WO2020134438A1 - 滤芯寿命监测方法、装置和空气净化设备 - Google Patents

滤芯寿命监测方法、装置和空气净化设备 Download PDF

Info

Publication number
WO2020134438A1
WO2020134438A1 PCT/CN2019/113057 CN2019113057W WO2020134438A1 WO 2020134438 A1 WO2020134438 A1 WO 2020134438A1 CN 2019113057 W CN2019113057 W CN 2019113057W WO 2020134438 A1 WO2020134438 A1 WO 2020134438A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter element
life
concentration
target substance
monitoring
Prior art date
Application number
PCT/CN2019/113057
Other languages
English (en)
French (fr)
Inventor
林勇
罗彪
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2020134438A1 publication Critical patent/WO2020134438A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours

Definitions

  • the present disclosure relates to the technical field of electrical equipment, in particular to a filter element life monitoring method, device and air purification equipment.
  • air purification equipment such as air conditioners and air purifiers have gradually appeared in thousands of homes and office spaces.
  • air purification equipment pre-sets the effective use time of the filter element. When the use time of the filter element reaches the effective use time, the user is reminded to replace the filter element.
  • the life of the filter element is affected by many factors. For example, the environment of the air purification equipment is different, and the life of the filter element is also different. Therefore, the above method of determining the life of the filter element is not accurate.
  • the present disclosure proposes a filter element life monitoring method, device and air purification equipment to accurately identify the life of the filter element, so as to avoid the related problems caused by the incorrect identification of the filter element life, for example, to avoid the end of life of the filter element still in service and lead to purification performance
  • the situation of decline, or it can avoid the waste of resources caused by the replacement of the filter element before the end of life is used to solve the technical problem of low accuracy of the determination result of the filter life in the prior art.
  • An embodiment of the present disclosure provides a method for monitoring the life of a filter element.
  • the filter element is used to decompose pollutants to obtain a target substance.
  • the method includes:
  • the life of the filter element is determined.
  • An embodiment of another aspect of the present disclosure provides a filter element life monitoring device.
  • the filter element is used to decompose pollutants to obtain a target substance.
  • the device includes:
  • a monitoring module for monitoring the concentration of the target substance during the air purification process using the filter element
  • the determining module is used for determining the life of the filter element according to the monitored concentration of the target substance.
  • An embodiment of another aspect of the present disclosure provides an air purification device.
  • the air purification device includes a filter element that is used to decompose pollutants to obtain a target substance.
  • the air purification device further includes a memory, a processor, and A computer program stored on the memory and executable on the processor. When the processor executes the program, the method for monitoring the life of the filter element as proposed in the foregoing embodiments of the present disclosure is implemented.
  • a further embodiment of the present disclosure proposes a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the method for monitoring the life of the filter element as proposed in the foregoing embodiments of the present disclosure is implemented.
  • the one or more technical solutions provided in the embodiments of the present disclosure have at least the following technical effects or advantages:
  • the concentration of the target substance is monitored, and according to the detected target substance
  • the concentration of the filter element determines the life of the filter element, where the target substance is obtained by the decomposition of the pollutant by the filter element, which can effectively solve the technical problem of low accuracy of the determination result of the filter element life in the prior art, thereby achieving accurate identification of the filter element life, Therefore, related problems caused by incorrectly identifying the life of the filter element can be avoided. For example, it can be avoided that the filter element at the end of the life is still in service and the purification performance is reduced, or the resource waste caused by the replacement of the filter element at the end of the life can be avoided.
  • the way of confirming the life of the filter element can be enriched, and the flexibility and applicability of the method can be improved.
  • FIG. 1 is a schematic flowchart of a method for monitoring the life of a filter element provided in Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for monitoring the life of a filter element provided in Embodiment 2 of the present disclosure
  • FIG. 3 is a schematic flow chart of a method for monitoring the life of a filter element provided in Embodiment 3 of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for monitoring the life of a filter element provided in Embodiment 4 of the present disclosure
  • FIG. 5 is a schematic structural diagram of a filter life monitoring device according to Embodiment 5 of the present disclosure.
  • the present disclosure is mainly directed to the technical problem of low accuracy of the filter life determination result in the prior art, and proposes a filter life monitoring method.
  • the method for monitoring the life of a filter element of an embodiment of the present disclosure monitors the concentration of the target substance during the air purification process using the filter element, and determines the life of the filter element according to the monitored concentration of the target substance, where the target substance is the filter element for polluting substances Decomposed.
  • the purification ability and purification effect of the filter element can be determined, and further, the filter life can be determined according to the purification ability or purification effect, thereby, the filter life can be accurately identified, so that the filter life can not be identified incorrectly
  • the related problems for example, can avoid the situation that the filter element at the end of life is still in service and degrades the purification performance, or can avoid the situation of wasting resources when the filter element is not replaced at the end of life.
  • FIG. 1 is a schematic flowchart of a method for monitoring a filter life according to Embodiment 1 of the present disclosure.
  • the filter life monitoring method is configured in a filter life monitoring device, and the filter life monitoring device can be applied to an air purification device to enable the air purification device to perform a filter life monitoring function.
  • the air purification equipment refers to related equipment having an air purification function, such as air purifiers, air conditioners, and other equipment.
  • the filter element is used to decompose the pollutant to obtain the target substance.
  • the filter element when using air purification equipment to filter them, the filter element is mainly used to adsorb them to achieve the purpose of purifying the air.
  • Gaseous pollutants such as formaldehyde, total volatile organic compounds (Total Volatile Organic Compounds, TVOC for short), etc.
  • the pollutant may specifically be a gas pollutant, such as formaldehyde, chlorine-containing volatile organic compounds (Cl-VOCs), and so on.
  • the filter element can decompose pollutants to obtain the target substance.
  • the filter element can decompose formaldehyde to obtain carbon dioxide CO 2 and water H 2 0.
  • the target substance can be carbon dioxide, or the filter element can decompose chlorine-containing volatile organic compounds It is decomposed to obtain carbon dioxide CO 2 , water H 2 0 and other substances.
  • the target substance may be carbon dioxide.
  • the filter element life monitoring method includes the following steps:
  • Step 101 During the air purification process using the filter element, monitor the concentration of the target substance.
  • the filter element can be used to purify the air.
  • the filter element can decompose the pollutant to obtain the target substance.
  • relevant sensors can be used to detect the concentration of the target substance.
  • a carbon dioxide sensor can be used to detect the concentration of the target substance.
  • Step 102 Determine the life of the filter element according to the monitored concentration of the target substance.
  • the concentration of the target substance rises significantly within the preset time period, it means that the filter element decomposes more pollutants and the purification ability of the air purification equipment is stronger. At this time, it can be determined that the filter life is not the end of life. If the concentration of the target substance does not change significantly, or does not change, it means that the filter element decomposes less pollutant, or the filter element does not decompose the pollutant, at this time, it can be determined that the filter life is the end of life.
  • the life of the filter element can be determined according to the monitored concentration of the target substance.
  • the life of the filter element can be determined according to the amount of change in the concentration of the target substance within a preset time period, or the life of the filter element can be determined according to the amount of change in the concentration of target substance per unit time, which is not limited.
  • the life of the filter element can be accurately identified, so that the related problems caused by not correctly identifying the life of the filter element can be avoided, for example, it can avoid the situation that the filter element at the end of the life is still in service and the purification performance is reduced, or the filter element that has not reached the end of the life can be avoided. Replacement causes waste of resources.
  • the chip life can be determined according to the concentration of pollutants.
  • the pollutant is formaldehyde
  • the formaldehyde concentration can be detected by the formaldehyde sensor.
  • the concentration of formaldehyde drops significantly.
  • the life span of the formaldehyde sensor is short. If the formaldehyde sensor is installed in the air purification equipment, the formaldehyde sensor needs to be replaced frequently, for example, the formaldehyde sensor is replaced every six months or a year, and the cost is relatively high.
  • the life of the chip is determined according to the concentration of the target substance obtained by decomposing the pollutant.
  • the target substance is carbon dioxide
  • the life of the carbon dioxide sensor is longer, so there is no need to replace it frequently. Can reduce costs.
  • the concentration of the target substance is detected by the relevant sensor, and the life of the filter element is determined according to the concentration of the target substance, and the risk caused by the introduction of additional immature technology can also be avoided.
  • the method for monitoring the life of a filter element of an embodiment of the present disclosure monitors the concentration of the target substance during the air purification process using the filter element, and determines the life of the filter element according to the monitored concentration of the target substance, where the target substance is the filter element for polluting substances Decomposed.
  • the purification ability and purification effect of the filter element can be determined, and further, the filter life can be determined according to the purification ability or purification effect, thereby, the filter life can be accurately identified, so that the filter life can not be identified incorrectly
  • the related problems for example, can avoid the situation that the filter element at the end of life is still in service and degrades the purification performance, or can avoid the situation of wasting resources when the filter element is not replaced at the end of life.
  • the concentration of the target substance in the air purification device before the start of the air purification process and the concentration of the target substance in the preset time period after the start of the air purification process can be obtained by monitoring according to two time points The difference in concentration of the target substance determines the life of the filter element. The above process will be described in detail below in conjunction with FIG. 2.
  • FIG. 2 is a schematic flowchart of a method for detecting the life of a filter element provided in Embodiment 2 of the present disclosure.
  • step 102 may specifically include the following sub-steps:
  • Step 201 Obtain the concentration of the target substance before the air purification process starts.
  • the filter element before the air purification process starts, it means that the filter element does not purify the air, that is, before the filter element purifies the air.
  • the concentration of the target substance before the start of the air purification process can be detected by related sensors.
  • the concentration of the target substance can be detected through the relevant sensor.
  • the relevant sensor can be used to detect the concentration of the target substance, for example, to mark the concentration of the target substance as C1 before the air purification process starts.
  • the mobile terminal may be a mobile device, a tablet computer, a personal digital assistant, a wearable device, an in-vehicle device, and other hardware devices with various operating systems, touch screens, and/or display screens.
  • Step 202 Calculate the concentration difference, which is the difference between the concentration of the target substance in the preset time period after the start of the air purification process and the concentration of the target substance before the start of the air purification process.
  • the preset time period is preset, for example, it may be preset for the built-in program of the air purification device, or may be set by the user, which is not limited, for example, the preset time period may be 30 minutes, 1h and so on.
  • the preset time period after the start of the air purification process refers to the preset time period after the air purification device is turned on and the filter element purifies the air, for example, 30 minutes after the filter element purifies the air.
  • the filter element purifies the air
  • the concentration of the target substance can be collected by the relevant sensor, for example, to mark the start of the air purification process
  • the concentration of the target substance is C2
  • the difference between C2 and C1 is obtained to obtain the concentration difference between the target substance concentration after the start of the air purification process and the target substance concentration before the start of the air purification process
  • the value is
  • the concentration of the target substance collected by the relevant sensors in real time can be compared with the concentration of the target substance before the air purification process starts to determine the life of the filter element, which can improve the determination of the filter life in subsequent steps Accuracy.
  • Step 203 Determine the life of the filter element according to the concentration difference.
  • is lower than the first threshold, if so, the filter life is determined to be the end of life, if not, the filter life is determined to be non- End of life.
  • the first threshold value is preset, for example, may be preset in a built-in program of the air purification device, or may be set by a user, which is not limited.
  • the filter element may have a significant change in the measured target substance concentration under the same purification efficiency, For example, the volume of space A is smaller than that of space B, assuming that the filter element decomposes in space A to obtain as many target substances as the filter element decomposes in space B. Since the volume of space A is smaller than space B, the The concentration of the target substance is greater than the concentration of the target substance in the space B. Therefore, according to whether the concentration difference
  • the growth coefficient may be calculated according to the concentration difference
  • can be compared with the concentration C1 of the target substance before the air purification process is started to obtain the growth coefficient.
  • the purification capacity gradually weakens, and the growth coefficient is continuously reduced. Therefore, it can be judged whether the growth coefficient is lower than the third threshold. If it is, it indicates that the purification capacity of the filter element is weak. At this time, it can be determined The life of the filter element is the end of life, if not, it is determined that the life of the filter element is not the end of life.
  • the third threshold value is preset, for example, it may be preset for the built-in program of the air purification device, or may be set by the user, which is not limited.
  • the life of the filter element may also be determined according to the growth factor and the preset reference growth factor.
  • /C1, D1
  • the difference between the growth coefficient S1 and the reference growth coefficient S2 is lower than the fifth threshold. If so, it indicates that the purification ability of the filter element is weak. , It can be determined that the life of the filter element is the end of life, if not, it is determined that the life of the filter element is not the end of life.
  • the fourth threshold and the fifth threshold are preset, for example, may be preset in the built-in program of the air purification device, or may be set by the user, which is not limited.
  • the growth coefficient S1
  • /0.125 60%>50%, therefore, it can be determined that the filter element’s aldehyde removal effect is attenuated Obviously, the life of the filter element is the end of life.
  • the above example only uses the reference growth factor as the preset setting.
  • the reference growth factor is preset for the built-in program of the air purification device, its value is related to the calibration environment before leaving the factory, such as Differences in space size, ambient temperature, humidity, etc. may cause large differences in the reference growth coefficients corresponding to different spaces, thereby affecting the accuracy of the filter life judgment results. Therefore, in the present disclosure, the monitoring when the filter is used for the first time can be obtained The concentration of the target substance and the concentration difference per unit time when the filter element is first used, and the reference growth factor is determined according to the concentration difference per unit time. Specifically, the difference in concentration per unit time when the filter element is used for the first time and the concentration of the target substance monitored when the filter element is used for the first time can be compared to obtain a reference growth factor.
  • the user can be prompted to remind the user to replace the filter element, for example, voice announcement can be made through the air purification device, or the user can be sent a reminder through the APP that controls the electrical equipment on the mobile terminal Information, no restrictions.
  • the concentration of the target substance can be continuously monitored to monitor the life of the filter element in real time, that is, return to step 202 and subsequent steps.
  • the method for monitoring the life of a filter element can determine the life of the filter element according to the purification effect or purification ability of the filter element, and can improve the accuracy of the determination result of the filter element life.
  • the life of the filter element can also be determined according to the amount of change in the concentration of the target substance per unit time. The above process will be described in detail below in conjunction with FIG. 3.
  • FIG. 3 is a schematic flowchart of a method for monitoring the life of a filter element provided in Embodiment 3 of the present disclosure.
  • step 102 may specifically include the following sub-steps:
  • Step 301 Determine the amount of concentration change per unit time according to the monitored concentration of the target substance.
  • the unit time is preset, for example, it may be 1 min, 10 min, and so on.
  • , The relative change in concentration is T0
  • Step 302 Determine the life of the filter element according to the concentration change.
  • the concentration change is lower than the sixth threshold. If it is, it indicates that the purification capacity of the filter element is weak. At this time, it can be determined that the filter life is the end of life. If not, it is determined that the filter life is not End of life.
  • the sixth threshold value is preset, for example, it may be preset for the built-in program of the air purification device, or may be set by the user, which is not limited.
  • the method for monitoring the life of a filter element according to an embodiment of the present disclosure can also determine the accuracy of the determination result by determining the life of the filter element according to the concentration change amount per unit time.
  • a reference concentration change amount may also be set, and the difference in concentration change amount between the concentration change amount and the reference concentration change amount may be calculated, and the filter life may be determined according to the concentration change amount difference value.
  • FIG. 4 is a schematic flowchart of a method for monitoring the life of a filter element provided in Embodiment 4 of the present disclosure.
  • step 302 may specifically include the following sub-steps:
  • Step 401 For the concentration change amount, calculate the difference between the concentration change amount and the set reference concentration change amount.
  • the reference concentration change amount may be preset, for example, labeled as T1, then the concentration change amount difference between the concentration change amount T0 and the reference concentration change amount T1 per unit time The value is
  • the above example only uses the reference concentration change amount as the preset setting.
  • the reference concentration change amount is preset in the built-in program of the air purification device, its value is related to the calibration environment before shipment. , Such as the difference in space size, the difference in ambient temperature and humidity, etc., may cause a large difference in the reference concentration change corresponding to different spaces, thereby affecting the accuracy of the filter life judgment results.
  • the concentration C0 monitored when the filter element is used for the first time can be obtained, and the concentration change amount per unit time when the filter element is used for the first time can be determined, and then, according to the unit when the filter element is used for the first time The amount of concentration change within time, set the reference concentration change amount T1.
  • Step 402 Determine the life of the filter element according to the difference in concentration change.
  • the life of the filter element is not at the end of its life, its purification performance is better. With the increase of time, more and more target substances are decomposed, and the concentration of the target substances in the space where the air purification equipment is located is also increasing. high. Therefore, as a possible implementation manner of the embodiment of the present disclosure, it can be determined whether the difference in concentration change
  • the second threshold value is preset, for example, may be preset in a built-in program of the air purification device, or may be set by a user, which is not limited.
  • the filter element may have a significant change in the measured concentration of the target substance at the same purification efficiency, for example .
  • the volume of space A is smaller than that of space B, assuming the target substance decomposed by the filter element in space A, and the target substance decomposed by the filter element in space B, since the volume of space A is smaller than that of space B, the target substance in space A
  • the concentration is greater than the concentration of the target substance in space B. Therefore, according to whether the difference in concentration change
  • the seventh threshold is preset, for example, it can be preset for the built-in program of the air purification device, or it can be set by the user, which is not limited.
  • the life of the filter element may also be determined according to the real-time growth factor and the reference concentration growth factor.
  • the difference between the real-time growth coefficient U1 and the reference concentration growth coefficient U2 is lower than the eighth threshold. If so, it indicates that the purification ability of the filter element is weak. , It can be determined that the life of the filter element is the end of life, if not, it is determined that the life of the filter element is not the end of life.
  • the eighth threshold and the ninth threshold are preset, for example, may be preset for the built-in program of the air purification device, or may be set by the user, which is not limited.
  • the ninth threshold is 50%
  • the concentration C0 monitored when the filter element is used for the first time is 400 ppm
  • the concentration obtained after the unit time ⁇ T is 450 ppm
  • the concentration C4 of the target substance detected at the current moment is 420ppm
  • the concentration C3 of the target substance detected at the previous moment is 400ppm
  • the second attenuation amplitude D2
  • /0.125 60%>50%
  • the values of the first threshold, the second threshold, ..., the eighth threshold, and the ninth threshold may be the same or different, and there is no limitation on this.
  • the present disclosure also proposes a filter element life monitoring device.
  • FIG. 5 is a schematic structural diagram of a filter life monitoring device according to Embodiment 5 of the present disclosure.
  • the filter element is used to decompose the pollutant to obtain the target substance.
  • the filter element life monitoring device includes: a monitoring module 101 and a determination module 102.
  • the monitoring module 101 is used to monitor the concentration of the target substance during the air purification process using the filter element.
  • the filter element may be a formaldehyde removal filter element, and in this case, the target substance may be carbon dioxide.
  • the determining module 102 is used to determine the life of the filter element according to the monitored concentration of the target substance.
  • the determination module 102 is specifically configured to: obtain the concentration of the target substance before the air purification process starts; calculate the concentration difference, the concentration difference is the target substance's preset time period after the air purification process starts The concentration difference between the concentration and the concentration of the target substance before the start of the air purification process; according to the concentration difference, the life of the filter element is determined.
  • the determination module 102 is specifically configured to: if the concentration difference is lower than the first threshold, determine the life of the filter element as the end of life.
  • the determination module 102 is specifically used to: determine the concentration change amount per unit time according to the monitored target substance concentration; and determine the filter life according to the concentration change amount.
  • the determination module 102 is specifically configured to: calculate the concentration change difference between the concentration change amount and the set reference concentration change amount; and determine the filter life according to the concentration change amount difference.
  • the determination module 102 is specifically configured to: if the difference in concentration change is lower than the second threshold, determine the life of the filter element as the end of life.
  • the determination module 102 is also used to: determine the amount of concentration change per unit time when the filter element is used for the first time based on the concentration monitored when the filter element is used for the first time; based on the concentration per unit time when the filter element is used for the first time Change amount, set the reference concentration change amount.
  • the filter life monitoring device of the embodiment of the present disclosure monitors the concentration of the target substance during the air purification process using the filter, and determines the life of the filter according to the monitored concentration of the target substance, where the target substance is the filter for pollutants Decomposed.
  • the purification ability and purification effect of the filter element can be determined, and further, the filter life can be determined according to the purification ability or purification effect, thereby, the filter life can be accurately identified, so that the filter life can not be identified incorrectly
  • the related problems for example, can avoid the situation that the filter element at the end of life is still in service and degrades the purification performance, or can avoid the situation of wasting resources when the filter element is not replaced at the end of life.
  • the present disclosure also proposes an air purification device, the air purification device includes a filter element, the filter element is used to decompose pollutants to obtain the target substance, the air purification device also includes: a memory, a processor and stored in the memory and A computer program that can be run on the processor. When the processor executes the program, the method for monitoring the life of the filter element as proposed in the foregoing embodiments of the present disclosure is implemented.
  • the present disclosure also proposes a computer-readable storage medium on which a computer program is stored, which when executed by a processor implements the filter life monitoring method as proposed in the foregoing embodiments of the present disclosure.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may include at least one of the features explicitly or implicitly.
  • the meaning of “plurality” is at least two, for example, two, three, etc., unless specifically defined otherwise.
  • Any process or method description in a flowchart or otherwise described herein may be understood as representing a module, segment, or portion of code that includes one or more executable instructions for implementing custom logic functions or steps of a process , And the scope of the preferred embodiments of the present disclosure includes additional implementations, in which the functions may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in reverse order according to the functions involved, which shall It is understood by those skilled in the art to which the embodiments of the present disclosure belong.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wires, portable computer cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other appropriate if necessary Process to obtain the program electronically and then store it in computer memory.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种滤芯寿命监测方法,滤芯用于对污染物质进行分解得到目标物质,方法包括如下步骤:在采用滤芯进行空气净化过程中,监测目标物质的浓度;根据监测到的目标物质的浓度,确定滤芯寿命。还提供一种滤芯寿命监测装置、空气净化设备和计算机可读介质。

Description

滤芯寿命监测方法、装置和空气净化设备
相关申请的交叉引用
本公开要求广东美的制冷设备有限公司和美的集团股份有限公司于2018年12月24日提交的、申请名称为“滤芯寿命监测方法、装置和空气净化设备”的、中国专利申请号“201811579636.0”的优先权。
技术领域
本公开涉及电器设备技术领域,尤其涉及一种滤芯寿命监测方法、装置和空气净化设备。
背景技术
随着人们生活水平的提高,空调、空气净化器等空气净化设备逐渐出现在成千上万的家庭和办公场所中。目前,空气净化设备通过预先设置滤芯的有效使用时间,当滤芯的使用时间到达有效使用时间时,提醒用户更换滤芯。
然而,实际应用时,滤芯的寿命受到多种因素的影响,例如,空气净化设备所在空间的环境不同,滤芯寿命也是不同的,因此,上述确定滤芯寿命的方式,确定结果并不准确。
公开内容
本公开提出一种滤芯寿命监测方法、装置和空气净化设备,以实现准确识别滤芯寿命,从而可以避免未正确识别滤芯寿命而导致的相关问题,例如可以避免寿命末期的滤芯仍然服役而导致净化性能下降的情况,或者可以避免未到寿命末期的滤芯被替换而造成资源浪费的情况,用于解决现有技术中滤芯寿命确定结果的准确性较低的技术问题。
本公开一方面实施例提出了一种滤芯寿命监测方法,所述滤芯用于对污染物质进行分解得到目标物质,所述方法包括:
在采用所述滤芯进行空气净化过程中,监测所述目标物质的浓度;
根据监测到的所述目标物质的浓度,确定所述滤芯寿命。
本公开又一方面实施例提出了一种滤芯寿命监测装置,所述滤芯用于对污染物质进行分解得到目标物质,所述装置包括:
监测模块,用于在采用所述滤芯进行空气净化过程中,监测所述目标物质的浓度;
确定模块,用于根据监测到的所述目标物质的浓度,确定所述滤芯寿命。
本公开又一方面实施例提出了一种空气净化设备,所述空气净化设备包括滤芯,所述滤芯用于对污染物质进行分解得到目标物质,所述空气净化设备还包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如本公开前述实施例提出的滤芯寿命监测方法。
本公开又一方面实施例提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本公开前述实施例提出的滤芯寿命监测方法。
本公开实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:一方面,由于采用了在采用滤芯进行空气净化过程中,监测目标物质的浓度,并根据监测到的目标物质的浓度,确定滤芯寿命,其中,目标物质为滤芯对污染物质进行分解得到的,可以有效解决了现有技术中滤芯寿命确定结果的准确性较低的技术问题,进而实现了准确识别滤芯寿命,从而可以避免未正确识别滤芯寿命而导致的相关问题,例如可以避免寿命末期的滤芯仍然服役而导致净化性能下降的情况,或者可以避免未到寿命末期的滤芯被替换而造成资源浪费的情况。
另一方面,由于采用了不同方式,确定滤芯寿命,可以丰富滤芯寿命的确认方式,提升该方法的灵活性和适用性。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例一所提供的滤芯寿命监测方法的流程示意图;
图2为本公开实施例二所提供的滤芯寿命监测方法的流程示意图;
图3为本公开实施例三所提供的滤芯寿命监测方法的流程示意图;
图4为本公开实施例四所提供的滤芯寿命监测方法的流程示意图;
图5为本公开实施例五所提供的滤芯寿命监测装置的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开主要针对现有技术中滤芯寿命确定结果的准确性较低的技术问题,提出一种滤芯寿命监测方法。
本公开实施例的滤芯寿命监测方法,通过在采用滤芯进行空气净化过程中,监测目标物质的浓度,并根据监测到的目标物质的浓度,确定滤芯寿命,其中,目标物质为滤芯对污染物质进行分解得到的。本公开中,根据目标物质的浓度,可以确定滤芯的净化能力和净化效果,进而根据净化能力或净化效果,可以确定滤芯寿命,由此,可以准确识别滤芯寿命,从而可以避免未正确识别滤芯寿命而导致的相关问题,例如可以避免寿命末期的滤芯仍然服役而导致净化性能下降的情况,或者可以避免未到寿命末期的滤芯被替换而造成资源浪费的情况。
下面参考附图描述本公开实施例的滤芯寿命监测方法、装置和空气净化设备。
图1为本公开实施例一所提供的滤芯寿命监测方法的流程示意图。
本公开实施例以该滤芯寿命监测方法被配置于滤芯寿命监测装置中来举例说明,该滤芯寿命监测装置可以应用于空气净化设备中,以使该空气净化设备执行滤芯寿命监测功能。其中,空气净化设备是指具有空气净化功能的相关设备,例如可以为空气净化器、空调等设备。
本公开实施例中,滤芯用于对污染物质进行分解得到目标物质。
可以理解的是,对于固体污染物(比如可吸入颗粒物PM10、PM2.5等),在利用空气净化设备对其进行过滤时,主要利用滤芯对其进行吸附,以达到净化空气的目的,而对于气体污染物(比如甲醛、总挥发性有机物(Total Volatile Organic Compounds,简称TVOC)等),可以利用滤芯对其进行分解,以得到目标物质。
因此,本公开实施例中,污染物质具体可以为气体污染物,例如甲醛、含氯挥发性有机物(Cl—VOCs)等等。滤芯可以对污染物质进行分解,得到目标物质,例如,滤芯可以对甲醛进行分解,得到二氧化碳CO 2和水H 20,此时,目标物质可以为二氧化碳,或者,滤芯可以对含氯挥发性有机物进行分解,得到二氧化碳CO 2、水H 20以及其他物质,此时,目标物质也可以为二氧化碳。
如图1所示,该滤芯寿命监测方法包括以下步骤:
步骤101,在采用滤芯进行空气净化过程中,监测目标物质的浓度。
本公开实施例中,在用户开启空气净化设备后,可以采用滤芯对空气进行净化,此时,滤芯可以对污染物质进行分解,得到目标物质。在空气净化过程中,可以采用相关传感器,检测目标物质的浓度。
例如,当目标物质为二氧化碳时,可以利用二氧化碳传感器检测目标物质的浓度。
步骤102,根据监测到的目标物质的浓度,确定滤芯寿命。
可以理解的是,在预设时间段内,若目标物质的浓度上升明显,则表明滤芯分解的污染物质较多,空气净化设备的净化能力较强,此时,可以确定滤芯寿命非寿命末期,而若目标物质的浓度未发生明显变化,或者未发生变化,则表明滤芯分解的污染物质较少,或者,滤芯并未分解污染物质,此时,可以确定滤芯寿命为寿命末期。
因此,本公开实施例中,可以根据监测到的目标物质的浓度,确定滤芯寿命。例如,可以根据预设时间段内,目标物质的浓度变化量,确定滤芯寿命,或者,可以根据单位时间内的目标物质的浓度变化量,确定滤芯寿命,对此不作限制。由此,可以准确识别滤芯寿命,从而可以避免未正确识别滤芯寿命而导致的相关问题,例如可以避免寿命末期的滤芯仍然服役而导致净化性能下降的情况,或者可以避免未到寿命末期的滤芯被替换而造成资源浪费的情况。
需要说明的是,虽然可以采用相关传感器,直接检测污染物质的浓度,根据污染物质的浓度确定芯片寿命,例如,当污染物质为甲醛时,可以通过甲醛传感器检测甲醛浓度,若预设时间段内,甲醛浓度下降明显,此时,可以确定空气净化设备的净化效果较好,进而确定滤芯寿命非寿命末期。但是,甲醛传感器的寿命较短,若将甲醛传感器设置在空气净化设备中,需要频繁更换甲醛传感器,例如半年或者一年对甲醛传感器进行更换,成本较高。
而本公开实施例中,根据对污染物质进行分解得到的目标物质的浓度,确定芯片的寿命,例如,当目标物质为二氧化碳时,二氧化碳传感器的寿命较长,因此,无需对其进行频繁更换,可以降低成本。并且,通过相关传感器检测目标物质的浓度,根据目标物质的浓度,确定滤芯寿命,还可以避免引用额外的不成熟技术而导致的风险等情况。
本公开实施例的滤芯寿命监测方法,通过在采用滤芯进行空气净化过程中,监测目标物质的浓度,并根据监测到的目标物质的浓度,确定滤芯寿命,其中,目标物质为滤芯对污染物质进行分解得到的。本公开中,根据目标物质的浓度,可以确定滤芯的净化能力和净化效果,进而根据净化能力或净化效果,可以确定滤芯寿命,由此,可以准确识别滤芯寿命,从而可以避免未正确识别滤芯寿命而导致的相关问题,例如可以避免寿命末期的滤芯仍然服役而导致净化性能下降的情况,或者可以避免未到寿命末期的滤芯被替换而造成资源浪费的情况。
作为一种可能的实现方式,可以获取空气净化设备在空气净化过程开始前的目标物质的浓度,以及获取空气净化过程开始后的预设时间段目标物质的浓度,通过根据两个时间点监测到的目标物质的浓度差值,确定滤芯寿命。下面结合图2,对上述过程进行详细说明。
图2为本公开实施例二所提供的滤芯寿命检测方法的流程示意图。
如图2所示,在图1所示实施例的基础上,步骤102具体可以包括以下子步骤:
步骤201,获取空气净化过程开始前目标物质的浓度。
本公开实施例中,空气净化过程开始前,指滤芯并未对空气进行净化,即滤芯对空气进行净化前。可以通过相关传感器,检测空气净化过程开始前目标物质的浓度。
例如,可以在空气净化设备开启后,用户并未触发净化功能时,通过相关传感器,检测目标物质的浓度。具体地,当用户通过触摸空气净化设备的虚拟按键或者实体按键,启动空气净化设备后,或者,当用户通过移动终端上控制电器设备的应用程序(Application,简称APP),启动空气净化设备后,并且,用户并未触发净化功能时,此时,空气净化设备处于空气净化过程开始前,可以通过相关传感器,检测目标物质的浓度,例如标记空气净化过程开始前目标物质的浓度为C1。
其中,移动终端可以为手机、平板电脑、个人数字助理、穿戴式设备、车载设备等具有各种操作系统、触摸屏和/或显示屏的硬件设备。
步骤202,计算浓度差值,浓度差值是空气净化过程开始后的预设时间段目标物质的浓度与空气净化过程开始前目标物质的浓度之间的浓度差值。
本公开实施例中,预设时间段为预先设置的,例如可以为空气净化设备的内置程序预先设置的,或者还可以由用户进行设置,对此不作限制,比如预设时间段可以为30min、1h等等。空气净化过程开始后的预设时间段,是指空气净化设备开启后,滤芯对空气进行净化后的预设时间段,比如滤芯对空气进行净化后的30min。
本公开实施例中,在空气净化过程开始后的预设时间段,例如空气净化设备开启后,滤芯对空气进行净化后的30min,可以通过相关传感器采集目标物质的浓度,例如标记空气净化过程开始后的预设时间段目标物质的浓度为C2,将C2与C1作差,得到空气净化过程开始后的预设时间段目标物质的浓度与空气净化过程开始前目标物质的浓度之间的浓度差值为|C2-C1|。由此,在空气净化过程开始后,可以实现将相关传感器实时采集的目标物质的浓度,与空气净化过程开始前目标物质的浓度进行比较,来确定滤芯的寿命,可以提升后续步骤中滤芯寿命确定的准确性。
步骤203,根据浓度差值,确定滤芯寿命。
可以理解的是,当滤芯寿命非寿命末期时,其净化性能较好,随着时间的增长,分解得到的目标物质越来越多,空气净化设备所在空间中的目标物质的浓度也越来越高。因此,作为本公开实施例的一种可能的实现方式,可以判断浓度差值|C2-C1|是否低于第一阈值,若是,则确定滤芯寿命为寿命末期,若否,则确定滤芯寿命非寿命末期。其中,第一阈值为预先设置的,例如可以为空气净化设备的内置程序预先设置的,或者,还可以由用户进行设置,对此不作限制。
需要说明的是,当空气净化设备所在空间不同时,由于空间大小差异、环境温度、湿度差异等外在因素,可能导致滤芯在同等净化效率下,测量得到的目标物质的浓度存在显著的变化,例如,空间A的体积小于空间B,假设滤芯在空间A分解的得到的目标物质,与滤芯在空间B中分解得到的目标物质一样多,由于空间A的体积小于空间B,则空间A中的目标物质的浓度大于空间B中的目标物质的浓度,因此,根据浓度差值|C2-C1|是否低于第一阈值,来判断滤芯寿命,可能影响判断结果的准确性。
因此,作为本公开实施例的另一种可能的实现方式,可以根据浓度差值|C2-C1|计算增长系数,根据增长系数,确定滤芯寿命。具体地,可以将浓度差值|C2-C1|与空气净化过程开始前目标物质的浓度C1做比值,得到增长系数。由于随着滤芯的不断使用,净化能力逐渐减弱,增长系数是不断减小的,因此,可以判断增长系数是否低于第三阈值,若是,则表明滤芯的净化能力较弱,此时,可以确定滤芯寿命为寿命末期,若否,则确定滤芯寿命非寿命末期。其中,第三阈值为预先设置的,例如可以为空气净化设备的内置程序预先设置的,或者,还可以由用户进行设置,对此不作限制。
作为本公开实施例的又一种可能的实现方式,还可以根据增长系数以及预设的参考增长系数,确定滤芯寿命。
作为一种可能的实现方式,可以计算增长系数和参考增长系数的第一衰减幅度,例如,标记增长系数为S1,参考增长系数为S2,第一衰减幅度为D1,则S1=|C2-C1|/C1,D1=|S1-S2|/S2,而后,可以判断第一衰减幅度D1是否高于第四阈值,若是,则表明滤芯的净化效果衰减明显,净化能力较弱,此时,可以确定滤芯寿命为寿命末期,若否,则确定滤芯寿命非寿命末期。
作为另一种可能的实现方式,还可以判断增长系数S1和参考增长系数S2之间的差值|S2-S1|是否低于第五阈值,若是,则表明滤芯的净化能力较弱,此时,可以确定滤芯寿命为寿命末期,若否,则确定滤芯寿命非寿命末期。
其中,第四阈值和第五阈值为预先设置的,例如可以为空气净化设备的内置程序预先设置的,或者,还可以由用户进行设置,对此不作限制。
举例而言,以污染物质为甲醛,目标物质为CO 2示例,假设空气净化设备启动后,室内的CO 2浓度为400ppm,10分钟后,室内的CO 2浓度为420ppm,则增长系数S1=|420-400|/400=0.05,假设参考增长系数S2=0.125,第四阈值为50%,则D1=|0.05-0.125|/0.125=60%>50%,因此,可以确定滤芯除醛效果衰减明显,滤芯寿命为寿命末期。
需要说明的是,上述仅以参考增长系数为预先设置的进行示例,实际应用时,考虑到当参考增长系数为空气净化设备的内置程序预先设置时,其值与出厂前的标定环境相关, 如空间大小差异、环境温度、湿度差异等,可能造成不同空间对应的参考增长系数存在较大的差异,从而影响滤芯寿命判断结果的准确性,因此,本公开中,可以获取首次使用滤芯时监测到的目标物质的浓度,并确定首次使用滤芯时单位时间内的浓度差值,根据单位时间内的浓度差值确定参考增长系数。具体地,可以将首次使用滤芯时单位时间内的浓度差值与首次使用滤芯时监测到的目标物质的浓度做比值,得到参考增长系数。
进一步地,在滤芯寿命为寿命末期时,可以对用户进行提示,以提醒用户更换滤芯,例如可以通过空气净化设备进行语音播报,或者,可以通过移动终端上的控制电器设备的APP向用户发送提示信息,对此不作限制。而当滤芯寿命非寿命末期时,可以继续监测目标物质的浓度,以对滤芯寿命进行实时监测,即返回重新执行步骤202及后续步骤。
本公开实施例的滤芯寿命监测方法,可以通过根据滤芯的净化效果或净化能力,确定滤芯寿命,可以提升滤芯寿命确定结果的准确性。
作为一种可能的实现方式,还可以根据单位时间内的目标物质的浓度变化量,确定滤芯寿命。下面结合图3,对上述过程进行详细说明。
图3为本公开实施例三所提供的滤芯寿命监测方法的流程示意图。
如图3所示,在图1所示实施例的基础上,步骤102具体可以包括以下子步骤:
步骤301,根据监测到的目标物质的浓度,确定单位时间内的浓度变化量。
本公开实施例中,单位时间为预先设置的,例如可以为1min、10min等等。浓度变化量可以为浓度的绝对变化量,或者,也可以为浓度的相对变化量,对此不作限制。例如,标记浓度变化量为T0,标记前一时刻检测得到的目标物质的浓度为C3,当前时刻检测到的目标物质的浓度为C4,则浓度的绝对变化量为T0=|C4-C3|,浓度的相对变化量为T0=|C4-C3|/C3。
步骤302,根据浓度变化量,确定滤芯寿命。
可以理解的是,当滤芯寿命非寿命末期时,其净化性能较好,随着时间的增长,分解得到的目标物质越来越多,空气净化设备所在空间中的目标物质的浓度也越来越高。因此,当单位时间内的浓度变化量较高时,可以确定滤芯寿命非寿命末期,而当单位时间内的浓度变化量较低时,可以确定滤芯寿命为寿命末期。
作为一种可能的实现方式,可以判断浓度变化量是否低于第六阈值,若是,则表明滤芯的净化能力较弱,此时,可以确定滤芯寿命为寿命末期,若否,则确定滤芯寿命非寿命末期。其中,第六阈值为预先设置的,例如可以为空气净化设备的内置程序预先设置的,或者,还可以由用户进行设置,对此不作限制。
本公开实施例的滤芯寿命监测方法,通过根据单位时间内的浓度变化量,确定滤芯寿命,同样可以提升确定结果的准确性。
作为另一种可能的实现方式,还可以设定一个参考浓度变化量,并计算浓度变化量与参考浓度变化量间的浓度变化量差值,根据浓度变化量差值,确定滤芯寿命。下面结合图4,对上述过程进行详细说明。
图4为本公开实施例四所提供的滤芯寿命监测方法的流程示意图。
如图4所示,在图3所示实施例的基础上,步骤302具体可以包括以下子步骤:
步骤401,对浓度变化量,计算与设置的参考浓度变化量之间的浓度变化量差值。
作为本公开实施例的一种可能的实现方式,参考浓度变化量可以为预先设置的,例如标记为T1,则单位时间内的浓度变化量T0与参考浓度变化量T1之间的浓度变化量差值为|T1-T0|。
需要说明的是,上述仅以参考浓度变化量为预先设置的进行示例,实际应用时,考虑到当参考浓度变化量为空气净化设备的内置程序预先设置时,其值与出厂前的标定环境相关,如空间大小差异、环境温度湿度差异等,可能造成不同空间对应的参考浓度变化量存在较大的差异,从而影响滤芯寿命判断结果的准确性。因此,作为本公开实施例的另一种可能的实现方式,可以获取首次使用滤芯时监测到的浓度C0,并确定首次使用滤芯时单位时间内的浓度变化量,而后,根据首次使用滤芯时单位时间内的浓度变化量,设置参考浓度变化量T1。
步骤402,根据浓度变化量差值,确定滤芯寿命。
可以理解的是,当滤芯寿命非寿命末期时,其净化性能较好,随着时间的增长,分解得到的目标物质越来越多,空气净化设备所在空间中的目标物质的浓度也越来越高。因此,作为本公开实施例的一种可能的实现方式,可以判断浓度变化量差值|T1-T0|是否低于第二阈值,若是,则确定滤芯寿命为寿命末期,若否,则确定滤芯寿命非寿命末期。其中,第二阈值为预先设置的,例如可以为空气净化设备的内置程序预先设置的,或者,还可以由用户进行设置,对此不作限制。
需要说明的是,当空气净化设备所在空间不同时,由于空间大小差异、环境温度湿度差异等外在因素,可以导致滤芯在同等净化效率下,测量得到的目标物质的浓度存在显著的变化,例如,空间A的体积小于空间B,假设滤芯在空间A分解的得到的目标物质,与滤芯在空间B中分解得到的目标物质,由于空间A的体积小于空间B,则空间A中的目标物质的浓度大于空间B中的目标物质的浓度,因此,根据浓度变化量差值|T1-T0|是否低于第二阈值,来判断滤芯寿命,可能影响判断结果的准确性。
因此,作为本公开实施例的另一种可能的实现方式,还可以根据单位时间内的浓度变化量T0,计算实时增长系数,根据实时增长系数,确定滤芯寿命。具体地,标记实时增长系数U1,则U1=T0/C3=|C4-C3|/C3,由于随着滤芯的不断使用,净化能力逐渐减弱,增长 系数是不断减小的,因此,可以判断实时增长系数U1是否低于第七阈值,若是,则表明滤芯的净化能力较弱,此时,可以确定滤芯寿命为寿命末期,若否,则确定滤芯寿命非寿命末期。
其中,第七阈值为预先设置的,例如,可以为空气净化设备的内置程序预先设置的,或者,还可以由用户进行设置,对此不作限制。
作为本公开实施例的又一种可能的实现方式,还可以根据实时增长系数以及参考浓度增长系数,确定滤芯寿命。其中,参考浓度增长系数可以为预先设置的,也可以根据参考浓度变化量T1确定,比如标记参考浓度增长系数为U2,则U2=T1/C0。
作为一种可能的实现方式,可以判断实时增长系数U1和参考浓度增长系数U2之间的差值|U2-U1|是否低于第八阈值,若是,则表明滤芯的净化能力较弱,此时,可以确定滤芯寿命为寿命末期,若否,则确定滤芯寿命非寿命末期。
作为另一种可能的实现方式,还可以计算实时增长系数U1和参考浓度增长系数U2之间的第二衰减幅度,例如标记第二衰减幅度为D2,则D2=|U2-U1|/U2,而后,可以判断第二衰减幅度是否高于第九阈值,若是,则表明滤芯的净化效果衰减明显,净化能力较弱,此时,可以确定滤芯寿命为寿命末期,若否,则确定滤芯寿命非寿命末期。
其中,第八阈值和第九阈值为预先设置的,例如可以为空气净化设备的内置程序预先设置的,或者,还可以由用户进行设置,对此不作限制。
举例而言,假设第九阈值为50%,首次使用滤芯时监测到的浓度C0为400ppm,在单位时间ΔT后获取到的浓度为450ppm,则参考浓度增长系数U2=(450-400)/400=0.125,当前时刻检测到的目标物质的浓度C4为420ppm,前一时刻检测得到的目标物质的浓度C3为400ppm,则实时增长系数U1=(420-400)/400=0.05,第二衰减幅度D2=|0.05-0.125|/0.125=60%>50%,因此,可以确定滤芯除醛效果衰减明显,滤芯寿命为寿命末期,此时,可以提醒用户更换滤芯,以避免寿命末期的滤芯仍然服役而导致净化性能下降的情况,改善用户的使用体验。
需要说明的是,上述第一阈值、第二阈值、…、第八阈值、第九阈值的取值可以相同,也可以不同,对此不作限制。
为了实现上述实施例,本公开还提出一种滤芯寿命监测装置。
图5为本公开实施例五所提供的滤芯寿命监测装置的结构示意图。
本公开实施例中,滤芯用于对污染物质进行分解得到目标物质。
如图5所示,该滤芯寿命监测装置包括:监测模块101和确定模块102。
其中,监测模块101,用于在采用滤芯进行空气净化过程中,监测目标物质的浓度。
作为一种可能的实现方式,滤芯可为除甲醛滤芯,此时,目标物质可为二氧化碳。
确定模块102,用于根据监测到的目标物质的浓度,确定滤芯寿命。
作为第一种可能的实现方式,确定模块102,具体用于:获取空气净化过程开始前目标物质的浓度;计算浓度差值,浓度差值是空气净化过程开始后的预设时间段目标物质的浓度与空气净化过程开始前目标物质的浓度之间的浓度差值;根据浓度差值,确定滤芯寿命。
作为第二种可能的实现方式,确定模块102,具体用于:若浓度差值低于第一阈值,确定滤芯寿命为寿命末期。
作为第三种可能的实现方式,确定模块102,具体用于:根据监测到的目标物质的浓度,确定单位时间内的浓度变化量;根据浓度变化量,确定滤芯寿命。
作为第四种可能的实现方式,确定模块102,具体用于:对浓度变化量,计算与设置的参考浓度变化量之间的浓度变化量差值;根据浓度变化量差值,确定滤芯寿命。
作为第五种可能的实现方式,确定模块102,具体用于:若浓度变化量差值低于第二阈值,确定滤芯寿命为寿命末期。
作为第六种可能的实现方式,确定模块102,还用于:根据首次使用滤芯时监测到的浓度,确定首次使用滤芯时单位时间内的浓度变化量;根据首次使用滤芯时单位时间内的浓度变化量,设置参考浓度变化量。
需要说明的是,前述对滤芯寿命监测方法实施例的解释说明也适用于该实施例的滤芯寿命监测装置,此处不再赘述。
本公开实施例的滤芯寿命监测装置,通过在采用滤芯进行空气净化过程中,监测目标物质的浓度,并根据监测到的目标物质的浓度,确定滤芯寿命,其中,目标物质为滤芯对污染物质进行分解得到的。本公开中,根据目标物质的浓度,可以确定滤芯的净化能力和净化效果,进而根据净化能力或净化效果,可以确定滤芯寿命,由此,可以准确识别滤芯寿命,从而可以避免未正确识别滤芯寿命而导致的相关问题,例如可以避免寿命末期的滤芯仍然服役而导致净化性能下降的情况,或者可以避免未到寿命末期的滤芯被替换而造成资源浪费的情况。
为了实现上述实施例,本公开还提出一种空气净化设备,空气净化设备包括滤芯,滤芯用于对污染物质进行分解得到目标物质,空气净化设备还包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时,实现如本公开前述实施例提出的滤芯寿命监测方法。
为了实现上述实施例,本公开还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本公开前述实施例提出的滤芯寿命监测方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示 例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离 散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种滤芯寿命监测方法,其特征在于,所述滤芯用于对污染物质进行分解得到目标物质,所述方法包括以下步骤:
    在采用所述滤芯进行空气净化过程中,监测所述目标物质的浓度;
    根据监测到的所述目标物质的浓度,确定所述滤芯寿命。
  2. 根据权利要求1所述的滤芯寿命监测方法,其特征在于,所述根据监测到的所述目标物质的浓度,确定所述滤芯寿命,包括:
    获取空气净化过程开始前所述目标物质的浓度;
    计算浓度差值,所述浓度差值是空气净化过程开始后的预设时间段所述目标物质的浓度与所述空气净化过程开始前所述目标物质的浓度之间的浓度差值;
    根据所述浓度差值,确定所述滤芯寿命。
  3. 根据权利要求2所述的滤芯寿命监测方法,其特征在于,所述根据所述浓度差值,确定所述滤芯寿命,包括:
    若所述浓度差值低于第一阈值,确定所述滤芯寿命为寿命末期。
  4. 根据权利要求1所述的滤芯寿命监测方法,其特征在于,所述根据监测到的所述目标物质的浓度,确定所述滤芯寿命,包括:
    根据监测到的所述目标物质的浓度,确定单位时间内的浓度变化量;
    根据所述浓度变化量,确定所述滤芯寿命。
  5. 根据权利要求4所述的滤芯寿命监测方法,其特征在于,所述根据所述浓度变化量,确定所述滤芯寿命,包括:
    对所述浓度变化量,计算与设置的参考浓度变化量之间的浓度变化量差值;
    根据所述浓度变化量差值,确定所述滤芯寿命。
  6. 根据权利要求5所述的滤芯寿命监测方法,其特征在于,所述根据所述浓度变化量差值,确定所述滤芯寿命,包括:
    若所述浓度变化量差值低于第二阈值,确定所述滤芯寿命为寿命末期。
  7. 根据权利要求5或6所述的滤芯寿命监测方法,其特征在于,所述计算与设置的参考浓度变化量之间的浓度变化量差值之前,还包括:
    根据首次使用所述滤芯时监测到的浓度,确定首次使用所述滤芯时单位时间内的浓度变化量;
    根据首次使用所述滤芯时单位时间内的浓度变化量,设置所述参考浓度变化量。
  8. 根据权利要求1-7任一项所述的滤芯寿命监测方法,其特征在于,所述滤芯为除甲 醛滤芯;所述目标物质为二氧化碳。
  9. 一种滤芯寿命监测装置,其特征在于,所述滤芯用于对污染物质进行分解得到目标物质,所述装置包括:
    监测模块,用于在采用所述滤芯进行空气净化过程中,监测所述目标物质的浓度;
    确定模块,用于根据监测到的所述目标物质的浓度,确定所述滤芯寿命。
  10. 一种空气净化设备,其特征在于,所述空气净化设备包括滤芯,所述滤芯用于对污染物质进行分解得到目标物质,所述空气净化设备还包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如权利要求1-8中任一所述的滤芯寿命监测方法。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-8中任一所述的滤芯寿命监测方法。
PCT/CN2019/113057 2018-12-24 2019-10-24 滤芯寿命监测方法、装置和空气净化设备 WO2020134438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811579636.0A CN109406132B (zh) 2018-12-24 2018-12-24 滤芯寿命监测方法、装置和空气净化设备
CN201811579636.0 2018-12-24

Publications (1)

Publication Number Publication Date
WO2020134438A1 true WO2020134438A1 (zh) 2020-07-02

Family

ID=65460738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113057 WO2020134438A1 (zh) 2018-12-24 2019-10-24 滤芯寿命监测方法、装置和空气净化设备

Country Status (2)

Country Link
CN (1) CN109406132B (zh)
WO (1) WO2020134438A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406132B (zh) * 2018-12-24 2020-08-25 广东美的制冷设备有限公司 滤芯寿命监测方法、装置和空气净化设备
CN110393985A (zh) * 2019-07-26 2019-11-01 好空气科技发展有限公司 基于损耗计算的净化器滤芯更换方法
CN112415141B (zh) * 2020-11-06 2022-02-08 珠海格力电器股份有限公司 一种甲醛测量浓度显示值的补偿方法及补偿装置
CN113415129B (zh) * 2021-07-02 2022-05-31 一汽奔腾轿车有限公司 一种基于环境pm2.5的汽车空调滤芯的更换提醒方法及系统
CN114562793A (zh) * 2022-02-08 2022-05-31 珠海格力电器股份有限公司 空气净化装置的性能检测方法、装置、系统及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040083791A1 (en) * 2002-11-05 2004-05-06 Industrial Technology Research Institute Diluter to reduce quantity of micro particles in the air so as to facilitate calculation of concentration of the micro particles in the air
CN102019120A (zh) * 2009-09-15 2011-04-20 林惜珠 一种实时监测空气净化机过滤层污染程度的方法
CN103028423A (zh) * 2012-12-11 2013-04-10 武汉理工大学 一种甲醛室温氧化催化剂的失活与再生方法
CN105080205A (zh) * 2015-09-17 2015-11-25 北京金山安全软件有限公司 净化器滤网过期提示方法和装置及净化器
CN105606505A (zh) * 2016-02-01 2016-05-25 九阳股份有限公司 一种空气净化器净化装置寿命的确定方法及装置
CN106732816A (zh) * 2016-12-08 2017-05-31 湖北工业大学 一种Pd/TiO2/棉花纤维复合甲醛室温氧化催化剂及其制备方法
CN107158814A (zh) * 2017-05-16 2017-09-15 广东美的环境电器制造有限公司 一种滤网过滤效率状态提示的方法及空气净化器
CN107297109A (zh) * 2017-07-25 2017-10-27 广东美的环境电器制造有限公司 空气净化设备及其过滤件寿命提醒系统和提醒方法
CN107774244A (zh) * 2016-08-30 2018-03-09 天津师范大学 ZrO2基催化剂及其制备方法和在热降解甲醛中的应用
CN109406132A (zh) * 2018-12-24 2019-03-01 广东美的制冷设备有限公司 滤芯寿命监测方法、装置和空气净化设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200365881Y1 (ko) * 2004-07-23 2004-10-27 주식회사 피코그램 정수 시스템용 필터 카트리지 및 이를 장착한 필터하우징 조립체
ES2675359T3 (es) * 2008-05-30 2018-07-10 Scott Technologies, Inc. Determinación de perfiles de concentración de efluentes y vidas útiles de cartuchos de respirador de purificación de aire
DE202013007337U1 (de) * 2013-08-19 2013-09-23 Stephan Adam Prüfkoffer mit microprozessorgesteuerter Messeinrichtung für Filtersättigung und Atemluft-Gasqualität
CN105784977B (zh) * 2016-05-11 2018-07-03 国家电网公司 一种电力变压器可靠性评价方法
CN107115757A (zh) * 2017-05-15 2017-09-01 广东美的环境电器制造有限公司 空气净化器的甲醛滤网更换方法及装置、空气净化器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040083791A1 (en) * 2002-11-05 2004-05-06 Industrial Technology Research Institute Diluter to reduce quantity of micro particles in the air so as to facilitate calculation of concentration of the micro particles in the air
CN102019120A (zh) * 2009-09-15 2011-04-20 林惜珠 一种实时监测空气净化机过滤层污染程度的方法
CN103028423A (zh) * 2012-12-11 2013-04-10 武汉理工大学 一种甲醛室温氧化催化剂的失活与再生方法
CN105080205A (zh) * 2015-09-17 2015-11-25 北京金山安全软件有限公司 净化器滤网过期提示方法和装置及净化器
CN105606505A (zh) * 2016-02-01 2016-05-25 九阳股份有限公司 一种空气净化器净化装置寿命的确定方法及装置
CN107774244A (zh) * 2016-08-30 2018-03-09 天津师范大学 ZrO2基催化剂及其制备方法和在热降解甲醛中的应用
CN106732816A (zh) * 2016-12-08 2017-05-31 湖北工业大学 一种Pd/TiO2/棉花纤维复合甲醛室温氧化催化剂及其制备方法
CN107158814A (zh) * 2017-05-16 2017-09-15 广东美的环境电器制造有限公司 一种滤网过滤效率状态提示的方法及空气净化器
CN107297109A (zh) * 2017-07-25 2017-10-27 广东美的环境电器制造有限公司 空气净化设备及其过滤件寿命提醒系统和提醒方法
CN109406132A (zh) * 2018-12-24 2019-03-01 广东美的制冷设备有限公司 滤芯寿命监测方法、装置和空气净化设备

Also Published As

Publication number Publication date
CN109406132B (zh) 2020-08-25
CN109406132A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020134438A1 (zh) 滤芯寿命监测方法、装置和空气净化设备
US11680935B2 (en) Networked air quality monitoring
WO2017088671A1 (zh) 一种判断空气净化器滤网寿命的方法
CN106322643B (zh) 一种空气净化类设备的管理方法和装置
CN107610702B (zh) 终端设备待机唤醒方法、装置及计算机设备
EP3356742B1 (en) An air purifier and a method for controlling an air purifier
CN104316655A (zh) 空气污染物参数的处理方法、装置、设备及系统
CN113865003B (zh) 一种空气净化器及其滤网寿命检测方法、装置、存储介质
CN204203201U (zh) 空气污染物参数的处理设备及系统
WO2016107077A1 (zh) 空气净化器滤芯剩余使用时长的确定方法及装置
WO2017088445A1 (zh) 寿命计算方法及装置
CN110686383B (zh) 滤网有效性判断方法、空气净化器及计算机可读存储介质
WO2021042835A1 (zh) 能够精确计算滤网寿命的控制方法、控制系统及净化设备
CN103593949A (zh) 一种气体报警的方法及装置
CN107478780A (zh) 空气质量的监测方法、装置、移动设备及存储介质
WO2020259466A1 (zh) 个性化临床检验质控方法和设备
CN108954720B (zh) 一种滤网失效判断方法、滤网失效判断系统及机组设备
CN106440205A (zh) 空气净化器控制方法及装置
WO2020088031A1 (zh) 净化模块清洗提醒方法和系统、空调器
CN104977388A (zh) 用于对空气净化器及空气净化材料的净化率进行检测的检测系统及检测方法
EP4123225A1 (en) Prompting method and apparatus for cooker hood, device, storage medium, and cooker hood
CN104698046A (zh) 一种智能化环境质量检测仪及其工作方法
CN107413124A (zh) 过滤件安装匹配识别系统和方法、净化设备、存储介质
TWI740545B (zh) 室內空氣品質的管理系統
JP2000185215A (ja) 吸着材に吸着された揮発性有害化学物質の量を計測する方法および揮発性有害化学物質除去用の空気清浄装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905549

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19905549

Country of ref document: EP

Kind code of ref document: A1