WO2020134878A1 - 一种喷墨打印机打印方法 - Google Patents

一种喷墨打印机打印方法 Download PDF

Info

Publication number
WO2020134878A1
WO2020134878A1 PCT/CN2019/122325 CN2019122325W WO2020134878A1 WO 2020134878 A1 WO2020134878 A1 WO 2020134878A1 CN 2019122325 W CN2019122325 W CN 2019122325W WO 2020134878 A1 WO2020134878 A1 WO 2020134878A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
printed
resolution
frequency division
encoder
Prior art date
Application number
PCT/CN2019/122325
Other languages
English (en)
French (fr)
Inventor
张原�
张征宇
Original Assignee
北京美科艺数码科技发展有限公司
张原�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京美科艺数码科技发展有限公司, 张原� filed Critical 北京美科艺数码科技发展有限公司
Priority to US17/417,755 priority Critical patent/US20220072853A1/en
Publication of WO2020134878A1 publication Critical patent/WO2020134878A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • B41J3/40733Printing on cylindrical or rotationally symmetrical objects, e. g. on bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04573Timing; Delays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04586Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads of a type not covered by groups B41J2/04575 - B41J2/04585, or of an undefined type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2107Ink jet for multi-colour printing characterised by the ink properties
    • B41J2/2114Ejecting specialized liquids, e.g. transparent or processing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects

Definitions

  • the invention relates to an inkjet printer printing method, in particular to an inkjet printer printing method which is applied to objects of different sizes to be printed (cylinders, cones or objects whose printing area is cylinder/cone) for image or text printing .
  • Chinese patent CN94115805.5 discloses a pattern transfer method, a printing method for transferring graphics on the curved surface of the molded product, using silk cotton paper as the transfer paper, printing the pattern with high temperature sublimation gas dye ink, and pre-forming the surface of the molded product Treatment, including cleaning, priming, primer thermosetting, applying induction resin and hardening, and then applying a layer of induction adhesive on the transfer paper, which can be re-dissolved with the induction resin and completely tight, and then stick the transfer paper
  • the high-temperature gasification sublimation reaction is used to make the pattern realistically transferred to the surface of the curved surface.
  • Chinese Patent 200510045534.7 proposes a device for printing pictures and text on the surface of a candle.
  • the device includes an inkjet printing unit.
  • the printing unit includes a printing support.
  • the printing support is provided with a print head.
  • the print head can reciprocate linearly relative to the support.
  • Two mutually parallel rotating shafts are arranged under the unit, at least one rotating shaft is connected with the driving device, and the driving device and the inkjet printing unit are connected with the circuit board.
  • the candle to be printed is placed on two rotating shafts parallel to each other.
  • the rotating shaft drives the candle to rotate step by step.
  • ink droplets are ejected and adhere to the surface of the candle.
  • the printing speed using this printing method is slow, and the printing efficiency is low.
  • no software algorithm is used to ensure consistency in resolution.
  • US Patent No. US20100295885A1 discloses a device for performing inkjet printing on a partially cylindrical printing object.
  • the device includes one or more printing heads respectively arranged in the radial direction of the upper semicircle of the printing object, and the printing head is stationary during printing Without moving, the printed object rotates around its central axis of rotation and advances along the central axis of rotation.
  • the printing speed of the inkjet printing device adopting this motion mode is fast, but its structure is complicated and the printing cost is high.
  • Japanese Patent JPH08207265A proposes a printing device capable of printing high-quality images on the surface of a cylindrical printing object of different diameters.
  • the device includes a printing unit for ejecting ink droplets on the surface of the cylinder to be printed, and a printing head is installed on the printing unit.
  • the printing device provides an adjustment and holding mechanism for adjusting and maintaining the height between the surface of the cylinder to be printed and the print head at a predetermined height.
  • the adjusting and holding mechanism provides a pair of supporting rotating shafts for supporting and driving the cylinder to be printed to rotate around the central axis, and a motor is used for driving at least one of the supporting rotating shafts to rotate.
  • the inkjet printing device includes a dual-axis driving mechanism, a lifting mechanism and a pressing mechanism, and uses a screw to drive the printing unit to eject ink droplets to a stepping motion around the central axis during the movement of the central axis of the cylinder to be printed Print the object.
  • the printing method also has the problems of slow printing speed and low printing efficiency.
  • the object of the present invention is to provide an object that is applied to cylinders, cones or printing areas with cylinders/cones of different sizes, and can ensure consistent printing resolution and high-quality printing.
  • Printer print processing method is to provide an object that is applied to cylinders, cones or printing areas with cylinders/cones of different sizes, and can ensure consistent printing resolution and high-quality printing.
  • the present invention proposes an inkjet printer printing method, an inkjet printer printing method, including a control system to control the object to be printed to continue to rotate, to control the printing carriage to move continuously in the first direction and to eject in the area to be printed
  • the required graphic is characterized in that when printing the surface of the object to be printed with different sizes, the software enables the fixed-resolution encoder to print the graphic with the same image resolution through frequency division and frequency calculation and error correction.
  • the first step is to obtain the external dimensions of the object to be printed
  • the programmable device FPGA independently calculates or the external processor assists in calculating the values of the frequency division factor N and the frequency multiplication factor M;
  • the programmable device FPGA converts the fixed resolution of the encoder into the actual image printing resolution
  • the fourth step is to send the converted encoder signal to the printing control module to realize printing.
  • frequency division coefficient M INT(Max_MN/div)
  • frequency division coefficient N INT(M ⁇ div)
  • INT means rounding the value in parentheses
  • conversion magnification div D3/D2
  • D3 means equivalent resolution in the perimeter direction of the object to be printed
  • D3 n ⁇ D1 ⁇ 25.4/(2 ⁇ R)
  • D1 is The resolution of the encoder
  • n represents the multiple of the encoder subdivision
  • R represents the radius of the object to be printed
  • D2 represents the required image printing resolution
  • Max_MN represents the maximum value within the range of the frequency division coefficient or frequency multiplication coefficient .
  • Max_MN 65534 or 254.
  • the external processor that assists in calculating the frequency division factor and frequency multiplication factor in the second step is an ARM program.
  • the numerical calculation of the frequency division coefficient and frequency multiplication coefficient in the second step is obtained by an exhaustive method.
  • the third step of converting the fixed resolution of the encoder into the actual image printing resolution process includes correcting the data after frequency division and frequency multiplication processing, the specific method is: software Shift the original number of points after a single circle Number of frequency division, the actual frequency division coefficient is corrected to N+1, and the original number of single turns after frequency multiplication (Print Cycle-Shift Number) frequency division, the frequency division coefficient is N, where Shift Number represents the number of single-turn correction points, Print Cycle represents the number of dots printed in a circle.
  • Print Cycle INT(n ⁇ D1 ⁇ M/N), where INT means to round the content in brackets, n means the multiple of encoder subdivision, D1 Is the resolution of the encoder.
  • the single-turn correction point number Shift Number n ⁇ D1 ⁇ M%N, where n represents the multiple of encoder subdivision, D1 is the resolution of the encoder, and% represents the pair of n
  • n represents the multiple of encoder subdivision
  • D1 is the resolution of the encoder
  • % represents the pair of n
  • the value of ⁇ D1 ⁇ M is divided by N to take the remainder.
  • the printing control module in the fourth step needs to calibrate the speed of the printing carriage moving in the first direction when printing, and the calculated value of the movement speed of the printing carriage in the first direction After repeated corrections, the actual movement speed of the printing carriage is finally controlled within the allowable error range.
  • the object to be printed is a cylinder, a cone, or an object whose printing area is a cylinder/cone.
  • the software uses an optimization algorithm to calculate the frequency division factor and frequency multiplication factor closest to the conversion magnification, so that objects of different sizes can be printed with the same color depth and the same resolution.
  • the number of error points in each circle of printing is corrected to make the inkjet ink droplets evenly distributed without error accumulation.
  • FIG. 1 is a schematic perspective view of an inkjet printing device in an embodiment of the invention.
  • FIG. 2 is a schematic diagram of the internal structure of the inkjet printing device of FIG. 1 after hiding the casing of the invention
  • FIG. 3 is a schematic perspective view of an inkjet printing device in another embodiment of the invention.
  • FIG. 4 is a schematic plan view of the top plate of the nozzle and the object to be printed in an embodiment of the present invention
  • FIG. 6 is a calculation table of parameters in a radius of a cylinder to be printed from 20 mm to 30 mm in an embodiment of the present invention
  • FIG. 8 is a calculation table of various parameters within a range of 45.5mm-60mm for the radius of the cylinder to be printed in an embodiment of the present invention.
  • serial numbers in the figure are specifically expressed as: printing carriage 1, beam 2, ink scraping maintenance device 3, installation object to be printed 4, curing device 5, base support assembly 7, housing assembly 8, operation panel 9, trolley towline 10,
  • the object to be printed 0, the support beam 02, the object to be printed conveying device 04, the head 11, the head bottom plate 13, the support column 101, the first head 11a, the second head 11b, the third head 11c, and the fourth head 11d.
  • an inkjet printing device in an embodiment of the present invention includes a printing carriage 1, a beam 2, an ink scraping maintenance device 3, a to-be-printed object installation device 4, a curing device 5, a base support assembly 7, and a housing ⁇ Component8.
  • the printing carriage 1 is installed on the beam 2, and the printing carriage 1 can move back and forth along the beam 2 in the first direction.
  • a plurality of printing nozzles are installed on the printing carriage 1 to eject ink droplets to form the required graphics.
  • the printing carriage 1 continuously moves along the first direction without stopping and ejects ink droplets downward.
  • the printing carriage 1 is also provided with an ink cartridge for containing ink and a corresponding negative pressure control system.
  • An ink scraping maintenance device 3 is installed on one side of the beam 2 and below the initial position of the printing carriage 1.
  • the ink scraping maintenance device 3 includes an ink scraping blade and a moisturizing cover (not shown in the figure). The nozzles on the top are wiped and cleaned, and the moisturizing cap is used to moisturize and maintain the nozzles on the printing carriage 1 to prevent the nozzles from clogging.
  • An object installation device 4 to be printed is provided at a central position below the crossbeam 2. The object installation device 4 to be printed is used to install the object to be printed and control the movement of the object to be printed.
  • the object to be printed is a cylinder
  • the installation device 4 of the object to be printed first clamps the object to be printed, and then adjusts the upper surface of the object to be printed from the plane of the nozzle orifice to achieve the optimal printing distance, and then the installation device 4 of the object to be printed controls its progress during the printing process Continuous rotation around its own central axis.
  • a curing device 5 is provided below the object to be printed.
  • the curing device 5 is used to cure the ink droplets on the object to be printed.
  • the irradiation length of the ultraviolet lamp in the curing device 5 can be adjusted according to the length of the object to be printed.
  • the base support assembly 7 is used to support and connect the above parts into one body, and the housing assembly 8 is used to cover the above parts to ensure a beautiful appearance of the printing device.
  • the operation panel 9 is used for printing and maintenance. operating.
  • the object to be printed can be a cone or the area to be printed on is outside the cylinder, and it can also be a cone or the area to be printed is a cone.
  • the upper surface of the printing area is horizontal so that the distance between the side wall and the nozzle is consistent, and the software needs to calculate different ink drop data, which is not specifically limited in the present invention.
  • the height position of the printing carriage can also be adjusted to achieve the best printing
  • the distance is not limited by the present invention.
  • the inkjet printing device includes a printing carriage 1, a support beam 02, an ink scraping maintenance device 3, an object conveying device 04 to be printed, and a support column 101.
  • the carriage 1 is installed on the support beam 02, and the printing carriage 1 is connected to the drag chain 10, and can reciprocate along the support beam 02, ie, the first direction, along with the drag chain 10, and multiple printing nozzles are installed on the carriage 1 for ejecting ink droplets.
  • an ink cartridge for accommodating ink and a corresponding negative pressure control system are also provided on the printing carriage 1, and an ink scraping maintenance device 3 is installed on the side of the support beam 02 below the initial position of the printing carriage 1
  • an object conveying device 04 to be printed is provided under the support beam 02, on the left side of the initial position of the printing carriage 1, an object conveying device 04 to be printed is provided.
  • the object conveying device 04 to be printed is a disc rotary design. There are multiple stations on 04, and multiple objects to be printed 0 can be installed.
  • the printing carriage 1 prints the objects to be printed 0 that are delivered to the support beam 02.
  • the support column 101 is provided at the right end of the support beam 02 for supporting the support beam 02.
  • FIG. 4 is a schematic plan view of the nozzle bottom plate and the object to be printed in an embodiment.
  • the bottom surface of the nozzle bottom plate 13 is parallel to the first direction.
  • the nozzle head is provided on the nozzle bottom plate 13, and the nozzle head is along the direction of the support beam 02 Four are arranged in series in one direction, which are the first head 11a, the second head 11b, the third head 11c and the fourth head 11d, each head can print two colors of ink or one color of ink,
  • the first head 11a is used to print white ink or coated ink
  • the second head 11b is used to eject black (K) ink and cyan (C) ink
  • the third head 11c is used to eject Magenta (M) ink and yellow (Y) ink
  • the fourth nozzle 11d can be used to print transparent ink or not, and the nozzle starts to move in the first direction to the object to be printed 0 above the pattern area to be printed Jet in
  • the present application does not limit the number of nozzles and the arrangement of inks of different colors.
  • the nozzle bottom plate 13 can also be provided with three nozzles, or other numbers of nozzles, and each nozzle can be set to print one color.
  • the ink can also be set to print two colors of ink, and the color and type of printing ink are not specifically limited.
  • the software first obtains the external dimensions of the object to be printed.
  • the external dimensions can be the diameter or radius of the cylinder to be printed, which can be manually entered by the operator or passed
  • the sensor automatically measures; then, according to the above dimensions, the software calculates the value of the frequency division factor and frequency multiplication factor required for signal conversion.
  • the value of the frequency division factor and frequency multiplication factor needs a specific algorithm to make it as close to the theoretical value as possible to reduce Error; then, the software uses the calculated frequency division factor and frequency multiplication factor to convert the fixed resolution of the encoder into the actual image printing resolution.
  • the numerical calculation of the frequency division factor and frequency multiplication factor is close to Based on the theoretical value, the error part must be corrected; finally, the final converted encoder signal is sent to the printing control module to achieve printing.
  • the software also moves the printing carriage in the first direction The speed is corrected multiple times to ensure good print quality.
  • a fixed resolution encoder is installed in advance.
  • the encoder can rotate with the cylinder.
  • the resolution of the encoder is defined as D1. This resolution is the resolution before orthogonalization.
  • the encoder can be subdivided by multiple pulses. n times, the actual corresponding resolution of the encoder at this time is n ⁇ D1, the required image printing resolution is defined as D2, and the equivalent resolution in the circumferential direction corresponding to the objects to be printed with different radii is defined as D3.
  • frequency multiplication factor M INT (Max_MN/div)
  • frequency division factor N INT (M ⁇ div)
  • INT means to round the value in parentheses
  • the calculation process of the value of M and N is assisted by the ARM program, or it can be independently calculated by the programmable device FPGA; then use the frequency division factor N and times Frequency coefficient M, the programmable device FPGA converts the fixed resolution of the encoder into the actual image printing resolution, the actual image printing resolution is D3 ⁇ M/N, that is: [n ⁇ D1 ⁇ 25.4/(2 ⁇ R)] ⁇ M/N;
  • the converted encoder signal is sent to the print control module to achieve printing.
  • a fixed-resolution encoder can still print graphics and text with the same image resolution, to avoid printing images on cylinders of different radii with inconsistent color shades Case.
  • the radius of the object to be printed changes, the corresponding frequency division factor N and frequency multiplication factor M are also recalculated according to the above formula. Using this method, it can be applied to cylinders of different sizes, usually we need to print The radius of the cylinder ranges from 20mm to 60mm.
  • the specific calculation table is shown in Figure 6-8.
  • the error is within 0.0090114, and an image with satisfactory quality can be printed.
  • Max_MN can still guarantee the print quality after calculation and testing after taking the value of 254.
  • the present invention does not specifically limit the value of Max_MN, as long as the actual print resolution is close to the required image print resolution and can meet the print quality requirements.
  • the frequency division factor N is brought into the value from 1 to Max_MN, and the value of N/M is calculated in turn, and the N/M is obtained by comparing all the values of N/M When it is closest to the div, the values at this time are defined as the final frequency division factor N and frequency multiplication factor M.
  • the present invention does not limit the specific algorithm for finding the frequency division factor N and the frequency multiplication factor M. Any method that can obtain the closest div value and the actual print resolution error is within the acceptable range can be used.
  • the original encoder signal is processed through the frequency division factor N and the frequency multiplication factor M. Since the radius of the cylinder to be printed is a variable arbitrary value, the number of single-turn points after frequency division and multiplication processing often appears non-integer, so It will lead to the accumulation of errors. If the errors cannot be distributed to the single-circle 360-degree printing process, but accumulate to the end of the single-circle printing, the printed image may appear white seams or overlap. In order to avoid this situation, and want to print images with consistent density, the present invention adopts a correction algorithm for the errors generated during the process of converting the fixed resolution of the encoder into the actual image printing resolution.
  • the specific method is: The actual resolution n ⁇ D1 corresponding to the rotary encoder is recorded as the original number of single circles, then the theoretical value of the number of single circle printing points at the required image printing resolution D2 is n ⁇ D1 ⁇ M/N, after rounding it The number of single-circle printing dots at the required image printing resolution D2 is obtained.
  • Print Cycle INT (n ⁇ D1 ⁇ M/N), and the software generates a single-circle job with the same number of dots for printing according to the Print Cycle value RIP.
  • n ⁇ D1 ⁇ M (Print Cycle-Shift Number) ⁇ N+Shift Number ⁇ (N+1).
  • the rotation speed V x of the object to be printed is fixed by the ignition frequency.
  • the software also needs to correct the movement speed of the printing carriage in the first direction, so that the printing pattern of each circle Consistent falling points ensure the printing image effect.
  • the software calculates the movement speed of the printing carriage in the first direction according to the parameters such as the ignition frequency of the print head, the external dimensions of the object to be printed, the required image printing resolution, and the total number of pulses in one rotation.
  • Theoretical value V y the printing carriage moves at the speed of the theoretical value V y , compares the deviation between the actual displacement and the theoretical displacement calculated according to the theoretical value V y , and then compares the movement speed of the printing carriage in the first direction Make corrections, and then compare the deviation between the actual displacement after the correction and the theoretical displacement, and then correct the movement speed of the printing carriage in the first direction. Repeat this many times and use the approximation method until the error is within the allowable range. Thereby, the printing carriage is controlled to move in the first direction at the corrected speed to ensure that images that meet the quality requirements are printed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ink Jet (AREA)

Abstract

一种喷墨打印机打印方法,包括控制系统控制待打印对象(0)持续旋转、控制打印小车(1)沿第一方向连续移动并在待打印区域喷射出所需图文,具体的步骤为:第一步,获取待打印对象的外形尺寸;第二步,根据所述外形尺寸,由可编程器件FPGA独立计算或外部处理器协助计算出分频系数N和倍频系数M的数值;第三步,利用分频系数N和倍频系数M,可编程器件FPGA将编码器的固定分辨率转化为实际的图像打印分辨率;第四步,将转化后的编码器信号输送给打印控制模块实现打印。采用该方法可在打印对象外形尺寸不同的情况下打印出分辨率一致、优秀质量的图文来。

Description

一种喷墨打印机打印方法 技术领域
本发明涉及一种喷墨打印机打印方法,具体说涉及一种应用于不同尺寸待打印对象(圆柱体、圆锥体或打印区域为圆柱/圆锥的物体)进行图像或文字打印的喷墨打印机打印方法。
背景技术
现有技术中在曲面上印刷精美图案和文字的方法中最简单的方法是在平面载体上进行印刷,在该载体与目标曲面结合,这种方法费时费力且最终的效果无法保证。中国专利CN94115805.5公开一种图案转印法,在成型品的曲面表面转印图线的印刷方法,采用丝绵纸作为转印纸,用高温升华气染油墨印制图案,对成型品表面预先处理,包括清洁、上底漆、底漆热硬化、上感应树脂并加硬化,再在转印纸上涂一层感应黏着剂,与感应树脂可再溶而完全密着,然后把转印纸贴于曲面表面上,不需用模具加压,利用高温气化升华反应,使图案逼真地转印于曲面表面,具有美观、耐用、不易脱落的特点。
随着喷墨打印技术的日益发展,人们开始尝试如何在曲面物体上直接进行喷墨打印形成所需的图案或文字。中国专利200510045534.7提出一种在蜡烛表面打印图文的装置,该装置包括喷墨打印单元,该打印单元包括打印支架,打印支架上设置打印头,打印头可相对于支架直线往复运动,喷墨打印单元下方设置两个相互平行的转轴,至少一个转轴与驱动装置联接,驱动装置及喷墨打印单元与线路板连接。待打印的蜡烛放置在两相互平行的转轴上,由于该装置未设压紧机构容易导致在转动过程中蜡烛的驱动力不足。且打印过程中,转轴带动蜡烛步进转动,打印头往复运动的过程中喷出墨滴附着在蜡烛表面。采用该打印方法的打印速度慢,打印效率较低。并且在蜡烛直径变化后,也没有采用使分辨率确保一致性的软件算法进行处理。
美国专利US20100295885A1公开一种在部分为圆柱体的打印物体上进行喷墨打印的装置,该装置包括一个或多个打印头分别设置在打印物体的上半圆的径向方向,打印过程中打印头静止不动,打印物体绕其旋转中心轴旋转并沿旋转中心轴前进。采用这种运动方式的喷墨打印装置打印速度快,但其结构复杂,打印成本高。
日本专利JPH08207265A提出一种打印装置,该装置能够在不同直径的圆柱体打印对象表面打印高质量的图像。该装置包括一打印单元,用于喷射墨滴于待打印圆柱体表面,在打印单元上安装有打印头。该打印装置提供一个调整保持机构,用于调整和保持待打印圆柱体表面与打印头之间高度在一个预定的高度。调整保持机构提供一对支撑转轴,用于支撑并驱动待打印圆柱体绕中心轴旋转,一电机用于驱动支撑转轴中的至少一根转轴旋转。该喷墨打印装置包括双轴驱动机构、升降机构及压紧机构,采用丝杆驱动打印单元在待打印圆柱体的中心轴方向运动的过程中将墨滴喷射到绕中心轴步进运动的待打印对象上。采用该打印方法同样存在的打印速度慢,打印效率较低的问题。
技术问题
在打印圆柱体的外形尺寸发生变化时,如果使用不经处理或处理不够完善的数据进行打印,很容易会打印出深浅不同、密度不一致的图文来,若在下发数据时每一圈都出现误差的积累,还可能会产生图案首尾对接不上或变形的图文来;另外,根据喷头打印的点火频率、待打印对象外形尺寸、需要的图像打印分辨率以及旋转一圈的总脉冲数等参数能得到一个理论的打印小车沿第一方向运动速度值,如若实际过程中打印小车的运动速度与其差异较大,便会影响打印质量,甚至打印不出所需的图文来。
技术解决方案
针对现有技术中存在的问题,本发明的目的在于提供一种应用于不同外形尺寸的圆柱体、圆锥体或打印区域为圆柱/圆锥的物体,并且能确保打印分辨率一致、打印质量优质的打印机打印处理方法。
为实现上述目的,本发明提出一种喷墨打印机打印方法,一种喷墨打印机打印方法,包括控制系统控制待打印对象持续旋转、控制打印小车沿第一方向连续移动并在待打印区域喷射出所需图文,其特征在于,在打印不同尺寸的待打印对象表面时,软件通过分频倍频计算以及误差修正使固定分辨率的编码器打印出图像分辨率一致的图文来,具体的步骤为:
第一步,获取待打印对象的外形尺寸;
第二步,根据所述外形尺寸,由可编程器件FPGA独立计算或外部处理器协助计算出分频系数N和倍频系数M的数值;
第三步,利用分频系数N和倍频系数M,可编程器件FPGA将编码器的固定分辨率转化为实际的图像打印分辨率;
第四步,将转化后的编码器信号输送给打印控制模块实现打印。
在上述喷墨打印机打印方法中,所述第二步中分频系数和倍频系数的计算方法为:倍频系数M = INT(Max_MN/div),分频系数N = INT(M×div),其中INT表示对括号里的数值取整,转换倍率div=D3/D2,D3表示待打印对象对应周长方向上的等效分辨率 D3= n×D1×25.4/(2πR),其中D1为所述编码器的分辨率,n表示编码器细分的倍数,R表示待打印对象的半径,D2表示需要的图像打印分辨率,Max_MN表示分频系数或倍频系数取值范围内的最大值。
在上述喷墨打印机打印方法中,所述Max_MN取数值为65534或254。
在上述喷墨打印机打印方法中,所述第二步中协助计算分频系数和倍频系数的外部处理器为ARM程序。
在上述喷墨打印机打印方法中,所述第二步中分频系数和倍频系数的数值计算通过穷举法得到。
在上述喷墨打印机打印方法中,第三步中将编码器的固定分辨率转化为实际的图像打印分辨率过程包括对分频倍频处理后的数据进行修正,具体方法为:软件对倍频后的单圈原始点数进行Shift Number次的分频,将实际分频系数修正为N+1,并对倍频后的单圈原始点数进行(Print Cycle-Shift Number)次的分频,分频系数为N,其中Shift Number表示单圈修正点数,Print Cycle表示单圈打印点数。
在上述喷墨打印机打印方法中,所述单圈打印点数Print Cycle=INT(n×D1×M/N),其中INT表示对括号中的内容取整,n表示编码器细分的倍数,D1为所述编码器的分辨率。
在上述喷墨打印机打印方法中,所述单圈修正点数Shift Number=n×D1×M%N,其中n表示编码器细分的倍数,D1为所述编码器的分辨率,%表示对n×D1×M的数值除以N取余数。
在上述喷墨打印机打印方法中,第四步中打印控制模块实现打印时还需将打印小车沿第一方向运动的速度进行校准,通过与计算出的打印小车沿第一方向的运动速度理论值进行反复修正,最终控制打印小车实际的运动速度在允许误差范围之内。
在上述喷墨打印机打印方法中,所述待打印对象为圆柱体、圆锥体或打印区域为圆柱/圆锥的物体。
有益效果
本发明的喷墨打印机打印方法,有益效果在于:
1. 在待打印对象的外形尺寸变化时,软件采用优化算法计算出最接近转换倍率的分频系数和倍频系数,使不同尺寸的待打印对象都能够打印出颜色深浅相同分辨率一致的图文来;
2.在进行分频处理和倍频处理后,对打印每一圈中存在的误差点数进行修正,使喷绘墨滴均匀分布,没有误差累积。
3.在待打印对象绕自身旋转中心轴旋转的速度不变的情况下,对打印小车沿第一方向运动的速度采用逼近法进行多次修正,直到修正到误差允许的范围之内,从而确保喷绘质量。
附图说明
图1为本发明一个实施例中的喷墨打印装置的立体示意图;
图2为本发明图1隐藏外壳后的喷墨打印装置内部结构示意图;
图3为本发明另一个实施例中喷墨打印装置的立体示意图;
图4为本发明一个实施例中喷头底板与待打印对象的俯视原理图;
图5为本发明打印机打印方法的流程图;
图6为本发明的一个实施例中待打印圆柱体半径由20mm-30mm范围内的各参数计算表格;
图7为本发明的一个实施例中待打印圆柱体半径由30.5mm-45mm范围内的各参数计算表格;
图8为本发明的一个实施例中待打印圆柱体半径由45.5mm-60mm范围内的各参数计算表格。
图中序号具体表示为:打印小车1、横梁2、刮墨维护装置3、待打印对象安装装置4、固化装置5、底座支撑组件7、壳体组件8、操作面板9、小车拖链10、待打印对象0、支撑梁02、待打印对象传送装置04、喷头11、喷头底板13、支撑柱101、第一喷头11a、第二喷头11b、第三喷头11c和第四喷头11d。
本发明的实施方式
下面结合附图和具体实施例对本发明作进一步的详细描述。
如图1-2所示,本发明一个实施例中的喷墨打印装置包括打印小车1、横梁2、刮墨维护装置3、待打印对象安装装置4、固化装置5、底座支撑组件7和壳体组件8。打印小车1安装在横梁2上,打印小车1沿横梁2即第一方向可进行往返运动,在打印小车1上安装多个打印喷头用于喷射墨滴形成所需图文,在打印过程中,打印小车1沿第一方向无停歇的持续运动并向下方喷射墨滴,在打印小车1上还设置有用于容纳墨水的墨盒及相应的负压控制系统。在横梁2的一侧、打印小车1初始位置下方安装一刮墨维护装置3,刮墨维护装置3包括刮墨片和保湿盖(图中未示出),刮墨片用于对打印小车1上的喷头进行刮拭清洁,保湿盖用于对打印小车1上的喷头进行保湿维护,防止喷头喷孔堵塞。在横梁2下方中部位置设置一待打印对象安装装置4,待打印对象安装装置4用于安装待打印对象并控制所述待打印对象的运动,本实施例中的待打印对象为一圆柱体,待打印对象安装装置4先将待打印对象卡紧,然后调节待打印对象上表面距离喷头喷孔所在平面之间达到最佳的打印距离,随后在打印过程中待打印对象安装装置4控制其进行绕自身中心轴的持续旋转运动。在待打印对象下方设置一固化装置5,固化装置5用于对待打印对象上的墨滴进行固化处理,固化装置5中的紫外灯照射长度可根据待打印对象的长短进行调节。底座支撑组件7用于将上述部分支撑并连接至一体,壳体组件8用于将上述部分罩住以保证打印装置的外形美观,如图1所示,操作面板9用于对打印及维护进行操作。
需要说明的是,待打印对象除了为圆柱体或其上的待打印区域为圆柱体外,还可以为圆锥体或待打印区域为圆锥体,此时待打印对象安装装置4还需要调节圆锥体待打印区域的上表面水平从而使其侧壁距喷头的距离保持一致、并需要软件计算不同的下墨数据,本发明对此并不做具体限定。
需要说明的是,在调节待打印对象上表面与喷头喷孔所在平面之间的打印距离时,除了对待打印对象的高度进行调节外,也可以采用调节打印小车的高度位置来实现最佳的打印距离,本发明对此不进行限定。
图3为本发明另一个实施例中喷墨打印装置的结构示意图,该喷墨打印装置包括打印小车1、支撑梁02、刮墨维护装置3、待打印对象传送装置04和支撑柱101,打印小车1安装在支撑梁02上,打印小车1连接拖链10,可随拖链10沿支撑梁02即第一方向进行往返运动,在打印小车1上安装多个打印喷头用于喷射墨滴形成所需图文,在打印小车1上还设置有用于容纳墨水的墨盒及相应的负压控制系统,在支撑梁02的一侧、打印小车1初始位置下方安装一刮墨维护装置3,这些与上述实施例基本相同。不同之处在于,在支撑梁02下方、打印小车1初始位置的左侧设置一待打印对象传送装置04,所述待打印对象传送装置04为一圆盘旋转式设计,在待打印对象传送装置04上具有多个工位能够安装多个待打印对象0,打印小车1对传送至支撑梁02下方的待打印对象0进行打印作业,在打印作业时该工位的待打印对象绕自身中心轴持续旋转,打印小车1沿第一方向持续无间歇运动并向下方喷射墨滴,在其他工位处的待打印对象0进行安装、卸下或者完全固化等其他作业。支撑柱101设置在支撑梁02的右侧端部,用于对支撑梁02进行支撑。
图4为一实施例中喷头底板与待打印对象的俯视原理图,如图所示,喷头底板13的底面与第一方向平行,在喷头底板13上设置喷头,喷头沿支撑梁02方向即第一方向水平串联方式设置四个,分别为第一喷头11a、第二喷头11b、第三喷头11c和第四喷头11d,每个喷头可打印两种颜色的墨水也可打印一种颜色的墨水,根据打印具体需要,本实施例中第一喷头11a用于打印白色墨水或者涂层类墨水,第二喷头11b用来喷射黑色(K)墨水和青色(C)墨水,第三喷头11c用来喷射品红色(M)墨水和黄色(Y)墨水,第四喷头11d可用来打印透明墨水,也可不进行喷墨,喷头在沿第一方向持续运动至待打印对象0需打印图案区域的上方时开始喷射墨滴。
需要说明的是,本申请并不限定喷头设置的数量及不同颜色墨水的排列,喷头底板13上也可设置三个喷头,或者设置其他数量的喷头,且每个喷头可设置打印一种颜色的墨水也可设置打印两种颜色的墨水,并且对打印墨水的颜色和种类也不进行具体限定。
下面根据图5说明对上述打印机进行数据处理的打印方法:首先,软件先获取待打印对象的外形尺寸,外形尺寸可以为待打印圆柱体的直径或半径,可通过操作者手动输入,也可通过传感器自动测量;然后,根据上述的外形尺寸,软件计算出信号转化所需的分频系数和倍频系数数值,分频系数和倍频系数的数值需特定算法使其尽量接近理论值从而减小误差;接着,软件利用计算出的分频系数和倍频系数将编码器的固定分辨率转化为实际的图像打印分辨率,在转化过程中,由于分频系数和倍频系数的数值计算是接近于理论值,还要对其产生的误差部分进行修正;最后,将最终转化后的编码器信号输送给打印控制模块实现打印,在实现打印过程中,软件还要对打印小车沿第一方向运动的速度进行多次修正,从而确保良好的打印质量。
接下来详细介绍一下软件是如何对不同半径/直径的待打印对象进行分频倍频计算的。预先安装有一固定分辨率的编码器,编码器可随圆柱体一同旋转,定义编码器的分辨率为D1,此分辨率为正交之前的分辨率,通过多条脉冲可将编码器再细分n倍,此时编码器实际对应的分辨率为n×D1,将需要的图像打印分辨率定义为D2,将不同半径的待打印对象对应周长方向上的等效分辨率定义为D3。首先获取待打印对象圆柱体的外形尺寸,这里用待打印对象圆柱体半径R表示;然后根据待打印对象的外形尺寸,计算待打印对象对应周长方向上的等效分辨率D3= n×D1×25.4/(2πR),如果想要把等效分辨率D3转化为需要的图像打印分辨率D2时,需要对等效分辨率D3进行分频倍频处理,此时将需要的转换倍率定义为div,那么转换倍率div=D3/D2= n×D1×25.4/(2πR)/ D2,再将分频系数定义为N,倍频系数定义为M,分频或倍频系数取值范围内的最大值记为Max_MN,为了尽可能的降低计算误差,我们采用以下方式计算出最终的倍频系数M和分频系数N:倍频系数M = INT(Max_MN/div),分频系数N = INT(M×div),INT表示对括号内的数值进行取整,M、N的取值计算过程由ARM程序协助计算完成,也可由可编程器件FPGA独立计算完成;然后利用分频系数N和倍频系数M,可编程器件FPGA将编码器的固定分辨率转化为实际的图像打印分辨率,实际的图像打印分辨率为D3×M/N,即:[ n×D1×25.4/(2πR)] ×M/N;最后,将转化后的编码器信号输送给打印控制模块实现打印。应用此种方法,便可在待打印对象半径发生变化时,使用固定分辨率的编码器仍能打印出图像分辨率一致的图文来,避免在不同半径的圆柱体上打印出图像颜色深浅不一致的情况。
本实施例以旋转编码器的分辨率D1=2500为例,编码器的细分倍数n=4,待打印对象圆柱体的横截面半径为R=20mm(直径为40mm),需要的图像打印分辨率D2=600dpi,则待打印对象的对应周长方向上的等效分辨率D3=2500×4×25.4/(2π×20)≈2021.26778dpi,此时转换倍率div= D3/D2=2021.26778/600≈3.36878, 由计算机软件预先定义范围,为防止数字溢出,此实施例中最大的分频或倍频系数Max_MN取值设为65534,那么则M= INT(Max_MN/div)= INT(65534/3.36878) =19453,N = INT(M×div)=INT(19453×3.36878)=65533,于是便找出了误差尽可能小的分频系数 N和倍频系数M,依照得到的倍频系数M=19453和分频系数 N=65533,对编码器信号进行转化然后输送给打印控制模块进行打印。理论上可计算出实际打印分辨率= D3×M/N=2500×4×25.4/(2π×20)×19453/65533≈599.9988109,此分辨率已经很接近图像打印分辨率600dpi,人眼识别没有差异。如果待打印对象的半径发生变化,那么对应的分频系数 N和倍频系数M也依上述公式重新进行计算,应用此种方法,便可适用于不同尺寸的圆柱体,通常我们所需打印的圆柱体半径范围为20mm-60mm。具体的计算表格如图6-8所示,从表中可见,应用此种方法,实际打印分辨率中最小的数值为599.995614,最大的数值为600.0045728,与需要的图像打印分辨率D2=600dpi相比,误差在0.0090114之中,能够打印出质量合乎需求的图像来。
需要说明的是,Max_MN除取数值65534外,取数值254后经计算和测试,依然能保证打印质量。本发明对Max_MN的取值并不做具体限定,只要实际打印分辨率接近所需要的图像打印分辨率、能够合乎打印质量要求即可。
除采用上述算法外,我们还可以采用穷举法来计算尽可能减小误差的分频系数 N和倍频系数M,即软件将倍频系数M带入1,将分频系数 N带入由1至Max_MN的数值,依次计算出N/M的数值;然后将倍频系数M带入2,将分频系数 N带入由1至Max_MN的数值,依次计算出N/M的数值……以此类推,直至将倍频系数M代入Max_MN,将分频系数 N带入由1至Max_MN的数值,依次计算出N/M的数值,通过对所有N/M的数值进行比较,得到N/M最接近div的时候,则将此时的数值定义为最终的分频系数 N和倍频系数M。
本发明并不限定找出分频系数 N和倍频系数M的具体算法,凡是能得出最接近div数值、实际打印分辨率误差在可接受范围内的方法皆可试用其中。
通过分频系数 N和倍频系数M对原始编码器信号进行处理,由于待打印对象圆柱体的半径为可变任意数值,经过分倍频处理后的单圈点数往往会出现非整数情况,这样将导致误差的累积,如若不能将误差分配至单圈360度的打印过程中,而是累积至单圈打印的末端,打印图像可能会出现白缝或者首末重叠的现象。为避免此种情况出现,想要打印出密度一致的图像来,本发明在将编码器的固定分辨率转化为实际的图像打印分辨率的过程中产生的误差采用了修正算法,具体方法为:将旋转编码器实际对应的分辨率n×D1记为单圈原始点数,那么在所需图像打印分辨率D2下的单圈打印点数理论值为n×D1×M/N ,对其取整后得到在所需图像打印分辨率D2下的单圈打印点数Print Cycle=INT(n×D1×M/N),软件根据所述Print Cycle数值RIP出单圈同样点数的作业用于打印。由于倍频后的点数不能整除分频系数N,会出现小数部分,所述小数部分需要在单圈360度内进行补偿,将该小数部分定义为单圈修正点数Shift Number,即要将单圈修正点数Shift Number均匀分布到所需图像打印分辨率D2下的单圈打印点数Print Cycle中,Shift Number=n×D1×M%N(%表示对n×D1×M的数值除以N取余数),此时,软件需对倍频后的单圈原始点数进行Shift Number次的分频,将实际分频系数修正为N+1;并对倍频后的单圈原始点数进行(Print Cycle-Shift Number)次的分频,分频系数为N,即完成了对分倍频算法后出现余数产生误差的修正,需要说明的是,这里默认Shift Number小于Print Cycle。
对上述修正算法的整体公式表达为:n×D1×M=(Print Cycle-Shift Number)×N+Shift Number×(N+1)。通过将剩余不足N的点数Shift Number均匀分布到单圈打印点数Print Cycle中的方法,可使其小数部分在单圈内完成了补偿,从而消除误差累积,使图像打印密度最大限度的保持均匀一致,并且在圆周的首尾相接处效果良好。
在打印控制模块实现打印的过程中,待打印对象的旋转速度V x由点火频率确定固定不变,软件还需要对打印小车沿第一方向的运动速度进行修正,从而使每一圈的打印图案落点一致确保打印图像效果。具体来说,在打印过程中,软件根据喷头打印的点火频率、待打印对象外形尺寸、需要的图像打印分辨率以及旋转一圈的总脉冲数等参数计算出打印小车沿第一方向运动速度的理论值V y,打印小车以该理论值V y的速度进行运动,比较实际走过的位移与依照理论值V y计算出的理论位移产生的偏差,然后对打印小车沿第一方向的运动速度进行修正,接着再比较修正后实际走过的位移与理论位移产生的偏差,再对打印小车沿第一方向的运动速度进行修正,如此反复多次、采用逼近方法直到误差在允许范围之内,从而控制打印小车以修正后的速度沿第一方向运动,以确保打印出符合质量要求的图像来。
需要指出的是,根据本发明的具体实施方式所作的任何变形,均不脱离本发明的精神以及权利要求记载的范围。

Claims (10)

  1. 一种喷墨打印机打印方法,包括控制系统控制待打印对象持续旋转、控制打印小车沿第一方向连续移动并在待打印区域喷射出所需图文,其特征在于,在打印不同尺寸的待打印对象表面时,软件通过分频倍频计算以及误差修正使固定分辨率的编码器打印出图像分辨率一致的图文来,具体的步骤为:
    第一步,获取待打印对象的外形尺寸;
    第二步,根据所述外形尺寸,由可编程器件FPGA独立计算或外部处理器协助计算出分频系数N和倍频系数M的数值;
    第三步,利用分频系数N和倍频系数M,可编程器件FPGA将编码器的固定分辨率转化为实际的图像打印分辨率;
    第四步,将转化后的编码器信号输送给打印控制模块实现打印。
  2. 如权利要求1所述的喷墨打印机打印方法,其特征在于,所述第二步中分频系数和倍频系数的计算方法为:倍频系数M = INT(Max_MN/div),分频系数N = INT(M×div),其中INT表示对括号里的数值取整,转换倍率div=D3/D2,D3表示待打印对象对应周长方向上的等效分辨率 D3= n×D1×25.4/(2πR),其中D1为所述编码器的分辨率,n表示编码器细分的倍数,R表示待打印对象的半径,D2表示需要的图像打印分辨率,Max_MN表示分频系数或倍频系数取值范围内的最大值。
  3. 如权利要求2所述的喷墨打印机打印方法,其特征在于,所述Max_MN取数值为65534或254。
  4. 如权利要求1所述的喷墨打印机打印方法,其特征在于,所述第二步中协助计算分频系数和倍频系数的外部处理器为ARM程序。
  5. 如权利要求1所述的喷墨打印机打印方法,其特征在于,所述第二步中分频系数和倍频系数的数值计算还可以通过穷举法得到。
  6. 如权利要求1所述的喷墨打印机打印方法,其特征在于,第三步中将编码器的固定分辨率转化为实际的图像打印分辨率过程包括对分频倍频处理后的数据进行修正,具体方法为:软件对倍频后的单圈原始点数进行Shift Number次的分频,将实际分频系数修正为N+1,并对倍频后的单圈原始点数进行(Print Cycle-Shift Number)次的分频,分频系数为N,其中Shift Number表示单圈修正点数,Print Cycle表示单圈打印点数。
  7. 如权利要求6所述的喷墨打印机打印方法,其特征在于,所述单圈打印点数Print Cycle=INT(n×D1×M/N),其中INT表示对括号中的内容取整,n表示编码器细分的倍数,D1为所述编码器的分辨率。
  8. 如权利要求6所述的喷墨打印机打印方法,其特征在于,所述单圈修正点数Shift Number=n×D1×M%N,其中n表示编码器细分的倍数,D1为所述编码器的分辨率,%表示对n×D1×M的数值除以N取余数。
  9. 如权利要求1所述的喷墨打印机打印方法,其特征在于,第四步中打印控制模块实现打印时还需将打印小车沿第一方向运动的速度进行校准,通过与计算出的打印小车沿第一方向的运动速度理论值进行反复修正,最终控制打印小车实际的运动速度在允许误差范围之内。
  10. 如权利要求1所述的喷墨打印机打印方法,其特征在于,所述待打印对象为圆柱体、圆锥体或打印区域为圆柱/圆锥的物体。
PCT/CN2019/122325 2018-12-24 2019-12-02 一种喷墨打印机打印方法 WO2020134878A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/417,755 US20220072853A1 (en) 2018-12-24 2019-12-02 A printing method for inkjet printers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811577354.7A CN109572216B (zh) 2018-12-24 2018-12-24 一种喷墨打印机打印方法
CN201811577354.7 2018-12-24

Publications (1)

Publication Number Publication Date
WO2020134878A1 true WO2020134878A1 (zh) 2020-07-02

Family

ID=65931413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122325 WO2020134878A1 (zh) 2018-12-24 2019-12-02 一种喷墨打印机打印方法

Country Status (3)

Country Link
US (1) US20220072853A1 (zh)
CN (1) CN109572216B (zh)
WO (1) WO2020134878A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11813844B2 (en) 2019-04-08 2023-11-14 LSINC Corporation Method for reconfiguring a media printer to optimize single media printing
CN110481169B (zh) * 2019-08-30 2024-05-07 北京亚美科软件有限公司 喷墨打印机用信号选择板及信号选择方法
CN110450550B (zh) * 2019-08-30 2023-12-19 北京亚美科软件有限公司 喷墨打印装置及喷墨打印装置用打印方法
CN110733265B (zh) * 2019-11-01 2023-12-19 北京亚美科软件有限公司 喷墨打印机用喷头保护装置及喷头保护方法
CN111806097A (zh) * 2020-07-21 2020-10-23 北京美科艺数码科技发展有限公司 一种喷墨打印装置及其翻面模式打印方法
CN114347650B (zh) * 2020-10-13 2023-06-09 深圳市汉森软件有限公司 图像精度自适应打印方法、装置、设备及存储介质
CN112776492B (zh) * 2020-12-31 2022-11-08 苏州工业园区鑫海胜电子有限公司 一种无物理光栅的打印方法
US11312158B1 (en) * 2021-04-29 2022-04-26 LSINC Corporation Method for partial curing of printed images on transparent and semi-transparent media
CN115756342A (zh) * 2021-09-02 2023-03-07 深圳市汉森软件有限公司 消除打印色差的方法、装置、设备及存储介质
CN114103459B (zh) * 2021-11-25 2022-06-14 北京博示电子科技有限责任公司 一种喷墨控制方法、装置、设备及存储介质
CN114347679B (zh) * 2021-12-31 2022-11-29 东莞市启思达智能技术有限公司 一种变精度的信号处理方法及系统
CN114889346B (zh) * 2022-04-25 2024-03-26 深圳市汉拓数码有限公司 一种喷印控制方法、控制器及数码打印机
CN118124273B (zh) * 2024-05-07 2024-07-12 山东艾比比环保科技有限公司 瓶盖加工用内盖面喷印装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070587A2 (en) * 1999-07-19 2001-01-24 Canon Kabushiki Kaisha Printing apparatus and printing method
CN103182864A (zh) * 2011-12-31 2013-07-03 北大方正集团有限公司 数码喷印同步控制装置及其控制方法
CN104275800A (zh) * 2013-07-12 2015-01-14 施乐公司 用于在旋转表面上打印三维物体的数字制造系统
CN104553382A (zh) * 2013-10-22 2015-04-29 北大方正集团有限公司 打印精度的处理方法和装置
CN105691021A (zh) * 2014-12-09 2016-06-22 克朗斯股份公司 用于在容器上喷墨打印的方法和装置
US20170277064A1 (en) * 2016-03-28 2017-09-28 Canon Kabushiki Kaisha Image forming apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012005924A1 (de) * 2012-03-26 2013-09-26 Khs Gmbh Verfahren und eine Anordnung zum Bedrucken einer Oberfläche
DE102013000888A1 (de) * 2013-01-18 2014-07-24 Heidelberger Druckmaschinen Ag Verfahren zum Erzeugen eines Druckbildes auf einem rotierenden, dreidimensionalen Körper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070587A2 (en) * 1999-07-19 2001-01-24 Canon Kabushiki Kaisha Printing apparatus and printing method
CN103182864A (zh) * 2011-12-31 2013-07-03 北大方正集团有限公司 数码喷印同步控制装置及其控制方法
CN104275800A (zh) * 2013-07-12 2015-01-14 施乐公司 用于在旋转表面上打印三维物体的数字制造系统
CN104553382A (zh) * 2013-10-22 2015-04-29 北大方正集团有限公司 打印精度的处理方法和装置
CN105691021A (zh) * 2014-12-09 2016-06-22 克朗斯股份公司 用于在容器上喷墨打印的方法和装置
US20170277064A1 (en) * 2016-03-28 2017-09-28 Canon Kabushiki Kaisha Image forming apparatus

Also Published As

Publication number Publication date
US20220072853A1 (en) 2022-03-10
CN109572216A (zh) 2019-04-05
CN109572216B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2020134878A1 (zh) 一种喷墨打印机打印方法
EP3953184B1 (en) Method for ink pressure modulation in a printer for axially symmetric objects
JP6535279B2 (ja) 3次元表面に印刷するための方法及び装置
JP5683908B2 (ja) タイヤ表面印刷方法およびタイヤ
US11559983B2 (en) Method for creating a print control profile for printing on a contoured axially symmetric object
JPS6227170A (ja) 金属またはプラスチツク製の容器の装飾を行う方法およびこの方法を実施する装置
US20180162056A1 (en) Shaping method, shaping system, and shaping device
CN104118212B (zh) 一种喷墨打印装置及喷墨打印方法
JP5914064B2 (ja) プリント装置
JP2009178986A (ja) インクジェット記録装置およびヘッド紙間距離検出方法
JP6669175B2 (ja) インクジェット記録装置及びインクジェット記録装置のインク吐出調整方法
WO2024054224A1 (en) Reconfigurable single media printer having a positionable media support carriage
US10207525B2 (en) Image forming apparatus and image forming method
CN113939404B (zh) 一种喷墨打印机及其一遍式喷墨打印方法
US11440250B2 (en) Three-dimensional shaping method
US8622503B2 (en) Inkjet image forming apparatus, method of designing same and method of improving image formation quality
CN203974252U (zh) 一种喷墨打印装置
JP2019014067A (ja) 産業用インクジェット描画装置
JP2012192742A (ja) タイヤ表面印刷方法およびタイヤ用印刷装置
US20230128066A1 (en) Reconfigurable Single Media Printer Having a Positionable Media Support Carriage
CN113905889B (zh) 一种喷墨打印机及一遍式喷墨打印方法
WO2023042334A1 (ja) 塗装方法および制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904631

Country of ref document: EP

Kind code of ref document: A1