WO2020133225A1 - 一种信号处理装置、方法及接入网设备 - Google Patents

一种信号处理装置、方法及接入网设备 Download PDF

Info

Publication number
WO2020133225A1
WO2020133225A1 PCT/CN2018/124913 CN2018124913W WO2020133225A1 WO 2020133225 A1 WO2020133225 A1 WO 2020133225A1 CN 2018124913 W CN2018124913 W CN 2018124913W WO 2020133225 A1 WO2020133225 A1 WO 2020133225A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sub
signals
frequency band
power amplifier
Prior art date
Application number
PCT/CN2018/124913
Other languages
English (en)
French (fr)
Inventor
吕佳
唐海正
郭玲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/CN2018/124913 priority Critical patent/WO2020133225A1/zh
Priority to EP23182062.2A priority patent/EP4274104A3/en
Priority to CN201880100488.1A priority patent/CN113273087B/zh
Priority to KR1020237009521A priority patent/KR20230043238A/ko
Priority to BR112021012612-0A priority patent/BR112021012612A2/pt
Priority to KR1020217023484A priority patent/KR102513549B1/ko
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18944234.6A priority patent/EP3893403B1/en
Priority to JP2021537885A priority patent/JP7154419B2/ja
Priority to CN202210185410.2A priority patent/CN114745020A/zh
Publication of WO2020133225A1 publication Critical patent/WO2020133225A1/zh
Priority to US17/360,287 priority patent/US11438020B2/en
Priority to US17/884,157 priority patent/US11870474B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1081Reduction of multipath noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • H04B1/0075Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands using different intermediate frequencied for the different bands
    • H04B1/0078Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands using different intermediate frequencied for the different bands with a common intermediate frequency amplifier for the different intermediate frequencies, e.g. when using switched intermediate frequency filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1018Means associated with receiver for limiting or suppressing noise or interference noise filters connected between the power supply and the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0491Circuits with frequency synthesizers, frequency converters or modulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present application relate to the field of communication technologies, and in particular, to a signal processing apparatus, method, and access network equipment.
  • RRU radio remote units supporting multiple frequency bands
  • PIM passive intermodulation
  • Embodiments of the present application provide a signal processing apparatus, method, and access network equipment, which can effectively avoid PIM problems and reduce the number of antenna ports used.
  • a signal processing device in a first aspect, includes a power amplifier module, a processing module connected to the power amplifier module, and a communication module connected to the processing module.
  • the above power amplifier module includes a first power amplifier and a second power amplifier.
  • the above processing module includes a first filter unit connected to the first power amplifier, a second filter unit connected to the second power amplifier, and a combining unit connected to the first filter unit, the second filter unit, and the communication module.
  • the first power amplifier is used to perform power amplification on the received first signal to obtain a second signal, and send the second signal to the first filtering unit, where the first signal includes the signal in the first frequency band and the first signal The signal of the second frequency band.
  • the first filtering unit is configured to receive the second signal sent by the first power amplifier and filter the second signal to obtain a first sub-signal belonging to the first frequency band and a second sub-signal belonging to the second frequency band.
  • the second power amplifier is used to perform power amplification on the received third signal to obtain a fourth signal, and send the fourth signal to the second filtering unit, where the third signal includes at least a signal in the third frequency band.
  • the second filtering unit is used to receive the fourth signal sent by the second power amplifier and filter the fourth signal to obtain n (n is an integer greater than or equal to 1) sub-signals, and the n sub-signals include at least the third frequency band The third sub-signal.
  • the combining unit is used for combining the first sub-signal and the i sub-signals (1 ⁇ i ⁇ n, i is an integer) of the n sub-signals according to the preset condition to obtain the first combining signal and to the communication module Send the first combined signal and the second sub-signal.
  • the communication module is used to send the first combining signal via the first port and the second sub-signal via the second port.
  • the signal processing device in this application can split signals of multiple frequency bands, and combine signals of different frequency bands according to preset conditions, and send the combined signal through a port of the communication module , Effectively reducing the number of ports used. If the preset condition is to combine signals of which the difference between the frequency bands is greater than or equal to the preset threshold, in this way, after the signals of different frequency bands are combined by the signal processing device, there will be no PIM problem in the combined signals, which is effectively avoided PIM problem. In summary, the signal processing device of the present application can effectively avoid PIM problems and reduce the number of ports used.
  • the signal processing device can promptly and effectively meet the communication requirements.
  • the frequency band combination supported by the power amplifier does not correspond to the frequency band combination of the signal sent by the port, and the two are completely decoupled, which effectively reduces the development difficulty of the power amplifier.
  • n is an integer greater than or equal to 2
  • any two of the n sub-signals belong to different frequency bands.
  • the second power amplifier is a single-frequency power amplifier. If n is an integer greater than or equal to 2, the second power amplifier is a multi-frequency power amplifier. In the scenario where the second power amplifier is a multi-frequency power amplifier, the second filtering unit obtains multiple sub-signals, and any two sub-signals obtained by the second filtering unit have different frequency bands.
  • the above-mentioned combining unit is further used to divide the second sub-unit according to the above-mentioned preset condition
  • the signal is combined with ni sub-signals other than i sub-signals of the n sub-signals to obtain a second combined signal.
  • the above “combining unit is used to send the second sub-signal to the communication module” specifically includes: the combining unit is specifically used to send the second combining signal to the communication module.
  • the processing method of the combining unit is: Method 1: sending the ni sub-signals to the communication module Signals, so that the communication module sends the ni sub-signals via ni ports, each of the ni ports sends one of the ni sub-signals, and any two different ports of the ni ports send different
  • the second signal is combined; the second sub-signal is combined with the ni sub-signals to obtain a second combined signal, and the second combined signal is sent to the communication module.
  • the processing method of the combining unit realizes the free combination of signals in different frequency bands.
  • the above “communication module is used to send the second sub-signal via the second port” specifically includes : The communication module is specifically used to send the second combining signal via the second port.
  • the communication module sends the second combined signal via the second port, which effectively reduces the number of ports used by the signal processing device.
  • the preset condition is to combine signals whose frequency band difference is greater than or equal to a preset threshold, or to combine the signal of the first preset frequency band and the second The signals of the preset frequency band are combined.
  • an access network device in a second aspect, includes the signal processing apparatus described in any one of the first aspect and any one of its possible implementation manners.
  • a signal processing method is provided.
  • the signal processing method is applied to the signal processing device described in any one of the first aspect and any one of its possible implementation manners. Specifically, after receiving the first signal including the signal in the first frequency band and the signal in the second frequency band, and the third signal including at least the signal in the third frequency band, the signal processing device performs power amplification on the first signal to obtain The second signal, and amplify the third signal to obtain the fourth signal; then, the signal processing device filters the second signal to obtain the first sub-signal and the second sub-signal, and filters the fourth signal to obtain n (n is an integer greater than or equal to 1) sub-signals, where the n sub-signals include at least a third sub-signal belonging to the third frequency band; subsequently, the signal processing device divides the first sub-signal and the n sub-signals according to preset conditions I (1 ⁇ i ⁇ n, i is an integer) sub signals are combined to obtain a first combined signal, and the first combined signal is sent via the
  • n is an integer greater than or equal to 2
  • any two of the n sub-signals belong to different frequency bands.
  • the signal processing device further divides the second sub-signal and the n sub-signals except the i sub-signals according to a preset condition.
  • the two sub-signals are combined to obtain a second combined signal.
  • the above-mentioned "signal processing device sends the second sub-signal via the second port” method is that the signal processing device sends the second combining signal via the second port.
  • the preset condition in the present application is to combine signals whose frequency band difference is greater than or equal to a preset threshold, or to combine the first preset frequency band.
  • the signal is combined with the signal of the second preset frequency band.
  • the name of the above signal processing device does not constitute a limitation to the device or the function module itself. In actual implementation, these devices or function modules may appear under other names. As long as the functions of each device or functional module are similar to this application, they fall within the scope of the claims of this application and their equivalent technologies.
  • FIG. 1 is a schematic structural diagram 1 of a signal processing device in an embodiment of the present application
  • FIG. 2 is a second structural diagram of a signal processing device in an embodiment of the present application.
  • FIG. 3 is a schematic flowchart 1 of a signal processing device processing signal in an embodiment of the present application
  • FIG. 4 is a second schematic flowchart of a signal processing device processing signal in an embodiment of the present application.
  • FIG. 5 is a third schematic flowchart of a signal processing device processing signal in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an access network device in an embodiment of this application.
  • FIG. 7 is a schematic flowchart of a signal processing method provided by an embodiment of the present application.
  • words such as “exemplary” or “for example” are used as examples, illustrations or explanations. Any embodiments or design solutions described as “exemplary” or “for example” in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or design solutions. Rather, the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner.
  • Embodiments of the present application provide a signal processing apparatus, method, and access network equipment, which can effectively avoid PIM problems and reduce the number of antenna ports used.
  • the signal processing device can be applied to various mobile communication systems, for example: a global mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code Wideband code multiple division access (WCDMA) system, general packet radio service (general packet radio service (GPRS), long term evolution (LTE) system, advanced long term evolution (advanced long term evolution), LTE- A) System Universal mobile communication system (universal mobile communication system, UMTS), evolved long-term evolution (evolved long term evolution, eLTE) system, 5G (such as new radio (NR) system) and other mobile communication systems.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code Wideband code multiple division access
  • GPRS general packet radio service
  • LTE long term evolution
  • advanced long term evolution advanced long term evolution
  • LTE- A System Universal mobile communication system (universal mobile communication system, UMTS), evolved long-term evolution (evolved long term evolution, eLTE) system, 5G (
  • the signal processing device in the embodiment of the present application may be an RRU, or may be a part of devices in the access network device, which is not specifically limited in the embodiment of the present application.
  • the signal processing device includes a power amplifier module 10, a processing module 11 connected to the power amplifier module 10, and a communication module 12 connected to the processing module 11.
  • the power amplifier module 10 includes a first power amplifier 100 and a second power amplifier 101;
  • the processing module 11 includes a first filter unit 110 connected to the first power amplifier 100, and a second filter unit 111 connected to the second power amplifier 101, And a combination unit 112 connected to the first filter unit 110, the second filter unit 111, and the communication module 12;
  • the communication module 12 includes a first port and a second port.
  • the first power amplifier 100 is a multi-frequency power amplifier, such as a dual-frequency power amplifier.
  • the first power amplifier 100 is used to perform power amplification on the received first signal to obtain a second signal, and send the second signal to the first filtering unit 110.
  • the first signal includes a signal in the first frequency band and a signal in the second frequency band signal.
  • the first filtering unit 110 is configured to receive the second signal sent by the first power amplifier 100 and filter the second signal to obtain a first sub-signal belonging to the first frequency band and a second sub-signal belonging to the second frequency band.
  • the first filtering unit 110 can remove the noise signal in the second signal to ensure the signal quality of the first sub-signal and the second sub-signal.
  • the second power amplifier 101 is used to perform power amplification on the received third signal to obtain a fourth signal, and send the fourth signal to the second filtering unit 111.
  • the third signal here includes at least a signal of a third frequency band.
  • the frequency band supported by the second power amplifier 101 is different from the frequency band supported by the first power amplifier 100.
  • the second power amplifier 101 may be a single-frequency power amplifier or a multi-frequency power amplifier. If the second power amplifier 101 is a single-frequency power amplifier, the second power amplifier 101 can only perform power amplification on signals in a single frequency band. If the second power amplifier 101 is a multi-frequency power amplifier, the second power amplifier 101 can perform power amplification on signals in multiple frequency bands.
  • the second filtering unit 111 is configured to receive the fourth signal sent by the second power amplifier 101, and filter the fourth signal to obtain n (n is an integer greater than or equal to 1) sub-signals.
  • the n sub-signals include at least The third sub-signal of the three frequency bands.
  • the combining unit 112 is used for combining the first sub-signal and the i sub-signals (1 ⁇ i ⁇ n, i is an integer) of the n sub-signals according to the preset condition to obtain the first combining signal and the communication
  • the module 12 sends the first combined signal and the second sub-signal.
  • the communication module 12 is used to send a first combining signal via a first port and a second sub-signal via a second port.
  • the communication module 12 may be implemented using an antenna, or a common cable interface. If the communication module 12 is implemented by using an antenna, the communication module 12 may include an antenna, and the antenna includes at least two ports, or may include a multi-heel antenna, and each antenna includes at least one port. Be specific.
  • the first port and the second port in the embodiment of the present application may be ports of the same antenna or ports of different antennas, which is not specifically limited in the embodiment of the present application.
  • n is an integer greater than or equal to 2
  • any two of the n sub-signals obtained by the second filtering unit 111 belong to different frequency bands.
  • the second power amplifier 101 is a multi-frequency power amplifier.
  • the first combined signal includes all signals filtered by the first sub-signal and the second filtering unit 111.
  • the combining unit 112 is used to: send the ni sub-signals to the communication module 12 Signals, so that the communication module sends the ni sub-signals via ni ports, each of the ni ports sends one of the ni sub-signals, and any two different ports of the ni ports send different Sub signal; or, used to combine the second sub signal with the ni sub signals according to a preset condition to obtain a second combined signal, and send the second combined signal to the antenna.
  • the combining unit 112 may combine the first sub-signal with the i sub-signals of the n sub-signals according to the preset condition, or may combine the second sub-signal with the ni sub-signals according to the preset condition to achieve Free combination of signals in different frequency bands.
  • the combining unit 112 combines the second sub-signal and the ni sub-signals into a second combining signal according to a preset condition
  • the combining unit 112 is specifically configured to send the second combining signal to the communication module 12 .
  • the communication module 12 is specifically configured to send the second combining signal via the second port.
  • the preset condition in this application is to combine signals of which the difference between the frequency bands is greater than or equal to the preset threshold, or to combine the signal of the first preset frequency band (such as the aforementioned first frequency band) with the second preset frequency band (as described above The third band) signals are combined.
  • the signal processing device will not combine the signals after the signals with a frequency band difference greater than or equal to the preset threshold are combined PIM problems occur, effectively avoiding PIM problems.
  • the preset condition is to combine the signal of the first preset frequency band and the signal of the second preset frequency band
  • the signal processing device can timely and effectively meet the communication requirements, so as to realize the simultaneous management and control of the signal of the first preset frequency band and the signal of the second preset frequency band by the user.
  • the processing module 11 in the embodiment of the present application may be implemented by using a filter, and of course, it may also be implemented by other devices having the function of the processing module 11, which is not specifically limited in the embodiment of the present application.
  • the first power amplifier 100 is a dual-frequency power amplifier, which is used to perform power amplification on the signal in the frequency band A and the signal in the frequency band B;
  • the second power amplifier 101 is a single-frequency power amplifier, which is used to perform a signal on the frequency band C.
  • Power amplification correspondingly, the first filtering unit 110 filters the signal output by the first power amplifier 100 to obtain the first sub-signal A in the frequency band A and the second sub-signal B in the frequency band B; the second filtering unit 111 Filter the signal output by the second power amplifier 101 to obtain the third sub-signal C located in the frequency band C.
  • the combining unit 112 combines the first sub-signal A (or the second sub-signal B) and the third sub-signal C, and sends the combining signal to the first port, so that the first port sends the combining signal,
  • the combining unit 112 also sends the second sub-signal B (or the first sub-signal A) to the second port, so that the second port sends the sub-signal.
  • the structure shown in FIG. 1 is only an example of the signal processing device 11.
  • the power amplifier module 10 may also include a greater number of power amplifiers.
  • the processing module 11 may also include a greater number of filter units, and the communication module 12 may also include a greater number of ports (such as 4 ports , 8 ports, etc.).
  • FIG. 2 shows a structure of the signal processing device in the embodiment of the present application.
  • the signal processing device includes a power amplifier module, a processing module, and y (x is an integer greater than or equal to 2) ports.
  • the power amplifier module includes x (x is an integer greater than 2) power amplifiers
  • the processing module includes x filter units and a combining unit connected to the x filter units.
  • the communication module 12 is an antenna including a first port and a second port, the first frequency band is the frequency band A, and the second frequency band is the frequency band B
  • the third frequency band is the frequency band C
  • the fourth frequency band is the frequency band D
  • the first signal includes the frequency band A signal and the frequency band B signal
  • an antenna includes two ports as an example to describe the signal processing device.
  • the first power amplifier 100 is a dual-frequency power amplifier
  • the second power amplifier 101 is a single-frequency power amplifier
  • the third signal is a signal in the frequency band C.
  • the first power amplifier 100 After receiving the first signal including the signal in the frequency band A and the signal in the frequency band B, the first power amplifier 100 performs power amplification on the first signal to obtain a second signal, and sends it to the first filtering unit 110
  • the second signal also includes the first signal of the frequency band A signal and the frequency band B signal.
  • the first filtering unit 110 After filtering the second signal by the first filtering unit 110, the first filtering unit 110 obtains the first sub-signal and the second sub-signal.
  • the first sub-signal belongs to the frequency band A, and the second sub-signal belongs to the frequency band B.
  • the second power amplifier 101 After receiving the third signal, the second power amplifier 101 performs power amplification on the third signal to obtain a fourth signal, and sends the fourth signal to the second filtering unit 111, which is also in the frequency band C signal. After filtering the fourth signal by the second filtering unit 111, the second filtering unit 111 obtains a third sub-signal, and the third sub-signal belongs to the frequency band C.
  • the combining unit 112 combines the first sub-signal and the third sub-signal to obtain a first combining signal (the frequency band corresponding to the first combining signal is band A and band C), and sends the first combining signal to the communication module 12 Way signal and second sub-signal. In this way, the first port of the communication module 12 sends the first combining signal, and the second port sends the second sub-signal.
  • FIG. 3 shows the signal processing flow of the signal processing device.
  • the first power amplifier 100 is a dual-frequency power amplifier
  • the second power amplifier 101 is a dual-frequency power amplifier
  • the third signal includes a frequency band C signal and a frequency band D signal.
  • the first power amplifier 100 After receiving the first signal including the signal in the frequency band A and the signal in the frequency band B, the first power amplifier 100 performs power amplification on the first signal to obtain a second signal, and sends it to the first filtering unit 110
  • the second signal also includes the first signal of the frequency band A signal and the frequency band B signal.
  • the first filtering unit 110 After filtering the second signal by the first filtering unit 110, the first filtering unit 110 obtains the first sub-signal and the second sub-signal.
  • the first sub-signal belongs to the frequency band A, and the second sub-signal belongs to the frequency band B.
  • the second power amplifier 101 After receiving the third signal including the frequency band C signal and the frequency band D signal, the second power amplifier 101 performs power amplification on the third signal to obtain a fourth signal, and sends the fourth signal to the second filtering unit 111 Signal, the fourth signal also includes a signal of frequency band C and a signal of frequency band D. After filtering the fourth signal by the second filtering unit 111, the second filtering unit 111 obtains a third sub-signal and a fourth sub-signal. The third sub-signal belongs to the frequency band C, and the fourth sub-signal belongs to the frequency band D.
  • the combining unit 112 combines the first sub-signal and the third sub-signal to obtain A first combined signal (the frequency band corresponding to the first combined signal is band A and band C), and the second sub-signal and the fourth sub-signal are combined to obtain a second combined signal (the second combined signal).
  • the corresponding frequency bands are frequency band B and frequency band D), and the first combined signal and the second combined signal are sent to the communication module 12.
  • the first port of the communication module 12 transmits the first combined signal
  • the second port transmits the second combined signal.
  • FIG. 4 shows the signal processing flow of the signal processing device.
  • the combining unit 112 combines the first sub-signal, the third sub-signal and the fourth sub-signal to obtain the first A combined signal (frequency bands corresponding to the first combined signal are band A, band C, and band D), and the first combined signal and the second sub-signal are sent to the communication module 12.
  • the first port of the communication module 12 sends the first combining signal
  • the second port sends the second sub-signal.
  • FIG. 5 shows the signal processing flow of the signal processing device.
  • the signal processing device in the embodiment of the present application can split signals of multiple frequency bands, and combine signals of different frequency bands according to preset conditions, and pass the combined signal through a certain port of the communication module Send, effectively reducing the number of ports used.
  • the preset condition is to combine signals of which the difference between the frequency bands is greater than or equal to the preset threshold, in this way, after the signals of different frequency bands are combined by the signal processing device, there will be no PIM problem in the combined signals, which is effectively avoided PIM problem.
  • the signal processing device of the present application can effectively avoid PIM problems and reduce the number of ports used.
  • the signal processing device can promptly and effectively meet the communication requirements.
  • the frequency band combination supported by the power amplifier does not correspond to the frequency band combination of the signal sent by the port, and the two are completely decoupled, which effectively reduces the development difficulty of the power amplifier.
  • An embodiment of the present application also provides an access network device, as shown in FIG. 6, including: the signal processing device shown in FIG. 1 or FIG. 2.
  • an access network device as shown in FIG. 6, including: the signal processing device shown in FIG. 1 or FIG. 2.
  • the access network device in the embodiment of the present application may be an ordinary base station (such as Node B or eNB), a new radio controller (new radio controller, NR controller), or a gNode in a 5G system B/gNB ), it can also be a new wireless base station, it can also be a micro base station, it can also be a relay (relay), it can also be a distributed network element (distributed unit), it can also be a reception point (transmission reception point (TRP) or transmission Point (transmission point, TP) or any other wireless access device, which is not specifically limited in this embodiment of the present application.
  • an ordinary base station such as Node B or eNB
  • a new radio controller new radio controller, NR controller
  • it can also be a new wireless base station
  • it can also be a micro base station
  • it can also be a relay (relay)
  • it can also be a distributed network element (distributed unit
  • the embodiments of the present application also provide a signal processing method. This signal processing method is applied to the above-mentioned signal processing device.
  • the signal processing method may include:
  • the signal processing device receives the first signal and the third signal.
  • the signal processing device performs power amplification on the first signal to obtain a second signal, and performs power amplification on the third signal to obtain a fourth signal.
  • the first power amplifier performs power amplification on the first signal to obtain a second signal; the second power amplifier performs power amplification on the third signal to obtain a fourth signal.
  • the signal processing device filters the second signal to obtain the first sub-signal and the second sub-signal, and filters the fourth signal to obtain n sub-signals.
  • n is an integer greater than or equal to 1
  • the n sub-signals include at least a third sub-signal belonging to the third frequency band.
  • n is an integer greater than or equal to 2
  • any two of the n sub-signals belong to different frequency bands.
  • the signal processing device combines the first sub-signal and i (1 ⁇ i ⁇ n, i is an integer) sub-signals of the n sub-signals according to a preset condition to obtain a first combined signal.
  • the preset condition is to combine the signals of which the difference of the frequency band is greater than or equal to the preset threshold, or to combine the signal of the first preset frequency band (such as band 1) and the signal of the second preset frequency band (such as band 3) Helu.
  • the signal processing device sends the first combining signal via the first port, and sends the second sub-signal via the second port.
  • the signal processing device combines the second sub-signal with ni sub-signals other than the i sub-signals out of the n sub-signals according to a preset condition to obtain a second combined signal, and
  • the second combined signal is sent via the second port (refer to FIG. 4 above); or, the signal processing device sends ni sub-signals and second sub-signals via one port, respectively.
  • the signal processing device in the embodiments of the present application can effectively avoid PIM problems and reduce the number of ports used.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a division of logical functions.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software function unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present invention essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or processor (English: processor) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (English: Read-Only Memory, abbreviation: ROM), random access memory (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disk, etc.
  • Various media that can store program codes include: U disk, mobile hard disk, read-only memory (English: Read-Only Memory, abbreviation: ROM), random access memory (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disk, etc.
  • Various media that can store program codes include: U disk, mobile hard disk, read-only memory (English: Read-Only Memory, abbreviation: ROM), random access memory (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种信号处理装置、方法及接入网设备,涉及通信技术领域。该信号处理装置包括第一功率放大器、第二功率放大器、第一滤波单元、第二滤波单元和合路单元。第一滤波单元对第一功率放大器得到的第二信号滤波,得到属于第一频段的第一子信号和属于第二频段的第二子信号。第二滤波单元对第二功率放大器得到的第四信号滤波,得到n个子信号,n个子信号至少包括属于第三频段的第三子信号。合路单元根据预设条件,将第一子信号和n个子信号中的i个子信号合路,得到第一合路信号。通信模块经由第一端口发送第一合路信号,经由第二端口发送第二子信号。该信号处理装置有效的避免了PIM,且减少了端口的使用数量。

Description

一种信号处理装置、方法及接入网设备 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信号处理装置、方法及接入网设备。
背景技术
随着通信技术的发展,支持多个频段的射频拉远单元(radio remote unit,RRU)的使用越来越广泛。支持多个频段的RRU是指该RRU支持多个频段的信号经由单个/多个天线端口传输。然而,目前还不存在一种既能避免无源互调(passive intermodulation,PIM)问题,又能适当减少使用天线端口的数量的RRU。
发明内容
本申请实施例提供一种信号处理装置、方法及接入网设备,既能有效的避免PIM问题,又能减少天线端口的使用数量。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种信号处理装置,该信号处理装置包括功放模块,与功放模块连接的处理模块,以及与处理模块连接的通信模块。上述功放模块包括第一功率放大器和第二功率放大器。上述处理模块包括与第一功率放大器连接的第一滤波单元,与第二功率放大器连接的第二滤波单元,以及与第一滤波单元、第二滤波单元和通信模块均连接的合路单元。
具体的,第一功率放大器用于对接收到的第一信号进行功率放大,以得到第二信号,并向第一滤波单元发送第二信号,这里的第一信号包括第一频段的信号和第二频段的信号。第一滤波单元用于接收第一功率放大器发送的第二信号,并对第二信号进行滤波,以得到属于第一频段的第一子信号和属于第二频段的第二子信号。第二功率放大器用于对接收到的第三信号进行功率放大,以得到第四信号,并向第二滤波单元发送第四信号,这里的第三信号至少包括第三频段的信号。第二滤波单元用于接收第二功率放大器发送的第四信号,并对第四信号进行滤波,以得到n(n为大于或等于1的整数)个子信号,n个子信号至少包括属于第三频段的第三子信号。合路单元用于根据预设条件,将第一子信号和n个子信号中的i(1≤i≤n,i为整数)个子信号合路,以得到第一合路信号,以及向通信模块发送第一合路信号和第二子信号。通信模块用于经由第一端口发送第一合路信号,以及经由第二端口发送第二子信号。
可以看出,本申请中的信号处理装置可以将多频段的信号进行分路,并根据预设条件将不同频段的信号进行合路,以及将合路后的信号通过通信模块的某一个端口发送,有效的减少了使用端口的数量。若预设条件为将频段的差值大于或等于预设阈值的信号合路,这样,信号处理装置在将不同频段的信号进行合路后,合路信号也不会出现PIM问题,有效的避免了PIM问题。综上,本申请的信号处理装置既能有效的避免PIM问题,又能减少端口的使用数量。
此外,若预设条件为将第一预设频段的信号和第二预设频段的信号合路,则信号 处理装置能够及时有效的满足通信需求。本申请的信号处理装置中,功率放大器所支持的频段组合与端口所发送信号的频段组合不是一一对应的,二者完全解耦,有效的降低了功率放大器的开发难度。
可选的,在本申请的一种可能的实现方式中,若n为大于或等于2的整数,则上述n个子信号中的任意两个子信号属于不同的频段。
若n等于1,则第二功率放大器为单频功率放大器。若n为大于或等于2的整数,则第二功率放大器为多频功率放大器。在第二功率放大器为多频功率放大器的场景中,第二滤波单元得到多个子信号,且第二滤波单元得到的任意两个子信号的频段不同。
可选的,在本申请的另一种可能的实现方式中,若n为大于或等于2的整数,1≤i<n,上述合路单元还用于根据上述预设条件,将第二子信号和n个子信号中除i个子信号以外的n-i个子信号合路,以得到第二合路信号。相应的,上述“合路单元,用于向通信模块发送第二子信号”具体包括:合路单元具体用于向通信模块发送第二合路信号。
在第二功率放大器为多频功率放大器的场景中,对于n个子信号中除i个子信号以外的n-i个子信号而言,合路单元的处理方式为:方式一、向通信模块发送所述n-i个子信号,以便于通信模块经由n-i个端口发送所述n-i个子信号,n-i个端口中的每个端口发送所述n-i个子信号中的一个子信号,且n-i个端口中的任意两个不同端口发送不同的子信号;方式二、将第二子信号和所述n-i个子信号合路,以得到第二合路信号,并向通信模块发送该第二合路信号。
合路单元的处理方式实现了不同频段的信号的自由组合。
可选的,在本申请的另一种可能的实现方式中,若合路单元还用于得到第二合路信号,则上述“通信模块用于经由第二端口发送第二子信号”具体包括:通信模块具体用于经由第二端口发送第二合路信号。
通信模块经由第二端口发送第二合路信号,有效的减少了信号处理装置使用的端口的数量。
可选的,在本申请的另一种可能的实现方式中,预设条件为将频段的差值大于或等于预设阈值的信号合路,或者为将第一预设频段的信号和第二预设频段的信号合路。
第二方面,提供一种接入网设备,接入网设备包括上述第一方面及其任意一种可能的实现方式中任意之一所述的信号处理装置。
第三方面,提供一种信号处理方法,该信号处理方法应用于上述第一方面及其任意一种可能的实现方式中任意之一所述的信号处理装置。具体的,信号处理装置在接收到包括第一频段的信号和第二频段的信号的第一信号,以及至少包括第三频段的信号的第三信号后,对第一信号进行功率放大,以得到第二信号,并对第三信号进行功率放大,以得到第四信号;然后,信号处理装置过滤第二信号,以得到第一子信号和第二子信号,并过滤第四信号,以得到n(n为大于或等于1的整数)个子信号,这里的n个子信号至少包括属于第三频段的第三子信号;后续,信号处理装置根据预设条件,将第一子信号和n个子信号中的i(1≤i≤n,i为整数)个子信号合路,以得到第一合路信号,并经由第一端口发送第一合路信号,以及经由第二端口发送第二子信号。
可选的,在本申请的一种可能的实现方式中,若n为大于或等于2的整数,n个 子信号中的任意两个子信号属于不同的频段。
可选的,在本申请的另一种可能的实现方式中,若1≤i<n,信号处理装置还根据预设条件,将第二子信号和n个子信号中除i个子信号以外的n-i个子信号合路,以得到第二合路信号。
可选的,在本申请的另一种可能的实现方式中,上述“信号处理装置经由第二端口发送第二子信号”的方法为:信号处理装置经由第二端口发送第二合路信号。
可选的,在本申请的另一种可能的实现方式中,本申请中的预设条件为将频段的差值大于或等于预设阈值的信号合路,或者为将第一预设频段的信号和第二预设频段的信号合路。
在本申请中,上述信号处理装置的名字对设备或功能模块本身不构成限定,在实际实现中,这些设备或功能模块可以以其他名称出现。只要各个设备或功能模块的功能和本申请类似,属于本申请权利要求及其等同技术的范围之内。
本申请中第二方面、第三方面的具体描述,可以参考第一方面及其各种实现方式中的详细描述;并且,第二方面、第三方面的有益效果,可以参考第一方面及其各种实现方式中的有益效果分析,此处不再赘述。
本申请的这些方面或其他方面在以下的描述中会更加简明易懂。
附图说明
图1为本申请实施例中信号处理装置的结构示意图一;
图2为本申请实施例中信号处理装置的结构示意图二;
图3为本申请实施例中信号处理装置处理信号的流程示意图一;
图4为本申请实施例中信号处理装置处理信号的流程示意图二;
图5为本申请实施例中信号处理装置处理信号的流程示意图三;
图6为本申请实施例中接入网设备的结构示意图;
图7为本申请实施例提供的信号处理方法的流程示意图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供一种信号处理装置、方法及接入网设备,既能有效的避免PIM问题,又能减少天线端口的使用数量。
本申请实施例提供的信号处理装置可以应用于各种移动通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统通用移动通信系统(universal mobile telecommunication system,UMTS)、 演进的长期演进(evolved long term evolution,eLTE)系统、5G(例如新无线(new radio,NR)系统)等其它移动通信系统。
本申请实施例的信号处理装置可以是RRU,也可以是接入网设备中的部分装置,本申请实施例对此不作具体限定。
下面结合附图对本申请实施例提供的信号处理装置进行详细说明。
本申请实施例提供一种信号处理装置,如图1所示,该信号处理装置包括功放模块10,与功放模块10连接的处理模块11,以及与处理模块11连接的通信模块12。其中,功放模块10包括第一功率放大器100和第二功率放大器101;处理模块11包括与第一功率放大器100连接的第一滤波单元110,与第二功率放大器101连接的第二滤波单元111,以及与第一滤波单元110、第二滤波单元111和通信模块12均连接的合路单元112;通信模块12包括第一端口和第二端口。
第一功率放大器100为多频功率放大器,如双频功率放大器。第一功率放大器100用于对接收到的第一信号进行功率放大,以得到第二信号,并向第一滤波单元110发送第二信号,第一信号包括第一频段的信号和第二频段的信号。
第一滤波单元110用于接收第一功率放大器100发送的第二信号,并对第二信号进行滤波,以得到属于第一频段的第一子信号和属于第二频段的第二子信号。
第一滤波单元110能够去除第二信号中的噪声信号,用以保证第一子信号和第二子信号的信号质量。
第二功率放大器101用于对接收到的第三信号进行功率放大,以得到第四信号,并向第二滤波单元111发送第四信号。这里的第三信号至少包括第三频段的信号。
第二功率放大器101所支持的频段与第一功率放大器100所支持的频段不同。
第二功率放大器101可以为单频功率放大器,也可以为多频功率放大器。若第二功率放大器101为单频功率放大器,则该第二功率放大器101仅仅能够对单个频段的信号进行功率放大。若第二功率放大器101为多频功率放大器,则该第二功率放大器101能够对多个频段的信号进行功率放大。
第二滤波单元111用于接收第二功率放大器101发送的第四信号,并对第四信号进行滤波,以得到n(n为大于或等于1的整数)个子信号,n个子信号至少包括属于第三频段的第三子信号。
合路单元112用于根据预设条件,将第一子信号和n个子信号中的i(1≤i≤n,i为整数)个子信号合路,以得到第一合路信号,以及向通信模块12发送第一合路信号和第二子信号。
通信模块12用于经由第一端口发送第一合路信号,以及经由第二端口发送第二子信号。
在硬件实现上,通信模块12可以采用天线实现,也可以采用常见的线缆接口实现。若通信模块12采用天线实现,则该通信模块12可以包括一根天线,且该天线包括至少两个端口,也可以包括多跟天线,每根天线包括至少一个端口,本申请实施例对此不做具体限定。
本申请实施例中的第一端口和第二端口可以为同一天线的端口,也可以为不同天线的端口,本申请实施例对此不做具体限定。
若n为大于或等于2的整数,则第二滤波单元111得到的n个子信号中的任意两个子信号属于不同的频段。此时,第二功率放大器101为多频功率放大器。
若n为大于或等于2的整数,i=n,则第一合路信号包括第一子信号和第二滤波单元111滤波得到的所有信号。
若n为大于或等于2的整数,1≤i<n,则对于n个子信号中除i个子信号以外的n-i个子信号而言,合路单元112用于:向通信模块12发送所述n-i个子信号,以便于通信模块经由n-i个端口发送所述n-i个子信号,n-i个端口中的每个端口发送所述n-i个子信号中的一个子信号,且n-i个端口中的任意两个不同端口发送不同的子信号;或者,用于根据预设条件将第二子信号和所述n-i个子信号合路,以得到第二合路信号,并向天线发送该第二合路信号。
合路单元112可以根据预设条件,将第一子信号和n个子信号中的i个子信号合路,也可以根据预设条件,将第二子信号和所述n-i个子信号合路,实现了不同频段的信号的自由组合。
若合路单元112根据预设条件,将第二子信号和所述n-i个子信号合路为第二合路信号,则该合路单元112具体用于向通信模块12发送该第二合路信号。相应的,通信模块12具体用于经由第二端口发送该第二合路信号。
本申请中的预设条件为将频段的差值大于或等于预设阈值的信号合路,或者为将第一预设频段(如上述第一频段)的信号和第二预设频段(如上述第三频段)的信号合路。
若预设条件为将频段的差值大于或等于预设阈值的信号合路,则信号处理装置在将频段的差值大于或等于预设阈值的信号进行合路后,合路信号也不会出现PIM问题,有效的避免了PIM问题。
若预设条件为将第一预设频段的信号和第二预设频段的信号合路,则在信号处理装置将第一预设频段的信号和第二预设频段的信号合路后,该信号处理装置能够及时有效的满足通信需求,以实现用户对第一预设频段的信号和第二预设频段的信号的同时管控。
在硬件实现上,本申请实施例中的处理模块11可以采用滤波器实现,当然,也可以采用其他具备处理模块11的功能的设备实现,本申请实施例对此不做具体限定。
示例性的,第一功率放大器100为双频功率放大器,用于对频段A的信号和频段B的信号进行功率放大;第二功率放大器101为单频功率放大器,用于对频段C的信号进行功率放大;相应的,第一滤波单元110对第一功率放大器100输出的信号进行滤波,以得到位于频段A的第一子信号A和位于频段B的第二子信号B;第二滤波单元111对第二功率放大器101输出的信号进行滤波,以得到位于频段C的第三子信号C。后续,合路单元112将第一子信号A(或者第二子信号B)和第三子信号C合路,并向第一端口发送合路信号,以便于第一端口发送该合路信号,合路单元112还向第二端口发送第二子信号B(或者第一子信号A),以便于第二端口发送该子信号。
需要说明的是,图1示出的结构仅仅是对信号处理装置11的示例说明。在实际应用中,功放模块10还可以包括更多数量的功率放大器,同理,处理模块11还可以包括更多数量的滤波单元,通信模块12还可以包括更多数量的端口(如4个端口、8个 端口等)。
示例性的,图2示出了本申请实施例中的信号处理装置的一种结构。如图2所示,信号处理装置包括功放模块、处理模块以及y(x为大于或等于2的整数)个端口。其中,功放模块包括x(x为大于2的整数)个功率放大器,处理模块包括x个滤波单元以及与x个滤波单元连接的合路单元。
为了更加清楚的理解本申请实施例提供的信号处理装置,现结合上述图1,以通信模块12为包括第一端口和第二端口的天线,第一频段为频段A,第二频段为频段B,第三频段为频段C,第四频段为频段D,第一信号包括频段A的信号和频段B的信号,一根天线包括两个端口为例对信号处理装置进行描述。
在一种可能的实现方式中,上述第一功率放大器100为双频功率放大器,上述第二功率放大器101为单频功率放大器,第三信号为频段C的信号。
具体的,第一功率放大器100在接收到包括频段A的信号和频段B的信号的第一信号后,对该第一信号进行功率放大,以得到第二信号,并向第一滤波单元110发送该第二信号,该第二信号也包括频段A的信号和频段B的信号的第一信号。在经过第一滤波单元110对第二信号的滤波后,第一滤波单元110得到第一子信号和第二子信号,第一子信号属于频段A,第二子信号属于频段B。第二功率放大器101在接收到第三信号后,对该第三信号进行功率放大,以得到第四信号,并向第二滤波单元111发送该第四信号,该第四信号也为频段C的信号。在经过第二滤波单元111对第四信号的滤波后,第二滤波单元111得到第三子信号,第三子信号属于频段C。合路单元112将第一子信号和第三子信号合路,得到第一合路信号(该第一合路信号对应的频段为频段A和频段C),并向通信模块12发送第一合路信号和第二子信号。这样,通信模块12的第一端口发送第一合路信号,第二端口发送第二子信号。图3示出了该信号处理装置的信号处理流程。
在另一种可能的实现方式中,上述第一功率放大器100为双频功率放大器,上述第二功率放大器101为双频功率放大器,第三信号包括频段C的信号和频段D的信号。
具体的,第一功率放大器100在接收到包括频段A的信号和频段B的信号的第一信号后,对该第一信号进行功率放大,以得到第二信号,并向第一滤波单元110发送该第二信号,该第二信号也包括频段A的信号和频段B的信号的第一信号。在经过第一滤波单元110对第二信号的滤波后,第一滤波单元110得到第一子信号和第二子信号,第一子信号属于频段A,第二子信号属于频段B。第二功率放大器101在接收到包括频段C的信号和频段D的信号的第三信号后,对该第三信号进行功率放大,以得到第四信号,并向第二滤波单元111发送该第四信号,该第四信号也包括频段C的信号和频段D的信号。在经过第二滤波单元111对第四信号的滤波后,第二滤波单元111得到第三子信号和第四子信号,第三子信号属于频段C,第四子信号属于频段D。
若预设条件为“将频段1的信号和频段3的信号合并,将频段2的信号和频段4的信号合并”,则合路单元112将第一子信号和第三子信号合路,得到第一合路信号(该第一合路信号对应的频段为频段A和频段C),并将第二子信号和第四子信号合路,得到第二合路信号(该第二合路信号对应的频段为频段B和频段D),以及向通信模块12发送第一合路信号和第二合路信号。这样,通信模块12的第一端口发送第 一合路信号,第二端口发送第二合路信号。图4示出了该信号处理装置的信号处理流程。
若预设条件为“将频段1的信号、频段3的信号和频段4的信号合并”,则合路单元112将第一子信号、第三子信号和第四子信号合路,得到第一合路信号(该第一合路信号对应的频段为频段A、频段C和频段D),以及向通信模块12发送第一合路信号和第二子信号。这样,通信模块12的第一端口发送第一合路信号,第二端口发送第二子信号。图5示出了该信号处理装置的信号处理流程。
综上,本申请实施例中的信号处理装置可以将多频段的信号进行分路,并根据预设条件将不同频段的信号进行合路,以及将合路后的信号通过通信模块的某一个端口发送,有效的减少了使用端口的数量。
若预设条件为将频段的差值大于或等于预设阈值的信号合路,这样,信号处理装置在将不同频段的信号进行合路后,合路信号也不会出现PIM问题,有效的避免了PIM问题。
也就是说,本申请的信号处理装置既能有效的避免PIM问题,又能减少端口的使用数量。
此外,若预设条件为将第一预设频段的信号和第二预设频段的信号合路,则信号处理装置能够及时有效的满足通信需求。本申请的信号处理装置中,功率放大器所支持的频段组合与端口所发送信号的频段组合不是一一对应的,二者完全解耦,有效的降低了功率放大器的开发难度。
本申请实施例还提供一种接入网设备,如图6所示,包括:如图1或图2所示的信号处理装置。该信号处理装置的描述可以参考上述相关描述,这里对此不再详细赘述。
本申请实施例中的接入网设备可以是普通的基站(如Node B或eNB),也可以是新无线控制器(new radio controller,NR controller),还可以是5G系统中的gNode B/gNB),还可以是新无线基站,还可以是微基站,还可以是中继(relay),还可以是分布式网元(distributed unit),还可以是接收点(transmission reception point,TRP)或传输点(transmission point,TP)或者任何其它无线接入设备,本申请实施例对此不做具体限定。
本申请实施例还提供一种信号处理方法。该信号处理方法应用于上述信号处理装置。
图7为本申请实施例提供的信号处理方法的流程图。如图7所示,该信号处理方法可以包括:
S700、信号处理装置接收第一信号和第三信号。
第一信号和第三信号的定义请参考上述描述,这里不再进行赘述。
S701、信号处理装置对第一信号进行功率放大,以得到第二信号,并对第三信号进行功率放大,以得到第四信号。
具体的,第一功率放大器对第一信号进行功率放大,以得到第二信号;第二功率放大器对第三信号进行功率放大,以得到第四信号。
S702、信号处理装置过滤第二信号,以得到第一子信号和第二子信号,并过滤第 四信号,以得到n个子信号。
其中,n为大于或等于1的整数,n个子信号至少包括属于第三频段的第三子信号。
若n为大于或等于2的整数,n个子信号中的任意两个子信号属于不同的频段。
S703、信号处理装置根据预设条件,将第一子信号和n个子信号中的i(1≤i≤n,i为整数)个子信号合路,以得到第一合路信号。
其中,预设条件为将频段的差值大于或等于预设阈值的信号合路,或者为将第一预设频段(如频段1)的信号和第二预设频段(如频段3)的信号合路。
S704、信号处理装置经由第一端口发送第一合路信号,以及经由第二端口发送第二子信号。
对于i=n的情况,可以参考上述图3或图5示出的流程。
可选的,若1≤i<n,信号处理装置根据预设条件,将第二子信号和n个子信号中除i个子信号以外的n-i个子信号合路,以得到第二合路信号,并经由第二端口发送第二合路信号(可以参考上述图4);或者,信号处理装置将n-i个子信号和第二子信号分别经由一个端口发送。
综上,本申请实施例中的信号处理装置既能有效的避免PIM问题,又能减少端口的使用数量。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor) 执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,缩写:ROM)、随机存取存储器(英文:Random Access Memory,缩写:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种信号处理装置,其特征在于,所述信号处理装置包括功放模块,与所述功放模块连接的处理模块,以及与所述处理模块连接的通信模块;其中,所述功放模块包括第一功率放大器和第二功率放大器,所述处理模块包括与所述第一功率放大器连接的第一滤波单元,与所述第二功率放大器连接的第二滤波单元,以及与所述第一滤波单元、所述第二滤波单元和所述通信模块均连接的合路单元;
    所述第一功率放大器,用于对接收到的第一信号进行功率放大,以得到第二信号,并向所述第一滤波单元发送所述第二信号,所述第一信号包括第一频段的信号和第二频段的信号;
    所述第一滤波单元,用于接收所述第一功率放大器发送的所述第二信号,并对所述第二信号进行滤波,以得到第一子信号和第二子信号,所述第一子信号属于所述第一频段,所述第二子信号属于所述第二频段;
    所述第二功率放大器,用于对接收到的第三信号进行功率放大,以得到第四信号,并向所述第二滤波单元发送所述第四信号,所述第三信号至少包括第三频段的信号;
    所述第二滤波单元,用于接收所述第二功率放大器发送的所述第四信号,并对所述第四信号进行滤波,以得到n个子信号,所述n个子信号至少包括第三子信号,所述第三子信号属于所述第三频段,n为大于或等于1的整数;
    所述合路单元,用于根据预设条件,将所述第一子信号和所述n个子信号中的i个子信号合路,以得到第一合路信号,以及向所述通信模块发送所述第一合路信号和所述第二子信号;1≤i≤n,i为整数;
    所述通信模块,用于经由第一端口发送所述第一合路信号,以及经由第二端口发送所述第二子信号。
  2. 根据权利要求1所述的信号处理装置,其特征在于,若n为大于或等于2的整数,所述n个子信号中的任意两个子信号属于不同的频段。
  3. 根据权利要求2所述的信号处理装置,其特征在于,若1≤i<n,
    所述合路单元,还用于根据所述预设条件,将所述第二子信号和所述n个子信号中除所述i个子信号以外的n-i个子信号合路,以得到第二合路信号;
    所述合路单元,用于向所述通信模块发送所述第二子信号,具体包括:
    所述合路单元,具体用于向所述通信模块发送所述第二合路信号。
  4. 根据权利要求3所述的信号处理装置,其特征在于,所述通信模块用于经由第二端口发送所述第二子信号,具体包括:
    所述通信模块,具体用于经由所述第二端口发送所述第二合路信号。
  5. 根据权利要求1-4中任意一项所述的信号处理装置,其特征在于,
    所述预设条件为将频段的差值大于或等于预设阈值的信号合路,或者为将第一预设频段的信号和第二预设频段的信号合路。
  6. 一种接入网设备,其特征在于,所述接入网设备包括如权利要求1-5中任意一项所述的信号处理装置。
  7. 一种信号处理方法,其特征在于,所述信号处理方法应用于如上述权利要求1-5中任意一项所述的信号处理装置,所述信号处理方法包括:
    接收第一信号和第三信号,所述第一信号包括第一频段的信号和第二频段的信号,所述第三信号至少包括第三频段的信号;
    对所述第一信号进行功率放大,以得到第二信号,并对所述第三信号进行功率放大,以得到第四信号;
    过滤所述第二信号,以得到第一子信号和第二子信号,并过滤所述第四信号,以得到n个子信号,所述n个子信号至少包括第三子信号,所述第三子信号属于所述第三频段,n为大于或等于1的整数;
    根据预设条件,将所述第一子信号和所述n个子信号中的i个子信号合路,以得到第一合路信号,1≤i≤n,i为整数;
    经由第一端口发送所述第一合路信号,以及经由第二端口发送所述第二子信号。
  8. 根据权利要求7所述的信号处理方法,其特征在于,若n为大于或等于2的整数,所述n个子信号中的任意两个子信号属于不同的频段。
  9. 根据权利要求8所述的信号处理方法,其特征在于,若1≤i<n,所述信号处理方法还包括:
    根据所述预设条件,将所述第二子信号和所述n个子信号中除所述i个子信号以外的n-i个子信号合路,以得到第二合路信号。
  10. 根据权利要求9所述的信号处理方法,其特征在于,所述经由第二端口发送所述第二子信号,具体包括:
    经由所述第二端口发送所述第二合路信号。
  11. 根据权利要求7-10中任意一项所述的信号处理方法,其特征在于,
    所述预设条件为将频段的差值大于或等于预设阈值的信号合路,或者为将第一预设频段的信号和第二预设频段的信号合路。
PCT/CN2018/124913 2018-12-28 2018-12-28 一种信号处理装置、方法及接入网设备 WO2020133225A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP23182062.2A EP4274104A3 (en) 2018-12-28 2018-12-28 Signal processing apparatus and method and access network device
CN201880100488.1A CN113273087B (zh) 2018-12-28 2018-12-28 一种信号处理装置、方法及接入网设备
KR1020237009521A KR20230043238A (ko) 2018-12-28 2018-12-28 신호 처리 장치와 방법, 및 액세스 네트워크 장치
BR112021012612-0A BR112021012612A2 (pt) 2018-12-28 2018-12-28 Método e aparelho de processameto de sinal, e dispositivo de rede de acesso
KR1020217023484A KR102513549B1 (ko) 2018-12-28 2018-12-28 신호 처리 장치와 방법, 및 액세스 네트워크 장치
PCT/CN2018/124913 WO2020133225A1 (zh) 2018-12-28 2018-12-28 一种信号处理装置、方法及接入网设备
EP18944234.6A EP3893403B1 (en) 2018-12-28 2018-12-28 Signal processing apparatus and method and access network device
JP2021537885A JP7154419B2 (ja) 2018-12-28 2018-12-28 信号処理装置および方法、ならびにアクセスネットワークデバイス
CN202210185410.2A CN114745020A (zh) 2018-12-28 2018-12-28 一种信号处理装置、方法及接入网设备
US17/360,287 US11438020B2 (en) 2018-12-28 2021-06-28 Signal processing apparatus and method, and access network device
US17/884,157 US11870474B2 (en) 2018-12-28 2022-08-09 Signal processing apparatus and method, and access network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124913 WO2020133225A1 (zh) 2018-12-28 2018-12-28 一种信号处理装置、方法及接入网设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/360,287 Continuation US11438020B2 (en) 2018-12-28 2021-06-28 Signal processing apparatus and method, and access network device

Publications (1)

Publication Number Publication Date
WO2020133225A1 true WO2020133225A1 (zh) 2020-07-02

Family

ID=71125689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124913 WO2020133225A1 (zh) 2018-12-28 2018-12-28 一种信号处理装置、方法及接入网设备

Country Status (7)

Country Link
US (2) US11438020B2 (zh)
EP (2) EP3893403B1 (zh)
JP (1) JP7154419B2 (zh)
KR (2) KR102513549B1 (zh)
CN (2) CN114745020A (zh)
BR (1) BR112021012612A2 (zh)
WO (1) WO2020133225A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489503A (zh) * 2021-07-01 2021-10-08 维沃移动通信有限公司 射频架构和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009959A1 (fr) * 2007-07-16 2009-01-22 Datang Mobile Communications Equipment Co., Ltd Procede et systeme de traitement de signaux d'antennes multiples
CN101534141A (zh) * 2009-04-15 2009-09-16 华为技术有限公司 一种射频模块的支持多频段共存的方法及装置
CN102347779A (zh) * 2011-07-22 2012-02-08 新邮通信设备有限公司 时分双工射频拉远单元设备及多通道接收链路复用方法
WO2016004589A1 (zh) * 2014-07-09 2016-01-14 华为技术有限公司 一种信号传输方法及设备
KR20160106996A (ko) * 2015-03-03 2016-09-13 한국전자통신연구원 이동통신 기지국에서 무선 광섬유로 디지털 유닛과 통신을 위한 원격 무선 유닛
CN107800459A (zh) * 2016-08-31 2018-03-13 中国电信股份有限公司 用于跨频段载波聚合的射频拉远单元 rru及合路方法
CN107800460A (zh) * 2016-08-31 2018-03-13 中国电信股份有限公司 用于跨频段载波聚合的射频拉远单元rru及传输方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729829A (en) * 1996-02-29 1998-03-17 American Nucleonics Corporation Interference mitigation method and apparatus for multiple collocated transceivers
US6470193B1 (en) * 1997-04-11 2002-10-22 Telefonaktiebolaget L M Ericsson (Publ) Power efficient indoor radio base station
JP2001262408A (ja) 2000-03-14 2001-09-26 Yazaki Corp マルチバンド送受信機能付きジャケット及びそのジャケットを用いたシステム
JP4226390B2 (ja) 2003-05-15 2009-02-18 シャープ株式会社 マルチバンドフィルタ回路および高周波通信装置
US6862441B2 (en) 2003-06-09 2005-03-01 Nokia Corporation Transmitter filter arrangement for multiband mobile phone
US7209720B2 (en) 2003-08-26 2007-04-24 Freescale Semiconductor, Inc. Multiband and multimode transmitter and method
CN101040403A (zh) 2004-09-09 2007-09-19 费尔特尼克控股有限公司 多频滤波器
JP4447416B2 (ja) 2004-09-22 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ マルチバンド移動通信システムおよび送信機
GB2428168A (en) 2005-07-06 2007-01-17 Motorola Inc A transmitter splits a signal into a plurality of sub-signals, each containing a plurality of sub-carriers, and amplifies each sub-signal separately.
JP4637669B2 (ja) 2005-07-13 2011-02-23 京セラ株式会社 フィルタ装置とこれを用いたマルチバンドフィルタ、分波器及び通信装置
US7826810B2 (en) 2006-05-08 2010-11-02 Harris Corporation Multiband radio with transmitter output power optimization
US8107906B2 (en) * 2007-01-19 2012-01-31 Wi-Lan Inc. Transceiver with receive and transmit path performance diversity
DE102007024895B4 (de) 2007-05-29 2015-08-27 Epcos Ag Multiband-Filter
US8068795B2 (en) 2009-03-24 2011-11-29 Freescale Semiconductor, Inc. RF multiband transmitter with balun
DE102009019840A1 (de) 2009-05-04 2011-01-27 Siemens Aktiengesellschaft Kontrastverstärkung von CT-Bildern mittels eines Multibandfilters
US8971830B2 (en) * 2009-05-12 2015-03-03 Qualcomm Incorporated Multi-mode multi-band power amplifier module
EP2333968B1 (en) * 2009-12-09 2012-02-08 Alcatel Lucent Transmitter arrangement for fragmented spectrum RF signals
US8855174B2 (en) 2012-08-10 2014-10-07 Alcatel Lucent Frequency agile multiband transmitter using a radio frequency digital to analog converter
KR20150110685A (ko) 2013-01-25 2015-10-02 리전츠 오브 더 유니버스티 오브 미네소타 다중 채널 송신기를 위한 다중 대역 rf/mri 펄스 디자인
KR101872451B1 (ko) 2013-05-13 2018-06-29 삼성전자주식회사 복수 개의 무선 주파수 디지털-아날로그 변환기들을 이용하여 다중 모드 및 다중 대역을 지원하는 송신기 및 송신기의 제어 방법
CN103781202B (zh) 2014-02-26 2017-10-17 华为终端有限公司 多模无线终端
US9413325B2 (en) 2014-07-01 2016-08-09 Time Warner Cable Enterprises Llc Switchless multiband filter architecture
JP6490928B2 (ja) 2014-09-08 2019-03-27 株式会社東芝 マルチバンドフィルタ
WO2016120672A1 (en) 2015-01-30 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Multiband transmitter circuit with integrated circulators and filters
KR102218047B1 (ko) 2015-03-20 2021-02-22 한국전자통신연구원 캐리어 어그리게이션을 위한 송신 장치
US9634702B2 (en) 2015-04-30 2017-04-25 Nokia Technologies Oy Multiband filter for non-contiguous channel aggregation
WO2016187887A1 (zh) * 2015-05-28 2016-12-01 华为技术有限公司 信号传输方法和装置
JP2017011533A (ja) * 2015-06-23 2017-01-12 株式会社村田製作所 通信ユニット
KR101988406B1 (ko) * 2015-06-26 2019-06-12 스카이워크스 솔루션즈, 인코포레이티드 집성된 반송파의 개별 반송파의 전력 검출
US20170012763A1 (en) 2015-07-08 2017-01-12 Mediatek Inc. Multiband Filter Circuitry, Multiband Duplexer Circuitry, and Related Radio-Frequency System
CN106656243A (zh) * 2015-10-27 2017-05-10 中兴通讯股份有限公司 多频段收发信机及多频段射频信号发送和接收方法
US10263647B2 (en) 2016-04-09 2019-04-16 Skyworks Solutions, Inc. Multiplexing architectures for wireless applications
KR102043667B1 (ko) * 2016-11-16 2019-11-12 한국전자통신연구원 광대역 수동상호변조왜곡 신호 측정 장치 및 방법
JP2018196104A (ja) * 2017-05-16 2018-12-06 株式会社村田製作所 マルチバンド対応電力増幅モジュール
US10608603B2 (en) * 2017-05-16 2020-03-31 Murata Manufacturing Co., Ltd. Multi-band power amplifier module
US10924193B2 (en) * 2017-09-29 2021-02-16 International Business Machines Corporation Transmit and receive radio frequency (RF) signals without the use of baseband generators and local oscillators for up conversion and down conversion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009959A1 (fr) * 2007-07-16 2009-01-22 Datang Mobile Communications Equipment Co., Ltd Procede et systeme de traitement de signaux d'antennes multiples
CN101534141A (zh) * 2009-04-15 2009-09-16 华为技术有限公司 一种射频模块的支持多频段共存的方法及装置
CN102347779A (zh) * 2011-07-22 2012-02-08 新邮通信设备有限公司 时分双工射频拉远单元设备及多通道接收链路复用方法
WO2016004589A1 (zh) * 2014-07-09 2016-01-14 华为技术有限公司 一种信号传输方法及设备
KR20160106996A (ko) * 2015-03-03 2016-09-13 한국전자통신연구원 이동통신 기지국에서 무선 광섬유로 디지털 유닛과 통신을 위한 원격 무선 유닛
CN107800459A (zh) * 2016-08-31 2018-03-13 中国电信股份有限公司 用于跨频段载波聚合的射频拉远单元 rru及合路方法
CN107800460A (zh) * 2016-08-31 2018-03-13 中国电信股份有限公司 用于跨频段载波聚合的射频拉远单元rru及传输方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489503A (zh) * 2021-07-01 2021-10-08 维沃移动通信有限公司 射频架构和电子设备

Also Published As

Publication number Publication date
US20210328612A1 (en) 2021-10-21
JP7154419B2 (ja) 2022-10-17
EP3893403A1 (en) 2021-10-13
BR112021012612A2 (pt) 2021-09-08
CN113273087B (zh) 2022-03-08
KR102513549B1 (ko) 2023-03-22
KR20210106554A (ko) 2021-08-30
KR20230043238A (ko) 2023-03-30
JP2022515510A (ja) 2022-02-18
CN114745020A (zh) 2022-07-12
EP3893403B1 (en) 2023-07-19
US11870474B2 (en) 2024-01-09
US20220385319A1 (en) 2022-12-01
EP4274104A3 (en) 2024-01-24
EP4274104A2 (en) 2023-11-08
EP3893403A4 (en) 2021-12-01
US11438020B2 (en) 2022-09-06
CN113273087A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN110049580B (zh) 用于利用到基站的直接数字接口的分布式天线系统中本底噪声优化的系统和方法
US9960749B2 (en) Intra-band combiner-divider and multisystem combining platform
WO2015127854A1 (zh) 多模无线终端
JP6049687B2 (ja) デュアルバンドパス・チャネル・フィルタを使用した同一バンド結合器
CN105376872A (zh) 一种支持载波聚合的方法及终端
US8090326B1 (en) Communication signal transmission method, device, and system
CN106911355B (zh) 一种信号传输装置、信号传输系统及方法
WO2012126248A1 (zh) 消除终端模式间互扰的方法及终端
CN102547954A (zh) 附加功率回退值的上报方法、基站及终端
US11870474B2 (en) Signal processing apparatus and method, and access network device
EP3131214A1 (en) Combiner, base station, signal combiner system and signal transmission method
US9258050B2 (en) Transceiving module, antenna, base station and signal receiving method
CN110289879B (zh) 射频单元和终端设备
RU2780493C1 (ru) Устройство и способ обработки сигналов и устройство доступа к сети
KR20020070729A (ko) 무선 통신 시스템의 신호 중계 장치
EP3994800A1 (en) Cross antenna configuration in frequency division duplex (fdd) dual-band radio
EP4231525A1 (en) Radio-frequency unit, antenna, and signal processing method
EP3637549A1 (en) Antenna system, base station and communication system
US10790863B2 (en) Branching tower-mounted amplifier and antenna feed systemcross-reference to related applications
CN213126494U (zh) 一种4g宏基站、4g双载波基站平台和通讯终端
WO2024045081A1 (zh) 一种射频系统
CN103490834A (zh) 抑制互调干扰的系统和通信装置
WO2015106407A1 (zh) 射频设备和用户系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537885

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021012612

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018944234

Country of ref document: EP

Effective date: 20210707

ENP Entry into the national phase

Ref document number: 20217023484

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021012612

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210625