water supply temperature as an appropriate value when ozone is generated during the sterilization rinse. Specifically, as shown in FIG. 12, when the water supply temperature T p is lower than T p1 °C, the appropriate value determination unit sets the ozone electrode current value to A 1 , and the water supply temperature T p is T p1 °C or more and low In the case of T p2 °C, the appropriate value determination unit sets the ozone electrode current value as A 2 , and in the case where the water supply temperature T p is T p2 °C or more, the appropriate value determination unit sets the ozone electrode current value as A 3 . In FIG. 8, T p1 ⁇ T p2 and A 1 ⁇ A 2 ⁇ A 3 .
  • the appropriate value determination unit sets the current value energized to the ozone electrode 63 to a low current value.
  • the appropriate value determination unit sets the current value energized to the ozone electrode 63 to a higher current value.
  • step S401 when the sterilization and rinsing process starts, the control section 80 opens the ozone water supply valve 52a, and starts the energization of the ozone electrode 63, and starts supplying the ozone water to the drum 22 via the ozone water supply path 52.
  • step S402 the control unit 80 detects the water supply temperature by the water supply temperature sensor 85. At this time, the control unit 80 detects the water supply temperature T p that is the temperature of the water supplied to the ozone electrode 63 disposed in the ozone water supply path 52.
  • step S403 the control unit 80 determines whether the water supply temperature is lower than Tp1 °C.
  • step S404 the control unit 80 determines the amount of water supplied to the ozone electrode 63, that is, the ozone electrode current value A 1 , and proceeds to step S408.
  • step S403 when the control unit 80 determines that the water supply temperature is T p1 °C or higher, the process proceeds to step S405 and the control unit 80 determines whether the water supply temperature is lower than T p2 .
  • step S406 the control unit 80 determines the ozone electrode current value A 2 and proceeds to step S408.
  • step S406 when the control unit 80 determines that the water supply temperature is T p2 °C or higher, the process proceeds to step S207, the control unit 80 determines the ozone electrode current value A 3 , and proceeds to step S408.
  • steps S408 to S412 is the same as the content of steps S108 to S112 of FIG. 7 of the first embodiment, and the description thereof is omitted.
  • control unit 80 as the control unit controls the ozone electrode such that the lower the water supply temperature detected by the water supply temperature sensor 85 is, the smaller the current value energized to the ozone electrode 63 is. 63.
  • the current value energized to the ozone electrode 63 is controlled according to the water supply temperature, whereby the energization load of the ozone electrode 63 can be reduced compared to the conventional washing machine. Therefore, the durability of the ozone electrode can be improved, the number of replacements can be reduced, and the maintenance cost can be reduced.
  • the main difference between the washing machine of this embodiment and the washing machine 1 of the first embodiment is that in the first embodiment, the appropriate value determination unit 80a determines the energization time of the ozone electrode 63 based on the water supply temperature as when ozone is generated during the sterilization and rinsing process On the other hand, in this embodiment, the appropriate value determination unit determines the number of ozone electrodes 63 to be energized based on the water supply temperature. A description of the same configuration as the washing machine 1 of the first embodiment in the configuration of the washing machine of this embodiment will be omitted.
  • the appropriate value determination unit determines the number of the ozone electrodes 63 energized among the three ozone electrodes 63 as the appropriate value when ozone is generated during the sterilization and rinsing process based on the water supply temperature. Specifically, as shown in FIG. 14, when the water supply temperature T p is lower than T p1 °C, the appropriate value determination unit sets one ozone electrode 63 to be energized, and the water supply temperature T p is T p1 °C or more When the temperature is lower than T p2 °C, the appropriate value determination unit determines two energized ozone electrodes 63. When the water supply temperature T p is T p2 °C or more, the appropriate value determination unit will energize the ozone electrode. 63 is set to three. In Fig. 14, T p1 ⁇ T p2 .
  • the appropriate value determination unit sets the number of the ozone electrodes 63 to be energized to a small number.
  • the appropriate value determination unit sets the number of energized ozone electrodes 63 to a larger number.
  • step S501 when the sterilization and rinsing process starts, the control unit 80 opens the ozone water supply valve 52a, and starts the energization of the ozone electrode 63, and starts to supply ozone water to the drum 22 via the ozone water supply path 52.
  • step S502 the control unit 80 detects the water supply temperature by the water supply temperature sensor 85.
  • the control unit 80 detects the water supply temperature T p which is the temperature of the water supplied to the ozone electrode 63 disposed in the ozone water supply path 52.
  • step S503 the control unit 80 determines whether the water supply temperature is lower than T p1 °C.
  • step S504 the control unit 80 sets the number of the ozone electrodes 63 to be energized to one, and proceeds to step S508.
  • step S503 the control unit 80 determines that the water temperature is T P1 deg.] C or more, the process proceeds to step S505, the control unit 80 determines whether the water temperature is lower than T p2 °C.
  • step S506 the control unit 80 sets the number of energized ozone electrodes 63 to two, and proceeds to step S508.
  • step S507 the control unit 80 sets the number of energized ozone electrodes 63 to three, and proceeds to step S508.
  • steps S508 to S512 are the same as the contents of steps S108 to S112 of FIG. 7 of the first embodiment, and their description is omitted.
  • the washing machine of the present embodiment includes a plurality of ozone electrodes 63, and the control unit 80 as a control unit is energized in the plurality of ozone electrodes 63 during the sterilization and rinsing process so that the lower the water supply temperature detected by the water supply temperature sensor 85
  • the number of ozone electrodes 63 is controlled in such a manner that the number of ozone electrodes 63 is smaller.
  • the number of the ozone electrodes 63 to be energized among the three ozone electrodes 63 is controlled according to the water supply temperature, thereby enabling the energization time of the ozone electrode 63 to be shortened compared to the conventional washing machine.
  • the number of ozone electrodes 63 energized among the three ozone electrodes 63 is set to one or two, it is preferable to determine such that the energization time of each of the three ozone electrodes 63 is equal One or two ozone electrodes 63.
  • the drum 22 rotates about the rotation axis extending in the oblique direction with respect to the horizontal direction, but the drum 22 may rotate about the rotation axis extending in the horizontal direction.
  • the present invention can be applied to a washing machine including a drum that rotates about a rotation axis extending in a vertical direction.
  • the ozone generating device 61 has three ozone electrodes 63a, 63b, and 63c, but the number of ozone electrodes is not limited to this.
  • the water temperature of the ozone water supply is detected indirectly using the water temperature detected by the water supply temperature sensor 85 during normal water supply.
  • the water supply temperature sensor 85 may be disposed in the ozone water supply path 52 to detect the water temperature of the ozone water supply.
  • the appropriate value when ozone is generated during the sterilization and rinsing process is switched in three stages according to the water supply temperature, but the number of stages for switching the appropriate value according to the water supply temperature is not limited to this.
  • washing machine 1 having no drying function has been described, but the present invention can also be applied to a washing machine having a drying function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

本发明的洗衣机能提高臭氧电极的耐久性,其具备:供水路,用于向配置于洗衣机主体内的滚筒进行普通供水;臭氧供水路,用于向滚筒进行臭氧水的供给;臭氧电极,使臭氧供水路内产生臭氧;供水温度传感器,检测供给至滚筒的水的温度;以及控制单元,在从臭氧供水路向滚筒内供给臭氧水的状态下进行漂洗的除菌漂洗过程中,根据由供水温度传感器检测到的供水温度,控制设置于臭氧供水路的臭氧供水阀和臭氧电极。控制单元在除菌漂洗过程中以使由供水温度传感器检测到的供水温度越低则臭氧电极的通电时间越短的方式控制臭氧电极。

Description

洗衣机 技术领域
本发明涉及一种例如进行清洗过程、漂洗过程以及脱水过程的洗衣机。
背景技术
现有的洗衣机中,有一种不具有烘干功能的洗衣机,其自动地进行从清洗过程到漂洗过程和脱水过程,还有一种具有烘干功能的洗衣机,其自动地进行从清洗过程到漂洗过程、脱水过程和烘干过程。
现有的洗衣机中,可以考虑向滚筒内供给臭氧,通过臭氧水来进行漂洗洗涤物的过程(所谓的除菌漂洗)。因此,在这种洗衣机中,通过臭氧产生装置产生臭氧并将该臭氧供给至滚筒内。因此,进行除菌漂洗的洗衣机具备:用于向滚筒进行正常供水的供水路、用于向滚筒进行臭氧水的供给的臭氧供水路以及使臭氧供水路内产生臭氧的臭氧产生装置。
臭氧产生装置具有用于对臭氧供水路内的水进行电解的臭氧电极,通过对臭氧电极通电而产生臭氧。因此,由臭氧产生装置产生的臭氧溶于臭氧供水路内的水之后,作为臭氧水向滚筒供给。
已知臭氧在水中的溶解度根据水温而不同。例如,图16示出了氧和臭氧相对于纯水的溶解度(引用自文献:环境领域中臭氧实际使用(医疗·环境臭氧研究会,增刊3号,2007)的表1-6)。臭氧的溶解度在水温为0℃时为1.124g/L,与此相对,在水温为25℃时为0.613g/L。因此,可知与水温为0℃的情况相比,水温为25℃的情况下臭氧不易溶于水中。
如上所述,在洗衣机中为了进行除菌漂洗,滚筒内需要规定浓度的臭氧水,为了通过臭氧电极产生规定量的臭氧,对臭氧电极进行通电。在供水温度低的情况下,由于臭氧容易溶入水中,因此供给至滚筒内的臭氧水的浓度变高,臭氧电极的通电时间较短。与此相对,在供水温度高的情况下,由于臭氧不易溶于水中,因此供给至滚筒内的臭氧水的浓度变低,臭氧电极的通电时间变长。
此外,虽然在除菌漂洗过程中对臭氧电极通电时,不使用普通供水路而是使用臭氧供水路,但是为了将供给至臭氧电极的水量控制在某一范围内,臭氧供水路与普通供水路供水量较少。因此,由于供给至滚筒内的臭氧水的水位达到臭氧漂洗设定水位需要较长时间,因此臭氧电极的通电时间变长,作为消耗品的臭氧电极的耐久性成问题。
洗衣机中,为了能应对各种供水温度,即使在供水温度高而臭氧不易溶于水时,也需要配合高的供水温度将臭氧电极的通电时间设定地较长,以便得到为了进行除菌漂洗而需要的规定浓度的臭氧水。
因此,由于现有的洗衣机无论供水温度如何,都将臭氧电极的通电时间设定为恒定,因此在供水温度低的情况下,臭氧电极的通电时间被设定为超过所需时间。由此,存在臭氧电极的通电时间变长而导致臭氧电极的耐久性变差、更换次数增加、维护费用增加的问题。
此外,在洗衣机中进行过除菌漂洗的情况下,之后,在滚筒内的臭氧浓度变得足够低之前,锁定洗衣机的门使其打不开。如上所述,在供水温度低的情况下,当臭氧电极的通电时间设定为超过所需时间时,滚筒内的臭氧浓度可能会超过所需的浓度。因此,即使洗衣机中在除菌漂洗后滚筒内的臭氧浓度高时,也需要将门锁时间设定得较长,以使滚筒内的臭氧浓度充分降低。
因此,由于现有的洗衣机无论供水温度如何,都将门锁时间设定为恒定,因此门锁时间被设定为超过所需时间。
由此,在例如进行除菌漂洗过程之后的脱水过程中没有消除洗涤物的偏倚,因此存在如下问题:在中止脱水过程并进行错误显示的情况下,在滚筒内的臭氧浓度充分降低之前,不能打开洗衣机的门,洗衣机的运转长时间停止,导致洗衣机的运转效率降低。
需要说明的是,与臭氧电极的耐久性因臭氧电极的通电时间变长而变差的情况相同,对臭氧电极通电的电流值越高,耐久性越差,臭氧电极的更换次数增加,维护费用增加。
现有技术文献
专利文献
专利文献1:日本特开2018-33512号公报
发明内容
发明所要解决的问题
本发明的目的在于提供一种洗衣机,其能在进行除菌漂洗的洗衣机中提高臭氧电极的耐久性。
用于解决问题的方案
例如,为了缩短除菌漂洗过程中的臭氧电极的通电时间,可以考虑直接检测供给至滚筒内的臭氧水的浓度,在该浓度达到规定浓度时,停止臭氧电极的通电。但是,检测臭氧水的浓度的浓度检测装置非常昂贵,会增加洗衣机的制造成本,因此难以在洗衣机中搭载浓度检测装置。
因此,本发明的发明人发现,即使不直接检测供给至滚筒内的臭氧水的浓度,也能根据供水温度和该供水温度下的臭氧的溶解度来推测供给至滚筒内的臭氧水的浓度,由此缩短除菌漂洗过程中的臭氧电极的通电时间或降低臭氧电极的电流值。
即,本发明的洗衣机的特征在于,具备:供水路,用于向配置于洗衣机主体内的滚筒进行普通供水;臭氧供水路,用于向所述滚筒进行臭氧水的供给;臭氧电极,使所述臭氧供水路内产生臭氧;供水温度传感器,检测供给至所述滚筒的水的温度;以及控制单元,在从所述臭氧供水路供给臭氧水的状态下进行漂洗的除菌漂洗过程中,根据由所述供水温度传感器检测到的供水温度,控制设置于所述臭氧供水路的臭氧供水阀和所述臭氧电极中的至少一方。
优选的是,本发明的洗衣机中,所述控制单元在所述除菌漂洗过程中以使由所述供水温度传感器检测到的供水温度越低则所述臭氧电极的通电时间越短的方式控制所述臭氧电极。
优选的是,本发明的洗衣机中,所述控制单元在所述除菌漂洗过程中以使由所述供水温度传感器检测到的供水温度越低则供给至所述臭氧电极的水量越多的方式控制所述臭氧供水阀。
优选的是,本发明的洗衣机中,所述控制单元在所述除菌漂洗过程中以使由所述供水温度传感器检测到的供水温度越低则从所述臭氧供水路供给至所述滚筒内的臭氧水的供水量越少的方式控制所述臭氧供水阀。
优选的是,本发明的洗衣机中,所述控制单元在所述除菌漂洗过程中以使由所述供水温度传感器检测到的供水温度越低则通电至所述臭氧电极的电流值越小的方式控制所述臭氧电极。
优选的是,本发明的洗衣机中具备多个所述臭氧电极,所述控制单元在所述除菌漂洗过程中以使由所述供水温度传感器检测到的供水温度越低则所述多个臭氧电极中被通电的所述臭氧电极的数量越少的方式控制所述多个臭氧电极。
发明效果
本发明的洗衣机中,根据供水温度来推测供给至滚筒的臭氧水的浓度,控制设置于臭氧供水路的臭氧供水阀和臭氧电极中的至少一方,由此,在除菌漂洗过程中,例如能缩短臭氧电极的通电时间,降低对臭氧电极通电的电流值。因此,本发明能提高臭氧电极的耐久性,缩短除菌漂洗过程的供水时间,缩短错误发生时的消除臭氧时间,将除菌漂洗过程中的除菌性能保持在一定以上。
本发明的洗衣机中,根据供水温度来控制臭氧电极的通电时间,由此与现有的洗衣机相比能缩短臭氧电极的通电时间。
本发明的洗衣机中,根据供水温度控来制供给至臭氧电极的水量,由此与现有的洗衣机相比能缩短臭氧电极的通电时间。
本发明的洗衣机中,根据供水温度来控制从臭氧供水路供给至滚筒内的臭氧水的供水量,由此与现有的洗衣机相比能缩短臭氧电极的通电时间。
本发明的洗衣机中,根据供水温度来控制通电至臭氧电极的电流值,由此与现有的洗衣机相比能降低臭氧电极的通电负荷。
本发明的洗衣机中,根据供水温度来控制多个臭氧电极中被通电的臭氧电极的数量,由此与现有的洗衣机相比能缩短臭氧电极的通电时间。
附图说明
图1是表示本发明的第一实施方式的洗衣机1的结构的侧剖图。
图2是表示图1的洗衣机1的概要结构的图。
图3是表示图1的臭氧产生装置的结构的图。
图4是图1的洗衣机1的控制框图。
图5是表示与供水温度对应的臭氧电极通电时间的图。
图6是表示图1的洗衣机1的洗涤模式的动作的图。
图7是图1的洗衣机1的臭氧漂洗控制的流程图。
图8是表示本发明的第二实施方式的洗衣机中的与供水温度对应的臭氧水路供水量的图。
图9是图8的洗衣机的臭氧漂洗控制的流程图。
图10是本发明的第三实施方式的洗衣机中的与供水温度对应的臭氧漂洗设定水位的图。
图11是图10的洗衣机的臭氧漂洗控制的流程图。
图12是表示本发明的第四实施方式的洗衣机中的与供水温度对应的臭氧电极电流值的图。
图13是图12的洗衣机的臭氧漂洗控制的流程图。
图14是表示本发明的第五实施方式的洗衣机中的与供水温度对应的臭氧电极的数量的图。
图15是图14的洗衣机的臭氧漂洗控制的流程图。
图16是表示臭氧在水中的溶解度的图。
附图标记说明
1:洗衣机;10:洗衣机主体;22:滚筒;51:供水路;52:臭氧供水路;52a:臭氧供水阀;63:臭氧电极;80:控制部(控制单元);85:供水温度传感器。
具体实施方式
以下,参照附图,对作为本发明的实施方式的洗衣机进行说明。
(第一实施方式)
如图1所示,洗衣机1为滚筒式洗衣机,具备构成外观的箱体即洗衣机主体10。洗衣机主体10的前表面10a从中央部倾斜至上部,在倾斜的面上形成有洗涤物的投入口11。投入口11由自由开闭的门12覆盖。
在洗衣机主体10内,外筒20由多个减振器21弹性支承。在外筒20内,自由旋转地配置有滚筒22。外筒20和滚筒22以后表面侧变低的方式相对于水平方向倾斜。由此,滚筒22绕沿相对于水平方向倾斜的方向延伸的旋转轴旋转。
外筒20的前表面的开口部20a和滚筒22的前表面的开口部22a与投入口11对置,与投入口11一起由门12关闭。在滚筒22的周壁形成有许多脱水孔22b。进一步地,在滚筒22的周壁,沿周向以大致相等的间隔设置有三个提升筋23。
在滚筒22的后部,自由旋转地配置有旋转翼24。旋转翼24具有大致圆盘形状。在旋转翼24的表面,形成有从中央部向径向外侧延伸的多个突状部24a。旋转翼24与滚筒22同轴进行旋转。
在外筒20的后方,配置有产生驱动滚筒22和旋转翼24的转矩的马达30。
如图2所示,洗衣机1具备:用于向外筒20内的滚筒22进行普通供水的供水路51、从供水路51分支的臭氧供水路52、用于向外筒20内进行热水的供给的热水供给路53、用于排出外筒20内的水的排水路54以及用于向外筒20内供给柔顺剂、洗涤剂的柔顺剂供给路55和洗涤剂供给路56。
供水路51、热水供给路53、柔顺剂供给路55和洗涤剂供给路56与设置于外筒20的上方的集水导入部57连接,臭氧供水路52与外筒20的上方连接,排水路54与外筒20的下方连接。在外筒20的上端附近,设置有用于将超过水位上限的水排出的溢流通路58。在集中导入部57配置有检测供给至滚筒22内的水的温度的供水温度传感器85。本实施方式中,通过供水温度传感器85在普 通供水时检测水温,使用普通供水时检测到的水温间接地检测臭氧供水的水温。
洗衣机1能实施清洗过程、漂洗过程、除菌漂洗过程、脱水过程等。因此,洗衣机1中,通过适当地开闭作为各个给排系统的阀的供水阀51a、臭氧供水阀52a、热水供给阀53a、排水阀54a,进行普通供水、臭氧水供给、热水供给、排水。在供水阀51a和热水供给阀53a的上游分别配置有供水粗滤器51b、53b。
在外筒20的上端附近连接有排气路60,滚筒22内的空气、臭氧通过排气路60向机外排出。在排气路60配置有活性炭60a,穿过排气路60的气体在经过活性炭60a之后向机外排出,因此,穿过排气路60的臭氧的一部分被活性炭60a消耗。
洗衣机1能进行向滚筒22供给臭氧水并通过臭氧水来漂洗洗涤物的过程(所谓的除菌漂洗)。因此,在用于向滚筒22的内部供给臭氧水的臭氧供水路52配置有产生臭氧的臭氧产生装置61。
如图3所示,臭氧产生装置61包括臭氧电极63,臭氧电极63配置于大致水平地设置于臭氧供水路52的一部分的臭氧产生区域62。本实施方式中,配置有三根臭氧电极63a、63b、63c来作为臭氧电极63。臭氧产生装置61中,使三根臭氧电极63a、63b、63c串联穿过,通过水的电解而产生臭氧。
在臭氧供水路61的臭氧产生区域62,于上游侧形成有向上延伸的第一连接部62a,于下游侧形成有向下延伸的第二连接部62b。因此,通过对臭氧电极63进行通电,使得与臭氧电极63的表面接触的水被分解而产生臭氧气体,该臭氧气体溶解在水中而成为臭氧水。
图4是本实施方式的洗衣机1的控制框图。如图4所示,洗衣机1的控制部80例如由微型计算机等构成,具备CPU、储存有控制洗衣机1的动作的程序的ROM以及暂时存储执行上述程序时所用的数据等的RAM。洗衣机1的运转动作由该控制部80控制。
控制部80具有适当值确定部80a。此外,控制部80连接有操作部81、马达30、供水阀51a、排水阀54a、臭氧供水阀52a、臭氧产生装置61以及门锁装置82。
适当值确定部80a根据供水温度来确定通电至臭氧电极63的通电时间来作 为除菌漂洗过程中产生臭氧时的适当值。具体而言,如图5所示,在供水温度T p低于T p1℃的情况下,适当值确定部80a将臭氧电极63的通电时间定为T 1,在供水温度T p为T p1℃以上并且低于T p2℃的情况下,适当值确定部将臭氧电极63的通电时间定为T 2,在供水温度T p为T p2℃以上的情况下,适当值确定部将臭氧电极63的通电时间定为T 3。图5中,T p1<T p2,T 1<T 2<T 3
即,在供水温度低的情况下,由于臭氧容易溶入水中,因此供给至滚筒22内的臭氧水的浓度变高,因此适当值确定部80a将臭氧电极63的通电时间定为较短的时间。与此相对,在供水温度高的情况下,由于臭氧不易溶于水中,因此供给至滚筒22内的臭氧水的浓度变低,因此适当值确定部80a将臭氧电极63的通电时间定为较长的时间。因此,在供水温度低的情况下,能缩短臭氧电极63的通电时间。
除菌漂洗过程中,进行供水直到臭氧水达到滚筒22内的臭氧漂洗设定水位之后,进行供水直到普通水达到滚筒22内的规定水位。在为了进行除菌漂洗而进行供水直到普通水达到滚筒22内的规定水位的状态下,滚筒22内需要规定浓度以上的臭氧水。
因此,进行供水直到臭氧水达到滚筒22内的臭氧漂洗设定水位的臭氧水的浓度需要需要为如下的浓度:在进行供水直到普通水达到滚筒22内的规定水位之后,滚筒22内的臭氧水的浓度达到规定浓度以上。
如上所述,在供水温度低的情况下,由于臭氧容易溶入水中,因此供给至滚筒22内的臭氧水的浓度变高,因此能缩短臭氧电极63的通电时间。与此相对,在供水温度高的情况下,由于臭氧不易溶于水中,因此供给至滚筒22内的臭氧水的浓度低,因此需要延长臭氧电极63的通电时间。
操作部81包括用于进行除菌漂洗的除菌漂洗按钮81a。操作部81将与用户所操作的按钮对应的输入信号输出至控制部80。
控制部80通过控制马达30来控制滚筒22的转速。
控制部80通过控制供水阀51a和排水阀54a来进行向外筒20内的供水和从外筒20内的排水。
控制部80通过控制臭氧供水阀52a和臭氧产生装置61,在进行除菌漂洗的 情况下,从臭氧供水路52向滚筒22内供给臭氧水。
控制部80通过控制将门12切换为锁定状态或解锁状态的门锁装置82,从而进行门12的锁定和解锁。
接着,基于图6对洗衣机1的运转动作进行说明。洗衣机1例如具有清洗过程、漂洗过程以及脱水过程,并且能进行不具有烘干过程的洗涤模式的运转。需要说明的是,本实施方式中,对如下情况进行说明:在清洗过程结束之前,用户按下操作部81的除菌漂洗按钮81a,投入规定的金额,从而进行使用了臭氧水的除菌漂洗过程。
<步骤S1:清洗过程>
步骤S1中,首先,使用者打开门12,向滚筒22内放入洗涤物,关闭门12。当清洗过程开始时,控制部80打开用于供给普通洗涤水的供水阀51a,向滚筒22供给普通水。此时,控制部80关闭排水阀54a,供给来的水蓄于外筒20和滚筒22内。然后,当供给了规定量的水时,控制部80关闭供水阀51a,驱动(接通)马达30而使滚筒22旋转。
然后,当规定时间的清洗动作结束时,控制部80打开排水阀54a,滚筒22内的清洗水经由排水路54向机体外部排出。排水后,控制部80通过马达30使滚筒22高速旋转,进行将洗涤物中所含的洗涤水脱去的中间脱水。通过中间脱水而从洗涤物中脱去的洗涤水排出至滚筒22内,经由排水路54向机体外部排出。
<步骤S2:漂洗过程>
当步骤S1中的清洗过程结束时,在步骤S2中进行漂洗过程。当漂洗过程开始时,控制部80关闭排水阀54a,打开用于供给普通洗涤水的供水阀51a,向滚筒22供给规定量的漂洗水。然后,当供给了规定量的水时,控制部80关闭供水阀51a,通过马达30使滚筒22旋转,进行规定时间的滚筒22内的洗涤物的漂洗。
当漂洗结束时,控制部80打开排水阀54a,将滚筒22内的漂洗水经由排水路54向机体外部排出。排水后,通过与上述相同的脱水动作进行中间脱水,脱去洗涤物中所含的漂洗水。该脱去的漂洗水也如上所述,经由排水路54向机体 外部排出。
<步骤S3:除菌漂洗过程>
当步骤S2中的漂洗过程结束时,在步骤S3中进行除菌漂洗过程。当除菌漂洗过程开始时,控制部80关闭排水阀54a,打开臭氧供水阀52a,经由臭氧供水路52向滚筒22供给臭氧水。然后,控制部80关闭臭氧供水阀52a,停止供给臭氧水,打开用于供给普通水的供水阀51a,将普通水作为漂洗水向滚筒22供给。
然后,当供给漂洗水时,控制部80通过马达30使滚筒22旋转,使用臭氧水进行规定时间的滚筒22内的洗涤物的除菌漂洗。当除菌漂洗结束时,控制部80打开排水阀54a,将滚筒22内的漂洗水经由排水路54向机体外部排出。
<步骤S4:脱水过程>
当步骤S3中的除菌漂洗过程结束时,在步骤S4中进行脱水过程。当脱水过程开始时,控制部80使滚筒22的转速向目标转速上升,当达到目标转速时,进行脱水运转直到经过了规定脱水时间。当脱水过程结束时,控制部80将滚筒22的旋转停止,结束洗涤模式的动作。在脱水过程中脱去的水也如上所述经由排水路54向机体外部排出。
基于图7对除菌漂洗过程中的臭氧漂洗控制进行说明。
<步骤S101>
步骤S101中,当除菌漂洗过程开始时,控制部80打开臭氧供水阀52a,并且开始臭氧电极63的通电,经由臭氧供水路52开始向滚筒22供给臭氧水。
<步骤S102>
步骤S102中,控制部80通过供水温度传感器85检测供水温度。由此,控制部80检测供给至配置于臭氧供水路52的臭氧电极63的水的温度即供水温度T p
<步骤S103>
步骤S103中,控制部80判定供水温度是否低于T p1℃。
<步骤S104>
在步骤S103中控制部80判定供水温度低于T p1℃的情况下,在步骤S104中,控制部80将臭氧电极63的通电时间定为T 1,进入步骤S108。
<步骤S105>
在步骤S103中控制部80判定供水温度为T p1℃以上的情况下,进入步骤S105,控制部80判定供水温度是否低于T p2℃。
<步骤S106>
在步骤S105中控制部80判定供水温度低于T p2℃的情况下,在步骤S106中,控制部80将臭氧电极63的通电时间定为T 2,进入步骤S108。
<步骤S108>
在步骤S106中控制部80判定供水温度为T p2℃以上的情况下,进入步骤S108,控制部80将臭氧电极63的通电时间定为T 3,进入步骤S108。
<步骤S108>
步骤S108中,控制部80判定供给至滚筒22内的臭氧水的水位是否达到了臭氧漂洗设定水位。在控制部80判定臭氧水的水位没有达到臭氧漂洗设定水位的情况下,进入步骤S102。
<步骤S109>
在步骤S105中控制部80判定供给至滚筒22内的臭氧水的水位达到了臭氧漂洗设定水位的情况下,在步骤S109中,控制部80关闭臭氧供水阀52a,并且停止臭氧电极63的通电,停止臭氧水的供给。
<步骤S110>
步骤S110中,控制部80打开供水阀51a,进行普通水的供给直到滚筒22内的水量达到规定水位。
<步骤S111、S112>
步骤S111中,控制部80通过马达30使滚筒22旋转,通过臭氧水进行滚筒22内的洗涤物的除菌漂洗。当洗涤物的除菌漂洗结束时,步骤S112中,控制部80打开排水阀54a,排出漂洗水,结束除菌漂洗过程。
本实施方式的洗衣机1具备:供水路51,用于向配置于洗衣机主体10内的滚筒22进行普通供水;臭氧供水路52,用于向滚筒22进行臭氧水的供水;臭氧电极63,使臭氧供水路52内产生臭氧;供水温度传感器85,检测供给至滚筒22的水的温度;以及控制单元,在从臭氧供水路52向滚筒22内供给臭氧水的状态下进行漂洗的除菌漂洗过程中,根据由供水温度传感器85检测到的供水温度,控制设置于臭氧供水路52的臭氧供水阀52a和臭氧电极63中的至少一方。
由此,本实施方式的洗衣机1中,根据供水温度推测供给至滚筒22的臭氧水的浓度,控制设置于臭氧供水路52的臭氧供水阀52a和臭氧电极63中的至少一方,由此,在除菌漂洗过程中,例如能缩短臭氧电极63的通电时间,降低对臭氧电极63通电的电流值。因此,能提高臭氧电极63的耐久性,缩短除菌漂洗过程的供水时间,缩短错误发生时的消除臭氧时间,将除菌漂洗过程中的除菌性能保持在一定以上。
本实施方式的洗衣机1中,作为控制单元的控制部80在除菌漂洗过程中以使由供水温度传感器85检测到的供水温度越低则臭氧电极63的通电时间越短的方式控制臭氧电极63。
由此,本实施方式的洗衣机1中,根据供水温度来控制臭氧电极63的通电时间,由此与现有的洗衣机相比能缩短臭氧电极63的通电时间。因此,能提高臭氧电极63的耐久性,减少更换次数,削减维护费用。此外,能通过缩短臭氧电极63的通电时间,增加来自普通供水路51的供水量,缩短洗衣机1的运转时间。
(第二实施方式)
基于图8和图9对本发明的第二实施方式的洗衣机进行说明。
本实施方式的洗衣机与第一实施方式的洗衣机1主要的不同点在于,第一实施方式中,适当值确定部80a根据供水温度确定臭氧电极63的通电时间来作为除菌漂洗过程中产生臭氧时的适当值,与此相对,本实施方式中,适当值确定部根据供水温度来确定向臭氧电极63供给的水量。对于本实施方式的洗衣机的结构中与第一实施方式的洗衣机1相同的结构省略说明。
适当值确定部根据供水温度,确定供给至臭氧电极63的水量即臭氧水路供水量来作为除菌漂洗过程中产生臭氧时的适当值。臭氧水路供水量为臭氧供水路52中单位时间内供给至臭氧电极63的水量(L/s)。具体而言,如图8所示,在供水温度T p低于T p1℃的情况下,适当值确定部将臭氧水路供水量定为L 1,在供水温度T p为T p1℃以上且低于T p2℃的情况下,适当值确定部将臭氧水路供水量定为L 2,在供水温度T p为T p2℃以上的情况下,适当值确定部将臭氧水路供水量定为L 3。图8中,T p1<T p2,L 1>L 2>L 3
即,在供水温度低的情况下,由于臭氧容易溶入水中,因此适当值确定部将供给至臭氧电极63的臭氧水路供水量定为较多的量。与此相对,在供水温度高的情况下,由于臭氧不易溶于水中,因此适当值确定部将供给至臭氧电极63的臭氧水路供水量定为较少的量。由此,在供水温度低的情况下,供给至滚筒22的臭氧水的浓度能在短时间内变高,缩短臭氧电极63的通电时间。
基于图9,对除菌漂洗过程中的臭氧漂洗控制进行说明。
<步骤S201>
步骤S201中,当除菌漂洗过程开始时,控制部80打开臭氧供水阀52a,并且开始臭氧电极63的通电,经由臭氧供水路52开始向滚筒22供给臭氧水。
<步骤S202>
步骤S202中,控制部80通过供水温度传感器85检测供水温度。由此,控制部80检测供给至配置于臭氧供水路52的臭氧电极63的水的温度即供水温度T p
<步骤S203>
步骤S203中,控制部80判定供水温度是否低于T p1℃。
<步骤S204>
在步骤S203中控制部80判定供水温度低于T p1℃的情况下,在步骤S204中,控制部80将供给至臭氧电极63的水量即臭氧水路供水量定为L 1,进入步骤S208。
<步骤S205>
在步骤S203中控制部80判定供水温度为T p1℃以上的情况下,进入步骤S205,控制部80判定供水温度是否低于T p2℃。
<步骤S206>
在步骤S205中控制部80判定供水温度低于T p2℃的情况下,在步骤S206中,控制部80将臭氧水路供水量定为L 2,进入步骤S208。
<步骤S208>
在步骤S206中控制部80判定供水温度为T p2℃以上的情况下,进入步骤S208,控制部80将臭氧水路供水量定为L 3,进入步骤S208。
<步骤S208~S212>
步骤S208~S212的内容与第一实施方式的图7的步骤S108~S112的内容相同,省略其说明。
本实施方式的洗衣机中,作为控制单元的控制部80在除菌漂洗过程中以使由供水温度传感器85检测到的供水温度越低则供给至臭氧电极63的水量越多的方式控制臭氧供水阀52a。
由此,本实施方式的洗衣机中,根据供水温度来控制供给至臭氧电极63的水量,由此与现有的洗衣机相比能缩短臭氧电极63的通电时间。因此,能提高臭氧电极63的耐久性,减少更换次数,削减维护费用。此外,能通过缩短臭氧电极63的通电时间,增加来自普通供水路51的供水量,缩短洗衣机的运转时间。
(第三实施方式)
基于图10和图11,对本发明的第三实施方式的洗衣机进行说明。
本实施方式的洗衣机与第一实施方式的洗衣机1主要的不同点在于,第一实施方式中,适当值确定部80a根据供水温度确定臭氧电极63的通电时间来作为除菌漂洗过程中产生臭氧时的适当值,与此相对,本实施方式中,适当值确定部根据供水温度来确定在进行除菌漂洗时供给至滚筒22内的臭氧水的水位。对于本实施方式的洗衣机的结构中与第一实施方式的洗衣机1相同的结构省略说明。
适当值确定部根据供水温度来确定在进行除菌漂洗时供给至滚筒22内的臭氧水的水位即臭氧漂洗设定水位来作为除菌漂洗过程中产生臭氧时的适当值。臭氧漂洗设定水位为从滚筒22的下端至滚筒22内的臭氧水的水面为止的高度(m)。具体而言,如图10所示,在供水温度T p低于T p1℃的情况下,适当值确定部将臭氧漂洗设定水位定为H 1,在供水温度T p为T p1℃以上且低于T p2℃的情况下,适当值确定部将臭氧漂洗设定水位定为H 2,在供水温度T p为T p2℃以上的情况下,适当值确定部将臭氧漂洗设定水位定为H 3。图10中,T p1<T p2,H 1<H 2<H 3
即,在供水温度低的情况下,臭氧容易溶入水中,因此适当值确定部将供给至滚筒22内的臭氧水的设定水位定为较低的水位。与此相对,在供水温度高的情况下,臭氧不易溶于水中,因此适当值确定部将供给至滚筒22内的臭氧水的臭氧漂洗设定水位定为较高的水位。由此,在供水温度低的情况下,由于供给至滚筒22内的臭氧水的浓度在短时间内变高,供给至滚筒22内的臭氧水的量变少,因此能通过降低臭氧水的臭氧漂洗设定水位,使得臭氧水的供水时间变短,缩短臭氧电极63的通电时间。
基于图11对除菌漂洗过程中的臭氧漂洗控制进行说明。
<步骤S301>
步骤S301中,当除菌漂洗过程开始时,控制部80打开臭氧供水阀52a的同时,开始臭氧电极63的通电,经由臭氧供水路52开始向滚筒22供给臭氧水。
<步骤S302>
步骤S302中,控制部80通过供水温度传感器85检测供水温度。由此,控制部80检测供给至配置于臭氧供水路52的臭氧电极63的水的温度即供水温度Tp。
<步骤S303>
步骤S303中,控制部80判定供水温度是否低于T p1℃。
<步骤S304>
在步骤S303中控制部80判定供水温度低于T p1℃的情况下,在步骤S304 中,控制部80将供给至滚筒22的臭氧水的水位即臭氧漂洗设定水位定为H 1,进入步骤S308。
<步骤S305>
在步骤S303中控制部80判定供水温度为T p1℃以上的情况下,进入步骤S305,控制部80判定供水温度是否低于T p2℃。
<步骤S306>
在步骤S305中控制部80判定供水温度低于T p2℃的情况下,在步骤S306中,控制部80将臭氧漂洗设定水位定为H 2,进入步骤S308。
<步骤S307>
在步骤S305中控制部80判定供水温度为T p2℃以上的情况下,进入步骤S307,控制部80将臭氧漂洗设定水位定为H 3,进入步骤S308。
<步骤S308~S312>
步骤S308~S312的内容与第一实施方式的图7的步骤S108~S112的内容相同,省略其说明。
本实施方式的洗衣机中,作为控制单元的控制部80在除菌漂洗过程中以使由供水温度传感器85检测到的供水温度越低则从臭氧供水路52供给至滚筒22内的臭氧水的供水量越少的方式控制臭氧供水阀52a。
由此,本实施方式的洗衣机中,根据供水温度来控制来自臭氧供水路52的臭氧水的供水量,由此与现有的洗衣机相比能缩短臭氧电极63的通电时间。因此,能提高臭氧电极63的耐久性,减少更换次数,削减维护费用。此外,能通过缩短臭氧电极63的通电时间,增加来自普通供水路51的供水量,缩短洗衣机的运转时间。
(第四实施方式)
基于图12和图13,对本发明的第四实施方式的洗衣机进行说明。
本实施方式的洗衣机与第一实施方式的洗衣机1主要的不同点在于,第一实施方式中,适当值确定部80a根据供水温度确定臭氧电极63的通电时间来作为除菌漂洗过程中产生臭氧时的适当值,与此相对,本实施方式中,适当值确 定部根据供水温度来确定通电至臭氧电极63的电流值。对于本实施方式的洗衣机的结构中与第一实施方式的洗衣机1相同的结构省略说明。
适当值确定部根据供水温度来确定通电至臭氧电极63的电流值来作为除菌漂洗过程中产生臭氧时的适当值。具体而言,如图12所示,在供水温度T p低于T p1℃的情况下,适当值确定部将臭氧电极电流值定为A 1,在供水温度T p为T p1℃以上且低于T p2℃的情况下,适当值确定部将臭氧电极电流值定为A 2,在供水温度T p为T p2℃以上的情况下,适当值确定部将臭氧电极电流值定为A 3。图8中,T p1<T p2,A 1<A 2<A 3
即,在供水温度低的情况下,臭氧容易溶入水中,因此适当值确定部将通电至臭氧电极63的电流值定为较低的电流值。与此相对,在供水温度高的情况下,臭氧不易溶于水中,因此适当值确定部将通电至臭氧电极63的电流值定为较高的电流值。由此,在供水温度低的情况下,能减少所需的臭氧量,降低臭氧电极63的通电负荷。
基于图13,对除菌漂洗过程中的臭氧漂洗控制进行说明。
<步骤S401>
步骤S401中,当除菌漂洗过程开始时,控制部80打开臭氧供水阀52a,并且开始臭氧电极63的通电,经由臭氧供水路52开始向滚筒22供给臭氧水。
<步骤S402>
步骤S402中,控制部80通过供水温度传感器85检测供水温度。与此,控制部80检测供给至配置于臭氧供水路52的臭氧电极63的水的温度即供水温度T p
<步骤S403>
步骤S403中,控制部80判定供水温度是否低于T p1℃。
<步骤S404>
在步骤S403中控制部80判定供水温度低于T p1℃的情况下,在步骤S404中,控制部80确定供给至臭氧电极63的水量即臭氧电极电流值A 1,进入步骤S408。
<步骤S405>
在步骤S403中控制部80判定供水温度为T p1℃以上的情况下,进入步骤S405,控制部80判定供水温度是否低于T p2
<步骤S406>
在步骤S405中控制部80判定供水温度低于T p2℃的情况下,在步骤S406中,控制部80确定臭氧电极电流值A 2,进入步骤S408。
<步骤S407>
在步骤S406中控制部80判定供水温度为T p2℃以上的情况下,进入步骤S207,控制部80确定臭氧电极电流值A 3,进入步骤S408。
<步骤S408~S412>
步骤S408~S412的内容与第一实施方式的图7的步骤S108~S112的内容相同,省略其说明。
本实施方式的洗衣机中,作为控制单元的控制部80在除菌漂洗过程中以使由供水温度传感器85检测到的供水温度越低则通电至臭氧电极63的电流值越小的方式控制臭氧电极63。
由此,本实施方式的洗衣机中,根据供水温度来控制通电至臭氧电极63的电流值,由此与现有的洗衣机相比能降低臭氧电极63的通电负荷。因此,能提高臭氧电极的耐久性,减少更换次数,削减维护费用。
(第五实施方式)
基于图14和图15,对本发明的第五实施方式的洗衣机进行说明。
本实施方式的洗衣机与第一实施方式的洗衣机1主要的不同点在于,第一实施方式中,适当值确定部80a根据供水温度确定臭氧电极63的通电时间来作为除菌漂洗过程中产生臭氧时的适当值,与此相对,本实施方式中,适当值确定部根据供水温度来确定被通电的臭氧电极63的数量。对于本实施方式的洗衣机的结构中与第一实施方式的洗衣机1相同的结构省略说明。
适当值确定部根据供水温度,确定三根臭氧电极63中被通电的臭氧电极63的数量来作为除菌漂洗过程中产生臭氧时的适当值。具体而言,如图14所示, 在供水温度T p低于T p1℃的情况下,适当值确定部将被通电的臭氧电极63定为一根,在供水温度T p为T p1℃以上并且低于T p2℃的情况下,适当值确定部将被通电的臭氧电极63定为两根,在供水温度T p为T p2℃以上的情况下,适当值确定部将被通电的臭氧电极63定为三根。图14中,T p1<T p2
即,在供水温度低的情况下,由于臭氧容易溶入水中,因此适当值确定部将被通电的臭氧电极63的数量定为较少的数量。与此相对,在供水温度高的情况下,由于臭氧不易溶于水中,因此适当值确定部将被通电的臭氧电极63的数量定为较多的数量。由此,能在供水温度低的情况下缩短为了产生臭氧而被通电的臭氧电极63的通电时间。
基于图15,对除菌漂洗过程中的臭氧漂洗控制进行说明。
<步骤S501>
步骤S501中,当除菌漂洗过程开始时,控制部80打开臭氧供水阀52a,并且开始臭氧电极63的通电,经由臭氧供水路52开始向滚筒22供给臭氧水。
<步骤S502>
步骤S502中,控制部80通过供水温度传感器85检测供水温度。由此,控制部80检测供给至配置于臭氧供水路52的臭氧电极63的水的温度即供水温度T p
<步骤S503>
步骤S503中,控制部80判定供水温度是否低于T p1℃。
<步骤S504>
在步骤S503中控制部80判定供水温度低于T p1℃的情况下,在步骤S504中,控制部80将被通电的臭氧电极63的数量定为一根,进入步骤S508。
<步骤S505>
在步骤S503中控制部80判定供水温度为T p1℃以上的情况下,进入步骤S505,控制部80判定供水温度是否低于T p2℃。
<步骤S506>
在步骤S505中控制部80判定供水温度低于T p2℃的情况下,在步骤S506中,控制部80将被通电的臭氧电极63的数量定为两根,进入步骤S508。
<步骤S507>
在步骤S505中控制部80判定供水温度为T p2℃以上的情况下,在步骤S507中,控制部80将被通电的臭氧电极63的根数定为三根,进入步骤S508。
<步骤S508~S512>
步骤S508~S512的内容与第一实施方式的图7的步骤S108~S112的内容相同,省略其说明。
本实施方式的洗衣机中,具备多个臭氧电极63,作为控制单元的控制部80在除菌漂洗过程中以使由供水温度传感器85检测到的供水温度越低则多个臭氧电极63中被通电的臭氧电极63的数量越少的方式控制多个臭氧电极63。
由此,本实施方式的洗衣机中,根据供水温度来控制三根臭氧电极63中被通电的臭氧电极63的数量,由此与现有的洗衣机相比能缩短臭氧电极63的通电时间。
需要说明的是,在将三根臭氧电极63中被通电的臭氧电极63的数量定为一根或两根的情况下,优选的是,以使三根臭氧电极63各自的通电时间均等的方式确定出一根或两根臭氧电极63。
以上,对本发明的实施方式进行了说明,但是各部分的具体结构不局限于上述的实施方式。
上述实施方式中,滚筒22绕相对于水平方向沿倾斜方向延伸的旋转轴进行旋转,但滚筒22也可以绕沿水平方向延伸的旋转轴进行旋转。此外,本发明能适用于具备绕沿垂直方向延伸的旋转轴进行旋转的滚筒的洗衣机。
上述实施方式中,臭氧产生装置61具有三根臭氧电极63a、63b、63c,但臭氧电极的数量不局限于此。上述实施方式中,使用由供水温度传感器85检测到的普通供水时的水温来间接检测臭氧供水的水温,但也可以将供水温度传感器85配置于臭氧供水路52来检测臭氧供水的水温。
上述实施方式中,根据供水温度,分三个阶段切换除菌漂洗过程中产生臭 氧时的适当值,但根据供水温度切换适当值的阶段数不局限于此。
上述实施方式中,对不具有烘干功能的洗衣机1进行了说明,但是本发明也能适用于具有烘干功能的洗衣机。
其他的结构也能在不脱离本发明的技术思想的范围内进行各种变形。

Claims (6)

  1. 一种洗衣机,其特征在于,具备:
    供水路,用于向配置于洗衣机主体内的滚筒进行普通供水;
    臭氧供水路,用于向所述滚筒进行臭氧水的供给;
    臭氧电极,使所述臭氧供水路内产生臭氧;
    供水温度传感器,检测供给至所述滚筒的水的温度;以及
    控制单元,在从所述臭氧供水路向所述滚筒内供给臭氧水的状态下进行漂洗的除菌漂洗过程中,根据由所述供水温度传感器检测到的供水温度,控制设置于所述臭氧供水路的臭氧供水阀和所述臭氧电极中的至少一方。
  2. 根据权利要求1所述的洗衣机,其特征在于,
    所述控制单元在所述除菌漂洗过程中以使由所述供水温度传感器检测到的供水温度越低则所述臭氧电极的通电时间越短的方式控制所述臭氧电极。
  3. 根据权利要求1或2所述的洗衣机,其特征在于,
    所述控制单元在所述除菌漂洗过程中以使由所述供水温度传感器检测到的供水温度越低则供给至所述臭氧电极的水量越多的方式控制所述臭氧供水阀。
  4. 根据权利要求1至3中任一项所述的洗衣机,其特征在于,
    所述控制单元在所述除菌漂洗过程中以使由所述供水温度传感器检测到的供水温度越低则从所述臭氧供水路供给至所述滚筒的臭氧水的供水量越少的方式控制所述臭氧供水阀。
  5. 根据权利要求1至4中任一项所述的洗衣机,其特征在于,
    所述控制单元在所述除菌漂洗过程中以使由所述供水温度传感器检测到的供水温度越低则通电至所述臭氧电极的电流值越小的方式控制所述臭氧电极。
  6. 根据权利要求1至5中任一项所述的洗衣机,其特征在于,
    具备多个所述臭氧电极,
    所述控制单元在所述除菌漂洗过程中以使由所述供水温度传感器检测到的 供水温度越低则所述多个臭氧电极中被通电的所述臭氧电极的数量越少的方式控制多个所述臭氧电极。
PCT/CN2019/125744 2018-12-27 2019-12-16 洗衣机 WO2020135133A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980081753.0A CN113167003B (zh) 2018-12-27 2019-12-16 洗衣机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-244882 2018-12-27
JP2018244882A JP7343854B2 (ja) 2018-12-27 2018-12-27 洗濯機

Publications (1)

Publication Number Publication Date
WO2020135133A1 true WO2020135133A1 (zh) 2020-07-02

Family

ID=71125946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125744 WO2020135133A1 (zh) 2018-12-27 2019-12-16 洗衣机

Country Status (3)

Country Link
JP (1) JP7343854B2 (zh)
CN (1) CN113167003B (zh)
WO (1) WO2020135133A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087590A (ja) * 1999-09-22 2001-04-03 Toshiba Corp 洗濯機
CN1827175A (zh) * 2006-03-23 2006-09-06 徐名勇 可制取低温水来提高臭氧水溶解度的臭氧水生成机组
CN101395319A (zh) * 2006-03-01 2009-03-25 阿塞里克股份有限公司 洗涤机
CN102425064A (zh) * 2011-10-19 2012-04-25 合肥荣事达三洋电器股份有限公司 洗衣机臭氧水洗涤及漂洗系统
CN102933760A (zh) * 2010-06-09 2013-02-13 Bsh博世和西门子家用电器有限公司 在洗衣机中用于在低温下处理衣物的方法和适用于该方法的洗衣机
CN105342827A (zh) * 2015-11-23 2016-02-24 于华新 一种洗浴护理设备
CN105992853A (zh) * 2014-04-28 2016-10-05 松下知识产权经营株式会社 卫生清洗装置
CN106544811A (zh) * 2015-09-22 2017-03-29 青岛海尔滚筒洗衣机有限公司 洗衣机及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619258B2 (ja) * 2005-10-07 2011-01-26 三洋電機株式会社 洗濯機
JP4883978B2 (ja) * 2005-10-07 2012-02-22 三洋電機株式会社 洗濯機
JP4711839B2 (ja) * 2006-01-30 2011-06-29 三洋電機株式会社 洗濯機
US20150211166A1 (en) 2014-01-28 2015-07-30 General Electric Company Washing Machine Appliances and Methods for Washing Articles Therein
JP2017064621A (ja) 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 機能水生成装置
JP2018178666A (ja) 2017-04-21 2018-11-15 パナソニックIpマネジメント株式会社 便器装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087590A (ja) * 1999-09-22 2001-04-03 Toshiba Corp 洗濯機
CN101395319A (zh) * 2006-03-01 2009-03-25 阿塞里克股份有限公司 洗涤机
CN1827175A (zh) * 2006-03-23 2006-09-06 徐名勇 可制取低温水来提高臭氧水溶解度的臭氧水生成机组
CN102933760A (zh) * 2010-06-09 2013-02-13 Bsh博世和西门子家用电器有限公司 在洗衣机中用于在低温下处理衣物的方法和适用于该方法的洗衣机
CN102425064A (zh) * 2011-10-19 2012-04-25 合肥荣事达三洋电器股份有限公司 洗衣机臭氧水洗涤及漂洗系统
CN105992853A (zh) * 2014-04-28 2016-10-05 松下知识产权经营株式会社 卫生清洗装置
CN106544811A (zh) * 2015-09-22 2017-03-29 青岛海尔滚筒洗衣机有限公司 洗衣机及其控制方法
CN105342827A (zh) * 2015-11-23 2016-02-24 于华新 一种洗浴护理设备

Also Published As

Publication number Publication date
JP2020103566A (ja) 2020-07-09
CN113167003A (zh) 2021-07-23
JP7343854B2 (ja) 2023-09-13
CN113167003B (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
EP1861532B1 (en) Method for controlling operation of a washing machine
RU2287627C1 (ru) Стиральная машина барабанного типа и способ управления такой машиной
JP4084694B2 (ja) 洗濯機
KR101531621B1 (ko) 세탁기의 제어 방법
US20080271755A1 (en) Method for Controlling of Washer
US20080104770A1 (en) Method of controlling laundry treatment machine
TWI448601B (zh) Drum washing machine
KR101250549B1 (ko) 세탁물 처리기기의 도어 개방 제어방법
JP2014210123A (ja) 洗濯機
JP2008183122A (ja) ドラム式洗濯機
JP2008229153A (ja) 洗濯乾燥機
WO2020135133A1 (zh) 洗衣机
CN112251981B (zh) 衣物处理设备及其水温控制方法与装置、存储介质
CN106029968A (zh) 滚筒式洗衣机
JP4911616B2 (ja) 電気洗濯機
JP2017080011A (ja) 洗濯機
WO2020135309A1 (zh) 洗衣机
JP2013146351A (ja) 洗濯乾燥機
CN106609437A (zh) 洗衣机
JP4455637B2 (ja) 洗濯機
KR20080089840A (ko) 세탁기의 배수펌프 제어장치 및 방법
WO2020088309A1 (zh) 滚筒洗衣机
KR100447503B1 (ko) 무세제 세탁기의 전기 분해 장치 세척 방법
JP7018998B2 (ja) 洗濯機
JP2013123462A (ja) 洗濯機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906586

Country of ref document: EP

Kind code of ref document: A1