WO2020134797A1 - 通过构建虚拟sar图像实现wsn节点定位的方法及装置 - Google Patents

通过构建虚拟sar图像实现wsn节点定位的方法及装置 Download PDF

Info

Publication number
WO2020134797A1
WO2020134797A1 PCT/CN2019/120825 CN2019120825W WO2020134797A1 WO 2020134797 A1 WO2020134797 A1 WO 2020134797A1 CN 2019120825 W CN2019120825 W CN 2019120825W WO 2020134797 A1 WO2020134797 A1 WO 2020134797A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
node
wsn
sar image
positioning
Prior art date
Application number
PCT/CN2019/120825
Other languages
English (en)
French (fr)
Inventor
蒋锐
沈小平
陈斌
蔡文杰
屠耀华
Original Assignee
通鼎互联信息股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通鼎互联信息股份有限公司 filed Critical 通鼎互联信息股份有限公司
Publication of WO2020134797A1 publication Critical patent/WO2020134797A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9027Pattern recognition for feature extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the technical field of WSN node positioning, in particular to a method and device for realizing WSN node positioning by constructing a virtual SAR image.
  • Wireless sensor network Wireless Sensor Network
  • WSN Wireless Sensor Network
  • WSN is a basic component of the Internet of Things. It uses multiple sensor nodes to form a wireless network in a self-organized manner. It is an information production and collection system used by the Internet of Things to perceive, identify, and process monitored objects in the network coverage area.
  • WSN node positioning refers to the estimation of unknown nodes' location in the system through limited communication based on neighboring beacon nodes whose positions are known in the network.
  • the accurate positioning of the sensor node itself is a prerequisite for the application of positioning and tracking of the monitored objects, and it is one of the basic and hot issues in WSN research.
  • Existing WSN node positioning methods can be basically divided into two categories: ranging-based positioning methods and non-ranging-based positioning methods.
  • the ranging-based positioning method specifically calculates the distance or orientation between the unknown node and the neighboring beacon node through communication between them, and realizes the node's own positioning based on this.
  • the classic method is based on the received signal strength (Received signal strength indication, RSSI) ranging and positioning as literature 1: Yaghoubi F. , Abbasfar A.-A. , Maham B .. Energy-Efficient RSSI-Based Localization for Wireless Sensor Networks 2014.2 : Sahu PK , Wu EH-K. , Sahoo J.
  • the non-range-based positioning method does not specifically calculate the distance or orientation between the unknown node and the neighboring beacon node, but uses information such as network connectivity and hops between nodes to achieve the node's own positioning.
  • Classic methods are based on centroid localization methods such as literature 1: Ninipama Bulusu, John Heidemann, Deborah Farm. GPS-less Low Cost Outdoor Localization for Very Small Devices 2000.2: Rui Jiang, Zhen Yang.
  • An improved centroid localization algorithm based on iterative computation for wireless Technology disclosed in sensor network 2016. Approximate point-in-triangulation test (APIT) positioning method is as in Literature 1: Yong Zhou, Xin Ao, Shixiong Xia.
  • the convex planning positioning method is as the technique disclosed in Literature 1: Lance Doherty, Laurent EL Ghaoui, Kristofer SJPister. Convex Position Estimation in Wireless Sensor Networks 2001.
  • This kind of method does not need to accurately calculate the distance or angle between the unknown node and the adjacent beacon node, thus reducing the calculation amount and communication overhead of the positioning method, thereby significantly reducing the network hardware equipment requirements and node energy requirements during the positioning process Consumption has attracted more and more attention in practical applications.
  • the positioning accuracy of most non-range-based methods is relatively low, which greatly limits its wide application in practice.
  • Radar was first used in the military field during World War II. Its main role is to use radio waves to find targets and determine their spatial location. Therefore, radar is also called "radio positioning.”
  • the radar system uses the correspondence between the phase information of the wireless signal and the physical distance of the signal propagation to achieve the positioning of the target through the method of signal processing. Compared with the existing positioning methods of WSN, the positioning mechanism adopted by the radar system does not require additional hardware equipment support, eliminating the impact of time synchronization and system delay on distance measurement, and can be performed on the target with a lower amount of calculation High-precision positioning.
  • the object of the present invention is to provide a method and device for realizing WSN node positioning by constructing a virtual SAR image, aiming to solve the problems of insufficient prior art WSN node positioning accuracy and large energy consumption.
  • a method for implementing WSN node positioning by constructing virtual SAR images including:
  • the signal between the WSN nodes is sampled multiple times and a virtual SAR image is constructed
  • the signal subspaces of each distance unit signal in the virtual SAR image are used to estimate the noise interference, and the phase information between the WSN node signals is determined;
  • the difference between the actual received signal and the theoretical received signal between the nodes is analyzed based on the cosine similarity principle, and the node positioning of the WSN is realized.
  • the construction step specifically includes:
  • the signal between the SAR distance unit signal and the WSN beacon node is sampled multiple times;
  • the signals between multiple beacon nodes and unknown nodes sampled at the same time in WSN are regarded as the azimuth data of the virtual SAR image, and the signals between the same beacon nodes in WSN at different sampling times and unknown nodes are regarded as the virtual SAR image Distance data
  • the azimuth data and range data of the virtual SAR image are subjected to Fourier transform in the azimuth direction to construct a virtual SAR image with an initial fixed phase of 0.
  • a device for positioning a WSN node by constructing a virtual SAR image includes:
  • the building module is used for sampling the signals between WSN nodes and constructing a virtual SAR image based on the similarity between the signals of the SAR distance unit and the signals between WSN nodes;
  • the estimation module is used to estimate the signal subspace based on the PAST technology and use the signal of each distance unit of the virtual SAR image to suppress noise interference and determine the phase information between the WSN node signals;
  • the positioning module is used to analyze the difference between the actual received signal and the theoretical received signal between the nodes based on the phase information between the WSN node signals and based on the cosine similarity principle to realize the node positioning of the WSN.
  • the building module is used to:
  • the signal between the SAR distance unit signal and the WSN beacon node is sampled multiple times;
  • the signals between multiple beacon nodes and unknown nodes sampled at the same time in WSN are regarded as the azimuth data of the virtual SAR image, and the signals between the same beacon nodes in WSN at different sampling times and unknown nodes are regarded as the virtual SAR image Distance data
  • the azimuth data and range data of the virtual SAR image are subjected to Fourier transform in the azimuth direction to construct a virtual SAR image with an initial fixed phase of 0.
  • the invention discloses a method and a device for positioning a WSN node by constructing a virtual SAR image.
  • a virtual SAR image is constructed based on the signal of the WSN node, under the condition of noise interference
  • the problem of signal phase information estimation between WSN nodes is transformed into the problem of virtual SAR image self-focusing processing;
  • PAST technology is used to perform self-focusing processing on virtual SAR images to accurately estimate the signal phase information between WSN nodes under low signal-to-noise ratio;
  • an objective function is constructed based on the principle of cosine similarity, and the unknown solution is located by searching the optimal solution of the objective function, and the location of the WSN node under low signal-to-noise ratio is achieved.
  • Simulation experiments prove that the present invention has good positioning accuracy and low positioning power consumption, and is suitable for WSN node positioning.
  • FIG. 1 shows a schematic diagram of WSN node distribution provided by an embodiment of the present invention
  • 2a shows a schematic comparison of the mean value of signal phases under different signal-to-noise ratio conditions in a Monte Carlo simulation experiment provided by an embodiment of the present invention
  • 2b shows a schematic diagram of comparing the variance values of signal phases under different signal-to-noise ratio conditions in a Monte Carlo simulation experiment provided by an embodiment of the present invention
  • 3a, 3b, and 3c respectively show a virtual SAR image provided by an embodiment of the present invention
  • FIG. 4a shows a schematic comparison of the mean value of the signal phase under different signal-to-noise ratio conditions of a PAST technology performance analysis Monte Carlo experiment provided by an embodiment of the present invention
  • FIG. 4b shows a schematic diagram of comparison of variance values of signal phases under different signal-to-noise ratio conditions in a PAST technology performance analysis Monte Carlo experiment provided by an embodiment of the present invention
  • 5a, 5b, and 5c respectively show a schematic diagram of a variation curve of relative positioning error with SNR before and after noise reduction processing based on a virtual SAR image provided by an embodiment of the present invention
  • 6a, 6b, and 6c respectively show a schematic comparison of performance between a positioning method of the present invention and a classic WSN provided by an embodiment of the present invention
  • FIG. 7 shows a schematic flowchart of a method for positioning a WSN node by constructing a virtual SAR image provided by an embodiment of the present invention
  • FIG. 8 shows a schematic structural diagram of an apparatus for positioning a WSN node by constructing a virtual SAR image according to an embodiment of the present invention.
  • the PAST technology refers to projection approximation subspace tracking technology (Projection Approximation Subspace Tracking, PAST for short).
  • beacon nodes connected to the unknown node O as S 1 S 2 S 3 ... S N , where the coordinate of the nth connected beacon node S n is (x n , y n , z n ), the wavelength of the transmitted signal between the nodes is ⁇ , and the initial phase of all transmitted signals is set to 0 without loss of generality.
  • the signal between the beacon node and the unknown node O under ideal conditions without considering noise interference is:
  • d n is the distance between the real physical communication landmark nodes and unknown nodes S n O connection.
  • arg ⁇ means taking the phase value of the target
  • W ⁇ is a winding operator with a modulus of 2 ⁇ . Due to the entanglement of the phase, directly using the extracted phase to calculate the distance between the nodes will also be limited to the period of the signal wavelength ⁇ Within the main value interval of, so that the true physical distance between nodes cannot be obtained, affecting the positioning of unknown nodes.
  • d 'n S n is the physical distance between the pixel unit (x i, y j, z k) standard communication nodes connected, according to the formula (2):
  • Cosine similarity is a similarity analysis method based on a vector space model. This method treats the similarity comparison target as two vectors. When the directions of the two vectors completely coincide, the included angle is 0°, and the cosine value reaches the maximum value. Is 1. According to the calculated pixel unit signal phase and the actual received signal phase, the cosine of the angle between the two phases is easily obtained as:
  • Re ⁇ means taking the real part of the complex number.
  • the objective function can be set based on the principle of cosine similarity:
  • H represents the conjugate transpose. If and only if the search pixel unit coincides with the unknown node position, the objective function shown in formula (9) reaches the maximum value.
  • Figure 1 shows a schematic diagram of node distribution in WSN.
  • Un is an unknown node
  • 7 shaded nodes are beacon nodes connected to the unknown node Un.
  • the value of the target function of a pixel unit reaches the maximum value
  • the signal phase calculation value and the true value in the pixel unit If the sum of the deviations is the smallest, then the pixel unit is the positioning result for the unknown node, which is:
  • the node positioning can be achieved based on the signal phase information in the WSN with beacon nodes randomly distributed.
  • the phase information of the signal will be affected by strong noise interference, and the phase error caused by the noise interference will directly affect the accuracy of the WSN node positioning using the signal phase information between the nodes.
  • the real signal between the beacon node S 1 S 2 S 3 ...S N and the unknown node O under noise interference conditions is rewritten as :
  • the noise interference ⁇ (n) is Gaussian white noise.
  • the signals between the beacon node S 1 S 2 S 3 ...S N and the unknown node O are sampled at different points in time, including:
  • FIG. 2a shows a schematic comparison of the mean value of signal phases under different signal-to-noise ratios provided by a Monte Carlo simulation experiment provided by an embodiment of the present invention
  • FIG. 2b shows a Monte Carlo simulation experiment provided by an embodiment of the present invention Comparison of the variance of signal phase under different signal-to-noise ratios.
  • the irregular motion of the radar, the various approximations of the algorithm, and the influence of noise interference on the phase are reduced to the phase error function.
  • the initial fixed phase of the strongest scattering point at any distance unit in the SAR system is ⁇ k
  • the other weak scattering points are regarded as clutter.
  • the received signal of the strongest scattering point in the azimuth data domain is:
  • is a real constant, indicating the amplitude;
  • the clutter ⁇ k (m) is Gaussian white noise;
  • ⁇ (m) is the phase error value , That is, the estimated phase error value required for autofocus processing in SAR signal processing.
  • the signals of each distance unit in the SAR image are regarded as detection samples. At this time, the phase error function corresponds to the signal component in the detection sample, and the Gaussian white noise corresponds to the noise component in the detection sample.
  • the virtual SAR image constructed based on the signals between WSN nodes needs to use an appropriate self-focusing algorithm to suppress the influence of noise interference on the signal phase, and accurately estimate the ideal phase information of the signal between the WSN beacon node and the unknown node.
  • the sample covariance matrix is constructed based on the signal of each distance unit of the virtual SAR image, and the signal subspace is obtained directly by the feature decomposition method to obtain the WSN node signal Phase information in.
  • the Cramer-Rao lower bound (CRLB) of the phase estimation variance value is:
  • M is the number of beacon nodes participating in the phase estimation
  • T is the number of sampling samples
  • is the signal-to-noise ratio (SNR) of the sampling samples.
  • SNR signal-to-noise ratio
  • the signal processing scheme that separates the signal subspace from the noise subspace by the feature decomposition method is huge, and the main operation complexity is concentrated in the feature decomposition processing process.
  • the computational cost of constructing a sample covariance matrix is O(N 2 )
  • the computational cost of feature decomposition processing for this covariance matrix is O(N 3 )
  • such a huge computational load Unable to meet the requirements of WSN node positioning low power consumption.
  • the present invention uses PAST technology to use the distance unit signals of the virtual SAR image, and iteratively calculates by the following formula to estimate only the feature vectors required by the WSN node positioning algorithm:
  • w(i) and ⁇ i are the intermediate variables required in PAST calculation; formulas (15)-(20) are the current maximum eigenvalues and their correspondences estimated by the PAST method. Eigenvectors of ⁇ (i) and u i . Formulas (21)-(22) remove the feature vectors corresponding to the largest eigenvalues estimated from the estimated training samples to prepare for estimating the feature vectors corresponding to the next largest eigenvalues. P is the required number of estimated feature vectors.
  • the PAST method uses formulas (15)-(22) to estimate the signal subspace. It replaces the feature decomposition process and avoids the estimation of the sample covariance matrix.
  • the algorithm complexity is O(NP). Comparing the algorithm complexity to the O(N 3 ) feature decomposition process, the PAST technology estimates the feature vectors to significantly reduce the amount of arithmetic operations of the WSN node positioning processing method of the present invention.
  • the embodiment of the present invention provides a WSN node positioning method by constructing a virtual SAR image divided into three stages: The first stage is based on the similarity of the signal between the SAR distance unit signal and the WSN beacon node.
  • the signal between WSN nodes is sampled multiple times and a virtual SAR image is constructed;
  • the second stage is based on PAST technology, using the signal of each distance unit of the virtual SAR image to estimate the signal subspace, suppress the influence of noise interference, and accurately estimate the phase information of the signal between WSN nodes
  • the third stage analyzes the difference between the actual received signal and the theoretical received signal between nodes based on the principle of cosine similarity, so as to realize the node positioning of WSN.
  • an embodiment of the present invention provides a method for positioning a WSN node by constructing a virtual SAR image, which can be applied to computer equipment, including:
  • Construction step S101 according to the similarity between the signal of the SAR distance unit and the signal between WSN nodes, the signal between WSN nodes is sampled multiple times and a virtual SAR image is constructed;
  • each distance unit signal of the virtual SAR image is used to estimate the signal subspace, suppress noise interference, and determine the phase information between the WSN node signals;
  • the difference between the actual received signal and the theoretical received signal between the nodes is analyzed based on the cosine similarity principle, to realize the node positioning of the WSN.
  • the embodiment of the present invention constructs a virtual SAR image based on the signal between the WSN nodes, and converts the problem of estimating the signal phase information between the WSN nodes into the virtual SAR image self-focusing under the condition of noise interference Processing problems; using PAST technology to perform self-focusing processing on virtual SAR images to accurately estimate signal phase information between WSN nodes under low signal-to-noise ratio; finally based on the correspondence between signal phase information between nodes and physical distance, based on cosine
  • the principle of similarity is used to construct an objective function, and to locate the unknown node by searching the optimal solution of the objective function, and realize the WSN node positioning under the condition of low signal-to-noise ratio.
  • the construction step S102 may specifically be:
  • the signal between the SAR distance unit signal and the WSN beacon node is sampled multiple times;
  • the signals between multiple beacon nodes and unknown nodes sampled at the same time in WSN are regarded as the azimuth data of the virtual SAR image, and the signals between the same beacon nodes in WSN at different sampling times and unknown nodes are regarded as the virtual SAR image Distance data
  • the azimuth data and range data of the virtual SAR image are subjected to Fourier transform in the azimuth direction to construct a virtual SAR image with an initial fixed phase of 0.
  • the estimation step S102 may specifically be:
  • the inverse Fourier transform of the azimuth direction of the signals of each distance unit is obtained to obtain the estimated samples
  • Extract each distance unit signal use each distance unit signal of the virtual SAR image based on PAST technology, iteratively calculate through the feature vector formula group, estimate the feature vector required by the WSN node positioning algorithm, suppress noise interference and determine the WSN node signal between Phase information; the estimated feature vector is the signal subspace;
  • the estimated feature vector is removed from each distance unit signal, and the Fourier transform in the azimuth direction is performed on each distance unit signal to restore the virtual SAR image;
  • phase information of the feature vectors estimated in each loop step is superimposed, which is the phase information between the final WSN node signals.
  • the positioning error of this method is defined as the Euclidean distance between the true position of the unknown node and the positioning result, which are:
  • the two-dimensional plane can be regarded as a special three-dimensional space where all nodes are distributed at the same height, that is, there are always
  • the relative positioning error is defined as the ratio of the average positioning error of multiple unknown nodes to the communication radius R between WSN nodes.
  • the relative positioning error is:
  • the present invention analyzes the performance of the PAST technology to estimate the phase error function of the virtual SAR image under the condition of noise interference.
  • the performance of the algorithm in the case of low SNR, can be significantly improved by increasing the number of connected beacon nodes; while in the case of high SNR, the main factor affecting the estimated performance is SNR, even in the case of fewer connected beacons Under the condition of the number of nodes, better phase estimation performance can also be obtained.
  • FIG. 4a shows a PAST technology performance analysis provided by an embodiment of the present invention.
  • the Monte Carlo experiment compares the signal phase average under different signal-to-noise ratio conditions
  • FIG. 4b shows a PAST technology provided by an embodiment of the present invention.
  • Performance analysis Schematic diagram of the comparison of the variance of the signal phase under different signal-to-noise ratios in the Monte Carlo experiment. Observation shows that under low SNR conditions, even if the number of connected beacon nodes is small, the PAST technology cannot even guarantee the unbiased estimation of the phase, but its phase estimation performance is significantly improved as the number of connected beacon nodes increases. In the case of high SNR, even if the number of consecutive beacon nodes is only M 4, accurate estimation of the phase can be achieved.
  • the phase estimation performance of the technology accurately estimates the phase information of signals between nodes.
  • Figures 5a, 5b, and 5c show the relative positioning error of the WSN signal under different beacon node ratios, by constructing a virtual SAR image and using PAST technology to reduce noise before and after the noise reduction process.
  • the use of PAST technology can effectively reduce the impact of noise interference on WSN signals and improve the positioning accuracy of the algorithm. Especially under the condition of low SNR, the positioning accuracy of WSN node is significantly improved.
  • Figures 6a, 6b, and 6c show the comparison of the relative positioning error of the method of the present invention, based on the RSSI positioning method, and the centroid positioning method under different signal-to-noise ratios with the proportion of beacon nodes.
  • SNR in Figure 6a -5dB
  • SNR 5dB in FIG. 6b
  • SNR 15dB in FIG. 6c.
  • the centroid positioning method as a non-range-based positioning method, its positioning performance is mainly affected by the number of connected beacon nodes, and the change of SNR has no effect on its positioning performance.
  • the positioning method based on RSSI as a positioning method based on ranging, can obtain excellent positioning accuracy under high SNR conditions.
  • the present invention does not need to measure the specific distance information or angle information between the connected anchor node and the unknown node, noise interference will cause the signal phase information between the nodes to have a large deviation from the real phase. Therefore, the performance of the method of the present invention is also affected by the change of SNR influences.
  • the positioning performance of the method of the present invention is affected by the change in SNR Smaller, no matter under high SNR or low SNR conditions, satisfactory node positioning accuracy can be obtained.
  • the present invention effectively reduces the impact of noise interference on the signal while hardly affecting the running time of the WSN positioning algorithm, and improves the positioning accuracy of the WSN positioning algorithm.
  • a method for positioning a WSN node by constructing a virtual SAR image is provided.
  • the present application also provides a device for positioning a WSN node by constructing a virtual SAR image. Since the device embodiment is basically similar to the method embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method embodiment.
  • the device embodiments described below are only schematic.
  • an embodiment of the present invention provides an apparatus for positioning a WSN node by constructing a virtual SAR image, including:
  • the construction module 201 is used for sampling the signals between the WSN nodes multiple times and constructing a virtual SAR image according to the similarity between the signals of the SAR distance unit and the signals between the WSN nodes;
  • the estimation module 202 is used to estimate the signal subspace based on the PAST technology, using the signal of each distance unit of the virtual SAR image, suppress noise interference, and determine the phase information between the WSN node signals;
  • the positioning module 203 is used to analyze the difference between the actual received signal and the theoretical received signal between the nodes based on the phase information between the WSN node signals and based on the cosine similarity principle, so as to realize the node positioning of the WSN.
  • the construction module 201 may be used for:
  • the signal between the SAR distance unit signal and the WSN beacon node is sampled multiple times;
  • the signals between multiple beacon nodes and unknown nodes sampled at the same time in WSN are regarded as the azimuth data of the virtual SAR image, and the signals between the same beacon nodes in WSN at different sampling times and unknown nodes are regarded as the virtual SAR image Distance data
  • the azimuth data and range data of the virtual SAR image are subjected to Fourier transform in the azimuth direction to construct a virtual SAR image with an initial fixed phase of 0.
  • the beacon node is represented as S 1 S 2 S 3 ... S N , N represents the number of beacon nodes; the nth consecutive beacon node S n coordinates are ( x n , y n , z n ); the wavelength of the transmitted signal between nodes is ⁇ ;
  • j is an imaginary number
  • noise interference ⁇ (n) is Gaussian white noise
  • d n is the true physical distance between the beacon node S n and the unknown node O:
  • the signals between the beacon node S 1 S 2 S 3 ...S N and the unknown node O are sampled at different time points to obtain:
  • the subscript t represents the t-th sampling
  • the received signal of the strongest scattering point in the azimuth data domain for:
  • is a real constant, indicating the amplitude;
  • the clutter ⁇ k (m) is Gaussian white noise;
  • ⁇ (m) is the phase error function , Which is the estimated phase error function required for autofocus processing in SAR signal processing;
  • the signal of each distance unit in the SAR image is regarded as the detection sample, then the phase error function corresponds to the signal component in the detection sample, and the Gaussian white noise corresponds to the noise component in the detection sample;
  • the phase error function ⁇ (m) in the SAR signal is equivalent to the ideal phase information in the WSN node signal
  • the clutter ⁇ k (m) in the SAR signal is equivalent to the noise interference ⁇ t (n) in the WSN node signal.
  • the estimation module 202 can be used to:
  • the inverse Fourier transform of the azimuth direction of the signals of each distance unit is obtained to obtain the estimated samples;
  • Extract each distance unit signal use each distance unit signal of the virtual SAR image based on PAST technology, iteratively calculate through the feature vector formula group, estimate the feature vector required by the WSN node positioning algorithm, suppress noise interference and determine the WSN node signal between Phase information; the estimated feature vector is the signal subspace;
  • the estimated feature vector is removed from each distance unit signal, and the Fourier transform in the azimuth direction is performed on each distance unit signal to restore the virtual SAR image;
  • the phase information of the feature vectors estimated in each loop step is superimposed, which is the phase information between the final WSN node signals.
  • the iterative calculation through the feature vector formula group specifically includes:
  • T is the number of sampling samples
  • ⁇ (i) ⁇ (i-1)+
  • x i is the current estimated training sample
  • w(i) and ⁇ i are the intermediate variables required in PAST calculation
  • ⁇ (i) is the current maximum eigenvalue
  • U i is the corresponding eigenvector of ⁇ (i);
  • Restore the virtual SAR image reduce the width of the window function, re-acquire new estimated training samples x i , and calculate ⁇ (i) and u i .
  • the embodiment of the present invention constructs a virtual SAR image based on the signal between the WSN nodes, and converts the problem of signal phase information estimation between the WSN nodes into the virtual SAR image self-focusing under the condition of noise interference Processing problems; using PAST technology to perform self-focusing processing on virtual SAR images to accurately estimate signal phase information between WSN nodes under low signal-to-noise ratio; finally based on the correspondence between signal phase information between nodes and physical distance, based on cosine
  • the principle of similarity is used to construct an objective function, and to locate the unknown node by searching the optimal solution of the objective function, and to realize the WSN node positioning under the condition of low signal-to-noise ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种通过构建虚拟SAR图像实现WSN节点定位的方法及装置,该方法包括:根据SAR距离单元信号与WSN信标节点间信号的相似性,对WSN节点间信号进行多次采样并构建虚拟SAR图像(S101);利用PAST技术,利用虚拟SAR图像的各距离单元信号估计信号子空间,抑制噪声干扰,同时确定WSN节点信号间的相位信息(S102);根据WSN节点信号间的相位信息,基于余弦相似性原理分析节点间实际接收信号与理论接收信号间的差异性,实现WSN的节点定位(S103)。该方法定位精度良好且定位功耗较低,适用于WSN节点定位。

Description

通过构建虚拟SAR图像实现WSN节点定位的方法及装置
本申请要求中国国家知识产权局的申请号:201811626016.8、申请日:2018-12-28的发明专利申请的优先权,该优先权文本内容明确通过援引加入并入本申请中。
技术领域
本发明涉及WSN节点定位的技术领域,尤其涉及通过构建虚拟SAR图像实现WSN节点定位的方法及装置。
背景技术
虚拟合成孔径雷达,Synthetic Aperture Radar,简称SAR。无线传感器网络,Wireless Sensor Network,简称WSN。WSN是物联网的基本组成部分,其利用多个传感器节点通过自组织的方式构成无线网络,是物联网用来感知、识别以及处理网络覆盖区域中被监测对象的信息生产和采集系统。随着传感器技术、嵌入式计算技术、计算机网络技术和无线通信技术等的不断发展,无线传感器网络技术也逐渐走向成熟,并在军事侦察、环境监测、目标跟踪、医疗护理等诸多领域的应用不断普及。
WSN节点定位是指未知节点基于网络中位置已知的邻近信标节点,通过有限的通信对于自身在系统中位置的估计。传感器节点自身的准确定位是实现对所监测对象进行定位、跟踪等应用的前提,是WSN研究的基础性问题和热点问题之一。现有的WSN节点定位方法基本可以分为两类:基于测距的定位方法和基于非测距的定位方法。
基于测距的定位方法通过未知节点与邻近信标节点间的通信具体计算两者之间距离或者方位,并基于此实现节点自身定位。经典方法有基于接收信号强度(Received signal strength indication,简称RSSI)测距定位如文献1: Yaghoubi F., Abbasfar A.-A., Maham  B..Energy-Efficient RSSI-Based Localization for Wireless Sensor Networks 2014.2: Sahu  P.K., Wu E.H.-K., Sahoo J..DuRT:Dual RSSI trend based localization for wireless sensor networks 2013.3:Slavisa Tomic,Marko Beko,Rui Dinis.RSS-Based Localization in Wireless Sensor Networks Using Convex Relaxation:Noncooperative and Cooperative Schemes 2015.中公开的技术。基于信号传播时间(Time of arrival,简称TOA)测距定位如文献1: Yu K., Guo  Y.J., Hedley M.. TOA-based distributed localisation with unknown internal delays and clock  frequency offsets in wireless sensor networks 2009.2: Enyang Xu, Zhi Ding, Dasgupta  S.. Source Localization in Wireless Sensor Networks From Signal Time-of-Arrival Measurements 2011.中公开的技术。基于信号到达时间差(Time difference of arrival,简称TDOA)测距定位如文献1: Bandiera F., Coluccia A., Ricci G., Ricciato F., Spano D.. TDOA Localization in  Asynchronous WSNs 2014.中公开的技术。大部分基于测距的定位方法需要另外的基础设备硬件支持,系统成本也随之增加,并且,为了降低距离或者角度测量所产生的误差,一般基于测距的定位方法都会使用一些计算及通信开销较大的方法以达到降低测量误差的目的。因此,虽然基于测距的定位方法大多误差较小,但是普遍硬件成本较高或者定位能耗较大,所以不适合应用于实际中。基于非测距的定位方法并不具体计算未知节点与邻近信标节点间的距离或者方位,而是利用网络连通性、节点间跳数等信息实现节点自身定位。经典方法有基于质心定位方法如文献1:Ninipama Bulusu,John Heidemann,Deborah Farm.GPS-less Low Cost Outdoor Localization for Very Small Devices 2000.2:Rui Jiang,Zhen Yang.An improved centroid localization algorithm based on iterative computation for wireless sensor network 2016.中公开的技术。近似三角形内点测试(Approximate point-in-triangulation test,简称APIT)定位方法如文献1:Yong Zhou,Xin Ao,Shixiong Xia.An Improved APIT Node Self-localization  Algorithm in WSN 2008.2:Feng Yu,Qin Wang,Xiaotong Zhang,Chong Li.A Localization Algorithm for WSN Based on Characteristics of Power Attenuation 2008.3:Jizeng Wang,Hongxu Jin.Improvement on APIT Localization Algrithms for Wireless Sensor Networks2009.中公开的技术。DV-hop定位方法如文献1: Hadir A., Zine-Dine K., Bakhouya M., El Kafi  J. An Optimized DV-hop Localization Algorithm Using Average Hop Weighted Mean in WSNs 2014.2: Jun Xiang, Wei Wei Tan. An Improved DV-hop Algorithm Based on Iterative  Computation for Wireless Sensor Network Localization 2013.中公开的技术。凸规划定位方法如文献1:Lance Doherty,Laurent EL Ghaoui,Kristofer S.J.Pister.Convex Position Estimation in Wireless Sensor Networks 2001.中公开的技术。该类方法由于不需要精确计算未知节点与邻近信标节点间的距离或者角度,因而减少了定位方法的计算量和通信开销,从而显著降低了定位过程中对于网络的硬件设备要求和节点能量的消耗,在实际应用中受到越来越多的关注。但是由于大部分基于非测距的方法定位精度相对较低,大大限制了其在实际中的广泛应用。
雷达在二战时期首次被应用于军事领域,其主要作用就是利用无线电波发现目标并测定目标的空间位置,因此雷达也被叫做“无线电定位”。雷达系统利用无线信号相位信息与信号传播物理距离间的对应关系,通过信号处理的方法实现对于目标的定位。相比较于WSN现有定位方法,雷达系统所采用的定位机制不需要额外的硬件设备支持,排除了时间同步和系统延迟对距离测量带来的影响,可以在较低运算量情况下对于目标进行高精度的定位。
发明内容
为了克服现有技术的不足,本发明的目的在于提供通过构建虚拟SAR图像实现WSN节点定位的方法及装置,旨在解决现有技术的WSN节点定位精度不够高、能耗较大的问题。
本发明的目的采用以下技术方案实现:
一种通过构建虚拟SAR图像实现WSN节点定位的方法,包括:
构建步骤,根据SAR距离单元信号与WSN节点间信号的相似性,对WSN节点间信号进行多次采样并构建虚拟SAR图像;
估计步骤,基于PAST技术,利用虚拟SAR图像的各距离单元信号估计信号子空间,抑制噪声干扰,同时确定WSN节点信号间的相位信息;
定位步骤,根据WSN节点信号间的相位信息,基于余弦相似性原理分析节点间实际接收信号与理论接收信号间的差异性,实现WSN的节点定位。
在上述实施例的基础上,优选的,所述构建步骤,具体为:
根据SAR距离单元信号与WSN信标节点间信号的相似性,对WSN中连通信标节点与未知节点间信号进行多次采样;
将WSN中同一时刻采样获得多个连通信标节点与未知节点间信号视为虚拟SAR图像的方位向数据,将WSN中同一连通信标节点在不同采样时刻与未知节点间信号视为虚拟SAR图像的距离向数据;
对虚拟SAR图像的方位向数据、距离向数据进行方位向上的傅里叶变换,构建初始固定相位为0的虚拟SAR图像。
一种通过构建虚拟SAR图像实现WSN节点定位的装置,包括:
构建模块,用于根据SAR距离单元信号与WSN节点间信号的相似性,对WSN节点间信号进行多次采样并构建虚拟SAR图像;
估计模块,用于基于PAST技术,利用虚拟SAR图像的各距离单元信号估计信号子空间,抑制噪声干扰,同时确定WSN节点信号间的相位信息;
定位模块,用于根据WSN节点信号间的相位信息,基于余弦相似性原理分析节点间实际接收信号与理论接收信号间的差异性,实现WSN的节点定位。
在上述实施例的基础上,优选的,所述构建模块用于:
根据SAR距离单元信号与WSN信标节点间信号的相似性,对WSN中连通信标节点与未知节点间信号进行多次采样;
将WSN中同一时刻采样获得多个连通信标节点与未知节点间信号视为虚拟SAR图像的方位向数据,将WSN中同一连通信标节点在不同采样时刻与未知节点间信号视为虚拟SAR图像的距离向数据;
对虚拟SAR图像的方位向数据、距离向数据进行方位向上的傅里叶变换,构建初始固定相位为0的虚拟SAR图像。
相比现有技术,本发明的有益效果在于:
本发明公开了通过构建虚拟SAR图像实现WSN节点定位的方法及装置,首先根据SAR距离单元信号与WSN信标节点间信号的相似性,基于WSN节点间信号构建虚拟SAR图像,将噪声干扰条件下WSN节点间信号相位信息估计问题转化为虚拟SAR图像自聚焦处理的问题;利用PAST技术对虚拟SAR图像进行自聚焦处理,从而在低信噪比条件下准确估计WSN节点间信号相位信息;最后基于节点间信号相位信息与物理距离间的对应关系,基于余弦相似性原理构建目标函数,通过搜索目标函数最优解实现对于未知节点的定位,实现低信噪比条件下的WSN节点定位。仿真实验证明本发明定位精度良好且定位功耗较低,适用于WSN节点定位。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1示出了本发明实施例提供的一种WSN节点分布示意图;
图2a示出了本发明实施例提供的一种蒙特卡罗仿真实验在不同信噪比条件下信号相位的均值比较示意图;
图2b示出了本发明实施例提供的一种蒙特卡罗仿真实验在不同信噪比条件下信号相位的方差值比较示意图;
图3a、图3b、图3c分别示出了本发明实施例提供的一种虚拟SAR图像;
图4a示出了本发明实施例提供的一种PAST技术性能分析蒙特卡罗实验在不同信噪比条件下信号相位的均值比较示意图;
图4b示出了本发明实施例提供的一种PAST技术性能分析蒙特卡罗实验在不同信噪比条件下信号相位的方差值比较示意图;
图5a、图5b、图5c分别示出了本发明实施例提供的一种基于虚拟SAR图像降噪处理前后相对定位误差随SNR变化曲线示意图;
图6a、图6b、图6c分别示出了本发明实施例提供的一种本发明与经典WSN定位方法性能对比示意图;
图7示出了本发明实施例提供的一种通过构建虚拟SAR图像实现WSN节点定位的方法的流程示意图;
图8示出了本发明实施例提供的一种通过构建虚拟SAR图像实现WSN节点定位的装置的结构示意图。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
具体实施例一
本发明实施例中,PAST技术指的是投影近似子空间跟踪技术(Projection Approximation  Subspace Tracking,简称PAST)。
假设在WSN所处三维空间内存在未知节点O,其真实坐标为(x o,y o,z o)。存在与未知节点O相连通的N个信标节点分别为S 1 S 2 S 3 ... ... S N,其中第n个连通信标节点S n坐标为(x n,y n,z n),节点间发射信号波长均为λ,不失一般性设定所有发射信号初始相位为0,在不考虑噪声干扰的理想条件下连通信标节点与未知节点O之间信号为:
Figure PCTCN2019120825-appb-000001
其中,d n为连通信标节点S n与未知节点O之间真实物理距离。有:
Figure PCTCN2019120825-appb-000002
由公式(1)可见,WSN在不考虑噪声干扰的理想条件下节点间接收信号相位与节点间真实距离成正比。然而,当从实际信号中提取其相位信息时,所获得相位会被限制于(-π,π]的相位主值区间内,该现象被称为相位缠绕。根据公式(1),即其所提取相位为:
Figure PCTCN2019120825-appb-000003
其中,arg{·}表示对目标取相位值,W{·}是模值为2π的缠绕算子。由于相位的缠绕性,直接利用所提取相位计算节点间距离会同样以信号波长λ为周期被限制在
Figure PCTCN2019120825-appb-000004
的主值区间内,从而无法获得节点间的真实物理距离,影响对于未知节点的定位。
考虑在实际WSN中,所有传感器节点均为随机分布,所以不同信标节点与未知节点的信号之间并不存在确定的关联性,这也导致了无法利用匹配滤波、傅里叶变换等信号处理的方式消除信号相位缠绕性对于节点间距离计算的影响。然而,当所有节点在WSN中随机分布后,其相互之间的位置关系就唯一确定。根据公式(1)所示,在不考虑噪声干扰的理想条件下任意连通信标节点与未知节点间的信号真实相位信息是可以被唯一确定的。在信标节点位置信息已知情况下,WSN中任意像素单位(x i,y j,z k)与信标节点S 1 S 2 S 3 ... ... S N之间的信号可以被计算为:
Figure PCTCN2019120825-appb-000005
其中,d' n为连通信标节点S n与像素单位(x i,y j,z k)之间物理距离,根据公式(2)有:
Figure PCTCN2019120825-appb-000006
考虑信号相位信息与节点间距离信息的对应关系,所计算像素单元越接近未知节点,则计算所得信号与节点接收真实信号越相似。余弦相似性是一种基于向量空间模型的相似度分析方法,该方法将进行相似性比较的目标视为两个向量,当两个向量方向完全重合则夹角为0°,余弦值达到最大值为1。根据所计算像素单元信号相位与真实接收信号相位,易得两相位间夹角的余弦值为:
Figure PCTCN2019120825-appb-000007
其中,Re{·}表示对复数取实部。将公式(1)与公式(4)所示真实接收信号与计算像素单元信号改写为:
真实接收信号:
F=[f(S 1),f(S 2),...f(S N)] T      (7)
计算像素单元信号:
Figure PCTCN2019120825-appb-000008
结合公式(6)-(8),可得基于余弦相似性原理设定目标函数为:
Figure PCTCN2019120825-appb-000009
这里, H表示求共轭转置。当且仅当搜索像素单元与未知节点位置重合时,公式(9)所示目标函数达到最大值。
图1所示为WSN中节点分布的示意图。图中Un为未知节点,7个阴影节点为与未知节点Un连通的信标节点。对WSN空间中所有像素单元遍历计算其接收7个信标节点的信号相位和目标函数值,当某一像素单元的目标函数值达到最大值,即在该像素单元的信号相位计算值与真实值间偏差的总和最小,则该像素单元就是对于未知节点的定位结果,有:
Figure PCTCN2019120825-appb-000010
可见,通过构建目标函数,利用逐像素单元搜索计算的方法可以在信标节点随机分布的WSN中基于信号相位信息实现节点定位。
然而,信号在复杂的无线传播环境中,其相位信息会受到强烈的噪声干扰影响,而噪声干扰引起的相位误差则会直接影响利用节点间信号相位信息实现WSN节点定位的精度。考虑噪声干扰对节点间信号的影响,根据公式(1)将存在噪声干扰条件下信标节点S 1 S 2 S 3 ... ... S N与未知节点O之间的真实信号重新改写为:
Figure PCTCN2019120825-appb-000011
其中,噪声干扰ε(n)为高斯白噪声。考虑无线信道传输模型的时变性,对信标节点S 1 S 2 S 3 ... ... S N与未知节点O之间的信号在不同时间点进行采样,有:
Figure PCTCN2019120825-appb-000012
其中,下标t代表第t次采样。由于随着时间的改变,信标节点与未知节点间的位置关系没有发生改变,因此在公式(12)中,仅噪声干扰ε t(n)随采样时间不同而发生改变。利用蒙特卡罗仿真实验进一步分析噪声干扰对于节点间信号相位的影响。设定真实相位值为π/2,观察在不同信噪比条件下所提取信号相位,结果如图2a、图2b所示。图2a示出了本发明实施例提供的一种蒙特卡罗仿真实验在不同信噪比条件下信号相位的均值比较示意图;图2b示出了本发明实施例提供的一种蒙特卡罗仿真实验在不同信噪比条件下信号相位的方差值比较示意图。
观察发现,在低信噪比条件下,所提取信号相位已经完全偏离了原始相位的真实值。当信噪比达到10dB时,才可以保证提取信号相位的无偏性。然而在实际应用中,并不能保证节点间的无线传输环境能始终保持较高的信噪比条件。因此,抑制噪声干扰ε t(n)对节点间信号相位的影响,准确的估计信标节点与未知节点间信号的理想相位信息,是WSN基于信号相位信息实现节点高精度定位的关键。
而在SAR系统中,将雷达的不规则运动、算法的各类近似以及噪声干扰对于相位的影响归结为相位误差函数。假设SAR系统中任一距离单元上最强散射点的初始固定相位为ψ k,将其它弱散射点视为杂波。则在方位数据域中该最强散射点的接收信号为:
X k(m)=|A k|exp{j[ψ k+γ(m)]}+ε k(m)     (13)
其中,下标k代表第k个距离单元;m代表方位向脉冲位置;|A k|为实常数,表示幅度;杂波ε k(m)为高斯白噪声;γ(m)为相位误差值,即SAR信号处理中自聚焦处理所需估计相位误差值。将SAR图像中各距离单元信号视为检测样本,此时相位误差函数对应检测样本中的信号分量,高斯白噪声对应检测样本中的噪声分量。比较公式(12)与公式(13),不难发现当令SAR信号中初始固定相位为ψ k=0,则SAR信号中的相位误差函数γ(m)等价于WSN节点信号中的理想相位信息
Figure PCTCN2019120825-appb-000013
SAR信号中的杂波ε k(m)等价于WSN节点信号中的噪声干扰ε t(n)。
基于以上分析,本发明对WSN中连通信标节点与未知节点间信号进行多次采样,将WSN中同一时刻采样获得多个连通信标节点与未知节点间信号F t(S 1) F t(S 2) F t(S 3) ... ... F t(S N)视为虚拟SAR图像方位向数据,将WSN中同一连通信标节点在不同采样时刻与未知节点间信号
Figure PCTCN2019120825-appb-000014
视为虚拟SAR图像距离向数据,可以构建初始固定相位为ψ k=0的虚拟SAR图像,将噪声干扰条件下WSN节点间信号相位信息估计问题转化为虚拟SAR图像自聚焦处理的问题。
假设在WSN中与未知节点存在32个连通信标节点,对节点间信号采样64次,根据公式(12)与公式(13)构建虚拟SAR图像,如图3a、图3b、图3c所示。在图3a中假设不存在相位误差函数和噪声干扰,即当WSN节点间没有信号存在时,可以获得理想的虚拟SAR图像,图像中目标点聚焦在图像中心位置,没有散焦现象存在。当WSN节点间存在信号时,即等价于在虚拟SAR图像中存在相位误差函数γ(m),此时虚拟SAR图像如图3b所示。可以看到在图像中由于相位误差函数的影响,每个距离单元上的点目标均出现了散焦,并且最强目标点的位置也出现了偏移。但是由于没有噪声干扰,所以每个距离单元的目标散焦情况完全一样。然后在图3c中,考虑WSN节点间信号在不同采样时间遭受不同的噪声干扰,即等价于在虚拟SAR图像中的杂波信号ε k(m),此时虚拟SAR图像呈现出完全不规律的散焦现象。
显然,基于WSN节点间信号所构建虚拟SAR图像,需要利用合适的自聚焦算法抑制噪声干扰对信号相位的影响,准确的估计WSN信标节点与未知节点间信号的理想相位信息。根据SAR信号处理中利用特征分解方法获得信号子空间实现自聚焦的基本原理,基于虚拟SAR图像各距离单元信号构建样本协方差矩阵,直接利用特征分解方法获得信号子空间,即可获得WSN节点信号中的相位信息。根据公式推导可知,相位估计方差值的克拉默—劳界限(Cramer-Rao lower bound,简称CRLB)为:
Figure PCTCN2019120825-appb-000015
其中,M为参与相位估计的信标节点个数;T为采样样本数;β为采样样本的信噪比(Signal-to-Noise Ratio,简称SNR)。观察公式(14)发现,该信号处理方案同时利用多个信标节点采样信号,可以在较低SNR条件下有效分离信号子空间与噪声子空间,达到降低噪声干扰的目的,提高定位方法的抗噪声干扰能力,实现在强噪声干扰条件下的WSN节点定位。但是WSN中的节点大都使用难以蓄电与更换的电池作为能量来源,所以功耗也是在设计节点定位方法中的一个重要考虑因素。影响定位功耗的有计算量、通信开销、存储空间等关键指标。显然采用特征分解方法分离信号子空间与噪声子空间的信号处理方案运算量巨大,且主要运算复杂度集中在特征分解处理过程。当存在N个连通信标节点,考虑构建样本协方差矩阵的运算量为O(N 2),而对于该协方差矩阵进行特征分解处理的运算量为O(N 3),如此巨大的运算量无法满足WSN节点定位低功耗的要求。
基于以上分析,本发明采用PAST技术利用虚拟SAR图像的各距离单元信号,通过以 下公式进行迭代计算,只估计WSN节点定位算法所需的特征向量:
for j=1,2,...,P do          (15)
for i=1,2,...,T do         (16)
Figure PCTCN2019120825-appb-000016
λ(i)=λ(i-1)+|w(i)| 2          (18)
Δ i=x i-u i-1w(i)      (19)
Figure PCTCN2019120825-appb-000017
end
for i=1,2,...,T do        (21)
Figure PCTCN2019120825-appb-000018
end
end
当前i个采样节点信号代入PAST中进行计算时,w(i)和Δ i为PAST计算中所需的中间变量;公式(15)-(20)为通过PAST方法估计当前最大特征值和其对应的特征向量,即λ(i)和u i。公式(21)-(22)将已经估计获得最大特征值对应特征向量从各估计训练样本中去除,为估计次大特征值对应特征向量做准备。P为所需估计特征向量个数。
PAST方法利用公式(15)-(22)估计信号子空间,在替代特征分解处理的同时也避免了对于样本协方差矩阵的估计,其算法复杂度为O(NP)。相比较算法复杂度为O(N 3)特征分解过程,PAST技术估计特征向量可以显著降低本发明WSN节点定位处理方法的算法运算量。
综上所述,本发明实施例给出一种通过构建虚拟SAR图像的WSN节点定位方法分为三个阶段:第一个阶段根据SAR距离单元信号与WSN信标节点间信号的相似性,对WSN节点间信号进行多次采样并构建虚拟SAR图像;第二阶段基于PAST技术,利用虚拟SAR图像的各距离单元信号估计信号子空间,抑制噪声干扰的影响,准确估计WSN节点间信号的相位信息;第三阶段基于余弦相似性原理分析节点间实际接收信号与理论接收信号间的差异性,从而实现WSN的节点定位。
如图7所示,本发明实施例提供了一种通过构建虚拟SAR图像实现WSN节点定位的 方法,其可以适用于计算机设备,包括:
构建步骤S101,根据SAR距离单元信号与WSN节点间信号的相似性,对WSN节点间信号进行多次采样并构建虚拟SAR图像;
估计步骤S102,基于PAST技术,利用虚拟SAR图像的各距离单元信号估计信号子空间,抑制噪声干扰,同时确定WSN节点信号间的相位信息;
定位步骤S103,根据WSN节点信号间的相位信息,基于余弦相似性原理分析节点间实际接收信号与理论接收信号间的差异性,实现WSN的节点定位。
本发明实施例中的定位步骤S103的具体实施方式采用现有技术,此处不再展开。
本发明实施例根据SAR距离单元信号与WSN信标节点间信号的相似性,基于WSN节点间信号构建虚拟SAR图像,将噪声干扰条件下WSN节点间信号相位信息估计问题转化为虚拟SAR图像自聚焦处理的问题;利用PAST技术对虚拟SAR图像进行自聚焦处理,从而在低信噪比条件下准确估计WSN节点间信号相位信息;最后基于节点间信号相位信息与物理距离间的对应关系,基于余弦相似性原理构建目标函数,通过搜索目标函数最优解实现对于未知节点的定位,实现低信噪比条件下的WSN节点定位。
优选的,所述构建步骤S102,可以具体为:
根据SAR距离单元信号与WSN信标节点间信号的相似性,对WSN中连通信标节点与未知节点间信号进行多次采样;
将WSN中同一时刻采样获得多个连通信标节点与未知节点间信号视为虚拟SAR图像的方位向数据,将WSN中同一连通信标节点在不同采样时刻与未知节点间信号视为虚拟SAR图像的距离向数据;
对虚拟SAR图像的方位向数据、距离向数据进行方位向上的傅里叶变换,构建初始固定相位为0的虚拟SAR图像。
优选的,所述估计步骤S102,可以具体为:
在虚拟SAR图像上选出各距离单元的强信号点,进行中心的循环移位,并以各距离单元的强信号点为中心进行加窗处理,提高信噪比;
根据SAR信号处理中利用特征分解方法获得信号子空间实现自聚焦的基本原理,对各距离单元信号进行方位向上的逆傅里叶变换,获取估计样本;
提取各距离单元信号,基于PAST技术利用虚拟SAR图像的各距离单元信号,通过特征向量公式组进行迭代计算,估计WSN节点定位算法所需要的特征向量,抑制噪声干扰的同时确定WSN节点信号间的相位信息;所估计得到的特征向量即信号子空间;
将所估计特征向量从各距离单元信号中去除,对各距离单元信号进行方位向上的傅里叶变换,恢复虚拟SAR图像;
缩小窗函数的宽度,重复以上步骤,直到虚拟SAR图像聚焦质量良好为止;
将各循环步骤中所估计特征向量相位信息进行叠加,即为最终的WSN节点信号间的相位信息。
利用仿真实验可以证明本发明实施例所提供的方法定位精度良好且定位功耗较低,适用于WSN节点定位。
在WSN中,假设未知节点真实位置为(x o,y o,z o),利用定位方法获得定位结果为
Figure PCTCN2019120825-appb-000019
则该方法的定位误差定义为未知节点真实位置与定位结果之间的欧氏距离,有:
Figure PCTCN2019120825-appb-000020
二维平面则可以被视为所有节点均分布在同一高度的特殊三维空间,即在二维平面上恒有
Figure PCTCN2019120825-appb-000021
为了更为客观的评价方法定位性能,定义相对定位误差为多个未知节点的平均定位误差与WSN节点间通信半径R的比值。当存在M un个未知节点时,相对定位误差为:
Figure PCTCN2019120825-appb-000022
设定在100×100×100m 3的三维空间中随机均匀分布1000个节点,节点通信半径为R=35。
首先,本发明就PAST技术在噪声干扰条件下估计虚拟SAR图像的相位误差函数性能进行分析。根据公式(14)分析,在低SNR情况下,通过增加连通信标节点数量可以明显改善算法性能;而在高SNR的情况下,影响估计性能的主要因素是SNR,即使在较少连通信标节点数条件下也可以获得较好的相位估计性能。假设虚拟SAR图像距离单元数N r=512,所叠加相位误差为π/2,通过改变虚拟SAR图像方位向脉冲数,即改变WSN中与未知节点连通信标节点数量M,观察在不同连通信标节点数量的情况下,PAST技术性能随SNR变化的影响,如图4a、图4b所示。
图4a示出了本发明实施例提供的一种PAST技术性能分析蒙特卡罗实验在不同信噪比条件下信号相位的均值比较示意图;图4b示出了本发明实施例提供的一种PAST技术性能分析蒙特卡罗实验在不同信噪比条件下信号相位的方差值比较示意图。观察发现,在低SNR条件下,连通信标节点数量较少时甚至无法保证PAST技术对于相位的无偏估计,但是其相位估计性能随连通信标节点数量增加显著提升。在高SNR情况下,即使连通信标节点数量只有M=4,也可以实现对于相位的准确估计。然而,利用WSN节点间信号构建虚拟SAR图像,即使连通信标节点数量较少,也可以通过对所构建虚拟SAR图像各距离单元的强散射点进行加窗处理进一步提高实际的SNR,从而提高PAST技术的相位估计性能,准确估计节点间信号的相位信息。
图5a、图5b、图5c所示为WSN信号在不同信标节点比例情况下,通过构建虚拟SAR图像并利用PAST技术降噪处理前后相对定位误差随SNR变化趋势,其中,信标节点比例分别为:图5a中Ratio=5%;图5b中Ratio=25%;图5c中Ratio=45%。观察发现,通过构建虚拟SAR图像,利用PAST技术可以有效的降低噪声干扰对WSN信号的影响,提高算法的定位精度。尤其在低SNR条件下,对WSN节点定位精度有显著改善。而在相同SNR条件下,信标节点比例越高,与未知节点连通的信标节点数量越多,利用PAST技术估计节点间信号相位信息也就越准确,因此对比图5a、图5b、图5c,发现随着信标节点比例的增加,本发现定位精度也随之提高。
图6a、图6b、图6c所示是本发明方法、基于RSSI定位方法、质心定位方法在不同信噪比的情况下相对定位误差随信标节点比例的变化趋势对比,其中,图6a中SNR=-5dB;图6b中SNR=5dB;图6c中SNR=15dB。观察发现,质心定位方法作为基于非测距的定位方法,它的定位性能主要受连通信标节点数量的影响,SNR的变化对于其定位性能完全没有影响。而基于RSSI的定位方法作为基于测距的定位方法,可以在高SNR条件下获得极 好的定位精度。但是,随着SNR的下降,其定位性能也随之恶化。本发明虽然不需要测量连通锚节点与未知节点间的具体距离信息或者角度信息,但是噪声干扰会导致节点间信号相位信息与真实相位存在较大偏差,因此,本发明方法性能同样受SNR变化的影响。然而通过构建虚拟SAR图像,利用PAST技术估计节点间信号的相位信息可以有效降低噪声干扰对定位精度的影响,因此在图6a、图6b、图6c中,本发明方法的定位性能受SNR变化影响较小,无论在高SNR还是低SNR条件下,均可以获得满意的节点定位精度。
设定目标区域内信标节点比例为45%,节点间通信SNR=0dB,为了更进一步分析本发明方法定位效率,利用IDL语言在3.40GHz主频PC机上对相同目标区域中未知节点进行定位处理,对比不同定位方案的实际执行时间如表1所示。
表1 WSN定位算法的运行时间
  运行时间
无虚拟SAR图像及PAST技术降噪 2.7221401s
有虚拟SAR图像及PAST技术降噪 3.4132604s
由表1可知,通过构建虚拟SAR图像并利用PAST技术估计节点间信号相位信息的实际计算运行时间约为0.69s。因此,本发明在几乎不影响WSN定位算法运行时间的同时有效降低噪声干扰对信号的影响,提高WSN定位算法的定位精度。
在上述的具体实施例一中,提供了通过构建虚拟SAR图像实现WSN节点定位的方法,与之相对应的,本申请还提供通过构建虚拟SAR图像实现WSN节点定位的装置。由于装置实施例基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。下述描述的装置实施例仅仅是示意性的。
具体实施例二
如图8所示,本发明实施例提供了一种通过构建虚拟SAR图像实现WSN节点定位的装置,包括:
构建模块201,用于根据SAR距离单元信号与WSN节点间信号的相似性,对WSN节点间信号进行多次采样并构建虚拟SAR图像;
估计模块202,用于基于PAST技术,利用虚拟SAR图像的各距离单元信号估计信号子空间,抑制噪声干扰,同时确定WSN节点信号间的相位信息;
定位模块203,用于根据WSN节点信号间的相位信息,基于余弦相似性原理分析节点间实际接收信号与理论接收信号间的差异性,实现WSN的节点定位。
优选的,所述构建模块201可以用于:
根据SAR距离单元信号与WSN信标节点间信号的相似性,对WSN中连通信标节点与未知节点间信号进行多次采样;
将WSN中同一时刻采样获得多个连通信标节点与未知节点间信号视为虚拟SAR图像的方位向数据,将WSN中同一连通信标节点在不同采样时刻与未知节点间信号视为虚拟SAR图像的距离向数据;
对虚拟SAR图像的方位向数据、距离向数据进行方位向上的傅里叶变换,构建初始固定相位为0的虚拟SAR图像。
优选的,对于所述构建模块201,信标节点表示为S 1 S 2 S 3 ... ... S N,N代表信标节点的数量;第n个连通信标节点S n坐标为(x n,y n,z n);节点间发射信号波长均为λ;
在噪声干扰条件下信标节点S 1 S 2 S 3 ... ... S N与未知节点O之间的真实信号记为:
Figure PCTCN2019120825-appb-000023
j为虚数;噪声干扰ε(n)为高斯白噪声;d n为连通信标节点S n与未知节点O之间真实物理距离:
Figure PCTCN2019120825-appb-000024
对信标节点S 1 S 2 S 3 ... ... S N与未知节点O之间的信号在不同时间点进行采样,得到:
Figure PCTCN2019120825-appb-000025
其中,下标t代表第t次采样;
在SAR系统中,假设SAR系统中任一距离单元上最强散射点的初始固定相位为ψ k,将其它弱散射点视为杂波,则在方位数据域中该最强散射点的接收信号为:
X k(m)=|A k|exp{j[ψ k+γ(m)]}+ε k(m);
其中,下标k代表第k个距离单元;m代表方位向脉冲位置;|A k|为实常数,表示幅度;杂波ε k(m)为高斯白噪声;γ(m)为相位误差函数,即SAR信号处理中自聚焦处理所需估计的相位误差函数;
将SAR图像中各距离单元信号视为检测样本,则相位误差函数对应检测样本中的信号分量,高斯白噪声对应检测样本中的噪声分量;
令SAR信号中初始固定相位为ψ k=0,则SAR信号中的相位误差函数γ(m)等价于WSN节点信号中的理想相位信息
Figure PCTCN2019120825-appb-000026
SAR信号中的杂波ε k(m)等价于WSN节点信号中的噪声干扰ε t(n)。
优选的,所述估计模块202可以用于:
在虚拟SAR图像上选出各距离单元的强信号点,进行中心的循环移位,并以各距离单元的强信号点为中心进行加窗处理,提高信噪比;
根据SAR信号处理中利用特征分解方法获得信号子空间实现自聚焦的基本原理,对各距离单元信号进行方位向上的逆傅里叶变换,获取估计样本;
提取各距离单元信号,基于PAST技术利用虚拟SAR图像的各距离单元信号,通过特征向量公式组进行迭代计算,估计WSN节点定位算法所需要的特征向量,抑制噪声干扰的同时确定WSN节点信号间的相位信息;所估计得到的特征向量即信号子空间;
将所估计特征向量从各距离单元信号中去除,对各距离单元信号进行方位向上的傅里叶变换,恢复虚拟SAR图像;
缩小窗函数的宽度,重复以上步骤,直到虚拟SAR图像聚焦质量良好为止;
将各循环步骤中所估计特征向量相位信息进行叠加,即为最终的WSN节点信号间的相位信息。优选的,所述通过特征向量公式组进行迭代计算,具体为:
j=1,2,...,P;P为所需估计特征向量个数;
i=1,2,...,T;T为采样样本数;
Figure PCTCN2019120825-appb-000027
λ(i)=λ(i-1)+|w(i)| 2
Δ i=x i-u i-1w(i);
Figure PCTCN2019120825-appb-000028
其中,当第i个采样节点信号代入PAST中进行计算时,x i为当前估计训练样本,w(i)和Δ i为PAST计算中所需的中间变量;λ(i)为当前最大特征值;u i为λ(i)的对应特征向量;
将迭代结束后,已经估计获得最大特征值的对应特征向量从各估计训练样本中去除,即:
Figure PCTCN2019120825-appb-000029
根据
Figure PCTCN2019120825-appb-000030
恢复虚拟SAR图像,缩小窗函数的宽度,重新获取新的估计训练样本x i,进行λ(i)和u i的计算。
本发明实施例根据SAR距离单元信号与WSN信标节点间信号的相似性,基于WSN节点间信号构建虚拟SAR图像,将噪声干扰条件下WSN节点间信号相位信息估计问题转化为虚拟SAR图像自聚焦处理的问题;利用PAST技术对虚拟SAR图像进行自聚焦处理,从而在低信噪比条件下准确估计WSN节点间信号相位信息;最后基于节点间信号相位信息与物理距离间的对应关系,基于余弦相似性原理构建目标函数,通过搜索目标函数最优解实现对于未知节点的定位,实现低信噪比条件下的WSN节点定位。
本发明从使用目的上,效能上,进步及新颖性等观点进行阐述,其具有的实用进步性,已符合专利法所强调的功能增进及使用要件,本发明以上的说明及附图,仅为本发明的较佳实施例而已,并非以此局限本发明,因此,凡一切与本发明构造,装置,特征等近似、雷同的,即凡依本发明专利申请范围所作的等同替换或修饰等,皆应属本发明的专利申请保护的范围之内。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。尽管本发明已进行了一定程度的描述,明显地,在不脱离本发明的精神和范围的条件下,可进行各个条件的适当变化。可以理解,本发明不限于所述实施方案,而归于权利要求的范围,其包括所述每个因素的等同替换。对本领域的技术人员来说,可根据以上描述的技术方案以 及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (10)

  1. 一种通过构建虚拟SAR图像实现WSN节点定位的方法,其特征在于,包括:
    构建步骤,根据SAR距离单元信号与WSN节点间信号的相似性,对WSN节点间信号进行多次采样并构建虚拟SAR图像;
    估计步骤,基于PAST技术,利用虚拟SAR图像的各距离单元信号估计信号子空间,抑制噪声干扰,同时确定WSN节点信号间的相位信息;
    定位步骤,根据WSN节点信号间的相位信息,基于余弦相似性原理分析节点间实际接收信号与理论接收信号间的差异性,实现WSN的节点定位。
  2. 根据权利要求1所述的通过构建虚拟SAR图像实现WSN节点定位的方法,其特征在于,所述构建步骤,具体为:
    根据SAR距离单元信号与WSN信标节点间信号的相似性,对WSN中连通信标节点与未知节点间信号进行多次采样;
    将WSN中同一时刻采样获得多个连通信标节点与未知节点间信号视为虚拟SAR图像的方位向数据,将WSN中同一连通信标节点在不同采样时刻与未知节点间信号视为虚拟SAR图像的距离向数据;
    对虚拟SAR图像的方位向数据、距离向数据进行方位向上的傅里叶变换,构建初始固定相位为0的虚拟SAR图像。
  3. 根据权利要求2所述的通过构建虚拟SAR图像实现WSN节点定位的方法,其特征在于,所述构建步骤中,信标节点表示为S 1 S 2 S 3 ...... S N,N代表信标节点的数量;第n个连通信标节点S n坐标为(x n,y n,z n);节点间发射信号波长均为λ;
    在噪声干扰条件下信标节点S 1 S 2 S 3 ...... S N与未知节点O之间的真实信号记为:
    Figure PCTCN2019120825-appb-100001
    j为虚数;噪声干扰ε(n)为高斯白噪声;d n为连通信标节点S n与未知节点O之间真实物理距离:
    Figure PCTCN2019120825-appb-100002
    对信标节点S 1 S 2 S 3 ...... S N与未知节点O之间的信号在不同时间点进行采样,得到:
    Figure PCTCN2019120825-appb-100003
    其中,下标t代表第t次采样;
    在SAR系统中,假设SAR系统中任一距离单元上最强散射点的初始固定相位为ψ k,将其它弱散射点视为杂波,则在方位数据域中该最强散射点的接收信号为:
    X k(m)=|A k|exp{j[ψ k+γ(m)]}+ε k(m);
    其中,下标k代表第k个距离单元;m代表方位向脉冲位置;|A k|为实常数,表示幅度;杂波ε k(m)为高斯白噪声;γ(m)为相位误差函数,即SAR信号处理中自聚焦处理所需估计的相位误差函数;
    将SAR图像中各距离单元信号视为检测样本,则相位误差函数对应检测样本中的信号分量,高斯白噪声对应检测样本中的噪声分量;
    令SAR信号中初始固定相位为ψ k=0,则SAR信号中的相位误差函数γ(m)等价于WSN节点信号中的理想相位信息
    Figure PCTCN2019120825-appb-100004
    SAR信号中的杂波ε k(m)等价于WSN节点信号中的噪声干扰ε t(n)。
  4. 根据权利要求3所述的通过构建虚拟SAR图像实现WSN节点定位的方法,其特征在于,所述估计步骤,具体为:
    在虚拟SAR图像上选出各距离单元的强信号点,进行中心的循环移位,并以各距离单元的强信号点为中心进行加窗处理,提高信噪比;
    根据SAR信号处理中利用特征分解方法获得信号子空间实现自聚焦的基本原理,对各距离单元信号进行方位向上的逆傅里叶变换,获取估计样本;
    提取各距离单元信号,基于PAST技术利用虚拟SAR图像的各距离单元信号,通过特征向量公式组进行迭代计算,估计WSN节点定位算法所需要的特征向量,抑制噪声干扰的同时确定WSN节点信号间的相位信息;所估计得到的特征向量即信号子空间;
    将所估计特征向量从各距离单元信号中去除,对各距离单元信号进行方位向上的傅里叶变换,恢复虚拟SAR图像;
    缩小窗函数的宽度,重复以上步骤,直到虚拟SAR图像聚焦质量良好为止;
    将各循环步骤中所估计特征向量相位信息进行叠加,即为最终的WSN节点信号间的相位信息。
  5. 根据权利要求4所述的通过构建虚拟SAR图像实现WSN节点定位的方法,其特征在于,所述通过特征向量公式组进行迭代计算,具体为:
    j=1,2,...,P;P为所需估计特征向量个数;
    i=1,2,...,T;T为采样样本数;
    Figure PCTCN2019120825-appb-100005
    λ(i)=λ(i-1)+|w(i)| 2
    Δ i=x i-u i-1w(i);
    Figure PCTCN2019120825-appb-100006
    其中,当第i个采样节点信号代入PAST中进行计算时,x i为当前估计训练样本,w(i)和Δ i为PAST计算中所需的中间变量;λ(i)为当前最大特征值;u i为λ(i)的对应特征向量;
    将迭代结束后,已经估计获得最大特征值的对应特征向量从各估计训练样本中去除,即:
    Figure PCTCN2019120825-appb-100007
    根据
    Figure PCTCN2019120825-appb-100008
    恢复虚拟SAR图像,缩小窗函数的宽度,重新获取新的估计训练样本x i,进行λ(i)和u i的计算。
  6. 一种通过构建虚拟SAR图像实现WSN节点定位的装置,其特征在于,包括:
    构建模块,用于根据SAR距离单元信号与WSN节点间信号的相似性,对WSN节点间信号进行多次采样并构建虚拟SAR图像;
    估计模块,用于基于PAST技术,利用虚拟SAR图像的各距离单元信号估计信号子空间,抑制噪声干扰,同时确定WSN节点信号间的相位信息;
    定位模块,用于根据WSN节点信号间的相位信息,基于余弦相似性原理分析节点间实际接收信号与理论接收信号间的差异性,实现WSN的节点定位。
  7. 根据权利要求6所述的通过构建虚拟SAR图像实现WSN节点定位的装置,其特征在于,所述构建模块用于:
    根据SAR距离单元信号与WSN信标节点间信号的相似性,对WSN中连通信标节点与未知节点间信号进行多次采样;
    将WSN中同一时刻采样获得多个连通信标节点与未知节点间信号视为虚拟SAR图像的方位向数据,将WSN中同一连通信标节点在不同采样时刻与未知节点间信号视为虚拟SAR图像的距离向数据;
    对虚拟SAR图像的方位向数据、距离向数据进行方位向上的傅里叶变换,构建初始固定相位为0的虚拟SAR图像。
  8. 根据权利要求7所述的通过构建虚拟SAR图像实现WSN节点定位的装置,其特征在于,对于所述构建模块,信标节点表示为S 1 S 2 S 3 ...... S N,N代表信标节点的数量;第n个连通信标节点S n坐标为(x n,y n,z n);节点间发射信号波长均为λ;
    在噪声干扰条件下信标节点S 1 S 2 S 3 ...... S N与未知节点O之间的真实信号记为:
    Figure PCTCN2019120825-appb-100009
    j为虚数;噪声干扰ε(n)为高斯白噪声;d n为连通信标节点S n与未知节点O之间真实物理距离:
    Figure PCTCN2019120825-appb-100010
    对信标节点S 1 S 2 S 3 ...... S N与未知节点O之间的信号在不同时间点进行采样,得到:
    Figure PCTCN2019120825-appb-100011
    其中,下标t代表第t次采样;
    在SAR系统中,假设SAR系统中任一距离单元上最强散射点的初始固定相位为ψ k,将其它弱散射点视为杂波,则在方位数据域中该最强散射点的接收信号为:
    X k(m)=|A k|exp{j[ψ k+γ(m)]}+ε k(m);
    其中,下标k代表第k个距离单元;m代表方位向脉冲位置;|A k|为实常数,表示幅度;杂波ε k(m)为高斯白噪声;γ(m)为相位误差函数,即SAR信号处理中自聚焦处理所需估计的相位误差函数;
    将SAR图像中各距离单元信号视为检测样本,则相位误差函数对应检测样本中的信号分量,高斯白噪声对应检测样本中的噪声分量;
    令SAR信号中初始固定相位为ψ k=0,则SAR信号中的相位误差函数γ(m)等价于WSN节点信号中的理想相位信息
    Figure PCTCN2019120825-appb-100012
    SAR信号中的杂波ε k(m)等价于WSN节点信号中的噪声干扰ε t(n)。
  9. 根据权利要求8所述的通过构建虚拟SAR图像实现WSN节点定位的装置,其特征在于,所述估计模块用于:
    在虚拟SAR图像上选出各距离单元的强信号点,进行中心的循环移位,并以各距离单元的强信号点为中心进行加窗处理,提高信噪比;
    根据SAR信号处理中利用特征分解方法获得信号子空间实现自聚焦的基本原理,对各距离单元信号进行方位向上的逆傅里叶变换,获取估计样本;
    提取各距离单元信号,基于PAST技术利用虚拟SAR图像的各距离单元信号,通过特征向量公式组进行迭代计算,估计WSN节点定位算法所需要的特征向量,抑制噪声干扰的同时确定WSN节点信号间的相位信息;所估计得到的特征向量即信号子空间;
    将所估计特征向量从各距离单元信号中去除,对各距离单元信号进行方位向上的傅里叶变换,恢复虚拟SAR图像;
    缩小窗函数的宽度,重复以上步骤,直到虚拟SAR图像聚焦质量良好为止;
    将各循环步骤中所估计特征向量相位信息进行叠加,即为最终的WSN节点信号间的相位信息。
  10. 根据权利要求9所述的通过构建虚拟SAR图像实现WSN节点定位的装置,其特征在于,所述通过特征向量公式组进行迭代计算,具体为:
    j=1,2,...,P;P为所需估计特征向量个数;
    i=1,2,...,T;T为采样样本数;
    Figure PCTCN2019120825-appb-100013
    λ(i)=λ(i-1)+|w(i)| 2
    Δ i=x i-u i-1w(i);
    Figure PCTCN2019120825-appb-100014
    其中,当第i个采样节点信号代入PAST中进行计算时,x i为当前估计训练样本,w(i)和Δ i为PAST计算中所需的中间变量;λ(i)为当前最大特征值;u i为λ(i)的对应特征向量;
    将迭代结束后,已经估计获得最大特征值的对应特征向量从各估计训练样本中去除,即:
    Figure PCTCN2019120825-appb-100015
    根据
    Figure PCTCN2019120825-appb-100016
    恢复虚拟SAR图像,缩小窗函数的宽度,重新获取新的估计训练样本x i,进行λ(i)和u i的计算。
PCT/CN2019/120825 2018-12-28 2019-11-26 通过构建虚拟sar图像实现wsn节点定位的方法及装置 WO2020134797A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811626016.8A CN109765555B (zh) 2018-12-28 2018-12-28 通过构建虚拟sar图像实现wsn节点定位的方法及装置
CN201811626016.8 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020134797A1 true WO2020134797A1 (zh) 2020-07-02

Family

ID=66452194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120825 WO2020134797A1 (zh) 2018-12-28 2019-11-26 通过构建虚拟sar图像实现wsn节点定位的方法及装置

Country Status (2)

Country Link
CN (1) CN109765555B (zh)
WO (1) WO2020134797A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113780422A (zh) * 2021-09-13 2021-12-10 北京环境特性研究所 背景杂波相似性评估方法及装置
CN118647012A (zh) * 2024-08-13 2024-09-13 陕西正浩电力科技有限公司 一种无线短传装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765555B (zh) * 2018-12-28 2023-06-20 通鼎互联信息股份有限公司 通过构建虚拟sar图像实现wsn节点定位的方法及装置
CN114245291A (zh) * 2021-11-19 2022-03-25 中国矿业大学 参考节点虚拟化为未知节点的测距定位方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806982A (zh) * 2009-02-16 2010-08-18 Nec液晶技术株式会社 液晶显示器件和使用该器件的电子装置及其制造方法
CN105307118A (zh) * 2015-09-22 2016-02-03 南京邮电大学 基于质心迭代估计的节点定位方法
CN106102162A (zh) * 2016-06-03 2016-11-09 南京邮电大学 一种用于无线传感器网络三维定位的迭代估计方法
CN108307498A (zh) * 2018-02-05 2018-07-20 通鼎互联信息股份有限公司 一种wsn节点的定位方法及装置
CN109765555A (zh) * 2018-12-28 2019-05-17 通鼎互联信息股份有限公司 通过构建虚拟sar图像实现wsn节点定位的方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8417442B2 (en) * 2006-09-19 2013-04-09 Intuitive Control Systems, Llc Collection, monitoring, analyzing and reporting of traffic data via vehicle sensor devices placed at multiple remote locations
CN100571448C (zh) * 2007-04-18 2009-12-16 中国科学院上海微系统与信息技术研究所 无线传感网节点定位方法
CN101806892B (zh) * 2010-03-19 2012-05-16 南京航空航天大学 基于投影近似子空间跟踪技术的自聚焦方法
CN102540137A (zh) * 2011-12-28 2012-07-04 浙江大学 一种基于信号相位差的无线声传感器网络目标定位方法
US10270261B2 (en) * 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
CN103576137B (zh) * 2013-09-27 2015-05-27 电子科技大学 一种基于成像策略的多传感器多目标定位方法
CN104076349B (zh) * 2014-05-29 2016-05-25 西北大学 一种基于多普勒频移的被动式移动目标定位方法
CN105954713A (zh) * 2016-04-26 2016-09-21 北斗时空信息技术(北京)有限公司 一种基于tdoa观测量定位算法的时延估计方法
CN107729916B (zh) * 2017-09-11 2021-11-19 湖南中森通信科技有限公司 一种基于isodata的干扰源分类识别算法
CN108564662A (zh) * 2018-03-26 2018-09-21 湖北大学 一种远距离场景下进行增强现实数字文化内容显示的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806982A (zh) * 2009-02-16 2010-08-18 Nec液晶技术株式会社 液晶显示器件和使用该器件的电子装置及其制造方法
CN105307118A (zh) * 2015-09-22 2016-02-03 南京邮电大学 基于质心迭代估计的节点定位方法
CN106102162A (zh) * 2016-06-03 2016-11-09 南京邮电大学 一种用于无线传感器网络三维定位的迭代估计方法
CN108307498A (zh) * 2018-02-05 2018-07-20 通鼎互联信息股份有限公司 一种wsn节点的定位方法及装置
CN109765555A (zh) * 2018-12-28 2019-05-17 通鼎互联信息股份有限公司 通过构建虚拟sar图像实现wsn节点定位的方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113780422A (zh) * 2021-09-13 2021-12-10 北京环境特性研究所 背景杂波相似性评估方法及装置
CN113780422B (zh) * 2021-09-13 2023-06-27 北京环境特性研究所 背景杂波相似性评估方法及装置
CN118647012A (zh) * 2024-08-13 2024-09-13 陕西正浩电力科技有限公司 一种无线短传装置及方法

Also Published As

Publication number Publication date
CN109765555A (zh) 2019-05-17
CN109765555B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2020134797A1 (zh) 通过构建虚拟sar图像实现wsn节点定位的方法及装置
CN107132505B (zh) 直达与非直达混合场景中的多目标直接定位方法
CN105676171B (zh) 单通道双基站超短波信号空间定位方法
CN108802674B (zh) 一种针对直接定位的联合搜索方法及装置
WO2016138800A1 (en) Optimizing position estimates of a device for indoor localization
WO2010113829A1 (en) Method for localizing set of nodes in wireless networks
CN109490826B (zh) 一种基于无线电波场强rssi的测距与位置定位方法
CN108307498B (zh) 一种wsn节点的定位方法及装置
CN107870314A (zh) 基于极化敏感阵列的完备电磁分量加权融合测向优化方法
CN106154217B (zh) Ula和uca中互耦未知时基于空间谱伪峰消除的自校准方法
CN115150744A (zh) 一种大型会议场馆室内信号干扰源定位方法
Rahman et al. Lochunt: Angle of arrival based location estimation in harsh multipath environments
Wang et al. High-accuracy localization using single-anchor ultra-wide bandwidth systems
CN106125059A (zh) 非参数联合估计信号及位置的被动定位方法
Dogan et al. A Mini-Review on Radio Frequency Fingerprinting Localization in Outdoor Environments: Recent Advances and Challenges
Zheng et al. Semidefinite relaxation method for moving object localization using a stationary transmitter at unknown position
CN103634903B (zh) 低功耗小型设备抗噪定位方法
Jiménez Smart cities, open innovation and open government: towards
CN116930963A (zh) 一种基于无线通信系统的穿墙成像方法
CN111257827B (zh) 一种高精度的非视距追踪定位方法
Zhou et al. Robust Multi-UAV Placement Optimization for AOA-Based Cooperative Localization
CN115407266A (zh) 一种基于互谱子空间正交性的直接定位方法
CN104020452A (zh) 频域空域极化域参数联合估计方法
Li et al. Wireless indoor positioning algorithm based on PCA
Yamaguchi et al. A Preliminary Study on Angle of Arrival Estimation by MUSIC Algorithm Using Backscatter Tags

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902564

Country of ref document: EP

Kind code of ref document: A1