WO2020133872A1 - 一种用于有机物氧化的装置和方法 - Google Patents

一种用于有机物氧化的装置和方法 Download PDF

Info

Publication number
WO2020133872A1
WO2020133872A1 PCT/CN2019/086440 CN2019086440W WO2020133872A1 WO 2020133872 A1 WO2020133872 A1 WO 2020133872A1 CN 2019086440 W CN2019086440 W CN 2019086440W WO 2020133872 A1 WO2020133872 A1 WO 2020133872A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
reaction
vertical
liquid
horizontal
Prior art date
Application number
PCT/CN2019/086440
Other languages
English (en)
French (fr)
Inventor
刘鹏
孙犀璨
朱发明
丛振霞
乔小飞
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Priority to JP2021519772A priority Critical patent/JP7194272B2/ja
Priority to EP19904824.0A priority patent/EP3903925B1/en
Priority to SG11202103672TA priority patent/SG11202103672TA/en
Priority to KR1020217011097A priority patent/KR102505464B1/ko
Priority to US17/288,708 priority patent/US12076702B2/en
Publication of WO2020133872A1 publication Critical patent/WO2020133872A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/004Sparger-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/02Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides
    • C07C409/04Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides the carbon atom being acyclic
    • C07C409/08Compounds containing six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00557Flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/0061Controlling the level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical

Definitions

  • the invention relates to a method for oxidizing organic substances such as ethylbenzene or cumene or cyclohexane, in particular to a method for preparing ethylbenzene hydroperoxide by contacting and reacting ethylbenzene with an oxygen-containing gas.
  • the joint production method of propylene oxide (PO) and styrene (SM) is one of the best processes for producing propylene oxide.
  • the PO/SM method mainly includes three steps: 1 contact oxidation of ethylbenzene with air to generate ethylbenzene hydroperoxide (EBHP); 2 EBHP oxidizes propylene to propylene oxide, and itself is reduced to phenylmethyl alcohol; 3benzene Dehydration of methyl alcohol produces styrene.
  • the reaction route can be expressed by formula (1):
  • the preparation of ethylbenzene hydroperoxide by the oxidation of ethylbenzene is the key to the PO/SM method.
  • ethylbenzene is oxidized to form EBHP
  • EBHP will further undergo a series of side reactions, resulting in a decrease in EBHP selectivity. Therefore, the conversion rate of ethylbenzene in the industrial process is generally less than 10%.
  • the industrially used ethylbenzene oxidation reactor is mainly a horizontal bubble column reactor.
  • the US patents US4066706 and US4262143 disclose a horizontal reactor, which uses a baffle to divide the reactor into 5-10 zones.
  • the ethylbenzene reaction liquid enters the reactor from one side, passes through each zone in turn and is discharged from the other side.
  • the air is blown into the corresponding area from the bottom, and it is discharged from the top after reacting with ethylbenzene.
  • the oxidation process of organics generally follows the free radical mechanism, and it requires a certain initiation time at the beginning of the reaction.
  • initiation time During normal operation of the horizontal reactor, most of the fluid flows in the horizontal direction, and the liquid phase backmixing is low. This feature is conducive to improving the reaction selectivity, but at the same time leads to a lower reaction rate at the initial stage of the reaction and a longer initiation time. The equipment capacity is reduced.
  • the object of the present invention is to provide an apparatus and method for oxidizing organic substances, in particular, an apparatus and method for contacting and reacting liquid ethylbenzene with an oxygen-containing gas.
  • An apparatus for organic matter oxidation wherein the apparatus includes a vertical bubbling reactor and a horizontal bubbling reactor connected to an outlet of the reaction product of the vertical bubbling reactor, the horizontal bubbling reaction
  • the reactor is provided with a plurality of reaction compartments arranged along its axial direction, and a liquid phase channel is provided between adjacent reaction compartments.
  • the present invention is realized by a combination of a vertical bubbling reactor and a horizontal bubbling reactor. It first includes a vertical bubbling reactor, which should be understood to be substantially perpendicular to the horizontal plane.
  • the vertical bubble reactor includes a liquid inlet and a gas inlet provided in the lower part of the reactor, and a liquid outlet and a gas outlet provided in the upper part of the reactor, for example, a liquid outlet provided on the side of the upper part of the reactor and The gas outlet at the top of the reactor; the vertical bubbling reactor is provided with a guide tube allowing fluid to pass in the longitudinal direction.
  • the deflector is preferably arranged at a position where the center line of the deflector coincides with the axis of the vertical bubbling reactor.
  • the deflector can have various shapes. For example, the deflector can have a circular, rectangular, square, or elliptical cross-section, preferably a tubular deflector having a circular cross-section.
  • the height of the deflector is 10-90% of the height of the vertical bubbling reactor, preferably 20-80%, more preferably 40-70%, such as 50 % Or 60%; the cross-sectional area of the guide tube accounts for 5-60% of the cross-sectional area of the reactor, preferably 10-25%, such as 15%, 20% or 40%.
  • the vertical bubble reactor is further provided with a first gas distributor connected to the gas inlet, and the distribution holes of the first gas distributor are distributed at The annular gap inside the deflector barrel or between the deflector barrel and the inner wall of the reactor, this arrangement of distribution holes can make the gas content in the annular gap area between the deflector barrel and the inner wall of the reactor and the reactor There are obvious differences, and the resulting difference in fluid density between the two regions can promote the fluid to form a circulation motion between the two regions. This circulation motion is conducive to enhancing the liquid back-mixing in the vertical bubbling reactor and shorten the time required for the reaction to initiate .
  • the gas distributor may be in any form known to those skilled in the art, such as an annular distributor, a branched tube distributor, and the like.
  • the inner wall of the vertical bubbling reactor is provided with a vertical reactor outlet overflow weir at the liquid outlet, and the upper end of the deflector is lower than the The overflow weir at the outlet of the vertical reactor is described.
  • the horizontal level should be understood to be substantially parallel to the horizontal plane.
  • the axial bubble ends of the horizontal bubble reactor are respectively provided with a reaction liquid inlet and a reaction liquid outlet, a reaction gas inlet is provided at the lower end of each section of the reaction compartment, a reaction gas outlet is provided at the upper end, and a connection reaction gas is provided inside Inlet second gas distributor.
  • the second gas distributor may generally be a porous tube.
  • the opening diameter may be 1-15 mm, preferably 2-6 mm, and the opening ratio may be 0.01-10%, preferably 0.02-3%, such as 1% and 2%.
  • the porous tubes may be evenly distributed on the same horizontal plane at the bottom of the reactor or along the bottom arc of the reactor, preferably evenly along the bottom arc of the reactor.
  • the reaction compartment is separated by a partition provided in the horizontal bubbling reactor, and the liquid channel is a liquid-phase channel opened on the partition, preferably at the bottom of the partition
  • the liquid phase channel can avoid the liquid flow dead zone that is easy to appear at the bottom of the reactor to promote the peroxidation reaction for preparing ethylbenzene hydroperoxide.
  • the shape of the liquid phase channel may be circular, rectangular, arcuate, or any other shape, preferably circular.
  • the reaction compartment is provided with at least one vertical baffle disposed along the liquid flow direction in normal operation, and the bottom of the baffle is not higher than the gas in the reaction compartment
  • the distributor for example, each reaction compartment contains two vertical baffles with baffles arranged along the direction of liquid flow in normal operation. In normal operation, the liquid flows from one end to the other end of the horizontal bubbling reactor. Therefore, the baffle is set along the direction from one end of the reactor to the opposite end.
  • the two baffles are arranged symmetrically with respect to the center line of the horizontal bubble reactor.
  • the baffle is further provided with a plurality of openings, and the distance between the bottom of the baffle and the inner wall of the horizontal bubbling reactor is not less than 50 mm, and the height of the baffle is the horizontal 10-70% of the height of the bubble reactor, more preferably 20-50%, such as 30% or 40%.
  • the side of the baffle is provided with a plurality of deflectors inclined downward.
  • the sum of the areas of the plurality of deflectors is equal to
  • the ratio of the area of the baffles is 0.01-0.15, preferably 0.05-0.1; in one embodiment, the deflector is tongue-shaped.
  • sufficient gas space may be left in the vertical bubbling reactor and the horizontal bubbling reactor to avoid the entrainment of peroxide with the gas phase into other equipment
  • the height of the gas phase space should not be less than 0.5m, such as 0.8m, 1m or 1.2m, where the height of the gas phase space refers to the distance between the gas outlet of the reactor and the liquid level below.
  • other standby liquid outlets are also provided at different heights of the vertical bubble reactor, and these standby liquid outlets may be opened when needed to control the liquid level, Adjust the residence time of the reaction.
  • the device for oxidation of organic matter of the present invention further includes a liquid distributor disposed at the lower part of the vertical bubbling reactor, such as a draft tube Below, it is used to distribute the raw materials introduced from the liquid inlet evenly.
  • a liquid distributor disposed at the lower part of the vertical bubbling reactor, such as a draft tube Below, it is used to distribute the raw materials introduced from the liquid inlet evenly.
  • the technical solution proposed by the present invention is as follows: the device described above is used for contacting ethylbenzene with an oxygen-containing gas to prepare ethylbenzene hydroperoxide.
  • liquid ethylbenzene enters the reactor from the lower part of the vertical bubble column reactor, and the oxygen-containing gas also passes through vertical bubbling
  • the lower part of the column reactor enters and is dispersed into the liquid reaction liquid through the gas distributor.
  • the liquid ethylbenzene and the oxygen-containing gas co-flow through the vertical bubbling reactor, during which ethylbenzene and oxygen-containing gas are contacted and reacted Ethylbenzene hydroperoxide, the gas phase material is discharged from the top of the reactor, and the liquid reactant flows out of the vertical reactor through the overflow weir at the upper vertical reactor outlet of the reactor;
  • the liquid reactant flowing out of the vertical bubbling reactor enters the horizontal bubbling reactor from one end of the horizontal bubbling reactor, and the oxygen-containing gas flows from the bottom of the horizontal bubbling reactor Dispersed into the liquid reactant through the second gas distributor, the liquid reactant and the oxygen-containing gas form a cross-flow flow in the horizontal bubbling reactor, during which ethylbenzene contacts the oxygen-containing gas and continues the reaction Ethylbenzene hydroperoxide is generated, and the gas phase material is discharged from the top of the horizontal bubble reactor, mixed with the gas phase material of the vertical bubble reactor, and then enters the subsequent ethylbenzene recovery process, and the liquid reactant is generated by the horizontal drum After the other end of the bubble reactor is discharged, it enters the subsequent process;
  • a plurality of partitions are arranged at intervals in the longitudinal direction, so that the horizontal bubble reactor is divided into a plurality of independent reaction compartments arranged horizontally, wherein adjacent reaction compartments Liquid-phase channels are provided between the chambers so that the fluid can enter the other compartment to continue the reaction.
  • These independent reaction compartments can be operated under different conditions such as reaction temperature or oxygen-containing gas flow rate.
  • the arrangement of the vertical bubbling tower and its inner deflector can strengthen liquid phase back-mixing, increase the concentration of free radicals in the reaction system, greatly reduce the effect of free radical annihilation caused by the wall effect, and shorten the reaction initiation The time required to reduce the formation of by-products in the initiation stage and improve EBHP selectivity.
  • excessively high EBHP concentration will also reduce the selectivity of EBHP.
  • the concentration of ethylbenzene hydroperoxide in the initiation stage of the reaction should be controlled , That is, the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubble reactor.
  • the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubble reactor can be controlled at 0.5%-1.5%, preferably 1%-1.5%, such as 0.6%, 0.8%, 0.9%, 1.2%, 1.3% or 1.4%.
  • the ethylbenzene hydroperoxide concentration at the outlet of the reaction system is C
  • the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubble reactor should be controlled at Between 80%-95%.
  • the invention ingeniously combines a vertical bubbling reactor containing a deflector and a multi-compartment horizontal bubbling reactor containing a rectifying baffle, so that the ethylbenzene oxidation reaction initiation stage is carried out under strong back-mixing conditions, while the conventional reaction
  • the stage is carried out under the conditions of gradual cooling and weak backmixing, while strictly controlling the concentration of ethylbenzene hydroperoxide in the strong backmixing part, that is, the vertical bubbling reactor, to construct an efficient production method that meets the characteristics of ethylbenzene oxidation reaction. Improve reaction efficiency and selectivity.
  • FIG. 1 is a schematic diagram of an embodiment of a method for preparing ethylbenzene hydroperoxide by contacting ethylbenzene with an oxygen-containing gas.
  • Figure 2 is a schematic diagram of an embodiment of a baffle in a horizontal bubble reactor.
  • the device for organic substance oxidation of the present invention includes a vertical bubbling reactor 1 and a horizontal bubbling reactor 11 connected to the outlet of the reaction product of the vertical bubbling reactor 1, the horizontal
  • the bubbling reactor 11 is provided with a plurality of reaction compartments 21 arranged along its axial direction, and a liquid-phase channel 22 is provided between adjacent reaction compartments 21.
  • the present invention is realized by a combination of a vertical bubbling reactor 1 and a horizontal bubbling reactor 11. First, the reaction is initiated in the vertical bubbling reactor 1, and then the conventional reaction stage is performed in the horizontal bubbling reactor 11.
  • the vertical bubbling reactor is disposed substantially perpendicular to the horizontal plane, and includes a liquid inlet 8 and a gas inlet 7 disposed at the lower head 2 of the reactor, and a liquid outlet 10 (i.e., reaction product outlet) disposed at the upper side of the reactor ) And a gas-phase outlet 9 provided at the top of the reactor.
  • the vertical bubbling reactor 1 is provided with a guide tube 4 allowing fluid to pass in the longitudinal direction, and preferably the guide tube 4 is provided along the liquid flow direction passing through the vertical bubble reactor 1 in normal operation.
  • the direction of the liquid flow through the vertical bubble reactor 1 is from the lower liquid inlet 8 to the upper liquid outlet 10, therefore, the guide tube 4 is arranged from the lower part of the vertical bubble reactor 1 to the upper part.
  • other standby liquid outlets are also provided at different heights of the vertical bubble reactor 1, and these standby liquid outlets can be opened when needed to control the liquid level and adjust the reaction residence time.
  • the deflector 4 is preferably arranged at a position where the center line of the deflector 4 coincides with the center axis of the vertical bubble reactor 1.
  • the device for oxidizing organic matter of the present invention further includes a liquid distributor (not shown in the figure), the liquid distributor is disposed at the lower part of the vertical bubbling reactor, such as a deflector Below 4, is used to distribute the raw materials introduced from the liquid inlet 8 evenly.
  • a liquid distributor (not shown in the figure)
  • the liquid distributor is disposed at the lower part of the vertical bubbling reactor, such as a deflector Below 4, is used to distribute the raw materials introduced from the liquid inlet 8 evenly.
  • the deflector tube 4 may have various shapes.
  • the deflector tube 4 may have a circular, rectangular, square, or elliptical cross-section, preferably a tubular deflector tube having a circular cross-section.
  • the height of the deflector 4 can be changed within a relatively large range.
  • the height of the draft tube 4 may be 10-90% of the height of the vertical bubble reactor 1, preferably 20-80%, and more preferably 40-70%.
  • the cross-sectional area of the guide tube 4 can also be varied within a relatively large range. Generally speaking, the cross-sectional area of the guide tube 4 can account for 5-60% of the cross-sectional area of the reactor 1, preferably 10-25%.
  • a vertical reactor outlet overflow weir 6 is provided on the inner wall of the vertical bubbling reactor 1, and the vertical reactor outlet overflow weir 6 is fixed to the liquid outlet on the inner wall of the reactor, as those skilled in the art understand
  • the lower end should be lower than the liquid outlet, and the upper end should be higher than the liquid outlet to form an overflow; and the upper end of the deflector barrel is lower than the upper end of the overflow reactor weir 6 of the vertical reactor.
  • the vertical bubbling reactor 1 is also provided with a first gas distributor 5 connected to the gas inlet 7. Oxygen-containing gas enters from the lower part of the vertical bubbling reactor 1 and is dispersed by the first gas distributor 5 To liquid reactants.
  • the first gas distributor 5 may be in the form of a gas distributor well known to those skilled in the art, such as an annular distributor, a branched tube distributor, and the like.
  • the distribution holes of the first gas distributor 5 are all provided in the guide tube 4 or the annular gap between the guide tube 4 and the inner wall of the vertical bubble reactor 1, preferably the latter.
  • the arrangement of the distribution holes can make the gas content in the inner area of the guide tube 4 and the annulus area between the guide tube 4 and the inner wall of the reactor show a significant difference, and the resulting difference in fluid density between the two areas can promote the fluid in the two areas A circulation motion is formed between the two, which is beneficial to strengthen the liquid back-mixing in the vertical bubbling reactor 1 and shorten the time required for the initiation of the reaction.
  • the opening diameter of the first gas distributor 5 may be 1-15 mm, preferably 2-6 mm, such as 3, 4 or 5 mm, and the opening ratio may be 0.01-10%, preferably 0.02-3%, such as 1%, 2% or 2.5%.
  • the horizontal bubbling reactor 11 has a horizontal cylindrical structure, which is arranged substantially parallel to the horizontal plane, and includes a reaction liquid inlet 18 provided at the left end head 12 of the reactor, and a reaction liquid outlet 19 provided at the right end head 13, A reaction gas inlet 17 provided at the bottom of the reactor and a reaction gas outlet 20 at the top of the reactor, and a plurality of reaction compartments 21, wherein the reaction liquid outlet 19 in the last reaction compartment in the direction of liquid flow is also A horizontal reactor outlet overflow weir 16 may be provided.
  • the horizontal bubble reactor 11 is provided with a plurality of baffles 14 at intervals in the longitudinal direction, so as to divide the horizontal bubble reactor 11 into a plurality of independent reaction compartments 21 arranged horizontally.
  • a liquid-phase channel 22 is provided between adjacent reaction compartments 21 so that fluid can enter the other compartment to continue the reaction.
  • These independent reaction compartments 21 can be operated under different conditions (such as reaction temperature or oxygen-containing gas flow rate, etc.) by adjusting the intake gas temperature and composition, for example.
  • horizontal bubbling reactor 11 including a plurality of reaction compartments 21 can also be equivalently configured as a plurality of horizontal bubbling reactors 11 including one or several reaction compartments 21 to ensure the reaction Total volume of compartment 21.
  • the liquid-phase channel 22 is a liquid-phase channel opened on the separator 14, for example, a liquid-phase overflow-type channel at the top of the separator 14 and/or a liquid-phase communication channel provided at the bottom of the separator It is particularly preferred that the liquid phase channel 22 is a liquid phase communication channel provided at the bottom of the separator 14, which can avoid the liquid flow dead zone easily appearing at the bottom of the reactor to promote the preparation of ethylbenzene hydroperoxide Peroxidation reaction.
  • the shape of the liquid phase channel 22 may be circular, rectangular, arcuate, or any other shape, preferably circular.
  • the cross-sectional area of the liquid-phase channel 22 generally accounts for 0.5%-10% of the cross-sectional area of the horizontal bubble reactor 11, preferably 1-5%, such as 2%, 3%, or 4%.
  • a second gas distributor 15 is provided at the bottom of each reaction compartment of the horizontal bubble reactor 11.
  • the second gas distributor 15 is generally a porous tube type gas distributor, and the opening pore diameter may be 1-15 mm, preferably 2-6 mm, such as 3, 4 or 5 mm, and the opening ratio may be 0.01-10%, preferably 0.02 -3%, such as 1%, 2% or 2.5%.
  • the horizontal bubble reactor 11 includes a plurality of independent reaction compartments 21.
  • each reaction compartment 21 should include an independent gas inlet 17 and a distribution device (second gas distributor 15 ), that is, each side of each partition 14 should include at least one porous tube for gas distribution.
  • second gas distributor 15 second gas distributor 15
  • each side of each partition 14 should include at least one porous tube for gas distribution.
  • the number of gas distribution porous tubes required depends on the gas flow rate and further process conditions.
  • the porous tubes when there are multiple gas distribution porous tubes in the second gas distributor 15 in the reaction compartment 21, the porous tubes may be evenly distributed on the same horizontal plane at the bottom of the horizontal bubbling reactor 11 or along the bottom of the reactor The arcs are evenly distributed, preferably along the bottom of the reactor.
  • Each reaction compartment 21 in the horizontal bubble reactor 11 includes two vertical baffles 24 arranged along the liquid flow direction in normal operation, preferably along the axis direction of the horizontal bubble reactor 11.
  • the baffle 24 is provided along the direction from one end of the reactor to the opposite end.
  • the two baffles 24 are arranged symmetrically with respect to the central axis of the horizontal bubble reactor 11, and each baffle 24 is provided with a plurality of openings, such as 2, or 4, 8 etc.
  • each baffle is provided with two pieces on the side of each baffle, and a baffle 25 is provided at the opening of the baffle, and its inclination angle (angle with the baffle) can be 15 ⁇ 60°, such as 30° or 45°.
  • the baffle 24 can significantly improve the gas wall phenomenon in the horizontal reactor, can greatly reduce the back-mixing between the gases, and avoid the formation of an oxygen-depleted zone in the central part of the reactor. This setting can effectively reduce the decomposition of ethylbenzene hydroperoxide and improve the reaction selectivity.
  • the baffle plate 25 on the baffle 24 can promote the mixing of the fluid on both sides of the baffle, and ensure the uniformity of the temperature and concentration of the liquid in the reactor compartment while avoiding gas back-mixing.
  • the height of the baffle 24 may vary within a relatively large range. Generally speaking, the height of the baffle 24 is 10-70% of the diameter of the reactor, preferably 20-50%, such as 40%.
  • the bottom of the baffle 24 should not be higher than the adjacent gas distribution porous tube, and the distance of the bottom of the baffle from the inner wall of the horizontal bubble reactor is not less than 50 mm, such as 80 mm or 100 mm.
  • the deflector 25 of the baffle 24 is a tongue-shaped structure.
  • the ratio of the cross-sectional area of the liquid flow of the baffle to the cross-sectional area of the baffle is 0.01-0.15, preferably 0.05-0.1.
  • the height of the gas phase space should not be less than 0.5m, for example 0.8m, 1m or 1.2m, wherein the gas-phase space height refers to the distance between the gas outlet of the reactor and the liquid level below.
  • liquid ethylbenzene enters the reactor 1 from the liquid inlet 8 at the lower part of the vertical bubble column reactor 1, and the oxygen-containing gas enters through the gas inlet 7 at the lower part of the vertical bubble column reactor 1 and passes through
  • the first gas distributor 5 is dispersed into the liquid reaction liquid, and the liquid ethylbenzene and the oxygen-containing gas flow through the vertical bubbling reactor 1 during which ethylbenzene and the oxygen-containing gas are contacted and reacted to form ethylbenzene hydroperoxide Oxides and gaseous materials are discharged from the gas outlet 9 at the top of the reactor.
  • the liquid reactants undergo preliminary degassing through the overflow weir 6 in the upper part of the reactor, they flow out of the vertical bubbling reactor 1 from the liquid outlet 10;
  • the difference in rate can promote the mixing of the liquid in the reactor, increase the free radical content in the lower part of the reactor, and shorten the time required for the reaction to initiate.
  • the liquid reactant flowing out of the vertical bubbling reactor 1 enters the horizontal bubbling reactor 11 from the reaction liquid inlet 18 at one end of the horizontal bubbling reactor 11, and the oxygen-containing gas flows from the horizontal bubbling reactor.
  • the bottom reaction gas inlet 17 enters and is dispersed into the liquid reactant through the second gas distributor 15, the liquid reactant and the oxygen-containing gas form a cross-flow flow in the horizontal bubbling reactor 11, in the process of ethylbenzene Contacting with oxygen-containing gas and continuing the reaction to produce ethylbenzene hydroperoxide, the gas phase material is discharged from the reaction gas outlet 20 at the top of the horizontal bubbling reactor 11 and mixed with the gas phase material of the vertical bubbling reactor 1
  • the gas-phase main pipe 23 enters the subsequent ethylbenzene recovery process, and the liquid reactant flows through the horizontal reactor outlet overflow weir 16 at the other end of the horizontal bubble reactor 11 and is discharged from the liquid outlet 19 to enter the subsequent process.
  • the concentration of ethylbenzene hydroperoxide in the initiation stage of the reaction should be controlled, that is, the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubbling reactor, for example, by controlling its inlet temperature and/or inlet To adjust the concentration.
  • the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubble reactor can be controlled at 0.5%-1.5%, preferably 1%-1.5%, such as 0.6%, 0.8%, 0.9%, 1.2%, 1.3% or 1.4%.
  • the concentration of ethylbenzene hydroperoxide at the outlet of the reaction system is C
  • the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubbling reactor Should be controlled at Between 80% and 95%, such as 82%, 85%, 88%, 90% or 92%.
  • the temperature at which the liquid ethylbenzene reacts with the oxygen-containing gas is generally 100-220°C, preferably 120-160°C, such as 130, 140 or 150°C.
  • the temperature is lower than 120°C, the reaction rate is too low.
  • the temperature is higher than 160 °C, the reaction rate of side reactions is significantly accelerated, thereby reducing the selectivity of ethylbenzene hydroperoxide.
  • the peroxidation reaction can use a step-by-step cooling operation, thereby minimizing the formation of by-products.
  • the temperature of the peroxidation reaction can be controlled to 150-160°C, that is, the temperature of the vertical bubbling reactor can be controlled to 150-160°C, while in the later stage, the reaction temperature is gradually reduced to 120-150°C, such as 130 or 140°C, that is, the temperature of different reaction compartments in the horizontal bubbling reactor can be controlled to gradually decrease in the direction of liquid flow.
  • the temperature difference between adjacent reaction compartments is 1-3°C.
  • the pressure at which ethylbenzene reacts with oxygen-containing gas is not a critical factor in this process, and can generally be operated between 1-8 barG.
  • the apparatus shown in Fig. 1 is used, in which the vertical bubble reactor 1 has a diameter of about 0.8 meters and a total height of about 3 meters, the guide tube 4 has a diameter of 0.3 meters and a height of 1.2 meters, and the gas distributor 5 has a ring-shaped gas distribution
  • the distribution hole is arranged between the guide tube and the inner wall of the reactor, the opening diameter is 2mm, and the opening ratio is 0.02%; the horizontal bubble reactor 11 has a diameter of about 1.6 meters and a length of about 3.66 meters.
  • Three partitions 14 are used to divide the reactor into four reaction compartments 21, and a liquid flow channel 22 with a diameter of 110 mm is left at the bottom of the partition 14.
  • Each compartment 21 contains four gas distribution porous tubes.
  • the gas distribution porous tubes are evenly and symmetrically distributed along the arc of the lower part of the reactor, the opening diameter is 2 mm, and the opening ratio is 0.05%.
  • two symmetrical vertical baffles are provided inside the outermost two gas distribution porous tubes.
  • the height of the baffle is 30% of the diameter of the horizontal bubbling reactor, and the bottom is 50 mm away from the inner wall of the reactor.
  • Each rectangular baffle is provided with 8 rectangular liquid flow openings (opening ratio 5%).
  • the reactants bypass the first compartment of the horizontal bubbling reactor, that is, the liquid discharge of the vertical bubbling reactor directly enters the second compartment of the horizontal bubbling reactor.
  • An ethylbenzene reaction liquid containing 0.02 wt% ethylbenzene hydroperoxide was added to the above reactor through the liquid inlet 8 at a flow rate of 1.6 tons/hour to flow through the vertical bubbling reactor 1 and the horizontal bubbling reaction in sequence
  • a gas (oxygen and nitrogen mixture) with an oxygen content of about 15% by weight is simultaneously introduced into the reactor through the gas inlets 7 and 17, and the total gas flow rate is about 300 kg/hour.
  • the operating temperature of the control reactor is 138°C, and the gas phase space pressure of the reactor is about 3.5 barG.
  • reaction liquid mixture with an ethylbenzene hydroperoxide content of about 7.5% by weight can be obtained at the liquid phase outlet of the reactor.
  • concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubbling reactor is about 1.39%.
  • the total hydroperoxide selectivity is about 87.3%.
  • Example 1 Bypassing the vertical bubbling reactor in Example 1, that is, the ethylbenzene reaction liquid containing 0.02 wt% ethylbenzene hydroperoxide directly passed the horizontal bubbling reactor reaction liquid inlet 18 at a flow rate of 1.6 tons/hour Enter the first compartment of the horizontal bubbling reactor, and then flow through the next three compartments in sequence, the remaining conditions are the same as in Example 1, and the experiment in Example 1 is repeated.
  • reaction liquid mixture containing ethylbenzene hydroperoxide in the liquid phase outlet of the reactor is about 7.1 wt%, and the selectivity of ethylbenzene hydroperoxide is about 87.4%.
  • Example 1 Although the reactor volumes used in Example 1 and Comparative Example 1 are equal, compared to Comparative Example 1, the combination of reactors used in Example 1 can achieve a higher reaction conversion rate, while there is no significant difference in selectivity.
  • the diameter of the guide tube 4 in Example 1 was changed to 0.5 meters, the height of the guide tube was 1.0 meters, and the opening rate of the gas distributor in the horizontal bubble reactor was changed to 10%.
  • the experiment in Example 1 was repeated to control the vertical
  • the temperature of the bubbling reactor is 138°C
  • the reaction temperature of the second compartment of the horizontal bubble reactor is 136°C
  • the reaction temperature of the third compartment is 135°C
  • the reaction temperature of the fourth compartment is 134°C
  • the pressure of the gas phase space of the reactor is about 3.5 barG .
  • the experiment was conducted under the above conditions.
  • the reaction liquid mixture with ethylbenzene hydroperoxide content of about 7.3wt% was obtained at the liquid phase outlet of the reactor.
  • the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubbling reactor was 1.33%.
  • the hydroperoxide selectivity is about 88.4%.
  • reaction liquid mixture with ethylbenzene hydroperoxide content in the liquid phase outlet of the reactor is about 6.9wt%, and ethylbenzene hydroperoxide selectivity is about 88.3%.
  • Example 2 Although the reactor volumes used in Example 2 and Comparative Example 2 are equal, compared to Comparative Example 2, the reactor combination used in Example 2 can achieve a higher reaction conversion rate, while there is no significant difference in selectivity.
  • Example 1 Using the same reactor structure as in Example 1, in this example, the liquid phase flowing from the vertical reactor directly enters the first compartment of the horizontal reactor, and then flows through the second, third, and fourth compartments in sequence. In this example, the total residence time was kept the same as in Example 1 by adjusting the reactor liquid level. The other reaction conditions were the same as in Example 1, and the experiment of Example 1 was repeated.
  • reaction liquid mixture with ethylbenzene hydroperoxide content of about 7.2% by weight can be obtained at the liquid phase outlet of the reactor.
  • concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubbling reactor is about 1.21%.
  • the total hydroperoxide selectivity is about 88.7%.
  • Example 3 The same reactor structure as in Example 3 is used, but the liquid residence time in the vertical reactor is reduced to 30% of the liquid residence time in the vertical reactor in Example 3, and the liquid level in the horizontal reactor is appropriately increased to ensure The total liquid residence time was the same as in Example 3, and the experiment of Example 3 was repeated under the above conditions.
  • the content of ethylbenzene hydroperoxide in the liquid phase outlet of the reactor is about 6.77wt%
  • the selectivity of ethylbenzene hydroperoxide is about 88.9%
  • the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubble reactor It is 0.21wt%.
  • Comparative Example 3 and Comparative Example 3 show that under the same reaction conditions, when the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubbling reactor was reduced to 0.21 wt%, although the selectivity of ethylbenzene hydroperoxide slightly increased High (88.7% increased to 88.9%), but ethylbenzene hydroperoxide concentration decreased more (7.2wt% to 6.9wt%), resulting in reduced reactor productivity.
  • Example 3 The same reactor structure as in Example 3 is used, but the liquid residence time in the vertical reactor is extended to 120% of the liquid residence time in the vertical reactor in Example 3, and the liquid level in the horizontal reactor is appropriately lowered to ensure The total liquid residence time was the same as in Example 3, and the experiment of Example 3 was repeated under the above conditions.
  • the content of ethylbenzene hydroperoxide at the liquid phase outlet of the reactor is about 7.4wt%
  • the selectivity of ethylbenzene hydroperoxide is about 86.1%
  • the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubble reactor 2.0wt%.
  • Comparative Example 3 and Comparative Example 4 show that under the same reaction conditions, when the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubbling reactor increases to 2.0 wt%, although the concentration of ethylbenzene hydroperoxide increases ( 7.2wt% increased to 7.4wt%), but the selectivity of ethylbenzene hydroperoxide decreased significantly (88.7% reduced to 86.1%), resulting in a large amount of low value-added generation, the device economics decreased.
  • the liquid phase flowing from the vertical reactor directly enters the first compartment of the horizontal reactor, and then flows through the second, third, and fourth compartments in sequence.
  • the gas space pressure of the reactor is about 3.5 barG.
  • the liquid level in each reaction zone is still the same as that in Example 2. Therefore, compared with Example 2, the liquid residence time in this example is increased by about 25%.
  • the experiment was carried out under the above conditions.
  • the reaction liquid mixture with ethylbenzene hydroperoxide content of about 8.6wt% was obtained at the liquid phase outlet of the reactor.
  • the concentration of ethylbenzene hydroperoxide at the outlet of the vertical bubbling reactor was about 1.4%.
  • the selectivity to benzene hydroperoxide is about 86.9%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种用于有机物氧化的装置和方法,特别是一种乙苯与含氧气体反应制备乙苯氢过氧化物的方法,装置包括立式鼓泡反应器(1)和连接至立式鼓泡反应器(1)反应产物出口的卧式鼓泡反应器(11),卧式鼓泡反应器(11)内设有沿其轴向排布的多段反应隔室(21),相邻反应隔室(21)之间设有液相通道(22)。

Description

一种用于有机物氧化的装置和方法 技术领域
本发明涉及一种有机物例如乙苯或异丙苯或环己烷氧化的方法,特别是涉及一种使乙苯与含氧气体接触反应制备乙苯氢过氧化物的方法。
背景技术
环氧丙烷(PO)与苯乙烯(SM)联产法(即PO/SM法)是目前生产环氧丙烷的最佳工艺之一。PO/SM法主要包括三个步骤:①乙苯与空气接触氧化生成乙苯氢过氧化物(EBHP);②EBHP将丙烯氧化为环氧丙烷,而自身被还原为苯基甲基醇;③苯基甲基醇脱水生成苯乙烯。其反应路线可用式(1)表示:
Figure PCTCN2019086440-appb-000001
其中,乙苯氧化制备乙苯氢过氧化物是PO/SM法的关键。由于乙苯氧化生成EBHP的同时,EBHP会进一步发生串联副反应,导致EBHP选择性降低,因此,工业过程中乙苯单程转化率一般低于10%。
目前工业应用的乙苯氧化反应器主要为卧式鼓泡塔反应器。美国专利US4066706、US4262143公开了一种卧式反应器,采用挡板将反应器分隔成5-10个区域,乙苯反应液从一侧进入反应器,依次通过各个区域后由另一侧排出,空气由底部鼓入相应区域,与乙苯接触发生反应后从顶部排出。
上述反应器虽广泛用于有机物过氧化反应中,但仍存在气体和液体接触不充分的问题。壳牌公司曾公开报道(Chemical Engineering Science,62(2007)5495-5502)在该类反应器中部分区域存在氧气缺乏现象,导致设备生产能力下降。
另外,有机物氧化过程一般遵循自由基机理,在反应初期需要一定的引发时间。卧式反应器在正常操作过程中大部分流体沿水平方向流动,液相返混较低,这一特点虽有利于提高反应选择性,但同时导致反应初期反应速率较低,引发时间较长,造成设备产能减小。
针对上述卧式反应器存在的技术问题,需要寻求一种新型反应系统,改进乙苯氧化反应器的性能,以避免现有卧式反应器的相关问题。
发明内容
本发明的目的在于提供一种有机物氧化的装置和方法,特别是提供一种使液体乙苯与含氧气体接触反应的装置和方法。
为达到上述目的的一个方面,本发明提出的技术方案如下:
一种用于有机物氧化的装置,其中,所述装置包括立式鼓泡反应器和连接至所述立式鼓泡反应器反应产物出口的卧式鼓泡反应器,所述卧式鼓泡反应器内设有沿其轴向排布的多段反应隔室,相邻反应隔室之间设有液相通道。
本发明通过立式鼓泡反应器和卧式鼓泡反应器的组合实现,首先包含一台立式鼓泡反应器,立式应理解为与水平面基本垂直。该立式鼓泡反应器包括在所述反应器下部设置的液体入口和气体入口,以及在所述反应器上部设置的液体出口和气体出口,例如设置在所述反应器上部侧面的液体出口以及在所述反应器顶部的气体出口;所述立式鼓泡反应器内沿纵向设有允许流体通过的导流筒。在一种实施方式中,导流筒宜设置在使导流筒中心线与立式鼓泡反应器轴线重合的位置。所述导流筒可以具有多种形状,例如,所述导流筒可以具有圆形、矩形、正方形或椭圆形截面,优选具有圆形截面的管式导流筒。
根据本发明的装置,在一种实施方式中,所述导流筒高度为所述立式鼓泡反应器高度的10-90%,优选20-80%,更优选40-70%,比如50%或60%;所述导流筒截面积占反应器截面积的5-60%,优选10-25%,比如15%、20%或40%。
根据本发明的装置,在一种实施方式中,所述立式鼓泡反应器内还 设有连接至所述气体入口的第一气体分布器,所述第一气体分布器的分布孔分布在所述导流筒内部或所述导流筒与反应器内壁间的环隙,这种分布孔的布置方式可以使导流筒内以及导流筒与反应器内壁间环隙区域的气含率呈现出明显的差异,由此导致的两区域流体密度差可以促使流体在两区域间形成环流运动,该环流运动有利于强化立式鼓泡反应器中的液体返混,缩短反应引发所需时间。所述气体分布器可以是本领域技术人员熟知的任何形式,例如环形分布器、支管形分布器等。
根据本发明的装置,在一种实施方式中,所述立式鼓泡反应器内壁上设有位于液体出口处的立式反应器出口溢流堰,并且所述导流筒的上端低于所述立式反应器出口溢流堰。
对于卧式鼓泡反应器,卧式水平应理解为与水平面基本平行。所述卧式鼓泡反应器的轴向两端分别设有反应液入口和反应液出口,各段反应隔室的下端设有反应气入口、上端设有反应气出口、内部设有连接反应气入口的第二气体分布器。所述第二气体分布器一般可以为多孔管,开孔孔径可选1-15mm,优选2-6mm,开孔率可选0.01-10%,优选0.02-3%,比如1%、2%。当单个反应隔室内存在多根气体分布多孔管时,所述多孔管可以在反应器底部同一水平面上均匀分布或沿反应器底部弧线均匀分布,优先沿反应器底部弧线均匀分布。
所述反应隔室通过设置在所述卧式鼓泡反应器内的隔板隔开,所述液体通道为开设在所述隔板上的液相通道,优选为开设在所述隔板底部的液相通道,其可以避免反应器底部容易出现的液体流动死区,以促进制备乙苯氢过氧化物的过氧化反应。本领域技术人员理解,所述液相通道的形状可以为圆形、矩形、弓形或其他任何形状,优选圆形。
根据本发明的装置,在一种实施方式中,所述反应隔室内设有至少一个垂直的沿正常操作中液体流动方向设置的挡板,所述挡板底部不高于所在反应隔室的气体分布器,例如,每个反应隔室包含两个垂直的沿正常操作中液体流动方向设置的具有导流板的挡板。正常操作中液体由卧式鼓泡反应器一端流向另一端,因此,挡板沿反应器一端到相对端的方向设置。所述两个挡板相对于卧式鼓泡反应器的中心线呈对称设置。 在一种实施方式中,所述挡板上还设有多个开孔并且挡板底部离所述卧式鼓泡反应器的内壁的距离不小于50mm,所述挡板高度为所述卧式鼓泡反应器高度的10-70%,更优选为20-50%,比如30%或40%。
根据本发明的装置,在一种实施方式中,所述挡板的侧面设有多块倾斜向下的导流板,在一种实施方式中,所述多块导流板的面积之和与挡板面积之和的比为0.01-0.15,优选为0.05-0.1;在一种实施方式中,所述导流板为舌形。
根据本发明的装置,在一种实施方式中,所述立式鼓泡反应器与所述卧式鼓泡反应器内可以留有足够的气相空间,以避免过氧化物随气相夹带进入其他设备,所述气相空间高度应不小于0.5m,比如0.8m、1m或1.2m,其中,所述气相空间高度是指反应器的气体出口与下方液面之间的距离。
根据本发明的装置,在一种实施方式中,在所述立式鼓泡反应器的不同高度上也分别设有其它备用液体出口,这些备用液体出口可以需要的时候开启,以便控制液位、调节反应停留时间。
根据本发明的装置,在一种实施方式中,本发明的用于有机物氧化的装置还包括液体分布器,所述液体分布器设置在所述立式鼓泡反应器的下部,例如导流筒的下方,用于使自所述液体入口引入的原料均匀分布。
为达到上述目的的另一个方面,本发明提出的技术方案如下:将如上所述的装置用于乙苯与含氧气体接触制备乙苯氢过氧化物。
根据本发明的方法,用于乙苯与含氧气体接触制备乙苯氢过氧化物时,液体乙苯由立式鼓泡塔反应器下部进入该反应器,含氧气体同样通过立式鼓泡塔反应器下部进入,并经气体分布器分散到液体反应液中,液体乙苯与含氧气体并流通过所述立式鼓泡反应器,在此过程中乙苯与含氧气体接触反应生成乙苯氢过氧化物,气相物质由反应器顶部排出,液体反应物经反应器上部立式反应器出口溢流堰流出立式反应器;
根据本发明的方法,由立式鼓泡反应器流出的液体反应物从卧式鼓 泡反应器一端进入所述卧式鼓泡反应器,含氧气体由所述卧式鼓泡反应器的底部经第二气体分布器分散到液体反应物中,液体反应物与含氧气体在所述卧式鼓泡反应器中形成错流流动,在此过程中乙苯与含氧气体接触并继续进行反应生成乙苯氢过氧化物,气相物质由所述卧式鼓泡反应器顶部排出,与立式鼓泡反应器的气相物质混合后进入后续乙苯回收工序,液体反应物由所述卧式鼓泡反应器的另一端排出后进入后续工序;
一般而言,所述卧式鼓泡反应器中沿纵向间隔设置多块隔板,从而将所述卧式鼓泡反应器分成横向排列的多个独立反应隔室,其中,相邻的反应隔室之间设置有液相通道,以便流体可以从一个隔室进入另一隔室继续进行反应。这些独立的反应隔室可以在不同条件下操作例如反应温度或含氧气体流量等。
根据本发明的方法,立式鼓泡塔及其内导流筒的设置,可以强化液相返混,提高反应体系中自由基的浓度,大幅减弱壁效应造成自由基湮灭的影响,缩短反应引发所需时间,减少引发阶段副产物的生成,提高EBHP选择性。但由于乙苯过氧化过程中串联副反应的存在,过高的EBHP浓度也会导致EBHP选择性下降,因此,为获得最优的产物选择性,应控制反应引发阶段乙苯氢过氧化物浓度,即立式鼓泡反应器出口乙苯氢过氧化物浓度。在一种实施方式中,将所述立式鼓泡反应器出口乙苯氢过氧化物浓度可以控制在0.5%-1.5%,优选1%-1.5%,比如0.6%、0.8%、0.9%、1.2%、1.3%或1.4%。
在一种实施方式中,若卧式鼓泡反应器包含N个反应隔室(即卧式鼓泡反应器中所实际使用的反应隔室),反应系统出口乙苯氢过氧化物浓度为C,立式鼓泡反应器出口乙苯氢过氧化物浓度应控制在
Figure PCTCN2019086440-appb-000002
的80%-95%之间。
本发明通过含有导流筒的立式鼓泡反应器与含有整流挡板的多隔室卧式鼓泡反应器巧妙组合,使乙苯氧化反应引发阶段在强返混条件下进行,而常规反应阶段在逐渐降温和弱返混条件下进行,同时严格控制强返混部分即立式鼓泡反应器中的乙苯氢过氧化物浓度,构建了符合乙苯氧化反应特性的高效生产方法,以改善反应效率和选择性。
附图说明
图1是用于乙苯与含氧气体接触制备乙苯氢过氧化物方法的一种实施方式的示意图。
图2是卧式鼓泡反应器中导流挡板的一种实施方式的示意图。
上述附图中,1.立式鼓泡反应器,2.下部封头,3.上部封头,4.导流筒,5.第一气体分布器,6.立式反应器出口溢流堰,7.立式反应器气体入口,8.立式反应器液体入口,9.立式反应器气相出口,10.立式反应器液体出口,11.卧式鼓泡反应器,12.左端封头,13.右端封头,14.隔板,15.第二气体分布器,16.卧式反应器出口溢流堰,17.反应气入口,18.反应液入口,19.反应液出口,20.反应气出口,21.反应隔室,22.液流通道,23.气相总管,24.挡板,25.导流板。
具体实施方式
以下将结合附图和实施例对本发明做进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
如图1所示,本发明的用于有机物氧化的装置包括立式鼓泡反应器1和连接至所述立式鼓泡反应器1反应产物出口的卧式鼓泡反应器11,所述卧式鼓泡反应器11内设有沿其轴向排布的多段反应隔室21,相邻反应隔室21之间设有液相通道22。本发明由立式鼓泡反应器1和卧式鼓泡反应器11组合实现,首先在立式鼓泡反应器1中完成反应引发,然后在卧式鼓泡反应器11中进行常规反应阶段。
所述立式鼓泡反应器与水平面基本垂直设置,其包括设置在反应器下部封头2的液体入口8和气体入口7,设置在所述反应器上部侧面的液体出口10(即反应产物出口)以及设置在所述反应器顶部的气相出口9。
所述立式鼓泡反应器1内沿纵向设有允许流体通过的导流筒4,优选沿正常操作中通过立式鼓泡反应器1的液流方向设置导流筒4。在正常操作过程中,通过立式鼓泡反应器1的液流方向是从下部液体入口8到上部液体出口10,因此,导流筒4由立式鼓泡反应器1下部到上部设置。 另外,在所述立式鼓泡反应器1的不同高度上也分别设有其它备用液体出口,这些备用液体出口可以需要的时候开启,以便控制液位、调节反应停留时间。在一个实施例中,导流筒4宜设置在使导流筒4中心线与立式鼓泡反应器1中心轴线重合的位置。在一个实施例中,本发明的用于有机物氧化的装置还包括液体分布器(图中未示出),所述液体分布器设置在所述立式鼓泡反应器的下部,例如导流筒4的下方,用于使自所述液体入口8引入的原料均匀分布。
所述导流筒4可以具有多种形状,例如,所述导流筒4可以具有圆形、矩形、正方形或椭圆形截面,优选具有圆形截面的管式导流筒。
所述导流筒4高度可以在较大的范围内变化。一般来说,导流筒4高度可以为立式鼓泡反应器1高度的10-90%,优选20-80%,更优选40-70%。导流筒4截面积也可以在较大范围内变化,一般来说,导流筒4截面积可以占反应器1截面积的5-60%,优选10-25%。
所述立式鼓泡反应器1内壁上设有立式反应器出口溢流堰6,所述立式反应器出口溢流堰6固定至反应器内壁上的液体出口处,本领域技术人员理解其下端应低于所述液体出口、上端应高于所述液体出口,以形成溢流;并且所述导流筒的上端低于所述立式反应器出口溢流堰6的上端。
所述立式鼓泡反应器1内还设有连接至所述气体入口7的第一气体分布器5,含氧气体由立式鼓泡反应器1下部进入,经第一气体分布器5分散至液体反应物中。所述第一气体分布器5可以是本领域技术人员熟知的气体分布器形式,例如环形分布器、支管形分布器等。
所述第一气体分布器5的分布孔全部设置在导流筒4内或者导流筒4与立式鼓泡反应器1内壁间的环隙,优选后者。这种分布孔的布置方式可以使导流筒4内部以及导流筒4与反应器内壁环隙区域的气含率呈现出明显差异,由此导致的两区域流体密度差可以促使流体在两区域间形成环流运动,该环流运动有利于强化立式鼓泡反应器1中的液体返混,缩短反应引发所需时间。
所述第一气体分布器5的开孔孔径可选1-15mm,优选2-6mm,比如 3、4或5mm,开孔率可选0.01-10%,优选0.02-3%,比如1%、2%或2.5%。
所述卧式鼓泡反应器11呈卧式筒体结构,基本与水平面平行设置,其包括设置在反应器左端封头12的反应液入口18,设置在右端封头13的反应液出口19、设置在该反应器底部的反应气入口17以及在该反应器顶部的反应气出口20,以及多个反应隔室21,其中,沿液体流动方向的最末反应隔室内的反应液出口19处还可以设有卧式反应器出口溢流堰16。一般而言,所述卧式鼓泡反应器11中沿纵向间隔设置多块隔板14,以便将所述卧式鼓泡反应器11分成横向排列的多个独立反应隔室21,其中,相邻的反应隔室21之间设置有液相通道22,以便流体可以从一个反应隔室进入另一隔室继续进行反应。这些独立的反应隔室21可以通过诸如调节进气温度和组成以便在不同条件(例如反应温度或含氧气体流量等)下操作。
本领域技术人员理解,包含多个反应隔室21的卧式鼓泡反应器11也可以等同地设置为包括一个或若干个反应隔室21的多台卧式鼓泡反应器11,以保证反应隔室21总量。
所述液相通道22为开设在所述隔板14上的液相通道,例如位于所述隔板14顶部的液相溢流型通道和/或设置在所述隔板底部的液相连通通道,特别优选地,所述液相通道22为设置在所述隔板14底部的液相连通通道,其可以避免反应器底部容易出现的液体流动死区,以促进制备乙苯氢过氧化物的过氧化反应。本领域技术人员理解,所述液相通道22的形状可以为圆形、矩形、弓形或其他任何形状,优选圆形。
所述液相通道22截面积一般占卧式鼓泡反应器11的截面积的0.5%-10%,优选1-5%,比如2%、3%或4%。
所述卧式鼓泡反应器11的各反应隔室的底部设有第二气体分布器15。所述第二气体分布器15一般为多孔管式气体分布器,开孔孔径可选1-15mm,优选2-6mm,比如3、4或5mm,开孔率可选0.01-10%,优选0.02-3%,比如1%、2%或2.5%。
如本文所述,卧式鼓泡反应器11包含多个独立的反应隔室21,这种情况下,每个反应隔室21应包含独立的气体入口17和分布装置(第二 气体分布器15),即在每一隔板14的每一侧应包括至少一根用于气体分布的多孔管。本领域技术人员将理解所需气体分布多孔管的根数取决于气体流量大小以及进一步的工艺条件。
本发明中,当反应隔室21内的第二气体分布器15存在多根气体分布多孔管时,所述多孔管可以在卧式鼓泡反应器11底部同一水平面上均匀分布或沿反应器底部弧线均匀分布,优选沿反应器底部弧线均匀分布。
所述卧式鼓泡反应器11中每个反应隔室21包含两个垂直的沿正常操作中液体流动方向设置的挡板24,优选沿卧式鼓泡反应器11轴线方向设置。正常操作中液体由卧式鼓泡反应器11一端流向另一端,因此,挡板24沿反应器一端到相对端的方向设置。所述两个挡板24相对于卧式鼓泡反应器11的中心轴线呈对称设置,每块挡板24上均设有多个开孔,比如2个,或4个、8个等,开孔率3%~8%,比如5%,每块挡板侧面设有两块每个挡板开孔处设有倾斜向下的导流板25,其倾斜角度(与挡板夹角)可以为15~60°,比如30°或45°。
所述挡板24可以显著改善卧式反应器中气体的趋壁现象,可大幅减小气体间的返混,避免反应器中心部分形成贫氧区。这种设置可有效减弱乙苯氢过氧化物的分解,提高反应选择性。挡板24上的导流板25可以促进挡板两侧流体的混合,在避免气体返混的同时保证反应器隔室内液体温度和浓度的均匀。
挡板24的高度可以在较大的范围内变化,一般来说,挡板24高度为反应器直径的10-70%,优选20-50%,比如40%。挡板24底部应不高于临近气体分布多孔管,且所述挡板的底部离所述卧式鼓泡反应器的内壁的距离不小于50mm,比如80mm或100mm。
所述挡板24的导流板25为舌形结构,在一个实施例中,所述导流板液体流通截面积与挡板截面积之比为0.01-0.15,优选0.05-0.1。
所述立式鼓泡反应器与所述卧式鼓泡反应器间可以存在一定的高度差,以保证立式反应器出口液体可以依靠重力流入卧式反应器。所述立式鼓泡反应器与所述卧式鼓泡反应器内可以留有足够的气相空间,以避免过氧化物随气相夹带进入其他设备,所述气相空间高度应不小于0.5m, 比如0.8m、1m或1.2m,其中,所述气相空间高度是指反应器的气体出口与下方液面之间的距离。
进行乙苯过氧化反应时,液体乙苯由立式鼓泡塔反应器1下部液体入口8进入该反应器1,含氧气体通过立式鼓泡塔反应器1下部气体入口7进入,并经第一气体分布器5分散到液体反应液中,液体乙苯与含氧气体并流通过所述立式鼓泡反应器1,在此过程中乙苯与含氧气体接触反应生成乙苯氢过氧化物,气相物质由反应器顶部气相出口9排出,液体反应物经反应器上部溢流堰6进行初步脱气后由液体出口10流出立式鼓泡反应器1;导流筒4内外气含率的差异可以促进反应器中液体的混合,增加反应器下部自由基含量,缩短反应引发所需时间。
由立式鼓泡反应器1流出的液体反应物从卧式鼓泡反应器11一端反应液入口18进入所述卧式鼓泡反应器11,含氧气体由所述卧式鼓泡反应器的底部反应气入口17进入,经第二气体分布器15分散到液体反应物中,液体反应物与含氧气体在所述卧式鼓泡反应器11中形成错流流动,在此过程中乙苯与含氧气体接触并继续进行反应生成乙苯氢过氧化物,气相物质由所述卧式鼓泡反应器11顶部反应气出口20排出,与立式鼓泡反应器1的气相物质混合后经气相总管23后进入后续乙苯回收工序,液体反应物在所述卧式鼓泡反应器11的另一端流经卧式反应器出口溢流堰16后由液体出口19排出,进入后续工序。
为获得最优的产物选择性,应控制反应引发阶段乙苯氢过氧化物浓度,即立式鼓泡反应器出口乙苯氢过氧化物浓度,例如通过控制其进气温度和/或进气量等实现浓度调节。在一种实施方式中,将所述立式鼓泡反应器出口乙苯氢过氧化物浓度可以控制在0.5%-1.5%,优选1%-1.5%,比如0.6%、0.8%、0.9%、1.2%、1.3%或1.4%。或者,在一种实施方式中,若卧式鼓泡反应器包含N个反应隔室,反应系统出口乙苯氢过氧化物浓度为C,立式鼓泡反应器出口乙苯氢过氧化物浓度应控制在
Figure PCTCN2019086440-appb-000003
的80% -95%之间,比如82%、85%、88%、90%或92%。
反应时,液体乙苯与含氧气体反应的温度一般为100-220℃,优选120-160℃,比如130、140或150℃。当温度低于120℃时,反应速率过低。当温度高于160℃副反应的反应速率显著加快,从而降低了乙苯氢过氧化物的选择性。为进一步提高氢过氧化物的选择性,过氧化反应可采用逐级降温操作,从而最小化副产物的生成。因此,在反应初期可以控制过氧化反应温度为150-160℃,即可以控制立式鼓泡反应器温度为150-160℃,而后期则逐渐将反应温度降低至120-150℃,比如130或140℃,即,可以控制卧式鼓泡反应器中不同反应隔室的温度沿液体流动方向逐渐降低,优选地,相邻反应隔室的温差为1-3℃。乙苯与含氧气体反应的压力不是该过程的关键因素,一般可在1-8 barG之间操作。
以下结合实施例进一步说明本发明。
实施例1
使用如图1所示的装置,其中立式鼓泡反应器1直径约0.8米,总高度约3米,导流筒4直径0.3米,高度1.2米,气体分布器5为环管形气体分布器,分布孔布置在导流筒和反应器内壁之间,开孔孔径2mm,开孔率0.02%;卧式鼓泡反应器11直径约1.6米,长度约3.66米。采用三个隔板14将反应器分为四个反应隔室21,隔板14底部留有直径110 mm的液体流动通道22。每个隔室21中含有4根气体分布多孔管,气体分布多孔管沿反应器下部弧线均匀对称分布,开孔直径2mm,开孔率0.05%。如图2所示,在最外部两根气体分布多孔管的内侧设有对称的两块垂直挡板,挡板高度为卧式鼓泡反应器直径的30%,底部距离反应器内壁50mm。每块挡板上设置8个矩形液体流动开孔(开孔率5%)。
本实施例操作中,反应物绕过卧式鼓泡反应器第一隔室,即立式鼓泡反应器的液体出料直接进入卧式鼓泡反应器的第二隔室。通过液体入口8以1.6吨/小时的流量将含有0.02wt%乙苯氢过氧化物的乙苯反应液加入上述反应器以依次流经所述立式鼓泡反应器1和卧式鼓泡反应器11的第二至第四反应隔室,同时将氧气含量约15wt%的气体(氧气和氮气 混合物)通过气体入口7和17通入反应器,总气体流量约为300千克/小时。控制反应器操作温度均为138℃,反应器气相空间压力约3.5 barG。
采用上述条件,在反应器液相出口可获得乙苯氢过氧化物含量约为7.5wt%的反应液混合物,立式鼓泡反应器出口乙苯氢过氧化物浓度约为1.39%,乙苯氢过氧化物总选择性约为87.3%。
对比例1
绕过实施例1中的立式鼓泡反应器,即,含有0.02wt%乙苯氢过氧化物的乙苯反应液直接通过卧式鼓泡反应器反应液入口18以1.6吨/小时的流量进入卧式鼓泡反应器第一隔室,然后依次流经后续三个隔室,其余条件与实施例1相同,重复实施例1的实验。
在此条件下,反应器液相出口乙苯氢过氧化物含量约为7.1wt%的反应液混合物,乙苯氢过氧化物选择性约为87.4%。
因此,虽然实施例1与对比例1所用反应器体积相等,与对比例1相比,实施例1所使用的反应器组合可以获得更高的反应转化率,同时选择性没有明显差异。
实施例2
将实施例1中导流筒4直径改为0.5米,导流筒高度1.0米,将卧式鼓泡反应器中气体分布器开孔率改为10%,重复实施例1中实验,控制立式鼓泡反应器温度138℃,卧式鼓泡反应器第二隔室反应温度136℃,第三隔室反应温度135℃,第四隔室反应温度134℃,反应器气相空间压力约3.5 barG。
采用上述条件进行实验,反应器液相出口可获得乙苯氢过氧化物含量约为7.3wt%的反应液混合物,立式鼓泡反应器出口乙苯氢过氧化物浓度为1.33%,乙苯氢过氧化物选择性约为88.4%。
对比例2
绕过实施例2中的立式鼓泡反应器,即,将含有0.02wt%乙苯氢过 氧化物的乙苯反应液直接通过卧式鼓泡反应器反应液入口18以1.6吨/小时的流量进入卧式鼓泡反应器第一隔室,然后依次流经后续三个隔室,其余条件与实施例2相同,重复实施例2的实验。
在此条件下,反应器液相出口乙苯氢过氧化物含量约为6.9wt%的反应液混合物,乙苯氢过氧化物选择性约为88.3%。
因此,虽然实施例2与对比例2所用反应器体积相等,与对比例2相比,实施例2所使用的反应器组合可以获得更高的反应转化率,同时选择性没有明显差异。
实施例3
采用与实施例1相同的反应器结构,在本实施例中从立式反应器流出的液相直接进入卧式反应器第一隔室,然后依次流经第二、三、四隔室。在本实施例中通过调节反应器液位使总停留时间仍保持与实施例1相同。其他反应条件均与实施例1相同,重复实施例1的实验。
上述条件下,在反应器液相出口可获得乙苯氢过氧化物含量约为7.2wt%的反应液混合物,立式鼓泡反应器出口乙苯氢过氧化物浓度约为1.21%,乙苯氢过氧化物总选择性约为88.7%。
对比例3
采用与实施例3相同的反应器结构,但降低立式反应器中液体停留时间至实施例3中立式反应器液体停留时间的30%,同时适当提高卧式反应器中液位,以保证液体总停留时间与实施例3相同,在上述条件下重复实施例3的实验。
上述条件下,反应器液相出口乙苯氢过氧化物的含量约为6.77wt%,乙苯氢过氧化物选择性约为88.9%,立式鼓泡反应器出口乙苯氢过氧化物浓度为0.21wt%。
比较实施例3与对比例3表明,相同反应条件下,当立式鼓泡反应器出口乙苯氢过氧化物浓度降低至0.21wt%时,虽然乙苯氢过氧化物的选择性略有升高(88.7%提高至88.9%),但乙苯氢过氧化物浓度下降较 多(7.2wt%降至6.9wt%),导致反应器生产能力降低。
对比例4
采用与实施例3相同的反应器结构,但延长立式反应器中液体停留时间至实施例3中立式反应器液体停留时间的120%,同时适当降低卧式反应器中液位,以保证液体总停留时间与实施例3相同,在上述条件下重复实施例3的实验。
上述条件下,反应器液相出口乙苯氢过氧化物的含量约为7.4wt%,乙苯氢过氧化物选择性约为86.1%,立式鼓泡反应器出口乙苯氢过氧化物浓度为2.0wt%。
比较实施例3与对比例4表明,相同反应条件下,当立式鼓泡反应器出口乙苯氢过氧化物浓度增大至2.0wt%时,虽然乙苯氢过氧化物的浓度升高(7.2wt%提高至7.4wt%),但乙苯氢过氧化物选择性大幅下降(88.7%降至86.1%),导致低附加值生成量较大,装置经济性下降。
实施例4
采用与实施例2相同的反应器结构,在本实施例中从立式反应器流出的液相直接进入卧式反应器第一隔室,然后依次流经第二、三、四隔室。控制立式鼓泡反应器温度138℃,卧式鼓泡反应器第一隔室反应温度137℃,第二隔室反应温度136℃,第三隔室反应温度135℃,第四隔室反应温度134℃,反应器气相空间压力约3.5 barG。各反应区域液位仍维持与实施例2相同,因此,与实施例2相比,本实施例中液相停留时间增加约25%。
采用上述条件进行实验,反应器液相出口可获得乙苯氢过氧化物含量约为8.6wt%的反应液混合物,立式鼓泡反应器出口乙苯氢过氧化物浓度约为1.4%,乙苯氢过氧化物选择性约为86.9%。

Claims (12)

  1. 一种用于有机物氧化的装置,其特征在于,所述装置包括立式鼓泡反应器和连接至所述立式鼓泡反应器反应产物出口的卧式鼓泡反应器,所述卧式鼓泡反应器内设有沿其轴向排布的多段反应隔室,相邻反应隔室之间设有液相通道。
  2. 根据权利要求1所述的装置,其特征在于,所述立式鼓泡反应器包括在所述立式鼓泡反应器下部设置的液体入口和气体入口,以及在所述反应器上部设置的液体出口和气体出口;所述立式鼓泡反应器内沿纵向设有允许流体通过的导流筒。
  3. 根据权利要求2所述的装置,其特征在于,所述导流筒高度为所述立式鼓泡反应器高度的10-90%,优选20-80%,更优选40-70%;所述导流筒橫截面积占反应器橫截面积的5-60%,优选10-25%。
  4. 根据权利要求2或3所述的装置,其特征在于,所述立式鼓泡反应器内还设有连接至所述气体入口的第一气体分布器,所述第一气体分布器的分布孔分布在所述导流筒内部或所述导流筒与立式鼓泡反应器内壁间的环隙。
  5. 根据权利要求2-4中任一项所述的装置,其特征在于,所述立式鼓泡反应器内壁上设有位于液体出口处的立式反应器出口溢流堰,并且所述导流筒的上端低于所述立式反应器出口溢流堰的上端。
  6. 根据权利要求2-5中任一项所述的装置,其特征在于,所述卧式鼓泡反应器的轴向两端分别设有反应液入口和反应液出口,各段反应隔室的下端设有反应气入口、上端设有反应气出口、内部设有连接反应气入口的第二气体分布器;
    所述反应隔室通过设置在所述卧式鼓泡反应器内的隔板隔开,所述液体通道为开设在所述隔板上的液相通道,优选为开设在所述隔板底部的液相通道。
  7. 根据权利要求6所述的装置,其特征在于,所述反应隔室内设有至少一个垂直的沿正常操作中液体流动方向设置的挡板,所述挡板底部不高于所在反应隔室的第二气体分布器,优选地,所述挡板上设有多个开孔并且挡板底部离所述卧式鼓泡反应器的内壁的距离不小于50mm,所述挡板高度为所述卧式鼓泡反应器高度的10-70%,更优选为20-50%。
  8. 根据权利要求7所述的装置,其特征在于,所述挡板的侧面设有多块倾斜向下的导流板,优选地,所述多块导流板的面积之和与挡板面积之和的比为0.01-0.15,进一步优选为0.05-0.1;更优选地,所述导流板呈舌形。
  9. 根据权利要求1-8中任一项所述的装置,其特征在于,所述立式鼓泡反应器与所述卧式鼓泡反应器内的气相空间高度不小于0.5m。
  10. 一种用于有机物氧化的方法,其特征在于,将权利要求1-9中任一项所述的装置用于乙苯与含氧气体接触制备乙苯氢过氧化物。
  11. 根据权利要求10所述的方法,其特征在于,将所述立式鼓泡反应器出口乙苯氢过氧化物浓度控制在0.5%-1.5%,优选1%-1.5%。
  12. 根据权利要求10或11所述的方法,其特征在于,在包含N个反应隔室的卧式鼓泡反应器的反应液出口获得浓度为C的乙苯氢过氧化物,则将其中立式反应器出口过氧化物浓度控制在
    Figure PCTCN2019086440-appb-100001
    的80%-95%之间。
PCT/CN2019/086440 2018-12-26 2019-05-10 一种用于有机物氧化的装置和方法 WO2020133872A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021519772A JP7194272B2 (ja) 2018-12-26 2019-05-10 有機物を酸化するための装置及び方法
EP19904824.0A EP3903925B1 (en) 2018-12-26 2019-05-10 Method for oxidizing ethylbenzene
SG11202103672TA SG11202103672TA (en) 2018-12-26 2019-05-10 Device and method for oxidizing organic substance
KR1020217011097A KR102505464B1 (ko) 2018-12-26 2019-05-10 에틸벤젠을 산소 함유 가스와 접촉시켜 에틸벤젠 하이드로퍼옥사이드를 제조하는 방법
US17/288,708 US12076702B2 (en) 2018-12-26 2019-05-10 Device and method for oxidizing organic substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811603256.6 2018-12-26
CN201811603256 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020133872A1 true WO2020133872A1 (zh) 2020-07-02

Family

ID=67073510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086440 WO2020133872A1 (zh) 2018-12-26 2019-05-10 一种用于有机物氧化的装置和方法

Country Status (9)

Country Link
US (1) US12076702B2 (zh)
EP (1) EP3903925B1 (zh)
JP (1) JP7194272B2 (zh)
KR (1) KR102505464B1 (zh)
CN (1) CN109967022B (zh)
HU (1) HUE065168T2 (zh)
SA (1) SA521422384B1 (zh)
SG (1) SG11202103672TA (zh)
WO (1) WO2020133872A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113680302A (zh) * 2021-08-11 2021-11-23 浙江智英石化技术有限公司 一种用于制备乙苯过氧化氢的反应装置
CN114733451A (zh) * 2022-04-15 2022-07-12 青岛科技大学 一种停留时间可调的连续化气液反应装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113769697B (zh) * 2021-09-15 2022-04-12 北京鑫美格工程设计有限公司 一种二甲基甲酰胺合成反应器及合成装置
CN116637583A (zh) * 2022-02-15 2023-08-25 中国石油化工股份有限公司 一种导流筒鼓泡反应器
CN115069205B (zh) * 2022-07-08 2024-02-23 宁波诺丁汉大学 一种复合涡流反应器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066706A (en) 1975-04-21 1978-01-03 Halcon International, Inc. Preparation of ethylbenzene hydroperoxide
US4262143A (en) 1979-02-16 1981-04-14 Halcon International, Inc. Preparation of hydroperoxides
CN1023894C (zh) * 1987-07-15 1994-03-02 萨克拉迪·阿估托·茨辛斯基格 烃类氧化方法及设备
WO2008058925A1 (en) * 2006-11-13 2008-05-22 Shell Internationale Research Maatschappij B.V. Process for the liquid phase oxidation of ethylbenzene into ethylbenzene hydroperoxide
WO2009024549A2 (de) * 2007-08-21 2009-02-26 Basf Se Verfahren und vorrichtung zur oxidation organischer verbindungen
CN106554298A (zh) * 2015-09-28 2017-04-05 万华化学集团股份有限公司 一种乙苯氧化制备乙苯氢过氧化物的方法
CN107930555A (zh) * 2017-11-30 2018-04-20 万华化学集团股份有限公司 制备乙苯氢过氧化物的多级卧式搅拌气升式反应器及应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210354A (en) 1992-05-08 1993-05-11 Arco Chemical Technology, L.P. Propylene oxide-styrene monomer process
JPH06285364A (ja) * 1993-04-07 1994-10-11 Chiyoda Corp 循環流動接触反応方法及びその装置
BRPI0514717A (pt) 2004-09-01 2008-06-24 Shell Int Research vaso reator substancialmente horizontal, reator, e, processos de contatar um reagente lìquido com um reagente gasoso e de fabricar um hidroperóxido orgánico
CN101704742B (zh) * 2009-11-20 2013-06-26 华东理工大学 一种生产芳香族羧酸的反应器
WO2011100830A1 (en) 2010-02-18 2011-08-25 Hatch Ltd. Multi-stage reaction system
GB201320520D0 (en) * 2013-11-20 2014-01-01 Invista Tech Sarl Continuous polyamidation process - I
CN104815593A (zh) 2015-04-01 2015-08-05 中石化上海工程有限公司 鼓泡反应器及其用途
CN109020858B (zh) 2018-09-11 2021-03-05 中国海洋石油集团有限公司 抑制乙苯氢过氧化物分解的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066706A (en) 1975-04-21 1978-01-03 Halcon International, Inc. Preparation of ethylbenzene hydroperoxide
US4262143A (en) 1979-02-16 1981-04-14 Halcon International, Inc. Preparation of hydroperoxides
CN1023894C (zh) * 1987-07-15 1994-03-02 萨克拉迪·阿估托·茨辛斯基格 烃类氧化方法及设备
WO2008058925A1 (en) * 2006-11-13 2008-05-22 Shell Internationale Research Maatschappij B.V. Process for the liquid phase oxidation of ethylbenzene into ethylbenzene hydroperoxide
WO2009024549A2 (de) * 2007-08-21 2009-02-26 Basf Se Verfahren und vorrichtung zur oxidation organischer verbindungen
CN106554298A (zh) * 2015-09-28 2017-04-05 万华化学集团股份有限公司 一种乙苯氧化制备乙苯氢过氧化物的方法
CN107930555A (zh) * 2017-11-30 2018-04-20 万华化学集团股份有限公司 制备乙苯氢过氧化物的多级卧式搅拌气升式反应器及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ENGINEERING SCIENCE, vol. 62, 2007, pages 5495 - 5502
See also references of EP3903925A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113680302A (zh) * 2021-08-11 2021-11-23 浙江智英石化技术有限公司 一种用于制备乙苯过氧化氢的反应装置
CN113680302B (zh) * 2021-08-11 2022-10-14 浙江智英石化技术有限公司 一种用于制备乙苯过氧化氢的反应装置
CN114733451A (zh) * 2022-04-15 2022-07-12 青岛科技大学 一种停留时间可调的连续化气液反应装置

Also Published As

Publication number Publication date
CN109967022A (zh) 2019-07-05
EP3903925B1 (en) 2023-11-22
JP7194272B2 (ja) 2022-12-21
KR20210056425A (ko) 2021-05-18
EP3903925A1 (en) 2021-11-03
HUE065168T2 (hu) 2024-05-28
CN109967022B (zh) 2021-07-23
SG11202103672TA (en) 2021-05-28
SA521422384B1 (ar) 2023-11-26
KR102505464B1 (ko) 2023-03-02
US12076702B2 (en) 2024-09-03
US20210402363A1 (en) 2021-12-30
EP3903925A4 (en) 2022-07-27
JP2022504657A (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2020133872A1 (zh) 一种用于有机物氧化的装置和方法
CN106554298B (zh) 一种乙苯氧化制备乙苯氢过氧化物的方法
CN106552577B (zh) 一种多层导流筒鼓泡反应器及其使用方法
CN102958870A (zh) 用于由异丙苯制备苯酚的方法
AU2020267320A1 (en) Built-in micro interfacial enhanced reaction system and process for pta production with px
CN103055792A (zh) 一种用于环己烷液相氧化的振荡管式反应器及其使用方法
CN107930555B (zh) 制备乙苯氢过氧化物的多级卧式搅拌气升式反应器及应用
CN106588734B (zh) 一种异丙苯氧化制备过氧化氢异丙苯的方法及装置
US8017812B2 (en) Process for the liquid phase oxidation of ethylbenzene into ethylbenzene hydroperoxide
CN102059081A (zh) 一种利用纯氧(富氧)进行环己烷液相氧化的管式反应器
CN106632147A (zh) 利用微通道反应器制备环氧丙烷的方法
CN107778131B (zh) 一种基于多层双环流导流筒鼓泡反应器制备环己醇和环己酮的方法
KR20070057883A (ko) 수평 반응 용기
WO2016020889A1 (en) Alkylbenzene hydroperoxide production using dispersed bubbles of oxygen containing gas
CN111471004A (zh) 一种乙苯氢过氧化物的制备方法
CN210434482U (zh) 径向固定床脱水反应器
CN114515549A (zh) 一种预加氢反应系统、预加氢反应方法和应用
CN114984897B (zh) 一种氧化-过氧化物分解耦合反应装置及其用于有机醛氧化生产有机酸的方法
CN220618449U (zh) 蒽醌法生产双氧水用氧化塔系统
CN222550921U (zh) 一种乙苯强化氧化反应系统
CN216630775U (zh) 一种气体so3磺化反应装置
CN118437254A (zh) 一种乙苯氧化反应系统及方法
RU2209812C2 (ru) Способ жидкофазного окисления углеводородов
CN119158510A (zh) 一种氧化制备1-(4-氯苯基)-3-吡唑醇的连续化反应器
CN111606835A (zh) 一种乙苯氧化制备乙苯过氧化氢的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519772

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217011097

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019904824

Country of ref document: EP

Effective date: 20210726