CN106756059A - 一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的方法 - Google Patents

一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的方法 Download PDF

Info

Publication number
CN106756059A
CN106756059A CN201611193922.4A CN201611193922A CN106756059A CN 106756059 A CN106756059 A CN 106756059A CN 201611193922 A CN201611193922 A CN 201611193922A CN 106756059 A CN106756059 A CN 106756059A
Authority
CN
China
Prior art keywords
arsenic
antimony
lead
solid
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611193922.4A
Other languages
English (en)
Other versions
CN106756059B (zh
Inventor
刘智勇
刘志宏
李启厚
周亚明
李玉虎
张建鑫
马欢
李思唯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201611193922.4A priority Critical patent/CN106756059B/zh
Publication of CN106756059A publication Critical patent/CN106756059A/zh
Application granted granted Critical
Publication of CN106756059B publication Critical patent/CN106756059B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • C22B13/025Recovery from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/02Obtaining antimony
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明涉及一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的方法,包括以下步骤:常压水浸;浸出液催化氧化;氧化后液固砷;浸出渣洗涤;洗渣回收有价金属。本发明提供的方法通过常压水浸,脱除烟尘中可溶砷,浸出液经催化氧化工序,As3+氧化成As5+,氧化后液经沉砷工序和沉淀转化工序合成高稳定性固砷矿物,浸出渣经洗涤、还原熔炼、氧化吹炼等工序,使各有价元素得到回收利用。此方法将砷从烟尘中脱除并固化,而使锑、铅、铋等尽可能留在浸出渣中,实现砷与有价金属的分离并无害化。本发明资源综合利用率高,原料适应范围广,解决了传统工艺提取过程中污染问题。特别是铅锌冶炼过程中产生的烟灰,本方法的优势更加明显。

Description

一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的 方法
技术领域
本发明属于冶金技术领域,具体涉及一种从含砷烟尘综合回收有价金属及砷无害化处置的方法。
背景技术
在自然界中,砷通常以毒砂(FeAsS)、砷磁黄铁矿(FeAsS2)、砷铁矿(FeAs2)、硫砷铜矿(Cu3AsS3)、雄黄(As2S3)、雌黄(As2S3)等矿物,富集于铜、铅、锌、镍、钴、金和银等有色金属矿石中;在有色冶金过程中,产出许多高砷固体物料,如焙烧与熔炼烟尘。这些物料含砷高达5~50%,还含有大量的有价金属,直接返回冶炼流程,导致砷在系统中的循环累积,因此,通常应单独处理脱砷。砷属剧毒、致癌元素,其应用逐步萎缩,面对日趋严格的环保标准,如何处理各种高砷物料,已成为威胁有色冶金产业生存的重大问题。
目前处理含砷烟尘的方法主要是两类,一是火法分离,二是湿法分离。火法生产中,主要是利用砷的氧化物与其他元素氧化物沸点的不同,使砷与其他元素分离。CN103602835A公布了一种置换还原法获得粗砷和粗锑,CN103602834A公布了一种选择性氧化-还原获得纯度不高的As2O3和粗锑,CN104294053A公布了一种含砷烟尘还原挥发砷的方法,获得三氧化二砷纯度达到97.0%以上。但是如果烟尘中含有与砷元素性质接近的金属(如锑),则获得的三氧化二砷纯度不高。湿法生产中主要有水浸、酸浸、碱浸三种工艺,但是均只能获得纯度不高的三氧化二砷、砷酸钠等产品,且对有价金属粉回收未做进一步研究。CN105567983A公布了一种铜冶炼烟尘水浸-碱浸的处理工艺,使砷与金属分离,制备的砷产品无销路,浸出渣中含砷仍较高。CN104357668A公布了一种用污酸浸出烟尘,电积脱砷,酸浸和电积过程容易产生砷化氢。CN105648226A和CN105648227A公布了一种氧压碱浸实现砷锑分离的方法,砷锑分离的比较彻底,但是在工艺中获得的砷酸钠未处理,碲、锑等有价金属未回收。
从烟尘中脱砷、提取有价金属的研究论文和相关专利报道很多,但存在有价元素综合回收率低,砷产品市场有限,存在潜在的安全隐患。因此,现有技术还有待改进和发展。
发明内容
为了解决含砷烟尘脱砷及含综合回收有价金属的难题,本发明提出一种含砷烟尘脱砷及有价元素综合回收利用的方法。本发明具有环保、经济、节能、资源利用率高的优点,实现了砷的无害化。
本发明的方案是通过常压水浸,脱除烟尘中可溶砷,且通过催化氧化的方式将浸出液中的三价砷氧化为五价砷,再合成高稳定性固砷矿物,浸出渣经流态化洗涤、还原熔炼、氧化吹炼等工序,最大化回收利用各有价元素。此方法将砷从烟尘中脱除并固化,而使锑、铅、铋等尽可能留在脱砷渣中,实现砷与有价金属的分离并无害化。本发明资源综合利用率高,原料适应范围广,解决了传统工艺提取过程中污染问题,特别是铅锌冶炼过程中产生的烟尘,本方法的优势更加明显。
具体而言,本发明提供的方法包括如下步骤:
(1)常压水浸:在常压条件下对含砷烟尘进行水浸,水与烟尘的液固体积质量比为3:1~20:1,搅拌速度为50r/min~1000r/min,水浸的温度为室温~100℃,浸出时间为30min~240min,使含砷化合物充分溶解于水中;过滤后,得浸出液和浸出渣;
(2)浸出液催化氧化:在所述浸出液中加入氧化性气体和催化剂进行催化氧化反应,使含砷化合物中的砷被氧化至五价,获得氧化后液;
(3)氧化后液固砷:采用石灰沉砷法结合沉淀转化法将所述氧化后液中的含砷化合物以固砷矿物形式固化,获得固砷矿物;再采用堆存方式将所述固砷矿物进一步固化;
(4)浸出渣洗涤:将步骤(1)所得浸出渣经过流态化洗涤,使浸出渣中的可溶性砷含量降至0.1%以下;过滤后,得洗液和洗渣;所述洗液返回所述常压水浸过程用于配制溶液;
(5)洗渣回收有价金属:将所述洗渣干燥后,与木炭、煤和纯碱混合进行还原熔炼,生成烟尘、泡渣和铅锑合金;
将所述烟尘返回所述还原熔炼或常压水浸;
将所述泡渣送铅冶炼;
将所述铅锑合金进行氧化吹炼,在氧化吹炼温度650℃~800℃隔焰的条件下通入空气,获得锑蒸汽、吹炼渣和粗铅;将所述锑蒸汽氧化生成三氧化二锑,作为锑白产品;将所述吹炼渣返回还原熔炼工序配料;将所述粗铅送铅精炼。
本发明所述含砷烟尘中包含以下元素:砷、锑、铅、锌、铜、碲和硒;优选地,以质量百分比计,包含:砷1%~60%,锑1%~55%,铅0.1%~35%,锌0.1%~30%,铜0.1%~5%,碲0.01%~3%,硒0.01%~3%。
本发明步骤(1)可以使砷及少量的锑溶解到水浸浸出液中,大部分锑、铅、铋等有价金属留在浸出渣中。所述水浸使用的水优选为工业用水。该步骤优选所述水浸搅拌处理的温度为室温~100℃;优选所述搅拌时间为30min~240min,优选所述浸出液固体积质量比5:1~20:1,优选所述搅拌速度300~550r/min。本发明步骤(1)所述水与烟尘的液固体积质量比单位为ml:g。
本发明步骤(2)中,为了进一步确保所述催化氧化反应能够充分进行,使砷充分氧化至五价,所述氧化性气体为氧气、空气或富氧空气,优选所述氧化性气体的流量为1~20L/min;所述催化剂为KMnO4,优选砷元素与锰元素的摩尔比为5:1~50:1;所述催化氧化的温度优选为30℃~120℃。
本发明步骤(3)所述石灰沉砷法具体为:将所述氧化后液的pH值调至1.5~3,连续加入CaO、Ca(OH)2中的一种或两种作为沉砷剂,在10℃~90℃条件下沉降5h~100h;优选地,所述沉砷剂中的钙元素与氧化后液中砷元素的摩尔比为2~8。
本发明步骤(3)所述石灰沉砷法结合沉淀转化法具体为:将所述氧化后液的pH值调至1.5~3,连续加入CaO、Ca(OH)2中的一种或两种作为沉砷剂,在10℃~90℃条件下沉降5h~100h;在所述沉降过程中,加入铁盐溶液进行反应,所述铁盐溶液为硫酸铁溶液、氯化铁溶液或硝酸铁溶液溶液,同时加入中和剂调控反应在pH值1.5~3条件下进行,使Fe3+与AsO4 3-反应生成高稳定性的固砷矿物。
优选地,所述铁盐溶液的加入速度控制在3ml/min~20ml/min。
本发明在加入铁盐溶液的同时加入碱性中和剂;所述碱性中和剂优选为碳酸钠、碳酸氢钠或氢氧化钠,所述中和剂的加入速度控制在3ml/min~20ml/min。
优选地,所述沉砷剂中的钙元素与氧化后液中砷元素的摩尔比为2~8。
优选地,所述铁盐溶液中铁元素与氧化后液中砷元素的摩尔比为1~10。
本发明步骤(4)所述流态化洗涤可采用流态化洗涤塔进行水洗;优选所述洗涤的次数为2~3次。
本发明步骤(5)所述还原熔炼可在反应器中进行,具体可选用鼓风炉、反射炉、底吹炉、侧吹炉或顶吹炉。该步骤中,洗渣干燥后配入木炭、煤和少量纯碱(Na2CO3),在900~1200℃和有C、CO等条件作用下,Sb、Pb、Bi等氧化物同样也被还原成单质形式进入铅锑合金中;煤的灰分以及少量砷、锑、铅的氧化物与纯碱反应所生成的多泡质轻的“泡渣”,浮在锑液表面;还原完成后,扒出泡渣,在氧化吹炼温度650℃~800℃隔焰的条件下,向锑液中鼓入一次空气,使锑挥发产生大量锑蒸汽,同时向反应器通入二次空气,使锑蒸汽氧化生成三氧化二锑,利用锑氧化产生的大量热维持反应器必须的温度和炉内锑液温度;由于融体表面金属锑的浓度占绝对优势,金属锑性质比铅、铋活泼,使合金液中的锑氧化成三氧化二锑挥发进入烟尘,铅、铋则留在反应器底铅中,实现一炉两用。
作为本发明的一种具体实施方式,所述含砷烟尘中主要含砷质量百分含量1%~60%,锑质量百分含量1%~55%,铅质量百分含量0.1%~35%,锌质量百分含量0.1%~30%,铜0.1~5%;具体包括如下步骤(流程可参考图1所示):
(1)常压水浸工序:在常压条件下对含砷烟尘进行水浸,水与烟尘的液固体积质量比为3:1~20:1,搅拌速度为50r/min~1000r/min,水浸的温度为室温~100℃,浸出时间为30min~240min,使含砷化合物充分溶解于水中;过滤后,得浸出液和浸出渣;
(2)浸出液催化氧化工序:通过催化氧化的方式,加入氧化性气体和催化剂,将浸出液中绝大部分的As3+转变成As5+,氧化后液进入到固砷工序;氧化性气体为氧气、空气或富氧空气,催化剂为KMnO4;氧化性气体的气体流量控制在1~20L/min,As/Mn摩尔比控制在5:1~50:1,催化氧化体系控制的温度控制在30℃~120℃;
(3)氧化后液固砷工序:将氧化后液的pH值调至1.5~3,以连续加料的方式加入CaO和Ca(OH)2中的一种或两种作为沉砷剂,Ca/As摩尔比为2~15,沉降时间为5~100小时,反应温度为10℃~90℃;在除砷工艺中添加铁盐溶液,与溶液中的砷酸根离子反应生成高稳定性的固砷矿物,同时加入一定浓度的碳酸钠、碳酸氢钠或氢氧化钠溶液作为中和剂,同时加入中和剂调控反应在pH值1.5~3条件下进行,使Fe3+与AsO4 3-反应生成高稳定性的固砷矿物,Fe/As摩尔比控制在1~5。所述铁盐为硫酸铁、氯化铁或硝酸铁溶液;然后采用水泥固化的方式固化固砷矿物;
(4)浸出渣洗涤工序:将浸出渣采用流态化洗涤2~3次,将浸出渣中的可溶砷降至0.1%以下,洗液返回浸出过程用于配制溶液;
(5)洗渣回收有价金属工序,洗渣干燥后配入木炭、煤和少量纯碱(Na2CO3),在900~1200℃和有C、CO等条件作用下,Sb、Pb、Bi等氧化物同样也被还原成单质形式进入铅锑合金中;煤的灰分以及少量砷、锑、铅的氧化物与纯碱反应所生成的多泡质轻的“泡渣”,浮在锑液表面;还原完成后,扒出泡渣,在氧化吹炼温度650℃~800℃隔焰的条件下,向锑液中鼓入一次空气,使锑挥发产生大量锑蒸汽,同时向反应器通入二次空气,使锑蒸汽氧化生成三氧化二锑,利用锑氧化产生的大量热维持反应器必须的温度和炉内锑液温度;由于融体表面金属锑的浓度占绝对优势,金属锑性质比铅、铋活泼,使合金液中的锑氧化成三氧化二锑挥发进入烟尘,铅、铋则留在反应器底铅中,实现一炉两用。
与现有技术相比,本发明提供的方法具有以下显著优势:
第一、本发明采用常压水浸的方式,将砷烟尘中的可溶砷全部脱除,脱砷后的原料砷含量低,可综合回收锑、铅、铋等有价金属,降低产品中砷的含量;
第二、本发明采用的常压水浸的方式,经济成本低,可操作性强,工艺流程简单易行,使大部分的砷进入浸出液,而锑、铅、铋等有价金属富集在浸出渣中,从而实现含砷烟尘的资源化和无害化,特别是铅锌冶炼过程中产生的烟灰,本方法的优势更加明显;
第三、本发明在原有技术的基础上改变加料方式、精确控制合成过程的pH值,采用石灰沉砷法和沉淀转化法合成的固砷矿物在宽pH范围2~11以及强还原性条件下稳定堆存,使As不再迁移,也使冶炼系统的As有了一个较为理想的开路,是一种工艺流程简单、资源节约、环境友好的方法,并且沉淀转化法制备的固砷矿物稳定性好,稳定区域宽,方便堆存,且工艺成本低,易操作。
第四、本发明采用流态化洗涤,进一步降低浸出渣中砷的含量,可提高回收产品质量;
第五、本发明采用还原熔炼回收有价金属,实现金属综合回收利用最大化。
总之,本发明合理的工序搭配、通过严格控制每个工序中的条件参数,使砷得以安全处置,锑、铅、铋等有价金属得到回收和有效利用,达到了环保、经济、节能、高资源利用率的目的,实现砷的无害化和资源利用最大化。由于砷与其他元素的分离采用的是湿法工艺避免了火法所带来的大规模污染以及资源利用不高的问题,整个工艺基本上无三废排放,所有资源得到最大效率利用,所得产物均便于后续的处理和加工,所以本发明具有环保、经济、节能、高资源利用率的优势。
附图说明
图1为本发明所述方法的流程示意图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
以国内某铅锌冶炼厂含砷烟灰为例,原料主要成分为Pb10.13%,As 30.11%,Sn0.5%,Sb 30.02%,Zn 0.07%,Se 0.08%。
按照以下方法进行处理:
(1)称取一定质量的高砷锑烟尘于反应釜内,按液固体积质量比10:1、搅拌速度700r/min、浸出温度80℃、浸出时间2h进行浸出实验。浸出结束后,移出料浆过滤分离,砷浸出率51.25%.,浸出液中各元素浓度Pb 75.00ppm,Se 0.52ppm,Zn 48ppm,Sb 0.66g/L,As15.43g/L。
(2)浸出液采用催化氧化的方法将As3+氧化成As5+,控制的条件为,氧气流量为5L/min,As/Mn摩尔比控制在10:1,催化氧化体系温度控制在90℃。结果表明,As3+的转化率为95.87%。
(3)将氧化后液的pH值调至1.5,Ca/As摩尔比为3,沉降时间为20小时,反应温度为40℃。在除砷工艺中添加硝酸铁溶液和碳酸钠,三价铁与溶液中的砷酸根离子反应生成高稳定性的固砷矿物,Fe/As摩尔比控制在5,硝酸铁溶液的加入速度为5ml/min,碳酸钠的加入速度为5ml/min,合成的固砷矿物符合GB5085.3-2007(固体废物鉴别标准-浸出毒性鉴别)规定,可安全堆存。
(4)浸出渣按照液固体积质量比5:1采用流态化洗涤塔水洗浸出渣2次,洗渣含可溶砷0.1%。
(5)洗渣干燥后配入木炭、煤和纯碱,在1150℃反射炉内进行还原熔炼,熔炼生成泡渣、铅锑合金和烟尘。泡渣送铅冶炼,烟尘返回还原熔炼或常压水浸,铅锑合金进入氧化吹炼工序。在隔焰和氧化吹炼温度700℃的条件下,向合金中鼓入一次空气,同时向反应器通入二次空气,使锑蒸汽氧化生成三氧化二锑,生成的三氧化二锑作为锑白产品。吹炼渣返还原熔炼系统,而氧化吹炼后的粗铅送铅精炼系统。其中铅锑合金中Pb含26.65%,Sb含68.78%,As含4.25%;生成的锑白粉符合GB/T 4062-2013中规定的牌号为Sb2O399.00的锑白粉;粗铅中含Pb 96.56%,含Sb 2.25%,含As 0.66%。
实施例2
以国内某铅锌冶炼厂含砷烟灰为例,原料主要成分为Pb8.64%,As 25.63%,Sn0.58%,Sb 24.56%,Zn 0.09%,Se 0.10%。
按照以下方法进行处理:
(1)称取一定质量的高砷锑烟尘于反应釜内,按液固体积质量比5:1、搅拌速度300r/min、浸出温度60℃、浸出时间2h进行浸出实验。浸出结束后,移出料浆过滤分离,砷浸出率46.25%.,浸出液中各元素浓度Pb 69ppm,Se 0.73ppm,Zn 50ppm,Sb 0.67g/L,As11.85g/L。
(2)浸出液采用催化氧化的方法将As3+氧化成As5+,控制的条件为,氧气流量为10L/min,As/Mn摩尔比控制在40:1,催化氧化体系温度控制在30℃。结果表明,As3+的转化率为87.69%。
(3)将氧化后液的pH值调至2,Ca/As摩尔比为10,沉降时间为10小时,反应温度为90℃。在除砷工艺中添加硝酸铁溶液和碳酸钠,三价铁与溶液中的砷酸根离子反应生成高稳定性的固砷矿物,Fe/As摩尔比控制在5,硝酸铁溶液的加入速度为5ml/min,碳酸钠的加入速度为5ml/min,合成的固砷矿物符合GB5085.3-2007(固体废物鉴别标准-浸出毒性鉴别)规定,可安全堆存。
(4)浸出渣按照液固体积质量比5:1采用流态化洗涤塔水洗浸出渣2次,洗渣含可溶砷0.1%。
(5)洗渣干燥后配入木炭、煤和纯碱,在1200℃反射炉内进行还原熔炼,熔炼生成泡渣、铅锑合金和烟尘。泡渣送铅冶炼,烟尘返回还原熔炼或常压水浸,铅锑合金进入氧化吹炼工序。在隔焰和氧化吹炼温度800℃的条件下,向合金中鼓入一次空气,同时向反应器通入二次空气,使锑蒸汽氧化生成三氧化二锑,生成的三氧化二锑作为锑白产品。吹炼渣返还原熔炼系统,而氧化吹炼后的粗铅送铅精炼系统。其中铅锑合金中Pb含30.78%,Sb含65.65%,As含4.89%;生成的锑白粉符合GB/T 4062-2013中规定的牌号为Sb2O399.00的锑白粉;粗铅中含Pb97.01%,含Sb2.31%,含As 0.61%。
实施例3
以国内某铅锌冶炼厂含砷烟灰为例,原料主要成分为Pb13.24%,As 29.31%,Sn0.9%,Sb 27.68%,Zn 0.04%,Se 0.11%。
按照以下方法进行处理:
(1)称取一定质量的高砷锑烟尘于反应釜内,按液固体积质量比15:1、搅拌速度50r/min、浸出温度40℃、浸出时间3h进行浸出实验。浸出结束后,移出料浆过滤分离,砷浸出率42.35%.,浸出液中各元素浓度Pb 113ppm,Se 0.50ppm,Zn 92ppm,Sb 1.37g/L,As12.41g/L。
(2)浸出液采用催化氧化的方法将As3+氧化成As5+,控制的条件为,氧气流量为1L/min,As/Mn摩尔比控制在20:1,催化氧化体系温度控制在120℃。结果表明,As3+的转化率为93.48%。
(3)将氧化后液的pH值调至1.5,Ca/As摩尔比为6,沉降时间为100小时,反应温度为60℃。在除砷工艺中添加硝酸铁溶液和碳酸钠,三价铁与溶液中的砷酸根离子反应生成高稳定性的固砷矿物,Fe/As摩尔比控制在5,硝酸铁溶液的加入速度为5ml/min,碳酸钠的加入速度为5ml/min,合成的固砷矿物符合GB5085.3-2007(固体废物鉴别标准-浸出毒性鉴别)规定,可安全堆存。
(4)浸出渣按照液固体积质量比5:1采用流态化洗涤塔水洗浸出渣2次,洗渣含可溶砷0.1%。
(5)洗渣干燥后配入木炭、煤和纯碱,在1200℃反射炉内进行还原熔炼,熔炼生成泡渣、铅锑合金和烟尘。泡渣送铅冶炼,烟尘返回还原熔炼或常压水浸,铅锑合金进入氧化吹炼工序。在隔焰和氧化吹炼温度650℃的条件下,向合金中鼓入一次空气,同时向反应器通入二次空气,使锑蒸汽氧化生成三氧化二锑,生成的三氧化二锑作为锑白产品。吹炼渣返还原熔炼系统,而氧化吹炼后的粗铅送铅精炼系统。其中铅锑合金中Pb含31.26%,Sb含61.25%,As含5.61%;生成的锑白粉符合GB/T 4062-2013中规定的牌号为Sb2O399.00的锑白粉;粗铅中含Pb96.89%,含Sb2.67%,含As 0.59%。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的方法,其特征在于,所述含砷烟尘中含有砷、锑和铅;所述方法包括以下步骤:
(1)常压水浸:在常压条件下对含砷烟尘进行水浸,水与烟尘的液固体积质量比为3:1~20:1,搅拌速度为50r/min~1000r/min,水浸的温度为室温~100℃,浸出时间为30min~240min,使含砷化合物充分溶解于水中;过滤后,得浸出液和浸出渣;
(2)浸出液催化氧化:在所述浸出液中加入氧化性气体和催化剂进行催化氧化反应,使含砷化合物中的砷被氧化至五价,获得氧化后液;
(3)氧化后液固砷:采用石灰沉砷法结合沉淀转化法将所述氧化后液中的含砷化合物以固砷矿物形式固化,获得固砷矿物;再采用堆存方式将所述固砷矿物进一步固化;
(4)浸出渣洗涤:将步骤(1)所得浸出渣经过流态化洗涤,使浸出渣中的可溶性砷含量降至0.1%以下;过滤后,得洗液和洗渣;所述洗液返回所述常压水浸过程;
(5)洗渣回收有价金属:将所述洗渣干燥后,与木炭、煤和纯碱混合进行还原熔炼,生成烟尘、泡渣和铅锑合金;
将所述烟尘返回所述还原熔炼或常压水浸;
将所述泡渣送铅冶炼;
将所述铅锑合金进行氧化吹炼,在隔焰的条件下通入空气,获得锑蒸汽、吹炼渣和粗铅;将所述锑蒸汽氧化生成三氧化二锑,作为锑白产品;将所述吹炼渣返回还原熔炼工序配料;将所述粗铅送铅精炼。
2.根据权利要求1所述的方法,其特征在于,所述含砷烟尘中包含以下元素:砷、锑、铅、锌、铜、碲、硒、铋和锡;
优选地,以质量百分比计,包含:砷1%~60%,锑1%~55%,铅0.1%~35%,锌0.1%~30%,铜0.1%~5%,碲0.01%~3%,硒0.01%~3%,铋0.01%~3%,锡0.01%~1%。
3.根据权利要求1或2所述的方法,其特征在于,步骤(1)所述水浸的控制条件为,水与烟尘的液固体积质量比为3:1~20:1,搅拌速度为50r/min~1000r/min,水浸的温度为室温~100℃,浸出时间为30min~240min。
4.根据权利要求1~3任意一项所述的方法,其特征在于,步骤(2)所述氧化性气体为氧气、空气或富氧空气,优选所述氧化性气体的流量为1~20L/min;
和/或,所述催化剂为KMnO4,优选砷元素与锰元素的摩尔比为5:1~50:1。
5.根据权利要求1或4所述的方法,其特征在于,所述催化氧化的温度为30℃~120℃。
6.根据权利要求1所述的方法,其特征在于,步骤(3)所述石灰沉砷法结合沉淀转化法具体为:将所述氧化后液的pH值调至1.5~3,连续加入CaO、Ca(OH)2中的一种或两种作为沉砷剂,在10℃~90℃条件下沉降5h~100h;
在所述沉降过程中,加入铁盐溶液进行反应,所述铁盐溶液为硫酸铁溶液、氯化铁溶液或硝酸铁溶液溶液,同时加入中和剂调控反应在pH值1.5~3条件下进行,使Fe3+与AsO4 3-反应生成高稳定性的固砷矿物。
7.根据权利要求6所述的方法,其特征在于,在加入铁盐溶液的同时加入碱性中和剂;
所述碱性中和剂优选为碳酸钠、碳酸氢钠或氢氧化钠。
8.根据权利要求6或7所述的方法,其特征在于,所述沉砷剂中的钙元素与氧化后液中砷元素的摩尔比为2~8。
9.根据权利要求6~8任意一项所述的方法,其特征在于,所述铁盐中铁元素与氧化后液中砷元素的摩尔比为1~10。
10.根据权利要求1所述的方法,其特征在于,步骤(4)所述流态化洗涤采用流态化洗涤塔进行水洗;优选所述水洗的次数为2~3次。
CN201611193922.4A 2016-12-21 2016-12-21 一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的方法 Active CN106756059B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611193922.4A CN106756059B (zh) 2016-12-21 2016-12-21 一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611193922.4A CN106756059B (zh) 2016-12-21 2016-12-21 一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的方法

Publications (2)

Publication Number Publication Date
CN106756059A true CN106756059A (zh) 2017-05-31
CN106756059B CN106756059B (zh) 2019-01-29

Family

ID=58897057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611193922.4A Active CN106756059B (zh) 2016-12-21 2016-12-21 一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的方法

Country Status (1)

Country Link
CN (1) CN106756059B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133210A1 (zh) * 2018-12-28 2020-07-02 焱鑫环保科技有限公司 一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法
CN113373306A (zh) * 2021-04-29 2021-09-10 江西理工大学 一种从铜烟灰中低温还原熔炼生产铅合金的方法
CN113684368A (zh) * 2021-08-29 2021-11-23 中南大学 一种铜冶炼硫化砷渣与含砷烟尘协同处理的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200776A (zh) * 2006-12-14 2008-06-18 中南大学 一种从含三氧化二砷烟尘中脱砷的方法
CN101994010A (zh) * 2010-12-10 2011-03-30 株洲冶炼集团股份有限公司 一种砷烟灰浸出液的制备方法
CN102286665A (zh) * 2011-09-05 2011-12-21 耒阳市焱鑫有色金属有限公司 一种复杂含砷及有价金属渣尘物料的综合回收方法
CN103194605A (zh) * 2013-03-21 2013-07-10 中南大学 一种含砷铅锑及贵金属所形成的多金属合金的处理方法
CN104911364A (zh) * 2015-06-26 2015-09-16 郴州市金贵银业股份有限公司 一种锑砷烟灰绿色高效生产锑白的方法
CN105039722A (zh) * 2015-06-29 2015-11-11 中南大学 一种铅锑烟尘优先脱除砷的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200776A (zh) * 2006-12-14 2008-06-18 中南大学 一种从含三氧化二砷烟尘中脱砷的方法
CN101994010A (zh) * 2010-12-10 2011-03-30 株洲冶炼集团股份有限公司 一种砷烟灰浸出液的制备方法
CN102286665A (zh) * 2011-09-05 2011-12-21 耒阳市焱鑫有色金属有限公司 一种复杂含砷及有价金属渣尘物料的综合回收方法
CN103194605A (zh) * 2013-03-21 2013-07-10 中南大学 一种含砷铅锑及贵金属所形成的多金属合金的处理方法
CN104911364A (zh) * 2015-06-26 2015-09-16 郴州市金贵银业股份有限公司 一种锑砷烟灰绿色高效生产锑白的方法
CN105039722A (zh) * 2015-06-29 2015-11-11 中南大学 一种铅锑烟尘优先脱除砷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李玉虎: "有色冶金含砷烟尘中砷的脱除与固化", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *
雷霆: "《锑冶金》", 28 February 2009, 冶金工业出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133210A1 (zh) * 2018-12-28 2020-07-02 焱鑫环保科技有限公司 一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法
CN113373306A (zh) * 2021-04-29 2021-09-10 江西理工大学 一种从铜烟灰中低温还原熔炼生产铅合金的方法
CN113684368A (zh) * 2021-08-29 2021-11-23 中南大学 一种铜冶炼硫化砷渣与含砷烟尘协同处理的方法

Also Published As

Publication number Publication date
CN106756059B (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
CN106834708B (zh) 一种含砷烟尘的综合处理方法
CN106801145B (zh) 一种从含砷烟尘中脱砷及其固化的方法
CN106834715B (zh) 一种含砷物料的综合利用方法
CN106756058B (zh) 一种从含砷烟尘中脱砷及其固化的方法
CN106834716B (zh) 一种含砷烟尘脱砷及有价元素综合回收利用的方法
CN106148705A (zh) 从酸性含砷溶液中去除砷的方法
CN106834707B (zh) 一种含砷物料综合回收及砷资源化利用的方法
CN106834720B (zh) 一种含砷烟尘综合处理及调控生长法合成固砷矿物的方法
CN101328539A (zh) 氧化炉烟灰湿法浸出工艺
CN105463197A (zh) 一种铜冶炼白烟尘回收有价金属的方法
CN106834709B (zh) 一种含砷烟尘综合利用及沉淀转化法合成固砷矿物的方法
CN102586608B (zh) 用铅锌冶炼过程产生的富铟渣制取海绵铟的方法
CN105200242B (zh) 一种从含砷炼铅氧气底吹炉烟灰中回收镉的方法
CN106756059B (zh) 一种从含砷烟尘回收有价金属及沉淀转化法合成固砷矿物的方法
CN106834717B (zh) 一种从含砷烟尘回收有价金属及砷安全处置的方法
CN106834714B (zh) 一种含砷物料的综合处理方法
CN106834718B (zh) 一种含砷烟尘综合利用及砷无害化处置的方法
CN106834676B (zh) 一种从含砷烟尘中回收有价金属及砷资源化无害化处置的方法
CN110284005A (zh) 一种从粗铅中富集回收铅的方法
CN106756057B (zh) 一种从含砷烟尘回收有价金属及砷无害化处置的方法
CN106834710B (zh) 一种从含砷烟尘综合回收有价金属及砷资源化利用的方法
US7871454B2 (en) Chemical process for recovery of metals contained in industrial steelworks waste
CN110016575B (zh) 一种硫化锑精矿冶炼工艺
CN106834712B (zh) 一种含砷烟尘脱砷及分布结晶法合成固砷矿物的方法
CN104451169A (zh) 铁矿烧结烟尘灰有价元素的提取工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant