WO2020134151A1 - 一种量子点发光二极管及其制备方法 - Google Patents

一种量子点发光二极管及其制备方法 Download PDF

Info

Publication number
WO2020134151A1
WO2020134151A1 PCT/CN2019/103620 CN2019103620W WO2020134151A1 WO 2020134151 A1 WO2020134151 A1 WO 2020134151A1 CN 2019103620 W CN2019103620 W CN 2019103620W WO 2020134151 A1 WO2020134151 A1 WO 2020134151A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
dot light
emitting diode
light emitting
electron transport
Prior art date
Application number
PCT/CN2019/103620
Other languages
English (en)
French (fr)
Inventor
黎瑞锋
钱磊
曹蔚然
刘文勇
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2020134151A1 publication Critical patent/WO2020134151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present disclosure relates to the field of quantum dot light-emitting devices, and in particular to a quantum dot light-emitting diode and a preparation method thereof.
  • Quantum dots Semiconductor quantum dots have adjustable emission wavelength (only by adjusting the size of nano-semiconductor to cover the wavelength range from visible light to near infrared), high brightness (quantum yield exceeds 90%), pure color (half height of emission peak Width less than 30nm) and other excellent features, through the preparation of pin structure devices, high external quantum efficiency and low driving voltage quantum dot light-emitting diodes (Quantum-dot Light Emitting Diode, QLED) can be obtained.
  • the current color gamut value of QLED has exceeded traditional LCD and organic light-emitting diodes are important development technologies for the future display industry.
  • QLED can be prepared by solution methods such as spin coating, printing, coating, inkjet printing, etc., which greatly reduces the complexity of the preparation process and preparation costs, which is conducive to future large Scale industrialization promotion.
  • solution methods such as spin coating, printing, coating, inkjet printing, etc.
  • QLEDs quantum dot light-emitting diodes
  • the purpose of the present disclosure is to provide a quantum dot light emitting diode and a preparation method thereof, aiming to solve the problem that the quantum dot light emitting diode cannot completely avoid the intrusion of water and oxygen during the working process, resulting in a reduction in the working life of the device problem.
  • a preparation method of quantum dot light-emitting diode which includes the steps of:
  • the solution including zinc oxide nanoparticles and a carboxylic acid ester
  • a cathode substrate is provided, and the solution is deposited on the cathode substrate and heated to prepare an electron transport layer.
  • a quantum dot light-emitting diode comprising: an anode, a cathode, a quantum dot light-emitting layer provided between the anode and the cathode, and an electron transport layer provided between the cathode and the quantum dot light-emitting layer, wherein the electrons
  • the material of the transmission layer includes zinc oxide nanoparticles and a carboxylate dispersed between the zinc oxide nanoparticles.
  • a carboxylic acid ester is added in the process of preparing an electron transport layer by using zinc oxide nanoparticles as an electron transport material by a solution method, and the carboxylic acid ester is dispersed in the prepared electron transport layer when water and oxygen invade At this time, it can slowly absorb water and oxygen, and react with water vapor to slow down the corrosion of the quantum dot light emitting layer and the hole transport layer by water and oxygen, and effectively improve the working life of the device.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a quantum dot light-emitting diode according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart of a method for manufacturing a quantum dot light emitting diode according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of a method for manufacturing a quantum dot light-emitting diode provided in some specific embodiments of the present disclosure.
  • FIG. 4 is a schematic flowchart of a method for manufacturing a quantum dot light emitting diode provided in some other specific embodiments of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a quantum dot light emitting diode provided in an embodiment of the present disclosure.
  • the present disclosure provides a quantum dot light emitting diode and a preparation method thereof.
  • the present disclosure will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure and are not intended to limit the present disclosure.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a quantum dot light emitting diode according to an embodiment of the present disclosure. As shown in the figure, it includes steps:
  • S12 Provide an anode substrate, deposit the solution on the anode substrate, and heat to prepare an electron transport layer.
  • FIG. 2 is a schematic flowchart of a method for manufacturing a quantum dot light emitting diode according to another embodiment of the present disclosure. As shown in the figure, it includes steps:
  • a carboxylate is added in the process of preparing an electron transport layer by using zinc oxide nanoparticles as an electron transport material through a solution method, and the carboxylate is dispersed in the prepared electron transport layer when water and oxygen invade It can slowly absorb water and oxygen and react with water vapor to slow down the corrosion of the quantum dot light-emitting layer and the hole transport layer by water and oxygen, effectively improving the working life of the device.
  • the quantum dot light emitting diode is divided into an upright structure and an inverted structure.
  • the upright structure includes an anode, a cathode, and a quantum dot light-emitting layer disposed between the anode and the cathode.
  • the anode of the upright structure is disposed on the substrate, and hole transport can also be provided between the anode and the quantum dot light-emitting layer.
  • the hole functional layer such as a layer, a hole injection layer, and an electron blocking layer may be provided with an electron functional layer such as an electron transport layer, an electron injection layer, and a hole blocking layer between the cathode and the quantum dot light emitting layer.
  • the inverted structure includes an anode, a cathode, and a quantum dot light-emitting layer disposed between the anode and the cathode.
  • the cathode of the inverted structure is disposed on the substrate.
  • a hole transport layer can also be provided between the anode and the quantum dot light-emitting layer.
  • a hole functional layer such as a hole injection layer and an electron blocking layer may be provided with an electron functional layer such as an electron transport layer, an electron injection layer and a hole blocking layer between the cathode and the quantum dot light emitting layer.
  • the bottom electrode provided on the substrate is an anode.
  • the anode substrate may include a substrate, a bottom electrode stacked on the surface of the substrate, and a stacked A quantum dot light emitting layer on the surface of the bottom electrode; in other embodiments of the present disclosure, the anode substrate may include a substrate, a bottom electrode stacked on the surface of the substrate, a hole transport layer stacked on the surface of the bottom electrode, and A quantum dot light emitting layer stacked on the surface of the hole transport layer; in still other embodiments of the present disclosure, the anode substrate may include a substrate, a bottom electrode stacked on the surface of the substrate, and a layer stacked on the surface of the bottom electrode A hole injection layer, a hole transport layer stacked on the surface of the hole injection layer, and a quantum dot light emitting layer stacked on the surface of the hole transport layer; in still other embodiments of the present disclosure, the anode substrate may include a liner The bottom, the bottom electrode stacked on the surface of the substrate, and
  • the bottom electrode provided on the substrate is a cathode.
  • the cathode substrate may be a bottom electrode provided on the substrate; in still other embodiments of the present disclosure, The substrate may include a substrate, a bottom electrode stacked on the surface of the substrate, and an electron injection layer stacked on the surface of the bottom electrode.
  • the manufacturing method of the quantum dot light emitting diode includes the steps of:
  • the method for manufacturing a quantum dot light-emitting diode includes the steps of:
  • the electron transport layer and the quantum dot light emitting layer form a laminated structure.
  • the quantum dots close to the electron transport layer are bound with organic ligands on the surface (quantum dots are bound with carboxylic acid ligands, and may also include but not limited to organic amines, organic thiols, organic phosphines, and organic phosphoric acids).
  • the surface is often enriched with a large number of hydroxyl groups (-OH).
  • the organic ligands on the surface of the quantum dots are easily eroded by the hydroxyl groups on the surface of the zinc oxide nanoparticles, resulting in the shedding of the ligands and the rapid decline of the device efficiency.
  • This embodiment uses the above method to effectively reduce the hydroxyl content on the surface of the zinc oxide nanoparticles during the preparation process, protect the stability of the organic ligands on the surface of the quantum dots during device operation, and increase the working life of the device.
  • a carboxylate is added to the process of preparing an electron transport layer by using zinc oxide nanoparticles as an electron transport material by a solution method, and by heating in air for a certain period of time, the heating process is utilized to generate H + generated by a small amount of hydrolysis of the carboxylate, H + neutralizes the hydroxyl group (-OH) enriched on the surface of the zinc oxide nanoparticles, thereby alleviating the corrosion of the organic ligands (mainly carboxylic acid-COOH) on the surface of the quantum dots by the hydroxyl groups on the surface of the zinc oxide nanoparticles, protecting the quantum
  • the stability of dot surface organic ligands in device operation improves the working life of the device.
  • the viscosity of the carboxylic acid ester is 0.45 mPa.s-1 mPa.s under the condition of 15° C.-30° C.
  • the formation of the functional layer The quality of the film has an important influence on the working stability of the device.
  • zinc oxide quantum dots select alcohols as the solvent.
  • the alcohol solvents include propanol, butanol, and ethylene glycol, but are not limited thereto. Generally, the alcohols are at 20°C. The lower viscosity is greater than 1 mPa.s.
  • the viscosity is 1.074 mPa.s under the condition of 15°C-30°C.
  • the viscosity of the carboxylic acid ester is 0.45 mPa.s-1 mPa.s, which is lower than that of alcohols. Adding this viscosity of carboxylic acid ester can reduce the viscosity of zinc oxide solution and improve the quality of film formation. Good film-forming quality can effectively reduce leakage current, reduce heat generation during operation, and increase the working life of the device.
  • the solution is prepared by adding a carboxylic acid ester to the zinc oxide nanoparticle solution.
  • the carboxylic acid ester is selected from ethyl acetate (CH 3 COOCH 2 CH 3 ), phenyl acetate (CH 3 COOC 6 H 5 ), methyl benzoate (C 6 H 5 COOCH 3 ), One or more of butyl acetate (CH 3 COOC 4 H 9 ) and octyl acrylate (CH 2 CHCOOC 8 H 17 ), etc., but not limited thereto.
  • the carboxylic acid ester is ethyl acetate.
  • the quality of the film formation of the functional layer has an important impact on the working stability of the device.
  • the zinc oxide nanoparticles select alcohols as the solvent. Taking ethanol as an example, the viscosity at 20 °C is 1.074. mPa.s. The viscosity of ethyl acetate is lower than that of ethanol and is 0.449 mPa.s at 20°C.
  • the addition of ethyl acetate can reduce the viscosity of the zinc oxide nanoparticle solution and improve the quality of film formation. Good film-forming quality can effectively reduce leakage current, reduce heat generation during operation, and increase the working life of the device.
  • the solution is prepared according to a volume ratio of the carboxylic acid ester to the solvent of 10-30:100. Too much carboxylic acid ester is not conducive to the conductivity of the electron transport layer, and increases the turn-on voltage of the device.
  • the heating temperature is 60-120°C.
  • a suitable amount of carboxylic acid ester is hydrolyzed to generate H + , and the generated H + neutralizes the hydroxyl group (-OH) enriched on the surface of the zinc oxide nanoparticles, thereby alleviating the organic groups on the surface of the quantum dots.
  • Erosion of ligand mainly carboxylic acid-COOH.
  • the heating temperature is 70-90°C.
  • the heating time is 2-15 minutes. More preferably, the heating time is 2-10 minutes.
  • the treatment time in the air is too long, which will degrade the performance of the quantum dot light-emitting layer, so it should not be longer than 10 minutes.
  • the obtained quantum dot light emitting diode is encapsulated.
  • the packaging process may use commonly used machine packaging or manual packaging.
  • the oxygen content and the water content are both less than 0.1 ppm to ensure the stability of the device.
  • the preparation method of each layer may be a chemical method or a physical method, where the chemical method includes, but is not limited to, chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodizing method, electrolytic deposition method, co-precipitation method
  • chemical methods include but are not limited to solution methods (such as spin coating, printing, knife coating, dipping and lifting, dipping, spraying, roll coating, casting, slit method) Coating method or strip coating method, etc.), evaporation method (such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion plating method, etc.), deposition method (such as physical vapor deposition method) , Atomic layer deposition, pulsed laser deposition, etc.).
  • An embodiment of the present disclosure also provides a quantum dot light emitting diode, including: an anode, a cathode, a quantum dot light emitting layer disposed between the anode and the cathode, and an electron transport layer disposed between the cathode and quantum dot light emitting layer , wherein the electron transport layer material includes zinc oxide nanoparticles and a carboxylate dispersed between the zinc oxide nanoparticles.
  • carboxylic acid esters are dispersed in the electron transport layer.
  • water oxygen enters it can slowly absorb water oxygen and react with water vapor to slow down the corrosion of the quantum dot light emitting layer by water oxygen. Improve the working life of the device.
  • An embodiment of the present disclosure also provides a quantum dot light emitting diode, including: an anode, a cathode, and a stack disposed between the anode and the cathode, wherein the stack includes a quantum dot light emitting layer and an electron transport layer stacked
  • the quantum dot light emitting layer is disposed near the anode
  • the electron transport layer is disposed near the cathode.
  • the electron transport layer includes zinc oxide nanoparticles and carboxylic acid esters dispersed on the surface of the zinc oxide nanoparticles.
  • the surface of the zinc oxide nanoparticles has fewer hydroxyl groups (-OH), thereby alleviating the organic groups on the surface of the quantum dots by the hydroxyl groups on the surface of the zinc oxide nanoparticles
  • Ligands (quantum dots are bound with carboxylic acid ligands, and may also include organic amines, organic thiols, organic phosphines, and organic phosphoric acids, but not limited to this), protecting the stability of the organic ligands on the surface of quantum dots during device operation To improve the working life of the device.
  • the organic ligands on the surface of the quantum dots are easily eroded by the hydroxyl groups on the surface of the zinc oxide nanoparticles, resulting in the shedding of the ligands and the rapid decline of the device efficiency.
  • This embodiment uses the above method to effectively reduce the hydroxyl content on the surface of the zinc oxide nanoparticles during the preparation process, protect the stability of the organic ligands on the surface of the quantum dots during device operation, and increase the working life of the device.
  • a carboxylate is added to the process of preparing an electron transport layer by using zinc oxide nanoparticles as an electron transport material by a solution method, and by heating in air for a certain period of time, the heating process is utilized to generate H + generated by a small amount of hydrolysis of the carboxylate, H + neutralizes the hydroxyl group (-OH) enriched on the surface of the zinc oxide nanoparticles, thereby alleviating the corrosion of the organic ligands (mainly carboxylic acid-COOH) on the surface of the quantum dots by the hydroxyl groups on the surface of the zinc oxide nanoparticles, protecting the quantum
  • the stability of dot surface organic ligands in device operation improves the working life of the device.
  • the carboxylic acid ester can exist in the electron transport layer by physical adsorption. When water and oxygen invade, it can slowly absorb and react with water vapor to slow down the water and oxygen. The erosion of the quantum dot light-emitting layer and the hole transport layer effectively increases the working life of the device.
  • quantum dot light-emitting diodes come in many forms, and the quantum dot light-emitting diodes are divided into an inverted structure and an inverted structure.
  • the quantum dots of the upright structure as shown in FIG. 5 emit light
  • the diode is introduced as an example.
  • the quantum dot light-emitting diode includes a substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 4, a quantum dot light-emitting layer 5, electrons stacked from bottom to top A transport layer 6 and a cathode 7; wherein the electron transport layer 6 includes zinc oxide nanoparticles and a carboxylic acid ester adsorbed on the surface of the zinc oxide nanoparticles.
  • the substrate may be a substrate of rigid material, such as glass, or a substrate of flexible material, such as PET or PI.
  • the anode material includes, but is not limited to, one or more of metal materials, carbon materials, and metal oxides.
  • the metal material includes one or more of Al, Ag, Cu, Mo, Au, Ba, Ca and Mg.
  • the carbon material includes one or more of graphite, carbon nanotubes, graphene, and carbon fiber.
  • the metal oxide may be a doped or undoped metal oxide, including one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO, and AMO, and also includes doped or undoped transparent Composite electrode with metal sandwiched between metal oxides, wherein the composite electrode includes AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO /Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/Al/ZnS, TiO 2 /Ag/TiO 2 and TiO 2 /Al/TiO 2 One or more.
  • the hole injection layer material includes, but is not limited to, one or more of PEDOT: PSS, CuPc, F4-TCNQ, HATCN, transition metal oxide, and transition metal chalcogenide compound.
  • the transition metal oxide includes one or more of NiO x , MoO x , WO x , CrO x and CuO.
  • the transition metal sulfur-based compound includes one or more of MoS x , MoSe x , WS x , WSe x and CuS.
  • the hole transport layer material includes but is not limited to poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine), polyvinylcarbazole , Poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine), poly(9,9-dioctylfluorene-co-bis-N,N- Phenyl-1,4-phenylenediamine), 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4,4'-bis(9-carbazole)biphenyl, N,N '-Diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine, 15N,N'-diphenyl-N,N'-(1-naphthyl)-1,1
  • the hole transport layer material can also be selected from holes transport capacity inorganic material, including but not limited to NiO x, MoO x, WO x , CrO x, CuO, MoS x, MoSe x, WS x, WSe x CuS and of one or more.
  • the quantum dot light-emitting layer material is a direct band gap compound semiconductor with light-emitting capabilities, for example, including group II-VI compounds, group III-V compounds, group II-V compounds, and group III-VI compounds , One or more of Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, and Group IV simple substances.
  • the material of the quantum dot light-emitting layer includes, but is not limited to, nanocrystals of II-VI semiconductors, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, PbS, PbSe, PbTe, and other binary , Ternary, quaternary II-VI compound; III-V semiconductor nanocrystals, such as GaP, GaAs, InP, InAs and other binary, ternary, quaternary III-V compound; used for electricity
  • the electroluminescent semiconductor material is also not limited to II-V compounds, III-VI compounds, IV-VI compounds, I-III-VI compounds, II-IV-VI compounds, group IV simple substances, and the like.
  • the quantum dot light-emitting layer material may also be doped or undoped inorganic perovskite type semiconductor, and/or organic-inorganic hybrid perovskite type semiconductor; specifically, the inorganic perovskite type
  • the general structure of the semiconductor is AMX 3 , where A is Cs + ion and M is a divalent metal cation, including but not limited to Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+, Co 2+, Fe 2+, Ge 2+, Yb 2+, Eu 2+, X is a halogen anion, including but not limited to, Cl -, Br -, I - ; the organic - inorganic hybrid
  • the structural formula of the perovskite semiconductor is BMX 3 , where B is an organic amine cation, which can be, but not limited to, CH 3 (CH 2 ) n-2 NH 3 + (n
  • the inorganic metal halide octahedron MX 6 4- is connected by co-topping, the metal cation M is located at the body center of the halogen octahedron, and the organic amine cation B is filled in the gap between the octahedron to form an infinite extension Three-dimensional structure; when n>2, the inorganic metal halide octahedral MX 6 4- connected in a co-topping manner extends in a two-dimensional direction to form a layered structure, and an organic amine cation bimolecular layer (protonated single Amine) or organic amine cation monolayer (protonated diamine), the organic layer and the inorganic layer overlap each other to form a stable two-dimensional layered structure; M is a divalent metal cation, including but not limited to Pb 2+ , Sn 2 + , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn
  • the cathode material includes but is not limited to one or more of metal materials, carbon materials, and metal oxides.
  • the metal material includes one or more of Al, Ag, Cu, Mo, Au, Ba, Ca and Mg.
  • the carbon material includes one or more of graphite, carbon nanotubes, graphene, and carbon fiber.
  • the metal oxide may be a doped or undoped metal oxide, including one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO, and AMO, and also includes doped or undoped transparent Composite electrode with metal sandwiched between metal oxides, wherein the composite electrode includes AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO /Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/Al/ZnS, TiO 2 /Ag/TiO 2 and TiO 2 /Al/TiO 2 One or more.
  • Step S1 On the ITO substrate, spin coating PEDOT: PSS, rotation speed 5000, time 30 seconds, followed by heating at 150 °C for 15 minutes;
  • Step S2 spin coating TFB (8mg/mL), rotating speed 3000, time 30 seconds, followed by heating at 150 °C for 30 minutes;
  • Step S3 spin-coating quantum dots (20mg/mL), rotation speed 2000, time 30 seconds;
  • Step S5 Place the device in the air and heat at 80°C for 8 minutes;
  • Step S6 Put the device in an N 2 atmosphere and heat at 80°C for 30 minutes;
  • Step S7 By thermal evaporation, the vacuum degree is not higher than 3 ⁇ 10 -4 Pa, and the Ag is deposited at a speed of 1 angstrom/second, a time of 200 seconds, and a thickness of 20 nm to obtain a top-emission quantum dot light-emitting diode with an upright structure.
  • Step S2 Place the device in the air and heat at 80°C for 8 minutes;
  • Step S3 Put the device into N 2 atmosphere and heat at 80°C for 30 minutes;
  • Step S4 spin-coating quantum dots (20mg/mL), rotation speed 2000, time 30 seconds;
  • Step S5 spin-coat PVK (8mg/mL), rotation speed 3000, time 30 seconds, followed by heating at 100°C for 10 minutes;
  • Step S6 spin coating PMAH (polymaleic anhydride cetyl ester, 8 mg/mL), rotation speed 3000, time 30 seconds, followed by heating at 100° C. for 10 minutes;
  • PMAH polymaleic anhydride cetyl ester, 8 mg/mL
  • Step S7 by thermal evaporation, the vacuum degree is not higher than 3 ⁇ 10 -4 Pa, and the Ag is deposited at a speed of 1 angstrom/second, a time of 700 seconds, and a thickness of 70 nm to obtain a bottom-emission inverted quantum dot light-emitting diode.
  • the present disclosure provides a quantum dot light-emitting diode and a preparation method thereof.
  • a carboxylic acid ester is added to the process of preparing an electron transport layer by using zinc oxide nanoparticles as an electron transport material through a solution method, and the carboxylic acid ester may exist in the prepared electron transport layer by physical adsorption when the When water and oxygen invade, it can slowly absorb water and react with water vapor to slow down the corrosion of water and oxygen to the quantum dot light-emitting layer and the hole transport layer, and effectively improve the working life of the device.
  • the carboxylate is added in the process of preparing the electron transport layer by using zinc oxide nanoparticles as the electron transport material through the solution method, and By heating in the air for a certain period of time, using the H + generated by the hydrolysis of the carboxylic acid ester in the heating process, the hydroxyl groups (-OH) enriched on the surface of the zinc oxide nanoparticles are neutralized, thereby alleviating the hydroxyl groups on the surface of the zinc oxide nanoparticles on the surface of the quantum dots.
  • the erosion of organic ligands protects the stability of the organic ligands on the surface of quantum dots during device operation and improves the working life of the device.
  • the viscosity of the carboxylic acid ester is lower than that of alcohols.
  • the addition of the carboxylic acid ester can reduce the viscosity of the zinc oxide solution and improve the film forming quality. Good film-forming quality can effectively reduce leakage current, reduce heat generation during operation, and increase the working life of the device.
  • the present disclosure protects the organic ligands on the surface of the quantum dot light emitting layer close to the zinc oxide nanoparticle electron transport layer by adding a carboxylic acid ester to treat the electron transport layer, and improves the film formation of the electron transport layer and the quantum dot light emitting layer Quality, and slow down the corrosion of water and oxygen, effectively improve the working life and stability of the device.

Abstract

一种量子点发光二极管及其制备方法,所述制备方法包括步骤:提供溶液,所述溶液包括氧化锌纳米颗粒和羧酸酯;提供阳极基板,将所述溶液沉积在阳极基板上加热,制备得到电子传输层;或者,提供阴极基板,将所述溶液沉积在所述阴极基板上加热,制备得到电子传输层。通过溶液法在制备电子传输层的过程中加入羧酸酯,可以减缓水氧的侵蚀,有效地提升器件的工作寿命。

Description

一种量子点发光二极管及其制备方法 技术领域
本公开涉及量子点发光器件领域,尤其涉及一种量子点发光二极管及其制备方法。
背景技术
半导体量子点(Quantum dots)具备发光波长可调(仅通过调整纳米半导体尺寸即可覆盖从可见光到近红外的波长范围)、亮度高(量子产率超过90%)、色彩纯正(发光峰半高宽小于30nm)等优良特点,通过制备p-i-n结构的器件,可以获得高外量子效率和低驱动电压的量子点发光二极管(Quantum-dot Light Emitting Diode,QLED),当前QLED的色域值已经超越传统的LCD和有机发光二极管,是未来显示行业重要的发展技术。
不同于当前主流的通过蒸镀方式获得的有机发光二极管,QLED可通过旋涂、印刷、涂布、喷墨打印等溶液方法制备,大大降低了制备工艺的复杂程度和制备成本,有利于将来大规模工业化推广。经过了将近25年的发展,量子点的外量子效率已经由0.01%提升至超过25%,量子点发光二极管(QLED)已经相当接近或超越了有机发光二极管的器件效率。
发明内容
发明人发现,尽管量子点器件拥有上述的优势,目前QLED的工作寿命仍未满足工业化的要求。在QLED器件工作过程中,往往无法完全避免水氧的侵入,水氧对量子点发光层以及空穴传输层侵蚀,从而降低器件的工作寿命。
鉴于上述现有技术的不足,本公开的目的在于提供一种量子点发光二极管及其制备方法,旨在解决量子点发光二极管工作过程中,无法完全避免水氧的侵入,导致降低器件工作寿命的问题。
本公开的技术方案如下:
一种量子点发光二极管的制备方法,其中,包括步骤:
提供溶液,所述溶液包括氧化锌纳米颗粒和羧酸酯;
提供阳极基板,将所述溶液沉积在所述阳极基板上加热,制备得到电子传输层;
或者,
提供阴极基板,将所述溶液沉积在所述阴极基板上加热,制备得到电子传输层。
一种量子点发光二极管,包括:阳极、阴极、设置在所述阳极和阴极之间的量子点发光层、设置在所述阴极和量子点发光层之间的电子传输层,其中,所述电子传输层材料包括氧化锌纳米颗粒和分散在氧化锌纳米颗粒之间的羧酸酯。
有益效果:本公开中,通过溶液法在氧化锌纳米颗粒作为电子传输材料制备电子传输层的过程中加入羧酸酯,羧酸酯分散在制备得到的所述电子传输层中,当水氧侵入时,可以缓慢地吸收水氧,并与水气反应,减缓水氧对于量子点发光层以及空穴传输层的侵蚀,有效地提升器件的工作寿命。
附图说明
图1为本公开实施例提供的一种量子点发光二极管的制备方法的流程示意图。
图2为本公开另一实施例提供的一种量子点发光二极管的制备方法的流程示意图。
图3为本公开一些具体的实施方式中提供的一种量子点发光二极管的制备方法的流程示意图。
图4为本公开另一些具体的实施方式中提供的一种量子点发光二极管的制备方法的流程示意图。
图5为本公开实施例中提供的一种量子点发光二极管的结构示意图。
具体实施方式
本公开提供一种量子点发光二极管及其制备方法,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
请参阅图1,图1为本公开实施例提供的一种量子点发光二极管的制备方法 的流程示意图,如图所示,其包括步骤:
S11、提供溶液,所述溶液包括氧化锌纳米颗粒和羧酸酯;
S12、提供阳极基板,将所述溶液沉积在所述阳极基板上加热,制备得到电子传输层。
请参阅图2,图2为本公开另一实施例提供的一种量子点发光二极管的制备方法的流程示意图,如图所示,其包括步骤:
S21、提供溶液,所述溶液包括氧化锌纳米颗粒和羧酸酯;
S22、提供阴极基板,将所述溶液沉积在所述阴极基板上加热,制备得到电子传输层。
一些具体的实施中,通过溶液法在氧化锌纳米颗粒作为电子传输材料制备电子传输层的过程中加入羧酸酯,羧酸酯分散在制备得到的所述电子传输层中,当水氧侵入时,可以缓慢地吸收水氧,并与水气反应,减缓水氧对于量子点发光层以及空穴传输层的侵蚀,有效地提升器件的工作寿命。
具体的,量子点发光二极管分正置结构和倒置结构。正置结构包括层叠设置的阳极、阴极和设置在阳极和阴极之间的量子点发光层,正置结构的阳极设置在衬底上,在阳极和量子点发光层之间还可以设置空穴传输层、空穴注入层和电子阻挡层等空穴功能层,在阴极和量子点发光层之间还可以设置电子传输层、电子注入层和空穴阻挡层等电子功能层。倒置结构包括层叠设置的阳极、阴极和设置在阳极和阴极之间的量子点发光层,倒置结构的阴极设置在衬底上,在阳极和量子点发光层之间还可以设置空穴传输层、空穴注入层和电子阻挡层等空穴功能层,在阴极和量子点发光层之间还可以设置电子传输层、电子注入层和空穴阻挡层等电子功能层。
对于正置结构而言,设置在衬底上的底电极为阳极,在本公开的一些实施方式中,所述阳极基板可以包括衬底、层叠设置在衬底表面的底电极、和层叠设置在底电极表面的量子点发光层;在本公开的另一些实施方式中,所述阳极基板可以包括衬底、层叠设置在衬底表面的底电极、层叠设置在底电极表面的空穴传输层和层叠设置在空穴传输层表面的量子点发光层;在本公开的又一些实施方式中,所述阳极基板可以包括衬底、层叠设置在衬底表面的底电极、层叠设置在底电极表面的空穴注入层、层叠设置在空穴注入层表面的空穴传输层和层叠设置在空穴 传输层表面的量子点发光层;在本公开的又一些实施方式中,所述阳极基板可以包括衬底、层叠设置在衬底表面的底电极、层叠设置在底电极表面的空穴注入层、层叠设置在空穴注入层表面的空穴传输层、层叠设置在空穴传输层表面的电子阻挡层和层叠设置在电子阻挡层表面的量子点发光层;在本公开的又一些实施方式中,所述阳极基板可以包括衬底、层叠设置在衬底表面的底电极、层叠设置在底电极表面的空穴注入层、层叠设置在空穴注入层表面的空穴传输层、层叠设置在空穴传输层表面的电子阻挡层、层叠设置在电子阻挡层表面的量子点发光层和层叠设置在量子点发光层表面的空穴阻挡层。
对于倒置结构而言,设置在衬底上的底电极为阴极,在本公开的一些实施方式中,所述阴极基板可以为衬底上设置的底电极;在本公开的又一些实施方式中,所述基板可以包括衬底、层叠设置在衬底表面的底电极和层叠设置在底电极表面的电子注入层。
在一些具体的实施方式中,如图3所示,所述的量子点发光二极管的制备方法,包括步骤:
S31、提供溶液,所述溶液包括氧化锌纳米颗粒和羧酸酯;
S32、提供阳极基板,所述阳极基板表面设置有量子点发光层,将所述溶液沉积在所述量子点发光层上加热,制备得到电子传输层。
在另一些具体的实施方式中,如图4所示,所述的量子点发光二极管的制备方法,包括步骤:
S41、提供溶液,所述溶液包括氧化锌纳米颗粒和羧酸酯;
S42、提供阴极基板,将所述溶液沉积在所述阴极基板上加热,制备得到电子传输层,在所述电子传输层表面制备量子点发光层。
上述量子点发光二极管中,电子传输层与量子点发光层形成叠层结合的结构。靠近电子传输层的量子点,其表面结合有有机配体(量子点表面结合有羧酸配体,还可以包括有机胺、有机硫醇、有机膦和有机磷酸等但不限于此),而为了保证氧化锌纳米颗粒在溶液中的分散性,其表面往往富集大量的羟基(-OH)。器件在工作过程中,量子点表面的有机配体容易受到氧化锌纳米颗粒表面的羟基侵蚀,导致配体脱落、器件效率快速衰减。本实施例利用上述方法,可以在制备过程中有效降低氧化锌纳米颗粒表面的羟基含量,保护量子点表面有机配体在器件工作 中的稳定性,提升器件的工作寿命。具体的,通过溶液法在氧化锌纳米颗粒作为电子传输材料制备电子传输层的过程中加入羧酸酯,并通过在空气当中加热一定时间,利用加热过程,羧酸酯少量水解产生的H +,H +中和氧化锌纳米颗粒表面富集的羟基(-OH),从而缓解了氧化锌纳米颗粒表面的羟基对量子点表面的有机配体(以羧酸-COOH为主)的侵蚀,保护量子点表面有机配体在器件工作中的稳定性,提升器件的工作寿命。
在一些具体的实施方式中,在15℃-30℃条件下,所述羧酸酯的粘度为0.45mPa.s-1mPa.s,通过溶液法制备量子点发光二极管的过程中,功能层的成膜质量对器件工作稳定性有重要影响,一般氧化锌量子点选择醇类作为溶剂,所述醇类溶剂包括丙醇、丁醇和乙二醇等但不限于此,通常所述醇类在20℃下粘度为大于1mPa.s,以乙醇为例,在15℃-30℃条件下,粘度为1.074mPa.s。一些具体的实施中所述羧酸酯的粘度为0.45mPa.s-1mPa.s,低于醇类的粘度。加入该粘度的羧酸酯可以降低氧化锌溶液的粘度,提升成膜质量。好的成膜质量可以有效降低漏电流,减少工作过程中的发热,提升器件的工作寿命。
一些具体的实施中,所述溶液通过在氧化锌纳米颗粒溶液中加入羧酸酯配制得到。在一些实施方式中,所述羧酸酯选自乙酸乙酯(CH 3COOCH 2CH 3)、乙酸苯酯(CH 3COOC 6H 5)、苯甲酸甲酯(C 6H 5COOCH 3)、乙酸丁酯(CH 3COOC 4H 9)和丙烯酸辛酯(CH 2CHCOOC 8H 17)等中的一种或多种,但不限于此。
在一些具体的实施方式中,所述羧酸酯为乙酸乙酯。通过溶液法制备量子点发光二极管的过程中,功能层的成膜质量对器件工作稳定性有重要影响,一般氧化锌纳米颗粒选择醇类作为溶剂,以乙醇为例,在20℃下粘度为1.074mPa.s。乙酸乙酯的粘度低于乙醇的粘度,在20℃为0.449mPa.s。加入乙酸乙酯可以降低氧化锌纳米颗粒溶液的粘度,提升成膜质量。好的成膜质量可以有效降低漏电流,减少工作过程中的发热,提升器件的工作寿命。
在一些具体的实施方式中,按所述羧酸酯与溶剂的体积比为10-30:100,配置得到所述溶液。过多的羧酸酯不利于电子传输层的导电性能,且增加器件的启亮电压。
在一些具体的实施方式中,所述加热的温度为60-120℃。通过加热处理,合适量的羧酸酯水解产生H +,产生的H +中和氧化锌纳米颗粒表面富集的羟基 (-OH),从而缓解氧化锌纳米颗粒表面的羟基对量子点表面的有机配体(以羧酸-COOH为主)的侵蚀。所述加热的温度为70-90℃。当制备正置结构的量子点发光二极管时,由于先沉积量子点发光层后沉积电子传输层,在空气中处理温度过高,会降低量子点发光层的性能,因此不应高于80℃。
在一些具体的实施方式中,所述加热的时间为2-15分钟。更优选的,所述加热的时间为2-10分钟。当制备正置结构的量子点发光二极管时,由于先沉积量子点发光层后沉积电子传输层,在空气中处理时间过长,会降低量子点发光层的性能,因此不应长于10分钟。
在一些具体的实施方式中,对得到的量子点发光二极管进行封装处理。其中所述封装处理可采用常用的机器封装,也可以采用手动封装。所述封装处理的环境中,氧含量和水含量均低于0.1ppm,以保证器件的稳定性。
一些具体的实施方式中,各层制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于溶液法(如旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法或条状涂布法等)、蒸镀法(如热蒸镀法、电子束蒸镀法、磁控溅射法或多弧离子镀膜法等)、沉积法(如物理气相沉积法、原子层沉积法、脉冲激光沉积法等)中的一种或多种。
本公开实施例还提供一种量子点发光二极管,包括:阳极、阴极、设置在所述阳极和阴极之间的量子点发光层、设置在所述阴极和量子点发光层之间的电子传输层,其中,所述电子传输层材料包括氧化锌纳米颗粒和分散在氧化锌纳米颗粒之间的羧酸酯。
一些具体的实施方式中,所述电子传输层中分散有羧酸酯,当水氧侵入时,可以缓慢地吸收水氧,并与水气反应,减缓水氧对于量子点发光层的侵蚀,有效地提升器件的工作寿命。
本公开实施例还提供一种量子点发光二极管,包括:阳极、阴极和设置在所述阳极和阴极之间的叠层,其中,所述叠层包括层叠设置的量子点发光层和电子传输层,所述量子点发光层靠近所述阳极设置,所述电子传输层靠近所述阴极设置,所述电子传输层包括氧化锌纳米颗粒和分散在所述氧化锌纳米颗粒表面的羧 酸酯。
一些具体的实施方式中,经羧酸酯处理电子传输层的工艺后,氧化锌纳米颗粒表面具有较少的羟基(-OH),从而缓解了氧化锌纳米颗粒表面的羟基对量子点表面的有机配体(量子点表面结合有羧酸配体,还可以包括有机胺、有机硫醇、有机膦和有机磷酸等但不限于此)的侵蚀,保护量子点表面有机配体在器件工作中的稳定性,提升器件的工作寿命。器件在工作过程中,量子点表面的有机配体容易受到氧化锌纳米颗粒表面的羟基侵蚀,导致配体脱落、器件效率快速衰减。本实施例利用上述方法,可以在制备过程中有效降低氧化锌纳米颗粒表面的羟基含量,保护量子点表面有机配体在器件工作中的稳定性,提升器件的工作寿命。具体的,通过溶液法在氧化锌纳米颗粒作为电子传输材料制备电子传输层的过程中加入羧酸酯,并通过在空气当中加热一定时间,利用加热过程,羧酸酯少量水解产生的H +,H +中和氧化锌纳米颗粒表面富集的羟基(-OH),从而缓解了氧化锌纳米颗粒表面的羟基对量子点表面的有机配体(以羧酸-COOH为主)的侵蚀,保护量子点表面有机配体在器件工作中的稳定性,提升器件的工作寿命。另外,器件工作过程往往无法完全避免水氧的侵入,羧酸酯可以以物理吸附的方式存在于电子传输层中,当水氧侵入时,可以缓慢地吸收并与水气反应,减缓水氧对于量子点发光层以及空穴传输层的侵蚀,有效地提升器件的工作寿命。
一些具体的实施中,量子点发光二极管有多种形式,且所述量子点发光二极管分为正置结构和倒置结构,本实施例将主要以如图5所示的正置结构的量子点发光二极管为例进行介绍。具体地,如图5所示,所述量子点发光二极管包括从下往上叠层设置的衬底1、阳极2、空穴注入层3、空穴传输层4、量子点发光层5、电子传输层6和阴极7;其中所述电子传输层6包括氧化锌纳米颗粒和吸附在所述氧化锌纳米颗粒表面的羧酸酯。
在一些具体的实施方式中,所述衬底可以为刚性材质的衬底,如玻璃等,也可以为柔性材质的衬底,如PET或PI等中的一种。
在一些具体的实施方式中,所述阳极材料包括但不限于金属材料、碳材料和金属氧化物中的一种或多种。其中,所述金属材料包括Al、Ag、Cu、Mo、Au、Ba、Ca和Mg中的一种或多种。所述碳材料包括石墨、碳纳米管、石墨烯和碳纤维中的一种或多种。所述金属氧化物可以是掺杂或非掺杂金属氧化物,包括 ITO、FTO、ATO、AZO、GZO、IZO、MZO和AMO中的一种或多种,也包括掺杂或非掺杂透明金属氧化物之间夹着金属的复合电极,其中,所述复合电极包括AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2和TiO 2/Al/TiO 2中的一种或多种。
在一些具体的实施方式中,所述空穴注入层材料包括但不限于PEDOT:PSS、CuPc、F4-TCNQ、HATCN、过渡金属氧化物和过渡金属硫系化合物中的一种或多种。其中,所述过渡金属氧化物包括NiO x、MoO x、WO x、CrO x和CuO中的一种或多种。所述过渡金属硫系化合物包括MoS x、MoSe x、WS x、WSe x和CuS中的一种或多种。
在一些具体的实施方式中,所述空穴传输层材料包括但不限于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)、4,4’,4”-三(咔唑-9-基)三苯胺、4,4'-二(9-咔唑)联苯、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺、15N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺、石墨烯和C60中的一种或多种。所述空穴传输层材料还可选自具有空穴传输能力的无机材料,包括但不限于NiO x、MoO x、WO x、CrO x、CuO、MoS x、MoSe x、WS x、WSe x和CuS中的一种或多种。
在一些具体的实施方式中,所述量子点发光层材料为具备发光能力的直接带隙化合物半导体,例如包括II-VI族化合物、III-V族化合物、II-V族化合物、III-VI化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物和IV族单质中的一种或多种。具体地,所述量子点发光层材料包括但不限于II-VI半导体的纳米晶,比如CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、PbS、PbSe、PbTe和其他二元、三元、四元的II-VI族化合物;III-V族半导体的纳米晶,比如GaP、GaAs、InP、InAs和其他二元、三元、四元的III-V族化合物;用于电致发光的半导体材料还不限于II-V族化合物、III-VI族化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物、IV族单质等。其中,所述量子点发光层材料还可以为掺杂或非掺杂的无机钙钛矿型半导体、和/或有机-无机杂化钙钛矿型半导体;具体地,所述无机钙钛矿型半导体的结构通式为AMX 3,其中A为 Cs +离子,M为二价金属阳离子,包括但不限于Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+,X为卤素阴离子,包括但不限于Cl -、Br -、I -;所述有机-无机杂化钙钛矿型半导体的结构通式为BMX 3,其中B为有机胺阳离子,可以为但不限于CH 3(CH 2) n-2NH 3 +(n≥2)或NH 3(CH 2) nNH 3 2+(n≥2)。当n=2时,无机金属卤化物八面体MX 6 4-通过共顶的方式连接,金属阳离子M位于卤素八面体的体心,有机胺阳离子B填充在八面体间的空隙内,形成无限延伸的三维结构;当n>2时,以共顶的方式连接的无机金属卤化物八面体MX 6 4-在二维方向延伸形成层状结构,层间插入有机胺阳离子双分子层(质子化单胺)或有机胺阳离子单分子层(质子化双胺),有机层与无机层相互交叠形成稳定的二维层状结构;M为二价金属阳离子,包括但不限于Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+;X为卤素阴离子,包括但不限于Cl -、Br -、I -
在一些具体的实施方式中,所述阴极材料包括但不限于金属材料、碳材料和金属氧化物中的一种或多种。其中,所述金属材料包括Al、Ag、Cu、Mo、Au、Ba、Ca和Mg中的一种或多种。所述碳材料包括石墨、碳纳米管、石墨烯和碳纤维中的一种或多种。所述金属氧化物可以是掺杂或非掺杂金属氧化物,包括ITO、FTO、ATO、AZO、GZO、IZO、MZO和AMO中的一种或多种,也包括掺杂或非掺杂透明金属氧化物之间夹着金属的复合电极,其中,所述复合电极包括AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2和TiO 2/Al/TiO 2中的一种或多种。
下面通过具体实施例对本公开实施例进一步详细说明。
具体实施例一:一种正置结构的量子点发光二极管的制备过程如下:
步骤S1:在ITO衬底上,旋涂PEDOT:PSS,转速5000,时间30秒,随后150℃加热15分钟;
步骤S2:旋涂TFB(8mg/mL),转速3000,时间30秒,随后150℃加热30分钟;
步骤S3:旋涂量子点(20mg/mL),转速2000,时间30秒;
步骤S4:旋涂乙酸乙酯:乙醇=1:5的ZnO(30mg/mL)溶液,转速3000, 时间30秒;
步骤S5:把器件置于空气中,加热80℃,8分钟;
步骤S6:把器件放入N 2氛围中加热80℃,30分钟;
步骤S7:通过热蒸发,真空度不高于3×10 -4Pa,蒸镀Ag,速度为1埃/秒,时间200秒,厚度20nm,得到顶发射的正置结构的量子点发光二极管。
具体实施例二:一种倒置结构的量子点发光二极管的制备过程如下:
步骤S1:在ITO衬底上,旋涂乙酸乙酯:乙醇=1:5的ZnO(30mg/mL)溶液,转速3000,时间30秒;
步骤S2:把器件置于空气中,加热80℃,8分钟;
步骤S3:把器件放入N 2氛围中加热80℃,30分钟;
步骤S4:旋涂量子点(20mg/mL),转速2000,时间30秒;
步骤S5:旋涂PVK(8mg/mL),转速3000,时间30秒,随后100℃加热10分钟;
步骤S6:旋涂PMAH(聚马来酸酐十六醇酯,8mg/mL),转速3000,时间30秒,随后100℃加热10分钟;
步骤S7:通过热蒸发,真空度不高于3×10 -4Pa,蒸镀Ag,速度为1埃/秒,时间700秒,厚度70nm,得到底发射的倒置结构的量子点发光二极管。
综上所述,本公开提供一种量子点发光二极管及其制备方法。本公开中,通过溶液法在氧化锌纳米颗粒作为电子传输材料制备电子传输层的过程中加入羧酸酯,羧酸酯可以以物理吸附的方式存在于制备得到的所述电子传输层中,当水氧侵入时,可以缓慢地吸收水氧,并与水气反应,减缓水氧对于量子点发光层以及空穴传输层的侵蚀,有效地提升器件的工作寿命。另外,当量子点发光二极管中,电子传输层与量子点发光层形成叠层结合的结构时,通过溶液法在氧化锌纳米颗粒作为电子传输材料制备电子传输层的过程中加入羧酸酯,并通过在空气当中加热一定时间,利用加热过程羧酸酯水解产生的H +,中和氧化锌纳米颗粒表面富集的羟基(-OH),从而缓解了氧化锌纳米颗粒表面的羟基对量子点表面的有机配体(以羧酸-COOH为主)的侵蚀,保护量子点表面有机配体在器件工作中的稳定性,提升器件的工作寿命。此外,羧酸酯的粘度低于醇类的粘度。加入该羧酸酯可以降低氧化锌溶液的粘度,提升成膜质量。好的成膜质量可以有效降 低漏电流,减少工作过程中的发热,提升器件的工作寿命。综上,本公开通过加入羧酸酯处理电子传输层的工艺,保护与氧化锌纳米颗粒电子传输层靠近的量子点发光层表面的有机配体,提高电子传输层与量子点发光层的成膜质量,并减缓水氧的侵蚀,有效提升器件的工作寿命和稳定性。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (16)

  1. 一种量子点发光二极管,包括:阳极、阴极、设置在所述阳极和阴极之间的量子点发光层、设置在所述阴极和量子点发光层之间的电子传输层,其特征在于,所述电子传输层材料包括氧化锌纳米颗粒和分散在氧化锌纳米颗粒之间的羧酸酯。
  2. 根据权利要求1所述的量子点发光二极管,其特征在于,所述量子点发光层与所述电子传输层叠层结合,所述量子点发光层表面结合有羧酸配体。
  3. 根据权利要求1或2所述的量子点发光二极管,其特征在于,在15℃-30℃条件下,所述羧酸酯的粘度为0.45mPa.s-1mPa.s。
  4. 根据权利要求1所述的量子点发光二极管,其特征在于,所述羧酸酯选自乙酸乙酯、乙酸苯酯、苯甲酸甲酯、乙酸丁酯和丙烯酸辛酯中的一种或多种。
  5. 根据权利要求1或2所述的量子点发光二极管,其特征在于,所述羧酸酯为乙酸乙酯。
  6. 一种量子点发光二极管的制备方法,其特征在于,包括步骤:
    提供溶液,所述溶液包括氧化锌纳米颗粒和羧酸酯;
    提供阳极基板,将所述溶液沉积在所述阳极基板上加热,制备得到电子传输层;或者,
    提供阴极基板,将所述溶液沉积在所述阴极基板上加热,制备得到电子传输层。
  7. 根据权利要求6所述的量子点发光二极管的制备方法,其特征在于,提供阳极基板,所述阳极基板表面设置有量子点发光层,将所述溶液沉积在所述量子点发光层上加热,制备得到电子传输层;或者,
    提供阴极基板,将所述溶液沉积在所述阴极基板上加热,制备得到电子传输层,在所述电子传输层表面制备量子点发光层。
  8. 根据权利要求7所述的量子点发光二极管的制备方法,其特征在于,所述量子点发光层表面结合有羧酸配体。
  9. 根据权利要求6至8任一项所述的量子点发光二极管的制备方法,其特征在于,所述羧酸酯的粘度为0.45mPa.s-1mPa.s。
  10. 根据权利要求6所述的量子点发光二极管的制备方法,其特征在于,所述羧酸酯选自乙酸乙酯、乙酸苯酯、苯甲酸甲酯、乙酸丁酯和丙烯酸辛酯中的一种或多种。
  11. 根据权利要求6所述的量子点发光二极管的制备方法,其特征在于,所述羧酸酯为乙酸乙酯。
  12. 根据权利要求6至8任一项所述的量子点发光二极管的制备方法,其特征在于,按所述羧酸酯与溶剂的体积比为10-30:100,配置得到所述溶液。
  13. 根据权利要求6至8任一项所述的量子点发光二极管的制备方法,其特征在于,所述加热的温度为60-120℃。
  14. 根据权利要求13所述的量子点发光二极管的制备方法,其特征在于,所述加热的温度为70-90℃。
  15. 根据权利要求6至8任一项所述的量子点发光二极管的制备方法,其特征在于,所述加热的时间为2-15分钟。
  16. 根据权利要求15所述的量子点发光二极管的制备方法,其特征在于,所述加热的时间为2-10分钟。
PCT/CN2019/103620 2018-12-29 2019-08-30 一种量子点发光二极管及其制备方法 WO2020134151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811647285.2A CN111384278B (zh) 2018-12-29 2018-12-29 一种量子点发光二极管及其制备方法
CN201811647285.2 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020134151A1 true WO2020134151A1 (zh) 2020-07-02

Family

ID=71128541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103620 WO2020134151A1 (zh) 2018-12-29 2019-08-30 一种量子点发光二极管及其制备方法

Country Status (2)

Country Link
CN (1) CN111384278B (zh)
WO (1) WO2020134151A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103405B (zh) * 2020-10-20 2023-01-24 合肥福纳科技有限公司 固态膜的制备方法、量子点发光器件及制备方法
CN114520291A (zh) * 2020-11-18 2022-05-20 Tcl科技集团股份有限公司 量子点发光二极管及其制备方法
CN112382732B (zh) * 2020-11-25 2023-01-24 合肥福纳科技有限公司 一种降低电子导体的电子传输性能的方法
CN114686232B (zh) * 2020-12-30 2023-12-26 Tcl科技集团股份有限公司 一种量子点的筛分方法及量子点发光二极管
WO2022143962A1 (zh) * 2020-12-31 2022-07-07 Tcl科技集团股份有限公司 量子点发光二极管及其制备方法
WO2022143963A1 (zh) * 2020-12-31 2022-07-07 Tcl科技集团股份有限公司 量子点发光二极管及其制备方法
CN114914371A (zh) * 2021-02-09 2022-08-16 Tcl科技集团股份有限公司 量子点发光二极管及其制备方法
WO2023105711A1 (ja) * 2021-12-09 2023-06-15 シャープディスプレイテクノロジー株式会社 発光素子、表示装置、および発光素子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090105413A1 (en) * 2007-09-25 2009-04-23 The Texas A&M University System Water-soluble nanoparticles with controlled aggregate sizes
CN104170112A (zh) * 2012-03-15 2014-11-26 凸版印刷株式会社 有机电致发光元件及其制造方法
CN105070849A (zh) * 2015-07-14 2015-11-18 Tcl集团股份有限公司 一种量子点发光层排布致密的发光器件及其制备方法
CN105244451A (zh) * 2015-10-16 2016-01-13 Tcl集团股份有限公司 一种具有混合htl的量子点发光二极管及其制备方法
CN105449110A (zh) * 2015-12-28 2016-03-30 Tcl集团股份有限公司 基于有机无机复合传输层的量子点发光二极管及制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148272A (ja) * 2003-11-13 2005-06-09 Konica Minolta Opto Inc 反射防止膜、反射防止フィルム及びその製造方法、並びに偏光板及び表示装置
US20140203259A1 (en) * 2013-01-18 2014-07-24 Universal Display Corporation Host for organic light emitting devices
KR101828662B1 (ko) * 2013-02-12 2018-02-12 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자 및 조명 장치
CN105552248A (zh) * 2016-01-26 2016-05-04 纳晶科技股份有限公司 一种电致发光器件的封装结构及其封装方法
CN105870347A (zh) * 2016-04-15 2016-08-17 京东方科技集团股份有限公司 量子点发光器件及其制备方法、显示基板和显示装置
CN106098884A (zh) * 2016-07-08 2016-11-09 东华大学 一种量子点发光二极管及其制备方法
CN106634948B (zh) * 2016-10-31 2019-03-12 纳晶科技股份有限公司 氧化锌纳米晶、其制备方法、氧化锌纳米晶墨水和电致发光器件
CN108735906B (zh) * 2017-04-20 2020-08-18 Tcl科技集团股份有限公司 丙烯酸酯共聚物修饰的金属氧化物、qled及制备方法
CN107099190A (zh) * 2017-05-27 2017-08-29 苏州星烁纳米科技有限公司 氧化锌基纳米颗粒墨水及电致发光器件
CN107140677B (zh) * 2017-06-05 2019-04-09 苏州大学 一种功能器件用金属氧化物纳米颗粒的制备方法
KR102570856B1 (ko) * 2017-07-21 2023-08-25 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 페로브스카이트 태양전지 및 이를 포함하는 탬덤 태양전지
CN108269939A (zh) * 2018-01-08 2018-07-10 北京科技大学 一种近红外量子点发光二极管的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090105413A1 (en) * 2007-09-25 2009-04-23 The Texas A&M University System Water-soluble nanoparticles with controlled aggregate sizes
CN104170112A (zh) * 2012-03-15 2014-11-26 凸版印刷株式会社 有机电致发光元件及其制造方法
CN105070849A (zh) * 2015-07-14 2015-11-18 Tcl集团股份有限公司 一种量子点发光层排布致密的发光器件及其制备方法
CN105244451A (zh) * 2015-10-16 2016-01-13 Tcl集团股份有限公司 一种具有混合htl的量子点发光二极管及其制备方法
CN105449110A (zh) * 2015-12-28 2016-03-30 Tcl集团股份有限公司 基于有机无机复合传输层的量子点发光二极管及制备方法

Also Published As

Publication number Publication date
CN111384278A (zh) 2020-07-07
CN111384278B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2020134151A1 (zh) 一种量子点发光二极管及其制备方法
US11485908B2 (en) Quantum dot light-emitting diode and method for fabricating the same
CN110718637B (zh) 一种量子点发光二极管及其制备方法
Zhu et al. All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer
WO2019024513A1 (zh) 量子点发光二极管及其制备方法
Zhu et al. Efficient Hole Injection of MoO x-Doped Organic Layer for Printable Red Quantum Dot Light-Emitting Diodes
CN111384255A (zh) 一种量子点发光二极管及其制备方法
US11744098B2 (en) Quantum dot light-emitting diode and preparation method therefor
CN109427939A (zh) 一种qled器件及其制备方法
CN113972327B (zh) 一种复合薄膜、电致发光器件及其制备方法
CN114203941B (zh) 薄膜的制备方法和发光二极管
CN114267801B (zh) 一种量子点发光二极管及其制备方法
CN112531123B (zh) 电子传输膜层的制备方法和量子点发光二极管的制备方法
CN111384263B (zh) 量子点发光二极管及其制备方法
CN113130794B (zh) 一种量子点发光二极管及其制备方法
CN111384254B (zh) 一种量子点发光二极管
CN111384277B (zh) 一种复合材料、量子点发光二极管及其制备方法
CN114695695A (zh) 量子点发光二极管及其制备方法
CN109390493B (zh) 一种显示设备及其制备方法
WO2024078562A1 (zh) 薄膜及其制备方法、光电器件
CN114686209B (zh) 复合材料、量子点发光二极管及其制备方法
CN113130776B (zh) 一种量子点发光二极管及其制备方法
CN114695823A (zh) 一种qled器件及其制备方法
CN117651461A (zh) 光电器件的处理方法、光电器件及显示装置
CN114695806A (zh) 载流子传输薄膜的制备方法和量子点发光二极管的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905974

Country of ref document: EP

Kind code of ref document: A1