WO2020133731A1 - 一种粗化裸金刚石线锯及金刚石粗化方法 - Google Patents

一种粗化裸金刚石线锯及金刚石粗化方法 Download PDF

Info

Publication number
WO2020133731A1
WO2020133731A1 PCT/CN2019/078496 CN2019078496W WO2020133731A1 WO 2020133731 A1 WO2020133731 A1 WO 2020133731A1 CN 2019078496 W CN2019078496 W CN 2019078496W WO 2020133731 A1 WO2020133731 A1 WO 2020133731A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
diamond particles
wire saw
roughened
bare
Prior art date
Application number
PCT/CN2019/078496
Other languages
English (en)
French (fr)
Inventor
陈富田
Original Assignee
郑州元素工具技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州元素工具技术有限公司 filed Critical 郑州元素工具技术有限公司
Publication of WO2020133731A1 publication Critical patent/WO2020133731A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/02Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
    • B28D1/12Saw-blades or saw-discs specially adapted for working stone
    • B28D1/124Saw chains; rod-like saw blades; saw cables
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires

Definitions

  • the invention relates to the technical field of diamond wire, in particular to a roughened bare diamond wire saw and a diamond roughening method.
  • Diamond wire is widely used in the field of cutting and processing hard and brittle materials such as ceramics, monocrystalline silicon, gemstones, and crystals. Diamond wire is also called diamond wire saw. As shown in FIG. 1, a diamond wire saw is composed of a base line 1, a metal plating layer 2 electroplated on the base line 2, and diamond particles 3 embedded in the metal plating layer. The strength of the diamond particles and the holding power of the metal coating on the diamond wire directly affect the cutting performance and service life of the diamond wire. There is no strong chemical metallurgical bond between the metal coating and the diamond particles. The diamond particles are only mechanically embedded in the metal coating. Because the surface of the diamond particles is smooth, the thickness of the metal coating is usually increased to improve the diamond particles. Control.
  • the depth of the embedded metal plating layer of diamond particles is greater than half of the particle size of the diamond particles themselves, as shown in FIG. 1.
  • the object of the present invention is to provide a roughened bare diamond wire saw to improve the holding force of the metal coating on the diamond particles.
  • the present invention provides a diamond roughening method.
  • the roughened bare diamond wire saw of the present invention adopts the following technical solution: roughened bare diamond wire saw, including a baseline, a metal coating and diamond particles embedded in the metal coating, the diamond particles are roughened on the surface
  • the depth of the embedded metal plating layer of the diamond particles is denoted as H
  • the particle diameter of the diamond particles is denoted as D, so that H ⁇ 2/3D is satisfied.
  • the roughened bare diamond wire saw is an open diamond wire saw, a ring-shaped diamond wire saw or a spaced diamond wire saw.
  • the outer diameter specification of the roughened bare diamond wire saw is 0.06 mm, 0.6 mm or 2.5 mm.
  • the diamond particles are not metallized.
  • the diamond roughening method for roughening the above diamond particles includes the following steps:
  • volume ratio of metal oxide to diamond particles is 1:5 to 1:4.
  • the metal oxide is one or more of oxides of iron, cobalt, and nickel.
  • the average particle diameter of the metal oxide is 1/20 to 1/2 of the average particle diameter of the diamond particles.
  • step (2) the degree of vacuum is better than 2x10 -2 Pa, the heating temperature is 800°C to 1200°C, and the holding time is 30 min to 180 min.
  • the oxidizing acid is one or a mixture of any one of perchloric acid, nitric acid, and concentrated sulfuric acid.
  • the beneficial effects of the present invention the roughened bare diamond wire saw of the present invention, the diamond particles embedded in the metal plating layer are roughened, and after the roughening process, the surface of the diamond particles is uneven.
  • the specific surface area of diamond particles is increased by more than 1 times, on the one hand, it increases the bonding area of the diamond particles embedded in the metal coating and the metal coating, and improves the holding power of the metal coating on the diamond particles; on the other hand, without reducing the metal coating on the diamond particles In the case of the holding force, the depth of the diamond particles embedded in the metal plating layer can be reduced, thereby increasing the height of the diamond particles, increasing the service life of the diamond wire saw and improving the cutting quality.
  • FIG. 1 is a schematic diagram of a partial structure of a diamond wire saw in the prior art
  • FIG. 2 is a partial structural schematic view of Embodiment 1 of the roughened bare diamond wire saw of the present invention
  • FIG. 3 is a schematic cross-sectional view of the roughened diamond particles used in FIG. 2;
  • FIG. 5 is a partially enlarged view of FIG. 4.
  • Embodiment 1 of the roughened bare diamond wire saw of the present invention as shown in FIGS. 2-3.
  • the roughened bare diamond wire saw includes a base line 1, a metal plating layer 2 and diamond particles 3 embedded in the metal plating layer.
  • the diamond wire saw is an ultra-long diamond wire saw, that is, an open diamond wire saw, and one of them is shown in FIG. 2.
  • the diamond particles are roughened, and the surface of the diamond particles is formed with uneven corroded carbide layers.
  • Figure 3 is an idealized model and does not represent the real structure.
  • the roughened bare diamond wire saw has an outer diameter specification of 0.06 mm, a baseline outer diameter of 0.04 mm, and an average particle diameter of diamond particles of 6 to 8 ⁇ m.
  • H The depth of the embedded metal plating layer of diamond particles
  • D the particle size of diamond particles
  • H The ratio relationship between H and D.
  • H is two-thirds of D.
  • the surface area of diamond particles can be increased by more than 1 times, and the bonding surface of diamond particles and metal plating can be increased. Moreover, from the perspective of stress, the surface of the diamond particles forms an uneven corroded carbide layer.
  • the uneven structure of the diamond particles in the metal plating layer can improve the bending resistance of the diamond particles , That is, it improves the holding power of the metal coating on the diamond particles.
  • the diamond wire saw can reduce the depth value of the diamond particles embedded in the metal plating layer, which can be changed from less than half of the original diamond particle size to less than diamond One-half of the particle size, which in turn increases the height of the diamond particles, improves the cutting force.
  • the depth of the embedded metal plating layer of diamond particles is less than one-half of its particle size, under the same embedding depth, the holding power of the metal coating layer on the diamond particles is improved compared with the prior art.
  • the diamond particles are not easy to fall off, extending the service life of the diamond wire saw.
  • the metal coating has a stronger grip on the diamond particles, but at this time, the height of the diamond particles out of the blade becomes relatively small .
  • the diamond particles are not metallized, that is, the diamond wire saw is a bare diamond wire saw, which can improve the sharpness of the surface of the diamond wire saw.
  • Embodiment 2 of the roughened bare diamond wire saw of the present invention is a first step of the roughened bare diamond wire saw of the present invention.
  • the difference from Example 1 is only that the outer diameter of the diamond wire saw is 0.6 mm, wherein the outer diameter of the baseline is 0.4 mm, and the average particle diameter of the diamond particles is 100 ⁇ m.
  • the diamond wire saws in Embodiment 1 and Embodiment 2 described above may also be ring-shaped diamond wire saws.
  • Embodiment 3 of the roughened bare diamond wire saw of the present invention is a first step of the roughened bare diamond wire saw of the present invention.
  • the difference from Embodiment 1 is only that the outer diameter of the diamond wire saw is 2.5 mm, wherein the outer diameter of the base line is 2.0 mm, and the average particle diameter of the diamond particles is 200 ⁇ m.
  • the diamond wire saw is a spacer diamond wire saw, also known as a segmented diamond wire, and the metal coating is intermittent.
  • Embodiment 1 of the diamond roughening method of the present invention is used to roughen the diamond particles in the above embodiments, and includes the following steps:
  • the metal oxide is an oxide of iron, Fe 2 O 3 or Fe 3 O 4 , and the volume ratio of metal oxide to diamond particles is 1:5.
  • the average particle diameter of the metal oxide is 1/10 of the average particle diameter of the diamond particles.
  • the degree of vacuum is better than 2x10 -2 Pa, and the temperature is raised to 800°C by heating, and the holding time is 180 min.
  • the metal oxide reacts with the diamond particles chemically.
  • the diamond particles are mainly carbon atoms.
  • the iron atoms in the oxide react with the diamond carbon atoms to produce iron carbide.
  • the oxygen atoms in the oxide react with the diamond to produce carbon dioxide.
  • the thermal chemical corrosion of oxides and diamond particles results in a larger cavity area.
  • the average particle diameter of the metal oxide is 1/20, or 1/2, or 1/5 of the average particle diameter of the diamond particles.
  • Embodiment 2 of the diamond roughening method of the present invention is a
  • the metal oxide is nickel oxide, NiO, and the volume ratio of metal oxide to diamond particles is 1:4.
  • the average particle diameter of the metal oxide is 1/10 of the average particle diameter of the diamond particles.
  • the degree of vacuum is better than 2x10 -2 Pa, the temperature is raised to 1000 °C, and the holding time is 100min.
  • the metal oxide reacts with the diamond particles thermochemically.
  • Ni reacts with diamond particles (C) to form a solid solution of NiC, one Ni dissolves one C, and the reaction no longer proceeds.
  • the oxygen atoms in NiO will react with the diamond particles (C) to generate CO 2.
  • the diamond particles will react with Ni again in solid solution, increasing the area of corroded voids.
  • Embodiment 3 of the diamond roughening method of the present invention is a
  • step (2) the temperature is raised to 1200°C by heating, and the holding time is 30 min.
  • Embodiment 4 of the diamond roughening method of the present invention is a
  • the oxide of cobalt is used instead of the metal oxide in the above embodiment of the diamond roughening method.
  • the metal oxide is a mixture of any two or three of the oxides of iron, cobalt, and nickel.
  • Embodiment 5 of the diamond roughening method of the present invention is a
  • the difference from the above diamond roughening method embodiment is only that concentrated sulfuric acid is used as the oxidizing acid.
  • the oxidizing acid may use one or a mixture of any one of perchloric acid, nitric acid, and concentrated sulfuric acid.
  • the roughened diamond prepared in the above embodiments can also be used on electroplated products such as grinding wheels and rollers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种粗化裸金刚石线锯,包括基线(1)、金属镀层(2)和嵌设在金属镀层内的金刚石颗粒(3),金刚石颗粒表面经过粗化处理,金刚石颗粒嵌入金属镀层的深度记为H,金刚石颗粒的粒径记为D,满足H<2/3D。一种金刚石粗化方法,包括步骤:称量一定量的金属氧化物,与金刚石混合,将混合物放入真空环境中加热,加热后保温一定时间,使反应后的混合物冷却,使用氧化性酸对冷却后的混合物处理。金刚石颗粒经过粗化处理后,提高金属镀层对金刚石颗粒的把持力,在不降低金属镀层对金刚石颗粒把持力的情况下,可以减小金刚石颗粒的嵌入金属镀层部分的深度,进而增加金刚石颗粒的出刃高度,提高金刚石线锯的使用寿命,提高切割质量。

Description

一种粗化裸金刚石线锯及金刚石粗化方法 技术领域
本发明涉及金刚石线技术领域,具体涉及一种粗化裸金刚石线锯及金刚石粗化方法。
背景技术
金刚石线在陶瓷、单晶硅、宝石、水晶等硬脆性材料切割加工领域应用很广泛。金刚石线也称金刚石线锯。如图1所示,金刚石线锯由基线1、电镀在基线2上的金属镀层2和嵌设在金属镀层内的金刚石颗粒3。金刚石颗粒的自身强度和金属镀层对金刚石线的把持力直接影响着金刚石线的切割性能和使用寿命。金属镀层与金刚石颗粒的结合面上不存在牢固的化学冶金结合,金刚石颗粒只是被机械包埋嵌在金属镀层里,由于金刚石颗粒表面较为平滑,通常采用增加金属镀层的厚度,来提高对金刚石颗粒的把持力。若金属镀层厚度太薄,金刚石颗粒容易脱落,导致产品提前失效。若金属镀层太厚,金刚石颗粒出刃高度减小,切割过程中,容屑空间不足,容易发生堵塞,散热效果差,工件表面质量差,且,金刚石颗粒参与切割的有效高度减小。一般情况下,金刚石颗粒的嵌入金属镀层的深度大于金刚石颗粒自身的粒径的二分之一,如图1所示。
发明内容
本发明的目的是提供一种粗化裸金刚石线锯,以提高金属镀层对金刚石颗粒的把持力。同时,本发明提供一种金刚石粗化方法。
为实现上述目的,本发明粗化裸金刚石线锯采用如下技术方案:粗化裸金刚石线锯,包括基线、金属镀层和嵌设在金属镀层内的金刚石颗粒,金刚石颗粒为表面经过粗化处理的,所述金刚石颗粒的嵌入金属镀层的深度记为H,金刚石颗粒的粒径记为D,则满足H<2/3D。
进一步的,所述粗化裸金刚石线锯为开式金刚石线锯、环形金刚石线锯或间隔式金刚石线锯。
进一步的,所述粗化裸金刚石线锯的外径规格为0.06mm、0.6mm或2.5mm。
进一步的,所述金刚石颗粒未作金属化处理。
用于对上述金刚石颗粒进行粗化处理的金刚石粗化方法,包括以下步骤:
(1)称量一定量的金属氧化物,与金刚石颗粒进行混合;
(2)将上述的混合物放入真空环境进行加热,加热后保温一定时间;
(3)使反应后的混合物冷却;
(4)使用氧化性酸对冷却后的混合物处理。
进一步的,金属氧化物与金刚石颗粒的体积比为1:5~1:4。
进一步的,所述金属氧化物为铁、钴、镍的氧化物中的一种或几种。
进一步的,金属氧化物的平均粒径为金刚石颗粒的平均粒径的1/20~1/2。
进一步的,步骤(2)中,真空度优于2x10 -2Pa,加热温度为800℃~1200℃,保温时间30min~180min。
进一步的,所述氧化性酸为高氯酸、硝酸和浓硫酸中的一种或任两种的混合物。
本发明的有益效果:本发明的粗化裸金刚石线锯,嵌设在金属镀层中的金刚石颗粒是经过粗化处理的,经过粗化处理后,金刚石颗粒的表面是凹凸不平的。金刚石颗粒的比表面积增加1倍以上,一方面增加了金刚石颗粒嵌入金属镀层的部分与金属镀层的结合面积,提高金属镀层对金刚石颗粒的把持力;另一方面,在不降低金属镀层对金刚石颗粒的把持力的情况下,可以减小金刚石颗粒的嵌入金属镀层部分的深度,进而增加金刚石颗粒的出刃高度,提高金刚石线锯的使用寿命,提高切割质量。
附图说明
图1是现有技术中金刚石线锯的部分结构的示意图;
图2是本发明粗化裸金刚石线锯的实施例1的部分结构示意图;
图3是图2中所采用的粗化后的金刚石颗粒的截面示意图;
图4是利用本发明粗化方法粗化后的金刚石颗粒扫描电镜照片;
图5是图4中的局部放大图。
图2和图3中标记对应的名称:1、基线,2、金属镀层,3、金刚石颗粒。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明粗化裸金刚石线锯的实施例1:如图2-图3所示。
粗化裸金刚石线锯,包括基线1、金属镀层2和嵌设在金属镀层内的金刚石颗粒3。本实施例中,金刚石线锯为超长金刚石线锯,也即开式金刚石线锯,图2中示出了其中的一段。金刚石颗粒为表面经过粗化处理的,金刚石颗粒表面形成凹凸不平的腐蚀碳化物层,如图3所示,图3是理想化的模型,不代表真实结构。本实施例中,粗化裸金刚石线锯的外径规格为0.06mm,基线外径为0.04mm,金刚石颗粒的平均粒径为6至8μm。金刚石颗粒的嵌入金属镀层的深度记为H,金刚石颗粒的粒径记为D,则满足H<2/3D。H和D的比值关系,本实施例中H是D的三分之二,其他实施例中可以采用H=0.5D,H=0.4D,或H=0.3D等。
金刚石颗粒经过粗化处理后,其表面积能够增加1倍以上,增加金刚石颗粒与金属镀层的结合面。而且,从受力角度分析,金刚石颗粒表面形成凹凸不平的腐蚀碳化物层,在金刚石线锯使用受力时,金刚石颗粒的位于金属镀层内的凹凸不平的结构,可提高金刚石颗粒的抗弯性能,也即提高了金属镀层对金刚石颗粒的把持力。
金刚石线锯通过电镀上述的粗化处理后的金刚石颗粒,则可以将金刚石颗粒的嵌入到金属镀层的深度值减小,由原来的大于金刚石颗粒粒径的二分之一,可以变为小于金刚石颗粒粒径的二分之一,进而使得金刚石颗粒的出刃高度增加,提高切削力。同时,即使金刚石颗粒的嵌入金属镀层的深度小于其粒径的二分之一,同等嵌入深度情况下,金属镀层对金刚石颗粒的把持力相对于现有技术来说也是提高的。金刚石颗粒不易脱落,延长金刚石线锯的使用寿命。当然,金刚石颗粒的嵌入金属镀层的深度若大于二分之一,而小于三分之二时,金属镀层对金刚石颗粒的把持力更强,只不过,此时,金刚石颗粒的出刃高度相对变小。
本实施例中,金刚石颗粒未作金属化处理,也即金刚石线锯为裸金刚石线锯,可以提高金刚石线锯表面的锋利性。
本发明粗化裸金刚石线锯的实施例2:
本实施例中,与实施例1的区别仅在于,金刚石线锯的外径为0.6mm,其中,基线的外径为0.4mm,金刚石颗粒的平均粒径为100μm。
上述实施例1和实施例2中的金刚石线锯,也可以是环形金刚石线锯。
本发明粗化裸金刚石线锯的实施例3:
本实施例中,与实施例1的区别仅在于:金刚石线锯的外径为2.5mm,其中,基线的外径为2.0mm,金刚石颗粒的平均粒径为200μm。金刚石线锯为间隔式金刚石线锯,也称隔节式金刚石线,金属镀层是间断的。
本发明的金刚石粗化方法的实施例1,用于对上述实施例中的金刚石颗粒进行粗化处理,包括以下步骤:
(1)称量一定量的金属氧化物,与金刚石颗粒进行混合。金属氧化物为铁的氧化物,Fe 2O 3或Fe 3O 4,金属氧化物与金刚石颗粒的体积比为1:5。金属氧 化物的平均粒径为金刚石颗粒的平均粒径的1/10。
(2)将上述的混合物放入真空环境进行加热,真空度优于2x10 -2Pa,加热升温至800℃,保温时间180min。金属氧化物与金刚石颗粒发生化学反应,金刚石颗粒主要是碳原子,氧化物中铁原子与金刚石碳原子反应,生成碳化铁,氧化物中的氧原子与金刚石反应会生成二氧化碳。相对于采用单一的金属物,氧化物与金刚石颗粒的热化学腐蚀,腐蚀出来的空洞面积更大。
(3)使反应后的混合物冷却,自然冷却。
(4)使用氧化性酸对冷却后的混合物清洗处理,氧化性酸采用高氯酸,浸泡处理。氧化性酸的目的是除去多余的金属氧化物以及其他腐蚀产物。碳化物与氧化性酸液反应缓慢,最终被保留,形成金刚石颗粒表面的碳化物层。
其他实施例中,金属氧化物的平均粒径为金刚石颗粒的平均粒径的1/20,或者1/2,或者1/5。
本发明的金刚石粗化方法的实施例2:
包括以下步骤:
(1)称量一定量的金属氧化物,与金刚石颗粒进行混合。金属氧化物为镍的氧化物,NiO,金属氧化物与金刚石颗粒的体积比为1:4。金属氧化物的平均粒径为金刚石颗粒的平均粒径的1/10。
(2)将上述的混合物放入真空环境进行加热,真空度优于2x10 -2Pa,加热升温至1000℃,保温时间100min。金属氧化物与金刚石颗粒发生热化学反应。在该环境下,Ni与金刚石颗粒(C)反应,形成NiC固溶体,一个Ni溶解一个C,反应不再进行。而NiO中的出来的氧原子,会与金刚石颗粒(C)反应,生成CO 2,同时,金刚石颗粒与Ni再次固溶反应,使得腐蚀的空洞面积增大。
(3)使反应后的混合物冷却。
(4)使用氧化性酸对冷却后的混合物清洗,洗去表面碳残留。氧化性酸采用硝酸。
本发明的金刚石粗化方法的实施例3:
与实施例1的区别仅在于,本实施例中,步骤(2)中,加热升温至1200℃,保温时间30min。
本发明的金刚石粗化方法的实施例4:
本实施例中,采用钴的氧化物代替上述金刚石粗化方法实施例中的金属氧化物。
其他实施例中,金属氧化物为铁、钴、镍的氧化物中的任两种或三种的组合而成的混合物。
本发明的金刚石粗化方法的实施例5:
与上述金刚石粗化方法实施例的区别仅在于,氧化性酸采用浓硫酸。
其他实施例中,氧化性酸可以采用高氯酸、硝酸和浓硫酸中的一种或任两种的混合物。
上述实施例中制得的粗化金刚石同样可以用在磨轮、滚轮等电镀产品上。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。

Claims (10)

  1. 粗化裸金刚石线锯,其特征在于:包括基线、金属镀层和嵌设在金属镀层内的金刚石颗粒,金刚石颗粒为表面经过粗化处理的,所述金刚石颗粒的嵌入金属镀层的深度记为H,金刚石颗粒的粒径记为D,则满足H<2/3D。
  2. 根据权利要求1所述的粗化裸金刚石线锯,其特征在于:所述粗化裸金刚石线锯为开式金刚石线锯、环形金刚石线锯或间隔式金刚石线锯。
  3. 根据权利要求1所述的粗化裸金刚石线锯,其特征在于:所述粗化裸金刚石线锯的外径规格为0.06mm、0.6mm或2.5mm。
  4. 根据权利要求1至3任一项所述的粗化裸金刚石线锯,其特征在于:所述金刚石颗粒未作金属化处理。
  5. 用于对权利要求1中金刚石颗粒进行粗化处理的金刚石粗化方法,其特征在于,包括以下步骤:
    (1)称量一定量的金属氧化物,与金刚石颗粒进行混合;
    (2)将上述的混合物放入真空环境进行加热,加热后保温一定时间;
    (3)使反应后的混合物冷却;
    (4)使用氧化性酸对冷却后的混合物处理。
  6. 根据权利要求5所述的金刚石粗化方法,其特征在于:金属氧化物与金刚石颗粒的体积比为1:5~1:4。
  7. 根据权利要求5所述的金刚石粗化方法,其特征在于:所述金属氧化物为铁、钴、镍的氧化物中的一种或几种。
  8. 根据权利要求7所述的金刚石粗化方法,其特征在于:金属氧化物的平均粒径为金刚石颗粒的平均粒径的1/20~1/2。
  9. 根据权利要求6所述的金刚石粗化方法,其特征在于:步骤(2)中,真空度优于2x10 -2Pa,加热温度为800℃~1200℃,保温时间30min~180min。
  10. 根据权利要求6所述的金刚石粗化方法,其特征在于:所述氧化性酸为高氯酸、硝酸和浓硫酸中的一种或任两种的混合物。
PCT/CN2019/078496 2018-12-26 2019-03-18 一种粗化裸金刚石线锯及金刚石粗化方法 WO2020133731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811600580.2A CN109591209A (zh) 2018-12-26 2018-12-26 一种粗化裸金刚石线锯及金刚石粗化方法
CN201811600580.2 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020133731A1 true WO2020133731A1 (zh) 2020-07-02

Family

ID=65962861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078496 WO2020133731A1 (zh) 2018-12-26 2019-03-18 一种粗化裸金刚石线锯及金刚石粗化方法

Country Status (2)

Country Link
CN (1) CN109591209A (zh)
WO (1) WO2020133731A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832506A (zh) * 2021-10-15 2021-12-24 湖南大学 一种表面粗糙化金刚石的超薄划片刀制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101192542B1 (ko) * 2011-08-19 2012-10-17 이화다이아몬드공업 주식회사 이종 다이아몬드 지립을 이용한 와이어 쏘우 제조 방법
CN103409732A (zh) * 2013-07-25 2013-11-27 西南石油大学 一种金刚石表面金属化的复合处理方法
CN105063579A (zh) * 2015-07-20 2015-11-18 深圳市瑞世兴科技有限公司 金刚石铜复合材料用的粗化液及其表面镀镍方法
CN109016196A (zh) * 2018-07-18 2018-12-18 郑州磨料磨具磨削研究所有限公司 一种电镀金刚石线锯
CN109016197A (zh) * 2018-07-18 2018-12-18 郑州磨料磨具磨削研究所有限公司 一种新型电镀金刚石线锯

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1294960A2 (en) * 2000-06-30 2003-03-26 Saint-Gobain Abrasives, Inc. Process for coating superabrasive particles with metal
CN101602231B (zh) * 2009-06-26 2011-08-03 江苏锋菱超硬工具有限公司 电镀钻石线锯的制备方法
ES2541598T3 (es) * 2009-07-31 2015-07-22 Diamond Innovations, Inc. Alambre de precisión que incluye partículas abrasivas superficialmente modificadas
CN104210038B (zh) * 2014-08-28 2016-10-12 中国有色桂林矿产地质研究院有限公司 环形金刚石双刃带锯及其制作方法
CN107473768B (zh) * 2017-08-10 2020-04-14 中南钻石有限公司 一种金刚石表面粗糙化处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101192542B1 (ko) * 2011-08-19 2012-10-17 이화다이아몬드공업 주식회사 이종 다이아몬드 지립을 이용한 와이어 쏘우 제조 방법
CN103409732A (zh) * 2013-07-25 2013-11-27 西南石油大学 一种金刚石表面金属化的复合处理方法
CN105063579A (zh) * 2015-07-20 2015-11-18 深圳市瑞世兴科技有限公司 金刚石铜复合材料用的粗化液及其表面镀镍方法
CN109016196A (zh) * 2018-07-18 2018-12-18 郑州磨料磨具磨削研究所有限公司 一种电镀金刚石线锯
CN109016197A (zh) * 2018-07-18 2018-12-18 郑州磨料磨具磨削研究所有限公司 一种新型电镀金刚石线锯

Also Published As

Publication number Publication date
CN109591209A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
JP5999362B2 (ja) 表面被覆切削工具
EP2277660B1 (en) Electrodeposited wire tool and method of producing same
CN106835054B (zh) 金刚石单晶表面金属化处理的方法
CN113186493B (zh) 一种金刚石/金属碳化物复合耐磨涂层的制备方法
CN108149183B (zh) 一种表层硬度梯度分布的硬质合金及其制备方法
CN106976023B (zh) 一种感应加热高熵合金钎焊单层金刚石砂轮的方法
CN107532245A (zh) 磁盘用铝合金基板及其制造方法、以及使用了该磁盘用铝合金基板的磁盘
WO2020133731A1 (zh) 一种粗化裸金刚石线锯及金刚石粗化方法
TWI682026B (zh) 鋁-金剛石系複合體及使用其之散熱零件
CN106863158B (zh) 一种真空钎焊立方氮化硼砂轮的方法
JP5282911B2 (ja) ダイヤモンド被覆切削工具
CN106399916B (zh) 一种钛合金刀具的表面改性方法
CN114737229B (zh) 一种在单晶高温合金的表面制备铂改性铝化物涂层的方法
WO2011067975A1 (ja) 炭素材の製造方法
CN105386018B (zh) 一种应用于石材切割刀具的金刚石表面镀覆工艺
TW200536960A (en) Beta titanium surface hardening method, beta titanium member and beta titanium surface hardening apparatus
RU2429195C1 (ru) Способ получения шероховатости на поверхности алмазных зерен
JP3872544B2 (ja) 被覆超硬合金
JP4009424B2 (ja) 被切削加工用被覆体
JPWO2020012821A1 (ja) 複合部材
JP5076140B2 (ja) 研削砥石の製造方法
RU2450907C1 (ru) Способ получения композиционного алмазного зерна
CN109664421A (zh) 一种表面覆膜的金刚石线锯
CN109402680A (zh) 一种mos晶体管用掩模板材料的制备方法
JPH10102233A (ja) 表面硬化Fe−Al系合金の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906561

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19906561

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19906561

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17.08.21)