WO2020133210A1 - 一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法 - Google Patents

一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法 Download PDF

Info

Publication number
WO2020133210A1
WO2020133210A1 PCT/CN2018/124857 CN2018124857W WO2020133210A1 WO 2020133210 A1 WO2020133210 A1 WO 2020133210A1 CN 2018124857 W CN2018124857 W CN 2018124857W WO 2020133210 A1 WO2020133210 A1 WO 2020133210A1
Authority
WO
WIPO (PCT)
Prior art keywords
arsenic
sodium
sulfur
sodium sulfite
flue gas
Prior art date
Application number
PCT/CN2018/124857
Other languages
English (en)
French (fr)
Inventor
石宏娇
袁冬华
石仁章
梁金凤
石俊阳
汪琴
Original Assignee
焱鑫环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 焱鑫环保科技有限公司 filed Critical 焱鑫环保科技有限公司
Priority to PCT/CN2018/124857 priority Critical patent/WO2020133210A1/zh
Publication of WO2020133210A1 publication Critical patent/WO2020133210A1/zh
Priority to ZA2021/04452A priority patent/ZA202104452B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/14Preparation of sulfites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the environmental protection fields of sulfur-containing flue gas desulfurization technology and alkali slag disposal in the non-ferrous smelting industry, in particular to a method for producing sodium sulfite by removing sulfur in sulfur-containing flue gas by using arsenic-containing industrial alkali slag.
  • the primary arsenic alkali slag that produces refined antimony and the secondary arsenic-containing alkali slag that produces a large amount of smelting dust in the antimony industry of nonferrous metallurgy generally contain 2 to 6% by weight of arsenic, 30 to 40% by weight of soluble alkali, 1 ⁇ 4% by weight of sulfate, 8 ⁇ 35% by weight of insoluble valuable metals lead, antimony, tin, indium, tellurium, etc., the balance is other slag making components such as silicon, iron, calcium, etc.
  • This kind of arsenic-containing industrial alkali slag (including the primary arsenic alkali slag and secondary arsenic alkali slag mentioned above) has a historical stock of nearly one million tons in China, with an annual increase of more than 20,000-30,000 tons. Because this alkali residue is soluble, if it leaks into the surrounding environment, it will be very dangerous, and it is a hazardous solid waste that is strictly controlled by the environment. However, from the perspective of resource utilization, this industrial slag containing arsenic has high utilization value.
  • the lye is used for desulfurization of sulfur-containing flue gas in smelting enterprises, and the lye after absorption of sulfur dioxide is converted into an arsenic-containing mixed liquid mainly composed of sodium sulfite. It is subjected to sodium sulfide precipitation and arsenic precipitation, followed by iron salt deep arsenic removal, pressurized filtrate solid-liquid separation, the resulting purified liquid is evaporated to supersaturate crystallization, the mother liquor is centrifuged to remove the mother liquor, and hot air flow is dried to produce anhydrous sodium sulfite product.
  • the arsenic-containing lye absorbs sulfur dioxide to form sodium sulfite, and undergoes an oxidative mass transfer reaction with the oxygen present in the flue gas at a great interface, that is, the generated sodium sulfite is easily oxidized to Sodium sulfate.
  • the smelting flue gas generally goes through the bag to collect dust before entering the desulfurization process, but in actual operation, there are always cases where the bag is damaged and fails, resulting in a small amount of non-ferrous metal oxide dust mixed in the flue gas.
  • the above-mentioned oxidation reaction is a highly potent catalyst, and its effect is far greater than the effect of adding antioxidants to the solution in advance.
  • the alkali residue itself contains 1 to 2% by weight of sulfur, and it exists in the form of sulfate.
  • the purpose of the present invention is to provide a method for producing sodium sulfite by removing sulfur from sulfur-containing flue gas using arsenic-containing industrial alkali slag in view of the above-mentioned shortcomings of the prior art, which can solve the above-mentioned arsenic-containing industrial alkali slag removal
  • the problems of sulfur in the flue gas and unstable quality and low content of the produced sodium sulfite products are problems of sulfur in the flue gas and unstable quality and low content of the produced sodium sulfite products.
  • the technical scheme adopted by the present invention is: a method for producing sodium sulfite by removing sulfur from sulfur-containing flue gas using industrial arsenic residue containing arsenic.
  • the method steps are as follows, see FIG. 1 in combination:
  • Step 1 Take arsenic-containing industrial alkali slag, add 2-6 times the weight of arsenic-containing industrial alkali slag to the water-based slag;
  • Step 2 Press filter for liquid-solid separation to obtain filtrate
  • Step 3 Add lime to the filtrate according to the Ca/As ratio of 2 to 3, and stir arsenic at room temperature to sink arsenic.
  • the amount of sodium sulfide solution added is 1 to 5 liters of sodium sulfide solution per cubic meter of arsenic after arsenic reaction. Traces of lead, antimony, zinc, tin, etc.
  • the flue gas from the second step of the filter residue entering the fumigation furnace for volatilization and the flue gas generated by the step 3 of the filter residue entering the blast furnace for lead smelting can also be used in step 4 because it is also sulfur-containing flue gas.
  • Step 5 Add appropriate amount of SO 2 and excess lime to the clear solution to reduce the sodium sulfate in the clear solution to sodium bisulfite.
  • the key significance of setting this step is that no matter how the inhibition and prevention of the oxidation phenomenon in the aforementioned process of generating sodium sulfite is inevitable, it is only to a different degree, which directly leads to the unstable fluctuation of the content of sodium sulfite product. Rather than being passive and strictly guarding against death, it is better to actively restore and transform, so that the product content is increased and stable.
  • SO 2 is added, it should not be excessive, as long as the sodium sulfate in the clear solution can be reduced to sodium bisulfite, which can be judged from the pH value of the solution reaching 5.5 to 7.5;
  • Step 7 Evaporation of supersaturated crystallization, centrifugal removal of mother liquor of crystal slurry, drying of crystals by hot air flow to obtain sodium sulfite product with mass concentration ⁇ 90%.
  • the filter residue obtained after the pressure filtration in the above step 2 is mixed with the self-slag-type ingredients and then sent to the fume furnace for fumigation and volatilization.
  • the slag-making components in the filter residue are silicon, iron, and calcium to form an iron-silicon-calcium slag for open circuit; After cooling, the bag collects dust to obtain enriched high-grade valuable metal (Pb, Sb, Sn, etc.) soot, which is sent to subsequent smelting and recycling.
  • step 3 above the filter residue separated by pressure filtration after arsenic precipitation and sulfide purification is combined with elemental iron powder (the weight ratio of filter residue and iron powder is 1:1.85), and it is fed into the lead blast furnace of lead smelting enterprises together with traditional lead smelting raw materials
  • lead smelting in addition to producing crude lead alloy and ferrosilicon calcium slag according to the traditional lead smelting method, it can also produce arsenic ferroalloy by smelting.
  • the produced arsenic ferroalloy accounts for 2 to 8% of the total raw material weight into the furnace.
  • This arsenic-iron alloy contains As18-25% by weight, Fe60-65% by weight, and a specific gravity of about 7.2, which is very stable. After testing according to the standard method of GB5805.3-2007, water The As contained in the effluent meets the standard requirements and is judged to be non-toxic.
  • the arsenic ferroalloy produced is stable and non-toxic, and has a large proportion similar to that of steel materials. It is used as a counterweight material to open the way for external sales, realizing the harmless, resourceful, safe and environmentally friendly treatment of arsenic-containing hazardous waste.
  • sulfide in sulfur-containing flue gas is removed by arsenic-containing industrial alkali slag to produce sodium sulfite products, which can achieve large-scale industrialization of arsenic-containing industrial alkali slag in harmless and resourceful disposal, and can produce high quality 1.
  • the by-product sodium sulfite with stable content (mass concentration ⁇ 90%) has truly realized the desire to treat waste with waste, and realized the full value recovery of sulfur in arsenic-containing industrial alkali slag and sulfur-containing flue gas, with significant environmental and economic benefits .
  • Figure 1 is a process flow diagram of the present invention.
  • Step 1 Circulate the obtained arsenic-containing industrial alkali slag, immerse 20 tons of alkali slag in water, and the liquid-solid ratio is 3:1 (weight);
  • Step 2 Filtrate to obtain filtrate.
  • the filtrate specific gravity 1.11, average of NaOH 10 wt%, As16g / L; 18.9 tons residue (silicon, iron, calcium, etc.), wherein the aqueous 26 wt%; the resulting residue in a self-type slag ingredients into fuming furnace 6.6m 2 Fuming and volatilization, producing ferrosilicon calcium residue
  • Step 3 Press Ca/As ⁇ 2.8, add the fully digested lime powder to the filtrate first, and put it into a 15m 3 stirring tank ⁇ 3.8 ⁇ H1.5m. After stirring at room temperature for 90 minutes, in the obtained alkaline solution per cubic meter Add 2 liters of 15% mass concentration of Na 2 S solution to the alkaline solution, sulfide and precipitate a small amount of Pb, Sb, Zn, Sn, etc. dissolved in the alkaline solution, and continue to stir for 30 minutes. The black sulfide will stain the white calcium arsenate It becomes brown and black.
  • the lye contains NaOH 10% by weight and As 5+ 1.6mg /L, Pb 2+ , Sb 3+ , Zn 2+ , Sn 4+ ⁇ 0.5mg/L, the alkaline solution is sent to the storage tank for storage; calcium arsenate slag and sulfide slag are obtained after pressure filtration, and the slag rate is per cubic meter Rice alkaline solution is 129.5kg, its water content is 40%, arsenic content is As 20.6% by weight;
  • the black calcium arsenate slag produced above is mixed with iron powder, and the process specification weight ratio of ingredients is: 1 calcium arsenate slag: 2 elemental iron powder: 3 river sand is 1:1.85:0.6, ingredients, preparation, pressing into Cylindrical type ⁇ 120 ⁇ H120, after natural air drying, it is put into the furnace together with other lead-containing charge materials of the blast furnace to be smelted according to the traditional lead smelting method.
  • the weight ratio of calcium arsenate slag to the total raw material is 9%, that is, about 18 tons of calcium arsenate slag is fed into the furnace every day to make arsenic iron alloy. Because arsenic-iron alloys are made together with other blast furnace materials, it is not easy to make separate statistics.
  • the rate of iron-solid arsenic is higher than 90%, and the rate of secondary arsenic soot is less than 10%.
  • the produced arsenic-iron alloy contains As22 wt%, Fe63 wt%, specific gravity 7.2, and melting point 680°C.
  • the water immersion liquid contains As0.5mg/L, which is less than the standard 1mg/L.
  • the arsenic iron alloy is judged to be non-toxic and sold to professional counterweight enterprises for use as a counterweight material. The price is up to 2400 Yuan/T;
  • Step 4 The arsenic-decontaminated lye stored in step 3 is replenished to the bottom circulation tank of the 80,000 m 3 /h multi-stage pneumatic mixed desulfurization absorption tower, and the sulfur-containing flue gas produced by the smelting enterprise is subjected to second-cycle absorption reaction desulfurization.
  • the PH value of the tail-stage circulating pool liquid drops to 6.5, 15m 3 is pumped out each time, after pressure filtration and purification, it is put into a storage tank for temporary storage, and a small amount of pressure filtration residue is accumulated and returned to the lead system for batching.
  • the resulting supernatant was filter press containing Na 2 SO 3 10 wt%, Na 2 SO 4 4.7 wt%;
  • Step 5 Use three-stage countercurrent, venturi pump injection to inhale SO 2 to mix, add lime to mechanical agitation, reduce the conversion reactor, use jacketed water cooling to adjust the reaction temperature to below 35°C, and absorb sulfur by 15m 3 per stage 265.2kg, consumption of lime (Ca(OH) 2 > 80%) 306.1kg, reduction and transformation of sodium sulfate in the clear liquid obtained after pressure filtration in step four, the amount of Na 2 SO 4 in the conversion solution after reduction is from 4.7 weight % Is reduced to 1.0% by weight.
  • the mixed hydraulic pressure after the reaction is filtered and the filtrate is sent to the storage tank for use. Filter residue gypsum is then washed and pressure filtered, stored or sold to cement plants for batching;
  • Step 6 Pump the filtrate obtained after reduction and conversion to a 30m 3 PP stirring tank, add sodium hydroxide to adjust the pH value to carry out the conversion reaction, convert NaHSO 3 converted into Na 2 SO 3 after step 5 and control the amount of added alkali, End point pH selection 11.0;
  • Step 7 The solution obtained in Step 6 is passed through a multi-effect evaporative crystallization system to obtain a crystal slurry containing Na 2 SO 3 ; the crystal slurry is sent to a centrifuge to remove the mother liquor to obtain sodium sulfite wet crystals with a moisture content of less than 4% ; Send the above wet loose crystals into the hot air dryer, and dry until the moisture is less than 0.5%, to obtain anhydrous sodium sulfite product, its Na 2 SO 3 content ⁇ 90%, Fe content is less than 0.03% by weight, As content is less than 0.003% by weight, whiteness 80%, product quality meets the requirements of qualified products in the national chemical industry standard "HG/T2967-2010" of anhydrous sodium sulfite products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法,将含砷工业碱渣加水循环打浆后压滤,滤液经加过量石灰沉砷和加硫化钠溶液净化后压滤,碱液入脱硫吸收塔对含硫烟气进行吸收脱硫反应,压滤得含亚硫酸钠和硫酸钠的清液;于该清液中加入适量SO 2和过量石灰,将清液中的硫酸钠还原转化成亚硫酸氢钠,压滤后所得滤液加氢氧化钠溶液调pH值使亚硫酸氢钠转化成亚硫酸钠;最后蒸发过饱和析晶,离心脱水,晶体烘干,得质量浓度≥90%的亚硫酸钠产品。

Description

一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法 技术领域
本发明涉及有色冶炼行业的含硫烟气脱硫技术和碱渣处置等环保领域,具体涉及一种利用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法。
背景技术
在有色冶炼行业,鼓风炉、烟化炉及反射炉于工作中都会产生大量的含硫烟气,该些含硫烟气有一个共同点,就是含硫量比较低,一般典型值为1000~8000mg/m 3,用其制硫酸非常困难,只能用其它介质吸收脱除硫。现已有非常成熟的相关技术和设备,例如石灰石法、碱法等等;其中,石灰石法运行费用较低,但较易结垢,堵塞管道及喷咀;碱法效率高、无垢阻,投资相对较小,但需补充消耗较贵的碱资源,运行成本较高。
在有色冶炼的锑行业产出精炼锑的一次砷碱渣和大量产出熔炼烟尘的二次含砷碱渣,一般都含有2~6重量%的砷、30~40重量%的可溶性碱、1~4重量%的硫酸盐、8~35重量%的不溶性的有价金属铅、锑、锡、铟、碲等,余量是其他造渣成分如硅、铁、钙等。这种含砷工业碱渣(包括前面指出的一次砷碱渣和二次含砷碱渣)在中国有近百万吨的历史存量,每年的增量亦有2~3万吨以上。由于这种碱渣是可溶性的,若外泄到周围环境中,将十分危险,是环保严控的危险固体废物。但从资源利用方面看,这种含砷工业碱渣有较高的利用价值。
有人曾直接将块状的这种含砷工业碱渣按优选比例投入鼓风炉内与烧结块料一起还原熔炼,回收碱渣中的锑等有价金属,但造成鼓风炉烟尘中含砷量大幅增高,同时大量碱进入硅铁钙渣中,使水淬熔渣的循环冲渣水发粘变黑。
有人曾用水煮浸碱渣,溶出可溶性的砷碱及硫酸盐。不可溶渣富集了全部的有价金属返回冶炼系统回收利用。可溶部分净化后,浓缩结晶,生产复合碱和盐,专用于玻璃生产的澄清剂,但是随着玻璃行业对砷的环保严控,这种复合碱盐逐渐失去了应用市场。
还有人曾用水煮浸碱渣,过滤后渣返回冶炼系统回收利用。碱液用于冶炼企业的含硫烟气脱硫,吸收二氧化硫后的碱液转化成以亚硫酸钠为主的含砷混合液。对其进行加硫化钠沉砷及后加铁盐深度脱砷、压滤液固液分离所得净化液,蒸发过饱和析晶,离心脱母液后送热气流烘干,产出无水亚硫酸钠产品。在中国,人们在这种以废治废的想法下进行了二、三十年的探索,至今未能达到设计目标,产出的亚硫酸产品质量不稳定,有效质量含量在50~75%之间波动,达不到亚硫酸钠产品的相关标准。
本发明人在研究中发现:
第一、在含硫烟气脱硫模式下,含砷碱液在吸收二氧化硫生成亚硫酸钠的同时,与烟气中存在的氧以极大的界面进行氧化传质反应,即生成的亚硫酸钠容易被氧化成硫酸钠。
第二、冶炼烟气一般都经过布袋收尘后再入脱硫工序,但在实际运行中,总有布袋损坏失效的情况发生,导致烟气中混入微量有色金属氧化物粉尘,而这些微量粉尘对上述的氧化反应是一种高强效的催化剂,其效果远大于在溶液中预先添加抗氧化剂的作用。
第三、在沉砷过程中,引入了硫酸根SO 4 2-
第四、碱渣中本身就含有1~2重量%的硫,而它是以硫酸盐形式存在的。
综合上述四种原因就可理解为何几十年来这种以废治废的美好愿望未能实现了。
发明目的
本发明的目的是:针对上述现有技术的不足,提供一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法,能解决用上述提及的含砷工业碱渣脱除含硫烟气中硫、生产的亚硫酸钠产品质量不稳定和含量低的问题。
为达上述目的,本发明所采用的技术方案是:一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法,该方法步骤如下,结合参见图1:
步骤一:取含砷工业碱渣,于含砷工业碱渣中加入2~6倍含砷工业碱渣重 量的水循环打浆;
步骤二:压滤进行液固分离,得滤液;
步骤三:于滤液中先按Ca/As的比值为2~3加入石灰,常温搅拌下沉砷,其化学反应式是:2Na 3AsO 4+3Ca(OH) 2=Ca 3(AsO 4) 2↓+6NaOH;再加入8~20%质量浓度的硫化钠溶液,硫化钠溶液的加入量为每立方米沉砷反应后所得的碱液加1~5升硫化钠溶液,以将碱液中因高碱度而溶入的微量铅、锑、锌、锡等转化成难溶的硫化物而沉淀出来,使得处理后的碱液中残留As 5+降到0.4~1.7mg/L及Pb 2+、Sb 3+、Sn 4+和Zn 2+等小于0.5mg/L级,其化学反应式为:
Pb 2++Na 2S→PbS↓+2Na +
2Sb 3++3Na 2S→Sb 2S 3↓+6Na +
Zn 2++Na 2S→ZnS↓+2Na +
Sn 4++2Na 2S→SnS 2↓+4Na +
压滤进行液固分离,得脱砷净化后的碱液。此步骤的关键意义在于在一次工序操作中,达到既脱砷又除重金属杂质的目的,简化了工艺流程;
步骤四:将脱砷净化后的碱液作为吸收液输入脱硫吸收塔对冶炼企业产生的含硫烟气进行吸收脱硫反应至吸收液的pH值降至5.5~7.5(终点值),化学反应式为:2NaOH+SO 2=Na 2SO 3+H 2O,由于亚硫酸钠极易被氧化成硫酸钠,因此,反应中有部分亚硫酸钠被氧化成硫酸钠,使得亚硫酸钠含量降低;将吸收液压滤进行液固分离,得到含亚硫酸钠和硫酸钠的清液;
下面提及的步骤二的滤渣进烟化炉挥发烟化所产生的烟气、以及步骤三的滤渣进鼓风炉炼铅产生的烟气因含硫亦为含硫烟气可应用于步骤四。
步骤五:于清液中加入适量SO 2和过量石灰,对清液中的硫酸钠进行还原转化成亚硫酸氢钠,反应式为:Na 2SO 4+Ca(OH) 2+2SO 2+2H 2O=2NaHSO 3+CaSO 4·2H 2O,压滤进行液固分离,得滤液。设置此步骤的关键意义在于,因为在前述生成亚硫酸钠的过程中的被氧化现象无论怎样抑制和防止都是不可避免的,只是程度不同而已,这直接导致亚硫酸钠产品含量波动不稳定。与其被动严防死守,不如主动 还原转化,使产品含量提高并且稳定。加入SO 2时,不能过量,只需恰好能使清液中的硫酸钠被还原转化成亚硫酸氢钠即可,可以从溶液的终点pH值到达5.5~7.5来判断;
步骤六:于滤液中加入氢氧化钠溶液调pH值为10.5~12,使步骤五中还原转化产生的亚硫酸氢钠转化成亚硫酸钠;其化学反应式为:NaHSO 3+NaOH=Na 2SO 3+H 2O;
步骤七:蒸发过饱和析晶,离心脱除晶浆母液,热气流烘干晶体,得质量浓度≥90%的亚硫酸钠产品。
上述步骤二中压滤后所得滤渣按自熔渣型配料混合后送烟化炉烟化挥发,滤渣中的造渣成分硅、铁、钙生成硅铁钙渣进行开路;挥化产生的烟气经冷却,布袋收尘,得到富集的高品位有价金属(Pb、Sb、Sn等)烟尘,送后续冶炼回收。
上述步骤三中将经沉砷和硫化净化后压滤分离出的滤渣配元素铁粉(滤渣与铁粉的重量比为1∶1.85)后,与传统炼铅原料一起入炼铅企业的铅鼓风炉进行炼铅,除按传统炼铅方法产出粗铅合金和硅铁钙渣外,还能熔炼产出砷铁合金,产出的砷铁合金占入炉的总原料重量的2~8%。这种砷铁合金含As18~25重量%,Fe60~65重量%,比重约7.2,非常稳定,经按GB5805.3—2007标准方法检测,水
Figure PCTCN2018124857-appb-000001
出液中含As达到标准要求,被判定无毒害性。产出的砷铁合金因稳定无毒且与钢铁材料相近的大比重,被当作配重材料外售开路,实现了含砷危险废物的无害化、资源化、安全环保处理。
按本发明方法,用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠产品,能够做到大规模工业化的含砷工业碱渣的无害化、资源化处置,并且能够生产质量较高、含量稳定的副产品亚硫酸钠(质量浓度≥90%),真正实现了以废治废的愿望,实现了含砷工业碱渣和含硫烟气中含硫的全价值回收,环保效益和经济效益显著。
附图说明
图1是本发明的工艺流程图。
具体实施方式
实施例1
以耒阳某中型综合回收有色冶炼企业为例进行实验,该企业拥有碱渣循环打浆,压滤、鼓风炉炼铅及烟化炉和收尘脱硫等设备系统,按本发明的方法,利用企业设备系统作了具体的实施试验:
步骤一:将获取的含砷工业碱渣进行循环打浆、水浸碱渣20吨,液固比3∶1(重量);
步骤二:压滤得滤液。滤液比重1.11,平均含NaOH 10重量%、As16g/L;滤渣18.9吨(含硅、铁、钙等),其中含水26重量%;将所得滤渣按自溶渣型配料入6.6m 2烟化炉烟化挥发,生成硅铁钙渣;
步骤三:按Ca/As≥2.8,于滤液中先加入消化完全的石灰粉末,入15m 3搅拌槽φ3.8×H1.5m,常温搅拌90分钟后,于所得的碱液中按每立方米碱液加入2升15%质量浓度的Na 2S溶液,硫化沉出溶于碱液中的微量Pb、Sb、Zn、Sn等,持续搅拌30分钟,黑色的硫化物将白色的砷酸钙染成棕黑色,用800×800型60㎡隔膜式压滤机,压滤前步所产混合液,得脱砷净化后的碱液,该碱液中含NaOH 10重量%,As 5+1.6mg/L,Pb 2+、Sb 3+、Zn 2+、Sn 4+<0.5mg/L,碱液送贮存槽贮存待用;压滤后得砷酸钙渣及硫化渣,渣率为每立方米碱液129.5kg,其含水量40%,含砷量As20.6重量%;
将上述产出的黑砷酸钙渣进行配铁粉,工艺规范配料重量比为:①砷酸钙渣∶②元素铁粉∶③河沙为1∶1.85∶0.6,配料、制料,压成圆柱型φ120×H120,自然风干后,与鼓风炉其它含铅炉料一起入炉按传统炼铅方法进行熔炼。砷酸钙渣料占总原料重量比为9%,即每天约18吨砷酸钙渣入炉造砷铁合金。因为与鼓风炉其它炉料共同造砷铁合金,不易单独统计数据。造砷铁合金时,铁固砷率高于90%,砷二次入烟尘率小于10%,产出的砷铁合金含As22重量%、Fe63重量%,比重7.2,熔点680℃。经按GB5805.3―2007标准检测,水浸液含As0.5mg/L,小于标准1mg/L要求,判定砷铁合金无毒害性,销售给专业配重企业用作配重材料,售价达2400元/T;
步骤四,将步骤三储存的脱砷净化后的碱液补充至80000m 3/h多级气动混合脱硫吸收塔的底部循环池内,对冶炼企业产生的含硫烟气进行二级循环吸收反应脱硫。当尾级循环池液PH值降到6.5时,每次用泵抽出15m 3,压滤净化后入储存槽暂存备用,少量压滤渣累积后返回铅系统配料用。压滤所得清液中含Na 2SO 310重量%、Na 2SO 44.7重量%;
步骤五:用三级逆流、文丘里泵喷引射吸入SO 2混合、加石灰机械搅拌,还原转化反应器,用夹套式水冷调节反应温度在35℃以下,每级15m 3吸收液耗硫磺265.2kg,耗石灰(Ca(OH) 2>80%)306.1kg,对步骤四中压滤后所得清液中的硫酸钠进行还原转化,还原后转化溶液中Na 2SO 4的量由4.7重量%降低到1.0重量%。将反应完毕的混合液压滤得滤液送贮槽备用。压滤渣石膏再洗涤压滤,堆存或者外售给水泥厂做配料用;
步骤六:将还原转化后所得滤液用泵打至30m 3PP搅拌槽,加入氢氧化钠调pH值进行转化反应,使步骤五转化后的NaHSO 3转化成Na 2SO 3,控制加入碱量,终点pH选择11.0;
步骤七:将步骤六所得的溶液经多效蒸发结晶系统,蒸发得到含Na 2SO 3的晶浆;将晶浆送入离心机,脱除母液,得含水率小于4%的亚硫酸钠湿散晶体;将上述湿散晶体送入热气流烘干机,烘干到水份小于0.5%,得到无水亚硫酸钠产品,其Na 2SO 3的含量≥90%、Fe含量小于0.03重量%、As含量小于0.003重量%、白度80%,产品质量达到无水亚硫酸钠产品国家化工行业标准《HG/T2967-2010》中合格品的标准要求。

Claims (2)

  1. 一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法,其特征在于,该方法步骤如下:
    步骤一:取含砷工业碱渣,于含砷工业碱渣中加入2~6倍含砷工业碱渣重量的水循环打浆;
    步骤二:压滤进行液固分离,得滤液;
    步骤三:于滤液中先按Ca/As为2~3加入石灰,常温搅拌下沉砷,反应式为:2Na 3AsO 4+3Ca(OH) 2=Ca 3(AsO 4) 2↓+6NaOH;再加入8~20%质量浓度的硫化钠溶液,硫化钠溶液的加入量为每立方米沉砷反应后所得的碱液加1~5升硫化钠溶液,将碱液中溶入的微量铅、锑、锌、锡转化成硫化物而沉淀,使得处理后碱液中残留As 5+降到0.4~1.7mg/L及Pb 2+、Sb 3+、Sn 4+、Zn 2+小于0.5mg/L级;压滤进行液固分离,得脱砷净化后的碱液;
    步骤四:将脱砷净化后的碱液作为吸收液输入脱硫吸收塔对冶炼企业产生的含硫烟气进行吸收脱硫反应而生成亚硫酸钠和硫酸钠,至吸收液的pH值降至5.5~7.5,将吸收液压滤进行液固分离,得含亚硫酸钠和硫酸钠的清液;
    步骤五:于清液中加入适量SO 2和过量石灰,对清液中的硫酸钠进行还原转化成亚硫酸氢钠,反应式为:Na 2SO 4+Ca(OH) 2+2SO 2+2H 2O=2NaHSO 3+CaSO 4·2H 2O,至溶液的终点pH值为5.5~7.5,压滤进行液固分离,得滤液;
    步骤六:于滤液中加入氢氧化钠溶液调pH值为10.5~12,使步骤五中还原转化产生的亚硫酸氢钠转化成亚硫酸钠;
    步骤七:蒸发过饱和析晶,离心脱除晶浆母液,热气流烘干晶体,得质量浓度≥90%的亚硫酸钠产品。
  2. 如权利要求1所述的一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法,其特征在于,所述步骤三中压滤后所得的滤渣配元素铁粉后,与传统炼铅原料一起入炼铅企业的铅鼓风炉进行炼铅,能熔炼产出砷铁合金作为配重材料进行开路,实现砷渣无害化、资源化、安全环保处置。
PCT/CN2018/124857 2018-12-28 2018-12-28 一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法 WO2020133210A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/124857 WO2020133210A1 (zh) 2018-12-28 2018-12-28 一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法
ZA2021/04452A ZA202104452B (en) 2018-12-28 2021-06-28 Method for producing sodium sulfite by removing sulfur from sulfur-containing flue gas using industrial alkali residue containing arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124857 WO2020133210A1 (zh) 2018-12-28 2018-12-28 一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法

Publications (1)

Publication Number Publication Date
WO2020133210A1 true WO2020133210A1 (zh) 2020-07-02

Family

ID=71127453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124857 WO2020133210A1 (zh) 2018-12-28 2018-12-28 一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法

Country Status (2)

Country Link
WO (1) WO2020133210A1 (zh)
ZA (1) ZA202104452B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115092957A (zh) * 2022-05-16 2022-09-23 中南大学 一种硫酸根酸性二氧化锡复合材料及制备和锑精矿火法冶炼协同处置砷碱渣浸出渣的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820966A (en) * 1997-12-09 1998-10-13 Inco Limited Removal of arsenic from iron arsenic and sulfur dioxide containing solutions
CN101899574A (zh) * 2010-08-04 2010-12-01 锡矿山闪星锑业有限责任公司 一种火法炼锑中综合回收砷碱渣和二氧化硫烟气的方法
CN106756059A (zh) * 2016-12-21 2017-05-31 中南大学 一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的方法
CN106893864A (zh) * 2017-03-24 2017-06-27 中南大学 一种从黑铜泥中回收砷的方法
CN107963642A (zh) * 2017-12-29 2018-04-27 焱鑫环保科技有限公司 利用含砷工业碱渣水浸碱液吸收so2烟气、脱砷净化生产亚硫酸钠产品的工艺方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820966A (en) * 1997-12-09 1998-10-13 Inco Limited Removal of arsenic from iron arsenic and sulfur dioxide containing solutions
CN101899574A (zh) * 2010-08-04 2010-12-01 锡矿山闪星锑业有限责任公司 一种火法炼锑中综合回收砷碱渣和二氧化硫烟气的方法
CN106756059A (zh) * 2016-12-21 2017-05-31 中南大学 一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的方法
CN106893864A (zh) * 2017-03-24 2017-06-27 中南大学 一种从黑铜泥中回收砷的方法
CN107963642A (zh) * 2017-12-29 2018-04-27 焱鑫环保科技有限公司 利用含砷工业碱渣水浸碱液吸收so2烟气、脱砷净化生产亚硫酸钠产品的工艺方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115092957A (zh) * 2022-05-16 2022-09-23 中南大学 一种硫酸根酸性二氧化锡复合材料及制备和锑精矿火法冶炼协同处置砷碱渣浸出渣的方法
CN115092957B (zh) * 2022-05-16 2023-08-18 中南大学 一种锑精矿火法冶炼协同处置砷碱渣浸出渣的方法

Also Published As

Publication number Publication date
ZA202104452B (en) 2022-11-30

Similar Documents

Publication Publication Date Title
AU2012306934B2 (en) Comprehensive recovery method for complex material containing arsenic and valuable metal slags
CN101451199B (zh) 一种从石煤钒矿中提取五氧化二钒的方法
CN102534228B (zh) 一种从高砷铜冶炼烟灰中综合回收有价元素的方法
CN107012340B (zh) 一种全湿法从硫化砷废渣中提取砷的工艺
CN110331300A (zh) 一种铜冶炼行业污酸和烟尘综合提取砷的方法
CN109110826B (zh) 一种电池级硫酸镍的生产方法
CN102719668B (zh) 全湿法处理锌浸出渣分步提取锌、铅、银的工艺
CN103526017A (zh) 一种铜冶炼烟气生产硫酸所产酸泥中有价元素的提取方法
CN110090548B (zh) 一种铜渣尾矿协同锌冶炼除尘灰湿法脱硫并回收硫酸锌的方法
CN109650412B (zh) 一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法
CN101139660A (zh) 一种从金精矿酸化焙烧烧渣中提取铁铅和金银的方法
CN102390868B (zh) 一种利用冶炼炉气生产硫酸锰的方法
CN107963642A (zh) 利用含砷工业碱渣水浸碱液吸收so2烟气、脱砷净化生产亚硫酸钠产品的工艺方法
CN112941312B (zh) 一种炼锑砷碱渣综合回收工艺
CN109913659A (zh) 一种锑冶炼砷碱渣与冶炼烟气综合治理的方法
CN109876630A (zh) 一种用碱性废渣治理二氧化硫烟气并回收锡锑金属及亚硫酸钠晶体的方法
CN111118301B (zh) 一种冷冻分离碱渣水浸液中砷和碱对砷渣资源回收处理的方法
CN111979421A (zh) 一种铜冶炼过程中所产含铜砷烟灰综合利用的方法
CN103074496A (zh) 一种从阳极泥中分离提纯二氧化锰的方法
WO2020133210A1 (zh) 一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法
CN109534387A (zh) 一种亚硫酸锌氧化为硫酸锌的方法
CN103866116A (zh) 一种钼精矿的氧化方法
CN101817554A (zh) 一种氧压转化合成砷酸钙的方法
CN103498052A (zh) 从复杂低品位热滤渣中高效富集稀贵金属的方法
CN103146927B (zh) 一种用氧浸渣混合处理锌浸出渣的冶炼方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18945039

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18945039

Country of ref document: EP

Kind code of ref document: A1