WO2020132760A1 - Inclined culture system and method for spore resuspension for the spore culture of red algae - Google Patents

Inclined culture system and method for spore resuspension for the spore culture of red algae Download PDF

Info

Publication number
WO2020132760A1
WO2020132760A1 PCT/CL2018/050162 CL2018050162W WO2020132760A1 WO 2020132760 A1 WO2020132760 A1 WO 2020132760A1 CL 2018050162 W CL2018050162 W CL 2018050162W WO 2020132760 A1 WO2020132760 A1 WO 2020132760A1
Authority
WO
WIPO (PCT)
Prior art keywords
spores
frames
bars
spore
water
Prior art date
Application number
PCT/CL2018/050162
Other languages
Spanish (es)
French (fr)
Inventor
Ignacio PÉREZ MASSAD
Cristian BULBOA CONTADOR
Loretto CONTRERAS
Marcela ÁVILA
Original Assignee
Universidad Andrés Bello
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Andrés Bello filed Critical Universidad Andrés Bello
Priority to PCT/CL2018/050162 priority Critical patent/WO2020132760A1/en
Priority to PE2021001084A priority patent/PE20212116A1/en
Publication of WO2020132760A1 publication Critical patent/WO2020132760A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management

Definitions

  • the invention relates to a new methodology for cultivating red algae (macroalgae) spores using an innovative device.
  • This device is made up of a recirculation system that allows the re-suspension of spores by means of air injection, installed at the bottom of a pond in order to take advantage of unsettled spores.
  • On the recirculation system there is a structure that allows to hold, tilt and rotate support frames to place racks vertically, with a substrate for the settlement of spores, in order to facilitate the handling of the racks allowing manipulation, without contact from out of the water and automating the movements.
  • WO2013153402 describes a method for cultivating algae in canalization ponds, manipulating the physiological state of the algae by altering one or more environmental parameters such as light intensity, light wavelength, concentration and balance of nutrients, temperature of the water, algae cell density, concentration or proportion of dissolved gases.
  • CL 48664 Application No.CL 200901696
  • CL 48664 is related to the cultivation of microalgae. It has a tubular spiral system arranged vertically to achieve a more efficient use of light on crops.
  • the structure of the photobioreactor allows a high surface / volume ratio, flexibility in light orientation, ability to prevent the accumulation of oxygen of photosynthetic origin, CO2 retention capacity and avoid overheating of the liquid medium.
  • This system is specific for microalgae, and does not refer to its usefulness in cultures using spores.
  • the device of the invention is aimed at improving the settlement, inoculation of the substrate and finally the propagation and cultivation of algae by means of spores, contrary to the cases of massive vegetative propagation used for commercial cultivation such as for example of species of the genus Gracilaria.
  • Nori Pierphyra and / or Pyropid
  • these species have a heteromorphic life cycle, where the microscopic phase is controlled and cultivated in the laboratory, maintaining the conchocelis phase as breeding stock [Publication: Bast Félix, 2014.
  • the present invention is directed to companies or technological centers that carry out cultivation of red algae of the isomorphic life cycle of high commercial interest, such as for example those algae of the orders Gigartinales, Gelidiales and Gracilariales.
  • the device of the invention proposes a technological solution that facilitates the sporoculture of the aforementioned red algae, whose cultivation nowadays is carried out in a practically artisanal way, evidencing a development of the techniques and processes involved in productive scaling and their massification.
  • the developed invention has been able to overturn the paradigm of compulsory horizontal cultivation for this type of algae, which arises due to the lack of flagella of spores which are unable to swim. Furthermore, the invention allows applying existing technologies (such as liquid resuspension) to improve the use of the raw material used.
  • the device of the invention achieves facilities in the handling of the racks, reduction of the manipulation inside the ponds and automation of processes which contributes to an increase in efficiency and productivity in the crop, increasing the amount of substrate inoculated in the same effort, with a clear advance in matters related to sporoculture, which were completely stagnant, with ancient or highly artisan protocols.
  • the materials used in the present invention are affordable and low cost, the construction of the system does not require specialized machines and the device is assembled in a modular way, being able to expand the structure depending on the size of the pond in order to maximize the available space . Furthermore, all components are reusable. With the above, the device of the present invention allows it to be replicated without incurring large expenses with proven results.
  • the device of the invention allows to start spore-based cultures, either on a laboratory or commercial scale thanks to its capacity to adapt to spaces.
  • the present invention also allows the control of the different parameters that could affect the cultivation stage, such as the requirements of temperature, photoperiod, nutrients and light intensity. Obtaining better quality algae in the shortest possible time.
  • the device of the invention has the advantage of doubling the amount of substrate available for spore settling, compared to a method traditionally used in the same volume. At the same time, underwater handling for the operation and turning of the racks is avoided, reducing the introduction of polluting agents.
  • the simple but effective design allows the system to be fully automated at this stage of cultivation, requiring operator intervention only for inoculation and tilting of both sides of the racks.
  • Figures 1A-B show a system used in the prior art of cultivation, which comprises a rack located in a horizontal position to be inoculated with spores, and then positioned vertically for the growth of spores.
  • Figure 2 shows a side view of the inclined racks inside the pond, showing the projection of light beams on the faces of each frame.
  • Figure 3 shows a perspective view of the rack system, showing the structural base, U-shaped guide frames and tilt handling bars of the device. In addition, the frames and how they are assembled in the guide frames are appreciated.
  • Figure 4 presents the design of the pond used in the invention, highlighting the sloping walls at the bottom of it.
  • Figure 5 shows a schematic of the operation of the spore re-suspension system, indicating the flows of air, water and water with spores.
  • Figures 6 A-B show a top view of the spore re-suspension system installed in the pond.
  • Figure 6A shows the spore re-suspension system positioned at the bottom of the pond
  • Figure 6 B shows both the spore re-suspension system and the rack system arranged together for operation.
  • Fas Figures 7 A-B show a side view of the spore re-suspension system and the rack system, both arranged inside the pond.
  • Fa Figure 7 A shows the rack system with a certain angle of inclination (position established to receive the spore inoculum).
  • Fa Figure 7B shows the rack system in vertical position, final configuration of the system for the settlement and growth of spores.
  • Figure 8 shows the rack system with the spore re-suspension system in operation. You can see how directed bubbles come out especially towards each frame from the vertical tubes of the re-suspension system (stage in which the frames have an angle of inclination).
  • Figure 9 shows a productivity graph of the spore re-suspension systems of the invention (frames) with respect to a reference spore inoculation system (Control).
  • the present invention relates to a device for the cultivation of red algae spores comprising a pond (1); a rack system with a substrate for spore settlement; at least one U-shaped guide frame that supports each frame in an inclined position, two horizontal lateral bars that allow mobility; a lever that allows manipulation from out of the water; a spore re-suspension system comprising pipes in which water, air and spores circulate.
  • the present invention refers to a new methodology for the cultivation of red algae spores by means of a device comprising a spore re-suspension system based on the concept of "airlift pump", built by pipes in which air, water and spores, mounted in a pool of water with a V-shaped bottom; a system of racks with polypropylene ropes as a substrate for the settlement of spores, structured in U-shaped guide frames that hold the racks in an inclined position, two horizontal lateral bars that allow mobility, and a lever that allows manipulation from out of the water .
  • the abatial frame (s) (2) have sufficient mobility to expose the two faces (2a, 2b) (one face at a time) to the surface and allow the spores to settle.
  • the design allows the racks to be kept on an inclined plane for a better use of space in the decanting of spores and for greater light penetration (3), an air and water recirculation system is also included in order to recirculate the spores.
  • the device allows for a more efficient algae culture with a larger spore settlement area and minimizing contamination by handling the racks (2).
  • the process is automated, intervening as little as possible in the delicate establishment of the spores, since it allows the racks to be easily manipulated from out of the water, being able to easily install or remove them without the need to disassemble the system.
  • the device can be built in light and economic material such as PVC and its dimensions can be adjusted according to the scale that you want to work for the scaling of the crop.
  • racks (2) are used in which ropes (4) are arranged as a substrate for fixing and settling the spores.
  • the ropes (4) are wound in an orderly manner on the frames (2) constructed with a PVC tube, each one made up of a square or rectangular frame.
  • the frame (2) is immersed in a pond (1) that contains sea water.
  • the aqueous spore suspension is poured onto the surface of the frame (2) and the system is left to stand with lighting control, photoperiod, temperature control and nutrients.
  • the spores attach themselves to the strings and later give rise to seedlings. After reaching two months of age, the seedlings and ropes (4) can be transferred to the sea.
  • Figure 2 it can be seen that the inclined plane of the frames (2) allows efficient use of the light source (3), so that it affects all of one of the faces (2a, 2b) of the frame ( 2), without leaving spaces of shade.
  • Figure 3 shows the structural base of the frame system comprising two horizontal lateral bars on each side, parallel to each other, comprising fixed bars (5a, 5b) and mobile bars (6a, 6b), which are attached to one series of guide frames (7) that support the frames by means of bolts (8).
  • the bolts (8) form axes that allow a tilting movement of the guide frames (7), with the bolts (8) connecting the guide frames (7) to the fixed bars (5a, 5b) and to the mobile bars (6a). , 6b).
  • the fixed bars (5a, 5b) are arranged horizontally, and are connected at the ends to respective portions of descending vertical bars (9a, 9b).
  • the descending vertical bars (9a, 9b) in turn connect with a horizontal basal bar (10).
  • the basal horizontal bar (10) joins both descending vertical bars (9a, 9b) with each other, whereby the basal horizontal bar serves as a base to anchor the frame system structure to the bottom of the pond.
  • the movable bars (6a, 6b) are arranged horizontally, and are connected at one end to respective portions of upward vertical bars (ia, 11b).
  • the ascending vertical bars (lia, 11b) in turn are connected to an upper horizontal bar (12).
  • the upper horizontal bar (12) joins both ascending vertical bars (ia, 11b) with each other.
  • the upper horizontal bar (12) also fulfills the function of a lever to maneuver the movement of the lateral mobile bars (6a, 6b) and with this, rotate the rotary axes of the guide frames (7) to be able to tilt the frames (2) .
  • Figure 2 shows a side view of a preferred embodiment of the system with the frames and frames in an inclined position.
  • Figure 3 shows a perspective view of a preferred embodiment of the device of the invention with the frames (2) and frames (7) in an upright position.
  • a pond specially designed for this purpose. Fundamental in the design is that the pond has the ability to concentrate the decanted spores in a limited area for the proper functioning of the spore re-suspension system. With the background and requirements studied, the pond (1) that is presented in Figure 4 was designed.
  • the pond (1) comprises translucent faces allowing a complete vision of what is happening inside it and allows it to be illuminated by any of its exposed faces (13).
  • the pond (1) also includes two inclined planes (18) located at the bottom (19) of the pond. These allow the accumulation of particles in a central line (20) formed by the edges of the planes, located in the middle part along the base of the pond (1), thus facilitating the removal of particles through the operation of the re-suspension.
  • the dimensions for the pond can vary depending on the scale on which you want to build the system. This time they were chosen according to the available space, so the size of the rack system (2) was adapted to dimensions of 40 cm wide, 40 cm high and 60 cm long, giving a total useful volume of 90 liters and enough space to hold at least 5 24 x 28 cm racks.
  • Ropes (4) 3 mm thick are wound on the frames, which are capable of supporting around 33 meters of rope as a settlement substrate in each frame (2). By having 5 racks, a total of 160 m of useful rope (4) inoculated per pond (1) can be obtained.
  • the useful meters of rope achieved in the device of the invention represent nearly twice the meters of rope obtained by a pond compared to other frame systems of the prior art.
  • Figure 5 shows the spore re-suspension system that comprises a vertical tube (21) into which air (14) is drawn in, coming from an air hose (15) by means of a blower. Air is bubbled into the vertical tube (21) by means of a diffuser (17) located at the base of the vertical tube (21). The vertical tube (21) is partially submerged in the liquid, and its upper end protrudes above the surface of the water.
  • the vertical tube (21) at its lower end is connected to a horizontal lower tube (24), which is connected to a descending vertical tube (28), which in turn is connected to a central horizontal tube (29).
  • the latter has perforations (25) through which water (26) and spores (23) enter from the central line (20) formed by the edges of the inclined planes at the bottom of the pond.
  • the vertical tube (21) at its upper end, which protrudes from the water, has a 90 ° elbow that ends in an upper hole (22).
  • the water and the decanted spores from the bottom of the pond enter through the perforations of the central horizontal tube (29) due to the pressure exerted by the water as a result of the vacuum generated by the air bubbled by the diffuser of the vertical tube (21).
  • the mixture of water with spores and air bubbles (27) coming from the bottom are expelled through the upper hole (22) of the 90 degree elbow located in the upper part of the vertical tube (21).
  • the useful life of a spore contemplates a period of time in which it reaches a substrate and settles, beginning its development, this being one of the most influential factors in the success of propagation, but by decanting almost Immediately, all spores that do not reach a substrate on their way to the bottom lose the possibility of developing and growing on the racks. This is why a way was found to take advantage of the decanted spores again by using an air injection pump that allows the spores to be lifted by air and released on the surface of the water so that they reach the string substrate before ending their journey. towards the bottom of the pond.
  • Figure 5 presents a diagram that shows the operation of this system specially adapted for the required purpose, having the advantage that it only requires a limited air flow to be able to operate and transfer the spores from the bottom to the water surface automatically, being energy efficient and completely avoiding manual manipulation inside the pond.
  • the spore re-suspension system collects the particles that are freely found in the water column, and those that are perched on the glass of the central line (20) of the pond formed by the two inclined planes (18) of the base of the pond (1).
  • the structure of the spore re-suspension system was built so that each frame (2) receives the flow from the bottom (19) of the pond (1) at the same time, so the spore re-suspension system comprises a tube vertical (21) for each frame (2).
  • Figure 6 A shows a construction of an embodiment of the invention that considers a design for five folding frames, so there will also be five exit holes (22) for the spore re-suspension system directed towards the frames, to the airlift of the spores.
  • figure 6 B shows an embodiment of the invention in which the complete assembly of the device of the invention is observed, comprising the tank (1) with the spore re-suspension system described in Figure 6A plus the rack system described in Figure 3.
  • the spore re-suspension system comprises a series of five vertical tubes (21) arranged in such a way that each one connects at the upper end to respective outlet holes (22). At the lower end, the five vertical tubes (21) are connected to respective horizontal lower tubes (24). The distal end of each of the five horizontal lower tubes (24) in turn is connected to a single horizontal central tube (29) through respective vertical down tubes (28).
  • the central tube horizontal (29) has perforations (25) that allow the entrance of water (26) and spores (23) decanted at the bottom of the pond.
  • the device comprises six frames (2), which are inserted in corresponding six guide frames (7), in turn connected to a pair of movable bars (6a, 6b) and a pair of fixed bars (5a , 5b) that are arranged horizontally, and comprise a series of six vertical tubes (21) arranged so that each one connects at the upper end to respective outlet holes (22). At the lower end the six vertical tubes (21) are connected to respective six horizontal lower tubes (24). The distal end of each of the six horizontal lower tubes (24) in turn is connected to a single horizontal central tube (29) through respective vertical down tubes (28).
  • the horizontal central tube (29) has perforations (25) that allow the entrance of water (26) and spores (23) decanted at the bottom of the pond.
  • the method of cultivating red algae spores of the invention comprises providing a rack system, for the settlement of spores within a pond filled with water; tilt the rack frames to a first side from out of the water; inoculate the pond with spores avoiding splashing the surface of the water; allow spores to adhere to the substrate; re-suspend unbound spores; moving the frames out of the water so as to tilt the frames to a second side to expose the other face of the frame; keep the frames on an inclined plane so as not to generate shadows; inoculate with spores avoiding splashing the surface; allowing spores to adhere to the string substrate on the second side of the frame; recirculate spores so that spores that did not settle will settle; position the racks vertically from out of the water; leave the culture without movement and light to allow the correct adhesion of the cells (spores); illuminate the rack for the growth of settled spores.
  • the racks are inoculated with spores when they are inclined, then the spore re-suspension system is activated for 1 minute every 3 hours, after 12 hours the racks are tilted to the opposite side thanks to the lever provided for this purpose; it is inoculated with spores; The spore re-suspension system is activated for the same time interval, and the spores are expected to adhere, then the racks are placed vertically for cultivation.
  • lighting was provided by means of a system of 36 W fluorescent tubes, which provide a photonic flux density of at least 30 pinol s -1 m -2 measured 1 cm below the surface of the water. And after settling, a constant air flow is maintained to increase the gas exchange with air with an approximate flow of 6 1 / min.
  • the spores that are inoculated in the device of the invention are obtained in a process that takes around 24 hours, the final step of which is the hydration of 100 g of fertile fronds, for this case spores of the red algae Mazzaella laminarioides were used, achieving obtain an average of 8000 cel mL 1 .
  • reproductive fronds of the algae from their natural environment were used.
  • the fronds were transferred to the laboratory, cleaned one by one to then induce sporulation.
  • the fronds that presented a uniform color, structures were visually selected visible reproductive, low presence of epiphytes and a size that allows easy handling (ideally over 5 cm).
  • the selected fronds were carefully washed with draining drinking water, to then be placed in filtered sea water at 5 pm and sterilized by UV. Then only the area with evident reproductive structures (cystocarps) was selected and cleaning was performed by brushing.
  • the fronds were washed again with previously filtered and sterilized seawater, for subsequent partial dehydration.
  • the pieces of clean fronds were spread on sheets of absorbent paper.
  • the fronds were subjected to dehydration for a period of 3 hours.
  • the total of dried algae was cut into squares of approximately 3 cm, their weight was obtained and they were separated into two equal portions. Both portions were left to rest for 6 h in a conventional refrigerator (4 ° C), allowing them to cool down and final dehydration.
  • spores a 100 g portion of algae was used, which was placed in a plastic bag (4 L) specially designed and made for the purpose.
  • a plastic bag (4 L) specially designed and made for the purpose.
  • two equal bags or vertical columns were hung and subjected to hydration, sampling at 2, 5, 7, 9 and 12 h of hydration, taking a small aliquot and counting the concentration of cells (spores) mL 1 in a Neubauer counting chamber.
  • the inoculation with the spores obtained from the previous step was carried out under dim light, carefully spilling the water with spores (of known concentration) homogeneously throughout the water mirror at a distance no greater than 3 cm to avoid splashing.
  • a batch is made for each of the sides of the frame, 12 h apart. Operation of the rack system and device for the re-suspension of spores.
  • the algae spore cultivation method of the invention comprises tilting the frames to a first side; inoculate the pond with spores; allow spores to adhere to the substrate; re-suspend unbound spores; tilt the frames to a second side to expose the other side of the frame; inoculate with spores; allowing spores to adhere to the string substrate on the second side of the frame; re-suspend unbound spores; after 24 hours of starting the process, vertically position the racks and allow the growth of the settled seeds.
  • the frame In the algae spore cultivation method of the invention, the frame must first be placed in an inclined position for a side with an inclination of approximately 50 °, then after inoculation and after 12 h in which the re -spore suspension and the cells adhere to the substrate, the frame must be tilted to the other side and repeat the process. After 24 hours from the first inoculation, the racks should be positioned vertically for cultivation.
  • the re-suspension of spores works by means of a device created under the concept of "air-lift pump", where thanks to the vacuum generated by the injection of air into the lower area of the pond, the water generates pressure entering the collecting tube, dragging with it the particles drift in the water, to then be lifted by the bubbles and expelled from the upper end.
  • This system is activated for one minute every 3 h, 3 times per frame side with a flow rate of 2 L min 1 per frame. After one week, constant aeration per tank is activated at a total flow of 6 L min 1 .
  • Results A comparison of the results was made with those available in the scientific literature, taking as reference the experiments carried out by Alveal et al. (1997) and Glenn el al. (1998), who use the traditional method available up to now in the state of the art. Furthermore, a comparison was made of a reference experiment used as a control. Results of germination, growth rate, settlement density, efficiency and productivity of each system were obtained.
  • the reference experiment used as a control was subjected to the same environmental conditions as the system of the invention.
  • a single rack was positioned horizontally at the bottom of the pond to receive the spore inoculum.
  • the substrate capacity of this rack, for the spore settlement, was 82 linear meters of 3 mm thick polypropylene rope.
  • the frame was positioned vertically in the center of the pond so that it was completely covered with water.
  • the present invention shows the first methodology of a sporoculture system that allows measuring variables of efficiency and productivity prior to obtaining final biomass results, allowing a more accurate projection of the future of the crop.
  • the data found in the previous art must have been subjected to extrapolations and unit conversions to be able to contrast them with the data obtained in this investigation, to show that the system is effectively more productive than the methodologies currently used ⁇
  • Figure 9 shows a graph of productivity measured in spores by system.
  • the bars represent the total average per treatment.
  • the frame systems of the invention are explained in black and the bar representing the values of the control system taken as reference is shown in gray.
  • the letter "a" at the top of the average line indicates the statistical similarity between the treatment with the device of the invention and the reference treatment.
  • the percentage difference between the average values is represented with the delta symbol (D), observing a D of 34%.
  • the error bars represent the distribution of each sample.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The invention relates to a device and method for the culture of red algae spores, which comprises: a structure with U-shaped guide frames that supports a system of frames supporting a substrate for the settlement of spores in an inclined position, which is handled from outside the water by means of a lever connected to two horizontal bars that support the guide frames; and a spore resuspension system comprising tubes in which water, air and spores circulate, to make use of non-settled spores. The invention also relates to culture in inclined frames (supplanting the paradigm of horizontal culture, used until now because of the lack of mobility of the red algae spores) and to the controlled use of the spore resuspension system, and prevents contamination caused by handling of the culture.

Description

SISTEMA DE CULTIVO INCLINADO Y MÉTODO DE RE-SUSPENSIÓN DE ESPORAS PARA EL ESPOROCULTIVO DE ALGAS ROJAS INCLINED CULTIVATION SYSTEM AND METHOD OF RE-SUSPENSION OF SPORES FOR SPORTS CULTIVATION OF RED ALGAE
La invención se refiere a una nueva metodología de cultivo de esporas de algas rojas (macroalgas) mediante un dispositivo innovador. Este dispositivo está compuesto por un sistema de recirculación que permite la re-suspensión de esporas por medio de la inyección de aire, instalado en el fondo de un estanque de manera de aprovechar las esporas no asentadas. Sobre el sistema de recirculación se sitúa una estructura que permite sostener, inclinar y rotar marcos de soporte para colocar bastidores en posición vertical, con sustrato para el asentamiento de esporas, de manera de facilitar el manejo de los bastidores permitiendo la manipulación, sin contacto desde fuera del agua y automatizando los movimientos. The invention relates to a new methodology for cultivating red algae (macroalgae) spores using an innovative device. This device is made up of a recirculation system that allows the re-suspension of spores by means of air injection, installed at the bottom of a pond in order to take advantage of unsettled spores. On the recirculation system there is a structure that allows to hold, tilt and rotate support frames to place racks vertically, with a substrate for the settlement of spores, in order to facilitate the handling of the racks allowing manipulation, without contact from out of the water and automating the movements.
Arte previo Previous art
Se han descrito procedimientos y dispositivos, para el cultivo de algas rojas de interés comercial que tienen ciclos de vida trifásicos isomórficos, que incluyen en su mayoría a especies de los géneros Gracilaria, Gigartina Chondracanthus, Sarcothalia, Kappaphycus, Euchema, Chondrus, Callophyllis, Mazzaella, Gelidium, entre otras. No obstante la solución de la presente invención no se encuentra divulgada anteriormente. Procedures and devices have been described for the cultivation of red algae of commercial interest that have isomorphic triphasic life cycles, which mostly include species of the genera Gracilaria, Gigartina Chondracanthus, Sarcothalia, Kappaphycus, Euchema, Chondrus, Callophyllis, Mazzaella , Gelidium, among others. However, the solution of the present invention is not previously disclosed.
El documento WO2013153402 describe un método para cultivar algas en estanques de canalización, manipulando el estado fisiológico de las algas mediante la alteración de uno o más parámetros ambientales tales como intensidad de luz, longitud de onda de luz, concentración y balance de nutrientes, temperatura del agua, densidad de células de algas, concentración o proporción de gases disueltos. Este documento, a diferencia de la invención, no hace referencia en específico al cultivo por medio de esporas. La patente CL 48664 (Solicitud No CL 200901696) está relacionada con el cultivo de microalgas. Consta con un sistema tubular en espiral dispuesto verticalmente para lograr un uso más eficiente de la luz sobre los cultivos. La estructura del fotobiorreactor permite una alta razón de superficie /volumen, flexibilidad en la orientación respecto de la luz, capacidad de prevenir la acumulación de oxígeno de origen fotosintético, capacidad de retención de CO2 y evitar el sobrecalentamiento del medio líquido. Este sistema es específico para microalgas, y no hace referencia a su utilidad en cultivos por medio de esporas. WO2013153402 describes a method for cultivating algae in canalization ponds, manipulating the physiological state of the algae by altering one or more environmental parameters such as light intensity, light wavelength, concentration and balance of nutrients, temperature of the water, algae cell density, concentration or proportion of dissolved gases. This document, unlike the invention, does not specifically refer to culture by means of spores. CL 48664 (Application No.CL 200901696) is related to the cultivation of microalgae. It has a tubular spiral system arranged vertically to achieve a more efficient use of light on crops. The structure of the photobioreactor allows a high surface / volume ratio, flexibility in light orientation, ability to prevent the accumulation of oxygen of photosynthetic origin, CO2 retention capacity and avoid overheating of the liquid medium. This system is specific for microalgae, and does not refer to its usefulness in cultures using spores.
El documento W02010077146, menciona el cultivo de macroalgas con una lámina provista de aberturas que permiten el flujo del agua desde un lado a otro, donde la superficie de la lámina tiene una estructura que retiene las esporas y semillas. Si bien este documento menciona el cultivo de macroalgas en general, no indica la producción de plántulas por medio de esporas, y no utiliza los mecanismos de re-suspensión de esporas, inclinación y rotación de bastidores, contemplados en la presente invención. Document W02010077146 mentions the cultivation of macroalgae with a sheet provided with openings that allow the flow of water from one side to the other, where the surface of the sheet has a structure that retains spores and seeds. Although this document mentions the cultivation of macroalgae in general, it does not indicate the production of seedlings by means of spores, and it does not use the spore re-suspension, inclination and frame rotation mechanisms contemplated in the present invention.
Se conoce el cultivo horizontal de esporas fijadas a cuerdas [Alveal K., Romo H., Werlinger C., Oliveira E.C. (1997) Mass cultivation of the agar-producing alga Gracilaria chilensis (Rhodophyta) from spores. Aquaculture, 148: 77-83]. En este trabajo se realizó un cultivo por medio de esporas, que incluyó desde el asentamiento de las esporas a cuerdas, hasta la cosecha de biomasa. No obstante, no utiliza los mecanismos de re-suspensión de esporas, inclinación y rotación de bastidores, contemplados en la presente invención. The horizontal culture of spores attached to ropes is known [Alveal K., Romo H., Werlinger C., Oliveira E.C. (1997) Mass cultivation of the agar-producing alga Gracilaria chilensis (Rhodophyta) from spores. Aquaculture, 148: 77-83]. In this work, a culture was carried out by means of spores, which included from the settlement of the spores with ropes, to the harvest of biomass. However, it does not use the spore re-suspension, tilt and frame rotation mechanisms contemplated in the present invention.
Por otro lado, se han realizado pruebas de asentamiento de esporas en distintos sustratos (posicionados horizontalmente) en estanques con aeración constante [Glenn, E. P., Moore, D., Fitzsimmons, K., & Azevedo, C. (1996) Spore culture of the edible red seaweed, Gracilaria parvispora (Rhodophyta). Aquaculture, 142(1-2), 59-74] Estudios de cultivos por esporas, que han incluido etapas de laboratorio, en ambiente controlado, también han abarcado especies como Gigartina skttsbergii [Romo, H., Avila, M., Núñez, M. et al. (2006) Culture of Gigartina skottsbergii (Rhodophyta) in Southern Chile. A pilot scale approac. J. Appl Phycol 18: 307]; Gelidium rex [Rojas R, León NM, Rojas RD (1996) Practical and descriptive techniques for Gelidium rex (Gelidiales, Rhodophyta) culture. Hydrobiologia 326-327:367-370]; Sarcothalia crispata [Romo, H., Alveal, K. & Werlinger, C. (2001) Growth of the commercial carrageenophyte Sarcothalia crispata (Rhodophyta, Gigartinales) on suspended culture in central Chile. Journal of Applied Phycology 13: 227]; Chondracanthus chamissoi [Ávila M., Piel M., Cáceres J. and Alveal K. (2011) Cultivation of the red alga Chondracanthus chamissoi : sexual reproduction and seedling production in culture under controlled conditions. Journal of Applied Phycology 23 (3):529-536]; Callophyllis varié gata [Ávila, M., Piel, M. and Alcapan (2014) Indoor and outdoor culture of Callophyllis variegata (Bory) Kützing (Gigartinales, Rhodophyta) in southem Chile. Journal of Applied Phycology, 26(2):769-774]; Kappaphycus sp [de Paula EJ, Pereira R ÍE. Olmo M, (1999) Strain selection in Kappaphycus alvarezii var. alvarezii (Solieriaceae, Rhodophyta) using tetraspore progeny. J. Appl. Phycol., 11(1 ): 111 -121]. Sin embargo, en ninguno de estos estudios se ha descrito el uso de soportes que permiten ubicar de forma vertical e inclinar los bastidores, ni han incluido un sistema de re- suspensión de esporas para mejorar el asentamiento, y de esta forma mejorar la productividad. On the other hand, spore settlement tests have been carried out on different substrates (positioned horizontally) in ponds with constant aeration [Glenn, EP, Moore, D., Fitzsimmons, K., & Azevedo, C. (1996) Spore culture of the edible red seaweed, Gracilaria parvispora (Rhodophyta). Aquaculture, 142 (1-2), 59-74] Spore culture studies, which have included laboratory stages, in a controlled environment, have also covered species such as Gigartina skttsbergii [Romo, H., Avila, M., Núñez, M. et al. (2006) Culture of Gigartina skottsbergii (Rhodophyta) in Southern Chile. A pilot scale approac. J. Appl Phycol 18: 307]; Gelidium rex [Rojas R, León NM, Rojas RD (1996) Practical and descriptive techniques for Gelidium rex (Gelidiales, Rhodophyta) culture. Hydrobiology 326-327: 367-370]; Sarcothalia crispata [Romo, H., Alveal, K. & Werlinger, C. (2001) Growth of the commercial carrageenophyte Sarcothalia crispata (Rhodophyta, Gigartinales) on suspended culture in central Chile. Journal of Applied Phycology 13: 227]; Chondracanthus chamissoi [Ávila M., Piel M., Cáceres J. and Alveal K. (2011) Cultivation of the red alga Chondracanthus chamissoi: sexual reproduction and seedling production in culture under controlled conditions. Journal of Applied Phycology 23 (3): 529-536]; Callophyllis varié gata [Ávila, M., Piel, M. and Alcapan (2014) Indoor and outdoor culture of Callophyllis variegata (Bory) Kützing (Gigartinales, Rhodophyta) in southem Chile. Journal of Applied Phycology, 26 (2): 769-774]; Kappaphycus sp [de Paula EJ, Pereira R ÍE. Elm M, (1999) Strain selection in Kappaphycus alvarezii var. alvarezii (Solieriaceae, Rhodophyta) using tetraspore progeny. J. Appl. Phycol., 11 (1): 111-121]. However, in none of these studies has the use of supports to vertically locate and tilt the frames been described, nor have they included a spore re-suspension system to improve settlement, and thus improve productivity.
La explotación de bancos naturales de algas por parte de pescadores y empresas para su venta, es una práctica poco regulada y no sustentable. Si bien son competidores actualmente en la producción (vía extracción) de biomasa, en un futuro ya no habrá la misma disponibilidad natural del recurso, por lo que contar con un stock de reproductores bajo condiciones controladas y la posibilidad de obtener biomasa de manera eficiente a partir de ellos es una importante necesidad. The exploitation of natural banks of algae by fishermen and companies for their sale is a poorly regulated and unsustainable practice. Although they are currently competitors in the production (extraction) of biomass, in the future there will no longer be the same natural availability of the resource, so having a stock of broodstock under controlled conditions and the possibility of obtaining biomass efficiently through Starting from them is an important necessity.
La falta de desarrollo en tecnologías de cultivo en algas, y por sobre todo en esporocultivo, crean una muy buena oportunidad para innovar con nuevos desarrollos que sean capaces de abastecer una demanda de manera sustentable, es decir, evitando la extracción masiva de algas de su medio natural para su cultivo o propagación. Si bien es, por ahora, inevitable la extracción de algas del medio natural para las distintas opciones de reproducción y/o propagación que ofrecen las algas, se busca reducir esta depredación al mínimo haciendo mucho más eficientes las metodologías de obtención y cultivo de la biomasa resultante. The lack of development in cultivation technologies in algae, and above all in sporoculture, they create a very good opportunity to innovate with new developments that are capable of supplying a demand in a sustainable way, that is, avoiding the massive extraction of algae from their natural environment for cultivation or propagation. Although, for now, the extraction of algae from the natural environment is unavoidable for the different options for reproduction and / or propagation that algae offer, it seeks to reduce this depredation to a minimum, making the methodologies for obtaining and cultivating biomass much more efficient. resulting.
El dispositivo de la invención está dirigido a mejorar el asentamiento, inoculación de sustrato y finalmente la propagación y cultivo de algas por medio de esporas, contrario a los casos de propagación vegetativa masiva utilizados para el cultivo comercial como por ejemplo de especies del género Gracilaria. Hoy en día en Chile, no existen cultivos comerciales en algas rojas basados 100% en el esporo- cultivo. En Asia existe el cultivo por esporas completamente industrializado para la producción de Nori ( Porphyra y/o Pyropid). No obstante, estas especies presentan un ciclo de vida heteromórfico, en donde se controla y cultiva en laboratorio la fase microscópica, manteniendo la fase de conchocelis como stock de reproductores [Publicación: Bast Félix, 2014. An Illustrated Review on Cultivation and Life History of Agronomically Important Seaplants. In Seaweed: Mineral Composition, Nutritional and Antioxidant Benefits and Agricultural Uses, Eds Vítor Hugo Pomin, 39-70. Nova Publishers, New York ISBN: 978-1-63117- 571-8]. Situación que no ocurre en las algas comerciales de ciclo de vida isomórfico, para las cuales ha sido pensada esta invención, donde a nivel mundial se encuentran importantes especies representantes de los géneros; Gracilaria, Gigartina Chondracanthus, Sarcothalia, Kappaphycus, Euchema, Chondrus, Callophyllis, Mazzaella, Gelidium, entre otras. The device of the invention is aimed at improving the settlement, inoculation of the substrate and finally the propagation and cultivation of algae by means of spores, contrary to the cases of massive vegetative propagation used for commercial cultivation such as for example of species of the genus Gracilaria. Today in Chile, there are no commercial crops in red algae based 100% on the spore crop. In Asia there is fully industrialized spore cultivation for the production of Nori (Porphyra and / or Pyropid). However, these species have a heteromorphic life cycle, where the microscopic phase is controlled and cultivated in the laboratory, maintaining the conchocelis phase as breeding stock [Publication: Bast Félix, 2014. An Illustrated Review on Cultivation and Life History of Agronomically Important Seaplants. In Seaweed: Mineral Composition, Nutritional and Antioxidant Benefits and Agricultural Uses, Eds Vítor Hugo Pomin, 39-70. Nova Publishers, New York ISBN: 978-1-63117- 571-8]. A situation that does not occur in commercial algae with an isomorphic life cycle, for which this invention has been designed, where worldwide there are important species representing the genera; Gracilaria, Gigartina Chondracanthus, Sarcothalia, Kappaphycus, Euchema, Chondrus, Callophyllis, Mazzaella, Gelidium, among others.
La presente invención está dirigida a empresas o centros tecnológicos que realizan cultivo de algas rojas de ciclo de vida isomórfico de alto interés comercial, como por ejemplo aquellas algas de los órdenes Gigartinales, Gelidiales y Gracilariales. El dispositivo de la invención plantea una solución tecnológica que facilita el esporocultivo de las algas rojas antes mencionadas, cuyo cultivo hoy en día se realiza de forma prácticamente artesanal, evidenciando un desarrollo de las técnicas y procesos comprometidos en el escalamiento productivo y su masificación. The present invention is directed to companies or technological centers that carry out cultivation of red algae of the isomorphic life cycle of high commercial interest, such as for example those algae of the orders Gigartinales, Gelidiales and Gracilariales. The device of the invention proposes a technological solution that facilitates the sporoculture of the aforementioned red algae, whose cultivation nowadays is carried out in a practically artisanal way, evidencing a development of the techniques and processes involved in productive scaling and their massification.
La invención desarrollada, ha sido capaz de derribar el paradigma del cultivo horizontal obligatorio para este tipo de algas, que se plantea debido a la falta de flagelos de las esporas las que son incapaces de nadar. Además la invención permite aplicar tecnologías ya existentes (como la de resuspensión de líquidos) para mejorar el aprovechamiento de la materia prima utilizada. Por otra parte, el dispositivo de la invención logra facilidades en el manejo de los bastidores, disminución de la manipulación al interior de los estanques y automatización de procesos lo que contribuye a un aumento de eficiencia y productividad en el cultivo, aumentando la cantidad de sustrato inoculado en un mismo esfuerzo, con un claro avance en materias relativas al esporocultivo, que se encontraban completamente estancadas, con protocolos antiguos o sumamente artesanales. The developed invention has been able to overturn the paradigm of compulsory horizontal cultivation for this type of algae, which arises due to the lack of flagella of spores which are unable to swim. Furthermore, the invention allows applying existing technologies (such as liquid resuspension) to improve the use of the raw material used. On the other hand, the device of the invention achieves facilities in the handling of the racks, reduction of the manipulation inside the ponds and automation of processes which contributes to an increase in efficiency and productivity in the crop, increasing the amount of substrate inoculated in the same effort, with a clear advance in matters related to sporoculture, which were completely stagnant, with ancient or highly artisan protocols.
Los materiales utilizados en la presente invención son asequibles y de bajo costo, la construcción del sistema no requiere de máquinas especializadas y el dispositivo se arma de manera modular, pudiendo ampliar la estructura dependiendo del tamaño del estanque de manera de aprovechar al máximo el espacio disponible. Además, todos los componentes son reutilizables. Con lo anterior, el dispositivo de la presente invención permite ser replicado sin incurrir en grandes gastos con resultados comprobados. The materials used in the present invention are affordable and low cost, the construction of the system does not require specialized machines and the device is assembled in a modular way, being able to expand the structure depending on the size of the pond in order to maximize the available space . Furthermore, all components are reusable. With the above, the device of the present invention allows it to be replicated without incurring large expenses with proven results.
El dispositivo de la invención permite iniciar cultivos basados en esporas, ya sea en una escala de laboratorio o comercial gracias a su capacidad de adaptabilidad a los espacios. La presente invención permite además el control de los distintos parámetros que podrían afectar la etapa de cultivo, tales como los requerimientos de temperatura, fotoperiodo, nutrientes e intensidad lumínica. Obteniendo algas de mejor calidad en el menor tiempo posible. The device of the invention allows to start spore-based cultures, either on a laboratory or commercial scale thanks to its capacity to adapt to spaces. The present invention also allows the control of the different parameters that could affect the cultivation stage, such as the requirements of temperature, photoperiod, nutrients and light intensity. Obtaining better quality algae in the shortest possible time.
Una evolución de los materiales empleados en la construcción del dispositivo de la invención permitiría que éste pueda ser utilizado a una escala industrial. Utilizando materiales más resistentes y duraderos es posible aprovechar mejor el espacio del estanque dejando mayor superficie libre para aumentar la cantidad de sustrato disponible para el asentamiento de esporas. Además, invirtiendo en la calidad de los componentes, la vida útil del sistema se vería favorecida, en conjunto con disminuir las probabilidades de contaminación por deterioro de sus piezas (como el óxido de los metales presentes), y avanzando en materia de automatización de los movimientos que hoy en día se hacen manualmente, dejando abierta la posibilidad de implementar y perfeccionar el sistema utilizando mayores recursos. An evolution of the materials used in the construction of the device of the invention would allow it to be used on an industrial scale. By using stronger and more durable materials, it is possible to make better use of the pond space, leaving more free surface to increase the amount of substrate available for spore settlement. In addition, investing in the quality of the components, the useful life of the system would be favored, in conjunction with reducing the probability of contamination due to the deterioration of its parts (such as the oxide of the metals present), and advancing in the automation of movements that today are done manually, leaving open the possibility of implementing and perfecting the system using more resources.
El dispositivo de la invención tiene la ventaja de duplicar la cantidad de sustrato disponible para el asentamiento de esporas, en comparación con un método tradicionalmente utilizado en el mismo volumen. A la vez, se evita la manipulación bajo el agua para el funcionamiento y volteo de los bastidores, disminuyendo la introducción de agentes contaminantes. El diseño, simple pero eficaz, permite automatizar por completo el sistema en esta etapa del cultivo, haciendo necesaria la intervención de un operario solo para la inoculación y la inclinación de ambas caras de los bastidores. The device of the invention has the advantage of doubling the amount of substrate available for spore settling, compared to a method traditionally used in the same volume. At the same time, underwater handling for the operation and turning of the racks is avoided, reducing the introduction of polluting agents. The simple but effective design allows the system to be fully automated at this stage of cultivation, requiring operator intervention only for inoculation and tilting of both sides of the racks.
Descripción de las Figuras Description of the Figures
Las figuras 1A-B muestran un sistema utilizado en el arte previo de cultivo, el cual comprende un bastidor ubicado en posición horizontal para ser inoculado con esporas, y luego posicionado en vertical para el crecimiento de las esporas. La figura 2 muestra una vista lateral de los bastidores inclinados dentro del estanque, evidenciando la proyección de haces de luz sobre las caras de cada bastidor. Figures 1A-B show a system used in the prior art of cultivation, which comprises a rack located in a horizontal position to be inoculated with spores, and then positioned vertically for the growth of spores. Figure 2 shows a side view of the inclined racks inside the pond, showing the projection of light beams on the faces of each frame.
La figura 3 muestra una vista en perspectiva del sistema de bastidores, se muestra la base estructural, los marcos guía en forma de U y barras de manejo de inclinación del dispositivo. Además, se aprecian los bastidores y cómo se ensamblan en los marcos guía. Figure 3 shows a perspective view of the rack system, showing the structural base, U-shaped guide frames and tilt handling bars of the device. In addition, the frames and how they are assembled in the guide frames are appreciated.
La figura 4 presenta el diseño del estanque utilizado en la invención, destacando las paredes inclinadas en fondo de éste. Figure 4 presents the design of the pond used in the invention, highlighting the sloping walls at the bottom of it.
La figura 5 muestra un esquema del funcionamiento del sistema de re-suspensión de esporas, indicando los flujos del aire, agua y agua con esporas. Figure 5 shows a schematic of the operation of the spore re-suspension system, indicating the flows of air, water and water with spores.
Las figuras 6 A-B muestran una vista superior del sistema de re-suspensión de esporas instalado en el estanque. En la Figura 6A se aprecia el sistema de re suspensión de esporas posicionado en el fondo del estanque, en la Figura 6 B se muestran ambos, el sistema de re-suspensión de esporas y el sistema de bastidores dispuestos en conjunto para su funcionamiento. Figures 6 A-B show a top view of the spore re-suspension system installed in the pond. Figure 6A shows the spore re-suspension system positioned at the bottom of the pond, Figure 6 B shows both the spore re-suspension system and the rack system arranged together for operation.
Fas figuras 7 A-B muestran una vista lateral del sistema de re-suspensión de esporas y el sistema de bastidores, ambos dispuestos en el interior del estanque. Fa Figura 7 A muestra el sistema de bastidores con cierto ángulo de inclinación (posición establecida para recibir el inoculo de esporas). Fa Figura 7B muestra el sistema de bastidores en posición vertical, configuración final del sistema para el asentamiento y crecimiento de las esporas. Fas Figures 7 A-B show a side view of the spore re-suspension system and the rack system, both arranged inside the pond. Fa Figure 7 A shows the rack system with a certain angle of inclination (position established to receive the spore inoculum). Fa Figure 7B shows the rack system in vertical position, final configuration of the system for the settlement and growth of spores.
Fa figura 8 muestra el sistema de bastidores con el sistema de re-suspensión de esporas en funcionamiento. Se aprecia como salen burbujas direccionadas especialmente hacia cada bastidor desde los tubos verticales del sistema de re suspensión (etapa en la cual los bastidores poseen un ángulo de inclinación). Figure 8 shows the rack system with the spore re-suspension system in operation. You can see how directed bubbles come out especially towards each frame from the vertical tubes of the re-suspension system (stage in which the frames have an angle of inclination).
La figura 9 muestra un gráfico de productividad de sistemas de re-suspensión de esporas de la invención (bastidores) respecto de un sistema de inoculación de esporas de referencia (Control). Figure 9 shows a productivity graph of the spore re-suspension systems of the invention (frames) with respect to a reference spore inoculation system (Control).
Descripción de la invención Description of the Invention
La presente invención se refiere a un dispositivo para el cultivo de esporas de algas rojas que comprende un estanque (1); un sistema de bastidores con un sustrato para el asentamiento de esporas; a lo menos un marco guía en forma de U que sostiene cada bastidor en posición inclinada, dos barras horizontales laterales que permiten movilidad; una palanca que permite manipulación desde fuera del agua; un sistema de re-suspensión de esporas que comprende tuberías en las cuales circula agua, aire y esporas. The present invention relates to a device for the cultivation of red algae spores comprising a pond (1); a rack system with a substrate for spore settlement; at least one U-shaped guide frame that supports each frame in an inclined position, two horizontal lateral bars that allow mobility; a lever that allows manipulation from out of the water; a spore re-suspension system comprising pipes in which water, air and spores circulate.
La presente invención se refiere a una nueva metodología de cultivo de esporas de algas rojas mediante un dispositivo que comprende un sistema de re-suspensión de esporas basado en el concepto de“airlift pump”, construido por tuberías en las cuales circula aire, agua y esporas, montado en un estanque de agua con el fondo en forma de V; un sistema de bastidores con cuerdas de polipropileno como sustrato para el asentamiento de esporas, estructurado en marcos guías con forma de U que sostienen los bastidores en posición inclinada, dos barras horizontales laterales que permiten movilidad, y una palanca que permite manipulación desde fuera del agua. The present invention refers to a new methodology for the cultivation of red algae spores by means of a device comprising a spore re-suspension system based on the concept of "airlift pump", built by pipes in which air, water and spores, mounted in a pool of water with a V-shaped bottom; a system of racks with polypropylene ropes as a substrate for the settlement of spores, structured in U-shaped guide frames that hold the racks in an inclined position, two horizontal lateral bars that allow mobility, and a lever that allows manipulation from out of the water .
El o los bastidores (2) abatióles tienen movilidad suficiente para exponer las dos caras (2a, 2b) (una cara por vez) hacia la superficie y permitir el asentamiento de las esporas. El diseño permite que los bastidores puedan mantenerse en un plano inclinado para un mejor aprovechamiento del espacio en la decantación de esporas y para una mayor penetración de la luz (3), además se incluye un sistema de recirculación de aire y agua con el fin de hacer recircular las esporas. El dispositivo permite hacer un cultivo de algas más eficiente con una mayor superficie de asentamiento de esporas y disminuyendo al máximo la contaminación por manipulación de los bastidores (2). A la vez que se automatiza el proceso interviniendo lo menos posible en el delicado establecimiento de las esporas, ya que permite que los bastidores puedan ser fácilmente manipulados desde fuera del agua, pudiendo instalarlos o retirarlos de manera sencilla sin la necesidad de desarmar el sistema. The abatial frame (s) (2) have sufficient mobility to expose the two faces (2a, 2b) (one face at a time) to the surface and allow the spores to settle. The design allows the racks to be kept on an inclined plane for a better use of space in the decanting of spores and for greater light penetration (3), an air and water recirculation system is also included in order to recirculate the spores. The device allows for a more efficient algae culture with a larger spore settlement area and minimizing contamination by handling the racks (2). At the same time, the process is automated, intervening as little as possible in the delicate establishment of the spores, since it allows the racks to be easily manipulated from out of the water, being able to easily install or remove them without the need to disassemble the system.
El dispositivo puede ser construido en material liviano y económico como el PVC y sus dimensiones se pueden ajustar acorde a la escala que se desee trabajar para el escalamiento del cultivo. The device can be built in light and economic material such as PVC and its dimensions can be adjusted according to the scale that you want to work for the scaling of the crop.
En el método de cultivo de esporas se utilizan bastidores (2) en los cuales se disponen cuerdas (4) como sustrato de fijación y asentamiento de las esporas. Las cuerdas (4) se enrollan ordenadamente sobre los bastidores (2) construidos con un tubo de PVC, cada uno conformado por un marco cuadrangular o rectangular. El bastidor (2) se sumerge en un estanque (1) que contiene agua de mar. Se vierte la suspensión acuosa de esporas sobre la superficie del bastidor (2) y el sistema se deja en reposo con control de iluminación, fotoperiodo, control de temperatura y nutrientes. Las esporas se fijan por si solas a las cuerdas para posteriormente dar origen a plántulas. Una vez alcanzado los dos meses de edad, las plántulas y cuerdas (4) se pueden trasladar al mar. In the spore cultivation method, racks (2) are used in which ropes (4) are arranged as a substrate for fixing and settling the spores. The ropes (4) are wound in an orderly manner on the frames (2) constructed with a PVC tube, each one made up of a square or rectangular frame. The frame (2) is immersed in a pond (1) that contains sea water. The aqueous spore suspension is poured onto the surface of the frame (2) and the system is left to stand with lighting control, photoperiod, temperature control and nutrients. The spores attach themselves to the strings and later give rise to seedlings. After reaching two months of age, the seedlings and ropes (4) can be transferred to the sea.
En la Figura 2 se puede visualizar que el plano inclinado de los bastidores (2) permite aprovechar de manera eficiente la fuente de luz (3), de manera que incida en la totalidad de una de las caras (2a, 2b) del bastidor (2), sin dejar espacios de sombra. En la Figura 3 se muestra la base estructural del sistema de bastidores que comprende dos barras horizontales laterales por cada lado, paralelas entre sí, comprendiendo barras fijas (5a, 5b) y barras móviles (6a, 6b), las cuales están unidas a una serie de marcos guía (7) que soportan los bastidores mediante pernos (8). Los pernos (8) forman ejes que permiten un movimiento basculante de los marcos guía (7), siendo los pernos (8) los que unen los marcos guía (7) a las barras fijas (5a, 5b) y a las barras móviles (6a, 6b). In Figure 2 it can be seen that the inclined plane of the frames (2) allows efficient use of the light source (3), so that it affects all of one of the faces (2a, 2b) of the frame ( 2), without leaving spaces of shade. Figure 3 shows the structural base of the frame system comprising two horizontal lateral bars on each side, parallel to each other, comprising fixed bars (5a, 5b) and mobile bars (6a, 6b), which are attached to one series of guide frames (7) that support the frames by means of bolts (8). The bolts (8) form axes that allow a tilting movement of the guide frames (7), with the bolts (8) connecting the guide frames (7) to the fixed bars (5a, 5b) and to the mobile bars (6a). , 6b).
Las barras fijas (5a, 5b) están dispuestas horizontalmente, y se conectan por los extremos a respectivas porciones de barras verticales descendentes (9a, 9b). Las barras verticales descendentes (9a, 9b) a su vez se conectan con una barra horizontal basal (10). La barra horizontal basal (10) une ambas barras verticales descendentes (9a, 9b) entre sí, con lo cual la barra horizontal basal sirve de base para afirmar a la estructura del sistema de bastidores al fondo del estanque. The fixed bars (5a, 5b) are arranged horizontally, and are connected at the ends to respective portions of descending vertical bars (9a, 9b). The descending vertical bars (9a, 9b) in turn connect with a horizontal basal bar (10). The basal horizontal bar (10) joins both descending vertical bars (9a, 9b) with each other, whereby the basal horizontal bar serves as a base to anchor the frame system structure to the bottom of the pond.
Las barras móviles (6a, 6b) están dispuestas horizontalmente, y se conectan por uno de sus extremos a respectivas porciones de barras verticales ascendentes (l ia, 11b). Las barras verticales ascendentes (l ia, 11b) a su vez se conectan a una barra horizontal superior (12). La barra horizontal superior (12) une ambas barras verticales ascendentes (l ia, 11b) entre sí. La barra horizontal superior (12) cumple además la función de palanca para maniobrar el movimiento de las barras móviles (6a, 6b) laterales y con ello, girar los ejes rotatorios de los marcos guía (7) para poder inclinar los bastidores (2). The movable bars (6a, 6b) are arranged horizontally, and are connected at one end to respective portions of upward vertical bars (ia, 11b). The ascending vertical bars (lia, 11b) in turn are connected to an upper horizontal bar (12). The upper horizontal bar (12) joins both ascending vertical bars (ia, 11b) with each other. The upper horizontal bar (12) also fulfills the function of a lever to maneuver the movement of the lateral mobile bars (6a, 6b) and with this, rotate the rotary axes of the guide frames (7) to be able to tilt the frames (2) .
En la Figura 2 se puede apreciar una vista lateral de una realización preferente del sistema con los bastidores y marcos en posición inclinada. Figure 2 shows a side view of a preferred embodiment of the system with the frames and frames in an inclined position.
En la Figura 3 se puede apreciar una vista en perspectiva de una realización preferente del dispositivo de la invención con los bastidores (2) y marcos (7) en posición vertical. Para llevar a cabo los distintos experimentos para validar el sistema, fue necesario contar con un estanque especialmente diseñado para este propósito. Fundamental en el diseño es que el estanque posea la capacidad de concentrar las esporas decantadas en un área acotada para el correcto funcionamiento del sistema de re suspensión de esporas. Con los antecedentes y requisitos estudiados se diseñó el estanque (1) que se presenta en la Figura 4. Figure 3 shows a perspective view of a preferred embodiment of the device of the invention with the frames (2) and frames (7) in an upright position. To carry out the different experiments to validate the system, it was necessary to have a pond specially designed for this purpose. Fundamental in the design is that the pond has the ability to concentrate the decanted spores in a limited area for the proper functioning of the spore re-suspension system. With the background and requirements studied, the pond (1) that is presented in Figure 4 was designed.
El estanque (1) comprende caras translúcidas permitiendo una visión completa de lo que sucede en su interior y permite ser iluminado por cualquiera de sus caras (13) que quedan expuestas. El estanque (1) incluye además dos planos inclinados (18) ubicados en el fondo (19) del estanque. Estos permiten la acumulación de partículas en una línea central (20) formada por las aristas de los planos, ubicada en la parte media a lo largo de la base del estanque (1), facilitando así la remoción de partículas mediante el funcionamiento del sistema de re-suspensión. The pond (1) comprises translucent faces allowing a complete vision of what is happening inside it and allows it to be illuminated by any of its exposed faces (13). The pond (1) also includes two inclined planes (18) located at the bottom (19) of the pond. These allow the accumulation of particles in a central line (20) formed by the edges of the planes, located in the middle part along the base of the pond (1), thus facilitating the removal of particles through the operation of the re-suspension.
Las dimensiones para el estanque pueden variar según la escala en la que se desee construir el sistema. En esta ocasión fueron escogidas según el espacio disponible, por lo que se adecuó el tamaño del sistema de bastidores (2) a dimensiones de 40 cm de ancho, 40 cm de alto y 60 cm de largo, dando un volumen útil total de 90 litros y un espacio suficiente para sostener al menos 5 bastidores de 24 x 28 cm. The dimensions for the pond can vary depending on the scale on which you want to build the system. This time they were chosen according to the available space, so the size of the rack system (2) was adapted to dimensions of 40 cm wide, 40 cm high and 60 cm long, giving a total useful volume of 90 liters and enough space to hold at least 5 24 x 28 cm racks.
En los bastidores se enrollan cuerdas (4) de 3 mm de espesor las que son capaces de sostener alrededor de 33 metros de cuerda como sustrato de asentamiento en cada bastidor (2). Si se tienen 5 bastidores se logra obtener un total de 160 m de cuerda (4) útiles inoculada por estanque (1). Los metros de cuerda útiles logrados en el dispositivo de la invención representan cerca el doble de metros de cuerda obtenidos por estanque respecto de otros sistemas de bastidores del arte previo. Ropes (4) 3 mm thick are wound on the frames, which are capable of supporting around 33 meters of rope as a settlement substrate in each frame (2). By having 5 racks, a total of 160 m of useful rope (4) inoculated per pond (1) can be obtained. The useful meters of rope achieved in the device of the invention represent nearly twice the meters of rope obtained by a pond compared to other frame systems of the prior art.
La Figura 5 muestra el sistema de re-suspensión de esporas que comprende un tubo vertical (21) al cual se hace entrar aire (14) que viene de una manguera de aire (15) mediante un soplador. El aire es burbujeado dentro del tubo vertical (21) mediante un difusor (17) ubicado en la base del tubo vertical (21). El tubo vertical (21) está parcialmente sumergido en el líquido, y su extremo superior sobresale por sobre la superficie del agua. Figure 5 shows the spore re-suspension system that comprises a vertical tube (21) into which air (14) is drawn in, coming from an air hose (15) by means of a blower. Air is bubbled into the vertical tube (21) by means of a diffuser (17) located at the base of the vertical tube (21). The vertical tube (21) is partially submerged in the liquid, and its upper end protrudes above the surface of the water.
El tubo vertical (21) en su extremo inferior se conecta con un tubo inferior horizontal (24), el cual se conecta a un tubo vertical descendente (28), que se conecta a su vez con un tubo horizontal central (29). Este último posee perforaciones (25) por las cuales ingresa agua (26) y esporas (23) desde la línea central (20) formada por las aristas de los planos inclinados en el fondo del estanque. Al tubo horizontal central (29) confluyen igual número de tubos verticales descendentes (28) de acuerdo a la cantidad de bastidores presentes. The vertical tube (21) at its lower end is connected to a horizontal lower tube (24), which is connected to a descending vertical tube (28), which in turn is connected to a central horizontal tube (29). The latter has perforations (25) through which water (26) and spores (23) enter from the central line (20) formed by the edges of the inclined planes at the bottom of the pond. To the central horizontal tube (29) an equal number of descending vertical tubes (28) converge according to the number of frames present.
El tubo vertical (21) en su extremo superior que sobresale del agua, posee un codo en 90°que termina en un orificio superior (22). El agua y las esporas decantadas del fondo del estanque ingresan por las perforaciones del tubo horizontal central (29) debido a la presión ejercida por el agua producto del vacío generado por el aire burbujeado por el difusor del tubo vertical (21). La mezcla de agua con esporas y burbujas de aire (27) provenientes del fondo son expulsadas por el orifico superior (22) del codo en 90 grados ubicado en la parte superior del tubo vertical (21). The vertical tube (21) at its upper end, which protrudes from the water, has a 90 ° elbow that ends in an upper hole (22). The water and the decanted spores from the bottom of the pond enter through the perforations of the central horizontal tube (29) due to the pressure exerted by the water as a result of the vacuum generated by the air bubbled by the diffuser of the vertical tube (21). The mixture of water with spores and air bubbles (27) coming from the bottom are expelled through the upper hole (22) of the 90 degree elbow located in the upper part of the vertical tube (21).
La vida útil de una espora contempla un lapso de tiempo en el cual esta llega hasta un sustrato y se asienta, comenzando su desarrollo, siendo este uno de los factores más influyentes a la hora del éxito de la propagación, pero al decantar de manera casi inmediata, todas las esporas que no alcanzan un sustrato en su camino al fondo pierden la posibilidad de desarrollarse y crecer en los bastidores. Es por esto que se buscó una manera de aprovechar nuevamente las esporas decantadas mediante la utilización de una bomba de inyección de aire que permite levantar las esporas mediante aire y liberarlas sobre la superficie del agua para que alcancen el sustrato de cuerdas antes de terminar su camino hacia el fondo del estanque. En la Figura 5 se presenta un esquema que permite evidenciar el funcionamiento de este sistema especialmente adaptado para el propósito requerido, teniendo como punto ventajoso el hecho de que solo requiere un acotado caudal de aire para poder funcionar y trasladar las esporas desde el fondo hasta la superficie del agua de manera automática, siendo energéticamente eficiente y evitando por completo la manipulación manual dentro del estanque. The useful life of a spore contemplates a period of time in which it reaches a substrate and settles, beginning its development, this being one of the most influential factors in the success of propagation, but by decanting almost Immediately, all spores that do not reach a substrate on their way to the bottom lose the possibility of developing and growing on the racks. This is why a way was found to take advantage of the decanted spores again by using an air injection pump that allows the spores to be lifted by air and released on the surface of the water so that they reach the string substrate before ending their journey. towards the bottom of the pond. Figure 5 presents a diagram that shows the operation of this system specially adapted for the required purpose, having the advantage that it only requires a limited air flow to be able to operate and transfer the spores from the bottom to the water surface automatically, being energy efficient and completely avoiding manual manipulation inside the pond.
El sistema de re-suspensión de esporas recolecta las partículas que se encuentran de manera libre en la columna de agua, y aquellas que están posadas sobre el vidrio de la línea central (20) del estanque formada por los dos planos inclinados (18) de la base del estanque (1). La estructura del sistema de re-suspensión de esporas se construyó para que cada bastidor (2) reciba el caudal proveniente del fondo (19) del estanque (1) al mismo tiempo, por lo que el sistema de re suspensión de esporas comprende un tubo vertical (21) por cada bastidor (2). The spore re-suspension system collects the particles that are freely found in the water column, and those that are perched on the glass of the central line (20) of the pond formed by the two inclined planes (18) of the base of the pond (1). The structure of the spore re-suspension system was built so that each frame (2) receives the flow from the bottom (19) of the pond (1) at the same time, so the spore re-suspension system comprises a tube vertical (21) for each frame (2).
En la figura 6 A se muestra una construcción de una modalidad de la invención que considera un diseño para cinco bastidores abatibles, por lo que también habrá cinco orificios de salida (22) del sistema de re-suspensión de esporas dirigidas hacia los bastidores, para el levantamiento por aire de las esporas. Por otro lado, la figura 6 B muestra una realización de la invención en la que se observa el ensamble completo del dispositivo de la invención que comprende el estanque (1) con el sistema de re-suspensión de esporas descrito en la Figura 6A más el sistema de bastidores descrito en la Figura 3. Figure 6 A shows a construction of an embodiment of the invention that considers a design for five folding frames, so there will also be five exit holes (22) for the spore re-suspension system directed towards the frames, to the airlift of the spores. On the other hand, figure 6 B shows an embodiment of the invention in which the complete assembly of the device of the invention is observed, comprising the tank (1) with the spore re-suspension system described in Figure 6A plus the rack system described in Figure 3.
En una modalidad de la invención el sistema de re-suspensión de esporas comprende una serie de cinco tubos verticales (21) dispuestos de forma que cada uno se conecta por el extremo superior a respectivos orificios de salida (22). Por el extremo inferior los cinco tubos verticales (21) se conectan a respectivos tubos inferiores horizontales (24). El extremo distal de cada uno de los cinco tubos inferiores horizontales (24) a su vez se conecta a un único tubo central horizontal (29) a través de respectivos tubos verticales descendentes (28). El tubo central horizontal (29) posee perforaciones (25) que permiten la entrada de agua (26) y esporas (23) decantadas en el fondo del estanque. In one embodiment of the invention, the spore re-suspension system comprises a series of five vertical tubes (21) arranged in such a way that each one connects at the upper end to respective outlet holes (22). At the lower end, the five vertical tubes (21) are connected to respective horizontal lower tubes (24). The distal end of each of the five horizontal lower tubes (24) in turn is connected to a single horizontal central tube (29) through respective vertical down tubes (28). The central tube horizontal (29) has perforations (25) that allow the entrance of water (26) and spores (23) decanted at the bottom of the pond.
En otra modalidad de la invención el dispositivo comprende seis bastidores (2), que se insertan en correspondientes seis marcos guía (7), a su vez conectados a un par de barras móviles (6a, 6b) y un par de barras fijas (5a, 5b) que están dispuestas horizontalmente, y comprende una serie de seis tubos verticales (21) dispuestos de forma que cada uno se conecta por el extremo superior a respectivos orificios de salida (22). Por el extremo inferior los seis tubos verticales (21) se conectan a respectivos seis tubos inferiores horizontales (24). El extremo distal de cada uno de los seis tubos inferiores horizontales (24) a su vez se conecta a un único tubo central horizontal (29) a través de respectivos tubos verticales descendentes (28). El tubo central horizontal (29) posee perforaciones (25) que permiten la entrada de agua (26) y esporas (23) decantadas en el fondo del estanque. In another embodiment of the invention, the device comprises six frames (2), which are inserted in corresponding six guide frames (7), in turn connected to a pair of movable bars (6a, 6b) and a pair of fixed bars (5a , 5b) that are arranged horizontally, and comprise a series of six vertical tubes (21) arranged so that each one connects at the upper end to respective outlet holes (22). At the lower end the six vertical tubes (21) are connected to respective six horizontal lower tubes (24). The distal end of each of the six horizontal lower tubes (24) in turn is connected to a single horizontal central tube (29) through respective vertical down tubes (28). The horizontal central tube (29) has perforations (25) that allow the entrance of water (26) and spores (23) decanted at the bottom of the pond.
El método para cultivar esporas de algas rojas de la invención comprende proveer un sistema de bastidores, para el asentamiento de esporas dentro de un estanque lleno de agua; inclinar los marcos de los bastidores hacia un primer lado desde fuera del agua; inocular el estanque con esporas evitando salpicar la superficie del agua; permitir que las esporas se adhieran al sustrato; re-suspender las esporas no adheridas; mover los bastidores desde fuera del agua de modo de inclinar los bastidores hacia un segundo lado para exponer la otra cara del bastidor; mantener en un plano inclinado los bastidores de modo de no generar sombras; inocular con esporas evitando salpicar la superficie; permitir que las esporas se adhieran al sustrato de cuerdas en el segundo lado del bastidor; hacer recircular las esporas para que se asienten las esporas que no lo hicieron; posicionar los bastidores en posición vertical desde fuera del agua; dejar sin movimiento y luz tenue el cultivo para permitir la correcta adhesión de las células (esporas); iluminar el bastidor para el crecimiento de las esporas asentadas. The method of cultivating red algae spores of the invention comprises providing a rack system, for the settlement of spores within a pond filled with water; tilt the rack frames to a first side from out of the water; inoculate the pond with spores avoiding splashing the surface of the water; allow spores to adhere to the substrate; re-suspend unbound spores; moving the frames out of the water so as to tilt the frames to a second side to expose the other face of the frame; keep the frames on an inclined plane so as not to generate shadows; inoculate with spores avoiding splashing the surface; allowing spores to adhere to the string substrate on the second side of the frame; recirculate spores so that spores that did not settle will settle; position the racks vertically from out of the water; leave the culture without movement and light to allow the correct adhesion of the cells (spores); illuminate the rack for the growth of settled spores.
En el método que utiliza el dispositivo de la invención, los bastidores se inoculan con esporas cuando están en forma inclinada, luego se activa el sistema de re suspensión de esporas por 1 minuto cada 3 horas, luego de 12 horas los bastidores se inclinan hacia el lado opuesto gracias a la palanca dispuesta para ello; se inocula con esporas; se activa el sistema de re-suspensión de esporas por el mismo intervalo de tiempo, y se espera a que las esporas se adhieran, luego los bastidores se colocan en posición vertical para el cultivo. In the method using the device of the invention, the racks are inoculated with spores when they are inclined, then the spore re-suspension system is activated for 1 minute every 3 hours, after 12 hours the racks are tilted to the opposite side thanks to the lever provided for this purpose; it is inoculated with spores; The spore re-suspension system is activated for the same time interval, and the spores are expected to adhere, then the racks are placed vertically for cultivation.
A continuación, se presentan aspectos clave para llevar a cabo el cultivo de esporas de algas rojas mediante la innovación tecnológica de bastidores inclinados. Los niveles de los diferentes factores incluidos son referentes a la experiencia realizada para probar la invención. No obstante, cada especie de alga tiene sus propios requerimientos los que pueden ser ajustados. Key aspects of cultivating red algae spores through sloped rack technology innovation are presented below. The levels of the different factors included are referring to the experience carried out to test the invention. However, each species of algae has its own requirements which can be adjusted.
Como por ejemplo se probaron condiciones controladas de temperatura e iluminación (i) se trabajó con una temperatura constante, en este caso fue de 16 ±As for example controlled temperature and lighting conditions were tested (i) a constant temperature was used, in this case it was 16 ±
1°C, (ii) el fotoperiodo fue controlado a 12:12, es decir, 12 horas de oscuridad y1 ° C, (ii) the photoperiod was controlled at 12:12, that is, 12 hours of darkness and
12 horas de luz. (iii) la iluminación fue provista mediante un sistema de tubos fluorescentes de 36 W, los que proveen una densidad de flujo fotónico de al menos 30 pinol s -1 m -2 medido 1 cm por debajo de la superficie del agua. Y luego del asentamiento, se mantiene un flujo constante de aire para aumentar el intercambio gaseoso con el aire con un flujo aproximado de 6 1/min. 12 hours of light. (iii) lighting was provided by means of a system of 36 W fluorescent tubes, which provide a photonic flux density of at least 30 pinol s -1 m -2 measured 1 cm below the surface of the water. And after settling, a constant air flow is maintained to increase the gas exchange with air with an approximate flow of 6 1 / min.
Las esporas que son inoculadas en el dispositivo de la invención, se obtienen en un proceso que demora alrededor de 24 horas, cuyo paso final es la hidratación de 100 g de frondas fértiles, para este caso se utilizaron esporas del alga roja Mazzaella laminarioides, logrando obtener un promedio de 8000 cel mL 1. The spores that are inoculated in the device of the invention are obtained in a process that takes around 24 hours, the final step of which is the hydration of 100 g of fertile fronds, for this case spores of the red algae Mazzaella laminarioides were used, achieving obtain an average of 8000 cel mL 1 .
Para el proceso de obtención de esporas se utilizaron frondas reproductivas del alga de su medio natural. Las frondas fueron trasladadas al laboratorio, se limpiaron una a una para luego inducir la esporulación. Para esto se seleccionaron de manera visual las frondas que presentaban un color uniforme, estructuras reproductivas visibles, escasa presencia de epífitos y un tamaño que permite un fácil manejo (idealmente por sobre los 5 cm). Las frondas seleccionadas fueron lavadas cuidadosamente con agua potable escurriendo, para luego ser colocadas en agua de mar filtrada a 5 pm y esterilizada mediante UV. Luego se seleccionó solo el área con evidentes estructuras reproductivas (cistocarpos) y se realizó una limpieza mediante cepillado. Para finalizar se lavaron las frondas nuevamente con agua de mar previamente filtrada y esterilizada, para su posterior deshidratación parcial. Para la deshidratación se extendieron los trozos de frondas limpios sobre hojas de papel absorbente. Las frondas fueron sometidas a deshidratación por un periodo de 3 horas. El total de algas secas se trozó en cuadros de 3 cm aproximadamente, se obtuvo su peso y se separaron en dos porciones iguales. Ambas porciones se dejaron reposar durante 6 h en un refrigerador convencional (4°C), permitiéndoles el enfriamiento y deshidratación final. For the process of obtaining spores, reproductive fronds of the algae from their natural environment were used. The fronds were transferred to the laboratory, cleaned one by one to then induce sporulation. For this, the fronds that presented a uniform color, structures were visually selected visible reproductive, low presence of epiphytes and a size that allows easy handling (ideally over 5 cm). The selected fronds were carefully washed with draining drinking water, to then be placed in filtered sea water at 5 pm and sterilized by UV. Then only the area with evident reproductive structures (cystocarps) was selected and cleaning was performed by brushing. To finish, the fronds were washed again with previously filtered and sterilized seawater, for subsequent partial dehydration. For dehydration, the pieces of clean fronds were spread on sheets of absorbent paper. The fronds were subjected to dehydration for a period of 3 hours. The total of dried algae was cut into squares of approximately 3 cm, their weight was obtained and they were separated into two equal portions. Both portions were left to rest for 6 h in a conventional refrigerator (4 ° C), allowing them to cool down and final dehydration.
Para la obtención de esporas se utilizó una porción de 100 g de algas la que se introdujo en una bolsa de plástico (4 L) especialmente diseñada y confeccionada para el propósito. Con el objetivo de tener esporas suficientes para la inoculación, se colgaron dos bolsas iguales (o columnas verticales) y se sometieron a hidratación realizando muéstreos a las 2, 5, 7, 9 y 12 h de hidratación, tomando una pequeña alícuota y contando la concentración de células (esporas) mL 1 en una cámara de conteo Neubauer. To obtain spores, a 100 g portion of algae was used, which was placed in a plastic bag (4 L) specially designed and made for the purpose. In order to have sufficient spores for inoculation, two equal bags (or vertical columns) were hung and subjected to hydration, sampling at 2, 5, 7, 9 and 12 h of hydration, taking a small aliquot and counting the concentration of cells (spores) mL 1 in a Neubauer counting chamber.
La metodología empleada para la obtención de esporas permitió inocular en tandas de 1 L por cara de bastidor de cada estanque gracias a la capacidad volumétrica de 4 L de las columnas verticales utilizadas para la hidratación de las frondas. La inoculación con las esporas obtenidas del paso anterior, se realizó bajo luz tenue derramando cuidadosamente el agua con esporas (de concentración conocida) de forma homogénea en todo el espejo de agua a una distancia no mayor a los 3 cm para evitar salpicaduras. Se realiza una tanda por cada una de las caras del bastidor, distanciadas por 12 h. Funcionamiento del sistema de bastidores y dispositivo para la re-suspensión de esporas. The methodology used to obtain spores allowed to inoculate in batches of 1 L per frame face of each pond thanks to the 4 L volumetric capacity of the vertical columns used for the hydration of the fronds. The inoculation with the spores obtained from the previous step was carried out under dim light, carefully spilling the water with spores (of known concentration) homogeneously throughout the water mirror at a distance no greater than 3 cm to avoid splashing. A batch is made for each of the sides of the frame, 12 h apart. Operation of the rack system and device for the re-suspension of spores.
El método de cultivo de esporas de algas de la invención comprende inclinar los bastidores hacia un primer lado; inocular el estanque con esporas; permitir que las esporas se adhieran al sustrato; re-suspender las esporas no adheridas; inclinar los bastidores hacia un segundo lado para exponer la otra cara del bastidor; inocular con esporas; permitir que las esporas se adhieran al sustrato de cuerdas en el segundo lado del bastidor; re-suspender las esporas no adheridas; luego de 24 horas de iniciado el proceso posicionar verticalmente los bastidores y permitir el crecimiento de las semillas asentadas. The algae spore cultivation method of the invention comprises tilting the frames to a first side; inoculate the pond with spores; allow spores to adhere to the substrate; re-suspend unbound spores; tilt the frames to a second side to expose the other side of the frame; inoculate with spores; allowing spores to adhere to the string substrate on the second side of the frame; re-suspend unbound spores; after 24 hours of starting the process, vertically position the racks and allow the growth of the settled seeds.
En el método de cultivo de esporas de algas de la invención en primer lugar el bastidor debe ponerse en una posición inclinada para un costado con una inclinación aproximadamente de 50°, para luego de inoculado y pasadas 12 h en las que funciona el sistema de re-suspensión de esporas y se adhieren las células al sustrato, el bastidor debe inclinarse para el otro costado y repetir el proceso. Una vez transcurridas 24 h desde la primera inoculación, los bastidores deberán posicionarse de manera vertical para el cultivo. In the algae spore cultivation method of the invention, the frame must first be placed in an inclined position for a side with an inclination of approximately 50 °, then after inoculation and after 12 h in which the re -spore suspension and the cells adhere to the substrate, the frame must be tilted to the other side and repeat the process. After 24 hours from the first inoculation, the racks should be positioned vertically for cultivation.
La re-suspensión de esporas funciona mediante un dispositivo creado bajo el concepto de“air-lift pump”, donde gracias al vacío generado por la inyección de aire en la zona baja del estanque, el agua genera presión ingresando por el tubo colector arrastrando consigo las partículas a la deriva en el agua, para luego ser levantada por las burbujas y expulsada por el extremo superior. Este sistema se activa durante un minuto cada 3 h, 3 veces por lado del bastidor con un caudal de 2 L min 1 por cada bastidor. Luego de una semana se activa la aireación constante por estanque a un caudal de 6 L min 1 total. The re-suspension of spores works by means of a device created under the concept of "air-lift pump", where thanks to the vacuum generated by the injection of air into the lower area of the pond, the water generates pressure entering the collecting tube, dragging with it the particles drift in the water, to then be lifted by the bubbles and expelled from the upper end. This system is activated for one minute every 3 h, 3 times per frame side with a flow rate of 2 L min 1 per frame. After one week, constant aeration per tank is activated at a total flow of 6 L min 1 .
Resultados. Se hizo una comparación de los resultados con aquellos disponibles en la literatura científica, tomando como referencia los experimentos realizados por Alveal et al. (1997) y Glenn el al. (1998), quienes usan el método tradicional disponible hasta ahora en el estado del arte. Además, se hizo una comparación de un experimento de referencia usado como control. Se obtuvieron resultados de germinación, tasa de crecimiento, densidad de asentamiento, eficiencia y productividad de cada sistema. Results. A comparison of the results was made with those available in the scientific literature, taking as reference the experiments carried out by Alveal et al. (1997) and Glenn el al. (1998), who use the traditional method available up to now in the state of the art. Furthermore, a comparison was made of a reference experiment used as a control. Results of germination, growth rate, settlement density, efficiency and productivity of each system were obtained.
El experimento de referencia usado como control estuvo sometido a las mismas condiciones ambientales que el sistema de la invención. En el experimento de referencia se posicionó un único bastidor al fondo del estanque en forma horizontal para recibir el inoculo de esporas. La capacidad de sustrato de este bastidor, para el asentamiento de esporas fue de 82 metros lineales de cuerda de polipropileno de 3 mm de espesor. A las 12 horas fue volteado manualmente y nuevamente inoculado. Finalmente, transcurridas 12 horas desde el segundo inoculo, el bastidor fue posicionado de forma vertical al centro del estanque de manera que estuviese completamente cubierto de agua. Una vez completado este proceso, el experimento de referencia se dejó desarrollar bajo las mismas condiciones que la invención. The reference experiment used as a control was subjected to the same environmental conditions as the system of the invention. In the reference experiment, a single rack was positioned horizontally at the bottom of the pond to receive the spore inoculum. The substrate capacity of this rack, for the spore settlement, was 82 linear meters of 3 mm thick polypropylene rope. At 12 o'clock he was manually turned over and inoculated again. Finally, 12 hours after the second inoculum, the frame was positioned vertically in the center of the pond so that it was completely covered with water. Once this process was completed, the reference experiment was allowed to run under the same conditions as the invention.
Los resultados de densidad de asentamiento, germinación, y tasa de crecimiento obtenidos con el dispositivo de la invención se mantuvieron o fueron superiores a los del experimento de referencia tomado como control, por lo que se puede afirmar que el dispositivo de la invención, con el sistema de recirculación de esporas no afecta de manera negativa la viabilidad de las esporas con lo que se demostró que la invención es propicia para el cultivo a partir de esporas en comparación con los métodos tradicionales. The results of settlement density, germination, and growth rate obtained with the device of the invention were maintained or were superior to those of the reference experiment taken as a control, so it can be stated that the device of the invention, with the spore recirculation system does not negatively affect the viability of spores, thus, it was demonstrated that the invention is conducive to culture from spores compared to traditional methods.
Si bien en el arte previo se han realizado extrapolaciones productivas en cuanto a biomasa final obtenida, no existen investigaciones que estudien la eficiencia o productividad directa en un sistema de cultivo. La presente invención muestra la primera metodología de un sistema de esporocultivo que permite medir variables de eficiencia y productividad previo a la obtención de resultados de biomasa final, permitiendo proyectar de una manera más precisa el futuro del cultivo. Los datos encontrados en el arte previo se han debido someter a extrapolaciones y conversión de unidades para poder contrastarlos con los datos obtenidos en esta investigación, para evidenciar que el sistema es efectivamente más productivo que las metodologías actualmente utilizadas· Although in the prior art productive extrapolations have been made in terms of final biomass obtained, there are no investigations that study the efficiency or direct productivity in a cultivation system. The present invention shows the first methodology of a sporoculture system that allows measuring variables of efficiency and productivity prior to obtaining final biomass results, allowing a more accurate projection of the future of the crop. The data found in the previous art must have been subjected to extrapolations and unit conversions to be able to contrast them with the data obtained in this investigation, to show that the system is effectively more productive than the methodologies currently used ·
Glenn et al. (1998) en su trabajo con Gracilaria parvispora Abbott, obtuvieron Glenn et al. (1998) in their work with Gracilaria parvispora Abbott, they obtained
_2 _two
una densidad de esporas de 3.204 esp. cm utilizando 1000 g de algas reproductivas. Por otro lado, Alveal et al. (1997) en su trabajo con G. chilensis, lograron, con tan solo 400 g de algas, inocular 160 m de cuerda a una densidad menor a 400 esp. cm . Lo anterior, en conjunto con los resultados del presente estudio permitieron la elaboración de la Tabla I, en la cual el factor a comparar es la cantidad de esporas asentadas obtenidas por gramo de alga utilizado para esporulación, de esta manera se aislan por experiencia de diseño y no por el sustrato utilizado. Para esto se recopilaron datos que permitieron medir productividad y encontrar la mejor manera de expresarla, considerando los factores más relevantes (como biomasa y área) que otorgan un resultado representativo. a spore density of 3,204 esp. cm using 1000 g of reproductive algae. On the other hand, Alveal et al. (1997) in their work with G. chilensis, they managed, with only 400 g of algae, to inoculate 160 m of rope at a density of less than 400 esp. cm. The above, together with the results of the present study, allowed the elaboration of Table I, in which the factor to compare is the number of settled spores obtained per gram of algae used for sporulation, in this way they are isolated by design experience. and not by the substrate used. For this, data were collected that allowed measuring productivity and finding the best way to express it, considering the most relevant factors (such as biomass and area) that give a representative result.
De los datos expuestos en la tabla I se aprecia que la productividad obtenida con el sistema de bastidores de la invención es superior a la obtenida en los experimentos realizados por Alveal et al. (1997) en un 249,8%. La productividad obtenida con el sistema de bastidores de la invención es superior a los experimentos realizados por Glenn et al. (1998) en un 3594,5% y, la productividad es superior al sistema de referencia en un 34,4%. Esto demuestra que el dispositivo de la invención posee una eficiencia productiva muy por encima de metodologías de esporocultivo realizadas en investigaciones anteriores. From the data presented in Table I, it can be seen that the productivity obtained with the rack system of the invention is superior to that obtained in the experiments carried out by Alveal et al. (1997) by 249.8%. The productivity obtained with the rack system of the invention is superior to the experiments carried out by Glenn et al. (1998) by 3594.5% and productivity is superior to the reference system by 34.4%. This demonstrates that the device of the invention has a productive efficiency well above the sporoculture methodologies carried out in previous investigations.
Tabla I. Comparación de resultados obtenidos en bibliografía y experimentación.
Figure imgf000022_0001
Table I. Comparison of results obtained in bibliography and experimentation.
Figure imgf000022_0001
Estos resultados reafirman el correcto funcionamiento y el aumento en la productividad logrado con el método de obtención de esporas que utiliza el dispositivo de cultivo de esporas desarrollado por la presente invención. These results reaffirm the correct operation and the increase in productivity achieved with the method of obtaining spores that uses the spore culture device developed by the present invention.
La Figura 9 muestra un gráfico de productividad medido en esporas por sistema. Las barras representan el promedio total por tratamiento. En negro se explícita los sistemas de bastidores de la invención y en gris se muestra la barra que representa los valores del sistema control tomado como referencia. La letra“a” en la parte superior de la línea de promedios indica la similitud estadística entre el tratamiento con el dispositivo de la invención y el tratamiento de referencia. Además, se representa el porcentaje de diferencia entre los valores promedios con el símbolo delta (D) observando un D del 34%. Las barras de error representan la distribución de cada muestra. Al hacer la comparación de la productividad medida en esporas asentadas por estanque, tomando como control un sistema de referencia que toma lo mejor de los métodos tradicionales y comparándolo con la productividad obtenida en esporas asentadas por estanque, se observó un aumento de productividad de un 34% logrado con el dispositivo de la invención, en comparación con el sistema de referencia, como se demuestra en la figura 9. Esto permite concluir el buen funcionamiento del diseño del dispositivo que comprende bastidores abatibles y el sistema de re-suspensión de esporas de la invención. Figure 9 shows a graph of productivity measured in spores by system. The bars represent the total average per treatment. The frame systems of the invention are explained in black and the bar representing the values of the control system taken as reference is shown in gray. The letter "a" at the top of the average line indicates the statistical similarity between the treatment with the device of the invention and the reference treatment. In addition, the percentage difference between the average values is represented with the delta symbol (D), observing a D of 34%. The error bars represent the distribution of each sample. When comparing the productivity measured in spores settled by pond, taking as a control a reference system that takes the best of traditional methods and comparing it with the productivity obtained in spores settled by pond, an increase in productivity of 34 was observed. % achieved with the device of the invention, compared to the reference system, as shown in figure 9. This allows us to conclude that the design of the device comprising folding frames and the spore re-suspension system of the invention.
Además, el porcentaje de asentamiento y germinación de las esporas fue cercano al 100% en el sistema y a la vez se obtuvieron tasas de crecimiento cercanas al 4% d 1. Esto se tradujo en una eficiencia productiva muy por encima de metodologías de esporocultivo realizadas en investigaciones anteriores. Las facilidades en el manejo de los bastidores, la disminución de la manipulación al interior de los estanques, la re-suspensión de las esporas y la automatización de ciertos procesos contribuyen a al aumento de eficiencia y productividad obtenida en el cultivo que utiliza el dispositivo de la presente invención, ya que con la presente invención no solo se aumenta la cantidad de sustrato inoculado en un mismo esfuerzo, sino que a la vez, expande el desarrollo al cultivo en bastidores inclinados, derribando el paradigma de cultivo horizontal utilizado hasta ahora, debido a la falta de movilidad de las esporas de las algas rojas, y abre el desarrollo al uso controlado del sistema de re-suspensión de esporas, haciendo más atractivo el cultivo de estas algas para hacerlas crecer a escalas comerciales y para nuevos inversionistas. In addition, the spore settling and germination percentage was close to 100% in the system, while growth rates of close to 4% d 1 were obtained . This translated into productive efficiency well above the sporoculture methodologies carried out in previous investigations. The facilities in the handling of the racks, the reduction of the manipulation inside the ponds, the re-suspension of the spores and the automation of certain processes contribute to the increase in efficiency and productivity obtained in the culture that uses the device of the present invention, since with the present invention not only the amount of inoculated substrate is increased in the same effort, but at the same time, it expands the development to the cultivation in inclined racks, demolishing the paradigm of horizontal cultivation used until now, due to the lack of mobility of the red algae spores, and opens the development to the controlled use of the spore re-suspension system, making the cultivation of these algae more attractive to grow them on commercial scales and for new investors.

Claims

REIVINDICACIONES
1. Un dispositivo para el cultivo de esporas de algas rojas CARACTERIZADO porque comprende un estanque (1); un sistema de bastidores con un sustrato para el asentamiento de esporas; a lo menos un marco guía en forma de U que sostiene cada bastidor en posición inclinada, dos barras horizontales laterales que permiten movilidad; una palanca que permite manipulación desde fuera del agua; un sistema de re-suspensión de esporas que comprende tuberías en las cuales circula agua, aire y esporas. 1. A device for the cultivation of red algae spores, CHARACTERIZED in that it comprises a pond (1); a rack system with a substrate for spore settlement; at least one U-shaped guide frame that supports each frame in an inclined position, two horizontal lateral bars that allow mobility; a lever that allows manipulation from out of the water; a spore re-suspension system comprising pipes in which water, air and spores circulate.
2. El dispositivo de acuerdo a la reivindicación 1 CARACTERIZADO porque comprende a lo menos dos bastidores (2) que se insertan en correspondientes dos marcos guía (7) en forma de U. 2. The device according to claim 1, CHARACTERIZED in that it comprises at least two frames (2) that are inserted in corresponding two guide frames (7) in the form of a U.
3. El dispositivo de acuerdo a la reivindicación 1, CARACTERIZADO porque el estanque (1) comprende caras translúcidas, permitiendo ser iluminado por cualquiera de sus caras (13), comprende dos planos inclinados (18) ubicados en el fondo (19), donde los planos inclinados comprenden una línea central (20) formada por las aristas de los planos inclinados, ubicada en la parte media a lo largo de la base del estanque (1). 3. The device according to claim 1, CHARACTERIZED in that the pond (1) comprises translucent faces, allowing it to be illuminated by any of its faces (13), comprising two inclined planes (18) located at the bottom (19), where the inclined planes comprise a central line (20) formed by the edges of the inclined planes, located in the middle part along the base of the pond (1).
4. El dispositivo de acuerdo a la reivindicación 1, CARACTERIZADO porque el sistema de bastidores que comprende dos barras horizontales laterales por cada lado, paralelas entre sí, comprendiendo barras fijas (5a, 5b) y barras móviles (6a, 6b), las cuales están unidas a una serie de marcos guía (7) para soporte de los bastidores mediante pernos (8). 4. The device according to claim 1, CHARACTERIZED in that the frame system comprising two horizontal lateral bars on each side, parallel to each other, comprising fixed bars (5a, 5b) and mobile bars (6a, 6b), which They are attached to a series of guide frames (7) to support the frames with bolts (8).
5. El dispositivo de acuerdo a la reivindicación 4, CARACTERIZADO porque los pernos (8) forman ejes que permiten un movimiento basculante de los marcos guía (7), siendo los pernos (8) los que unen los marcos guía (7) a las barras fijas (5a, 5b) y a las barras móviles (6a, 6b). 5. The device according to claim 4, CHARACTERIZED in that the bolts (8) form axes that allow a tilting movement of the guide frames (7), with bolts (8) connecting the guide frames (7) to the fixed bars (5a, 5b) and to the mobile bars (6a, 6b).
6. El dispositivo de acuerdo a la reivindicación 4, CARACTERIZADO porque las barras fijas (5a, 5b) están dispuestas horizontalmente, y se conectan por los extremos a respectivas porciones de barras verticales descendentes (9a, 9b), donde las barras verticales descendentes (9a, 9b) a su vez se conectan con una barra horizontal basal (10), donde la barra horizontal basal (10) une ambas barras verticales descendentes (9a, 9b) formando así la base para afirmar a la estructura del sistema de bastidores al fondo del estanque. The device according to claim 4, CHARACTERIZED in that the fixed bars (5a, 5b) are arranged horizontally, and are connected at the ends to respective portions of descending vertical bars (9a, 9b), where the descending vertical bars ( 9a, 9b) in turn are connected with a horizontal basal bar (10), where the horizontal basal bar (10) joins the two descending vertical bars (9a, 9b), thus forming the base to affirm the structure of the frame system at pond bottom.
7. El dispositivo de acuerdo a la reivindicación 4, CARACTERIZADO porque las barras móviles (6a, 6b) están dispuestas horizontalmente, y se conectan por uno de sus extremos a respectivas porciones de barras verticales ascendentes (l ia, 11b), que a su vez se conectan a una barra horizontal superior (12), donde la barra horizontal superior (12) une ambas barras verticales ascendentes (l ia, 11b) entre si y se extiende por sobre ambas formando una palanca para maniobrar el movimiento de los ejes rotatorios de los marcos guía (7) para inclinar los bastidores (2). 7. The device according to claim 4, CHARACTERIZED in that the mobile bars (6a, 6b) are arranged horizontally, and are connected at one end to respective portions of vertical ascending bars (lia, 11b), which at their instead they connect to a horizontal upper bar (12), where the upper horizontal bar (12) joins both ascending vertical bars (ia, 11b) with each other and extends over both forming a lever to maneuver the movement of the rotary axes of the guide frames (7) to tilt the frames (2).
8. El dispositivo de acuerdo a la reivindicación 1 CARACTERIZADO porque el sistema de re-suspensión de esporas comprende un tubo vertical (21) que comprende un difusor (17) ubicado en su base por el cual entra aire (14) a través de una manguera de aire (15), el tubo vertical (21) en su extremo inferior se conecta con un tubo inferior horizontal (24) que se conecta a un tubo vertical descendente (28) que se conecta a su vez con un tubo horizontal central (29). 8. The device according to claim 1, CHARACTERIZED in that the spore re-suspension system comprises a vertical tube (21) that comprises a diffuser (17) located at its base through which air (14) enters through a air hose (15), the vertical tube (21) at its lower end connects with a horizontal lower tube (24) that connects to a vertical down tube (28) that in turn connects with a central horizontal tube ( 29).
9. El dispositivo de acuerdo a la reivindicación 8, CARACTERIZADO porque el tubo horizontal central (29) poseen perforaciones (25) por las cuales ingresa agua (26) y esporas (23) desde la línea central (20) formada por las aristas de los planos inclinados del fondo del estanque. 9. The device according to claim 8, CHARACTERIZED in that the central horizontal tube (29) have perforations (25) through which water (26) and spores (23) enter from the central line (20) formed by the edges of the inclined planes of the pond bottom.
10. El dispositivo de acuerdo a la reivindicación 9, CARACTERIZADO porque el tubo vertical (21) en su extremo superior posee un codo en 90 grados que termina en un orificio superior (22) por el cual son expulsadas la mezcla de agua con esporas y burbujas de aire (27). 10. The device according to claim 9, CHARACTERIZED in that the vertical tube (21) at its upper end has a 90-degree elbow that ends in an upper hole (22) through which the mixture of water with spores is expelled and air bubbles (27).
11. El dispositivo de acuerdo a cualquiera de las reivindicaciones anteriores11. The device according to any of the preceding claims
CARACTERIZADO porque comprende cuatro bastidores (2), que se insertan en correspondientes cuatro marcos guía (7), a su vez conectados a un par de barras móviles (6a, 6b) y un par de barras fijas (5a, 5b) que están dispuestas horizontalmente CHARACTERIZED because it comprises four frames (2), which are inserted in corresponding four guide frames (7), in turn connected to a pair of movable bars (6a, 6b) and a pair of fixed bars (5a, 5b) that are arranged horizontally
12. El dispositivo de acuerdo a cualquiera de las reivindicaciones 1 a 1012. The device according to any of claims 1 to 10
CARACTERIZADO porque comprende cinco bastidores (2), que se insertan en correspondientes cinco marcos guía (7), a su vez conectados a un par de barras móviles (6a, 6b) y un par de barras fijas (5a, 5b) que están dispuestas horizontalmente . CHARACTERIZED because it comprises five frames (2), which are inserted in corresponding five guide frames (7), in turn connected to a pair of movable bars (6a, 6b) and a pair of fixed bars (5a, 5b) that are arranged horizontally.
13. El dispositivo de acuerdo a cualquiera de las reivindicaciones 1 a 1013. The device according to any of claims 1 to 10
CARACTERIZADO porque comprende seis bastidores (2), que se insertan en correspondientes seis marcos guía (7), a su vez conectados a un par de barras móviles (6a, 6b) y un par de barras fijas (5a, 5b) que están dispuestas horizontalmente . CHARACTERIZED because it comprises six frames (2), which are inserted in corresponding six guide frames (7), in turn connected to a pair of mobile bars (6a, 6b) and a pair of fixed bars (5a, 5b) that are arranged horizontally.
14. Un método para cultivar esporas de algas rojas CARACTERIZADO porque comprende proveer un sistema de bastidores para el asentamiento de esporas dentro de un estanque lleno de agua; inclinar los marcos de los bastidores hacia un primer lado desde fuera del agua; inocular el estanque con esporas evitando salpicar la superficie del agua; permitir que las esporas se adhieran al sustrato; re-suspender las esporas no adheridas; mover los bastidores desde fuera del agua de modo de inclinar los bastidores hacia un segundo lado para exponer la otra cara del bastidor; mantener en un plano inclinado los bastidores de modo de no generar sombras; inocular con esporas evitando salpicar la superficie; permitir que las esporas se adhieran al sustrato de cuerdas en el segundo lado del bastidor; hacer recircular las esporas no adheridas; posicionar los bastidores en posición vertical desde fuera del agua; dejar sin movimiento y luz tenue para permitir la adhesión de las esporas; iluminar el bastidor para el crecimiento de las esporas asentadas. 14. A method of cultivating red algae spores CHARACTERIZED because it comprises providing a rack system for spore settlement within a pond filled with water; tilt the rack frames to a first side from out of the water; inoculate the pond with spores avoiding splashing the surface of the water; allow spores to adhere to the substrate; re-suspend unbound spores; moving the frames out of the water so as to tilt the frames to a second side to expose the other face of the frame; keep the racks on an inclined plane so that do not cast shadows; inoculate with spores avoiding splashing the surface; allowing spores to adhere to the string substrate on the second side of the frame; recirculate unattached spores; position the racks vertically from out of the water; leave motionless and dim light to allow spores to adhere; illuminate the rack for the growth of settled spores.
15. El método de acuerdo a la reivindicación 14 CARACTERIZADO porque la etapa de re-suspender las esporas comprende activar el sistema de re- suspensión durante 1 minuto cada 3 h, 3 veces por lado del bastidor con un caudal de 2 L miri1 por cada bastidor. 15. The method according to claim 14, CHARACTERIZED in that the step of re-suspending the spores comprises activating the re-suspension system for 1 minute every 3 h, 3 times per side of the frame with a flow rate of 2 L miri 1 per each rack.
16. El método de acuerdo a la reivindicación 15, CARACTERIZADO porque luego de una semana comprende activar la aeración constante por estanque a un caudal de 6 L miri1 total. 16. The method according to claim 15, CHARACTERIZED because after one week it comprises activating the constant aeration by pond at a flow rate of 6 L miri 1 total.
17. El método de acuerdo a cualquiera de las reivindicaciones 14 a 16, CARACTERIZADO porque comprende sumergir el bastidor (2) en un estanque (1) que contiene agua de mar fresca, estéril y enriquecida con medio nutritivo; verter la suspensión acuosa de esporas sobre la superficie del bastidor (2) y dejar el sistema en reposo con control de iluminación, fotoperiodo de luz:oscuridad y con control de temperatura y nutrientes. 17. The method according to any of claims 14 to 16, CHARACTERIZED in that it comprises immersing the frame (2) in a tank (1) containing fresh, sterile and nutrient-enriched seawater; Pour the aqueous spore suspension onto the surface of the frame (2) and leave the system at rest with lighting control, light photoperiod: darkness and with temperature and nutrient control.
PCT/CL2018/050162 2018-12-28 2018-12-28 Inclined culture system and method for spore resuspension for the spore culture of red algae WO2020132760A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CL2018/050162 WO2020132760A1 (en) 2018-12-28 2018-12-28 Inclined culture system and method for spore resuspension for the spore culture of red algae
PE2021001084A PE20212116A1 (en) 2018-12-28 2018-12-28 INCLINED CULTURE SYSTEM AND SPORE RE-SUSPENSION METHOD FOR SPOROCULTURE OF RED ALGAE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2018/050162 WO2020132760A1 (en) 2018-12-28 2018-12-28 Inclined culture system and method for spore resuspension for the spore culture of red algae

Publications (1)

Publication Number Publication Date
WO2020132760A1 true WO2020132760A1 (en) 2020-07-02

Family

ID=71125649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/050162 WO2020132760A1 (en) 2018-12-28 2018-12-28 Inclined culture system and method for spore resuspension for the spore culture of red algae

Country Status (2)

Country Link
PE (1) PE20212116A1 (en)
WO (1) WO2020132760A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231387A (en) * 2000-02-21 2001-08-28 Sumitomo Osaka Cement Co Ltd Culturing tool and method for growing alga by using the culturing tool
CN103734063A (en) * 2014-01-26 2014-04-23 福州大学 Abalone-alga symbiotic cultivation method and pond
KR101413324B1 (en) * 2012-08-27 2014-07-02 전라남도 The horizontal track-type tank for seaweed seedling production
CN106434284A (en) * 2016-11-10 2017-02-22 山东建筑大学 Modular microalgae culture system with rapid algal species expanding culture device
KR101872289B1 (en) * 2017-11-22 2018-06-28 제주해양연구소 주식회사 movable seed collecting box of seaweed and seaweed culturing methods thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231387A (en) * 2000-02-21 2001-08-28 Sumitomo Osaka Cement Co Ltd Culturing tool and method for growing alga by using the culturing tool
KR101413324B1 (en) * 2012-08-27 2014-07-02 전라남도 The horizontal track-type tank for seaweed seedling production
CN103734063A (en) * 2014-01-26 2014-04-23 福州大学 Abalone-alga symbiotic cultivation method and pond
CN106434284A (en) * 2016-11-10 2017-02-22 山东建筑大学 Modular microalgae culture system with rapid algal species expanding culture device
KR101872289B1 (en) * 2017-11-22 2018-06-28 제주해양연구소 주식회사 movable seed collecting box of seaweed and seaweed culturing methods thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALICIA M GONZALEZ CESPEDES: "Cultivos de microalgas a gran escala: sistemas de producción", June 2016 (2016-06-01), pages 1 - 14, XP055723720, Retrieved from the Internet <URL:https://www.cajamar.es/pdf/bd/agroalimentario/innovacion/formacion/actividades-de-transferencia/018-microalgas2-1467367279.pdf> [retrieved on 20190514] *

Also Published As

Publication number Publication date
PE20212116A1 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
US9290733B2 (en) Methods for culture of microorganisms
Zittelli et al. Photobioreactors for mass production of microalgae
US8479441B2 (en) Light distribution apparatus for cultivation of phytoplankton and other autotrophic aquatic species in an aquatic medium
EP2501795B1 (en) Accordion bioreactor
WO2015131830A1 (en) Photosynthetic organism cultivation device
US20130205450A1 (en) Cultivation of photosynthetic organisms
US20110129906A1 (en) Photobioreactor, system and method for the cultivation of photosynthetic microorganisms
Perumal et al. Isolation and culture of microalgae
ES2713999T3 (en) Microalgae culture system in external conditions
WO2020132760A1 (en) Inclined culture system and method for spore resuspension for the spore culture of red algae
CN104322430B (en) Holothurian culture pond
ES2356653B2 (en) PHOTOBIOR REACTOR FOR THE CROP OF PHOTOTROPHIC ORGANISMS.
KR101721448B1 (en) Microalgae culture system
WO2019214484A1 (en) Closed slope runway pool system for use in large-scale cultivation and harvesting of microalgae
CN102783405B (en) Air-lift circulating-water algae culture system
US20220186175A1 (en) Method for cultivating microalgal biomass and apparatus for the implementation thereof
CN107641594A (en) A kind of differential open pipe bioreactor for microdisk electrode
CN209314533U (en) A kind of ornamental type test tube potato breeding apparatus
CN105850707B (en) A kind of prawn industrial cultivation pond microalgae levitation device
CN216438222U (en) Plant root system development observer
Largo et al. Method for the mass production of seedlings of the tropical brown seaweed Sargassum (Phaeophyceae, Ochrophyta)
CN210143366U (en) Flowerpot for observing growth condition of plant roots
Romano et al. Altered Gravity Effects on Growth and Morphology of Wolffia globosa: Implications for Bioregenerative Life Support Systems and Space-based Agriculture
Fari et al. DESIGN OF A REVERT ROTARY PLANT MICROPROPAGATION BIOREACTOR¿´ 3R´ SYSTEM: APPLICATION FOR RESEARCH, POSSIBILITIES OF SCALING-UP AND LIMITATIONS
CN204968966U (en) Abalone of adjustable water level pond of growing seedlings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944821

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944821

Country of ref document: EP

Kind code of ref document: A1