WO2016004589A1 - 一种信号传输方法及设备 - Google Patents

一种信号传输方法及设备 Download PDF

Info

Publication number
WO2016004589A1
WO2016004589A1 PCT/CN2014/081881 CN2014081881W WO2016004589A1 WO 2016004589 A1 WO2016004589 A1 WO 2016004589A1 CN 2014081881 W CN2014081881 W CN 2014081881W WO 2016004589 A1 WO2016004589 A1 WO 2016004589A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
digital
transmit
transmission
Prior art date
Application number
PCT/CN2014/081881
Other languages
English (en)
French (fr)
Inventor
袁震
赵虎
张巧明
龚兰平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480033995.XA priority Critical patent/CN105519012B/zh
Priority to PCT/CN2014/081881 priority patent/WO2016004589A1/zh
Publication of WO2016004589A1 publication Critical patent/WO2016004589A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2609Arrangements for range control, e.g. by using remote antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal transmission method and device.
  • MIMO Multiple Input Multiple Output
  • LTE Long Term Evolution
  • WIFI Wireless Fidelity
  • Embodiments of the present invention provide a signal transmission method and apparatus, which can reduce the number of feeders in a communication device and reduce the cost of the communication device.
  • a transmitting device includes: a near end unit and a remote unit, wherein the near end unit includes a combiner, and the remote unit includes a splitter, a frequency converter, a first antenna, and a second Antenna
  • the combiner is configured to acquire a first transmit signal and a second transmit signal, combine the first transmit signal and the second transmit signal into a transmit signal, and transmit the transmit signal to a path through a feeder
  • the splitter wherein the first transmit signal is a radio frequency signal, the second transmit signal is a non-radio frequency signal, and the radio frequency signal is a signal having a transmit frequency;
  • the splitter is configured to receive the transmission signal transmitted by the combiner, and separate the first transmit signal and the second transmit signal from the transmit signal, Transmitting the first transmission signal to the first antenna, and transmitting the second transmission signal to the frequency converter;
  • the frequency converter is configured to receive the second transmission signal transmitted by the splitter, adjust a frequency of the second transmission signal to generate a second frequency conversion signal, and transmit the second frequency conversion signal to the second An antenna, wherein the second frequency conversion signal is a radio frequency signal; the first antenna is configured to receive the first transmission signal transmitted by the splitter, and send the first transmission signal;
  • the second antenna is configured to receive the second variable frequency signal transmitted by the frequency converter, and send the second frequency conversion signal.
  • the remote unit further includes a detection regulator and a first amplifier
  • the detection regulator is configured to detect an amplitude of the first transmission signal
  • the first amplifier is configured to perform amplitude adjustment on the second frequency conversion signal according to an amplitude of the first transmission signal detected by the detection regulator, to make an amplitude of the second frequency conversion signal and the first
  • the absolute value of the difference in amplitude of the transmitted signal is less than the preset threshold.
  • the near-end unit further includes a clock oscillator
  • the clock oscillator is configured to generate a clock signal, and transmit the clock signal to the combiner;
  • the combiner is further configured to receive the clock signal transmitted by the clock oscillator, and combine the clock signal, the first transmit signal, and the second transmit signal into the transmit signal;
  • the splitter is further configured to separate the clock signal, the first transmit signal, and the second transmit signal from the transmission signal, and transmit the clock signal to the frequency converter;
  • the frequency converter is further configured to receive the clock signal transmitted by the splitter, adjust a frequency of the clock signal to generate a first mixed signal, and the first mixed signal and the second transmit signal Performing a mixing process to generate the second variable frequency signal, where
  • the frequency of the first mixing signal is an absolute value of a difference between a frequency of the first transmission signal and a frequency of the second transmission signal.
  • the near-end unit further includes a digital signal processor and a first digital-to-analog converter And a second digital to analog converter;
  • the digital signal processor is configured to acquire a baseband signal, perform digital signal modulation on the baseband signal to generate a first digital signal and a second digital signal, and transmit the first digital signal to the first digital-to-analog converter Transmitting the second digital signal to the second digital to analog converter;
  • the first digital-to-analog converter is configured to receive the first digital signal transmitted by the digital signal processor, and perform digital-to-analog conversion on the first digital signal to generate the first transmit signal;
  • the second digital-to-analog converter is configured to receive the second digital signal transmitted by the digital signal processor, and perform digital-to-analog conversion on the second digital signal to generate the second transmit signal.
  • the near-end unit further includes a second amplifier
  • the second amplifier is configured to perform amplification processing on the first transmission signal.
  • a receiving device comprising: a remote unit and a proximal unit, the remote unit includes a combiner, a frequency converter, a first antenna, and a second antenna, and the near-end unit includes Splitter;
  • the first antenna is configured to receive a first received signal, and transmit the first received signal to the combiner, where the first received signal is a radio frequency signal, and the radio frequency signal is a signal having a transmit frequency;
  • the second antenna is configured to receive a second frequency conversion signal, transmit the second frequency conversion signal to the frequency converter, the second frequency conversion signal is a radio frequency signal, and the second frequency conversion signal is a second receiving signal a signal generated by mixing processing;
  • the frequency converter is configured to receive the second frequency conversion signal transmitted by the second antenna, adjust a frequency of the second frequency conversion signal, generate the second received signal, and Transmitting a received signal to the combiner;
  • the combiner is configured to receive the first received signal transmitted by the first antenna and the second received signal transmitted by the frequency converter, and the first received signal and the second received signal Merging into a transmission signal, and transmitting the transmission signal to the splitter through a feeder;
  • the splitter is configured to receive the transmission signal transmitted by the combiner, and separate the first received signal and the second received signal from the transmission signal.
  • the remote unit further includes a first amplifier
  • the first amplifier is configured to perform amplitude adjustment on the second variable frequency signal, so that an absolute value of a difference between the amplitude of the second variable frequency signal and a preset amplitude is less than a preset threshold.
  • the frequency converter is further configured to acquire a clock signal, adjust a frequency of the clock signal to generate a second mixed signal, and perform mixing processing on the second mixed signal and the second variable frequency signal to generate the second Receiving a signal, wherein a frequency of the second mixed signal is an absolute value of a difference between a frequency of the first received signal and a frequency of the second received signal.
  • the near-end unit further includes a first analog-to-digital converter, and a second modulo Converter and digital signal processor;
  • the first analog-to-digital converter is configured to perform analog-to-digital conversion on the first received signal separated by the splitter to generate a first digital signal, and transmit the first digital signal to the digital signal Processor
  • the second analog-to-digital converter is configured to perform analog-to-digital conversion on the second received signal separated by the splitter to generate a second digital signal, and transmit the second digital signal to the digital signal Processor
  • the digital signal processor is configured to receive the first digital signal transmitted by the first analog to digital converter and the second digital signal transmitted by the second analog to digital converter, The first digital signal and the second digital signal are digitally demodulated to generate a baseband signal.
  • the near-end unit further includes a second amplifier
  • the second amplifier is configured to perform amplification processing on the first received signal separated by the splitter.
  • a duplex communication device in a third aspect, includes a near end unit and a remote unit, the near end unit includes a first multiplexer, and the remote unit includes a second multiplexer, a first frequency converter, and a first Two frequency converters, a first duplexer, a second duplexer, a first antenna and a second antenna;
  • the first multiplexer is configured to: when the duplex communication device sends a signal, acquire a first sending signal and a second sending signal, and combine the first sending signal and the second sending signal into Transmitting a signal, and transmitting the transmission signal to the second multiplexer through a feeder, wherein the first transmission signal is a radio frequency signal, the second transmission signal is a non-radio frequency signal, and the radio frequency signal is a signal having a transmission frequency; the second multiplexer configured to receive, when the duplex communication device transmits a signal, the transmission signal transmitted by the first multiplexer, and separate from the transmission signal The first transmit signal and the second transmit signal, the first transmit signal is transmitted to a first duplexer, and the second transmit signal is transmitted to the first frequency converter;
  • the first frequency converter is configured to receive the second transmission signal transmitted by the second multiplexer, adjust a frequency of the second transmission signal to generate a second frequency conversion signal, and transmit the second frequency conversion signal to The second duplexer, wherein the second variable frequency signal is a radio frequency signal;
  • the first duplexer is configured to receive, when the duplex communication device sends a signal, the first sending signal transmitted by the second multiplexer, and separate the first sending signal from the received signal And transmitting the first transmit signal to the first antenna, where the first antenna is configured to receive, when the duplex communication device sends a signal, the first transmit Transmitting a signal and transmitting the first transmit signal; the second duplexer is configured to receive when the duplex communication device sends a signal The second frequency conversion signal transmitted by the first frequency converter separates the second frequency conversion signal from the received signal, and transmits the second frequency conversion signal to the second antenna; the second antenna And receiving, when the duplex communication device sends a signal, the second frequency conversion signal transmitted by the second duplexer and transmitting the second frequency conversion signal; or
  • the first antenna is configured to: when the duplex communication device receives a signal, receive a first received signal, and transmit the first received signal to the first duplexer, where the first received signal is a radio frequency a signal, the radio frequency signal is a signal having a transmission frequency; the first duplexer is configured to receive, when the duplex communication device receives a signal, the first received signal transmitted by the first antenna, The first received signal is separated from the transmitted signal, and the first received signal is transmitted to the second multiplexer; the second antenna is configured to be used when the duplex communication device receives a signal, Receiving a second variable frequency signal, transmitting the second variable frequency signal to the second duplexer, the second variable frequency signal is a radio frequency signal, and the second variable frequency signal is a second received signal generated by mixing processing signal of;
  • the second duplexer is configured to receive, when the duplex communication device receives a signal, the second frequency conversion signal transmitted by the second antenna, and separate the second frequency conversion signal from the transmitted signal, And transmitting the second frequency conversion signal to the second frequency converter;
  • the second frequency converter is configured to receive the second frequency conversion signal transmitted by the second duplexer, and adjust the second frequency conversion signal Frequency of generating the second received signal and transmitting the second received signal to the second multiplexer;
  • the second multiplexer is configured to receive the first received signal transmitted by the first duplexer and the second transmitted by the second frequency converter when the duplex communication device receives a signal Receiving a signal, combining the first received signal and the second received signal into a transmission signal, and transmitting the transmission signal to the first multiplexer through a feeder;
  • the first multiplexer is configured to receive, when the duplex communication device receives a signal, the transmission signal transmitted by the second multiplexer, and separate the first received signal from the transmission signal And the second received signal.
  • the remote unit further includes a detection regulator, a first adjustable amplifier, and a second adjustable amplifier;
  • the detecting regulator is configured to detect an amplitude of the first sending signal when the duplex communication device sends a signal
  • the first adjustable amplifier is configured to: when the duplex communication device sends a signal, perform amplitude adjustment on the second frequency conversion signal according to an amplitude of the first transmission signal detected by the detection regulator, so that An absolute value of a difference between an amplitude of the second variable frequency signal and an amplitude of the first transmission signal is less than a preset threshold;
  • the second adjustable amplifier is configured to: when the duplex communication device receives a signal, perform amplitude adjustment on the second frequency conversion signal according to an amplitude of the first transmission signal detected by the detection regulator, so that The absolute value of the difference between the amplitude of the second variable frequency signal and the amplitude of the first transmitted signal is less than a preset threshold.
  • the near-end unit further includes a clock oscillator
  • the clock oscillator is configured to generate a clock signal, and transmit the clock signal to the first multiplexer;
  • the first multiplexer is configured to receive, when the duplex communication device sends a signal, the clock signal transmitted by the clock oscillator, and the clock signal, the first transmit signal, and the first Two transmit signals are combined into the transmit signal;
  • the second multiplexer is further configured to: when the duplex communication device sends a signal, separate the clock signal, the first sending signal, and the second sending signal from the transmission signal, Transmitting the clock signal to the first frequency converter and the second frequency converter;
  • the first frequency converter is further configured to: when the duplex communication device sends a signal, receive the clock signal transmitted by the second multiplexer, and adjust a frequency of the clock signal to generate a first mixing signal, Mixing the first mixed signal and the second transmit signal to generate the second variable frequency signal, where a frequency of the first mixed signal is a frequency of the first transmit signal and The absolute value of the difference between the frequencies of the second transmitted signals;
  • the second frequency converter is further configured to: when the duplex communication device receives a signal, receive the clock signal transmitted by the second multiplexer, and adjust a frequency of the clock signal to generate a second mixing signal, Performing a mixing process on the second mixed signal and the second variable frequency signal to generate the second received signal, where a frequency of the second mixed signal is a frequency of the first received signal and the The absolute value of the difference between the frequencies of the second received signals.
  • the near-end unit further includes a first digital-to-analog converter and a second digital-analog a converter, a first analog to digital converter, a second analog to digital converter, and a digital signal processor;
  • the digital signal processor is configured to: when the duplex communication device transmits a signal, acquire a baseband signal, and perform digital signal modulation on the baseband signal to generate a first digital signal and a second digital signal, where the first digital Transmitting a signal to the first digital to analog converter, and transmitting the second digital signal to the second digital to analog converter;
  • the first digital-to-analog converter is configured to receive, when the duplex communication device sends a signal, the first digital signal transmitted by the digital signal processor, and perform digital-to-analog conversion on the first digital signal The first transmit signal;
  • the second digital-to-analog converter is configured to receive, when the duplex communication device sends a signal, the second digital signal transmitted by the digital signal processor, and perform digital-to-analog conversion on the second digital signal The second transmission signal;
  • the first analog-to-digital converter is configured to perform analog-to-digital conversion on the first received signal separated by the first multiplexer to generate a first digital signal when the duplex communication device receives a signal, and Transmitting the first digital signal to the digital signal processor;
  • the second analog to digital converter configured to separate the first multiplexer when the duplex communication device receives a signal
  • the second received signal is subjected to analog-to-digital conversion to generate a second digital signal, and the second digital signal is transmitted to the digital signal processor;
  • the digital signal processor is further configured to receive when the duplex communication device receives Receiving, by the first digital signal transmitted by the first analog to digital converter and the second digital signal transmitted by the second analog to digital converter, the first digital signal and the second
  • the digital signal is digitally demodulated to generate a baseband signal.
  • the near-end unit further includes a third amplifier and a fourth amplifier;
  • the third amplifier is configured to perform amplification processing on the first transmission signal when the duplex communication device transmits a signal
  • the fourth amplifier is configured to perform amplification processing on the first received signal when the duplex communication device receives a signal.
  • the fourth aspect includes:
  • first transmit signal is a radio frequency signal
  • second transmit signal is a non-radio frequency signal
  • radio frequency signal is a signal having a transmit frequency
  • the first transmission signal and the second transmission signal are separated from the transmission signal
  • the method further includes:
  • Detecting an amplitude of the first transmission signal performing amplitude adjustment on the second frequency conversion signal according to an amplitude of the first transmission signal, and difference between an amplitude of the second frequency conversion signal and an amplitude of the first transmission signal
  • the absolute value is less than the preset threshold.
  • the combining the first sending signal and the second sending signal into a transmission signal includes:
  • the clock signal, the first transmission signal, and the second transmission signal are separated from the transmission signal
  • the adjusting the frequency of the second sending signal according to the frequency of the first sending signal, and generating the second variable frequency signal includes:
  • the frequency is an absolute value of a difference between a frequency of the first transmission signal and a frequency of the second transmission signal.
  • the acquiring the first sending signal and the second sending signal includes:
  • the method further includes:
  • the first transmission signal is subjected to amplification processing.
  • a signal receiving method includes:
  • the first received signal and the second variable frequency signal are radio frequency signals
  • the second variable frequency signal is a signal generated by the second receiving signal by mixing processing
  • the second received signal is a non-radio frequency signal
  • the radio frequency signal is a signal having a transmission frequency
  • the method further includes:
  • the adjusting the frequency of the second variable frequency signal to generate the second received signal includes:
  • the frequency of the second mixing signal is the absolute value of the difference between the frequency of the first received signal and the frequency of the second received signal.
  • the separating the first receiving signal and the After the second received signal further includes:
  • the first digital signal and the second digital signal are digitally modulated to generate a baseband signal.
  • the separating the first receiving signal and the After the second received signal further includes:
  • the first received signal is subjected to amplification processing.
  • the signal transmission method and device provided by the embodiment of the present invention combine the first signal and the second signal into a transmission signal by acquiring the first signal and the second signal, and transmit the transmission signal to the transmission unit through a feeder.
  • the remote unit after transmitting the transmission signal to the remote unit, separates the first signal and the second signal from the transmission signal, adjusts the frequency of the second signal to generate a second frequency conversion signal, and respectively transmits the first signal and the second frequency conversion signal, can It is enough to reduce the number of feeders in the communication device and reduce the cost of the communication device.
  • FIG. 1 is a schematic structural diagram of a transmitting device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another sending device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a receiving device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another receiving device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a duplex communication device according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of another duplex communication device according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a duplex communication device according to another embodiment of the present invention;
  • the transmitting device 10 includes a near-end unit 11 and a remote unit 12, where the near-end unit 1 1 includes a combiner 1 101, and the remote unit 12 includes a splitter 1201, a frequency converter 1202, a first antenna 1203, and a second antenna 1204.
  • the combiner 1 101 is configured to acquire the first transmit signal and the second transmit signal, combine the first transmit signal and the second transmit signal into a transmit signal, and transmit the transmit signal to the splitter 1201 through a feeder.
  • the first transmission signal is a radio frequency signal
  • the second transmitted signal is a non-RF signal
  • the RF signal is a signal having a transmitting frequency.
  • the splitter 1201 is configured to receive the transmission signal transmitted by the combiner 1101, separate the first transmission signal and the second transmission signal from the transmission signal, and transmit the first transmission signal to the first antenna 1203, and the second transmission signal Transfer to the frequency converter 1202.
  • the frequency converter 1202 is configured to receive a second transmission signal transmitted by the splitter 1201, adjust a frequency of the second transmission signal to generate a second frequency conversion signal, and transmit the second frequency conversion signal to the second antenna 1204, where the second frequency conversion signal is RF signal.
  • the first antenna 1203 is configured to receive the first transmit signal transmitted by the splitter 1201 and send the first transmit signal.
  • the second antenna 1204 is configured to receive the second variable frequency signal transmitted by the frequency converter 1202 and send the second frequency conversion signal.
  • the remote unit 12 further includes a detection regulator 1205 and a first amplifier 1206.
  • the detection regulator 1205 is configured to detect the amplitude of the first transmission signal.
  • the first amplifier 1206 is configured to perform amplitude adjustment on the second frequency conversion signal according to the amplitude of the first transmission signal detected by the detection regulator 1205, so that the absolute value of the difference between the amplitude of the second frequency conversion signal and the amplitude of the first transmission signal is less than Preset threshold.
  • the near-end unit 11 further includes a clock oscillator 1102.
  • the clock oscillator 1102 is configured to generate a clock signal and transmit the clock signal to the combiner 1101.
  • the combiner 1101 is further configured to receive a clock signal transmitted by the clock oscillator 1102, and combine the clock signal, the first transmit signal, and the second transmit signal into a transmit signal.
  • the splitter 1201 is further configured to separate the clock signal, the first transmit signal, and the second transmit signal from the transmission signal, and transmit the clock signal to the frequency converter 1202.
  • the frequency converter 1202 is further configured to receive a clock signal transmitted by the splitter 1201, adjust a frequency of the clock signal to generate a first mixed signal, and mix the first mixed signal and the second transmit signal to generate a second variable frequency signal, where The frequency of the first mixed signal is the difference between the frequency of the first transmitted signal and the frequency of the second transmitted signal.
  • the near-end unit 11 further includes a digital signal processor. 1103.
  • the digital signal processor 1103 is configured to acquire a baseband signal, perform digital signal modulation on the baseband signal to generate a first digital signal and a second digital signal, and transmit the first digital signal to the first digital to analog converter 1104, and the second digital signal Transfer to the second digital to analog converter 1105.
  • the first digital-to-analog converter 1104 is configured to receive a first digital signal transmitted by the digital signal processor 1103, and perform digital-to-analog conversion on the first digital signal to generate a first transmit signal.
  • the second digital-to-analog converter 1105 is configured to receive a second digital signal transmitted by the digital signal processor 1103, and perform digital-to-analog conversion on the second digital signal to generate a second transmit signal.
  • the proximal unit 11 also includes a second amplifier 1106.
  • the second amplifier 1106 is configured to perform amplification processing on the first transmission signal.
  • the transmitting device provided by the embodiment of the present invention combines the first sending signal and the second sending signal into a transmission signal by acquiring the first sending signal and the second sending signal, and transmitting the transmission signal to the near-end unit through a feeder.
  • the remote unit after transmitting the transmission signal to the remote unit, separates the first transmission signal and the second transmission signal from the transmission signal, adjusts the frequency of the second transmission signal to generate a second frequency conversion signal, and respectively transmits the first transmission signal and the first
  • the two frequency conversion signals can reduce the number of feeders in the communication device and reduce the cost of the communication device.
  • An embodiment of the present invention provides a receiving device, which may be applied to MIMO technology.
  • the receiving device 30 includes a remote unit 31 and a near-end unit 32, and the remote unit 31 includes a combined path.
  • the converter 3101, the frequency converter 3102, the first antenna 3103 and the second antenna 3104, and the near-end unit 32 includes a splitter 3201.
  • the first antenna 3103 is configured to receive the first received signal, and transmit the first received signal to the combiner 3101.
  • the first received signal is a radio frequency signal
  • the radio frequency signal is a signal having a transmit frequency.
  • the second antenna 3104 is configured to receive the second variable frequency signal, transmit the second variable frequency signal to the frequency converter 3102, the second frequency conversion signal is a radio frequency signal, and the second frequency conversion signal is a signal generated by the second receiving signal by the mixing process.
  • the frequency converter 3102 is configured to receive the second frequency conversion signal transmitted by the second antenna 3104, The frequency of the second variable frequency signal is adjusted to generate a second received signal, and the second received signal is transmitted to combiner 3 101.
  • the combiner 3 101 is configured to receive the first received signal transmitted by the first antenna 3 103 and the second received signal transmitted by the frequency converter 3 102, combine the first received signal and the second received signal into a transmission signal, and transmit the signal The signal is transmitted to the splitter 3201 through a feeder.
  • the splitter 3201 is configured to receive the transmission signal transmitted by the combiner 3 101, and separate the first received signal and the second received signal from the transmitted signal.
  • the remote unit 31 further includes a first amplifier 3105.
  • the first amplifier 3105 is configured to perform amplitude adjustment on the second variable frequency signal, so that the absolute value of the difference between the amplitude of the second variable frequency signal and the preset amplitude is less than a preset threshold.
  • the frequency converter 3 102 is further configured to acquire a clock signal, adjust a frequency of the clock signal to generate a second mixed signal, and mix the second mixed signal and the second variable frequency signal to generate a second received signal, where the second mixed
  • the frequency of the frequency signal is the difference between the frequency of the first received signal and the frequency of the second received signal.
  • the near-end unit 32 further includes a first analog-to-digital converter 3202, a second analog-to-digital converter 3203, and a digital signal processor 3204.
  • the first analog-to-digital converter 3202 is configured to perform analog-to-digital conversion on the first received signal separated by the splitter 3201 to generate a first digital signal, and transmit the first digital signal to the digital signal processor 3204.
  • the second analog-to-digital converter 3203 is configured to perform analog-to-digital conversion on the second received signal separated by the splitter 3201 to generate a second digital signal, and transmit the second digital signal to the digital signal processor 3204.
  • the digital signal processor 3204 is configured to receive a first digital signal transmitted by the first analog to digital converter 3202 and a second digital signal transmitted by the second analog to digital converter 3203, and perform digital signals on the first digital signal and the second digital signal. Demodulation generates a baseband signal.
  • the proximal unit 32 also includes a second amplifier 3205.
  • the second amplifier 3205 is configured to perform amplification processing on the first received signal separated by the splitter 3201.
  • the receiving device receives the first received signal and the The second frequency conversion signal adjusts the frequency of the second frequency conversion signal to generate a second reception signal, combines the first reception signal and the second reception signal into a transmission signal, and transmits the transmission signal to the near end unit through a feeder line, and transmits the transmission signal After the signal is transmitted to the near-end unit, the first received signal and the second received signal are separated from the transmitted signal, which can reduce the number of feeders in the communication device and reduce the cost of the communication device.
  • Embodiments of the present invention provide a duplex communication device, which may be applied to
  • the duplex communication device 50 includes a near-end unit 5 1 and a remote unit 52, the near-end unit 51 includes a first multiplexer 5 101, and the remote unit 52 includes a second The device 5201, the first frequency converter 5202, the second frequency converter 5203, the first duplexer 5204, the second duplexer 5205, the first antenna 5206, and the second antenna 5207.
  • the first multiplexer 5 101 is configured to acquire the first sending signal and the second sending signal when the duplex communication device 50 sends a signal, and combine the first sending signal and the second sending signal into a transmission signal, and The transmission signal is transmitted to the second multiplexer 5201 through a feeder, wherein the first transmission signal is a radio frequency signal, the second transmission signal is a non-radio frequency signal, and the radio frequency signal is a signal having a transmission frequency.
  • the second multiplexer 5201 is configured to receive a transmission signal transmitted by the first multiplexer 5 101 when the duplex communication device 50 transmits a signal, and separate the first transmission signal and the second transmission signal from the transmission signal, A transmit signal is transmitted to the first duplexer 5204, and the second transmit signal is transmitted to the first inverter 5202.
  • the first frequency converter 5202 is configured to receive a second transmission signal transmitted by the second multiplexer 5201, adjust a frequency of the second transmission signal to generate a second frequency conversion signal, and transmit the second frequency conversion signal to the second duplexer 5205, where
  • the second variable frequency signal is a radio frequency signal.
  • the first duplexer 5204 is configured to receive, when the duplex communication device 50 sends a signal, a first sending signal transmitted by the second multiplexer 5201, separate the first sending signal from the received signal, and send the first sending The signal is transmitted to the first antenna 5206.
  • the first antenna 5206 is configured to receive the first transmission signal transmitted by the first duplexer 5204 and transmit the first transmission signal when the duplex communication device 50 transmits a signal.
  • the second duplexer 5205 is configured to receive the second variable frequency signal transmitted by the first frequency converter 5202 when the duplex communication device 50 sends a signal, and use the second frequency conversion signal and the received signal. The numbers are separated and the second variable frequency signal is transmitted to the second antenna 5207.
  • the second antenna 5207 is configured to receive the second frequency conversion signal transmitted by the second duplexer 5205 and transmit the second frequency conversion signal when the duplex communication device 50 transmits a signal.
  • the first antenna 5206 is configured to receive the first received signal when the duplex communication device 50 receives the signal, and transmit the first received signal to the first duplexer 5204, where the first received signal is a radio frequency signal, and the radio frequency signal is possessed and transmitted.
  • the signal of the frequency is a radio frequency signal, and the radio frequency signal is possessed and transmitted.
  • the first duplexer 5204 is configured to receive, when the duplex communication device 50 receives the signal, the first received signal transmitted by the first antenna 5206, separate the first received signal from the transmitted signal, and transmit the first received signal. To the second multiplexer 5201.
  • the second antenna 5207 is configured to receive the second frequency conversion signal when the duplex communication device 50 receives the signal, transmit the second frequency conversion signal to the second duplexer 5205, the second frequency conversion signal is a radio frequency signal, and the second frequency conversion signal It is a signal generated by the second received signal through the mixing process.
  • the second duplexer 5205 is configured to receive, when the duplex communication device 50 receives the signal, the second frequency conversion signal transmitted by the second antenna 5207, separate the second frequency conversion signal from the transmitted signal, and transmit the second frequency conversion signal To the second inverter 5203.
  • the second frequency converter 5203 is configured to receive the second frequency conversion signal transmitted by the second duplexer 5205, adjust the frequency of the second frequency conversion signal to generate a second receiving signal, and transmit the second receiving signal to the second multiplexer 5201.
  • the second multiplexer 5201 is configured to receive, when the duplex communication device 50 receives the signal, the first received signal transmitted by the first duplexer 5204 and the second received signal transmitted by the second frequency converter 5203, and the first received signal And the second received signal is combined into a transmission signal, and the transmission signal is transmitted to the first multiplexer 5101 through a feeder.
  • the first multiplexer 5101 is configured to receive the transmission signal transmitted by the second multiplexer 5201 when the duplex communication device 50 receives the signal, and separate the first received signal and the second received signal from the transmission signal.
  • the remote unit 52 further includes a detection regulator 5208, a first adjustable amplifier 5209, and a second adjustable amplifier 5210.
  • the detection regulator 5208 is configured to detect the amplitude of the first transmission signal when the duplex communication device 50 transmits a signal.
  • the first adjustable amplifier 5209 is configured to: when the duplex communication device 50 transmits a signal, adjust the amplitude of the second variable frequency signal according to the amplitude of the first sending signal detected by the detecting regulator 5208, so that the amplitude of the second variable frequency signal is The absolute value of the difference between the amplitudes of the first transmitted signals is less than a preset threshold.
  • the second adjustable amplifier 5210 is configured to: when the duplex communication device 50 receives the signal, perform amplitude adjustment on the second frequency conversion signal according to the amplitude of the first transmission signal detected by the detection regulator 5208, so that the amplitude of the second frequency conversion signal is The absolute value of the difference between the amplitudes of the first transmitted signals is less than a preset threshold.
  • the detection regulator 5208 can sample the first transmission signal and the second variable frequency signal after being amplified by the first tunable amplifier 5203, because the transmission of the signal is continuous, assuming a pre- Sampling once, so that the amplitude difference between the first transmitted signal and the second converted signal sampled during the current period can be used as the basis for adjusting the second variable frequency signal in the next cycle, that is, the first transmitted signal at the previous time and
  • the amplitude difference between the two signals of the second variable frequency signal amplified by the first adjustable amplifier 5209 is respectively transmitted to the first adjustable amplifier 5209 and the second adjustable amplifier 5210, so that the first adjustable amplifier 5209 adjusts the present
  • the amplitude of the second variable frequency signal that needs to be transmitted at a time is, at the same time, so that the second adjustable amplifier 5210 adjusts the amplitude of the second converted signal received at the present time.
  • the near-end unit 51 further includes a clock oscillator 5102.
  • the clock oscillator 5102 is configured to generate a clock signal and transmit the clock signal to the first multiplexer 5101.
  • the first multiplexer 5101 is configured to receive a clock signal transmitted by the clock oscillator 5102 when the duplex communication device 50 transmits a signal, and combine the clock signal, the first transmission signal, and the second transmission signal into a transmission signal.
  • the second multiplexer 5201 is further configured to: when the duplex communication device 50 transmits a signal, separate the clock signal, the first transmit signal, and the second transmit signal from the transmission signal, and transmit the clock signal to the first frequency converter 5202 and The second frequency converter 5203.
  • the first frequency converter 5202 is further configured to: when the duplex communication device 50 sends a signal, receive a clock signal transmitted by the second multiplexer 5201, adjust a frequency of the clock signal to generate a first mixed signal, and combine the first mixed signal with The second transmission signal performs a mixing process to generate a second frequency conversion signal, wherein the frequency of the first mixing signal is the difference between the frequency of the first transmission signal and the frequency of the second transmission signal.
  • the second frequency converter 5203 is further configured to: when the duplex communication device 50 receives the signal, receive the clock signal transmitted by the second multiplexer 5201, adjust the frequency of the clock signal to generate the second mixed frequency signal, and combine the second mixed frequency signal with The second variable frequency signal is subjected to a mixing process to generate a second received signal, wherein the frequency of the second mixed signal is a difference between a frequency of the first received signal and a frequency of the second received signal.
  • the near-end unit 51 further includes a first digital-to-analog converter 5103, a second digital-to-analog converter 5104, a first analog-to-digital converter 5105, a second analog-to-digital converter 5106, and a digital signal.
  • the digital signal processor 5107 is configured to: when the duplex communication device 50 transmits a signal, acquire a baseband signal, perform digital signal modulation on the baseband signal to generate a first digital signal and a second digital signal, and transmit the first digital signal to the first number
  • the analog to digital converter 5103 transmits the second digital signal to the second digital to analog converter 5104.
  • the first digital-to-analog converter 5103 is configured to receive a first digital signal transmitted by the digital signal processor 5107 when the duplex communication device 50 transmits a signal, and perform digital-to-analog conversion on the first digital signal to generate a first transmission signal.
  • the second digital-to-analog converter 5104 is configured to receive, when the duplex communication device 50 transmits a signal, a second digital signal transmitted by the digital signal processor 5107, and perform digital-to-analog conversion on the second digital signal to generate a second transmit signal.
  • the first analog-to-digital converter 5105 is configured to perform analog-to-digital conversion on the first received signal separated by the first multiplexer 5101 to generate a first digital signal when the duplex communication device 50 receives the signal, and generate the first digital signal. It is transmitted to the digital signal processor 5107.
  • the second analog-to-digital converter 5106 is configured to perform analog-to-digital conversion on the second received signal separated by the first multiplexer 5101 to generate a second digital signal when the duplex communication device 50 receives the signal, and generate the second digital signal. It is transmitted to the digital signal processor 5107.
  • the digital signal processor 5107 is further configured to receive, when the duplex communication device 50 receives the signal, the first digital signal transmitted by the first analog to digital converter 5105 and the second digital signal transmitted by the second analog to digital converter 5106.
  • a digital signal and a second digital signal are digitally demodulated to generate a baseband signal.
  • the digital signal processor 5107 and the first digital-to-analog converter 5103 perform analog modulation on the baseband signal.
  • the analog modulation is amplitude modulation
  • the digital signal processor 5107 and the second digital-to-analog converter 5104 are paired with the baseband signal.
  • Analog modulation is also performed; correspondingly, the digital signal processor 5105 and the first analog-to-digital converter 5105 perform analog modulation and demodulation on the first signal.
  • the analog modulation and demodulation is amplitude modulation and demodulation
  • the digital signal The processor 5105 and the second analog-to-digital converter 5106 also perform analog modulation and demodulation on the second signal.
  • signal modulation and demodulation There are various implementations for signal modulation and demodulation. This embodiment is merely illustrative and does not represent In this embodiment, the signal modulation and demodulation are limited to the circuit structure. The specific implementation of the modulation and demodulation of the present invention is not limited.
  • the near-end unit 51 further includes a third amplifier 5108 and a fourth amplifier 5109.
  • the third amplifier 5108 and the fourth amplifier 5109 may also be respectively connected to the remote unit 52, and the invention is not limited thereto.
  • the third amplifier 5108 is configured to perform amplification processing on the first transmission signal when the duplex communication device 50 transmits a signal.
  • the fourth amplifier 5109 is configured to perform amplification processing on the first received signal when the duplex communication device 50 receives the signal.
  • the embodiment of the present invention is not limited to the processing of two signals, and the duplex communication device 50 provided in this embodiment can be utilized by adding internal components.
  • the same principle handles multiple signals.
  • a new near-end unit may be added, and the third signal transmitted by the new near-end unit is combined with the first transmit signal and the second transmit signal to be transmitted to the second multiplexer 5201 through the first multiplexer 5101.
  • the third signal is a non-RF signal, and after the second multiplexer 5201 separates the third signal, the third signal is passed through the third frequency converter to adjust the frequency to generate a third frequency conversion signal, so that the third frequency conversion signal is a radio frequency signal. , passing the third variable frequency signal
  • the third adjustable amplifier is amplified and transmitted to the third antenna through the third duplexer.
  • the specific processing is similar to the second sending signal, and details are not described herein again.
  • the duplex communication device 50 provided in this embodiment may be applied to FDD (Frequency Division Duplexing) technology and TDD (Time Division Duplexing) technology.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the near-end unit 51 of the duplex communication device 50 further includes a first time-division switch 5 1 10
  • the remote unit 52 further includes a second time-division switch 521.
  • the first time switch 5 1 10 is used to control whether the first multiplexer 5 101 performs uplink data transmission or downlink data transmission
  • the second time switch 521 1 is used to control the second multiplexer 5201 to perform uplink data transmission. Still downlink data transmission.
  • the first duplexer 5204 and the second duplexer 5205 may be circulators for separating the transmit signal and the receive signal.
  • the duplex communication device 70 includes a near-end unit. 71 and remote unit 72, the near-end unit 71 includes a first multiplexer 7101, a clock oscillator 7102, a first digital-to-analog converter 7103, a second digital-to-analog converter 7104, a first analog-to-digital converter 7105, and a second The analog to digital converter 7106, the digital signal processor 7 107, the third amplifier 7108 and the fourth adjustable amplifier 7109, the remote unit 72 includes a second multiplexer 7201, a first frequency converter 7202, a second frequency converter 7203, A duplexer 7204, a second duplexer 7205, a first antenna 7206, a second antenna 7207, a detection regulator 7208, a first adjustable amplifier 7209, and a second amplifier 7210.
  • the first transmit signal is generated by the digital signal processor 7107 and the first digital-to-analog converter 7103
  • the second transmit signal is generated by the digital signal processor 7107 and the second digital-to-analog converter 7104
  • the first transmit signal and The second transmission signal is combined by the first multiplexer 7101 to be transmitted to the second multiplexer 7201, and the first transmission signal and the second transmission signal are separated from the second multiplexer 7201, and the second transmission signal is passed.
  • the first frequency converter 7202 performs frequency adjustment to generate a second frequency conversion signal, so that the frequency of the second frequency conversion signal is within the frequency band of the received signal, and passes through the detection regulator 7208 and the first adjustable amplification.
  • the device 7209 performs amplification processing on the second frequency conversion signal, divides the second frequency conversion signal into two signals, and transmits one of the signals as the first received signal to the second multiplexer.
  • the second receiving signal is generated by the second frequency converter 7203 to adjust the frequency
  • the first received signal and the second received signal are combined by the second multiplexer 7201 and then transmitted to the second signal.
  • a multiplexer 7101, and the first received signal and the second received signal are separated by the first multiplexer 7101, and the first received signal is amplified by the fourth adjustable amplifier 7109, respectively, for the first received signal and the second
  • the received signal is subjected to analog-to-digital conversion to generate a first digital signal and a second digital signal, and the amplitude of the first digital signal and the second digital signal is detected by the digital signal processor 71, according to the amplitude difference between the first digital signal and the second digital signal.
  • the fourth adjustable amplifier 7109 is adjusted such that after being amplified by the fourth adjustable amplifier 7109, the first received signal and the second received signal have the same amplitude, that is, the received two uplink signals are equal in power.
  • the duplex communication device provided by the embodiment of the present invention combines the first transmission signal and the second transmission signal into a transmission signal by acquiring the first transmission signal and the second transmission signal, and passes the transmission signal through a feeder line to the near-end unit. After being transmitted to the remote unit, after the transmission signal is transmitted to the remote unit, the first transmission signal and the second transmission signal are separated from the transmission signal, and the frequency of the second transmission signal is adjusted to generate a second frequency conversion signal, and the first transmission signal is respectively sent. And the second frequency conversion signal can reduce the number of feeders in the communication device and reduce the cost of the communication device.
  • a further embodiment of the present invention provides a duplex communication device.
  • the device may be embedded or itself a microprocessor computer, such as a general-purpose computer, a custom machine, a mobile phone terminal, or a tablet device.
  • the duplex communication device 8001 includes: at least one processor 801 1 , a memory 8012 , a bus 8013 , a transmitter 8014 , and a receiver 801 5 .
  • the at least one processor 801 1 , the memory 8012 , the transmitter 8014 , and the receiver 801 5 pass The bus 8013 connects and completes communication with each other.
  • the bus 8013 may be an ISA (Industry Standard Architecture) bus, a PCI (Peripheral Component) bus, or an EISA (Extended Industry Standard Architecture) bus.
  • the bus 8013 can be divided into an address bus, a data bus, Control bus, etc. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus. among them:
  • the memory 8012 is for executing application code of the inventive scheme, and the application code for executing the inventive scheme is stored in a memory and controlled by the processor 801 1 for execution.
  • the memory can be a read only memory ROM or other type of static storage device that can store static information and instructions, a random access memory RAM or other type of dynamic storage device that can store information and instructions, or can be electrically erasable or programmable.
  • These memories are connected to the processor via a bus.
  • the processor 801 1 may be a central processing unit (Central Processing Unit, hereinafter referred to as CPU), or an Application Specific Integrated Circuit (ASIC), or one configured to implement the embodiment of the present invention. Or multiple integrated circuits.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the processor 801 1 is configured to invoke the program code in the memory 8012 to perform the operations of the remote unit and the near-end unit in the device embodiment corresponding to the foregoing FIG. 5 or FIG. 6, and the specific description refers to FIG. 5 or FIG. Device embodiments are not described here.
  • the duplex communication device provided by the embodiment of the present invention combines the first transmission signal and the second transmission signal into a transmission signal by acquiring the first transmission signal and the second transmission signal, and passes the transmission signal through a feeder line to the near-end unit. After being transmitted to the remote unit, after the transmission signal is transmitted to the remote unit, the first transmission signal and the second transmission signal are separated from the transmission signal, and the frequency of the second transmission signal is adjusted to generate a second frequency conversion signal, and the first transmission signal is respectively sent. And the second frequency conversion signal can reduce the number of feeders in the communication device and reduce the cost of the communication device.
  • an embodiment of the present invention provides a signal sending method, which is applied to the sending device described in the foregoing embodiment corresponding to FIG. 1 or FIG. 2, and is included in FIG. The following steps: 901. Acquire a first sending signal and a second sending signal.
  • the first transmission signal is a radio frequency signal
  • the second transmission signal is not a radio frequency signal
  • the radio frequency signal is a signal having a transmission frequency.
  • the radio frequency signal is a signal that has a transmission frequency after being modulated, and can be directly sent out through the antenna.
  • the first transmission signal is a signal that can be directly transmitted through the antenna
  • the second transmission signal is a signal that can be transmitted after the frequency needs to be adjusted.
  • the second transmit signal may be an intermediate frequency signal.
  • the baseband signal is digitally modulated to generate a first digital signal and a second digital signal
  • the first digital signal is digital-analog converted to generate a first transmission signal
  • the second digital signal is digital-to-analog converted to generate a second transmission. signal.
  • the generated first transmit signal may be amplified.
  • the first transmission signal is a radio frequency signal
  • the second transmission signal is a non-radio frequency signal
  • the two signals can be separated from the combined transmission signal, and then combined into one transmission signal and transmitted to the remote end by the radio remote unit.
  • the unit only needs one feeder, which reduces the number of communication equipment feeders.
  • the first transmit signal and the second transmit signal may be combined into a transmit signal by using a multiplexer.
  • the first transmit signal and the second transmit signal may be separated in the transmit signal by using a multiplexer.
  • the second variable frequency signal is a radio frequency signal.
  • the frequency of the clock signal is adjusted to generate a first mixed signal, and the first mixed signal and the second transmitted signal are mixed to generate a second converted signal, where the frequency of the first mixed signal is the first sending The absolute value of the difference between the frequency of the signal and the frequency of the second transmitted signal.
  • the frequency of the clock signal can be adjusted by the phase detector to generate the first Mixing the signal, mixing the first mixed signal and the second transmitting signal by a mixer, and obtaining the frequency of the second converted signal is the sum of the frequency of the first mixed signal and the frequency of the second transmitted signal .
  • the clock signal, the first transmission signal, and the second transmission signal may be combined into a transmission signal.
  • the clock signal may be separated in the transmission signal, and then generated according to the clock signal.
  • a mixing signal Preferably, the frequency of the first mixing signal can be preset.
  • the second frequency conversion signal may be amplified because the power of the second transmission signal is lost during transmission.
  • the difference between the amplitude of the first transmission signal and the amplitude of the second frequency conversion signal may be detected, according to the difference between the amplitude of the first transmission signal and the amplitude of the second frequency conversion signal, The two frequency conversion signals are amplitude-adjusted.
  • the first transmit signal and the second variable frequency signal may be separately sent by using two duplex antennas, the first transmit signal is sent by the first antenna, and the second variable frequency signal is sent by the second antenna. Further optionally, the first transmit signal is transmitted to the first antenna by the first duplexer, and the second variable frequency signal is transmitted to the second antenna by the second duplexer.
  • the first duplexer and the second duplexer may be two phase lockers for separating the transmitted signal and the received signal.
  • the signal transmission method provided by the embodiment of the present invention combines the first transmission signal and the second transmission signal into a transmission signal by acquiring the first transmission signal and the second transmission signal, and transmits the transmission signal to the near-end unit through a feeder. After the transmission signal is transmitted to the remote unit, the first transmission signal and the second transmission signal are separated from the transmission signal, the frequency of the second transmission signal is adjusted to generate a second frequency conversion signal, and the first transmission signal is respectively sent and The second frequency conversion signal can reduce the number of feeders in the communication device and reduce the cost of the communication device.
  • an embodiment of the present invention provides a signal receiving method, which is applied to the receiving device described in the foregoing embodiment corresponding to FIG. 3 or FIG. 4, and is included in FIG. The following steps:
  • the first received signal and the second converted signal are radio frequency signals
  • the second variable frequency signal is a signal generated by the second receiving signal through mixing processing
  • the second receiving signal is a non-radio frequency signal
  • the radio frequency signal is a signal having a transmitting frequency
  • the first received signal is received by the first antenna
  • the second converted signal is received by the second antenna.
  • the first antenna and the second antenna are duplex antennas
  • the first antenna is used for receiving or transmitting radio frequency signals that do not need to be processed by frequency conversion
  • the second antenna is used for transmitting or receiving an intermediate frequency signal that needs to be subjected to frequency conversion to generate radio frequency signals.
  • the clock signal is obtained, the frequency of the clock signal is adjusted to generate a second mixed signal, and the second mixed signal and the second converted signal are mixed to generate a second received signal, where the frequency of the second mixed signal It is the absolute value of the difference between the frequency of the first received signal and the frequency of the second received signal.
  • the second mixing signal can be generated by adjusting the frequency of the clock signal by the phase detector, and the second mixing signal and the second variable frequency signal are mixed by the mixer, and the frequency of the second received signal is The frequency of the second variable frequency signal is subtracted from the difference of the frequency of the second mixed frequency signal.
  • the clock signal can be acquired in the transmission signal in which the transmission signals are combined.
  • the second frequency conversion signal may be amplitude adjusted, wherein the absolute value of the difference between the amplitude of the second frequency conversion signal and the preset amplitude is less than a preset threshold.
  • the amplitude of the radio frequency signal can be detected, and the amplitude of the radio frequency signal is used as a preset threshold.
  • the second variable frequency signal is amplitude-adjusted.
  • the first received signal and the second received signal may be combined into a transmission signal by using a multiplexer. Because the first received signal is a radio frequency signal, and the second received signal is a non-radio frequency signal, after the two signals are combined, they can be separated from the combined transmission signal, and then combined into one transmission signal and transmitted by the radio remote unit to the remote end. The unit only needs one feeder, which reduces the number of communication equipment feeders.
  • the first received signal and the second received signal may be separated from the transmitted signal by a multiplexer.
  • the first received signal and the second received signal are analog-to-digital converted to generate a first digital signal and a second digital signal, and the first digital signal and the second digital signal are digitally modulated to generate a baseband signal.
  • the first received signal may be amplified before the first received signal is subjected to analog-to-digital conversion.
  • the signal receiving method provided by the embodiment of the present invention, by receiving the first received signal and the second variable frequency signal, adjusting the frequency of the second variable frequency signal to generate a second received signal, and combining the first received signal and the second received signal into a transmitted signal And transmitting the transmission signal from the remote unit to the near-end unit through a feeder, and transmitting the signal to the near-end unit, separating the first received signal and the second received signal from the transmitted signal, thereby reducing the number of feeders in the communication device , reduce the cost of communication equipment.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may include RAM (Random Access Memory), ROM (Read Only Memory), and EEPROM (Electrically Erasable Programmable Read Only Memory).
  • any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, DSL (Digital Subscriber Line), or wireless technologies such as infrared, radio, and microwave, Then coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the associated medium.
  • the disc and the disc include a CD (Compact Disc), a laser disc, a disc, a DVD disc (Digital Versatile Disc), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied,
  • the disc uses a laser to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本发明公开了一种信号传输方法及设备,涉及通信领域,能够减少通信设备中馈线数量,降低通信设备的成本。具体方案为:获取第一发送信号及第二发送信号,将第一发送信号及第二发送信号合并为传输信号,并将传输信号通过一路馈线由近端单元传输至远端单元,传输信号传输至远端单元后,从传输信号中分离出第一发送信号及第二发送信号,调节第二发送信号的频率生成第二变频信号,分别发送第一发送信号及第二变频信号。本发明用于信号发送和信号接收。

Description

一种信号传输方法及设备
技术领域
本发明涉及通信领域, 尤其涉及一种信号传输方法及设备。
背景技术
随着移动数据业务的需求日益增长, 移动应用内容持续丰富, 为了在 频谱资源有限的情况下提高数据传输能力, MIMO ( Multiple Input Multiple Output, 多输入多输出 )技术被广泛应用于通信领域中, 例如, LTE ( Long Term Evolution, 长期演进) 网络、 WIFI ( Wireless Fidelity, 无线宽带) 网 络等。 MIMO技术是通过多个天线在多个相同频点的通道进行数据发送, 并且通过多个天线及通道进行数据接收, 使得并行数据可以同时发送或接 收, 依次来提升有限频谱资源下的数据传输能力。
但是, 现有技术中, 从通信设备的 RRU ( Radio Remote Unit, 近端单 元) 到 BBU ( Building Base band Unite , 远端单元) 之间需要通过馈线进 行传输, 每一路发射信号或者接收信号对应一个独立的通道, 而每一个独 立的通道都需要配置一路馈线, 这使得通信设备成本过高, 而且施工不便。
发明内容
本发明的实施例提供一种信号传输方法及设备, 能够减少通信设备中 馈线数量, 降低通信设备的成本。
为达到上述目的, 本发明的实施例采用如下技术方案:
第一方面, 一种发送设备, 包括: 近端单元及远端单元, 其中, 所述近端单元包括合路器, 所述远端单元包括分路器、 变频器、 第 一天线及第二天线;
所述合路器, 用于获取第一发送信号及第二发送信号, 将所述 第一发送信号及所述第二发送信号合并为传输信号, 并将所述传输 信号通过一路馈线传输至所述分路器, 其中, 所述第一发送信号为 射频信号, 所述第二发送信号为非射频信号, 所述射频信号是拥有 发射频率的信号;
所述分路器, 用于接收所述合路器传输的所述传输信号, 从所 述传输信号中分离出所述第一发送信号及所述第二发送信号, 将所 述第一发送信号传输至第一天线, 将所述第二发送信号传输至所述 变频器;
所述变频器, 用于接收所述分路器传输的所述第二发送信号, 调节所述第二发送信号的频率生成第二变频信号, 将所述第二变频 信号传输至所述第二天线, 其中, 所述第二变频信号为射频信号; 所述第一天线,用于接收所述分路器传输的所述第一发送信号, 并发送所述第一发送信号;
所述第二天线,用于接收所述变频器传输的所述第二变频信号, 并发送所述第二变频信号。
结合第一方面, 在第一种可能的实现方式中, 所述远端单元还包括 检测调节器及第一放大器;
所述检测调节器, 用于检测所述第一发送信号的幅度;
所述第一放大器, 用于根据所述检测调节器检测的所述第一发 送信号的幅度, 将所述第二变频信号进行幅度调节, 使所述第二变 频信号的幅度与所述第一发送信号的幅度之差的绝对值小于预设阔 值。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的 实现方式中, 所述近端单元还包括时钟振荡器;
所述时钟振荡器, 用于生成时钟信号, 将所述时钟信号传输至 所述合路器;
所述合路器,还用于接收所述时钟振荡器传输的所述时钟信号, 将所述时钟信号、 所述第一发送信号及所述第二发送信号合并为所 述传输信号;
所述分路器, 还用于从所述传输信号中分离出所述时钟信号、 所述第一发送信号及所述第二发送信号, 将所述时钟信号传输至所 述变频器;
所述变频器, 还用于接收所述分路器传输的所述时钟信号, 调 节所述时钟信号的频率生成第一混频信号, 将所述第一混频信号与 所述第二发送信号进行混频处理生成所述第二变频信号, 其中, 所 述第一混频信号的频率为所述第一发送信号的频率与所述第二发送 信号的频率之差的绝对值。
结合第一方面至第一方面的第二种可能的实现方式中任一实现方式, 在第三种可能的实现方式中, 所述近端单元还包括数字信号处理器、 第一数模转换器及第二数模转换器;
所述数字信号处理器, 用于获取基带信号, 将所述基带信号进 行数字信号调制生成第一数字信号及第二数字信号, 将所述第一数 字信号传输至所述第一数模转换器, 将所述第二数字信号传输至所 述第二数模转换器;
所述第一数模转换器, 用于接收所述数字信号处理器传输的所 述第一数字信号, 将所述第一数字信号进行数模转换生成所述第一 发送信号;
所述第二数模转换器, 用于接收所述数字信号处理器传输的所 述第二数字信号, 将所述第二数字信号进行数模转换生成所述第二 发送信号。
结合第一方面至第一方面的第三种可能的实现方式中任一实现方式, 在第四种可能的实现方式中, 所述近端单元还包括第二放大器;
所述第二放大器, 用于将所述第一发送信号进行放大处理。 第二方面, 一种接收设备, 其特征在于, 包括: 远端单元及近端 单元, 所述远端单元包括合路器、 变频器、 第一天线及第二天线, 所述近端单元包括分路器;
所述第一天线, 用于接收第一接收信号, 将所述第一接收信号 传输至所述合路器, 所述第一接收信号为射频信号, 所述射频信号 是拥有发射频率的信号;
所述第二天线, 用于接收第二变频信号, 将所述第二变频信号 传输至所述变频器, 所述第二变频信号为射频信号, 并且所述第二 变频信号是第二接收信号通过混频处理生成的信号;
所述变频器,用于接收所述第二天线传输的所述第二变频信号, 调节所述第二变频信号的频率生成所述第二接收信号, 并将所述第 二接收信号传输至所述合路器;
所述合路器, 用于接收所述第一天线传输的所述第一接收信号 及所述变频器传输的所述第二接收信号, 将所述第一接收信号及所 述第二接收信号合并为传输信号, 并将所述传输信号通过一路馈线 传输至所述分路器;
所述分路器, 用于接收所述合路器传输的所述传输信号, 从所 述传输信号中分离出所述第一接收信号及所述第二接收信号。
结合第二方面, 在第一种可能的实现方式中, 所述远端单元还包括 第一放大器;
所述第一放大器, 用于将所述第二变频信号进行幅度调节, 使 所述第二变频信号的幅度与预设幅度之差的绝对值小于预设阔值。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的 实现方式中,
所述变频器, 还用于获取时钟信号, 调节所述时钟信号的频率 生成第二混频信号, 将所述第二混频信号与所述第二变频信号进行 混频处理生成所述第二接收信号, 其中, 所述第二混频信号的频率 为所述第一接收信号的频率与所述第二接收信号的频率之差的绝对 值。
结合第二方面至第二方面的第二种可能的实现方式中任一实现方式, 在第三种可能的实现方式中, 所述近端单元还包括第一模数转换器、 第二模数转换器及数字信号处理器;
所述第一模数转换器, 用于将所述分路器分离出的所述第一接 收信号进行模数转换生成第一数字信号, 并将所述第一数字信号传 输至所述数字信号处理器;
所述第二模数转换器, 用于将所述分路器分离出的所述第二接 收信号进行模数转换生成第二数字信号, 并将所述第二数字信号传 输至所述数字信号处理器;
所述数字信号处理器, 用于接收所述第一模数转换器传输的所 述第一数字信号及所述第二模数转换器传输的所述第二数字信号, 将所述第一数字信号及所述第二数字信号进行数字信号解调生成基 带信号。
结合第二方面至第二方面的第三种可能的实现方式中任一实现方式, 在第四种可能的实现方式中, 所述近端单元还包括第二放大器;
所述第二放大器, 用于将所述分路器分离出的所述第一接收信 号进行放大处理。
第三方面, 一种双工通信设备, 包括近端单元及远端单元, 所述 近端单元包括第一多工器, 所述远端单元包括第二多工器、 第一变 频器、 第二变频器、 第一双工器、 第二双工器、 第一天线及第二天 线;
其中, 所述第一多工器, 用于当所述双工通信设备发送信号时, 获取第一发送信号及第二发送信号, 将所述第一发送信号及所述第 二发送信号合并为传输信号, 并将所述传输信号通过一路馈线传输 至所述第二多工器, 其中, 所述第一发送信号为射频信号, 所述第 二发送信号为非射频信号, 所述射频信号是拥有发射频率的信号; 所述第二多工器, 用于当所述双工通信设备发送信号时, 接收 所述第一多工器传输的所述传输信号, 从所述传输信号中分离出所 述第一发送信号及所述第二发送信号, 将所述第一发送信号传输至 第一双工器, 将所述第二发送信号传输至所述第一变频器;
所述第一变频器, 用于接收所述第二多工器传输的所述第二发 送信号, 调节所述第二发送信号的频率生成第二变频信号, 将所述 第二变频信号传输至所述第二双工器, 其中, 所述第二变频信号为 射频信号;
所述第一双工器, 用于当所述双工通信设备发送信号时, 接收 所述第二多工器传输的所述第一发送信号, 将所述第一发送信号与 接收的信号分离开, 并将所述第一发送信号传输至所述第一天线; 所述第一天线, 用于当所述双工通信设备发送信号时, 接收所 述第一双工器传输的所述第一发送信号并发送所述第一发送信号; 所述第二双工器, 用于当所述双工通信设备发送信号时, 接收 所述第一变频器传输的所述第二变频信号, 将所述第二变频信号与 接收的信号分离开, 并将所述第二变频信号传输至所述第二天线; 所述第二天线, 用于当所述双工通信设备发送信号时, 接收所 述第二双工器传输的所述第二变频信号并发送所述第二变频信号; 或者,
所述第一天线, 用于当所述双工通信设备接收信号时, 接收第 一接收信号, 将所述第一接收信号传输至所述第一双工器, 所述第 一接收信号为射频信号, 所述射频信号是拥有发射频率的信号; 所述第一双工器, 用于当所述双工通信设备接收信号时, 接收 所述第一天线传输的所述第一接收信号, 将所述第一接收信号与发 送的信号分离开, 并将所述第一接收信号传输至所述第二多工器; 所述第二天线, 用于当所述双工通信设备接收信号时, 接收第 二变频信号, 将所述第二变频信号传输至所述第二双工器, 所述第 二变频信号为射频信号, 并且所述第二变频信号是第二接收信号通 过混频处理生成的信号;
所述第二双工器, 用于当所述双工通信设备接收信号时, 接收 所述第二天线传输的所述第二变频信号, 将所述第二变频信号与发 送的信号分离开, 并将所述第二变频信号传输至所述第二变频器; 所述第二变频器, 用于接收所述第二双工器传输的所述第二变 频信号, 调节所述第二变频信号的频率生成所述第二接收信号, 并 将所述第二接收信号传输至所述第二多工器;
所述第二多工器, 用于当所述双工通信设备接收信号时, 接收 所述第一双工器传输的所述第一接收信号及所述第二变频器传输的 所述第二接收信号, 将所述第一接收信号及所述第二接收信号合并 为传输信号, 并将所述传输信号通过一路馈线传输至所述第一多工 器;
所述第一多工器, 用于当所述双工通信设备接收信号时, 接收 所述第二多工器传输的所述传输信号, 从所述传输信号中分离出所 述第一接收信号及所述第二接收信号。 结合第三方面, 在第一种可能的实现方式中, 所述远端单元还包括 检测调节器、 第一可调放大器及第二可调放大器;
所述检测调节器, 用于当所述双工通信设备发送信号时, 检测 所述第一发送信号的幅度;
所述第一可调放大器, 用于当所述双工通信设备发送信号时, 根据所述检测调节器检测的所述第一发送信号的幅度, 将所述第二 变频信号进行幅度调节, 使所述第二变频信号的幅度与所述第一发 送信号的幅度之差的绝对值小于预设阔值;
所述第二可调放大器, 用于当所述双工通信设备接收信号时, 根据所述检测调节器检测的所述第一发送信号的幅度, 将所述第二 变频信号进行幅度调节, 使所述第二变频信号的幅度与所述第一发 送信号的幅度之差的绝对值小于预设阔值。
结合第三方面或第三方面的第一种可能的实现方式,在第二种可能的 实现方式中, 所述近端单元, 还包括时钟振荡器;
所述时钟振荡器, 用于生成时钟信号, 将所述时钟信号传输至 所述第一多工器;
所述第一多工器, 用于当所述双工通信设备发送信号时, 接收 所述时钟振荡器传输的所述时钟信号, 将所述时钟信号、 所述第一 发送信号及所述第二发送信号合并为所述传输信号;
所述第二多工器, 还用于当所述双工通信设备发送信号时, 从 所述传输信号中分离出所述时钟信号、 所述第一发送信号及所述第 二发送信号, 将所述时钟信号传输至所述第一变频器及所述第二变 频器;
所述第一变频器, 还用于当所述双工通信设备发送信号时, 接 收所述第二多工器传输的所述时钟信号, 调节所述时钟信号的频率 生成第一混频信号, 将所述第一混频信号与所述第二发送信号进行 混频处理生成所述第二变频信号, 其中, 所述第一混频信号的频率 为所述第一发送信号的频率与所述第二发送信号的频率之差的绝对 值; 所述第二变频器, 还用于当所述双工通信设备接收信号时, 接 收所述第二多工器传输的所述时钟信号, 调节所述时钟信号的频率 生成第二混频信号, 将所述第二混频信号与所述第二变频信号进行 混频处理生成所述第二接收信号, 其中, 所述第二混频信号的频率 为所述第一接收信号的频率与所述第二接收信号的频率之差的绝对 值。
结合第三方面至第三方面的第二种可能的实现方式中任一实现方式, 在第三种可能的实现方式中, 所述近端单元还包括第一数模转换器、 第二数模转换器、 第一模数转换器、 第二模数转换器及数字信号处 理器;
所述数字信号处理器, 用于当所述双工通信设备发送信号时, 获取基带信号, 将所述基带信号进行数字信号调制生成第一数字信 号及第二数字信号, 将所述第一数字信号传输至所述第一数模转换 器, 将所述第二数字信号传输至所述第二数模转换器;
所述第一数模转换器, 用于当所述双工通信设备发送信号时, 接收所述数字信号处理器传输的所述第一数字信号, 将所述第一数 字信号进行数模转换生成所述第一发送信号;
所述第二数模转换器, 用于当所述双工通信设备发送信号时, 接收所述数字信号处理器传输的所述第二数字信号, 将所述第二数 字信号进行数模转换生成所述第二发送信号;
所述第一模数转换器, 用于当所述双工通信设备接收信号时, 将所述第一多工器分离出的所述第一接收信号进行模数转换生成第 一数字信号, 并将所述第一数字信号传输至所述数字信号处理器; 所述第二模数转换器, 用于当所述双工通信设备接收信号时, 将所述第一多工器分离出的所述第二接收信号进行模数转换生成第 二数字信号, 并将所述第二数字信号传输至所述数字信号处理器; 所述数字信号处理器,还用于当所述双工通信设备接收信号时, 接收所述第一模数转换器传输的所述第一数字信号及所述第二模数 转换器传输的所述第二数字信号, 将所述第一数字信号及所述第二 数字信号进行数字信号解调生成基带信号。
结合第三方面至第三方面的第三种可能的实现方式中任一实现方式, 在第四种可能的实现方式中, 所述近端单元还包括第三放大器及第四 放大器;
所述第三放大器, 用于当所述双工通信设备发送信号时, 将所 述第一发送信号进行放大处理;
所述第四放大器, 用于当所述双工通信设备接收信号时, 将所 述第一接收信号进行放大处理。
第四方面、 一种信号发送方法, 包括:
获取第一发送信号及第二发送信号, 其中, 所述第一发送信号 为射频信号, 所述第二发送信号为非射频信号, 所述射频信号是拥 有发射频率的信号;
将所述第一发送信号及所述第二发送信号合并为传输信号, 并 将所述传输信号通过一路馈线由近端单元传输至远端单元;
所述传输信号传输至远端单元后, 从所述传输信号中分离出所 述第一发送信号及所述第二发送信号;
调节所述第二发送信号的频率生成第二变频信号, 其中, 所述 第二变频信号为射频信号;
分别发送所述第一发送信号及所述第二变频信号。
结合第四方面, 在第一种可能的实现方式中, 所述调节所述第二发 送信号的频率生成第二变频信号之后, 还包括:
检测所述第一发送信号的幅度, 根据所述第一发送信号的幅度 将所述第二变频信号进行幅度调节, 使所述第二变频信号的幅度与 所述第一发送信号的幅度之差的绝对值小于预设阔值。
结合第四方面或第四方面的第一种可能的实现方式,在第二种可能的 实现方式中, 所述将所述第一发送信号及所述第二发送信号合并为传 输信号, 包括:
获取时钟信号, 将所述时钟信号、 所述第一发送信号及所述第 二发送信号合并为所述传输信号; 所述传输信号传输至远端单元后, 从所述传输信号中分离出所 述第一发送信号及所述第二发送信号, 包括:
所述传输信号传输至远端单元后, 从所述传输信号中分离出所 述时钟信号、 所述第一发送信号及所述第二发送信号;
所述根据所述第一发送信号的频率调节所述第二发送信号的频 率, 并生成第二变频信号, 包括:
调节所述时钟信号的频率生成第一混频信号, 将所述第一混频 信号与所述第二发送信号进行混频处理生成所述第二变频信号, 其 中, 所述第一混频信号的频率为所述第一发送信号的频率与所述第 二发送信号的频率之差的绝对值。
结合第四方面至第四方面的第二种可能的实现方式中任一实现方式, 在第三种可能的实现方式中, 所述获取第一发送信号及第二发送信号, 包括:
获取基带信号, 将所述基带信号进行数字信号调制生成第一数 字信号及第二数字信号;
将所述第一数字信号进行数模转换生成所述第一发送信号, 将 所述第二数字信号进行数模转换生成所述第二发送信号。
结合第四方面至第四方面的第三种可能的实现方式中任一实现方式, 在第四种可能的实现方式中, 所述获取第一发送信号及第二发送信号 之后, 还包括:
将所述第一发送信号进行放大处理。
第五方面, 一种信号接收方法, 包括:
接收第一接收信号及第二变频信号, 其中, 所述第一接收信号 及所述第二变频信号为射频信号, 所述第二变频信号是第二接收信 号通过混频处理生成的信号, 所述第二接收信号为非射频信号, 所 述射频信号是拥有发射频率的信号;
调节所述第二变频信号的频率生成所述第二接收信号;
将所述第一接收信号及所述第二接收信号合并为传输信号, 并 将所述传输信号通过一路馈线由远端单元传输至近端单元; 所述传输信号传输至近端单元后, 从所述传输信号中分离出所 述第一接收信号及所述第二接收信号。
结合第五方面, 在第一种可能的实现方式中, 所述接收第一接收信 号及第二变频信号之后, 还包括:
将所述第二变频信号进行幅度调节, 使所述第二变频信号的幅 度与预设幅度之差的绝对值小于预设阈值。
结合第五方面或第五方面的第一种可能的实现方式,在第二种可能的 实现方式中, 所述调节所述第二变频信号的频率生成第二接收信号, 包括:
获取时钟信号, 调节所述时钟信号的频率生成第二混频信号, 将所述第二混频信号与所述第二变频信号进行混频处理生成所述第 二接收信号, 其中, 所述第二混频信号的频率为所述第一接收信号 的频率与所述第二接收信号的频率之差的绝对值。
结合第五方面至第五方面的第二种可能的实现方式中任一实现方式, 在第三种可能的实现方式中, 所述从所述传输信号中分离出所述第一 接收信号及所述第二接收信号之后, 还包括:
将所述第一接收信号进行模数转换生成第一数字信号, 将所述 第二接收信号进行模数转换生成第二数字信号;
将所述第一数字信号及所述第二数字信号进行数字信号调制生 成基带信号。
结合第五方面至第五方面的第三种可能的实现方式中任一实现方式, 在第四种可能的实现方式中, 所述从所述传输信号中分离出所述第一 接收信号及所述第二接收信号之后, 还包括:
将所述第一接收信号进行放大处理。
本发明实施例提供的一种信号传输方法及设备, 通过获取第一信号 及第二信号, 将第一信号及第二信号合并为传输信号, 并将传输信 号通过一路馈线由近端单元传输至远端单元, 传输信号传输至远端 单元后, 从传输信号中分离出第一信号及第二信号, 调节第二信号 的频率生成第二变频信号, 分别发送第一信号及第二变频信号, 能 够减少通信设备中馈线数量, 降低通信设备的成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中 的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明的实施例提供的一种发送设备结构示意图;
图 2为本发明的实施例提供的另一种发送设备结构示意图;
图 3为本发明的实施例提供的一种接收设备结构示意图;
图 4为本发明的实施例提供的另一种接收设备结构示意图;
图 5为本发明的实施例提供的一种双工通信设备结构示意图; 图 6为本发明的实施例提供的另一种双工通信设备结构示意图; 图 7为本发明的另一实施例提供的一种双工通信设备结构示意图; 图 8为本发明的又一实施例提供的一种双工通信设备结构示意图; 图 9为本发明的实施例提供的一种信号发送方法流程示意图; 图 10为本发明的实施例提供的一种信号接收方法流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
本发明的实施例提供一种发送设备, 可选的, 可以应用于 MIMO技 术中, 参照图 1所示, 该发送设备 10包括近端单元 1 1及远端单元 12 , 其 中该近端单元 1 1 包括合路器 1 101 , 远端单元 12包括分路器 1201、 变频器 1202、 第一天线 1203及第二天线 1204。
其中, 合路器 1 101 , 用于获取第一发送信号及第二发送信号, 将第一发送信号及第二发送信号合并为传输信号, 并将传输信号通 过一路馈线传输至分路器 1201 , 其中, 第一发送信号为射频信号, 第二发送信号为非射频信号, 射频信号是拥有发射频率的信号。 分路器 1201, 用于接收合路器 1101传输的传输信号, 从传输 信号中分离出第一发送信号及第二发送信号, 将第一发送信号传输 至第一天线 1203, 将第二发送信号传输至变频器 1202。
变频器 1202, 用于接收分路器 1201传输的第二发送信号, 调 节第二发送信号的频率生成第二变频信号, 将第二变频信号传输至 第二天线 1204, 其中, 第二变频信号为射频信号。
第一天线 1203, 用于接收分路器 1201传输的第一发送信号, 并发送第一发送信号。
第二天线 1204, 用于接收变频器 1202传输的第二变频信号, 并发送第二变频信号。
可选的,参照图 2所示,该远端单元 12还包括检测调节器 1205 及第一放大器 1206。
检测调节器 1205, 用于检测第一发送信号的幅度。
第一放大器 1206, 用于根据检测调节器 1205检测的第一发送 信号的幅度, 将第二变频信号进行幅度调节, 使第二变频信号的幅 度与第一发送信号的幅度之差的绝对值小于预设阔值。
可选的, 参照图 2所示, 近端单元 11还包括时钟振荡器 1102。 时钟振荡器 1102, 用于生成时钟信号, 将时钟信号传输至合路 器 1101。
合路器 1101, 还用于接收时钟振荡器 1102传输的时钟信号, 将时钟信号、 第一发送信号及第二发送信号合并为传输信号。
分路器 1201, 还用于从传输信号中分离出时钟信号、 第一发送 信号及第二发送信号, 将时钟信号传输至变频器 1202。
变频器 1202, 还用于接收分路器 1201传输的时钟信号, 调节 时钟信号的频率生成第一混频信号, 将第一混频信号与第二发送信 号进行混频处理生成第二变频信号, 其中, 第一混频信号的频率为 第一发送信号的频率与第二发送信号的频率之差。
可选的, 参照图 2所示, 近端单元 11还包括数字信号处理器 1103、 第一数模转换器 1104及第二数模转换器 1105。
数字信号处理器 1103, 用于获取基带信号, 将基带信号进行数 字信号调制生成第一数字信号及第二数字信号, 将第一数字信号传 输至第一数模转换器 1104, 将第二数字信号传输至第二数模转换器 1105。
第一数模转换器 1104, 用于接收数字信号处理器 1103传输的 第一数字信号, 将第一数字信号进行数模转换生成第一发送信号。
第二数模转换器 1105, 用于接收数字信号处理器 1103传输的 第二数字信号, 将第二数字信号进行数模转换生成第二发送信号。
近端单元 11还包括第二放大器 1106。
第二放大器 1106, 用于将第一发送信号进行放大处理。
本发明的实施例提供的发送设备, 通过获取第一发送信号及第 二发送信号, 将第一发送信号及第二发送信号合并为传输信号, 并 将传输信号通过一路馈线由近端单元传输至远端单元, 传输信号传 输至远端单元后, 从传输信号中分离出第一发送信号及第二发送信 号, 调节第二发送信号的频率生成第二变频信号, 分别发送第一发 送信号及第二变频信号, 能够减少通信设备中馈线数量, 降低通信设备 的成本。
本发明的实施例提供一种接收设备, 可选的, 可以应用于 MIMO 技术中, 参照图 3所示, 该接收设备 30包括远端单元 31及近端单元 32, 远端单元 31 包括合路器 3101、 变频器 3102、 第一天线 3103及 第二天线 3104, 近端单元 32 包括分路器 3201。
第一天线 3103, 用于接收第一接收信号, 将第一接收信号传输 至合路器 3101, 第一接收信号为射频信号, 射频信号是拥有发射频 率的信号。
第二天线 3104, 用于接收第二变频信号, 将第二变频信号传输 至变频器 3102, 第二变频信号为射频信号, 并且第二变频信号是第 二接收信号通过混频处理生成的信号。
变频器 3102, 用于接收第二天线 3104传输的第二变频信号, 调节第二变频信号的频率生成第二接收信号, 并将第二接收信号传 输至合路器 3 101。
合路器 3 101 , 用于接收第一天线 3 103传输的第一接收信号及 变频器 3 102传输的第二接收信号, 将第一接收信号及第二接收信号 合并为传输信号, 并将传输信号通过一路馈线传输至分路器 3201。
分路器 3201 , 用于接收合路器 3 101传输的传输信号, 从传输 信号中分离出第一接收信号及第二接收信号。
可选的, 参照图 4所示, 远端单元 3 1还包括第一放大器 3 105。 第一放大器 3 105 , 用于将第二变频信号进行幅度调节, 使第二 变频信号的幅度与预设幅度之差的绝对值小于预设阔值。
变频器 3 102 , 还用于获取时钟信号, 调节时钟信号的频率生成 第二混频信号, 将第二混频信号与第二变频信号进行混频处理生成 第二接收信号, 其中, 第二混频信号的频率为第一接收信号的频率 与第二接收信号的频率之差。
可选的, 参照图 4所示, 近端单元 32还包括第一模数转换器 3202、 第二模数转换器 3203及数字信号处理器 3204。
第一模数转换器 3202 , 用于将分路器 3201分离出的第一接收 信号进行模数转换生成第一数字信号, 并将第一数字信号传输至数 字信号处理器 3204。
第二模数转换器 3203 , 用于将分路器 3201分离出的第二接收 信号进行模数转换生成第二数字信号, 并将第二数字信号传输至数 字信号处理器 3204。
数字信号处理器 3204 , 用于接收第一模数转换器 3202传输的 第一数字信号及第二模数转换器 3203传输的第二数字信号, 将第一 数字信号及第二数字信号进行数字信号解调生成基带信号。
近端单元 32还包括第二放大器 3205。
第二放大器 3205 , 用于将分路器 3201分离出的第一接收信号 进行放大处理。
本发明的实施例提供的接收设备, 通过接收第一接收信号及第 二变频信号, 调节第二变频信号的频率生成第二接收信号, 将第一 接收信号及第二接收信号合并为传输信号, 并将传输信号通过一路 馈线由远端单元传输至近端单元, 传输信号传输至近端单元后, 从 传输信号中分离出第一接收信号及第二接收信号, 能够减少通信设备 中馈线数量, 降低通信设备的成本。
本发明的实施例提供一种双工通信设备, 可选的, 可以应用于
MIMO技术中, 参照图 5所示, 该双工通信设备 50包括近端单元 5 1 及远端单元 52 , 近端单元 5 1 包括第一多工器 5 101 , 远端单元 52 包 括第二多工器 5201、 第一变频器 5202、 第二变频器 5203、 第一双 工器 5204、 第二双工器 5205、 第一天线 5206及第二天线 5207。
其中, 第一多工器 5 101 , 用于当双工通信设备 50发送信号时, 获取第一发送信号及第二发送信号, 将第一发送信号及第二发送信 号合并为传输信号, 并将传输信号通过一路馈线传输至第二多工器 5201 , 其中, 第一发送信号为射频信号, 第二发送信号为非射频信 号, 射频信号是拥有发射频率的信号。
第二多工器 5201 , 用于当双工通信设备 50发送信号时, 接收 第一多工器 5 101传输的传输信号, 从传输信号中分离出第一发送信 号及第二发送信号, 将第一发送信号传输至第一双工器 5204 , 将第 二发送信号传输至第一变频器 5202。
第一变频器 5202 , 用于接收第二多工器 5201传输的第二发送 信号, 调节第二发送信号的频率生成第二变频信号, 将第二变频信 号传输至第二双工器 5205 , 其中, 第二变频信号为射频信号。
第一双工器 5204 , 用于当双工通信设备 50发送信号时, 接收 第二多工器 5201传输的第一发送信号, 将第一发送信号与接收的信 号分离开, 并将第一发送信号传输至第一天线 5206。
第一天线 5206 , 用于当双工通信设备 50发送信号时, 接收第 一双工器 5204传输的第一发送信号并发送第一发送信号。
第二双工器 5205 , 用于当双工通信设备 50发送信号时, 接收 第一变频器 5202传输的第二变频信号, 将第二变频信号与接收的信 号分离开, 并将第二变频信号传输至第二天线 5207。
第二天线 5207, 用于当双工通信设备 50发送信号时, 接收第 二双工器 5205传输的第二变频信号并发送第二变频信号。
或者,
第一天线 5206, 用于当双工通信设备 50接收信号时, 接收第 一接收信号, 将第一接收信号传输至第一双工器 5204, 第一接收信 号为射频信号, 射频信号是拥有发射频率的信号。
第一双工器 5204, 用于当双工通信设备 50接收信号时, 接收 第一天线 5206传输的第一接收信号, 将第一接收信号与发送的信号 分离开, 并将第一接收信号传输至第二多工器 5201。
第二天线 5207, 用于当双工通信设备 50接收信号时, 接收第 二变频信号, 将第二变频信号传输至第二双工器 5205, 第二变频信 号为射频信号, 并且第二变频信号是第二接收信号通过混频处理生 成的信号。
第二双工器 5205, 用于当双工通信设备 50接收信号时, 接收 第二天线 5207传输的第二变频信号, 将第二变频信号与发送的信号 分离开, 并将第二变频信号传输至第二变频器 5203。
第二变频器 5203, 用于接收第二双工器 5205传输的第二变频 信号, 调节第二变频信号的频率生成第二接收信号, 并将第二接收 信号传输至第二多工器 5201。
第二多工器 5201, 用于当双工通信设备 50接收信号时, 接收 第一双工器 5204传输的第一接收信号及第二变频器 5203传输的第 二接收信号, 将第一接收信号及第二接收信号合并为传输信号, 并 将传输信号通过一路馈线传输至第一多工器 5101。
第一多工器 5101, 用于当双工通信设备 50接收信号时, 接收 第二多工器 5201传输的传输信号, 从传输信号中分离出第一接收信 号及第二接收信号。
可选的, 参照图 6所示, 远端单元 52还包括检测调节器 5208、 第一可调放大器 5209及第二可调放大器 5210。 检测调节器 5208, 用于当双工通信设备 50发送信号时, 检测 第一发送信号的幅度。
第一可调放大器 5209, 用于当双工通信设备 50发送信号时, 根据检测调节器 5208检测的第一发送信号的幅度, 将第二变频信号 进行幅度调节, 使第二变频信号的幅度与第一发送信号的幅度之差 的绝对值小于预设阔值。
第二可调放大器 5210, 用于当双工通信设备 50接收信号时, 根据检测调节器 5208检测的第一发送信号的幅度, 将第二变频信号 进行幅度调节, 使第二变频信号的幅度与第一发送信号的幅度之差 的绝对值小于预设阔值。
此处, 进一步的, 参照图 6所示, 检测调节器 5208可以采样第 一发送信号及经过第一可调放大器 5203放大处理后的第二变频信 号, 因为信号的传输是连续的, 假设一个预设周期采样一次, 这样, 本周期内采样的第一发送信号及第二变频信号的幅度差, 可以作为 下一个周期调节第二变频信号的依据, 也就是说将上一时刻第一发 送信号及经过第一可调放大器 5209放大处理后的第二变频信号这 两个信号的幅度差值分别传输至第一可调放大器 5209及第二可调 放大器 5210, 以便于第一可调放大器 5209调节本时刻需要发送的 第二变频信号的幅度, 同时, 以便于第二可调放大器 5210调节本时 刻接收的第二变频信号的幅度。
可选的, 参照图 6所示, 近端单元 51,还包括时钟振荡器 5102。 时钟振荡器 5102, 用于生成时钟信号, 将时钟信号传输至第一 多工器 5101。
第一多工器 5101, 用于当双工通信设备 50发送信号时, 接收 时钟振荡器 5102传输的时钟信号, 将时钟信号、 第一发送信号及第 二发送信号合并为传输信号。
第二多工器 5201, 还用于当双工通信设备 50发送信号时, 从 传输信号中分离出时钟信号、 第一发送信号及第二发送信号, 将时 钟信号传输至第一变频器 5202及第二变频器 5203。 第一变频器 5202, 还用于当双工通信设备 50发送信号时, 接 收第二多工器 5201传输的时钟信号, 调节时钟信号的频率生成第一 混频信号, 将第一混频信号与第二发送信号进行混频处理生成第二 变频信号, 其中, 第一混频信号的频率为第一发送信号的频率与第 二发送信号的频率之差。
第二变频器 5203, 还用于当双工通信设备 50接收信号时, 接 收第二多工器 5201传输的时钟信号, 调节时钟信号的频率生成第二 混频信号, 将第二混频信号与第二变频信号进行混频处理生成第二 接收信号, 其中, 第二混频信号的频率为第一接收信号的频率与第 二接收信号的频率之差。
可选的, 参照图 6所示, 近端单元 51还包括第一数模转换器 5103、 第二数模转换器 5104、 第一模数转换器 5105、 第二模数转换 器 5106及数字信号处理器 5107。
数字信号处理器 5107, 用于当双工通信设备 50发送信号时, 获取基带信号, 将基带信号进行数字信号调制生成第一数字信号及 第二数字信号, 将第一数字信号传输至第一数模转换器 5103, 将第 二数字信号传输至第二数模转换器 5104。
第一数模转换器 5103, 用于当双工通信设备 50发送信号时, 接收数字信号处理器 5107传输的第一数字信号, 将第一数字信号进 行数模转换生成第一发送信号。
第二数模转换器 5104, 用于当双工通信设备 50发送信号时, 接收数字信号处理器 5107传输的第二数字信号, 将第二数字信号进 行数模转换生成第二发送信号。
第一模数转换器 5105, 用于当双工通信设备 50接收信号时, 将第一多工器 5101分离出的第一接收信号进行模数转换生成第一 数字信号, 并将第一数字信号传输至数字信号处理器 5107。
第二模数转换器 5106, 用于当双工通信设备 50接收信号时, 将第一多工器 5101分离出的第二接收信号进行模数转换生成第二 数字信号, 并将第二数字信号传输至数字信号处理器 5107。 数字信号处理器 5107, 还用于当双工通信设备 50接收信号时, 接收第一模数转换器 5105传输的第一数字信号及第二模数转换器 5106传输的第二数字信号, 将第一数字信号及第二数字信号进行数 字信号解调生成基带信号。
此处, 数字信号处理器 5107及第一数模转换器 5103对基带信 号进行了模拟调制, 优选的, 该模拟调制为幅度调制, 数字信号处 理器 5107及第二数模转换器 5104对基带信号也进行了模拟调制; 相对应的, 数字信号处理器 5105及第一模数转换器 5105对第一信 号进行了模拟调制解调, 优选的, 该模拟调制解调为幅度调制解调, 数字信号处理器 5105及第二模数转换器 5106对第二信号也进行了 模拟调制解调, 对于信号调制及解调, 实现方式有多种, 本实施例 只是列举了一种作为说明, 并不代表本实施例对于信号调制及解调 只局限于这一种电路结构, 本发明调制解调的具体实现方式并不做 限制。
可选的, 参照图 6所示, 近端单元 51还包括第三放大器 5108 及第四放大器 5109。 可选的, 第三放大器 5108及第四放大器 5109 也可以分别连接在远端单元 52, 对此, 本发明不做限制。
第三放大器 5108, 用于当双工通信设备 50发送信号时, 将第 一发送信号进行放大处理。
第四放大器 5109, 用于当双工通信设备 50接收信号时, 将第 一接收信号进行放大处理。
当然, 本实施例以发送或接收两路信号为例进行说明, 并不代 表本发明的实施例只局限于处理两路信号, 本实施例提供的双工通 信设备 50可以通过增加内部元件, 利用相同的原理处理多路信号。 例如, 还可以增加新的近端单元, 将新的近端单元传输的第三路信 号通过第一多工器 5101 与第一发送信号及第二发送信号合并传输 至第二多工器 5201, 该第三路信号为非射频信号, 第二多工器 5201 分离出第三路信号后, 将第三路信号通过第三变频器调节频率生成 第三变频信号, 使第三变频信号为射频信号, 将第三变频信号通过 第三可调放大器放大后通过第三双工器传输至第三天线发送, 具体 处理过程与第二发送信号类似, 此处不再赘述。
另外, 可选的, 本实施例提供的双工通信设备 50 , 可以应用于 FDD (Frequency Division Duplexing , 频分双工)技术以及 TDD ( Time Division Duplexing , 时分双工 ) 技术。
可选的, 在应用于 TDD时, 参照图 6所示, 该双工通信设备 50的近端单元 5 1还包括第一时分开关 5 1 10 , 远端单元 52还包括第 二时分开关 521 1 , 该第一时分开关 5 1 10用于控制第一多工器 5 101 进行上行数据传输还是下行数据传输, 该第二时分开关 521 1用于控 制第二多工器 5201进行上行数据传输还是下行数据传输。
具体可选的, 在应用与 FDD时, 第一双工器 5204及第二双工 器 5205可以是环形器, 用于将发送信号和接收信号分离开。
基于本实施例提供的双工通信设备, 本发明的另一实施例提供 一种双工通信设备, 应用于一种信号调节方法, 参照图 7所示, 该 双工通信设备 70包括近端单元 71及远端单元 72 , 近端单元 71 包 括第一多工器 7101、 时钟振荡器 7102、 第一数模转换器 7103、 第 二数模转换器 7104、 第一模数转换器 7105、 第二模数转换器 7106、 数字信号处理器 7 107、 第三放大器 7108及第四可调放大器 7109 , 远端单元 72 包括第二多工器 7201、 第一变频器 7202、 第二变频器 7203、 第一双工器 7204、 第二双工器 7205、 第一天线 7206、 第二 天线 7207、 检测调节器 7208、 第一可调放大器 7209、 第二放大器 7210。
具体的, 通过数字信号处理器 7107及第一数模转换器 7103生 成第一发送信号,通过数字信号处理器 7 107及第二数模转换器 7104 生成第二发送信号, 将第一发送信号及第二发送信号通过第一多工 器 7101合并为传输信号传输至第二多工器 7201 ,从第二多工器 7201 中分离出第一发送信号及第二发送信号, 将第二发送信号通过第一 变频器 7202进行频率调节生成第二变频信号, 使得第二变频信号的 频率处于接收信号的频带内, 通过检测调节器 7208及第一可调放大 器 7209对第二变频信号进行放大处理, 将第二变频信号功分为两路 信号, 将其中一路信号作为第一接收信号直接传输至第二多工器
7201 , 将另一路信号通过第二放大器 7210放大后, 通过第二变频器 7203调节频率生成第二接收信号, 将第一接收信号及第二接收信号 通过第二多工器 7201合并后传输至第一多工器 7101 , 并由第一多 工器 7101分离出第一接收信号及第二接收信号, 将第一接收信号通 过第四可调放大器 7109放大后, 分别对第一接收信号及第二接收信 号进行模数转换生成第一数字信号及第二数字信号, 利用数字信号 处理器 7 107检测第一数字信号与第二数字信号的幅度, 根据第一数 字信号与第二数字信号的幅度差调整第四可调放大器 7109 , 以使得 通过第四可调放大器 7109放大后, 第一接收信号与第二接收信号幅 度相同, 即使得接收的两路上行信号功率相等。
本发明的实施例提供的双工通信设备, 通过获取第一发送信号 及第二发送信号, 将第一发送信号及第二发送信号合并为传输信号, 并将传输信号通过一路馈线由近端单元传输至远端单元, 传输信号 传输至远端单元后, 从传输信号中分离出第一发送信号及第二发送 信号, 调节第二发送信号的频率生成第二变频信号, 分别发送第一 发送信号及第二变频信号, 能够减少通信设备中馈线数量, 降低通信设 备的成本。
本发明的又一实施例提供一种双工通信设备, 参照图 8所示, 该设备可以嵌入或本身就是微处理计算机, 比如: 通用计算机、 客 户定制机、 手机终端或平板机等便携设备, 该双工通信设备 8001 包 括: 至少一个处理器 801 1、 存储器 8012、 总线 8013、 发送器 8014 和接收器 801 5 , 该至少一个处理器 801 1、 存储器 8012、 发送器 8014 和接收器 801 5通过总线 8013连接并完成相互间的通信。
该总线 8013可以是 ISA ( Industry Standard Architecture , 工业 标准体系结构) 总线、 PCI ( Peripheral Component , 外部设备互连 ) 总线或 EISA ( Extended Industry Standard Architecture , 扩展工业标 准体系结构) 总线等。 该总线 8013可以分为地址总线、 数据总线、 控制总线等。 为便于表示, 图 8 中仅用一条粗线表示, 但并不表示 仅有一根总线或一种类型的总线。 其中:
存储器 8012用于执行本发明方案的应用程序代码,执行本发明 方案的应用程序代码保存在存储器中,并由处理器 801 1来控制执行。
该存储器可以是只读存储器 ROM 或可存储静态信息和指令的 其他类型的静态存储设备, 随机存取存储器 RAM 或者可存储信息 和指令的其他类型的动态存储设备, 也可以是电可擦可编程只读存 储器 EEPROM、 只读光盘 CD-ROM或其他光盘存储、 光碟存储 ( 包 括压缩光碟、 激光碟、 光碟、 数字通用光碟、 蓝光光碟等)、 磁盘存 储介质或者其他磁存储设备、 或者能够用于携带或存储具有指令或 数据结构形式的期望的程序代码并能够由计算机存取的任何其他介 质, 但不限于此。 这些存储器通过总线与处理器相连接。
处理器 801 1可能是一个中央处理器 801 1 ( Central Processing Unit , 简称为 CPU ) , 或者是特定集成电路 ( Application Specific Integrated Circuit , 简称为 ASIC ) , 或者是被配置成实施本发明实施 例的一个或多个集成电路。
处理器 801 1 , 用于调用存储器 8012 中的程序代码, 用以执行 上述图 5或图 6对应的设备实施例中远端单元及近端单元的操作, 具体描述参照图 5或图 6对应的设备实施例, 这里不再赘述。
本发明的实施例提供的双工通信设备, 通过获取第一发送信号 及第二发送信号, 将第一发送信号及第二发送信号合并为传输信号, 并将传输信号通过一路馈线由近端单元传输至远端单元, 传输信号 传输至远端单元后, 从传输信号中分离出第一发送信号及第二发送 信号, 调节第二发送信号的频率生成第二变频信号, 分别发送第一 发送信号及第二变频信号, 能够减少通信设备中馈线数量, 降低通信设 备的成本。
结合上述图 1或图 2对应的实施例,本发明的实施例提供一种信号发 送方法, 应用于上述图 1或图 2对应的实施例中所描述的发送设备, 参照 图 9所示, 包括以下步骤: 901、 获取第一发送信号及第二发送信号。
其中, 第一发送信号是射频信号, 第二发送信号不是射频信号, 射频信号是拥有发射频率的信号。 可选的, 在具体实现方式中, 射 频信号是经过调制后拥有发射频率的信号, 可以通过天线直接发送 出去。 此处, 第一发送信号是可以通过天线直接发送的信号, 第二 发送信号是需要调节频率之后才可以发送的信号。 进一步可选的, 第二发送信号可以是中频信号。
可选的, 将基带信号进行数字信号调制生成第一数字信号及第 二数字信号, 将第一数字信号进行数模转换生成第一发送信号, 将 第二数字信号进行数模转换生成第二发送信号。 可选的, 因为第一 发送信号为射频信号, 在电路中功率损耗较大, 可以将生成的第一 发送信号进行放大处理。
902、 将第一发送信号及第二发送信号合并为传输信号, 并将传 输信号通过一路馈线由近端单元传输至远端单元。
因为第一发送信号是射频信号, 第二发送信号是非射频信号, 两个信号合并之后, 可以从合并的传输信号中再分离出来, 这样合 并成一路传输信号由射频拉远单员传输至远端单元就只需要一路馈 线, 减少了通信设备馈线的数量。 可选的, 可以通过多工器将第一 发送信号及第二发送信号合并为传输信号。
903、 传输信号传输至远端单元后, 从传输信号中分离出第一发 送信号及第二发送信号。
可选的, 可以通过多工器将第一发送信号及第二发送信号在传 输信号中分离出来。
904、 调节第二发送信号的频率生成第二变频信号。
其中, 第二变频信号为射频信号。
可选的, 调节时钟信号的频率生成第一混频信号, 将第一混频 信号与第二发送信号进行混频处理生成第二变频信号, 其中, 第一 混频信号的频率为第一发送信号的频率与第二发送信号的频率之差 的绝对值。 优选的, 可以通过鉴相器调节时钟信号的频率生成第一 混频信号, 通过混频器将第一混频信号与第二发送信号进行混频处 理, 得到的第二变频信号的频率即为第一混频信号的频率与第二发 送信号的频率之和。
进一步可选的, 在步骤 902 中, 可以将时钟信号、 第一发送信 号及第二发送信号合并为传输信号, 在步骤 903 中, 可以在传输信 号中分离出时钟信号, 进而根据时钟信号生成第一混频信号。 优选 的, 第一混频信号的频率可以预先设定。
可选的, 生成第二变频信号之后, 因为在传输过程中第二发送 信号功率会有所损耗, 可以将第二变频信号进行放大处理。 优选的, 检测第一发送信号的幅度, 根据第一发送信号的幅度将第二变频信 号进行幅度调节, 使第二变频信号的幅度与第一发送信号的幅度之 差的绝对值小于预设阔值。 进一步的, 在连续的信号传输过程中, 可以检测第一发送信号的幅度与第二变频信号的幅度之差, 根据第 一发送信号的幅度与第二变频信号的幅度之差对之后传输的第二变 频信号进行幅度调节。
905、 分别发送第一发送信号及第二变频信号。
可选的, 可以用两个双工天线分别发送第一发送信号及第二变 频信号, 通过第一天线发送第一发送信号, 通过第二天线发送第二 变频信号。 进一步可选的, 通过第一双工器将第一发送信号传输至 第一天线, 通过第二双工器将第二变频信号传输至第二天线。 此处, 第一双工器及第二双工器可以是两个锁相器, 用于将发射信号及接 收信号进行分离。
本发明的实施例提供的信号发送方法, 通过获取第一发送信号 及第二发送信号, 将第一发送信号及第二发送信号合并为传输信号, 并将传输信号通过一路馈线由近端单元传输至远端单元, 传输信号 传输至远端单元后, 从传输信号中分离出第一发送信号及第二发送 信号, 调节第二发送信号的频率生成第二变频信号, 分别发送第一 发送信号及第二变频信号, 能够减少通信设备中馈线数量, 降低通信设 备的成本。 结合上述图 3或图 4对应的实施例,本发明的实施例提供一种信号接 收方法, 应用于上述图 3或图 4对应的实施例中所描述的接收设备, 参照 图 10所示, 包括以下步骤:
1001、 接收第一接收信号及第二变频信号。
其中, 第一接收信号及第二变频信号为射频信号, 第二变频信 号是第二接收信号通过混频处理生成的信号, 第二接收信号为非射 频信号, 射频信号是拥有发射频率的信号。
可选的, 通过第一天线接收第一接收信号, 通过第二天线接收 第二变频信号。 优选的, 第一天线及第二天线为双工天线, 第一天 线用于接收或发送不需要经过变频处理的射频信号, 第二天线用于 发送或接收需要经过变频生成射频信号的中频信号。
1002、 调节第二变频信号的频率生成第二接收信号。
可选的, 获取时钟信号, 调节时钟信号的频率生成第二混频信 号, 将第二混频信号与第二变频信号进行混频处理生成第二接收信 号, 其中, 第二混频信号的频率为第一接收信号的频率与第二接收 信号的频率之差的绝对值。 优选的, 可以通过鉴相器调节时钟信号 的频率生成第二混频信号, 通过混频器将第二混频信号与第二变频 信号进行混频处理, 得到的第二接收信号的频率即为第二变频信号 的频率减去第二混频信号的频率的差值。 优选的, 对于双工通信设 备, 结合图 9对应的实施例中步骤 904的描述, 可以在发射信号合 并成的传输信号中获取时钟信号。
进一步可选的, 在调节第二变频信号的频率之前, 可以对第二 变频信号进行幅度调节, 是第二变频信号的幅度与预设幅度之差的 绝对值小于预设阈值。 优选的, 对于双工通信设备, 结合图 9对应 的实施例中步骤 904的描述, 对于发射信号中的射频信号, 可以检 测该射频信号的幅度, 将该射频信号的幅度作为预设阔值, 进而对 第二变频信号进行幅度调节。
1003、 将第一接收信号及第二接收信号合并为传输信号, 并将 传输信号通过一路馈线由远端单元传输至近端单元。 可选的, 可以通过多工器将第一接收信号及第二接收信号合并 为传输信号。 因为第一接收信号是射频信号, 第二接收信号是非射 频信号, 两个信号合并之后, 可以从合并的传输信号中再分离出来, 这样合并成一路传输信号由射频拉远单员传输至远端单元就只需要 一路馈线, 减少了通信设备馈线的数量。
1004、 传输信号传输至近端单元后, 从传输信号中分离出第一 接收信号及第二接收信号。
可选的, 可以通过多工器将第一接收信号及第二接收信号从传 输信号中分离出来。
进一步可选的, 将第一接收信号及第二接收信号进行模数转换 生成第一数字信号及第二数字信号, 将第一数字信号及第二数字信 号进行数字信号调制生成基带信号。 其中, 可选的, 在第一接收信 号进行模数转换之前, 可以对第一接收信号进行放大处理。
本发明的实施例提供的信号接收方法, 通过接收第一接收信号 及第二变频信号, 调节第二变频信号的频率生成第二接收信号, 将 第一接收信号及第二接收信号合并为传输信号, 并将传输信号通过 一路馈线由远端单元传输至近端单元, 传输信号传输至近端单元后, 从传输信号中分离出第一接收信号及第二接收信号, 能够减少通信设 备中馈线数量, 降低通信设备的成本。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到 本发明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用 软件实现时, 可以将上述功能存储在计算机可读介质中或作为计算机可读 介质上的一个或多个指令或代码进行传输。 计算机可读介质包括计算机存 储介质和通信介质, 其中通信介质包括便于从一个地方向另一个地方传送 计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。 以此为例但不限于: 计算机可读介质可以包括 RAM ( Random Access Memory, 随机存储器 )、 ROM ( Read Only Memory, 只读内存)、 EEPROM ( Electrically Erasable Programmable Read Only Memory, 电可擦可编程只 读存储器) 、 CD-ROM ( Compact Disc Read Only Memory, 即只读光盘 ) 或其他光盘存储、 磁盘存储介质或者其他磁存储设备、 或者能够用于携带 或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的 任何其他介质。 此外。 任何连接可以适当的成为计算机可读介质。 例如, 如果软件是使用同轴电缆、光纤光缆、双绞线、 DSL( Digital Subscriber Line , 数字用户专线) 或者诸如红外线、 无线电和微波之类的无线技术从网站、 服务器或者其他远程源传输的, 那么同轴电缆、 光纤光缆、 双绞线、 DSL 或者诸如红外线、 无线和微波之类的无线技术包括在所属介质的定影中。 如本发明所使用的, 盘和碟包括 CD ( Compact Disc , 压缩光碟)、 激光碟、 光碟、 DVD碟 ( Digital Versatile Disc, 数字通用光) 、 软盘和蓝光光碟, 其中盘通常磁性的复制数据, 而碟则用激光来光学的复制数据。 上面的组 合也应当包括在计算机可读介质的保护范围之内。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种发送设备, 其特征在于, 包括: 近端单元及远端单元, 其中, 所述近端单元包括合路器, 所述远端单元包括分路器、 变频器、 第一天线及第二天线;
所述合路器, 用于获取第一发送信号及第二发送信号, 将所述第 一发送信号及所述第二发送信号合并为传输信号, 并将所述传输信号 通过一路馈线传输至所述分路器, 其中, 所述第一发送信号为射频信 号, 所述第二发送信号为非射频信号, 所述射频信号是拥有发射频率 的信号;
所述分路器, 用于接收所述合路器传输的所述传输信号, 从所述 传输信号中分离出所述第一发送信号及所述第二发送信号, 将所述第 一发送信号传输至第一天线, 将所述第二发送信号传输至所述变频 器;
所述变频器, 用于接收所述分路器传输的所述第二发送信号, 调 节所述第二发送信号的频率生成第二变频信号, 将所述第二变频信号 传输至所述第二天线, 其中, 所述第二变频信号为射频信号;
所述第一天线, 用于接收所述分路器传输的所述第一发送信号, 并发送所述第一发送信号;
所述第二天线, 用于接收所述变频器传输的所述第二变频信号, 并发送所述第二变频信号。
2、 根据权利要求 1所述的设备, 其特征在于, 所述远端单元还 包括检测调节器及第一放大器;
所述检测调节器, 用于检测所述第一发送信号的幅度;
所述第一放大器,用于根据所述检测调节器检测的所述第一发送 信号的幅度, 将所述第二变频信号进行幅度调节, 使所述第二变频信 号的幅度与所述第一发送信号的幅度之差的绝对值小于预设阔值。
3、 根据权利要去 1或 2所述的设备, 其特征在于, 所述近端单 元还包括时钟振荡器;
所述时钟振荡器, 用于生成时钟信号, 将所述时钟信号传输至所 述合路器;
所述合路器, 还用于接收所述时钟振荡器传输的所述时钟信号, 将所述时钟信号、 所述第一发送信号及所述第二发送信号合并为所述 传输信号;
所述分路器, 还用于从所述传输信号中分离出所述时钟信号、 所 述第一发送信号及所述第二发送信号, 将所述时钟信号传输至所述变 频器;
所述变频器, 还用于接收所述分路器传输的所述时钟信号, 调节 所述时钟信号的频率生成第一混频信号, 将所述第一混频信号与所述 第二发送信号进行混频处理生成所述第二变频信号, 其中, 所述第一 混频信号的频率为所述第一发送信号的频率与所述第二发送信号的 频率之差的绝对值。
4、 根据权利要求 1 -3任一项所述的设备, 其特征在于, 所述近 端单元还包括数字信号处理器、 第一数模转换器及第二数模转换器; 所述数字信号处理器, 用于获取基带信号, 将所述基带信号进行 数字信号调制生成第一数字信号及第二数字信号, 将所述第一数字信 号传输至所述第一数模转换器, 将所述第二数字信号传输至所述第二 数模转换器;
所述第一数模转换器,用于接收所述数字信号处理器传输的所述 第一数字信号, 将所述第一数字信号进行数模转换生成所述第一发送 信号;
所述第二数模转换器,用于接收所述数字信号处理器传输的所述 第二数字信号, 将所述第二数字信号进行数模转换生成所述第二发送 信号。
5、 根据权利要求 1 -4任一项所述的设备, 其特征在于, 所述近 端单元还包括第二放大器;
所述第二放大器, 用于将所述第一发送信号进行放大处理。
6、 一种接收设备, 其特征在于, 包括: 远端单元及近端单元, 所述远端单元包括合路器、 变频器、 第一天线及第二天线, 所述近端 单元包括分路器;
所述第一天线, 用于接收第一接收信号, 将所述第一接收信号传 输至所述合路器, 所述第一接收信号为射频信号, 所述射频信号是拥 有发射频率的信号;
所述第二天线, 用于接收第二变频信号, 将所述第二变频信号传 输至所述变频器, 所述第二变频信号为射频信号, 并且所述第二变频 信号是第二接收信号通过混频处理生成的信号;
所述变频器, 用于接收所述第二天线传输的所述第二变频信号, 调节所述第二变频信号的频率生成所述第二接收信号, 并将所述第二 接收信号传输至所述合路器;
所述合路器,用于接收所述第一天线传输的所述第一接收信号及 所述变频器传输的所述第二接收信号, 将所述第一接收信号及所述第 二接收信号合并为传输信号, 并将所述传输信号通过一路馈线传输至 所述分路器;
所述分路器, 用于接收所述合路器传输的所述传输信号, 从所述 传输信号中分离出所述第一接收信号及所述第二接收信号。
7、 根据权利要求 6所述的设备, 其特征在于, 所述远端单元还 包括第一放大器;
所述第一放大器, 用于将所述第二变频信号进行幅度调节, 使所 述第二变频信号的幅度与预设幅度之差的绝对值小于预设阔值。
8、 根据权利要求 6或 7所述的设备, 其特征在于,
所述变频器, 还用于获取时钟信号, 调节所述时钟信号的频率生 成第二混频信号, 将所述第二混频信号与所述第二变频信号进行混频 处理生成所述第二接收信号, 其中, 所述第二混频信号的频率为所述 第一接收信号的频率与所述第二接收信号的频率之差的绝对值。
9、 根据权利要求 6-8任一项所述的设备, 其特征在于, 所述近 端单元还包括第一模数转换器、 第二模数转换器及数字信号处理器; 所述第一模数转换器,用于将所述分路器分离出的所述第一接收 信号进行模数转换生成第一数字信号, 并将所述第一数字信号传输至 所述数字信号处理器;
所述第二模数转换器,用于将所述分路器分离出的所述第二接收 信号进行模数转换生成第二数字信号, 并将所述第二数字信号传输至 所述数字信号处理器;
所述数字信号处理器,用于接收所述第一模数转换器传输的所述 第一数字信号及所述第二模数转换器传输的所述第二数字信号, 将所 述第一数字信号及所述第二数字信号进行数字信号解调生成基带信 号。
10、 根据权利要求 6-9任一项所述的设备, 其特征在于, 所述近 端单元还包括第二放大器;
所述第二放大器,用于将所述分路器分离出的所述第一接收信号 进行放大处理。
1 1、一种双工通信设备, 其特征在于, 包括近端单元及远端单元, 所述近端单元包括第一多工器, 所述远端单元包括第二多工器、 第一 变频器、 第二变频器、 第一双工器、 第二双工器、 第一天线及第二天 线;
其中, 所述第一多工器, 用于当所述双工通信设备发送信号时, 获取第一发送信号及第二发送信号, 将所述第一发送信号及所述第二 发送信号合并为传输信号, 并将所述传输信号通过一路馈线传输至所 述第二多工器, 其中, 所述第一发送信号为射频信号, 所述第二发送 信号为非射频信号, 所述射频信号是拥有发射频率的信号;
所述第二多工器, 用于当所述双工通信设备发送信号时, 接收所 述第一多工器传输的所述传输信号, 从所述传输信号中分离出所述第 一发送信号及所述第二发送信号, 将所述第一发送信号传输至第一双 工器, 将所述第二发送信号传输至所述第一变频器;
所述第一变频器,用于接收所述第二多工器传输的所述第二发送 信号, 调节所述第二发送信号的频率生成第二变频信号, 将所述第二 变频信号传输至所述第二双工器, 其中, 所述第二变频信号为射频信 号; 所述第一双工器, 用于当所述双工通信设备发送信号时, 接收所 述第二多工器传输的所述第一发送信号, 将所述第一发送信号与接收 的信号分离开, 并将所述第一发送信号传输至所述第一天线;
所述第一天线, 用于当所述双工通信设备发送信号时, 接收所述 第一双工器传输的所述第一发送信号并发送所述第一发送信号; 所述第二双工器, 用于当所述双工通信设备发送信号时, 接收所 述第一变频器传输的所述第二变频信号, 将所述第二变频信号与接收 的信号分离开, 并将所述第二变频信号传输至所述第二天线;
所述第二天线, 用于当所述双工通信设备发送信号时, 接收所述 第二双工器传输的所述第二变频信号并发送所述第二变频信号; 或者,
所述第一天线, 用于当所述双工通信设备接收信号时, 接收第一 接收信号, 将所述第一接收信号传输至所述第一双工器, 所述第一接 收信号为射频信号, 所述射频信号是拥有发射频率的信号;
所述第一双工器, 用于当所述双工通信设备接收信号时, 接收所 述第一天线传输的所述第一接收信号, 将所述第一接收信号与发送的 信号分离开, 并将所述第一接收信号传输至所述第二多工器;
所述第二天线, 用于当所述双工通信设备接收信号时, 接收第二 变频信号, 将所述第二变频信号传输至所述第二双工器, 所述第二变 频信号为射频信号, 并且所述第二变频信号是第二接收信号通过混频 处理生成的信号;
所述第二双工器, 用于当所述双工通信设备接收信号时, 接收所 述第二天线传输的所述第二变频信号, 将所述第二变频信号与发送的 信号分离开, 并将所述第二变频信号传输至所述第二变频器;
所述第二变频器,用于接收所述第二双工器传输的所述第二变频 信号, 调节所述第二变频信号的频率生成所述第二接收信号, 并将所 述第二接收信号传输至所述第二多工器;
所述第二多工器, 用于当所述双工通信设备接收信号时, 接收所 述第一双工器传输的所述第一接收信号及所述第二变频器传输的所 述第二接收信号, 将所述第一接收信号及所述第二接收信号合并为传 输信号, 并将所述传输信号通过一路馈线传输至所述第一多工器; 所述第一多工器, 用于当所述双工通信设备接收信号时, 接收所 述第二多工器传输的所述传输信号, 从所述传输信号中分离出所述第 一接收信号及所述第二接收信号。
12、 根据权利要求 1 1所述的设备, 其特征在于, 所述远端单元 还包括检测调节器、 第一可调放大器及第二可调放大器;
所述检测调节器, 用于当所述双工通信设备发送信号时, 检测所 述第一发送信号的幅度;
所述第一可调放大器, 用于当所述双工通信设备发送信号时, 根 据所述检测调节器检测的所述第一发送信号的幅度, 将所述第二变频 信号进行幅度调节, 使所述第二变频信号的幅度与所述第一发送信号 的幅度之差的绝对值小于预设阔值;
所述第二可调放大器, 用于当所述双工通信设备接收信号时, 根 据所述检测调节器检测的所述第一发送信号的幅度, 将所述第二变频 信号进行幅度调节, 使所述第二变频信号的幅度与所述第一发送信号 的幅度之差的绝对值小于预设阔值。
13、 根据权利要求 1 1或 12所述的设备, 其特征在于, 所述近端 单元, 还包括时钟振荡器;
所述时钟振荡器, 用于生成时钟信号, 将所述时钟信号传输至所 述第一多工器;
所述第一多工器, 用于当所述双工通信设备发送信号时, 接收所 述时钟振荡器传输的所述时钟信号, 将所述时钟信号、 所述第一发送 信号及所述第二发送信号合并为所述传输信号;
所述第二多工器, 还用于当所述双工通信设备发送信号时, 从所 述传输信号中分离出所述时钟信号、 所述第一发送信号及所述第二发 送信号, 将所述时钟信号传输至所述第一变频器及所述第二变频器; 所述第一变频器, 还用于当所述双工通信设备发送信号时, 接收 所述第二多工器传输的所述时钟信号, 调节所述时钟信号的频率生成 第一混频信号, 将所述第一混频信号与所述第二发送信号进行混频处 理生成所述第二变频信号, 其中, 所述第一混频信号的频率为所述第 一发送信号的频率与所述第二发送信号的频率之差的绝对值;
所述第二变频器, 还用于当所述双工通信设备接收信号时, 接收 所述第二多工器传输的所述时钟信号, 调节所述时钟信号的频率生成 第二混频信号, 将所述第二混频信号与所述第二变频信号进行混频处 理生成所述第二接收信号, 其中, 所述第二混频信号的频率为所述第 一接收信号的频率与所述第二接收信号的频率之差的绝对值。
14、 根据权利要求 1 1 - 13任一项所述的设备, 其特征在于, 所述 近端单元还包括第一数模转换器、第二数模转换器、第一模数转换器、 第二模数转换器及数字信号处理器;
所述数字信号处理器, 用于当所述双工通信设备发送信号时, 获 取基带信号, 将所述基带信号进行数字信号调制生成第一数字信号及 第二数字信号, 将所述第一数字信号传输至所述第一数模转换器, 将 所述第二数字信号传输至所述第二数模转换器;
所述第一数模转换器, 用于当所述双工通信设备发送信号时, 接 收所述数字信号处理器传输的所述第一数字信号, 将所述第一数字信 号进行数模转换生成所述第一发送信号;
所述第二数模转换器, 用于当所述双工通信设备发送信号时, 接 收所述数字信号处理器传输的所述第二数字信号, 将所述第二数字信 号进行数模转换生成所述第二发送信号;
所述第一模数转换器, 用于当所述双工通信设备接收信号时, 将 所述第一多工器分离出的所述第一接收信号进行模数转换生成第一 数字信号, 并将所述第一数字信号传输至所述数字信号处理器;
所述第二模数转换器, 用于当所述双工通信设备接收信号时, 将 所述第一多工器分离出的所述第二接收信号进行模数转换生成第二 数字信号, 并将所述第二数字信号传输至所述数字信号处理器;
所述数字信号处理器, 还用于当所述双工通信设备接收信号时, 接收所述第一模数转换器传输的所述第一数字信号及所述第二模数 转换器传输的所述第二数字信号, 将所述第一数字信号及所述第二数 字信号进行数字信号解调生成基带信号。
15、 根据权利要求 1 1 - 14任一项所述的设备, 其特征在于, 所述 近端单元还包括第三放大器及第四放大器;
所述第三放大器, 用于当所述双工通信设备发送信号时, 将所述 第一发送信号进行放大处理;
所述第四放大器, 用于当所述双工通信设备接收信号时, 将所述 第一接收信号进行放大处理。
16、 一种信号发送方法, 其特征在于, 包括:
获取第一发送信号及第二发送信号, 其中, 所述第一发送信号为 射频信号, 所述第二发送信号为非射频信号, 所述射频信号是拥有发 射频率的信号;
将所述第一发送信号及所述第二发送信号合并为传输信号,并将 所述传输信号通过一路馈线由近端单元传输至远端单元;
所述传输信号传输至远端单元后,从所述传输信号中分离出所述 第一发送信号及所述第二发送信号;
调节所述第二发送信号的频率生成第二变频信号, 其中, 所述第 二变频信号为射频信号;
分别发送所述第一发送信号及所述第二变频信号。
17、 根据权利要求 16所述的方法, 其特征在于, 所述调节所述 第二发送信号的频率生成第二变频信号之后, 还包括:
检测所述第一发送信号的幅度,根据所述第一发送信号的幅度将 所述第二变频信号进行幅度调节, 使所述第二变频信号的幅度与所述 第一发送信号的幅度之差的绝对值小于预设阔值。
18、 根据权利要求 16或 17所述的方法, 其特征在于, 所述将所 述第一发送信号及所述第二发送信号合并为传输信号, 包括:
获取时钟信号, 将所述时钟信号、 所述第一发送信号及所述第二 发送信号合并为所述传输信号;
所述传输信号传输至远端单元后,从所述传输信号中分离出所述 第一发送信号及所述第二发送信号, 包括:
所述传输信号传输至远端单元后,从所述传输信号中分离出所述 时钟信号、 所述第一发送信号及所述第二发送信号;
所述根据所述第一发送信号的频率调节所述第二发送信号的频 率, 并生成第二变频信号, 包括:
调节所述时钟信号的频率生成第一混频信号,将所述第一混频信 号与所述第二发送信号进行混频处理生成所述第二变频信号, 其中, 所述第一混频信号的频率为所述第一发送信号的频率与所述第二发 送信号的频率之差的绝对值。
19、 根据权利要求 16- 18任一项所述的方法, 其特征在于, 所述 获取第一发送信号及第二发送信号, 包括:
获取基带信号,将所述基带信号进行数字信号调制生成第一数字 信号及第二数字信号;
将所述第一数字信号进行数模转换生成所述第一发送信号,将所 述第二数字信号进行数模转换生成所述第二发送信号。
20、 根据权利要求 16- 19任一项所述的方法, 其特征在于, 所述 获取第一发送信号及第二发送信号之后, 还包括:
将所述第一发送信号进行放大处理。
21、 一种信号接收方法, 其特征在于, 包括:
接收第一接收信号及第二变频信号, 其中, 所述第一接收信号及 所述第二变频信号为射频信号, 所述第二变频信号是第二接收信号通 过混频处理生成的信号, 所述第二接收信号为非射频信号, 所述射频 信号是拥有发射频率的信号;
调节所述第二变频信号的频率生成所述第二接收信号;
将所述第一接收信号及所述第二接收信号合并为传输信号,并将 所述传输信号通过一路馈线由远端单元传输至近端单元;
所述传输信号传输至近端单元后,从所述传输信号中分离出所述 第一接收信号及所述第二接收信号。
22、 根据权利要求 21所述的方法, 其特征在于, 所述接收第一 接收信号及第二变频信号之后, 还包括:
将所述第二变频信号进行幅度调节,使所述第二变频信号的幅度 与预设幅度之差的绝对值小于预设阔值。
23、 根据权利要求 21或 22所述的方法, 其特征在于, 所述调节 所述第二变频信号的频率生成第二接收信号, 包括:
获取时钟信号, 调节所述时钟信号的频率生成第二混频信号, 将 所述第二混频信号与所述第二变频信号进行混频处理生成所述第二 接收信号, 其中, 所述第二混频信号的频率为所述第一接收信号的频 率与所述第二接收信号的频率之差的绝对值。
24、 根据权利要求 21 -23任一项所述的方法, 其特征在于, 所述 从所述传输信号中分离出所述第一接收信号及所述第二接收信号之 后, 还包括:
将所述第一接收信号进行模数转换生成第一数字信号,将所述第 二接收信号进行模数转换生成第二数字信号;
将所述第一数字信号及所述第二数字信号进行数字信号解调生 成基带信号。
25、 根据权利要求 21 -24任一项所述的方法, 其特征在于, 所述 从所述传输信号中分离出所述第一接收信号及所述第二接收信号之 后, 还包括:
将所述第一接收信号进行放大处理。
PCT/CN2014/081881 2014-07-09 2014-07-09 一种信号传输方法及设备 WO2016004589A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480033995.XA CN105519012B (zh) 2014-07-09 2014-07-09 一种信号传输方法及设备
PCT/CN2014/081881 WO2016004589A1 (zh) 2014-07-09 2014-07-09 一种信号传输方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/081881 WO2016004589A1 (zh) 2014-07-09 2014-07-09 一种信号传输方法及设备

Publications (1)

Publication Number Publication Date
WO2016004589A1 true WO2016004589A1 (zh) 2016-01-14

Family

ID=55063492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081881 WO2016004589A1 (zh) 2014-07-09 2014-07-09 一种信号传输方法及设备

Country Status (2)

Country Link
CN (1) CN105519012B (zh)
WO (1) WO2016004589A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133225A1 (zh) * 2018-12-28 2020-07-02 华为技术有限公司 一种信号处理装置、方法及接入网设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193532B (zh) * 2018-11-14 2021-12-10 华为技术有限公司 一种网络设备、信号处理装置和天线装置
CN111541469A (zh) * 2020-04-24 2020-08-14 Oppo广东移动通信有限公司 用户终端设备
CN111756897A (zh) * 2020-06-22 2020-10-09 联想(北京)有限公司 一种电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902318A (zh) * 2010-06-24 2010-12-01 广州飞瑞敖电子科技有限公司 混合WiFi、3G信号的双向模拟光纤传输系统
CN102136845A (zh) * 2011-03-18 2011-07-27 华为技术有限公司 有源天线的信号接收方法和信号接收机
CN102594423A (zh) * 2012-02-07 2012-07-18 中国联合网络通信集团有限公司 多输入多输出系统
CN102869023A (zh) * 2012-09-20 2013-01-09 中国联合网络通信集团有限公司 室内通信分布系统及其通信方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308437B (zh) * 2009-05-26 2013-09-11 华为技术有限公司 一种天线装置
CN102281548A (zh) * 2011-08-01 2011-12-14 深圳市云海通讯股份有限公司 一种fdd-lte室内覆盖系统
CN102316475A (zh) * 2011-09-30 2012-01-11 武汉虹信通信技术有限责任公司 一种单馈线实现移动通信mimo室内覆盖的系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902318A (zh) * 2010-06-24 2010-12-01 广州飞瑞敖电子科技有限公司 混合WiFi、3G信号的双向模拟光纤传输系统
CN102136845A (zh) * 2011-03-18 2011-07-27 华为技术有限公司 有源天线的信号接收方法和信号接收机
CN102594423A (zh) * 2012-02-07 2012-07-18 中国联合网络通信集团有限公司 多输入多输出系统
CN102869023A (zh) * 2012-09-20 2013-01-09 中国联合网络通信集团有限公司 室内通信分布系统及其通信方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133225A1 (zh) * 2018-12-28 2020-07-02 华为技术有限公司 一种信号处理装置、方法及接入网设备
US11438020B2 (en) 2018-12-28 2022-09-06 Huawei Technologies Co., Ltd. Signal processing apparatus and method, and access network device
US11870474B2 (en) 2018-12-28 2024-01-09 Huawei Technologies Co., Ltd. Signal processing apparatus and method, and access network device

Also Published As

Publication number Publication date
CN105519012B (zh) 2019-06-11
CN105519012A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
US20230089191A1 (en) Qcl (quasi co-location) indication for beamforming management
US10461817B2 (en) Enhanced multiple-input multiple-output beam refinement protocol transmit sector sweep
JP5525606B2 (ja) アンテナ管理を行う方法および装置
US11611939B2 (en) Techniques for determining power offsets of a physical downlink shared channel
US9912467B2 (en) Full duplex technique
CN108292940B (zh) 收发器装置、调制解调器、通信装置和处理信号的方法
US20190223175A1 (en) Guard period between subframe portions of same link direction in wireless networks
US10225828B2 (en) Apparatus, system and method of communicating control information in a physical layer protocol data unit (PPDU)
US11539570B2 (en) I/Q imbalance compensation
CN101103538A (zh) 通信设备、多频带接收机及接收机
WO2017142573A1 (en) CONTROL SIGNALING FOR FIFTH GENERATION CHANNEL STATE INFORMATION REFERENCE SIGNALS (xCSI-RS)
CN111629448B (zh) 随机接入方法和装置
WO2016004589A1 (zh) 一种信号传输方法及设备
CN110999140B (zh) 用于在采用时分双工方案的无线通信系统中采样信号的装置和方法
US20170318525A1 (en) Radio Relay Architecture and Method for Power Conservation Under Dynamic Channel Conditions
JP2017508378A (ja) モードベースアンテナ同調
WO2017099831A1 (en) Control signaling in multiple beam operation
CN110547022A (zh) 用于指示调度授权的系统和方法
US8615233B2 (en) Base station scanning using multiple receive paths
US20160157255A1 (en) Data scheduling method, apparatus, base station, and system
US20160191581A1 (en) Apparatus, system and method of media streaming
CN105407065B (zh) 一种多载波调制系统
WO2012079293A1 (zh) 通信信号传输方法、装置及系统
KR102351590B1 (ko) 동기 캐리어 주파수 신호 송신 방법 및 장치와, 동기 캐리어 주파수 신호 수신 방법 및 장치
JP2022152620A (ja) 無線送受信機及び無線送受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897069

Country of ref document: EP

Kind code of ref document: A1